Theoretical Aspects of Stochastic
Signal Quantisation and Suprathreshold

Stochastic Resonance

by

Mark Damian McDonnell

B.Sc. (Mathematical & Computer Sciences),
The University of Adelaide, Australia, 1997

B.E. (Electrical & Electronic Engineering, Honours),
The University of Adelaide, Australia, 1998

B.Sc. (Applied Mathematics, First Class Honours),
The University of Adelaide, Australia, 2001

Thesis submitted for the degree of
Doctor of Philosophy
in
The School of Electrical and Electronic Engineering,

Faculty of Engineering, Computer and Mathematical Sciences
The University of Adelaide, Australia

February, 2006



© 2006 PO THE UNIVERSITY

A8 OF ADELAIDE
Mark Damian McDonnell AUSTRALIA
/

All Rights Reserved




For Juliet



Page iv



Contents

Heading Page
Contents v
Abstract XV
Statement of Originality XVii
Acknowledgments Xix
Thesis Conventions xxiii
Publications XXV
List of Figures XXVii
List of Tables xxxiii

Chapter 1. Introduction and Motivation 1
1.1 Background and Motivation . . . . ... .. .. ... ..o 0oL 2
1.1.1  Stochastic Resonance and Sensory Neural Coding . . . . . .. .. 3

1.1.2  Low Signal-to-Noise Ratio Systems and Sensor Networks 4

1.2 Specific Research Questions . . . ... .................... 5
1.2.1 From Stochastic Resonance to Stochastic Quantisation . ... .. 5

1.3 Thesis Overview and Original Contributions . . . . ... ... ... ... 5
Chapter 2. Historical Landscape 9
21 Introduction . ... .. .. ... ... 10
211 Chapter Structure . . . . . ... ... ... L 10

22 StochasticResonance . . . ... ... ... ... . ... ... . ... ... 10
2.2.1 A Brief History of Stochastic Resonance . . . . ... ... ... .. 14

2.2.2  Stochastic Resonance in Threshold Systems . . . . . ... ... .. 22




Contents

2.2.3 Stochastic Resonance in Neural Systems . . . . .. ... ... ... 34

2.3 Information and Quantisation Theory . . ... ... ... ... ... ... 35
2.3.1 Definition of Mutual Information . . . . . ... ... ... ..... 35

2.3.2 The Basics of Quantisation Theory . . . . ... ... ... ..... 37

2.3.3 Quantisation Literature Review . . . . . . .. .. ... ... .... 39

24 ChapterSummary . . . . .. ... .. ... 42
2.4.1 Original Contributions for Chapter2. . . . . ... ... ... ... 42

242 FurtherWork . . ... .. ... .. ... 42
Chapter 3. How Should Stochastic Resonance be Measured? 45
3.1 Introduction . ... ... ... ... 46
3.1.1 How Do I Measure Thee? Let Me Count The Ways . . . ... .. 46

3.1.2 Chapter Structure . . . . . ... .. ... ... L 49

32 TheSNRGainDebate. . . . ... .. ... ... ... .. . .. ....... 49
321 CanSNRGains Occur AtAlI? . . . .. ... ... ... ... ..., 49

3.22 Are SNR Gains Meaningful? . . ... ... ... .. ........ 51

3.3 The Data Processing InequalityandSR. . . . ... ........ .. ... 52
3.3.1 The Data Processing Inequality . . . ... ... ........... 53

3.3.2 Example 1: Asymmetric Binary Channel . . ... ... ... ... 56

3.3.3 Example 2: Binary Erasure Channel . . . ... ... ... ... .. 58

334 DIscusSiON . . . . . . .. 63

3.4 Cross-Spectral Measures . . . ... ... ........ ... . ...... 64
3.4.1 Power and Cross-Power Spectral Densities . . . . .. ... .... 65

34.2 NewInterpretation . . . . ... ... ... ... ... ........ 71

3.43 Applying the Frequency Dependant SNR Formula . .. ... .. 72

344 DiscusSion . . . . . ... e 75

35 ChapterSummary. . . . ... ... ... ... 78
3.5.1 Original Contributions for Chapter3. . . . . ... ... ... ... 78

352 FurtherWork . . ... .. ... ... ... 79
Chapter 4. Suprathreshold Stochastic Resonance: Encoding 81

Page vi



Contents

4.1 Introduction . ... .. .. ... .. 82
411 Chapter Structure . . . . . ... .. ... ... 82

42 LiteratureReview . . . . . . ... L L 83
42.1 Information Theoretic Studies of SR in Threshold Systems . . . . 83

422 Original WorkonSSR . . . .. ... ... ... . ... ..... 83

42.3 SSRin Neurons and Cochlear Implant Encoding . . . . . ... .. 84

424 Workon SSRby Other Authors . . . . ... ............. 86

425 Similarity to SSRin Other Work . . .. ... .... ... ... .. 87

426 DiscussSiOn . . . . . . . ... 88

4.3 Suprathreshold Stochastic Resonance . . . ... ... ........... 90
431 TheSSRModel . . ... ... ... . .. ... 90

432 Measuring SSR with Mutual Information . . . .. ... ... ... 93

4.3.3 SSR for Specific Signal and Noise Distributions . . . . . . ... .. 99

434 Exact Result for Uniform Signal and Noise,andoc <1. ... ... 108

435 Numerical Results . . ... ... ... ... .. ... ... ..... 112

44 Channel Capacity for SSR . . .. ... ... .. .. .. ... .. 126
441 Matched and Fixed Signal and NoisePDFs . . . . . ... ... .. 127

442 Channel Capacityin General . . . . ... ... ........... 129

443 Coding Efficiency . . . .. ... ... ... oo 0oL 132

45 SSR as Stochastic Quantisation . . . .. ... ... ... ... ....... 133
45.1 Encoder Transfer Function. . . . . . .. ... ... ... ...... 137

452 Decoding the SSROutput . . ... ...... ... ... .. ... 138

46 ChapterSummary. . . . . ... ... ... ..o 139
4.6.1 Original Contributions for Chapter4. . . . ... ... .. ... .. 140

46.2 FurtherWork . .. ... ... ... 141
Chapter 5. Suprathreshold Stochastic Resonance: Large N Encoding 143
51 Introduction . . . ... ... . .. .. 144
51.1 Mutual Information . . . . ... ... Lo L 144

5.1.2 Literature Review . . . . . . . ... ... oo L. 146

51.3 Chapter Structure . . . . . . . ... L oo 147

Page vii



Contents

52

53
54

5.5

5.6

Chapter
6.1

6.2
6.3

6.4

SSRforLarge Nando =1. ... ... ... . ... ... ... ...... 148
52.1 Average Conditional Entropy for Large Nando =1 . ... ... 148
522 Mutual Information for Large Nando =1 . . . .. ... ... .. 150
I(x,y) for Large N, Uniform Signal & Noise & o <1......... ... 155
Mutual Information for Large N and Arbitraryo . . . .. ... ... ... 159
5.4.1 The Gaussian Approximation to the Binomial Distribution . . . . 159
5.4.2 Conditional Entropy for Large N . . . . .. ... .......... 160
5.4.3 Output Distribution and Entropy for Large N . . ... ... ... 165
5.4.4 Mutual Information for Large N . . . ... ... .. ... ... 172
5.4.5 Relationship to Fisher Information . . . . ... .. ... ... ... 174
Channel Capacity forLarge N . . . . ... ... .. ... .. ....... 176
55.1 General Channel Capacity . . . ... ................. 176
5.5.2 Capacity for Matched Signal and Noise . . . . ... ... ... .. 177
5.5.3 Gaussian Signaland Noise . . ... ... ... ........... 178
5.5.4 Numerical Verification and Other Distributions . . ... ... .. 180
ChapterSummary . . . . .. ... .. .. ... ... 181
5.6.1 Oiriginal Contributions for Chapter5. . . . . . ... ... ... .. 183
562 FurtherWork . ... ... ... .. .. ... .. .. .. .. ... 184
6. Suprathreshold Stochastic Resonance: Decoding 187
Introduction . . . . ... ... L 188
6.1.1 Summary of Relevant Results from Chapters4and5 . ... ... 188
6.1.2 Decoding a Quantised Signal . . . . ... ... ... ..... ... 189
6.1.3 Chapter Structure . . . . . . ... ... .. L o L 192
Averaging Without Thresholding . . . . . ... ............... 193
Linear Decoding Theory . . . . ... .. ... ... ............. 195
6.3.1 ConstantDecoding . . . . .. ... ....... ... ........ 197
6.3.2 Matched Moments Linear Decoding . . . . ... ... ....... 198
6.3.3 Wiener Optimal Linear Decoding . . . . . ... ... ........ 199
Linear decoding for SSR . . . . .. ... ... ... .. ... ... .. 200
6.4.1 Decoding Measuresfor SSR . . . . . ... .............. 200

Page viii



Contents

6.4.2 Specific Signal and Noise Distributions . . . ... ... ..
6.43 ConstantDecoding . . . ... ... .. ............
6.44 Matched Moments Linear Decoding . . . . ... ... ...
6.4.5 Wiener Optimal Linear Decoding . . . . . . ... ... ...
6.5 Nonlinear Decoding Schemes . . . . . ... ... ... .......
6.51 MAPDecoding . ... ... ..................
6.5.2 Maximum Likelihood Decoding . . . ... ... ... ...
6.5.3 Minimum Mean Square Error Distortion Decoding . . . .
6.6 Decoding Analysis . . ... ... ..... ... ... . ... ...
6.6.1 Distortion Comparison. . . . ... ... ... ........
6.6.2 Transfer Functions . .. ... ... ... ...........
6.7 An Estimation Perspective . . . . . ... ...............
6.7.1 Definitions . . . . ... ... oL o
6.7.2 Application to the SSRmodel . . . . ... ... ... .. ..
6.73 SSREncoding . . ....... ... .. ... ... . ...,
6.74 SSR Linear Decoding . . . . . ... ... ...........
6.7.5 SSR Nonlinear Decoding . . . . . ... ... ... ... ...
6.8 Output Signal-to-NoiseRatio . . . . ... .. ............
6.8.1 SNRinthe DIMUSmodel . . . ... ... ..........
6.8.2 Stocks’ SNR Measure for SSR . . . . ... ... ... ... ..
6.8.3 Gammaitoni’s Dithering Formula . . ... ... ... ...
6.9 ChapterSummary. . .. .. ... .. ... ... ...........
6.9.1 Original Contributions for Chapter6. . . . . ... ... ..
6.9.2 FurtherWork .. ... ... .. .. .. ... ..........

Chapter 7. Suprathreshold Stochastic Resonance: Large N Decoding

71 Introduction . . ... ... ... ... ...
711 ChapterStructure . . . . ... .. ... ... L.
7.2 Mean Square Error Distortion for Large N . . . . . ... ... ...
7.2.1 Wiener Linear Decoding . . . . . .. .............
7.22 MMSE Optimal Decoding . . . . ... ............




Contents

7.3 Large N Estimation Perspective . . . . . ... .. ... ... ........ 264
7.3.1 Asymptotic Large N Theory . . . . ... ............... 265

7.3.2 ApplicationtoSSR . . . .. ... L oL oo 266

7.4 Discussion on Stochastic Resonance Without Tuning . . . . . . . ... .. 268
75 ChapterSummary. . . ... .. ... ... 270
7.5.1 Original Contributions for Chapter 7. . . . . ... ... ... ... 270

752 FurtherWork . ... ... . . ... 271
Chapter 8. Optimal Stochastic Quantisation 273
8.1 Introduction . ... ... ... ... 274
8.1.1 Optimal Quantisation Literature Review . ... ... . ... ... 275

81.2 Chapter Structure . . . . . . ... ... L o 278

8.2 Optimal Quantisation Model . . . .. ... ... ... . .......... 278
8.2.1 Moment Generating Function . . . . .. ... ... .. ....... 280

8.2.2 Conditional OutputMoments . . . . . ... ... ... ....... 281

8.2.3 Transition Probabilities. . . . . . .. ... ... ... . ... ... 282

8.24 Optimisation Problem Formulation . ... ... ... ....... 284

8.3 Optimisation Solution Algorithms . . . . ... .. ... ... ....... 284
8.3.1 Unconstrained Multidimensional Optimisation . .. ... .. .. 284

8.3.2 Dealing withLocalOptima . . . .. ... ... .. ......... 285

8.4 Optimal Quantisation for Mutual Information . . .. ... ... ..... 287
841 AbsenceofNoise . . ... ... ... ... ... ... . ..., 287

8.4.2 Results in the Presence of Noise . . ... ... ... ........ 289

8.5 Optimal Quantisation for MSE Distortion . . . . ... ... ... ..... 296
85.1 Linear Decoding . ... ........................ 296

8.5.2 Nonlinear Decoding . . . .. ... .................. 296

85.3 AbsenceofNoise . . . ... ... .. ... ... .. .. 297

8.5.4 Resultsin the Presence of Noise . . .. ... ............ 298

8.6 Discussionof Results . . . . ... ... ... .. ... . .. L. 303
8.6.1 Observations . ... ......... ... .. ... ... . ..., 303

8.6.2 Mathematical Description of Optimal Thresholds . . . ... ... 306

Page x



Contents

8.6.3 LocalMaxima . . ... ... ... ... . ... ... .. ... 308

8.6.4 An Estimation Perspective. . . . . .. ... ... ... ....... 313

8.7 Locating the Final Bifurcation . . . . ... ..... ... ... ....... 317
8.8 ChapterSummary. . .. ... ... .. .. ... ... .. 319
8.8.1 Original Contributions for Chapter 8. . . . .. ... ... ..... 319

882 FurtherWork . ... ... . ... ... 320
Chapter 9. SSR, Neural Coding, and Performance Tradeoffs 323
9.1 Introduction . . . .. . . . . . . . e 324
9.1.1 Review of Relevant Material . . ... ... ... .. ........ 325

9.12 Constrained Optimisation . . . ... ... ... ........... 327

913 ChapterStructure . . . . .. ... ... ... . L L 328

9.2 Information Theory and Neural Coding . . . . . ... ... ........ 328
921 EnergyConstraints . . . . ... ... ... .............. 329

922 AllThresholdsEqual . . . . ... ................... 331

9.2.3 Energy Constrained Optimal Quantisation . . . . ... ... ... 337

9.24 Fixed Thresholds and a Minimum Information Constraint . . . . 340

9.2.5 Discussion and Further Work . . . ... ... ... ... ...... 340

9.3 Rate-Distortion Tradeoff . . . . . .. ... ... ... ... ......... 342
9.3.1 Rate-Distortion Theory . . . . ... .. ... ... ........ 343

9.3.2 Rate-Distortion Tradeoff for SSR . . . . .. ... ... ... .... 348

9.3.3 Rate-Distortion Tradeoff for Optimised Thresholds . . . . .. .. 352

94 ChapterSummary. . . . ... ... ... .. 353
9.4.1 Original Contributions for Chapter9. . . . .. .. ... ... ... 354

942 FurtherWork . . . ... ... ... ... 354
Chapter 10.Conclusions and Future Directions 357
10.1 ThesisSummary . . . . . . .. ... .. 358
10.1.1 StochasticResonance . . . . .. . ... ... ... ... ....... 358
10.1.2 Suprathreshold Stochastic Resonance . . ... ... ... .. ... 358
10.1.3 Stochastic Quantisation with Identical Thresholds . . . . . . . .. 359
10.1.4 Optimal Stochastic Quantisation . . . ... ... ... ... .... 359
10.1.5 Stochastic Quantiser Performance Tradeoffs . . ... .. ... .. 360

10.2 Closing Remarks . . . .. ... ... ... ... .. .. ... ... .. ... 360




Contents

Appendix A. Binary Channel Calculations 363
A.1 Example 1: Asymmetric Binary Channel . . . . . ... ... ... ..... 363
A.2 Example 2: Chapeau-Blondeau’s Erasure Channel . . . . .. ... .. .. 365

Appendix B. Derivations for Suprathreshold Stochastic Resonance Encoding 367

B.1 Maximum Values and Modes of P(n|x) . ... ... ... ......... 367
B.2 AProof of Equation (4.38) . . .. ... ... ... ... L. 368
B.3 Distributions . . . . .. ... 369
B.3.1 Gaussian Signaland Noise . . ... ... ... .. ......... 369
B.3.2 Uniform Signaland Noise . . . . .. ... ... ... ........ 370
B.3.3 Laplacian Signaland Noise . . . ... ... ............. 370
B.3.4 LogisticSignaland Noise . . ... .................. 371
B.3.5 Cauchy Signaland Noise . . ... ... .. ... .......... 372
B.3.6 Exponential Signaland Noise . . . . . ... ... ... ....... 373
B.3.7 Rayleigh Signaland Noise . . . . ... ... ............. 374
B.4 Proofs for Specific Cases that Q(t)isaPDF . . . .. ... ... ...... 375
B.4.1 Gaussian Signaland Noise . . ... ... ... ........... 375
B.4.2 Laplacian Signaland Noise . . . . ... ... ... ......... 375
B.5 Numerical Integration of the Mutual Information . . .. ... .. .. .. 376
B.5.1 Integrating Over the Input’s Support . . ... ... ... .. ... 376
B.5.2 Numerical Integration Using Q(T) . . . . . .. ... .. .. .... 377
B.5.3 Comments on Numerical Integration . . ... ........... 377

Appendix C. Derivations for large N Suprathreshold Stochastic Resonance 379

C1 ProofofEqn.(5.9) . . . . ... ... . 379
C.2 Derivationof Eqn. (5.13) . . . .. ... ... .. Lo oo 380
C.3 ProofthatS(x)isaPDF . . ... ... .. .. .. .. .. .. ... ... 381

Appendix D. Derivations for Suprathreshold Stochastic Resonance Decoding 383

D.1 Conditional OutputMoments . . . . ... ... ... ............ 383
D.2 OutputMoments . ... .. ... ... ... ... ... . ... . ... 384
D.2.1 Even Signal and Noise PDFs, All Thresholds Zero . . . . . .. .. 385

Page xii



Contents

D.3 Correlation and Correlation Coefficient Expressions . . . . ... ... .. 386
D.3.1 Input Correlation Coefficient at Any Two Thresholds . . . . . .. 386

D.3.2 Output Correlation Coefficient at Any Two Thresholds . . . . . . 387

D.3.3 Input-Output Correlation . . . ... ... ... ........... 387

D.4 A Proof of Prudnikov’sIntegral . . . . .. ... .. ... ... .. .. ... 388
D.5 Minimum Mean Square Error Distortion Decoding . . . . . . .. ... .. 391
D.5.1 MMSE Reconstruction Points and Distortion . . . . .. ... ... 391

D.5.2 MMSE Decoded Output is Uncorrelated with the Error . . . . . . 392

D.5.3 Relationship of MMSE to Backwards Conditional Variance . . . . 393

D.6 Fisher Information . ... ... ... ... ... ... . ... . ... ... 394
D.6.1 FirstDerivation . . . . . ... ... ... ... .. 0o 394

D.6.2 Second Derivation . .. ................ ... ..... 395

D.7 Proof of the Information and Cramer-Rao Bounds . . . . .. ... .. .. 396
Bibliography 399
List of Acronyms 421
Index 423
Biography 425

Page xiii



Page xiv



Abstract

Quantisation of a signal or data source refers to the division or classification of that
source into a discrete number of categories or states. It occurs, for example, when
analog electronic signals are converted into digital signals, or when a large amount of
data is binned into histograms. By definition, quantisation is a lossy process, which
compresses data into a more compact representation, so that the number of states in
a quantiser’s output are usually far fewer than the number of possible input values.
Most existing theory on the performance and design of quantisation schemes specify

only deterministic rules governing how data is quantised.

By contrast, stochastic quantisation is a term intended to pertain to quantisation where
the rules governing the assignment of input values to output states are stochastic, rather
than deterministic. One form of stochastic quantisation that has already been widely
studied is dithering. However, the stochastic aspect of dithering is usually restricted
so that it is equivalent to adding random noise to a signal, prior to quantisation. The
term stochastic quantisation is intended to be far more general, and apply to the situation

where the rules of the quantisation process are stochastic.

The inspiration for this study comes from a phenomenon known as stochastic resonance,
which is said to occur when the presence of noise in a system provides a better perfor-
mance than the absence of noise. Specifically, this thesis discusses a particular form
of stochastic resonance known as suprathreshold stochastic resonance, which occurs
in an array of identical, but independently noisy threshold devices, and demonstrates

how this effect is essentially a form of stochastic quantisation.

The motivation for this study is two fold. Firstly, stochastic resonance has been ob-
served in many forms of neurons and neural systems, both in models and in real phys-
iological experiments. The model in which suprathreshold stochastic resonance occurs
was designed to model a population of neurons, rather than a single neuron. Unlike sin-
gle neurons, the suprathreshold stochastic resonance model supports stochastic reso-
nance for input signals that are not entirely or predominantly subthreshold. Hence,
it has been conjectured that the suprathreshold stochastic resonance effect is utilised
by populations of neurons to encode noisy sensory information, for example, in the

cochlear nerve.
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Abstract

Secondly, although stochastic resonance has been observed in many different systems,
in a wide variety of scientific fields, to date very few applications inspired by stochas-
tic resonance have been proposed. One of the reasons for this is that in many circum-
stances, utilising stochastic resonance to improve a system is sub-optimal when com-
pared to systems optimised to operate without requiring stochastic resonance. How-
ever, given that stochastic resonance is so widespread in nature, and that many new
technologies have been inspired by natural systems—particularly biological systems—
applications incorporating aspects of stochastic resonance may yet prove revolutionary
in fields such as distributed sensor networks, nano-electronics and biomedical pros-
thetics.

Hence, as a necessary step towards confirming the above two hypotheses, this thesis
addresses in detail for the first time various theoretical aspects of stochastic quantisa-
tion, in the context of the suprathreshold stochastic resonance effect. The original work
on suprathreshold stochastic resonance considers the effect from the point of view of an
information channel. This thesis comprehensively reviews all such previous work. It
then extends such work in several ways; firstly, it considers the suprathreshold stochas-
tic resonance effect as a form of stochastic quantisation; secondly it considers stochastic
quantisation in a model where all threshold devices are not necessarily identical, but
are still independently noisy; and thirdly, it considers various constraints and tradeoffs

in the performance of stochastic quantisers.
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