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Abstract

In this thesis, we detail the techniques required to perform general

lattice QCD calculations. Specifically, we introduce the method by

which the continuum theory of quarks and gluons, Quantum Chromo-

dynamics is discretised in order to be solved numerically. We describe

the distinct methods by which the discrete actions for the gauge and

fermion fields given by naively applying a finite-difference approxima-

tion to the continuum theory can be improved, going some way to

remove the systematic errors of discretisation. The background field

method for placing electromagnetic fields onto a discrete lattice is also

introduced.

Techniques required for the calculation of wave functions are then

introduced, beginning with the two-point function, which is funda-

mental in extracting properties of hadrons from the lattice. The vari-

ational method, which allows access to the excited states of particles

is then introduced. The wave function is then constructed from the

two-point function, which forms the basis of the most significant re-

sults of this thesis. We also introduce gauge fixing, made necessary

by the gauge dependent nature of wave function operators.

The smeared operators used in the construction of these two-point

functions are evaluated, by way of two measures designed to measure

the coupling strength of these operators to states with a variety of mo-

menta. Of particular interest is the extent to which strong overlap can

be obtained with individual high-momentum states. This is vital to

exploring hadronic structure at high momentum transfers on the lat-

tice and addressing interesting phenomena observed experimentally.

We consider a novel idea of altering the shape of the smeared operator

to match the Lorentz contraction of the probability distribution of the

high-momentum state, and show a reduction in the relative error of



the two-point function by employing this technique. Our most impor-

tant finding is that the overlap of the states becomes very sharp in

the smearing parameters at high momenta and fine tuning is required

to ensure strong overlap with these states.

Making use of the background field methods and the wave functions

constructed from the two-point functions, we calculate the probability

distributions of quarks in the ground state of the proton, and how

they are affected in the presence of a constant background magnetic

field. We focus on wave functions in the Landau and Coulomb gauges

using the quenched approximation of QCD. We observe the formation

of a scalar u − d diquark clustering. The overall distortion of the

quark probability distribution under a very large magnetic field, as

demanded by the quantisation conditions on the field, is quite small.

The effect is to elongate the distributions along the external field axis

while localizing the remainder of the distribution. Using optimised

smearing parameters calculated from the methods detailed in this

thesis, we construct wave functions of high-momentum states, and are

able to qualitatively observe high momentum states. We find that, at

very high momenta, artefacts are present caused by the poor overlap

of these states to the interpolating operators. Careful tuning of the

smearing parameters is shown to reduce these artefacts, reinforcing

results presented earlier in the thesis.

The culmination of the techniques introduced and the results obtained

in this thesis is the application of the eigenvectors from a variational

analysis to successfully extract the wave functions of even-parity ex-

cited states of the nucleon, including the Roper, in full QCD. We

explore the first four states in the spectrum excited by the standard

nucleon interpolating field. We find that the states exhibit a struc-

ture qualitatively consistent with a constituent quark model, where

the ground, first-, second- and third-excited states have 0, 1, 2, and 3

nodes in the radial wave function of the d-quark about two u quarks

at the origin. Moreover the radial amplitude of the probability dis-

tribution is similar to that predicted by constituent quark models.

We present a detailed examination of the quark-mass dependence of



the probability distributions for these states, searching for a nontriv-

ial role for the multi-particle components mixed in the finite-volume

QCD eigenstates. Finally we examine the dependence of the d-quark

probability distribution on the positions of the two u quarks. The

results are fascinating, with the underlying S-wave orbitals governing

the distributions even at rather large u-quark separations.



Statement of Originality

This work contains no material which has been accepted for the award

of any other degree or diploma in any university or other tertiary

institution to Dale Roberts and, to the best of my knowledge and

belief, contains no material previously published or written by another

person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the Univer-

sity Library, being made available for loan and photocopying, subject

to the provisions of the Copyright Act 1968. I also give permission for

the digital version of my thesis to be made available on the web, via

the University’s digital research repository, the Library catalogue, and

also through web search engines, unless permission has been granted

by the University to restrict access for a period of time.



Contents

Contents ix

List of Figures xi

1 Introduction 1

2 Lattice QCD 5

2.1 Gauge Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Fermion Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Smearing Gauge Fields . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Background Field Method . . . . . . . . . . . . . . . . . . . . . . 26

3 Wave Functions 29

3.1 Two Point Functions . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Variational Method . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Wave Function Operators . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Gauge Fixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Smearing Optimisation 41

4.1 Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Lattice Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4.1 Isotropic Smearing . . . . . . . . . . . . . . . . . . . . . . 45

4.4.2 Anisotropic Smearing Results . . . . . . . . . . . . . . . . 52

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

ix



CONTENTS

5 Quenched QCD Wave Functions 59

5.1 Simulation Details . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2 Zero-Field Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3 Background Fields on the Lattice . . . . . . . . . . . . . . . . . . 67

5.4 Background Magnetic Field Results . . . . . . . . . . . . . . . . . 68

5.5 Relativistic Wave Functions . . . . . . . . . . . . . . . . . . . . . 72

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6 Full QCD Wave Function 83

6.1 Lattice Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.2.1 Lattice Parameters . . . . . . . . . . . . . . . . . . . . . . 86

6.2.2 Wave Functions and Constituent Quark Model Predictions 87

6.2.3 Quark Mass Dependence of the Probability Distributions . 91

6.3 Quark Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7 Conclusion 105

A Publications by the author 109

References 111

x



List of Figures

2.1 The gauge link between two lattice sites. . . . . . . . . . . . . . 9

2.2 The plaquette defined about its centre . . . . . . . . . . . . . . . 11

2.3 Rµν from Eq. (2.21) (left) and Rνµ From Eq. (2.22) (right) used to

construct the improved actions. . . . . . . . . . . . . . . . . . . . 13

2.4 The remaining 6-link objects considered by Luscher and Weisz . . 14

2.5 The links that compose the clover operator . . . . . . . . . . . . . 21

2.6 The links used to construct the smeared gauge fields . . . . . . . . 24

4.1 The measure, M1, from Eq. (4.7) at px = 0 in Eq. (4.1). Deviation

from the ideal two-point function increases by a factor of 10 less

than 30 sweeps from the ideal smearing level, as shown in the inset

graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 M1 from Eq. (4.7) at px = 1 (left) and px = 3 (right) in Eq. (4.1).

There is little difference between the measure at px = 0 and px = 1,

due to the fact that the probability distributions between the two

momentum states are nearly identical. At px = 3, the rms radius

of the optimal smearing level is smaller by a factor of 0.85 relative

to the px = 0 state, whereas the relativistic γ factor provides a

Lorentz contraction factor of γ−1 = 0.72. . . . . . . . . . . . . . . 46

4.3 M1 from Eq. (4.7) at px = 5 (left) and px = 7 (right) in Eq. (4.1).

The value of the measure at the optimum number of smearing

sweeps for this momentum state is approximately equal to that of

the px = 3 state, indicating that good ground state isolation is

possible even at higher momenta. At px = 7, the deviation from

the ideal two-point function has increased by a factor of 10 only 5

sweeps from the optimal smearing level, as shown in the inset graph. 47

xi



LIST OF FIGURES

4.4 Ground state proportion from the three exponential fit, i.e. M2

from Eq. (4.10) where k = 3 and i = 1 at px = 0 in Eq. (4.1).

There is insufficient information on the second excited state close

to the optimal amount of smearing, thus requiring use of the two

exponential fit, k = 2, to determine the optimal amount of smear-

ing with M2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.5 Ground state proportion for the two exponential fit, M2 with k = 2

and i = 1 in Eq. (4.10) at px = 0 in Eq. (4.1). Contamination due

to excited states increases rapidly away from the optimal smearing

level. There is good agreement between the two exponential fit here

and the three exponential fit in Fig. 4.4 away from the optimum

smearing levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.6 Ground state proportion according to M2 at px = 3 in Eq. (4.1).

As momentum increases, the contamination due to excited states

increases more rapidly away from the ideal smearing level. . . . . 51

4.7 Ground state proportion according to M2 at px = 5 (left) and

px = 7 (right) in Eq. (4.1) Even at these very high momentum

transfers, good overlap with the ground state is achieved for an

optimised sink. Far from the optimal number of smearing sweeps

at px = 7, it is clear that the measure is no longer applicable, as

there would be little, if any highly Lorentz contracted ground state

present. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.8 The first measure, M1 ,from Eq. (4.7) (left) and the Ground State

Proportion (right) with anisotropic smearing at px = 1 from Eq. (4.1).

Introducing anisotropy to the smearing does not improve the iso-

lation of this state. However, the Lorentz contraction is small so

little improvement would be expected. . . . . . . . . . . . . . . . 54

4.9 The first measure, M1, from Eq. (4.7) (left) and the Ground State

Proportion (right) with anisotropic smearing at px = 3 from Eq. (4.1).

No improvement is seen in the isolation of the ground state, in spite

of the relativistic γ factor of 1.39 giving a length contraction factor

of 0.72 in the x direction. . . . . . . . . . . . . . . . . . . . . . . . 55

xii



LIST OF FIGURES

4.10 The first measure, M1, from Eq. (4.7) (left) and the Ground State

Proportion (right) with anisotropic smearing at px = 5 from Eq. (4.1).

The structure observed in the plots of the px = 3 state is retained,

with more sweeps of smearing required as anisotropy is increased. 55

4.11 The first measure, M1, from Eq. (4.7) (left) and the Ground State

Proportion (right) with anisotropic smearing at px = 7 from Eq. (4.1).

Even at a momentum of 2.99 GeV, anisotropy in the smearing does

not improve isolation of the ground state. . . . . . . . . . . . . . . 56

4.12 The size of the relative error in the two-point function measured

four time slices after the source for px = 3 as in Eq. (4.1). At

this momentum, the two point functions displaying the smallest

relative error were created with an isotropic source. . . . . . . . . 56

4.13 The size of the relative error in the two-point function measured

four time slices after the source for px = 5 (left) and px = 7 (right)

as in Eq. (4.1). At px = 5, there is a small amount of improvement

for anisotropic smearing at αx/α in the region of γ−1 = 0.51. At

px = 7, improvement in the relative error is seen for values of

αx ' 0.26 to 0.32 where αx/α = 0.37 to 0.46, in accord with the

value of γ−1 = 0.39 predicted by Lorentz contraction. Note that

the emergent banding structure reflects a change in the optimal

number of smearing sweeps by one. . . . . . . . . . . . . . . . . . 57

5.1 The Landau gauge probability distribution for the d quark of the

proton from Eqs. (3.25) and (5.1), in the plane of the u quarks

separated by zero lattice units (left), and by seven lattice units

(right). The d quark is seen to prefer to reside near the u quark

which is placed in the scalar pair in the χ1 interpolating field of

Eq. (3.24). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

xiii



LIST OF FIGURES

5.2 The probability distribution for the d quark of the proton in the

plane of the u quarks separated by 7 lattice units, in the Landau

gauge (left), and the Coulomb gauge (right). Two distinct peaks

have formed over the location of the u quarks in the Landau gauge

probability distribution, whereas a single, broad peak is visible

over the centre of mass of the system in the Coulomb gauge. Note:

as discussed following Eq. (3.27) the scale is such that the largest

value of all of the fixed quark separations will sit at the top of the

grid, with all other points of the probability distribution scaled

accordingly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3 The probability distribution of the d quark in the proton with the

u quarks 7 lattice units apart along the x axis at x = 4 and 11. To

clearly display the double peak structure, uncertanties are reported

relative to the distribution at x = 6. . . . . . . . . . . . . . . . . 63

5.4 The probability distribution for the scalar u quark of the proton in

the plane of the u and d quarks separated by seven lattice units, in

the Landau gauge (left), and the Coulomb gauge (right). In both

gauges, the u quark is seen to prefer to be nearer the d quark,

which is to the left of the centre of each lattice. However, in the

Coulomb gauge, the scalar u quark is closer to the centre of the

lattice than in the Landau gauge probability distribution. The

scale is as described in Fig. 5.2 . . . . . . . . . . . . . . . . . . . . 64

5.5 The probability distribution for the vector u quark of the proton

in the plane of the u and d quarks separated by seven lattice units,

in the Landau gauge (left), and the Coulomb gauge (right). The

probability distribution presents similarly to the d quark proba-

bility distribution in that strong clustering is seen in the Landau

gauge. The Coulomb gauge results here reveal a small amount of

preferred clustering with the d quark, which is to the left of the

centre of each lattice. Also of note is that these probability distri-

butions show less structure than the others, as can be seen by the

height of the smallest values, with the scale as described in Fig. 5.2 64

xiv



LIST OF FIGURES

5.6 The probability distribution for an anti-symmetrised u quark of the

proton in the plane of the remaining quarks which are separated by

7 lattice units, in the Landau gauge (left), and the Coulomb gauge

(right). In contrast to the d quark probability distribution, a single

peak is visible above the location of the d quark (left of centre on

each lattice) in both the Coulomb and the Landau gauge. Note:

as discussed following Eq. (7) the scale is such that the largest

value of all of the fixed quark separations will sit at the top of the

grid, with all other points of the probability distribution scaled

accordingly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.7 The probability distribution for the d quark cut in the x−y plane of

the u quarks, in the presence of a background magnetic field in the

Landau gauge, with the first implementation (left), and the second

implementation (right) of the vector potential described in Section

5.3. In this image, the field, ~B, is pointing into the page. The red

sphere denotes the location of the remaining quarks. There is a

clear asymmetry perpendicular to the field that changes with the

vector potential, Aµ, in spite of the background magnetic field not

changing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.8 The probability distribution for the d quark cut in the x− z plane

of the u quarks, after symmetrising the vector potential, Aµ in

the presence of the field in the Landau gauge (left) and Coulomb

gauge (right). In this image, the field, ~B, is pointing to the top of

the page, and the u quarks are both in the centre of the lattice,

denoted by the red sphere. In spite of the magnitude of the field,

a fairly small deviation from spherical symmetry is seen in both

gauges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

xv



LIST OF FIGURES

5.9 The probability distribution for the vector u quark in the presence

of the background field, cut in the x − z plane of the remaining

quarks in the Coulomb gauge with the spin aligned (left) and anti-

aligned (right) to the field. The direction of the field is down

the page, and the red sphere denotes the remaining quarks. The

probability distribution appears more spherical and localized when

aligned with the field, and a very subtle asymmetry is present in

the direction of the field. . . . . . . . . . . . . . . . . . . . . . . . 73

5.10 The probability distribution of the vector u quark in the presence

of the background field, cut in the x − z plane of the remaining

quarks in the Landau gauge with the spin aligned (left) and anti-

aligned (right) to the field, and the red sphere denotes the remain-

ing quarks. The direction of the field is down the page. Much like

in the Coulomb gauge, the probability distribution appears more

spherical and localized when aligned with the field. . . . . . . . . 73

5.11 The probability distribution of the d quark in the Coulomb gauge

cut in the x−z plane of the u quarks which are separated by seven

lattice units in the transverse direction with zero background field

(left) and in the presence of the field (right). The direction of the

field is up the page and the spheres denote the positions of the u

quarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.12 The probability distribution of the d quark, in the Landau gauge

cut in the x− z plane of the remaining quarks which are separated

by 7 lattice units in the transverse direction with zero background

field (left) and in the presence of the field (right). The spheres de-

note the positions of the u quarks. The diquark clustering is barely

visible in this view, and disappears completely in the presence of

the field. The probability distributions are broader in the Landau

gauge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

xvi



LIST OF FIGURES

5.13 The probability distribution of the scalar u quark in the Coulomb

gauge cut in the x − z plane of the remaining quarks which are

separated by seven lattice units in the transverse direction with

zero background field (left) and in the presence of the field (right).

The direction of the field is up the page and the d quark is on

the right, denoted by the red sphere. In contrast to the d quark

probability distribution, there is still a distinct preference for the

formation of a scalar diquark. When the field is applied, the prob-

ability distribution can be seen to move toward the centre of the

lattice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.14 The probability distribution of the scalar u quark, in the Landau

gauge which are separated by 7 lattice units in the transverse di-

rection with zero background field (left) and in the presence of the

field (right). The direction of the field is up the page and the d

quark is on the right, denoted by the red sphere. Preference to-

wards the centre of the lattice is also visible in the Landau gauge,

but is more subtle than in the Coulomb gauge. . . . . . . . . . . . 75

5.15 The probability distribution of a u quark in the Coulomb gauge cut

in the x− z plane of the remaining quarks which are separated by

seven lattice units in the transverse direction with zero background

field (left) and in the presence of the field (right). The direction of

the field is up the page and the d quark is on the right, denoted by

the red sphere. The symmetrised u quark probability distribution

bears close resemblance to the scalar u quark, but less localized

due to the vector u quark contribution. . . . . . . . . . . . . . . . 76

5.16 The probability distribution of a u quark, in the Landau gauge cut

in the x − z plane of the remaining quarks which are separated

by 7 lattice units in the transverse direction with zero background

field (left) and in the presence of the field (right). The direction of

the field is up the page and the d quark is on the right, denoted by

the red sphere. The contribution to the symmetrised probability

distribution from the vector u quark is enhanced in the Landau

gauge compared to the Coulomb gauge. . . . . . . . . . . . . . . 76

xvii



LIST OF FIGURES

5.17 The probability distribution of the vector u quark in the Coulomb

gauge cut in the x − z plane of the remaining quarks which are

separated by seven lattice units in the transverse direction with

zero background field (left) and in the presence of the field (right).

The direction of the field is up the page and the d quark is on the

right, denoted by the red sphere. The effect of the field on the

vector u quark probability distribution is more pronounced than

the d quark and scalar u quark probability distributions. . . . . . 77

5.18 The probability distribution of the vector u quark, in the Landau

gauge cut in the x − z plane of the remaining quarks which are

separated by 7 lattice units in the transverse direction with zero

background field (left) and in the presence of the field (right). The

direction of the field is up the page and the d quark is on the right,

denoted by the red sphere. . . . . . . . . . . . . . . . . . . . . . . 77

5.19 The probability distribution of the d quark at two units of lattice

momentum applied across the page, with the u quarks co-located

in the centre of mass of the system in the Landau gauge at 45 (left),

31 (center) and 14 (right) sweeps of source smearing. The number

of sweeps chosen was determined to be ideal by performing the

analysis detailed in the previous chapter for zero, 2 and 4 units of

lattice momentum respectively. All probability distributions have

been cut of at the same relative value to the peak. It is clear

that, even at this relatively low value of momentum, differences

are visible in the wave functions. . . . . . . . . . . . . . . . . . . 79

5.20 The probability distribution of the d quark at four units of lattice

momentum applied across the page, with the u quarks co-located

in the centre of mass of the system in the Landau gauge at 45 (left),

31 (center) and 14 (right) sweeps of source smearing. The number

of sweeps chosen was determined to be ideal by performing the

analysis detailed in the previous chapter for zero, 2 and 4 units of

lattice momentum respectively. All probability distributions have

been cut of at the same relative value to the peak. Only the wave

function produced at the ideal number of smearing sweeps bares

any resemblance to a Lorentz contracted state. . . . . . . . . . . . 79

xviii



LIST OF FIGURES

6.1 The mass dependence of the four lowest-lying even-parity eigen-

states excited by the χ1 interpolating field is compared with the

S and P -wave non-interacting multi-particle energy thresholds on

the finite volume lattice. Plot symbols track the eigenvector asso-

ciated with each state. . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2 The wave function of the d quark in the proton about the two

u quarks fixed at the origin for the lightest quark mass ensemble

providing mπ = 156 MeV. From top down, the plots correspond to

the ground, first and second excited states observed in our lattice

simulation. The wave function changes sign in the excited states

and reveals a node structure consistent with 1S, 2S and 3S states. 88

6.3 The probability distributions for the d quark about two u quarks

fixed at the origin obtained in our lattice QCD calculations (crosses)

are compared with the quark model prediction (solid curve) for the

ground (left column), first- (middle column) and second- (right col-

umn) excited states. Quark masses range from the heaviest (top

row) through to the lightest (bottom row). The ground state prob-

ability distribution of the quark model closely resembles the lattice

data for all masses considered. The first excited states matches the

lattice data well at small distances, but the node is placed further

from the centre of mass in the quark model, after which, the lat-

tice data shows a distinct second peak, whereas the quark model

rises to the boundary. It is interesting that the most significant

difference is observed where long-distance physics associated with

pion-cloud effects not included in the quark model are significant.

For the third state the amplitudes of the shells between the nodes

of the wave function are predicted well. . . . . . . . . . . . . . . 89

xix



LIST OF FIGURES

6.4 The dependence of the d-quark probability distribution on the

masses of the quarks in the proton (two left-hand columns) and

its first excited state (two right-hand columns). The u quarks

are fixed at the origin at the centre of the plot. The quark mass

decreases from heaviest (top row) to lightest (bottom row). For

each mass and state, the probability density is normalised to unity

over the spatial volume of the lattice. The isovolume threshold

for rendering the probability distribution in the second and fourth

columns is 3.0× 10−5. . . . . . . . . . . . . . . . . . . . . . . . . 92

6.5 The eigenvectors uαi describing the contributions of each of the

source smearing levels to the states α for the lightest quark-mass

ensemble considered. Indices i = 1 to 4 correspond to 16, 35,

100 and 200 sweeps of gauge-invariant Gaussian smearing. The

superposition of positive and negative Gaussian smearing levels is

consistent with the nodal structure recovered in the wave functions. 94

6.6 The dependence of the d-quark probability distribution on the

masses of the quarks in the proton for the second (two left-hand

columns) and third (two right-hand columns) S-wave excited states

of the proton observed herein. The u quarks are fixed at the origin

at the centre of the plot. The quark mass decreases from heaviest

(top row) to lightest (bottom row). For each mass and state, the

probability density is normalised to unity over the spatial volume

of the lattice. The isovolume threshold for rendering the probabil-

ity distribution in the second and fourth columns is 2.0×10−5 and

3.0 × 10−5 respectively. While the former renders the outer shell

coherently, the latter better reveals the node structure of the 3S

distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

xx



LIST OF FIGURES

6.7 The dependence of the d-quark probability distribution on the po-

sitions of the u quarks in the first even-parity excited state of the

proton at the second lightest quark mass considered. The u quarks

are fixed on the x-axis running from back right through front left

through the centre of the plot. The u quarks are fixed a distance

of d1 and d2 from the origin located at the centre. From left to

right, the distance d = d1 − d2 increases, taking values 0, 1, 2 and

3 times the lattice spacing a = 0.0907 fm. . . . . . . . . . . . . . 98

6.8 The dependence of the d-quark probability distribution on the po-

sitions of the u quarks in the proton and its excited states. From

left to right, the columns correspond to the ground, first, second

and third S-wave excitations. The u quarks are fixed on the x-axis

running from back right through front left through the centre of

the plot. The u quarks are fixed a distance of d1 and d2 = −d1

from the origin located at the centre. The distance between the

quarks, d = d1 − d2, increases from the top row through to the

bottom row, taking values 0, 2, 4, 6 and 8 times the lattice spacing

a = 0.0907 fm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.9 The dependence of the d-quark probability distribution on the po-

sitions of the u quarks in the proton and its excited states. From

left to right, the columns correspond to the ground, first, second

and third S-wave excitations. The u quarks are fixed on the x-axis

running from back right through front left through the centre of

the plot. The u quarks are fixed a distance of d1 and d2 = −d1

from the origin located at the centre. The distance between the

quarks, d = d1−d2, increases from the top row through to the bot-

tom row, taking values 10, 12, 14, and 16 times the lattice spacing

a = 0.0907 fm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

xxi



LIST OF FIGURES

xxii



Chapter 1

Introduction

The standard model of particle physics has enjoyed vast success as a theory that

describes three of the four fundamental forces of Nature. The most accurate quan-

tity known is the anomalous magnetic moment of the electron, with theoretical

calculations matching experimental data to 11 significant figures. Further success

came with the unification of the electromagnetic and weak forces, predicting a

weak neutral current mediated by the (at the time) undiscovered Z boson and

bringing spontaneous symmetry breaking through the recently discovered Higgs

boson to generate its mass.

Not all aspects of the standard model enjoy the same level of precision. Quan-

tum Chromodynamics (QCD) remains as a notoriously difficult theory to analyse,

due to its resistance to perturbative techniques. Though effective models have

been considered in the past, no single model has been able to encapsulate all of

the aspects.

Lattice QCD provides a first principles approach to QCD and is complemen-

tary to perturbative techniques. For decades, Lattice QCD has provided a robust

framework for the calculations of a variety of hadron phenomena, including, but

certainly not limited to spectra, transitional and electromagnetic form factors and

electric and magnetic moments and polarisabilities, to name a few highlights of

local interest. In the last few years, techniques have been developed and refined

to allow access to higher energy hadron excitations, such as the Roper resonance,

for the first time. Accurate calculation of resonance properties is an active area

of Lattice QCD.

In the past, Lattice QCD has been limited to quarks with a much heavier
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1. INTRODUCTION

mass than the known up and down quark masses, as well as being limited to

small lattice sizes due to the inherit computational complexity of the theory.

However, with the exceptional advances in the capabilities of modern supercom-

puters, combined with algorithms of ever increasing efficiency, these limitations

are on the verge of being removed.

An examination of the wave function of a quark bound within a hadron pro-

vides deep insights into the underlying dynamics of the many-body theory of

QCD. It enables a few-body projection of the underlying physics that can be con-

nected with models, shedding light on the essential effective phenomena emerging

from the complex dynamics of QCD.

In spite of the great success of Lattice QCD to this date, there remain aspects

of the approach that cause systematic errors in the calculations. First and fore-

most, the restriction of a particle to a small, finite region of spacetime, can, if the

region is not sufficiently large, cause unphysical aberrations to the result. Finite

volume effects can be studied directly using multiple lattice volumes, which may

be computationally prohibitive, or inferred indirectly from data, which may be

inconclusive. Another way to study finite volume effects is a direct visualisation

of the state, which is relatively computationally inexpensive and presents these

effects clearly.

The ability to analyse high momentum states on the lattice is quite limited, as

these states tend to decay quickly in Euclidean time, thus limiting any potential

calculations that could be performed. We present new methods to determine how

effectively a high momentum state can be created on the lattice, and propose a

method of operator selection to ensure maximal overlap with the created state.

Wave function techniques can be employed in conjunction with these techniques

to observe Lorentz contraction on the lattice and assess the efficacy of the chosen

operators.

The electromagnetic properties of hadrons can be investigated on the lattice

by directly implementing a Lattice version of an external magnetic field in con-

junction with the QCD fields. Though a seemingly ideal method of determining

quantities such as magnetic moments and polarisabilities, the formulation of the

theory in a finite volume leads to a quantisation of the magnetic field strength

resulting in very strong magnetic fields. The induced fields are so strong that

the energy imparted to the particle can be as high as a third again the particles

2



mass. The key concern is that a field of such magnitude could so drastically effect

a particle that it would bear little resemblance to its zero field form. In this re-

gard, wave function techniques serve as an ideal tool to investigate the distortion

of a hadron due to large magnetic fields.

Many models of QCD attempt to calculate the wave function of the excited

states of hadrons, though none can claim to offer a true description. Though

excited state spectroscopy in Lattice QCD is a well studied field, success in ob-

taining low-lying excited states has only been achieved recently. As such, the

techniques and technology required to calculate the wave function of the Roper

resonance have just been developed. For the first time, it is possible to calculate,

from first principles, the wave functions of both the ground state and excited

states of the proton at the physical quark mass.

In this thesis, we will explore each of these issues related to the wave functions

describing the distribution of quarks within hadrons. In Chapter 2, we discuss the

general aspects of lattice QCD common to most studies performed today, and the

background magnetic field method, both essential to this study. In Chapter 3 we

discuss the techniques of lattice QCD that are required specifically to investigate

two point functions, excited states of the nucleon and wave functions. Chapter

5 addresses the wave functions of the nucleon in strong magnetic fields, and at

high momentum using the methods developed in Chapter 4. Finally, in Chapter

6, we investigate the wave functions of excited states of the nucleon.
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Chapter 2

Lattice QCD

In the late 1940’s and early 1950’s, detailed analysis of cosmic ray data provided

theorists a wealth of previously undiscovered particles whose decay properties

could not be explained by current theory. The kaon was the first of these particles

discovered, it had a lifetime on the order of 10−10 seconds, which is significantly

longer than other decay products of pion-nucleon reactions. Furthermore, this

particle appeared to conserve parity on creation only to violate parity on decay.

Since the cause of both of these irregularities was unknown, the kaon was declared

to have ‘strangeness’.

The first particle heavier than the nucleon discovered with an unusually long

lifetime was the Lambda particle, observed in cosmic rays and dubbed to also

have this strangeness property. A second long lived particle that decayed in two

stages, first to a Lambda, emitting a pion, and then to a nucleon, also emitting

a pion, was discovered five years later and dubbed the Cascade, due to its multi-

stage decay.

The discovery of these particles prompted the formulation of a classification

system, based around the idea that these new mesons and baryons were not

fundamental particles, but composed of three kinds of hitherto undiscovered el-

ementary particles. These particles, known as quarks, were arranged according

to irreducible representations of an SU(3) flavour symmetry, with the spin-1
2

baryons forming the members of an 8 dimensional representation, known as the

octet, and the spin-3
2

baryons forming a 10 dimensional representation, known as

the decuplet. Strangeness was accounted for by the one of these quarks, known

as the strange quark, which decayed via the weak interaction to either an up or a
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down quark. At the time of this formulation, early particle accelerators, as well

as further analysis of cosmic ray data, all but one member of the decuplet had

been observed. This missing particle, named the Ω− particle, was predicted to

be composed composed of three strange quarks. On the discovery of this parti-

cle, the SU(3) flavour symmetry model became the most popular description of

hadron structure.

Other particles with unusual properties were beginning to be discovered in

early particle accelerator experiments. A P11 resonance of the Proton was dis-

covered with a mass of 1440 MeV, as well as the lowest S11 resonance, with a

mass some 95 MeV higher. Furthermore, the ∆++, a spin 3
2

particle composed of

three up quarks with aligned spins and zero orbital angular momentum seemed

to violate the Pauli Exclusion principle. This was provided as evidence for new

underlying symmetry with at least three degrees of freedom. A second SU(3)

symmetry was proposed, this time in analogy with the formulation of invariance

to a local phase in electrodynamics. The quarks were placed in the fundamental

representation of SU(3), and thus demanded to be invariant under local SU(3)

transformations. This analogous new charge, known as ‘colour’, gives rise to the

notion of eight species of gluons, the gauge boson of the strong force, in the ad-

joint representation of SU(3). These are the underpinnings of the strong sector

of the Standard Model, known as Quantum Chromodynamics (QCD).

Much like Quantum Electrodynamics, QCD is defined in terms of the action of

interacting fermion (quark) and gauge boson (gluon) fields. This action is given

by

SQCD =

∫
d4x
(
− 1

4
F a
µν(x)F aµν +

∑
q

ψ̄iq(x)(iγµDµ(x)−mq)ijψ
j
q(x)

)
, (2.1)

where i, j are indices in the fundamental representation of SU(3), and a is an

index in the adjoint representation. The sum over q denotes a sum over quark

flavours. The SU(3) field-strength tensor and covariant derivative are given by,

F a
µν(x) = ∂µA

a
ν(x)− ∂νAaµ(x) + gsfabcA

b
µ(x)Acν(x),

(Dµ(x))ij = δij∂µ − igs
∑
a

λaij
2
Aaµ(x), (2.2)

where gs is the QCD coupling constant, fabc are the fully antisymmetric structure
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constants of the SU(3) group and the λaij are the Gell-Mann matricies. From

this, we can see that the FµνF
µν term will lead to three and four gluon vertices,

i.e. the gluons interact with themselves. It is this that gives rise to asymptotic

freedom, where, at short distance, the effective coupling reduces and the theory

can be calculated perturbatively. At low energy, however one must resort to

non-perturbative methods to obtain meaningful results.

Lattice QCD is the pre-eminent method of solving low energy QCD non-

perturbitavely. The key principle behind constructing a field theory on the lattice

is the reformulation of the theory on to a discrete spacetime. In order to accom-

plish this, we begin by allowing fermions to occupy the sites on a four dimensional

hypercubic grid. The choice of a hypercubic lattice means that the theory will no

longer be completely rotationally symmetric. Only hypercubic rotational symme-

try remains; that is, symmetry under rotations of π
2

around any axis. The spacing

between each site, a, is a product of the choice of gluon coupling strength, and

therefore is not chosen directly. The lattice spacing acts as a regulator and thus

provides a cut off to the physical momentum allowed. This cut off is

pmax =
π

a
. (2.3)

Since our intent is to evaluate the theory computationally, we can process only

a finite amount of sites. Conventionally, the number of sites in each spatial

dimension, NS will be the same1, and the number of sites in the time dimension,

NT , will be greater than or equal to NS
2, thus giving a physical lattice size of

a3N3
S × aNT ≡ L3 × T .3

It is important to consider the boundaries of the lattice. The best finite

approximation to an infinite region is to employ periodic boundary conditions,

i.e.

ψ(NS + 1) = ψ(1) (2.4)

This means that a particle on the lattice sees an infinite set of copies a distance

NS apart. Should the wave function of the particle be compact enough, this

1Older studies considered a single larger spatial dimension to compensate for an inability
to compute 3 large spatial dimensions. Such techniques are largely obsolete

2In the case of finite temperature Lattice QCD, NT � NS , though that is not relevant to
this thesis.

3Some recent studies have considered a different lattice spacing in the time dimension than
the spatial dimensions, we, however, do not.
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is not a problem. However, should the wave function have non-trivial weight

at large distances, the particle will affect itself through the periodic boundary.

The general guideline is mπL > 3, though this does not guarantee a state free

of finite volume effects. This condition also gives a lower limit on the lattice

spacing, as if a is too small, there are a number of numerical issues that arise,

such as auto-correlation times and computational cost. This gives rise to a set of

NS + 1 allowable vibrational modes in each spatial dimension, thus giving rise to

discretised momentum given by

pi =
2πni
L

, (2.5)

where1 ni ∈ Z3 and -NS
2
< ni ≤ NS

2
.

In the time direction, periodic boundary conditions are employed for the gauge

links and fixed boundaries are generally employed for quarks, that is quarks

are not allowed to cross the boundary, which avoids the problem of backward

propagating states. Due to there generally being more lattice sites in the time

direction, the solution to avoiding finite size problems in the time dimension is

to simply examine away from the boundary.

As the fermion fields carry colour degrees of freedom, we must define some

way to parallel transport the colour information between the lattice sites. For this

reason, we reformulate the gauge degrees of freedom from the 4-vector potential,

Aabµ (x), to the Wilson lines defined along each axis between two nearest neighbour

lattice sites, called gauge links and given by

Uab
µ (x) = exp

(
ig

∫ 1

0

dtAabµ (x+ taµ̂)
)
, (2.6)

and shown in Fig. 2.1. Due to the gauge transformation properties of the fermion

fields and the gauge links,

1By introducing a phase on the boundary, it is possible to add a small constant to the
momentum, at the cost of the zero momentum state. This technique, known as ‘twisting’ the
boundary conditions, is generally used to study hadrons at low momentum transfer. In this
thesis, we will only be considering large momentum transfer and thus will not be making use
of this technique.
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Uµ(x)ψ(x) ψ(x+ aµ̂)t t
a

s s
Figure 2.1: The gauge link between two lattice sites.

ψ(x)→ G(x)ψ(x)

ψ̄(x)→ ψ̄(x)G†(x)

Uµ(x)→ G(x)Uµ(x)G†(x+ µ), (2.7)

we can see that gauge covariant quantities will be generally be composed of an

ordered path of gauge links terminated by a fermion and anti fermion pair.

Since we are no longer working with a continuous spacetime, we must fall back

to finite difference approximations to the derivative. We first define the forward

and backward derivatives.

−→
∂µF (x) =

F (x+ µ̂)− F (x)

a
←−
∂µF (x) =

F (x)− F (x− µ̂)

a
, (2.8)

and their equivalent covariant derivatives

−→
DµF (x) =

1

a

(
Uµ(x)F (x+ µ̂)− F (x)

)
←−
DµF (x) =

1

a

(
F (x)− U †µ(x− µ̂)F (x− µ̂)

)
, (2.9)

Since we require gauge invariance and hermiticity, we need to define a symmetric,

covariant derivative

∇µF (x) = (
−→
Dµ −

←−
Dµ)F (x)

=
1

2a

(
Uµ(x)F (x+ µ̂)− U †µ(x− µ̂)F (x− µ̂)

)
. (2.10)
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Integration must also be approximated by a sum∫
V

d4xF (x) = a4
∑
x

F (x), (2.11)

Since the lattice is blind to its own spacing, all quantities calculated are scaled

to dimensionless lattice variables by powers of the lattice spacing

m→ ma

ψ → a
3
2ψ

pµ → pµa. (2.12)

Quantities on the lattice are calculated by first constructing configurations of

gauge links through a Markov-chain process using a discrete version of the full

QCD Yang-Mills and fermion actions, or, in the case of the quenched approxima-

tion, the Yang-Mills action alone. One then generates valence quark propagators

on each configuration and these propagators are then combined via interpolating

operators to construct the two-point Greens functions of the particle of interest.

An excellent review of these details can be found in the textbook [1].

2.1 Gauge Fields

Wilson originally considered a formulation for the gauge action that satisfied

lattice versions of the continuum symmetries that the Yang-Mills action respects,

namely

• The action must be translationally invariant, and therefore must contain a

sum over all lattice sites.

• The action must be gauge invariant, and therefore must be constructed

from closed loops.

• The action must be rotationally symmetric, so must be invariant under

rotations of π
2
.

• The action must be local, therefore the action for each gauge link must be

constructed from loops containing that link.
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A further condition specific to lattice actions is that the action must reduce to

its continuum form as a→ 0.

Wilson [2] initially constructed the gluon action from the smallest possible

loop able to be constructed on the lattice, the 1× 1 plaquette. When calculating

the action, one writes the gauge links used to construct the plaquette relative

to its centre, then sums the plaquettes in each plane containing that point. The

plaquette in the µν plane, shown in Fig. 2.2 is given by

Pµν = exp
(
ig

∫ a/2

−a/2
dtAµ(x0 −

aν̂

2
+ tµ̂)

)
exp
(
ig

∫ a/2

−a/2
dtAν(x0 +

aµ̂

2
+ tν̂)

)
× exp

(
− ig

∫ a/2

−a/2
dtAµ(x0 +

aν̂

2
+ tµ̂)

)
exp
(
− ig

∫ a/2

−a/2
dtAν(x0 −

aµ̂

2
+ tν̂)

)
.

(2.13)

Assuming sufficiently smooth gauge fields, one can approximate the integral in

the exponential as

exp
(
ig

∫ a/2

−a/2
dtAα(x+ tα̂)

)
≈ exp

(
igaAα(x)

)
(2.14)

Rewriting the plaquette in terms of these smooth fields gives,

Pµν = exp
(
igaAµ(x0 −

aν̂

2
)
)
exp
(
igaAν(x0 +

aµ̂

2
)
)

× exp
(
− igaAµ(x0 +

aν̂

2
)
)
exp
(
− igaAν(x0 −

aµ̂

2
)
)
. (2.15)

Taylor expanding each of the Aα in Eq. (2.15) around x0 to O(a2), then collat-

ing the four exponentials into a single exponential using the Baker-Campbell-
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Hausdorff identity gives,

Pµν = exp
(
iga2(∂µAν(x0)− ∂νAµ(x0) + ig[Aµ(x0), Aν(x0)]

)
= exp

(
iga2Fµν +O(a4g2) +O(a3g3)

)
, (2.16)

where the O(a4g2) terms come from the higher order terms of the Taylor expan-

sion of the gauge links, and the O(a3g3) terms arise from higher order Baker-

Campbell-Hausdorff terms. Taylor expanding this to second order gives.

Pµν = I + iga2Fµν −
g2a4

2
FµνF

µν + . . . (2.17)

Therefore, the discrete action that matches the continuum action to O(a4g2),

known as the Wilson gauge action, is given by

SW = β
∑
x

∑
µ,ν

(
1− 1

3
Re trPµν(x)

)
, (2.18)

where β = 6
g2

. As β is a function of the coupling, g, it is this parameter that is

responsible for determining the lattice spacing. The most common method used

to determine the lattice spacing, outlined by Sommer [3], involves determining

the force between two static (i.e. infinitely heavy) valence quarks, F (r) at a

particular value r0(c), such that

r0(c)2F (r0(c)) = c, (2.19)

where c = 1.65, which gives a physical distance of r0 = 0.49 fm and determines

the lattice spacing.

We can see that attempting to account for terms to higher powers of a or

g quickly leads to a prohibitive amount of terms to compute by hand. Several

techniques, apart from employing a symbolic manipulation program, can be used

to deal with this problem. Lepage [4] proposed working in co-ordinate gauge,

that is x · Aµ(x) = 0, thus causing the covariant derivative to become abelian

when multiplied by x, then employing Stokes’ theorem for the loops. Luscher

and Weisz [5] proposed a gauge such that, in the µν plane, Aµ(x) = 0 for all

x and Aν(x) = 0 for all x with xµ = 0, and considering Pµν(0). Both methods

arrive at the same result for the O(a4g2) term in the exponential expansion of

12
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Figure 2.3: Rµν from Eq. (2.21) (left) and Rνµ From Eq. (2.22) (right) used to
construct the improved actions.

the plaquette.

Pµν = exp
(
ig(a2Fµν +

a4

24
(D2

µ +D2
ν)Fµν)

)
. (2.20)

Symanzik [6, 7] outlined a method to remove tree-level O(an) corrections to

a discrete action by including (4 + n) link operators to the action. Weisz and

Wohlert [8, 9] employed this method to improve the Wilson gauge action to

O(a4) by considering 6 link rectangular loops in the µν plane, shown in Fig. 2.3.

Following a similar procedure to that outlined earlier, we find that

Rµν = exp
(
ig(2a2Fµν +

a4

6
(4Dµ +Dν)Fµν)

)
, (2.21)

and similarly for Rνµ,

Rνµ = exp
(
ig(2a2Fµν +

a4

6
(Dµ + 4Dν)Fµν)

)
. (2.22)

The contribution of these rectangular loops to the action will take the form,

δxy = 2− 1

3
Re tr (Rµν +Rνµ) =

g2

6

(
8a4FµνF

µν +
5a6

12
Fµν(Dµ +Dν)Fµν

)
, (2.23)

and the Symanzik improved action then becomes,

SS =
∑
x

∑
µ,ν

5β

3

(
1− 1

3
Re tr(Pµν(x))− 1

20

(
2− 1

3
Re tr (Rµν(x)+Rνµ(x)

))
. (2.24)
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Figure 2.4: The remaining 6-link objects considered by Luscher and Weisz

Luscher and Weisz [5] proposed further improvements to this action by consid-

ering the two remaining kinds of 6 link loops shown in Fig. 2.4. They proposed

removal of higher loop order artefacts by considering improvement of any gen-

eral on shell quantity to higher gluon loop orders, and showed that the action

calculated by Weisz following Symanzik’s improvement program was a member

of a larger set of actions. However, they also showed that the contribution from

any of the non-planar loops to these on-shell quantities was small enough that

Weisz’s action is a sufficiently good approximation to the one-loop result.

Further improvement can be made to the gauge action by considering the

Taylor expansion of the links themselves,

Uµ(x) = 1 + igaAµ(x)− g2a2

2
A2
µ(x)− ig3a3

6
A3
µ(x) +O(a4). (2.25)

The term proportional to A2
µ(x) gives rise to unphysical tadpole contributions,

which, though appearing to be suppressed by a2, are suppressed only by the

coupling, g2. This is due to the fact that the integral around the loop constructed

by the tadpole diagram is divergent, and, due to the momentum cut off on the

lattice, will cancel the a2 from the Taylor expansion. Lepage [10] proposed that

these contributions exist primarily in the high energy, short distance, regime.

The gauge link can be considered to be composed of high energy (UV) and low

energy (IR) parts,

Uµ(x) = exp
(
ig

∫
dtAUVµ (x+ tµ) + ig

∫
dtAIRµ (x+ tµ)

)
. (2.26)
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The integral over the high energy part can then be approximated across the entire

lattice by the average value of the link determined in a gauge invariant way, the

mean link, given by,

u0 =
(∑

x

1

3
trPµν(x)

) 1
4 . (2.27)

By making the substitution,

Uµ(x)→ Ũµ(x) =
Uµ(x)

u0

, (2.28)

the majority of the tadpole contributions are removed from the gauge fields and

the Mean Field Improved Symanzik action becomes,

SMFI =
5β̃

3

∑
x

∑
µ,ν

(
1− 1

3
Re tr

(
Pµν(x)

))
− β̃

12u2
0

∑
x

∑
µ,ν

(
2− 1

3
Re tr

(
Rµν(x) +Rνµ(x)

))
, (2.29)

where,

β̃ =
6

g2u4
0

. (2.30)

We note that, as u0 < 1, this leads to an increase in the coefficient of the rectangle

term, indicating that, to remove short distance fluctuations, contributions from

more distant links should be considered. Iwasaki [11, 12] proposed using the

renormalisation group approach to formulate a similar improvement to Wilson’s

action by considering the form

SI = β
∑
x

∑
µ,ν

(1− 8c0Pµν) + c0(Rµν +Rµν), (2.31)

where the coefficient c0 was determined to be c0 = −0.331. In this action, β has

been rescaled by a factor of 1
3.648

from the Wilson action. We note that, in this

action, the contribution from the rectangular terms is also enhanced relative to

the Symanzik action.

In an ideal world, we would be able to sample every possible vacuum config-

uration, however, since there will never be an infinite amount of computational

resources, some concessions must be made. Gauge configurations are generated
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2. LATTICE QCD

stochastically using the Hybrid Monte Carlo algorithm [13]. The algorithm intro-

duces a ficticious simulation time and momentum, and evolves the configuration

using Hamilton’s equations of motion. Since we demand that the gauge fields

be sufficiently different from each other, the algorithm proceeds through a num-

ber of iterations between each time a configuration is output. After the desired

number of configurations has been generated, called an ensemble, valence quark

propagators can then be calculated on each configuration.

The calculation of the fermion part of the path integral is computationally

very expensive, due to the requirement of performing many fermion matrix inver-

sions for each Hybrid Monte Carlo step [13]. One can ameliorate this somewhat

by making use of the quenched approximation. This has the effect of blocking

the production of quark-antiquark pairs in the vacuum, by setting the fermion

determinant to 1, thereby giving sea quarks an infinite mass.

2.2 Fermion Fields

In order to calculate fermion fields on the lattice, we seek a discrete version of

the Dirac action. Naively, one can approach this simply by replacing the contin-

uum derivative by the symmetric discrete covariant derivative from Eq. (2.10).

Employing mean field improvement on the gauge links as before, this gives,

SN = ψ̄(x)(iγµ∇µ +mq)ψ(x)

= ψ̄(x)
i

2a

∑
µ

γµ
(
Ũµ(x)ψ(x+ aµ̂)− Ũ †µ(x− aµ̂)ψ(x− aµ̂)

)
+mψ̄(x)ψ(x).

(2.32)

We can rewrite this in matrix form, in which we represent the spatial coordinates

as indices,

MN
xy = mqδxy +

i

2a

∑
µ

γµ
(
Ũx,µδx,y−µ − Ũ †x−µ,µδx,y+µ

)
. (2.33)

We can now rewrite the naive action as,

SN =
∑
x,y

ψ̄xM
N
xyψ̄y. (2.34)
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This action is not acceptable however, as the Nielsen Ninomiya no-go theorem

[14] states that a fermion action that respects the same set of symmetries as

the gauge action, as well as respecting chiral symmetry, will always give rise to

the fermion doubling problem. We can demonstrate this problem by explicitly

solving for the quark two point function in the case of a trivial gauge field, that

is Uµ(x) = I for all x, µ. We begin by considering,

MxzSzy = δxy, (2.35)

where Szy is the position space representation of the two point propagator in

momentum space, given by,

Szy =
1

V

∑
k

e−ik(z−y)S(k). (2.36)

We seek a form for S(p) that resembles the continuum form of the two point

function, except that pµ will now be some function of the input momentum, k.

Inserting the definition of the position space two point function into Eq. (2.35),

and making use of the Fourier transform of the discrete δ function,

1

V

∑
k

e−ika(x−y) =
1

V

∑
z,k

(
mqδxz +

i

2a

∑
µ

γµ
(
δx,z−µ̂ − δx,z+µ̂

))
S(k)e−ika(z−y)

=
1

V

∑
k

(
mq +

1

a

∑
µ

γµsin(ka)
)
S(k)e−ika(x−y). (2.37)

If we set pµ(k) = 1
a
sin(kµa), we see that the discrete momentum space two point

function becomes,

S(p) =
1

γµpµ(k) +mq

. (2.38)

We can see that, in the limit that kµ → 0, the continuum two point function

is reproduced as required. When kµ = nµ
π
a
, where the components of nµ are

either 0 or 1, these 16 different values of kµ have pµ(k) = 0. This gives rise to

an additional 15 species of quark, known as doublers, that are not present in the

continuum theory, and must be removed.

The most common way to resolve this problem is to introduce a mass di-

mension 5 operator to the fermion action. This term will scale proportional to

the lattice spacing, and hence will be removed in the continuum limit. Wilson’s
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2. LATTICE QCD

original choice for this dimension 5 operator [2] was the discrete version of the

second covariant derivative, D2, of the fermion fields, given by,

ψ̄(x)∆µψ(x) = ψ̄(x)
−→
Dµ

←−
Dµψ(x)

= ψ̄(x)
1

a2

(
Uµ(x)ψ(x+ aµ̂) + Uµ(x− aψ̂)ψ(x− aµ̂)− 2ψ(x)

)
.

(2.39)

The Wilson fermion action is given by

SW = ψ̄(x)
∑
µ

(
iγµ∇µ +mq + a

r

2
∆µ

)
ψ(x), (2.40)

where r has been introduced as the Wilson parameter. Following the same pro-

cedure as above by writing the two point function with pµ = pµ(k), the new

effective lattice momentum is given by,

pµ(k) =
1

a
sin(kµa) +

2r

a
sin2(

kµa

2
). (2.41)

It is clear that, for all allowable values of kµ 6= 0, there will be no case where

pµ = 0, the doublers will all have a mass proportional to the Wilson parameter, r

and inversely proportional to a, thus removed in the continuum limit. In general, r

is set to 1, as this allows the γµ matrices to act as projection operators. Because

the momentum input to a lattice calculation is not the momentum generated,

there are further limits placed on accessible momenta. Since we are restricted to

the region pµ(k) ≈ k, it is only reasonable to consider momentum

− NS

4
. pµ .

NS

4
. (2.42)

We can again write the action in matrix form

MW
xy = (mq +

4r

a
)δxy +

∑
µ

(γµ + r

2a
Ũx,µδx,y−1 +

γµ − r
2a

Uµ,x−1δx,y+1

)
. (2.43)

It is immediately evident thatO(a) chiral symmetry is explicitly broken by the

addition of the second derivative operator, as per the Nielson Ninomiya theorem.
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At this stage, we introduce a new parameterisation for the quark mass,

κ =
1

2mqa+ 8r
. (2.44)

This parameterisation allows us to rescale the action in such a way that all of the

diagonal terms are 1, the matrix becomes

MW
xy = δxy + κ

∑
µ

(
(γµ + r)Ũx,µδx,y−1 + (γµ − r)Uµ,x−1δx,y+1

)
, (2.45)

To accommodate the rescaling of the action, the quark fields must also be scaled,

ψ(x)→ ψ(x)

2κ
. (2.46)

This reformulation of the action gives rise to a redefinition of the quark mass,

2mq =
1

κ
− 1

κc
, (2.47)

where κc is the value of κ for which mq = 0, known as the critical value. For

the Wilson action, it is clear that κc = 0.125 in the non-interacting case. When

interactions are introduced, the quark mass is additively renormalized and the

critical value is not as clear. In order to determine κc, one must calculate the

square of the pion mass at a variety of κ values. The leading order term in the

chiral expansion of the pion mass gives mq ∝ m2
π, therefore, the value of κ when

m2
π is extrapolated to zero is the critical value.

Ideally, all lattice calculations would be done at the κ value corresponding to

the physical pion mass, however, as the pion mass decreases, the fermion matrix

becomes ill conditioned, and the iterative procedure used to calculate the inverse

matrix, generally some variant of the conjugate gradient algorithm, takes longer

to converge. This is particularly problematic for the generation of full QCD

gauge configurations, where many matrix inversions have to be performed for

each Hybrid Monte Carlo step.

Only recently has it become possible to perform large scale simulations near

the physical pion mass, however, most calculations are performed at some heavier

than physical pion mass. Quantities of any importance are usually calculated at

multiple pion masses to give a basic assessment of the scaling, then an extrapo-
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2. LATTICE QCD

lation may be performed to the physical point.

Further improvements can be made to the fermion action by employing Symanzik’s

improvement program. Order a errors may be removed from on shell quantities

by considering all possible dimension 5 operators allowed by lattice symmetries

[15] that can be applied to the action. The first of these five operators was already

considered by Wilson,

O1 = a
r

2
ψ̄(x)(D2)ψ(x). (2.48)

The next operator we can consider,

O2 = bgamqtr(FµνF
µν), (2.49)

has the effect of renormalising the gauge coupling, such that g2 → g2(1 + bgamq).

Our scale setting procedure accounts for this.

Two more of these operators affect a renormalisation to the quark mass, these

operators are,

O3 = abmm
2
qψ̄(x)ψ(x)

O4 = ac4mqψ̄(x)
(
γµ
←−
Dµ − γµ

−→
Dµ

)
ψ(x). (2.50)

It is possible to show that these terms are linearly dependent, thus we only

include O3 into the action, this gives a renormalisation to the quark mass, mq →
mq(1 + bmamq). As we use the pion mass as a measure of mq, this subtlety is not

an issue. The final dimension 5 operator incorporated into the action is,

O5 =
iagrCSW

4
ψ̄(x)σµνFµνψ(x), (2.51)

where σµν are the gamma matrix commutators. Since there is no simple scaling

that we can apply to incorporate this term, it is added directly into the Wilson

action, forming the Sheikholeslami-Wohlert [16] action, giving

SSW = SN + ψ̄(x)a
r

2

(
∆2 − igCSW

2
σµνFµν

)
ψ(x), (2.52)

where the parameter CSW is the only parameter from all of the dimension 5

operators that needs to be tuned to remove the O(a) effects from the fermion
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Figure 2.5: The links that compose the clover operator

action. The matrix form of this action is given by,

MSW
xy = MW

xy − δxy
κigCSW

2
σµνFµν , (2.53)

where r has been set to 1.

The field strength tensor must be calculated by a different method than in the

gauge action, as we are now demanding symmetry around a lattice site, rather

than the centre of a plaquette. This is accomplished by incorporating contribu-

tions from each plaquette in the µ, ν plane whose corner lies on x. Following a

procedure similar to that considered in Sec. 2.1, we find that,

ga2Fµν(x) =
1

8i

(
(Cµν(x)− C†µν(x))− 1

3
Tr(Cµν(x)− C†µν(x))

)
, (2.54)

where Cµν is known as the ‘clover’ operator, so named for the shape of the links

used in its construction shown in Fig. 2.5, and is given by

Cµν = Uµ(x)Uν(x+ µ̂)U †µ(x+ µ̂+ ν̂)U †ν(x+ ν̂)

+ Uν(x)U †µ(x+ ν̂)U †ν(x− µ̂+ ν̂)Uµ(x− µ̂)

+ U †µ(x− µ̂)U †ν(x− µ̂− ν̂)Uµ(x− µ̂− ν̂)Uν(x− ν̂)

+ U †ν(x− ν̂)Uµ(x− ν̂)Uν(x+ µ̂− ν̂)U †µ(x) (2.55)

In order to determine the clover parameter CSW , Sheikholeslami and Wohlert

initially considered the energy states arising from the quark propagator as the on

shell quantity to improve. They showed that, at tree level, CSW = 1. For small

momenta, it provided the best approximation to the continuum energy momen-
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2. LATTICE QCD

tum relation whilst removing an unphysical state that arises from an additional

pole in the quark propagator introduced by the lattice discretisation. One can

consider mean field improvement to the clover term by either setting,

CSW =
1

u3
0

, (2.56)

or simply calculating the plaquettes with the mean field improved links, Ũµ(x).

It is possible to tune CSW non-perturbatively, and thus remove O(a) effects to all

powers of g for some on-shell quantity by employing the Schrödinger functional

approach [17, 18]. However, the process of non-perturbatively tuning the clover

parameter is extremely computationally intensive.

The issue of tuning the clover operator can be avoided entirely by implement-

ing on shell improvement directly into the gauge configurations themselves. We

can implement so-called ‘fat links’, described in the next section, to the dimen-

sion 5 operators in the clover action. These fat, or, smeared links have the effect

of removing high energy fluctuations in the gauge fields in a much more robust

manner to mean field improvement alone. This leaves only large scale, low energy

structure, which is the principle requirement for on shell improvement. The Fat

Link Irrelevant Clover (FLIC) action [19, 20] is given by

SFLIC = SN + ψ̄(x)a
r

2

(
D2,FL − ig

2
σµνF

FL
µν

)
ψ(x), (2.57)

where D2,FL and F FL
µν are calculated as before, with the exception of the use of

the smeared gauge links. Note that due to the use of smeared links, it is no longer

necessary to tune the clover parameter, and we can set CSW to the tree-level value

of 1.

When calculating the quark propagator, one must invert Mxy for the selected

action using some source vector, ψ, thus solving for χ,

Mab
xy,ijχ

b
j(y) = ψai (x), (2.58)

where i, j are spinor indices and a, b are colour indices, which have been omitted

until this point. Ideally, we would be able to perform this inversion for a delta
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function, or point source, that is,

ψai (x) = δacδikδxz, (2.59)

for all values of c, k and z. This is impractical, however, as this would require

12 matrix inversions for every lattice site, i.e. millions of total inversions. When

a point source is considered, periodic boundary conditions allow a choice of any

lattice site for z, and a single inversion is performed for each of the colour and spin

indices per configuration. A single point is an equally poor approximation for all

hadron wave functions, thus, point sources are only considered when coupling to

many states is demanded.

For better isolation of a single state, we require a source that better approxi-

mates the wave function of the particle we wish to consider. This is constructed

by smearing a point source in a gauge covariant manner [21]. Once a source has

been decided upon, M−1 is calculated using, in our case, the stabilized biconju-

gate gradient algorithm [22, 23]. After the propagator has been calculated, it is

possible to apply smearing to the ‘sink’ indices to further improve coupling to

hadron states. Sink smearing is required in the construction of a variational basis

to extract excited hadron states, which will be described later.

2.3 Smearing Gauge Fields

Smearing has the effect of removing short distance fluctuations in the gauge field

by averaging each link with its nearest neighbours iteratively. This is accom-

plished by considering the ‘staples’ i.e. 3 link objects that have the same start

and end points as a single link [24, 25], shown in Fig. 2.6, and given by

U (n)
µ (x)→ U (n+1)

µ (x) = (1− α)U (n)
µ (x) +

α

6

∑
µ

Q(n)
µ (x), (2.60)

where (n) represents the nth iteration of the smearing procedure, α is some

coefficient tuned to give the ideal contribution from the staples, usually set to
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Figure 2.6: The links used to construct the smeared gauge fields

0.7, and,

Q(n)
µ (x) =

∑
µ6=ν

(
U (n)
ν (x)U (n)

µ (x+µ̂)U (n)†
ν (x+µ̂)+U (n)†

ν (x−ν̂)U (n)
µ (x−ν̂)U (n)

µ (x−ν̂+µ̂)
)
.

(2.61)

This smearing procedure, known as APE smearing, involves a sum over SU(3)

matrices. Therefore, the resulting Q
(n)
µ (x) is gauge dependent and needs to be

projected back to SU(3). Each iteration averages the short distance effects,

therefore leaving only long distance, low energy structure. It is nonperturbative

in that the problematic perturbative tadpole contributions have been removed.

To that end, it facilitates on shell improvement for operators at greatly reduced

cost.

Morningstar and Peardon[26] proposed an improvement to APE smearing,

known as Stout smearing, which performs the same function as APE smearing

multiplicatively, therefore removing the requirement to project the links back in

to SU(3). It is given by,

U (n+1)
µ (x) = exp

(
iα(Q(n)

µ (x)U (n)†
µ − U (n)

µ (x)Q(n)†
µ )

− 1

6
Tr(Q(n)

µ (x)U (n)†
µ − U (n)

µ (x)Q(n)†
µ )

)
, (2.62)

where α is generally set to 0.1. The exponential can be evaluated exactly using

the Cayley-Hamilton theorem, which, for a traceless hermitian matrix states that

Q3 =
1

2
Tr(Q2)Q+

1

3
Tr(Q3)I. (2.63)

This implies that any Qn where n ≥ 3 can be expressed as a linear combination
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of Q2, Q and I. Since the taylor expansion of the exponential is an infinite

polynomial, coefficients can be determined such that,

eiQ = f0I + f1Q+ f2Q
2, (2.64)

where the fj are a function of c0 = 1
3
Tr(Q3) and c1 = 1

2
Tr(Q2). From the definition

of Q, the maximum absolute value c0 can take is.

cmax0 = 2(
1

3
c1)3/2. (2.65)

The variables u, v and θ are introduced, given by,

u =

√
1

3
c1cos(

1

3
θ)

v =
√
c1sin(

1

3
θ)

θ = arccos
( c0

cmax0

)
, (2.66)

and it can be shown that the fj can be written as,

fj =
hj

9u2 − w2
, (2.67)

where,

h0 = (u2 − w2)e2iu + e−iu(8u2cos(w) + 2iu(3u2 + w2)
sinw

w
)

h1 = 2ue2iu − e−iu(2ucos(w)− i(3u2 − w2)
sinw

w
)

h2 = e2iu − e−iu(cos(w) + 3iu
sinw

w
). (2.68)

Stout smearing is generally applied to gauge fields when irrelevant operators

are in use, as it is critical that the gauge fields remain in SU(3).

Gusken [21] proposed a method of smearing for fermions. The source and sink

vectors are acted upon by an iterative function

χ(n+1)(x) = F (x, y)χ(n)(x), (2.69)
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where,

F (x, y) = (1− α)δxy +
α

6

3∑
µ=1

(
U †µ(x− aµ̂)δx,y+µ̂ + Uµ(x)δx,y−µ̂

)
. (2.70)

This smearing has the effect of building a Gaussian profile from a point source

that better approximates a particle’s wave function.We let α take the same value

of 0.7 in gaussian smearing as it does in APE smearing, then vary the number of

iterations.

2.4 Background Field Method

The background field method [27, 28] applies a constant electromagnetic field

to the lattice by introducing a phase to the SU(3) links. Since we are only

concerned with the magnetic properties of the proton, we will only consider a

magnetic field, though a similar method can by applied for electric properties

[29]. The symmetries of the lattice allow us to consider a field along one axis

only, therefore we will chose the z axis, setting ~B = (0, 0, Bz), which will align

the field with the proton’s spin. In order to accomplish this, we begin with the

continuum definition of the magnetic field, ~B = ~∇× ~A, or, for a field specifically

in the z direction.

Bz = ∂xA
EM
y − ∂yAEMx . (2.71)

Like the SU(3) gauge fields, we must reformulate the magnetic field in terms

of the link variables. In order to do this, we consider the plaquette in the xy

plane constructed by the vector potential,

Wxy(x, y, z, t) = −Wyx(x, y, z, t) = eia
2eFµν = eia

2eBz , (2.72)

There are many vector potentials that give rise to such a magnetic field and we

will consider two such constructions. Recalling the definition of the plaquette,

we set the electromagnetic link variables in the y direction to,

Uy(x, y, z, t) = eiaeBx, (2.73)
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and all other Uµ = 1. Away from the periodic boundary, this gives,

Wxy(x, y, z, t) = eia
2eB(x+1)−ia2eBx

= eia
2eB, (2.74)

as required. On the boundary in the x-direction, an extra phase is introduced by

crossing the periodic boundary,

Wxy(NS, y, z, t) = eia
2eBNS−ia2eB

= eia
2eB(NS−1). (2.75)

In order to remove this additional phase, we set the links in the x direction along

the x boundary to,

Ux(NS, y, z, t) = eia
2eBNSBy. (2.76)

The plaquette crossing the boundary then becomes,

Wxy(Ns, y, z, t) = eia
2eBNS+ia2eNSBy−ia2eB−ia2eNSB(y+1)

= eia
2eB, (2.77)

as required.

On the corner of the xy plane, the plaquette becomes

Wxy(NS, NS, z, t) = eia
2eBe−ia

2eN2
SB. (2.78)

It is evident that, in order to meet the requirement of a constant field at every

site on the lattice, the field must be quantised such that,

eB =
2πn

N2
S

, (2.79)

where n is an integer. We note that, due to the fractional charges of the quarks,

the smallest non-zero physical field that can be considered at the hadron level

has n = 3. The continuum version of this field is given by ~A = (0, Bx, 0). It is

possible to define the same magnetic field with a second vector potential,

~A = (−By, 0, 0). (2.80)
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The link variables then become,

Ux(x, y, z, t) = e−ia
2eBy

Uy(x, y, z, t) = 1 ∀y 6= NS

Uy(x,NS, z, t) = e−ia
2eBNSx

Uz(x, y, z, t) = Ut(x, y, z, t) = 1. (2.81)

Following the same procedure as before, it can be shown that this vector po-

tential generates the same quantisation conditions as the first field considered.

Furthermore, the two vector potentials are related by a gauge transformation.

G(x, y, z, t) = eieBxy. (2.82)

The quantisation conditions required by the lattice lead to very large magnetic

fields, leading to a mass splitting of the spin up and spin down proton of up to

30% of the particles mass. The key concern is that such a large field will have a

detrimental effect on the ability of any operator to couple to the particle in the

field. Furthermore, the field could be so large that the particle itself bears little

resemblance to its zero field form. For this reason, the wave function becomes

the ideal tool to investigate the effect of the magnetic field of the proton, as it

allows us to directly visualise the effect of the field on the particle.
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Chapter 3

Wave Functions

3.1 Two Point Functions

The two-point function is of fundamental importance in extracting hadron spectra

from lattice QCD. Many important properties of of hadrons can also be extracted

from the two point function. These include, but are not limited to, masses,

magnetic moments [30, 31, 32] and polarisabilities [33] when a background field

is introduced, and relativistic effects [34].

It is also possible to extract excitations of hadrons using linear superpositions

of two point functions. Further information on extracted states can be obtained

by considering the position space wave function [34, 35, 36, 37]. The wave function

is used as a visual tool to show the effects of magnetic fields and momentum on

the particle, and can also aid as a diagnostic tool for the lattice, allowing one to

easily view finite volume effects, or the quality of the coupling of a state to the

operator used.

On the lattice the Minkowski space two point function is given by,

Gij(~p, t) =
∑
x

e−i~p·~x〈Ω|χi(x)χ̄j(0)|Ω〉, (3.1)

where the Dirac indices have been suppressed and the discrete version of the

3-dimensional Fourier transform is used for the projection to momentum space.

The χi and χ̄j are the annihilation and creation operators respectively of some

state. It is important to note here that momentum is an input parameter to the

lattice two point function, and thus can be chosen according to the constraints
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3. WAVE FUNCTIONS

imposed by the discrete space time.

In order to determine how exactly a spectrum is extracted, we insert a com-

plete set of baryon, spin and momentum states between the creation and annihi-

lation operators

I =
∑
B,q,s

|B, q, s〉〈B, q, s|, (3.2)

giving,

Gij(~p, t) =
∑
x

e−i~p·~x
∑
B,q,s

〈Ω|χi(x)|B, q, s〉〈B, q, s|χ̄j(0)|Ω〉. (3.3)

It is at this point we move the space time dependence from the operator χi(x)

by invoking the space time translation operator. This gives,

Gij(~p, t) =
∑
x

∑
B,q,s

e−i~p·~x〈Ω|eip̂xχi(0)e−ip̂x|B, q, s〉〈B, q, s|χ̄j(0)|Ω〉, (3.4)

where p̂ is the 4-momentum operator. Applying the operators on the states gives,

Gij(~p, t) =
∑
x

∑
B,q,s

e−i~p·~x〈Ω|χi(0)eiqx|B, q, s〉〈B, q, s|χ̄j(0)|Ω〉

=
∑
x

∑
B,q,s

e−iEBt−i(~p−~q)·~x〈Ω|χi(0)|B, q, s〉〈B, q, s|χ̄j(0)|Ω〉, (3.5)

where EB is the energy of the baryon state. We note that the Kronecker delta

function in three dimensions is defined as,

δ~p,~q =
∑
x

e−i(~p−~q)·~x, (3.6)

and applying this and Eq. (3.5) gives,

Gij(~p, t) =
∑
B,s

e−iEBt〈Ω|χi(0)|B, p, s〉〈B, p, s|χ̄j(0)|Ω〉. (3.7)

The quantity 〈Ω|χi(0)|B, p, s〉 can be represented as the product of a normalised

Dirac spinor and some complex number that represents the relative coupling of
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each state to the interpolating fields. i.e.

〈Ω|χi(0)|B, p, s〉〈B, q, s|χ̄j(0)|Ω〉 =

√
M

EB
u(p, s)λB,i(p)

√
M

EB
ū(p, s)λ∗B,j(p).

(3.8)

As these spinors are normalised, we are able to directly evaluate the sum over

the spin,

Gij(~p, t) =
∑
B

e−iEBt
/p+M

2EB
|λB(p)|2, (3.9)

where λB(p) is a momentum dependent complex number associated with the

coupling strength of the particle B to the operators chosen. When the two point

function is Wick rotated to Euclidean space i.e. t→ −it, we can see that the end

result is a ‘tower’ of states whose signal decays proportional to the exponential

of the relativistic energy. In the case that the input momentum is zero, this

becomes the particles mass. Hence, by looking at time slices sufficiently far from

the source, the ground state that couples to the chosen operator will dominate

the signal. Furthermore, in the zero momentum case,

/p+M

2EB
→ γ0 + I

2
, (3.10)

which projects either the positive or negative parity states, depending on the

transformation properties of the operator chosen.

In order to extract the mass from the two point function, one constructs a

time-dependent ‘effective mass’,

Meff = log
( G(0, t)

G(0, t+ 1)

)
. (3.11)

One then proceeds to perform a constant fit to the effective mass in the region

where the ground state dominates.

A particle on the lattice undergoes an energy shift induced by the magnetic

field, given by,

∆E = E( ~B)−Meff =
|e ~B|
2m
− µ̂ · ~B +

e2

2
βMB

2, (3.12)

The first term denotes the lowest of the Landau levels, which is an energy induced
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3. WAVE FUNCTIONS

by cyclotron-type orbits in the background field. We consider only the lowest en-

ergy level, as it is assumed that the higher energy states have sufficiently decayed.

The second term is the magnetic moment, which is proportional to the spin of

the particle, and hence induces a spin dependent mass splitting. The third term

contains the magnetic polarizability, βM , and is proportional to the square of the

elementary electromagnetic charge.

It is most beneficial to isolate a single state as early as possible, as the sig-

nal to noise ratio will be highest, and the fit most accurate. The addition of

Gaussian smearing to the fermion source causes the linear superposition of states

in the source to change. It is therefore apparent that there is the possibility of

removing contributions from excited states by selecting an optimal amount of

smearing. Methods for the suppression of excited states, and thus maximising

the contribution of the ground state to the two point function will be discussed

in Chapter 4.

Since the change invoked by the magnetic field appears in the energy of the

particle, the two point function is the ideal tool to employ to investigate the effects

of an external field. Further to this, since the wave function is proportional to the

two point function, magnetic effects will be present when calculating the wave

function.

The choice of operator for the two-point function is determined by the quan-

tum numbers of the particle being investigated. In the case of the proton, the

operator must have a total spin of 1
2
, isospin +1

2
, positive parity, colour antisym-

metry, and transform under the Lorentz group as a Dirac spinor. Whilst it is

possible to construct a large number of operators that fulfill these requirements,

there are three that are usually considered [38],

χ1(x) = εabc(uTa (x)Cγ5db(x))uc(x)

χ2(x) = εabc(uTa (x)Cdb(x))γ5uc(x)

χ4(x) = εabc(uTa (x)Cγ5γ4db(x))uc(x), (3.13)

where u and d represent the Dirac spinors for the up and down quarks respec-

tively. The χ1 operator, which contains scalar ud pair with the remaining u

quark carrying the spinor index is the most commonly used operator when only

the ground state is being considered. This operator has been shown [39] to pro-
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vide better overlap by a factor of 100 over χ2, which contains a vector ud pair.

The χ2 operator is considered in situations where states other than the ground

states are being investigated. The χ4 operator is the time component of the spin
3
2
N+.

We insert χ1 and its adjoint,

χ̄1(0) = εa
′b′c′ūc′(0)(d̄b′(0)γ5ū

T
a′(0)), (3.14)

in to the definition of the two point function in Eq. 3.1. This gives,

G11(p, t) =
∑
x

e−i~p·~x〈Ω|εabc(uTa (x)Cγ5db(x))uc(x)εa
′b′c′ūc′(0)(d̄b′(0)γ5ū

T
a′(0))|Ω〉,

(3.15)

By performing both sets of possible Wick contractions between the six quark

and anti-quark fields, we can construct the full two point function for the proton

in terms of quark propagators.

G11(~p, t) = −
∑
x

e−i~p·~xεabcεa
′b′c′
(
Scc

′

u (x, 0)tr(Cγ5S
bb′

d (x, 0)Cγ5)TSaa
′

u (x, 0)

+(Scc
′

u (x, 0)(Cγ5S
bb′

d (x, 0)Cγ5)TSaa
′

u (x, 0)
)

(3.16)

Until now, we have limited the discussion to the case where only properties of

the ground state are of interest. This is not always the case however, as it is

beneficial to be able to study higher energy excitations of the particle. On the

lattice, this is accomplished by the variational method.

3.2 Variational Method

By virtue of the fact that the two point function is composed of a linear su-

perposition of exponentials, it is possible to construct a ‘correlation’ matrix

[38, 40, 41, 42, 43, 44, 45] of two point functions whose eigenvectors can be

used to project individual states from the two point function. We are able to do

so due to the fact that the different operators give rise to weights on each of the

states present. As the only time dependence in the two point function is in the
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3. WAVE FUNCTIONS

exponential, we construct the following right eigenvector equation.

Gij(t0 + ∆t)uBj = e−MB∆tGij(t0)uBj , (3.17)

where

φ̄B ≡ uBi χ̄i (3.18)

is a perfect creation operator, exciting only state B. Here t0 and ∆t can be

chosen to lie in a region where the operators show the greatest variance in the

superposition of the states, allowing the most reliable projection possible. We

can rewrite Eq. (3.17) as,

[G−1(t0)G(t0 + ∆t)]iju
B
j = cBu

B
i , (3.19)

where cB = e−MB∆t is the eigenvalue for the baryon state B and uB the cor-

responding eigenvector. Similarly, we are able to construct the left eigenvector

equation,

vB
′

i Gij(t0 + ∆t) = e−MB′∆tvB
′

i G(t0). (3.20)

We can rewrite this in a similar manner to Eq. (3.17)

vB
′

i [G(t0 + ∆t)G−1(t0)]ij = vB
′

j cB′ . (3.21)

The eigenvectors can then be used to diagonalise the correlation matrix as follows,

allowing the isolation of a single state.

vB
′

i G(t)iju
B
j ∝ δB

′B. (3.22)

The projected two-point function can be then be treated as before and quantities

such as the effective mass of the projected state are able to be calculated.

One must be careful with the choice of operators used to construct the vari-

ational basis, as if the two-point functions generated by the combination of any

two operators give rise to the same superposition of states, the matrix will be-

come singular, and thus, uninvertible. As there are few local operators that allow

the reliable extraction of proton states, construction of the variational basis by

varying the spin-flavour configuration of the interpolator alone is not sufficient

to extract information about the excited states. One can increase the size of
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the basis by introducing smearing to the operators [43, 44, 45].These references

show that, in the region close to the source, different levels of smearing give the

greatest variations to the weightings of each state present in the superposition.

Therefore, an ideal choice of operators to construct the variational basis are the

χi operators combined with different levels of smearing.

3.3 Wave Function Operators

In quantum field theory, a Schrödinger-like probability distribution can be con-

structed for bound states by taking a simplified view of the full quantum field

theory wave functional in the form of the Bethe-Salpeter wave function [46],

herein referred to as simply the ‘wave function’.

The Bethe-Salpeter wave function underlying the probability distributions can

be defined in the form of a gauge-invariant Bethe-Salpeter amplitude. For the

wave function of the d quark about two u quarks in the proton, |p〉, the amplitude

takes the form

ψpd(y) ∝
∫
d4x 〈Ω| εabc uᵀa(x)Cγ5[

P exp

(
ig

∫ x+y

x

A(x′) · dx′
)
d(x+ y)

]b
uc(x) |p〉 , (3.23)

which exploits a string of flux to connect the quarks in a gauge invariant manner.

Here we have selected the standard form of the proton interpolating field χ1, u

and d represent the up and down quark fields respectively with colour indices a,

b and c and C is the charge conjugation matrix.

We can interpret the two-point function as the amplitude for the baryon B

to be created at some time 0, with momentum ~p and annihilated some time t

later. If we give each of the quarks within the interpolating operator a spatial

dependence, i.e.

χ(~x, ~y, ~z, ~w) = εabc(uTa (~x+ ~y)Cγ5db(~x+ ~z))uc(~x+ ~w), (3.24)

we are able to interpret the two point function constructed from this operator
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3. WAVE FUNCTIONS

and its adjoint at the point where ~x = ~y = ~z = ~w = 0,

GWF (~p, t, ~y, ~z, ~w) =
∑
x

e−i~p·~xεabcεa
′b′c′

(
Scc

′

u (~x+ ~w, 0)tr(Cγ5S
bb′

d (~x+ ~z, 0)Cγ5)TSaa
′

u (~x+ ~y, 0)

+(Scc
′

u (~x+ ~w, 0)(Cγ5S
bb′

d (~x+ ~z, 0)Cγ5)TSaa
′

u (~x+ ~y, 0)
)
,

(3.25)

as the amplitude for some baryon B to be created at some spacetime point 0, with

momentum ~p, and have each of its quarks annihilated at three separate spatial

points some time later [34, 35, 36, 37, 47]. In principle, we can then calculate GWF

for all values of ~y, ~z and ~w and, giving regard to the centre of mass, normalise

this to form a complete wave function. This approach is not feasible, however,

as it requires on the order of N6
S standard two point functions to be calculated

per time slice. We are able to reduce the complexity of the problem by taking

advantage of the symmetries available on the lattice.

The combination of periodic boundary conditions and cubic rotational sym-

metry allows us to consider the case where one of ~y, ~z or ~w varies across the entire

lattice and the other two quarks are separated along only the x axis by some dis-

tance d. In the case of the d quark wave function, the interpolating operator

becomes,

χ(~x, ~d1, ~z, ~d2) = εabc(uTa (~x+ ~d1)Cγ5db(~x+ ~z))uc(~x+ ~d2), (3.26)

where ~d1 = (d1, 0, 0) and ~d2 = (d2, 0, 0). When the u quarks are separated by an

even number of lattice sites, d1 = −d2 and where they are separated by an odd

number of lattice sites, d1 = −(d2 + 1). This reduces the number of two point

function calculations to 3
2
N4
S per time slice.

We then proceed to normalise the wave function by introducing a time de-

pendent factor ξ(t) such that,∑
~y

ξ2(t)|GWF (~p, t, 0, ~y, 0)|2 = 1, (3.27)

with the same factor used to normalise the wave functions for all values of d1, d2.

It is clear that the wave function defined in Eq. (3.25) is a gauge dependent
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quantity, hence, unless one of two possible remedies is applied, the ensemble

average of every point other than the point where the three quarks are colocated

will be zero.

In a relativistic gauge theory the concept of a hadronic wave function is not

unique and the Bethe-Salpeter wave function underlying the probability distribu-

tions can be defined in several different forms. For example, the gauge-invariant

Bethe-Salpeter amplitude exploits a string of flux to connect the quarks annihi-

lated at different spatial positions in a gauge invariant manner. Naively, this is

a computationally simple choice, as it requires little more than a series of 3 × 3

matrix multiplications. As this leads to an explicit path dependence, an average

over the paths is desirable. At this point, apparent simplicity breaks down as

even on a small lattice, it is possible to define billions of paths between any two

lattice sites. Therefore, the only way to form a complete picture of the wave func-

tion would be to consider all possible paths between each of the quarks, adding

enormous complexity. Another approach considers Bethe-Salpeter amplitudes in

which the gauge degree of freedom is fixed to a specific gauge. In lattice field

theory, Coulomb and Landau gauges are most common due to their local gauge

fixing procedure. Landau gauge provides distributions that compare favorably

with constituent quark model predictions [48] and therefore we select Landau

and Coulomb gauges herein.

3.4 Gauge Fixing

Gauge fixing on the lattice [49, 50] is accomplished by computing a gauge trans-

formation to apply to a configuration that causes the transformed configuration

to satisfy some classical gauge fixing condition. In the case of the Landau gauge,

the condition is
4∑

µ=1

∂µAµ = 0, (3.28)

and for the Coulomb gauge,
3∑
i=1

∇iAi = 0. (3.29)

In order to calculate the gauge transformation, we choose a functional to iter-

atively maximise such that the maximum condition matches the gauge fixing
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condition. In the case of both the Landau and Coulomb gauges, this functional

is given by.

F1 =
N∑
µ,x

1

2
Tr(U (n)

µ (x) + U †(n)
µ (x)), (3.30)

where N = 4 for the Landau gauge and N = 3 for the Coulomb gauge. The

gauge transformed configuration at the n-th iteration of functional maximisation

is given by

U (n)
µ (x) = G(n)(x)U (n−1)

µ (x)G(n)(x+ µ), (3.31)

where G(x) is the gauge transformation to be calculated, parameterised by

G(x)(n) = exp(iω(n)
a (x) τa), (3.32)

and ω is defined in the following discussion. We can take the variation of the

functional with respect to ω(n) in order to verify the fact that it matches the

continuum gauge fixing condition,

δF1

δω
(n)
a (x)

=
i

2

∑
µ,x

Tr(∆
(n)
1,µ(x))τa, (3.33)

where,

∆
(n)
1,µ(x) =

(
U (n)
µ (x− µ)− U (n)

µ (x) + U †(n)
µ (x)− U †(n)

µ (x− µ)
)
. (3.34)

By using the definition of the link from Eq. (2.6), we can Taylor expand the gauge

fields around Aµ(x), perform the integration, then expand the exponentials to first

order. This gives

δF1

δω
(n)
a (x)

=
i

2

∑
µ,x

Tr
(
a2∂µAµ +

a4

12
∂3
µAµ +O(a6)

)
. (3.35)

We can see that when F1 is maximised, the continuum gauge fixing condition is

satisfied to O(a2). It is possible to construct a linear combination of functionals

containing up to n links to enforce the gauge fixing condition to O(a2n) [50]. We
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will now consider the n = 2 case. The two link functional is given by

F2 =
N∑
µ,x

1

2
Tr(U (n)

µ (x)(U (n)
µ (x+ µ) + U †(n)

µ (x)U †(n)
µ (x− µ)), (3.36)

Once again, we take the variation of the functional with respect to ω
(n)
a , giving,

δF2

δωa(x)
=
i

2

∑
µ,x

Tr(∆2,µ(x))τa, (3.37)

where,

∆
(n)
2,µ(x) =

(
U (n)
µ (x− 2µ)U (n)

µ (x− µ)− U (n)
µ (x)(U (n)

µ (x+ µ)+

U †(n)
µ (x+ µ)U †(n)

µ (x)− U †(n)
µ (x− µ)U †(n)

µ (x− 2µ)
)
. (3.38)

Performing the same sequence of Taylor expansions as before gives.

δF2

δω
(n)
a (x)

=
i

2

∑
µ,x

Tr
(
4a2∂µAµ +

4a4

3
∂3
µAµ +O(a6)

)
. (3.39)

We can see that, by performing the maximisation of the functional,

F12 =
4

3
F1 −

1

12u0

F2, (3.40)

the continuum gauge fixing condition will be satisfied to O(a4), i.e. it has been

O(a2)-improved. In order to ensure our expansion of this link is Uµ(x) = 1+

small corrections, we have introduced a factor of the mean link for the extra link

in the two-link term.

The gauge transformation that performs the maximisation is set to

G(n+1)(x) = exp
(α

2

∑
µ

(
∆

(n)
12,µ(x)− 1

3
Tr∆

(n)
12,µ(x)

))
. (3.41)

where α is a sufficiently small constant and ∆
(n)
12,µ(x) takes the same superposition

of ∆
(n)
1,µ(x) and ∆

(n)
2,µ(x) as F12 of F1 and F2. The iterations continue until the

functional F12 has been maximised, which will be considered to be when ∆12 is
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sufficiently close to zero,

1

V NC

∑
µ

∆
(n)
12,µ ≤ 10−12. (3.42)

The exponential in Eq. (3.41) is generally approximated to first order and applied

successively to the original gauge field, known as the ‘steepest-descents’ method.

As the functional approaches the maximum, the difference between the gauge

transformation and the identity matrix reduces. This makes it difficult to make

long-range changes and is known as critical slowing down. This problem can

be remedied by employing Fourier acceleration [49] to the gauge transformation.

The Fourier transformed gauge transformation is then scaled by a factor inversely

proportional to the momentum, then Fourier transformed back to position space.

Thus, the iteration condition becomes

G(n+1)(x) = exp
(
F̂−1α

2

p2
max

p2(x̂)
F̂
∑
µ

(
∆

(n)
12,µ(x)− 1

3
Tr∆

(n)
12,µ(x)

))
, (3.43)

where p2(x̂) contains the square of all possible values of lattice momentum, except

p2 = 0. This has the effect of increasing the step size of the low momentum,

and therefore, slowest converging modes of the gauge transformation. This in

turn effectively eliminates the problem of critical slowing down, and can improve

convergence time by up to a factor of 4 over a steepest descents algorithm.

A significant part of the work done for this thesis was the modernisation and

parallelisation of legacy gauge fixing code. Features such as restartability and

the Fourier acceleration algorithm were added and necessary in order to complete

this work. Rewriting of code for the existing algorithms provided a factor of 3

increase in overall performance, and up to a factor of 10 in certain subroutines.

The implementation of the Fourier acceleration gave a further performance boost

of, on average, 50% over the conjugate gradient minimisation algorithm. This,

coupled with parallelisation using the MPI2 standard, decreased convergence time

per configuration by a factor of over 100 compared to the legacy implementation.
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Chapter 4

Smearing Optimisation

Early pion electromagnetic form factor calculations [51, 52] and nucleon form

factor calculations [53, 54, 55] established the formalism and presented first results

establishing the challenges ahead for obtaining precision form factors to confront

experimental data. Nucleon form factors continue to be an active area of research

[56, 57, 58, 59, 60, 61, 62, 63] and a comprehensive review of recent form factor

calculations can be found in [64] and references therein.

In practice, current lattice calculations were limited to a momentum transfer

of approximately Q2 = 3 GeV2 due to a challenge of increasing statistical errors.

Recently, calculations of the nucleon and pion form factors at Q2 = 6 GeV2

have been performed using variational techniques [65]. In this thesis we explore

very high momentum states and propose that, with sufficient optimisation of the

smearing parameters alone, momentum transfers of the order Q2 = 10 GeV2 can

be accomplished in lattice hadron structure calculations.

Smearing techniques have seen wide spread use in many applications in lattice

QCD since first being applied to fermion operators [24, 25]. The most notable

impacts can be found in spectroscopy calculations using variational methods [38,

40, 41, 42, 44, 45]. In spite of these successes, there has been little in the way

of the optimisation of smearing parameters for high-momenta states. For low-

momenta states there is no real need for optimization as the overlap of states is

typically slowly varying with the smearing parameters. In the following we reveal

that this is not the case for high-momenta states and finely tuned optimization

is very beneficial in accessing these states on the lattice.

Isolation of the ground state at high-momentum is essential to removing oth-

41



4. SMEARING OPTIMISATION

erwise large and problematic excited state contaminations. However, suppression

of excited states through Euclidean evolution alone encounters a rapid onset of

statistical noise. We introduce two different measures to quantify the coupling of

a smeared operator to the ground state of a proton relative to the near-by excited

states, and show how these measures determine the optimal smeared operator for

ground state isolation early in Euclidean time.

We also introduce anisotropy into the smeared operators in the direction of

momentum in an effort to improve the coupling to these Lorentz-contracted high-

momentum states. Our results are complementary to the variational techniques

of Ref. [65] in that the optimal set of smearings for accessing a variety of momenta

can be combined to create a correlation matrix providing an effective basis for

eigenstate isolation.

4.1 Techniques

Recalling the discussion from Chapter 2, when calculating the two-point function,

it is possible to choose from a set of quantised momenta, given by

~p =
2π

NSa
(px, py, pz) (4.1)

and limited to

− NS

2
< pi ≤

NS

2
. (4.2)

As demonstrated in Section 2.2, the construction of the discrete fermion propa-

gator gives momentum input into the two-point function proportional to sin(~p),

therefore, it is only reasonable to consider momentum states where

| pi | .
NS

4
, (4.3)

such that the dispersion relation is approximately satisfied.

We can introduce anisotropy to the smearing defined in Section 2.3 by intro-

ducing a new constant αx, which will act only in the x direction. The expression
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for the smearing then becomes,

F (x, y) =(1− αo) δxy +
αx
6

(
U †1(x− ax̂) δx−x̂,y + U1(x) δx+x̂,y

)
+
α

6

3∑
µ=2

(
U †µ(x− aµ̂) δx−µ̂,y + Uµ(x) δx+µ̂,y

)
(4.4)

where αo = 0.7 and α and αx are normalised such that

4α + 2αx
6

= αo . (4.5)

4.2 Measures

Gusken [21] introduced the measure

R =
G2(t′) e+m0 t′

G2(0)
, (4.6)

for quantifying the ground state isolation of a hadron. By taking a point, t′, suf-

ficiently late in time such that the excited state contributions become negligible,

the ground state can be evolved back to the source via e+m0 t′ to evaluate the frac-

tion of G2(0) it holds. However, with sufficient smearing, states can contribute

negatively to the two-point function, allowing this ratio to exceed 1 and making

it difficult to interpret the results.

The first measure we introduce follows from this idea by determining the

deviation of G2(t) from the ideal two-point function of a single ground state.

It is similar in principle to Gusken’s measure, however, it is capable of taking

into account the presence of states with negative coupling to the operator. The

measure M1 is defined as,

M1 =
−1

tf − ti + 1

tf∑
t=ti

(
e−E0(t−t0) − G̃2(t)

)2

G̃2
2(t)

, (4.7)

where G̃(t) = G(t)/G(t0). The factor −1 makes this measure maximal when G(t)

is a pure exponential of the ground state. The energy E0 is determined from a

4 × 4 source-sink-smeared variational analysis [43] of the zero momentum state
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with the correct dispersion relation applied for finite-momentum states.

Another common method of extracting coupling effectiveness is to perform a

four parameter, two exponential fit on a region close to the source of the two-point

function, i.e.

Gfit = a1e
−a2t + b1e

−b2t. (4.8)

However, this method tends to prove unreliable with the parameters varying with

the fit window. The method is limited by the fact that it can not take into account

any states with higher energy than the two considered.

The second measure we introduce works similar to this. However, the param-

eters of the exponentials are predetermined by a variational analysis [43]. This

leads to a simple linear fit of known exponentials, i.e.

Gfit = λ0 e
−E0 t + λ1 e

−E1 t + λ2 e
−E2 t . (4.9)

We can then find the proportion of the i-th state in the two-point function with

the measure

M2,i =
|λi |∑
k |λk |

. (4.10)

4.3 Lattice Details

Our calculations are performed on configurations of size 323 × 64 with a lattice

spacing of 0.0907 fm provided by the PACS-CS collaboration [66]. These lattices

have 2 + 1 sea quark flavours generated with the Iwasaki gauge action [67] and

the non-perturbatively improved Clover fermion action [16] with the κ values for

the light quarks and the strange quark given by 0.13754 and 0.13640 respectively,

and CSW = 1.715. This gives a pion mass of mπ = 389 MeV.

In order to eliminate any bias caused by smearing in the source, we use a

single set of propagators generated with a point source. All of the smearing is

then applied to the sink, making the two-point functions smearing dependent.

All momentum will be in the x direction, i.e. py = 0 and pz = 0 in Eq. (4.1).

We use a 4 × 4 correlation matrix to extract our excited state masses, con-

structed from the χ1 operator with 16, 35, 100 and 200 sweeps of smearing. We

choose to use the larger basis in order to ensure that the first three eigenstate

energies are accurately determined.
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Figure 4.1: The measure, M1, from Eq. (4.7) at px = 0 in Eq. (4.1). Deviation
from the ideal two-point function increases by a factor of 10 less than 30 sweeps
from the ideal smearing level, as shown in the inset graph

We have verified that no multi-particle states are present in the variational

analysis by applying the single-particle dispersion relation to the zero momentum

effective state masses to successfully predict the effective masses of the same states

with non-zero momentum.

Our error analysis is performed with the second-order single-elimination jack-

knife method. Linear fits are performed using the normal equations with exact

matrix inversion where possible and singular value decomposition otherwise.

4.4 Results

4.4.1 Isotropic Smearing

We first calculate the measure from Eq. (4.7) where the two-point functions have

been normalised 1 time slice after the source, with ti = 1 and tf = 6. The two-
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Figure 4.2: M1 from Eq. (4.7) at px = 1 (left) and px = 3 (right) in Eq. (4.1).
There is little difference between the measure at px = 0 and px = 1, due to
the fact that the probability distributions between the two momentum states are
nearly identical. At px = 3, the rms radius of the optimal smearing level is smaller
by a factor of 0.85 relative to the px = 0 state, whereas the relativistic γ factor
provides a Lorentz contraction factor of γ−1 = 0.72.

point function is calculated at every sweep of sink smearing between 1 and 480, up

to an rms radius of 13.68 in lattice units. For this particular ensemble, the two-

point function that shows the highest proportion of ground state has 136 sweeps

of smearing at the sink, or an rms radius of 6.92 lattice units as seen in Fig. 4.1.

Also apparent is that the effectiveness of the smearing at isolating the ground

state is significantly reduced fairly close to the optimal amount of smearing. At

only 30 sweeps away from the ideal number of sweeps, the deviation from the

ideal two-point function has increased by a factor of 10.

When we move to px = 1 in Eq. (4.1), which gives momentum in the x

direction of 427 MeV, the ideal number of smearing sweeps reduces by just one

sweep to 135 (rms radius 6.90 lattice units), as shown in Fig. 4.2. This can be

explained by considering the relativistic γ factor, which is given by the ratio of

the relativistic energy momentum relation and the ground state mass. The fitted

ground state mass for the proton is MP = 1.273(21) GeV, giving a relativistic

energy of EP |p=1 = 1.343(23) GeV and γ = 1.05. Given that all of the excited

states are more massive, and therefore exhibit less Lorentz contraction than the

ground state, it is feasible that there is very little difference in the probability

distribution between this state and the zero momentum state, thus the ideal

amount of smearing should be very similar to the zero momentum state.

At px = 3 in Fig. 4.2, the optimal number of smearing sweeps has decreased to
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Figure 4.3: M1 from Eq. (4.7) at px = 5 (left) and px = 7 (right) in Eq. (4.1).
The value of the measure at the optimum number of smearing sweeps for this
momentum state is approximately equal to that of the px = 3 state, indicating
that good ground state isolation is possible even at higher momenta. At px = 7,
the deviation from the ideal two-point function has increased by a factor of 10
only 5 sweeps from the optimal smearing level, as shown in the inset graph.

98. The maximum value of the measure has also decreased relative to the lower

momentum states, indicating relatively more excited state contamination, though

still achieving good isolation. The ratio of the rms radius of the optimal smearing

for this state to the optimal smearing for the ground state is 0.85, compared to

the relativistic γ−1 factor of 0.72. At px = 5, corresponding to a momentum

transfer of approximately 4.55 GeV2, shown in Fig. 4.3, the optimal number of

sweeps is 52 (rms radius 4.27 lattice units). However, the maximum value of the

measure is close to the maximum value for the px = 3 case, indicating that very

efficient isolation is possible, even at larger momentum transfers.

Moving to px = 7, equivalent to a momentum transfer of 8.93 GeV2, there is

significant noise far from the source in the two-point function, even for highly op-

timised smearing values. Hence we consider tf = 5 in the measure from Eq. (4.7)

at this value of momentum. The ideal number of sweeps decreases to 27 sweeps,

or 3.08 lattice units rms radius, seen in Fig. 4.3. Notably, the deviation from

the ideal two-point function increases by a factor of 10 only 5 sweeps from this

optimal value, corresponding to a change in rms radius of less than 0.3 lattice

units.

Using the measure described in Eq. (4.10), we first consider the three expo-

nential fit between time slices 1 and 6 after the source with masses 1.273(21) GeV,

2.301(28) GeV and 2.786(95) GeV as determined in our correlation matrix anal-
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Figure 4.4: Ground state proportion from the three exponential fit, i.e. M2 from
Eq. (4.10) where k = 3 and i = 1 at px = 0 in Eq. (4.1). There is insufficient
information on the second excited state close to the optimal amount of smearing,
thus requiring use of the two exponential fit, k = 2, to determine the optimal
amount of smearing with M2.
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ysis. From the results for px = 0 in Fig. 4.4, we can see that, in the region where

the first measure predicts ideal smearing levels, there is a sharp change in the

structure of the graph. In order to determine the cause of this, we compare with

the fits containing only the ground and first excited states. Fig. 4.5 shows that

the optimal number of smearing sweeps lies close to the value predicted by the

first measure. The overlap at the optimal number of sweeps, 138 in this case,

is 99.31(8)%, indicating that, in the three exponential fit, we are attempting to

fit two quickly decaying exponentials using only 0.69% of the signal available.

This leads us to believe that, in the regions of ground state dominance where we

are most interested, the coefficient from the quickly decaying third state cannot

be determined accurately, therefore dominates well beyond where it should be

allowed to contribute at all. For this reason, we will only consider fits using the

ground and first excited states.

The contamination due to excited states in the two exponential fit at zero

momentum increases rapidly away from the optimum smearing level. Of the

smearing sweeps used to extract the masses from the variational analysis, the one

that shows the most overlap with the ground state is 200 sweeps, or an rms radius

of 8.55 lattice units, with 77.69(7)%, or 32 times more excited state contamination

than the optimal smearing level.

At the first non-zero momentum state, the results present similarly to the first

measure, the optimal amount of smearing is 1 sweep less than that of the non-zero

momentum ground state, and 2 sweeps more than the optimal amount determined

by the first measure. At px = 3 in Eq. (4.1) shown in Fig. 4.6, the overlap is

maximised at 101 sweeps of smearing, or an rms radius of 5.95 lattice units, once

again agreeing within only a few sweeps of the optimum level suggested by the

first measure. Remarkably, considering the use of a point source, the proportion

of ground state present at this optimal amount of smearing is 98.87(12)%.

At px = 5 and px = 7 in Fig. 4.7 there is again good agreement between the two

measures, with the optimal smearing level being 53 and 26 sweeps respectively.

Even at a momentum transfer of 8.93 GeV2, 97.20(20)% overlap is achieved with

the ground state, and once again, very few sweeps from the optimum level, the

overlap drops dramatically. At px = 7, there is a second peak far from the optimal

number of smearing sweeps, it is unlikely that any highly Lorentz contracted state

would couple to such a large sink. The second peak in Fig. 4.7 can therefore be
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Figure 4.5: Ground state proportion for the two exponential fit, M2 with k = 2
and i = 1 in Eq. (4.10) at px = 0 in Eq. (4.1). Contamination due to excited
states increases rapidly away from the optimal smearing level. There is good
agreement between the two exponential fit here and the three exponential fit in
Fig. 4.4 away from the optimum smearing levels.
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Figure 4.6: Ground state proportion according to M2 at px = 3 in Eq. (4.1).
As momentum increases, the contamination due to excited states increases more
rapidly away from the ideal smearing level.

Figure 4.7: Ground state proportion according to M2 at px = 5 (left) and px = 7
(right) in Eq. (4.1) Even at these very high momentum transfers, good overlap
with the ground state is achieved for an optimised sink. Far from the optimal
number of smearing sweeps at px = 7, it is clear that the measure is no longer
applicable, as there would be little, if any highly Lorentz contracted ground state
present.
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considered to signify a limit to the domain of validity of the measure. Table 4.1

summarises the ideal number of smearing sweeps for both measures at each of

the momenta studied.

Table 4.1: The ideal number of smearing sweeps found for each measure and
momenta investigated.

px γ−1 M1 ideal sweeps M2 ideal sweeps
0 1 136 138
1 0.95 135 137
3 0.72 98 101
5 0.51 52 53
7 0.39 27 26

4.4.2 Anisotropic Smearing Results

As anisotropy is introduced to the smearing as described in Eq. (4.4), we consider

the first measure from Eq. (4.7) at the first non-zero momentum state and find

that there is no improvement to the ground state isolation, as shown in Fig. 4.8.

There is, however, an ideal number of sweeps that increases for decreasing αx

that shows approximately equal ground-state proportion relative to the isotropic

smearing case, that is αx = α = 0.7.

At px = 3 in Eq. (4.1), in spite of the clear difference in the smearing sweeps

required to maximise overlap with the source, Fig. 4.9 shows that introducing

anisotropy to the smearing does not result in improved isolation of the ground

state. The structure of the curve is similar to that of the px = 1 state, where

there is an optimal number of sweeps for every value of αx which increases with

decreasing αx.

Once again, there is no improvement in the ability of anisotropic smearing to

isolate the ground state at the momentum of px = 5, as shown in Fig. 4.10. The

structure revealed in the lower momentum states persists for this state and for

the px = 7 state in Fig. 4.11. From these results, optimisation of the number of

smearing sweeps alone is sufficient to achieve good isolation of the ground state

of the two-point function at a range of momenta.

We now investigate how anisotropic smearing affects the signal-to-noise ratio
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or quality of the two-point function at high momenta. Since we have ensured that

the ground state is isolated as close to the source as possible, we now determine

the quality of the signal a few time slices away from the source. We consider the

relative error of the two-point function four time slices after the source at the

optimal number of smearing sweeps for each value of our anisotropy parameter,

αx.

For px = 3, Fig. 4.12 shows the relative error in the two-point function at t = 4.

The smallest relative error occurs when the smearing is isotropic. Increasing the

momentum to px = 5 lattice units shows that there is only a small improvement

to the relative error for values of αx ∼ 0.48. It is worth noting that the first of the

minima visible in Fig. 4.13 at αx = 0.36 corresponds to the anisotropy expected

due to Lorentz contraction as αx/α = 0.51 equals γ−1 = 0.51.

The banding structure visible in Fig. 4.13 is a result of the optimal number

of smearing sweeps increasing for decreasing values of αx. Each discontinuity in

the graph for αx > 0.36 is the result of the optimal number of smearing sweeps

decreasing by 1. It is an artifact resulting from the density of the points in αx

being much finer than the density of the points in the number of smearing sweeps.

Moving to px = 7 in Fig. 4.13 we see a distinct improvement in the correlation-

function relative error when anisotropy is introduced. Both αx = 0.26 and 0.32

provide a 10% reduction in the error relative to that observed at the isotropic

value of 0.7. The values of αx ' 0.26 to 0.32 provide αx/α = 0.37 to 0.46, in

accord with the value of γ−1 = 0.39 predicted by Lorentz contraction.

4.5 Summary

We have presented two new measures of the effectiveness of smeared operators in

isolating the ground state of a hadron in the two-point function. Both measures

show good agreement with each other. We have performed a detailed analysis

of ground state isolation with each measure and have shown that optimisation

of the smearing can lead to remarkable improvement to the ground state isola-

tion. Furthermore, the ability to isolate the ground state decreases dramatically

a few sweeps from the optimal number of smearing sweeps for the higher momen-

tum states. In selecting a basis for a correlation matrix analysis, these optimal

smearing parameters are preferred.
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On the introduction of anisotropy to the smearing, we found that there was

no appreciable improvement to the overlap with the ground state. The relative

proportion of the ground state for an isotropic source is already high. Optimising

the number of sweeps of isotropic smearing alone is sufficient to ensure maximal

isolation of high-momentum ground states. The introduction of anisotropy does

provide a small improvement to the correlation function of high-momentum states

a few Euclidean time slices after the source.

Our results indicate that future studies of high-momentum states should adopt

this relatively cheap program of tuning the smearing parameters to optimize

isolation and overlap with the states of interest. We anticipate this approach will

be of significant benefit in future form factor studies.
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Figure 4.8: The first measure, M1 ,from Eq. (4.7) (left) and the Ground State Pro-
portion (right) with anisotropic smearing at px = 1 from Eq. (4.1). Introducing
anisotropy to the smearing does not improve the isolation of this state. However,
the Lorentz contraction is small so little improvement would be expected.
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Figure 4.9: The first measure, M1, from Eq. (4.7) (left) and the Ground State
Proportion (right) with anisotropic smearing at px = 3 from Eq. (4.1). No im-
provement is seen in the isolation of the ground state, in spite of the relativistic
γ factor of 1.39 giving a length contraction factor of 0.72 in the x direction.
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Figure 4.10: The first measure, M1, from Eq. (4.7) (left) and the Ground State
Proportion (right) with anisotropic smearing at px = 5 from Eq. (4.1). The
structure observed in the plots of the px = 3 state is retained, with more sweeps
of smearing required as anisotropy is increased.
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Figure 4.11: The first measure, M1, from Eq. (4.7) (left) and the Ground State
Proportion (right) with anisotropic smearing at px = 7 from Eq. (4.1). Even at
a momentum of 2.99 GeV, anisotropy in the smearing does not improve isolation
of the ground state.

Figure 4.12: The size of the relative error in the two-point function measured
four time slices after the source for px = 3 as in Eq. (4.1). At this momentum,
the two point functions displaying the smallest relative error were created with
an isotropic source.
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Figure 4.13: The size of the relative error in the two-point function measured four
time slices after the source for px = 5 (left) and px = 7 (right) as in Eq. (4.1). At
px = 5, there is a small amount of improvement for anisotropic smearing at αx/α
in the region of γ−1 = 0.51. At px = 7, improvement in the relative error is seen
for values of αx ' 0.26 to 0.32 where αx/α = 0.37 to 0.46, in accord with the
value of γ−1 = 0.39 predicted by Lorentz contraction. Note that the emergent
banding structure reflects a change in the optimal number of smearing sweeps by
one.
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Chapter 5

Quenched QCD Wave Functions

The earliest work on wave functions on the lattice was carried out on small lat-

tices, for the pion and rho, initially in SU(2) [35]. Further progress was made

in the early nineties, where gauge invariant Bethe-Salpeter amplitudes were con-

structed for the pion and rho [34, 36] by choosing a path ordered set of links

between the quarks. This was then used to qualitatively show Lorentz contrac-

tion in a moving pion. Hecht and DeGrand [37] conducted an investigation on

the wave functions of the pion, rho, nucleon and Delta using a gauge dependent

form of the Bethe-Salpeter amplitude, primarily focusing on the Coulomb gauge.

The background field method [27] for placing an external electromagnetic

field on the lattice has been used extensively in lattice QCD to determine the

magnetic moments of hadrons. Early studies on very small lattices with only a

few configurations [30, 31] showed remarkable agreement with the experimental

values of the magnetic moments of the proton and neutron. More recent studies

on magnetic moments [32] have shown good agreement with experimental values

of the magnetic moments of the baryon octet and decuplet. This method has also

been extended to the calculation of magnetic and electric polarisabilities [28, 33].

Here we use the wave function to determine the effect of the background magnetic

fields on the shape of the proton.

As background field methods have become more widely used, it is apparent

that the large fields demanded by the quantisation conditions should cause some

concern with regards to the calculation of moments and polarisabilities. It is en-

tirely possible that the distortion caused by these fields could be so dramatic that

the particle under investigation bears little resemblance to its zero-field form. For
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this reason, we will use the wave function as a tool to investigate the deformation

caused by a background field on a particle.

5.1 Simulation Details

Following the wave function formalism laid out in Section 3.3, we will investigate

the effects of a magnetic field on the wave function of the nucleon. The magnetic

field is placed on the lattice using the background field formalism described in

Section 2.4. We use an ensemble of 200 quenched configurations with a lattice

volume of 163 × 32, generated using the Luscher-Weisz O(a2) improved gauge

action [5], described in Section 2.1. The O(a) improved FLIC fermion action

[68], Section 2.2, is used to generate the quark propagators with fixed boundary

conditions in the time direction. Four sweeps of stout link smearing [26], described

in Section 2.3, with smearing parameter ρ = 0.1 are applied to the gauge links

in the irrelevant operators of the FLIC action. We use β = 4.53, corresponding

to a lattice spacing of a = 0.128 fm, determined by the Sommer parameter, r0 =

0.49 fm [3]. We employ 50 sweeps of gauge invariant Gaussian smearing [21] to

the fermion source at time slice 8. Two values for the hopping parameter are

considered, κ = 0.12885 and 0.12990, corresponding to pion masses of 0.697 GeV

and 0.532 GeV. The gauge fields generated are fixed to the Landau gauge using

the conjugate gradient Fourier acceleration method for improved actions [49], to

an accuracy of 1 part in 1012. The normalisation chosen for the wave function

is to scale the raw correlation function data such that the sum (over ~x and the

parameter associated with the quark wave function coordinate) of the square of

the correlation function is 1 for each Euclidean time, t. For the d quark, this

is given by Eq. (3.27) and similarly for the u quarks. The wave functions of

other quark separations are then scaled by the same factor, ξ(t). In reporting our

results, we focus on the probability distribution,

ργδ = ξ2(t)
1

V

∑
~x

G?
γδ(~x, ~y, ~z, ~w, t)Gγδ(~x, ~y, ~z, ~w, t), (5.1)

where γ and δ are the previously suppressed Dirac indices of the wave function

defined in Eq. (3.25). For the zero field case, we report the probability distribu-

tion from the average of spin-up, (γ, δ) = (1, 1) and spin down, (γ, δ) = (2, 2)
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correlators. For finite ~B, spin up and spin down probability distributions are

reported individually. The time t is selected to lie well within the ground state

dominant regime as identified by a standard covariance-matrix analysis of the

local two-point function.

5.2 Zero-Field Results

Figure 5.1: The Landau gauge probability distribution for the d quark of the
proton from Eqs. (3.25) and (5.1), in the plane of the u quarks separated by
zero lattice units (left), and by seven lattice units (right). The d quark is seen
to prefer to reside near the u quark which is placed in the scalar pair in the χ1

interpolating field of Eq. (3.24).

We begin by looking at the probability distribution of the d quark with the

aforementioned u quark separations in the Landau gauge. Immediately we notice

that the probability distribution is not symmetric around the centre of mass of

the proton. We note that in Fig. 5.1, the peak is centred around the u quark

that resides in the scalar pairing with the d quark in Eq. (3.24). This leads us

to believe that the u and d quarks tend to form a scalar pair within the proton.

At this point, we choose to anti-symmetrise the identical u quarks, changing our
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annihilation operator from Eq. (3.24) to

χP (~x, ~y, ~z, ~w) = εabc(uTa (~x+ ~y)Cγ5db(~x+ ~z))uc(~x+ ~w)

+ εabc(uTa (~x+ ~w)Cγ5db(~x+ ~z))uc(~x+ ~y). (5.2)

This choice is motivated by the fact that the interpolating field places one of the

u quarks permanently within the scalar pair, however, physically, this would not

be the case, as the u quarks within the proton should be indistinguishable.

Upon implementing this symmetrisation, we see no evidence that diquark

clustering is occurring at small u-quark separations. Rather, the probability dis-

tribution broadens and flattens around the centre of mass of the system. However,

when we move to a separation of five or more lattice units, or 0.640 fm, we see

the formation of two distinct peaks as illustrated in Fig. 5.2. At this stage, the u

quarks are separated further than was considered in [37].

Figure 5.2: The probability distribution for the d quark of the proton in the
plane of the u quarks separated by 7 lattice units, in the Landau gauge (left), and
the Coulomb gauge (right). Two distinct peaks have formed over the location
of the u quarks in the Landau gauge probability distribution, whereas a single,
broad peak is visible over the centre of mass of the system in the Coulomb gauge.
Note: as discussed following Eq. (3.27) the scale is such that the largest value of
all of the fixed quark separations will sit at the top of the grid, with all other
points of the probability distribution scaled accordingly.
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To more clearly illustrate this double peaked structure, we plot values of the

probability distribution along the line joining the two fixed quarks in Fig. 5.3.

We have taken advantage of correlations in the uncertainties in the lattice results

and present the uncertanty relative to the value at x = 6.

Figure 5.3: The probability distribution of the d quark in the proton with the u
quarks 7 lattice units apart along the x axis at x = 4 and 11. To clearly display
the double peak structure, uncertanties are reported relative to the distribution
at x = 6.

In the Coulomb gauge, diquark clustering is present as evidenced in the un-

symmetrised wave function, however, the support in the centralized region hides

the diquark clustering upon anti-symmetrisation. Fig. 5.2 illustrates results for

u quarks separated by 7 lattice units. Such a difference in the probability distri-

bution between the two gauges is a remarkable result.

In both the Landau and Coulomb gauges, the mass dependence of the prob-

ability distributions is almost negligible, as there are no significant differences in

the shape of the probability distribution when the quark mass is changed. This

was also noted in Refs. [35, 36]

When we look at the probability distribution of the scalar u quark (i.e. the

u quark in the scalar pair with the d quark in Eq. (3.24)) diquark clustering

becomes more pronounced in the Landau gauge, as well as becoming apparent in

the Coulomb gauge as illustrated in Fig. 5.4.

The probability distribution of the vector u quark (i.e. the u quark that carries
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Figure 5.4: The probability distribution for the scalar u quark of the proton in
the plane of the u and d quarks separated by seven lattice units, in the Landau
gauge (left), and the Coulomb gauge (right). In both gauges, the u quark is
seen to prefer to be nearer the d quark, which is to the left of the centre of each
lattice. However, in the Coulomb gauge, the scalar u quark is closer to the centre
of the lattice than in the Landau gauge probability distribution. The scale is as
described in Fig. 5.2

Figure 5.5: The probability distribution for the vector u quark of the proton
in the plane of the u and d quarks separated by seven lattice units, in the Lan-
dau gauge (left), and the Coulomb gauge (right). The probability distribution
presents similarly to the d quark probability distribution in that strong cluster-
ing is seen in the Landau gauge. The Coulomb gauge results here reveal a small
amount of preferred clustering with the d quark, which is to the left of the cen-
tre of each lattice. Also of note is that these probability distributions show less
structure than the others, as can be seen by the height of the smallest values,
with the scale as described in Fig. 5.2 64



the spinor index of χP in Eq. (3.24)) in the Landau gauge also exhibits diquark

clustering without a direct spin correlation in the interpolating field. Such a

clustering is anticipated in constituent quark models with hyperfine interactions.

Clustering is also observed in the Coulomb gauge. However, much like the d

quark, the probability distribution is more towards the centre of mass of the

system (Fig 5.5).

While it is possible to classify three types of quark probability distribution,

including the d quark, scalar u quark and vector u quark probability distributions,

the scalar u quark and vector u quark probability distributions are not physical

quantities as the two u quarks in the proton are identical particles. The proper u

quark probability distribution can be obtained from the same anti-symmetrised

interpolating field of Eq. (5.2). In spite of the symmetrisation, the u quark

allowed to vary prefers to reside near the d quark rather than the fixed u quark

as illustrated in Fig. 5.6.

The probability distribution of the scalar u quark of Fig. 5.4 very closely

resembles that of the symmetrised operator, indicating that the scalar term con-

tributes the most to the symmetrised probability distribution of Fig. 5.6

We note that there are several reasons that we are able to see diquark clus-

tering in the Landau gauge where Ref. [37] did not. Our use of a large smeared

source, the averaging over ~x in Eq. (3.25), using improved actions for both the

quarks and the gauge fields and the consideration of hundreds of gauge fields pro-

vides better statistics, allowing access to further u quark separations with a high

signal-to-noise ratio, as well as the ability to investigate lighter quark masses.

Furthermore, our lattices extend twice as far in the temporal direction and use

fixed boundary conditions, thus reducing the chance of any contamination asso-

ciated with the boundary conditions.

Although models featuring diquarks within hadrons have been used exten-

sively for many years [69], there has been little, if any, direct evidence for the

existence of such a cluster within a particle. Earlier lattice studies that have

paired two light quarks with a static quark [70, 71] have shown a large diquark

(O(1) fm) can form inside of a baryon, though with limited effect on the structure

of the particle. More recently, light quarks have been paired with various diquark

correlators [72] which suggest that diquarks are not a significant factor in light

baryons. To the best of our knowledge, this is the first time that such a diquark
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Figure 5.6: The probability distribution for an anti-symmetrised u quark of the
proton in the plane of the remaining quarks which are separated by 7 lattice units,
in the Landau gauge (left), and the Coulomb gauge (right). In contrast to the d
quark probability distribution, a single peak is visible above the location of the d
quark (left of centre on each lattice) in both the Coulomb and the Landau gauge.
Note: as discussed following Eq. (7) the scale is such that the largest value of all
of the fixed quark separations will sit at the top of the grid, with all other points
of the probability distribution scaled accordingly.
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configuration has been shown in a baryon composed of three light quarks.

5.3 Background Fields on the Lattice

Further to the material presented in Section 2.4, there are several points to note

about placing a background field on the lattice, the first of which is that adding

any constant to the potential will not affect the resultant field. It can also be

shown that there is a gauge transformation that links both of the above imple-

mentations of a constant background field in the z direction, given by,

G(x, y) = eieBxy, (5.3)

where x, y denote lattice sites 1, 2, . . . , Nx, Ny in units of the lattice spacing a

and

Uµ(x)→ G(x)Uµ(x)G†(x+ µ̂). (5.4)

These implementations of the background field are applied to both the Landau

and Coulomb-fixed configurations.

We expect that this magnetic field will cause a distortion of the probabil-

ity distribution, as the proton responds to the presence of the field. Since the

magnetic field is in the z direction, we expect that physical distortion will be

symmetric about this direction, and all other effects will be a result of the choice

of the gauge potential ~A.

A particle on the lattice in the presence of a background magnetic field will

undergo a mass shift given by Eq. (3.12). Due to the quantisation imposed by

the periodic boundary conditions and the relatively small size of these lattices,

the magnetic field will be very large. For n = 3 in the quantisation conditions

in Eq. (2.79), which the smallest value that can accommodate the fractional

charges of the quarks, the value of the field on our lattices is eB = 0.175 GeV2,

which implies that the first order response of a proton to the field would be

µB = 260 MeV in the continuum. On the lattice however, the mass of the

ground state of the proton is larger and the moment itself is smaller[32], and as

such the response will be smaller at approximately 150 MeV at our lighter mass.
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5.4 Background Magnetic Field Results

The first notable result from the use of the aforementioned method of placing a

background field on the lattice is that an asymmetry is produced in the direction

of the changing vector potential as illustrated in Fig. 5.7. This asymmetry occurs

in both the Landau gauge and Coulomb gauge to a similar extent. This is an

unphysical result of the gauge-dependent method in which we place the field on

the lattice, which can be shown by using the second implementation described in

Section 5.3. Upon doing this, the asymmetry in the probability distribution can

be seen to move to the direction of the vector potential once again as shown in

Fig. 5.7. In order to minimise the effect of the choice of gauge potential on the

probability distribution, we choose an average over four implementations of the

background field. The two implementations described above and two in which a

gauge transformation is applied such that the magnitude of the vector potential

decreases across the lattice. For the first implementation

G(x, y) = eiaeBNxy, (5.5)

and similarly for the second of the two implementations. Once averaging over the

four vector potentials has been applied, symmetry around the z-axis is obtained.

Thus, we look at the probability distribution in the xz-plane.

In spite of the very large magnetic field strength imposed by the boundary

conditions, the change in the probability distribution is quite small for the case

where the remaining quarks are both located in the centre of the lattice, (Fig. 5.8).

This subtle result is consistent with that expected from the polarisablilty as the

current experimental value for the proton polarisability is βM = 1.9(5)×10−4 fm3

which gives the second order response to the field of around, 1
2
βMe

2B2 = 40 MeV.

Very little spin dependence can be seen in the probability distributions them-

selves, the probability distributions of the spin up proton quarks are largely the

same as the probability distributions of the spin down proton. A subtle difference

appears in the vector u quark probability distributions in the Coulomb gauge,

as illustrated in Fig. 5.9. A more prominent difference is visible in the Landau

gauge (Fig. 5.10). The probability distribution appears more spherical and lo-

calized when the spin is aligned with the field, and a very subtle asymmetry is

present in the direction of the field. Spin dependence also manifests itself in the
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Figure 5.7: The probability distribution for the d quark cut in the x − y plane
of the u quarks, in the presence of a background magnetic field in the Landau
gauge, with the first implementation (left), and the second implementation (right)

of the vector potential described in Section 5.3. In this image, the field, ~B, is
pointing into the page. The red sphere denotes the location of the remaining
quarks. There is a clear asymmetry perpendicular to the field that changes with
the vector potential, Aµ, in spite of the background magnetic field not changing.
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Figure 5.8: The probability distribution for the d quark cut in the x − z plane
of the u quarks, after symmetrising the vector potential, Aµ in the presence of
the field in the Landau gauge (left) and Coulomb gauge (right). In this image,

the field, ~B, is pointing to the top of the page, and the u quarks are both in the
centre of the lattice, denoted by the red sphere. In spite of the magnitude of the
field, a fairly small deviation from spherical symmetry is seen in both gauges.
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energy of the proton, as can be seen in Table 5.1, where the energy of the proton

when its spin is anti-aligned to the field is lower than the zero-field energy, indi-

cating that Landau levels are not having a dominant effect on the particle energy.

The spin aligned proton receives a larger energy, due to the sign on the moment

term.

Table 5.1: The dependence of the spin up and spin down mass of the proton
on the background magnetic field. When the spin is aligned with the effective
field on the proton, the mass of the proton increases, whereas when the spin is
anti-aligned with the field, we see a mass decrease. The strength of the field is
given for the proton when n = 1 in Eq. (2.79) applied to the d quark.

κ spin B Mass (GeV) m2
π (GeV2) window χ2/dof

0.12885 averaged 0 1.492(10) 0.486 10-18 1.001
anti-aligned -3 1.366(11) 10-14 0.879

aligned -3 1.688(11) 10-18 0.991
0.12990 averaged 0 1.327(11) 0.283 10-18 0.954

anti-aligned -3 1.197(13) 10-14 1.061
aligned -3 1.528(13) 10-15 0.983

The localization of the spin aligned probability distribution can be understood

in terms of a constituent quark mass effect in a simple potential model. The effect

of the increased proton energy is to cause an increase in the constituent quark

mass, hence causing the probability distribution to sit lower in the potential. This

makes the spin aligned probability distribution smaller than the spin anti-aligned

probability distribution.

As the quarks are separated, the probability distributions in the background

field tend to be more localized than the same probability distributions without

a background field. Some stretching along the field orientation at the centre of

the distribution is apparent, making the distribution more spherical (Fig. 5.11).

This is consistent with the effect of raising the constituent quark mass. In the

Landau gauge, the diquark clustering is removed from the d quark probability

distribution by the presence of the field as illustrated in Fig. 5.12.

In contrast, diquark clustering is still apparent in the u quark probability

distribution in the presence of the field, with the distribution moving towards the

centre of the baryon on application of the magnetic field, as shown in Figs. 5.13
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and 5.14. The scalar u quark probability distribution also shows more localization

than either the vector u quark or d quark probability distributions. The anti-

symmetrised u quark probability distribution illustrated in Figs. 5.15 and 5.16

still bears close resemblance to that of the scalar u quark. However, it is not as

localized as the scalar u quark probability distribution due to the contribution

from the vector u quark required to anti-symmetrise the identical u quarks. The

Landau gauge probability distribution is still larger than the Coulomb gauge

probability distribution.

As illustrated in Figs. 5.17 and 5.18 for the Coulomb and Landau gauges

respectively, the effect of the field on the probability distribution of the vector

u quark is more pronounced than the d quark and scalar u quark probability

distributions.

The spin orientation dependence as the quarks are separated remains largely

the same as in the case where the quarks are at the origin, with the vector u

quark probability distribution changing the most between the spin aligned and

anti-aligned cases. In the case where the spin is aligned with the field and the mass

increases, the probability distribution becomes more localized perpendicular to

the field relative to when the spin is anti-aligned with the field. This is in keeping

with the constituent quark model, where the field causes the constituent quark

mass to increase, and as such, the proton sits lower in the potential.

Very little spin dependence is visible in the d quark and scalar u quark prob-

ability distributions. However, the effect on the probability distribution due to

the magnetic field is more prominent when the remaining quarks are separated,

compared to when the quarks are at the origin.

5.5 Relativistic Wave Functions

Non-zero momentum wave functions have been briefly investigated in an early

study [34], in which Lorentz contraction was able to be observed for the pion at

relatively small momentum. Using the smearing optimisation method detailed in

Chapter 4, we investigate the wave function of the proton at momentum up to

px = NS
4

lattice units in the Landau Gauge.

Following the conclusions of the previous chapter, we choose to only optimise

over the number of smearing sweeps, and to not add any anisotropy. The ideal
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Figure 5.9: The probability distribution for the vector u quark in the pres-
ence of the background field, cut in the x − z plane of the remaining quarks in
the Coulomb gauge with the spin aligned (left) and anti-aligned (right) to the
field. The direction of the field is down the page, and the red sphere denotes
the remaining quarks. The probability distribution appears more spherical and
localized when aligned with the field, and a very subtle asymmetry is present in
the direction of the field.

Figure 5.10: The probability distribution of the vector u quark in the presence
of the background field, cut in the x − z plane of the remaining quarks in the
Landau gauge with the spin aligned (left) and anti-aligned (right) to the field,
and the red sphere denotes the remaining quarks. The direction of the field is
down the page. Much like in the Coulomb gauge, the probability distribution
appears more spherical and localized when aligned with the field.
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Figure 5.11: The probability distribution of the d quark in the Coulomb gauge
cut in the x− z plane of the u quarks which are separated by seven lattice units
in the transverse direction with zero background field (left) and in the presence of
the field (right). The direction of the field is up the page and the spheres denote
the positions of the u quarks.

Figure 5.12: The probability distribution of the d quark, in the Landau gauge cut
in the x− z plane of the remaining quarks which are separated by 7 lattice units
in the transverse direction with zero background field (left) and in the presence of
the field (right). The spheres denote the positions of the u quarks. The diquark
clustering is barely visible in this view, and disappears completely in the presence
of the field. The probability distributions are broader in the Landau gauge.
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Figure 5.13: The probability distribution of the scalar u quark in the Coulomb
gauge cut in the x−z plane of the remaining quarks which are separated by seven
lattice units in the transverse direction with zero background field (left) and in
the presence of the field (right). The direction of the field is up the page and the
d quark is on the right, denoted by the red sphere. In contrast to the d quark
probability distribution, there is still a distinct preference for the formation of
a scalar diquark. When the field is applied, the probability distribution can be
seen to move toward the centre of the lattice.

Figure 5.14: The probability distribution of the scalar u quark, in the Landau
gauge which are separated by 7 lattice units in the transverse direction with zero
background field (left) and in the presence of the field (right). The direction of
the field is up the page and the d quark is on the right, denoted by the red sphere.
Preference towards the centre of the lattice is also visible in the Landau gauge,
but is more subtle than in the Coulomb gauge.
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Figure 5.15: The probability distribution of a u quark in the Coulomb gauge
cut in the x − z plane of the remaining quarks which are separated by seven
lattice units in the transverse direction with zero background field (left) and in
the presence of the field (right). The direction of the field is up the page and the
d quark is on the right, denoted by the red sphere. The symmetrised u quark
probability distribution bears close resemblance to the scalar u quark, but less
localized due to the vector u quark contribution.

Figure 5.16: The probability distribution of a u quark, in the Landau gauge cut
in the x− z plane of the remaining quarks which are separated by 7 lattice units
in the transverse direction with zero background field (left) and in the presence
of the field (right). The direction of the field is up the page and the d quark is
on the right, denoted by the red sphere. The contribution to the symmetrised
probability distribution from the vector u quark is enhanced in the Landau gauge
compared to the Coulomb gauge.
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Figure 5.17: The probability distribution of the vector u quark in the Coulomb
gauge cut in the x−z plane of the remaining quarks which are separated by seven
lattice units in the transverse direction with zero background field (left) and in
the presence of the field (right). The direction of the field is up the page and the
d quark is on the right, denoted by the red sphere. The effect of the field on the
vector u quark probability distribution is more pronounced than the d quark and
scalar u quark probability distributions.

Figure 5.18: The probability distribution of the vector u quark, in the Landau
gauge cut in the x − z plane of the remaining quarks which are separated by 7
lattice units in the transverse direction with zero background field (left) and in
the presence of the field (right). The direction of the field is up the page and the
d quark is on the right, denoted by the red sphere.
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px py px nsweeps M1

0 0 0 45 -0.00475
1 0 0 40 -0.0209
2 0 0 31 -0.0334
3 0 0 23 -0.996
4 0 0 14 -12.38

Table 5.2: The ideal number of smearing sweeps and the value of M1 from
Eq. (4.7) with ti = 1 and tf = 7 time slices after the source at each momen-
tum considered.

number of smearing sweeps for each of the 5 values of momentum considered is

given in Table 5.2. We have kept ti and tf consistent between all momentum,

and as such, the value of the measure for px = 4 is significantly higher than the

rest. Reducing tf by a single time slice, to 6 after the source, reduces the value

of the measure at 14 sweeps of source smearing by a factor of 4, indicating that

the signal is reasonable even 6 time slices after the source.

Figure. 5.19 shows the wave function calculated at 2 units of lattice momentum

in the x direction, which gives the expected Lorentz contraction factor γ−1 = 0.73.

calculated 3 time slices after the source. Clearly, the wave function constructed at

45 sweeps of source smearing exhibits the most contraction in the tail, however,

all 3 probability distributions shown exhibit roughly consistent contraction closer

to the peak of the distribution, up to the edge of the light blue shaded area. At

this relatively low momentum, it is apparent that a reasonable wave function can

be extracted without the need for an optimised source.

Wave functions constructed at the highest momentum considered, giving a

Lorentz contraction factor of γ−1 = 0.47, shown in Fig. 5.20, demonstrate that

only the wave function constructed with the optimised source resembles a Lorentz

contracted state 3 time slices after the source. The wave functions constructed

by all other source operators have clear artefacts due to poor coupling with the

operator. These results reinforce the need for carefully tuned operators when

accessing high momentum states on the lattice.
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Figure 5.19: The probability distribution of the d quark at two units of lattice
momentum applied across the page, with the u quarks co-located in the centre of
mass of the system in the Landau gauge at 45 (left), 31 (center) and 14 (right)
sweeps of source smearing. The number of sweeps chosen was determined to
be ideal by performing the analysis detailed in the previous chapter for zero, 2
and 4 units of lattice momentum respectively. All probability distributions have
been cut of at the same relative value to the peak. It is clear that, even at this
relatively low value of momentum, differences are visible in the wave functions.

Figure 5.20: The probability distribution of the d quark at four units of lattice
momentum applied across the page, with the u quarks co-located in the centre of
mass of the system in the Landau gauge at 45 (left), 31 (center) and 14 (right)
sweeps of source smearing. The number of sweeps chosen was determined to
be ideal by performing the analysis detailed in the previous chapter for zero,
2 and 4 units of lattice momentum respectively. All probability distributions
have been cut of at the same relative value to the peak. Only the wave function
produced at the ideal number of smearing sweeps bares any resemblance to a
Lorentz contracted state.
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5.6 Summary

In this chapter, we have performed the first examination of the probability dis-

tribution of quarks in the proton in the presence of a background magnetic field

in both the Landau and Coulomb gauges.

We have shown that there is a distinct difference between the d quark prob-

ability distributions in the Landau and Coulomb gauge, with the Landau gauge

exhibiting clear diquark clustering. The probability distributions in the Coulomb

gauge did not. The scalar u quark and vector u quark probability distributions

show clear diquark clustering in both the Landau and Coulomb gauge, with the

scalar u quark being more tightly bound to the d quark than the vector u quark

probability distribution. This is the first direct evidence of the ability of a scalar

diquark pair to form in a baryon. Also, the probability distributions in the Lan-

dau gauge were larger than those in the Coulomb gauge.

On the application of the background field, we found a gauge dependence in

the probability distribution in the direction of the vector potential. A symmetri-

sation was performed to rectify this.

In spite of the very large magnetic field required by the quantisation condi-

tions, the change in the probability distribution is small, being most prominent

in the vector u quark. The effect is to elongate the distribution along the axis of

the field while generally localizing the distribution. The vector u quark exhibits

the most spin dependence, with the probability distribution being more localized

when the spin is aligned with the magnetic field. This effect can be understood in

terms of a constituent quark model where the constituent quark mass increases

in the presence of the magnetic field.

More notable spin dependence appeared in the energy of the proton itself,

largely associated with the magnetic moment, as opposed to higher order effects

impacting the structure of the proton. The nucleon is rather stiff and only slightly

more localized in a magnetic field. We anticipate the background field approach

to determining the magnetic moment of baryons to be effective, even in a strong

background field.

On the application of momentum along one axis, Lorentz contraction was vis-

ible in the probability distribution. At lower momenta, a tuned source was not

necessary for the production of a clean probability distribution. When momentum

was increased to the highest value considered, only the probability distribution
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generated by the tuned source was relatively free of unphysical artefacts, rein-

forcing the need for carefully tuned sources when considering high momentum

states.
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Chapter 6

Full QCD Wave Function

The hadron spectrum is the manifestation of the highly complex dynamics of

QCD. It is an observable that is readily accessible in collider experiments. While

the quantum numbers of the states can be ascertained, properties providing more

insight into the structure of the resonances often remain elusive to experiment.

We aim to provide some insight into the underlying dynamics governing the struc-

ture of these states.

Recent advances in the isolation of nucleon excited states through correlation-

matrix based variational techniques in lattice QCD now enable the exploration

of the structure of these states and how these properties emerge from the funda-

mental interactions of QCD.

In this chapter, we focus on the wave function of the Roper excitation [73] to

the four lowest-lying even-parity states excited by the standard χ1 interpolating

field which incorporates a scalar diquark construction. We examine the quark

mass dependence of the probability distributions for these states. Here we search

for a signature of multi-particle components mixed in the finite-volume QCD

eigenstates at the two largest quark masses where the states sit close to the multi-

particle thresholds. We also explore the dependence of the d-quark probability

distribution on the positions of the two u quarks along an axis through the centre

of the distribution.

In presenting our results we make extensive use of isovolume and surface plots

of the probability distributions for the quarks. Such visualizations have already

been used to illustrate physical effects such as Lorentz contraction [34, 36], the

effect of external magnetic fields [47] and finite volume effects [48, 74], for example.
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Early explorations of these states were based on non-relativistic constituent

quark models. The probability distributions of quarks within hadrons were de-

termined using a one-gluon-exchange potential augmented with a confining form

[75, 76]. These models have been the cornerstone of intuition of hadronic prob-

ability distributions for many decades. In this chapter, we will confront these

early predictions for quark probability distributions in excited states directly via

Lattice QCD.

6.1 Lattice Techniques

Robust methods have been developed that allow the isolation and study of the

states associated with these resonances in Lattice QCD [19, 38, 39, 45, 48, 77,

78, 79, 80, 81, 82, 83], which we discuss in detail in Section 3.2. We apply the

variational method [40, 41] to extract the ground state and first three P11 excited

states of the proton associated with the Roper [73] and other higher-energy P11

states. We then combine this with lattice wave function techniques to calculate

the probability distributions of these states at several quark masses and quark

positions. We use the 2 + 1 flavour 323 × 64 PACS-CS configurations [66] at a

pion mass as low as 156 MeV.

Landau gauge is a smooth gauge that preserves the Lorentz invariance of the

theory. While the size and shape of the wave function are gauge dependent, our

selection of Landau gauge is supported by our results. For example, the ground

state wave function of the d quark in the proton is described accurately by the non-

relativistic quark model using standard values for the constituent quark masses

and string tension of the confining potential [48]. Therefore this gauge provides

a foundation for a more comprehensive wave function examination.

The non-local sink operator used to construct the wave function is unable to

be smeared, and hence the standard technique of Eq. (3.22) cannot be applied.

However, Eq. (3.19) illustrates it is sufficient to isolate the state at the source

using the right eigenvector. Thus, the probability distributions are calculated

with each smeared source operator and the right eigenvectors calculated from the

standard variational analysis are then applied in order to extract the individual

states of interest.

Our focus on χ1 in this investigation follows from the results of Ref. [84],
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Figure 6.1: The mass dependence of the four lowest-lying even-parity eigenstates
excited by the χ1 interpolating field is compared with the S and P -wave non-
interacting multi-particle energy thresholds on the finite volume lattice. Plot
symbols track the eigenvector associated with each state.

where the lowest-lying excitation of the nucleon was shown to be predominantly

associated with the χ1 interpolating field. The results from their 8 × 8 correla-

tion matrix of χ1 and χ2 = εabc (uᵀa(x)C db(x) ) γ5 u
c(x) revealed that χ2 plays a

marginal role in exciting the Roper. The coefficients of the Roper source eigen-

vector multiplying χ2 are near zero. Further comparison with Ref. [84], identifies

the third state extracted herein as the fifth state of the twelve states identified

and the fourth state herein as the tenth state. Figure 6.1 illustrates the quark

mass dependence of these four states which will be examined in detail herein.

The quark mass flow of these states tracked by their associated eigenvectors

[84] is not smooth and suggests the presence of avoided level crossings as one

transitions from the heaviest two quark masses to lightest three quark masses.

At the two heaviest quark masses, it is seems likely these states are dominated by

multi-particle Nπ components, whereas at the lighter three quark masses, single
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particle components are more dominant. We will search for evidence of this in

the wave functions of these states.

In summary, the wave function for the d quark in state α having momentum

~p observed at Euclidean time t with the u quarks at positions ~d1 and ~d2 is

ψαd (~p, t; ~d1, ~d2; ~z) =
∑
~x

e−i~p·~x tr (γ0 + 1) (6.1)

〈Ω|T{χ1(~x, ~d1, ~z, ~d2; t) χ̄j(~0,~0,~0,~0; 0) } |Ω〉uαj ,

where χ1(~x, ~d1, ~z, ~d2; t) is given by Eq. (3.26).

As discussed above, χ1 has the spin-flavour construct that is most relevant

to the excitation of the Roper from the QCD vacuum. As such, it is an ideal

choice for revealing the spatial distribution of quarks within the Roper. However,

the selection of χ1 in Eq. (6.1) is not unique and other choices are possible. For

example, the selection of χ2 would reveal small contributions to the Roper wave

function where vector diquark degrees of freedom are manifest. Similarly, D-wave

contributions could be resolved through the consideration of a spin-3/2 isospin-

1/2 interpolating field at the sink. Research exploring these aspects of the wave

functions is in progress.

6.2 Simulation Results

6.2.1 Lattice Parameters

We use the 2+1 flavour 323×64 configurations created by the PACS-CS collabo-

ration [66] constructed with the Iwasaki gauge action [12] and the O(a)-improved

Wilson action [16] with β = 1.90, giving a lattice spacing of 0.0907(13) fm. The

hopping parameters are 0.13700, 0.13727, 0.13754, 0.13770 and 0.13781 giving

pion masses of 702, 570, 411, 296 and 156 MeV respectively. For each quark mass

we consider 398, 391, 447, 395 and 198 gauge field configurations respectively,

and at the lightest quark mass we increase statistics through the consideration of

four sources per configuration distributed evenly along the time axis.

To isolate the QCD eigenstates, a 4× 4 variational basis is constructed using

the χ1 operator with four smearing levels; 16, 35, 100 and 200 sweeps [45] of

gauge-invariant Gaussian smearing [21]. These smearing levels correspond to
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smearing radii of 2.37, 3.50, 5.92 and 8.55 lattice units or 0.215, 0.317, 0.537 and

0.775 fm respectively.

The choice of variational parameters t0 = 2,4t = 2 relative to the source

position is ideal, resulting in the effective mass plateaus of the states commencing

at t = t0 = 2 as desired [48]. This indicates that the number of states contributing

significantly to the correlation functions of the correlation matrix at t0 = 2 equals

the dimension of the correlation matrix. As such we examine the wave functions

of all four states with the caution that the fourth state is most susceptible to

excited state contamination. In reporting the wave functions we select the mid

point of the correlation matrix analysis at t = 3. The wave functions observed for

all our states show an approximate symmetry over the eight octants surrounding

the origin. To improve our statistics we average over these eight octants when

d1 = d2 = 0, and an average over the four quadrants sharing an axis with the u

quark separation at all other values of d1 and d2.

We fix to Landau gauge by maximizing the O(a2) improved gauge-fixing func-

tional [50]

FImp =
∑
x,µ

Re tr

(
4

3
Uµ(x)− 1

12u0

(Uµ(x)U(x+ µ̂) + h.c.)

)
(6.2)

using a Fourier transform accelerated algorithm [49], described in detail in Section

3.4.

In carrying out our calculations, we average over the equally weighted {U}
and {U∗} link configurations as an improved unbiased estimator [55]. The two-

point function is then perfectly real and the probability density is proportional

to the square of the wave function. In this analysis, we choose to look at the

zero-momentum probability distributions.

6.2.2 Wave Functions and Constituent Quark Model Pre-

dictions

Figure 6.2 presents the wave functions for the first three states at our lightest

quark mass providing mπ = 156 MeV. In the excited states, the wave function

changes sign revealing a node structure consistent with 2S and 3S excited state

wave functions. To further explore the details of these wave functions, we con-
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6. FULL QCD WAVE FUNCTION

Figure 6.2: The wave function of the d quark in the proton about the two u quarks
fixed at the origin for the lightest quark mass ensemble providing mπ = 156 MeV.
From top down, the plots correspond to the ground, first and second excited states
observed in our lattice simulation. The wave function changes sign in the excited
states and reveals a node structure consistent with 1S, 2S and 3S states.
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Figure 6.3: The probability distributions for the d quark about two u quarks fixed
at the origin obtained in our lattice QCD calculations (crosses) are compared
with the quark model prediction (solid curve) for the ground (left column), first-
(middle column) and second- (right column) excited states. Quark masses range
from the heaviest (top row) through to the lightest (bottom row). The ground
state probability distribution of the quark model closely resembles the lattice
data for all masses considered. The first excited states matches the lattice data
well at small distances, but the node is placed further from the centre of mass
in the quark model, after which, the lattice data shows a distinct second peak,
whereas the quark model rises to the boundary. It is interesting that the most
significant difference is observed where long-distance physics associated with pion-
cloud effects not included in the quark model are significant. For the third state
the amplitudes of the shells between the nodes of the wave function are predicted
well.
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struct a probability density from the square of the wave function and plot it on

a logarithmic scale in Fig. 6.3.

Our point of comparison with previous models of quark probability distribu-

tions comes from a non-relativistic constituent quark model with a one-gluon-

exchange motivated Coulomb-plus-ramp potential. The spin dependence of the

model is given in Ref. [76] and the radial Schrodinger equation is solved with

boundary conditions relevant to the lattice data; i.e. the derivative of the wave

function is set to vanish at a distance Lx/2 from the origin.

We consider standard values of the string tension
√
σ = 440±40 MeV and opti-

mize the constituent quark mass to minimize the logarithmic difference between

the quark model and lattice QCD ground-state probability distributions illus-

trated in the left-hand column of Fig. 6.3. We find best fit results for
√
σ = 400

MeV and the optimal constituent quark masses range from 340 to 350 MeV over

the range of PACS-CS quark masses available. The quark mass dependence is

more subtle than expected and may be associated with the finite volume of the

lattice suppressing changes in the wave function as the quark mass is varied. At

the lightest quark mass, just above those of Nature, the value of 340 MeV is in

accord with those traditionally used to describe the hadron spectrum or baryon

magnetic moments.

The lattice data for the first three states and all five quark masses are com-

pared with the constituent quark model in Fig. 6.3. The wave functions are

normalized to 1 at the origin. As the quark model parameters are determined

using only the ground state probability distribution, the probability densities

illustrated for the excited states are predictions.

An examination of the left-hand column of Fig. 6.3 reveals the subtle changes

associated with the quark mass. The probability distribution of the heaviest

ensemble falls off faster and requires a slightly heavier constituent quark mass

to fit the lattice results. This subtle mass dependence is consistent with early,

quenched wave function studies [37].

Comparing the lattice probability distribution for the d quark in the first

excited state to that predicted by the constituent quark model in the middle

column of Fig. 6.3, we see a qualitative similarity but with important differences.

The quark model predicts the behavior of the lattice wave function very well

within the node and predicts the position of the node rather well, particularly
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at the lightest quark mass. However, the shape of the wave function tail is

very poorly predicted, suggesting an important role for degrees of freedom not

contained within the quark model. For example, the long range pion tail of multi-

particle components could alter the distribution of quarks within the state on the

lattice. The poorest agreement is for the heaviest ensembles, where the baryon

mass is in close proximity to the πN scattering threshold.

Similar comments apply to the second excited state illustrated in the right-

hand column of Fig. 6.3. While the positions of the nodes are predicted ap-

proximately, the amplitudes of the wave function between the nodes are very

accurately predicted by the quark model. Again the largest discrepancies are

for the heaviest states where the baryon mass is in close proximity to the ππN

scattering threshold.

6.2.3 Quark Mass Dependence of the Probability Distri-

butions

Ground-State Distribution

The mass dependence of the ground state probability distribution for the d quark

about the two u quarks fixed at the origin is illustrated in the two left-hand

columns of Fig. 6.4. The plots are arranged from heaviest to lightest ensembles

with quark mass decreasing down the page.

Although a Gaussian distribution is used to excite the ground state from

the vacuum, the well-known sharp-peaked shape associated with the Coulomb

potential is reproduced in the probability density for all quark masses. This is

best observed in the left most column where an isosurface reports the probability-

density values in the plane containing the two u quarks at the origin.

Because the total probability density is normalised to unity in the spatial vol-

ume, the height of the peak drops as the d quark becomes light and moves to larger

distances from the u quarks. The isosurface provides the clearest representation

of the mass dependence of the ground state.

This gentle broadening of the distribution is also reflected in the isovolume

rendering of the projected ground state probability density in the second column

if Fig. 6.4. The isovolume has been cut into the plane containing the u quarks

at the origin. Probability-density values are depicted by a colour map similar to

91



6. FULL QCD WAVE FUNCTION

Figure 6.4: The dependence of the d-quark probability distribution on the masses
of the quarks in the proton (two left-hand columns) and its first excited state (two
right-hand columns). The u quarks are fixed at the origin at the centre of the
plot. The quark mass decreases from heaviest (top row) to lightest (bottom
row). For each mass and state, the probability density is normalised to unity
over the spatial volume of the lattice. The isovolume threshold for rendering the
probability distribution in the second and fourth columns is 3.0× 10−5.
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that used for the isosurface. The threshold for rendering the probability distri-

bution is 3.0× 10−5, revealing a smooth sphere for the surface of the probability

distribution.

Finite volume effects do not appear to be significant in the probability densi-

ties of the ground state at any of the quark masses considered. This is in spite

of the fact that the lightest ensemble has mπL = 2.23.

First Excited State

Lattice results for the d-quark probability distribution about the two u quarks

at the origin in the first excited state of the proton are illustrated in the third

and fourth columns of Fig. 6.4. In the light quark-mass regime, this first excited

state is associated with the Roper resonance. The darkened ring around the

peak of the isosurface indicates a node in the probability distribution, consistent

with a 2S radial excitation of the d quark. The node is better illustrated in the

isovolume renderings where the probability density drops below the rendering

cutoff of 3.0 × 10−5 and leaves a void between the inner and outer shells of the

state.

It is interesting that the narrowest distribution is seen at the heaviest quark

masses, even though these states have energies coincident with the πN scattering

threshold. Enforcing a colour singlet structure in annihilating the three spatially

separated quarks prevents a direct observation of the two-particle components

contained in the dynamics governing the energy of the state. In this case the

multi-particle components only modify the three-quark distributions.

The outer edge of the isovolume reveals interesting boundary effects which

may be associated with the necessary finite-volume effects of multi-particle com-

ponents mixed in the state. The deviation from spherical symmetry in the outer

shell will be reflected in the energy of the excited state observed in the finite-

volume lattice simulation. At the lightest two quark masses, the distortion of

the probability distribution is significant and will correspondingly influence the

eigen-energy. Even with mπL = 4.4 at the second lightest quark mass, finite

volume effects distort the wave function in a significant manner. Of course, this

interplay between the finite volume and the energy of the state is key to extracting

resonance parameters from lattice simulation results.

The nodal structure of the first excited state also indicates that the ideal
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Figure 6.5: The eigenvectors uαi describing the contributions of each of the source
smearing levels to the states α for the lightest quark-mass ensemble considered.
Indices i = 1 to 4 correspond to 16, 35, 100 and 200 sweeps of gauge-invariant
Gaussian smearing. The superposition of positive and negative Gaussian smear-
ing levels is consistent with the nodal structure recovered in the wave functions.
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combination of operators to access this state on the lattice is a superposition of

Gaussian distributions of different widths and opposite signs [45, 84]. Figure 6.5

presents the eigenvectors uαi describing the contributions of each of the source

smearing levels to the states α for the lightest quark-mass ensemble considered.

For the ground state, all smeared sources contribute positively to the state.

There is significant interplay between the smeared sources over the jackknife sub-

ensembles giving rise to larger uncertainties for the preferred operators. This is

not the case for the excited states where particular superpositions of interpolating

fields are required to isolate the states.

For the first excited state, a single large width Gaussian contributes with a sign

opposite to that of a narrower Gaussian, reflecting the wave function illustrated in

the second plot of Fig. 6.2. The combination of sources creating the second excited

state has a similar pattern, with a narrow Gaussian contributing positively, an

intermediate Gaussian contributing negatively and a wide Gaussian contributing

positively, again reflecting the wave function illustrated in Fig. 6.2 for this state.

This sign alternating structure is also apparent for the fourth state suggesting a

3S excitation for this state. We will examine this state further in the following.

Turning our attention to the mass dependence of the node we note the move-

ment is somewhat unusual. While there is a general trend of the node in the

wave function moving outwards as the quark mass decreases, there is negligible

movement in the node between the third and second lightest quark masses. We

also note how the width of the void in the probability density increases with as

the quarks become lighter.

Second Excitation

The probability distributions for the second excitation of the proton observed in

this study are illustrated in the two left-hand columns of Fig. 6.6. Two nodes

are evident at all quark masses, consistent with a 3S radial excitation for the

d quark. The first inner node is thin at the heavier masses and difficult to see

in the isovolume renderings. Finite volume effects are readily observed in the

outer-most shell.

For the heaviest mass, finite volume effects at the nodes are minimal. The

nodes are spherical in shape and are largely unaffected by the boundary. Again

there is a trend of the nodes moving further from the centre as the quarks become
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Figure 6.6: The dependence of the d-quark probability distribution on the masses
of the quarks in the proton for the second (two left-hand columns) and third (two
right-hand columns) S-wave excited states of the proton observed herein. The u
quarks are fixed at the origin at the centre of the plot. The quark mass decreases
from heaviest (top row) to lightest (bottom row). For each mass and state, the
probability density is normalised to unity over the spatial volume of the lattice.
The isovolume threshold for rendering the probability distribution in the second
and fourth columns is 2.0 × 10−5 and 3.0 × 10−5 respectively. While the former
renders the outer shell coherently, the latter better reveals the node structure of
the 3S distribution.
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light.

However, it is the middle quark mass considered that has the broadest dis-

tribution. The quark mass flow of the eigenstate energies suggests avoided level

crossings are important between the third and fourth heaviest quark masses. It

may be a strong mixing with multi-particle states that is giving rise to the broad

distribution of quarks at the middle quark mass.

For the lightest two quark masses the outer node has taken on a squared-off

shape, having been distorted by the boundary of the lattice. Again, this is an

indication that, even though the ground state wave function presents as spherical

for this quark mass, this excited state is showing clear finite volume effects. Even

at relatively modest quark masses, the wave functions of states above the decay

thresholds show an important relationship with the finite volume of the lattice.

Third Excitation

The two right-hand columns of Fig. 6.6 illustrate the mass dependence of the d-

quark probability distribution for the the highest excitation of the proton observed

in our analysis. The presence of three nodes in the wave function is best observed

at the heaviest and second lightest quarks masses.

The inner-most node is easily observed in the surface plots. However it is very

sharp and does not render in an obvious manner in the isovolume illustrations.

The second node is easily rendered and the third node is very broad. To illustrate

this node structure the outer-most shell has become fragmented in the isovolume

plots. The fragments reveal the strong finite volume effects on this state.

What is interesting is the manner in which the finite volume effects on the

outer shell change as a function of quark mass. At the heaviest quark mass, the

outer shell is strongest along the sides of the lattice. By the time one encounters

the lightest ensemble, the outer shell has moved to the corners as if there is no

longer room for the outer shell along the sides of the 2.9 fm lattice.

6.3 Quark Separation

In order to investigate a more complete picture of the wave functions of the states

isolated herein, we choose to focus on the second-lightest quark mass ensemble

providing mπ = 293 MeV and examine the dependence of the d quark probability
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Figure 6.7: The dependence of the d-quark probability distribution on the posi-
tions of the u quarks in the first even-parity excited state of the proton at the
second lightest quark mass considered. The u quarks are fixed on the x-axis
running from back right through front left through the centre of the plot. The
u quarks are fixed a distance of d1 and d2 from the origin located at the centre.
From left to right, the distance d = d1 − d2 increases, taking values 0, 1, 2 and 3
times the lattice spacing a = 0.0907 fm.
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distribution on the positions of the two u quarks composing the states. This mass

provides the best compromise between finite-volume effects, quark mass and the

ensemble size governing the signal quality and associated uncertainties.

In continuing to investigate the wave function of the d-quark, we consider

the separation of the u quarks along the x axis as described in Eq. (3.26). All

integer separations, d = d1 − d2, between zero and half the lattice extent in the

x direction (i.e. 16 lattice units) are considered.

Figure 6.7 illustrates the probability distribution of the d quark for u quarks

separated by 0, 1, 2 and 3 lattice steps in the first excited state associated with

the Roper resonance. The most notable feature is the rapid reduction in the

overlap of the interpolator with the state as the two u quarks are moved away

from the origin. While some broadening of the distribution peak is apparent,

it is clear that using a normalization suitable for zero u quark separation is not

effective for illustrating the probability distribution at large u quark separations.

To better illustrate the underlying shape of the wave functions, the probability

distributions are normalised to keep the maximum value of the probability density

constant. For small u quark separations, the centre peak height of the distribution

is held constant, but for larger separations the maximum value can be elsewhere

in the distribution.

Figure 6.8 presents the d-quark probability distributions for u-quark separa-

tions of d = 0, 2, 4, 6 and 8 times the lattice spacing a = 0.0907 fm and Fig. 6.9

completes the study, illustrating u-quark separations of 10, 12, 14 and 16 times

the lattice spacing. Each column corresponds to a different state with the ground,

first-, second-, and third-excitations illustrated from left to right. The two small

spheres above the isosurface indicate the positions of the two u quarks.

Ground-State Distribution

Focusing first on the ground state, on separation of the u quarks the probability

distribution of the d quark forms a single broad peak. The structure is slightly

rounded until d = d1 − d2 = 12 a = 1.09 fm, with small peaks at the u-quark

positions. At a separation of d = 13 a = 1.18 fm the wave function takes on a

double peak structure associated with scalar-diquark clustering similar to that

illustrated in the third row of Fig. 6.9 for d/a = 14. These results are similar to

the earlier quenched wave function results of Refs. [37, 47].
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Figure 6.8: The dependence of the d-quark probability distribution on the po-
sitions of the u quarks in the proton and its excited states. From left to right,
the columns correspond to the ground, first, second and third S-wave excitations.
The u quarks are fixed on the x-axis running from back right through front left
through the centre of the plot. The u quarks are fixed a distance of d1 and
d2 = −d1 from the origin located at the centre. The distance between the quarks,
d = d1−d2, increases from the top row through to the bottom row, taking values
0, 2, 4, 6 and 8 times the lattice spacing a = 0.0907 fm.
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Figure 6.9: The dependence of the d-quark probability distribution on the po-
sitions of the u quarks in the proton and its excited states. From left to right,
the columns correspond to the ground, first, second and third S-wave excitations.
The u quarks are fixed on the x-axis running from back right through front left
through the centre of the plot. The u quarks are fixed a distance of d1 and
d2 = −d1 from the origin located at the centre. The distance between the quarks,
d = d1−d2, increases from the top row through to the bottom row, taking values
10, 12, 14, and 16 times the lattice spacing a = 0.0907 fm.
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First Excited-State Distribution

As the u quarks are separated in the first excited state associated with the Roper,

the central peak of the d-quark distribution broadens in a manner similar to that

for the ground state. However by d = 4 a = 0.36 fm strength in the wave

function is seen to move from the centre into the outer shell of the 2S state.

This transition continues to d = 10 a = 0.91 fm where the u quarks are still well

inside the original node position of the 2S distribution. At this point, the central

peak has been suppressed entirely leaving a hole inside the ring or shell in three

dimensions. In other words, the node of the wave function has shrunk to the

origin. It’s interesting how the ring-like probability density is enhanced in the

direction perpendicular to the separation of the u quarks.

At d = 11 a = 1.00 fm, small peaks form in the probability distributions at

the positions of the u quarks revealing the first onset of scalar diquark clustering

similar to that in the second row of Fig. 6.9. At d = 12 a = 1.09 fm, the u

quarks are still within the node of the original wave function. but the radius

of the outer shell of the wave function illustrated by the ring in the probability

density has reduced slightly. At d = 14 a = 1.27 fm, the u quarks sit in the

node of the original wave function and there is little memory of the original 2S

structure. Only a slight swelling at the centre of the distribution remains. The

central probability density reduces at d = 15 a = 1.36 fm such that scalar-diquark

clustering dominates the probability distribution at d = 16 a = 1.45 fm.

Second Excitation

For the second excited state observed herein, we again see a shift of the proba-

bility density from the central peak to the next shell of the original 3S-like wave

function. At d = 6 a = 0.54 fm in the fourth row of Fig. 6.8, a similar enhance-

ment in the first shell is observed as for the Roper at d = 8 a = 0.73 fm with

strength in the probability density enhanced in the direction perpendicular to the

separation of the u quarks.

The radius of the first shell about the central peak of the original distribution

shrinks as the u quarks are pulled apart and at d = 8 a = 0.73 fm corresponding

to the bottom row of Fig. 6.8, the u quarks are now in the first shell where four

peaks are apparent. The original first node has shrunk to the centre and may have

emerged, centered about each of the u quarks. Further evidence of this process
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is discussed in the analysis of the third excitation below. The second node of the

original wave function now surrounds the four peaks.

The u quarks approach the position of the second node of the wave function

at d = 10 a = .91 fm. The node is still apparent in the front and back of

the distribution, orthogonal to the u-quark separation axis. The peaks in the

probability distribution are still associated with the first shell surrounding the

central peak of the original distribution with zero u-quark separation.

By d = 12 a = 1.09 fm the quarks have moved beyond the second node. The

radius of node has reduced and can be seen in the dark-blue regions at the centre

of the plot. At d = 13 a = 1.18 fm the second node has collapsed to the origin

and explains the strong separation of the two peaks observed at d = 14 a = 1.27

fm in the third row of Fig. 6.9. Even at the largest quark separations examined,

the node structure of this state is apparent, suppressing the probability density

between the two peaks once again governed by scalar-diquark dynamics.

Third Excitation

The third excitation displays a wonderfully complex structure that mirrors the

transitions observed for the first and second excitations for the first few separa-

tions. For example at d = 4 a = 0.36 fm, one can see the enhancement of the first

shell in a direction orthogonal to the u quark separation axis.

At d = 6 a = 0.54 fm, a four-peak structure emerges as the u quarks enter the

first shell of the wave function. Remarkably, a new nodal structure has emerged.

Upon shrinking to the origin, the original first node emerged surrounding each

of the peaks at the u quark positions. This node now cuts through the first shell

strength of the underlying 4S configuration and divides what would normally be

a ring shape into four peaks.

By d = 10 a = 0.91 fm the third node surrounds all significant structure in

the distribution. The second node has shrunk to surround the small peak in the

centre and the first surrounds the u quark peaks.

At d = 12 a = 1.09 fm the third node now surrounds both of the major peaks

and the fore and aft humps near the centre. The first node continues to surround

each of the peaks at the u quark positions, The emergence of a second node

around each of the u quarks is becoming apparent at the left- and right-hand

edges of the plot.
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At d = 14 a = 1.27 fm the third node maintains a circular structure centred

about the origin and cuts through the ring like structures forming around each of

the u quarks. The rings clearly reveal the shifting of the first and second nodes

to surround each of the u quarks.

At the largest u-quark separation of d = 16 a = 1.45 fm the third node has

shrunk further to just touch the inside edges of the rings which have formed

though the first and second nodes shrinking to the origin and emerging around

the two u quarks.
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Chapter 7

Conclusion

In this thesis, we provide a comprehensive discussion of the lattice techniques re-

quired to explore the wave function of the proton, as well as its excited states in

both quenched and 2+1 flavour Lattice Quantum Chromodynamics. These tech-

niques are then applied to calculate the proton wave function under an extensive

set of conditions.

We develop a program of quantifying the effectiveness of smeared operators

in coupling to specific states, in particular, high-momentum ground states. A

detailed analysis of the ground state isolation shows that the two measures in-

troduced are in good agreement with each other at all momenta studied. This

analysis demonstrates that optimisation of the smearing sweeps alone can lead

to significant improvement in the isolation of the ground state, particularly at

high-momenta, where the ability of an operator to isolate the ground state is

dramatically reduced only a few sweeps from the optimal number.

A method of altering the distribution of the smearing applied along a partic-

ular axis is developed, allowing the ‘shape’ of the source to more closely resemble

that of a Lorentz contracted state. On applying this anisotropic smearing to

high-momentum states, no appreciable improvement over standard smearing is

found in the ability of an operator to couple to such a state. A small improvement

in the relative error is observed using anisotropic smearing.

Our results indicate that this relatively cheap method of tuning the smearing

parameters to optimise access to high-momentum states should be adopted by fu-

ture studies of high-momentum states on the lattice. In particular, this approach

could prove significantly beneficial in future form factor studies.
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Wave functions of the proton from quenched QCD are examined in an external

magnetic field, in both the Landau and Coulomb gauges. Interesting phenomena

are observed even in the free field case. For example, the d quark wave function

in the Landau gauge exhibits mild diquark clustering that is not apparent in the

Coulomb gauge. In the case of the scalar u quark wave functions, clear clustering

with the d quark is evident in both the Landau and Coulomb gauges. For the

vector u quark in the proton interpolating field, clustering with the d quark is

also evident, however, the wave function is not as tightly bound as either the

scalar u quark or d quark wave function. Furthermore, the wave functions in the

Coulomb gauge are consistently more localised than those in the Landau gauge.

When a constant magnetic field is applied to the proton, the wave function

is shown to be dependent on the choice of vector potential, an unphysical effect.

Gauge transformations are performed on the vector potential to rotate it by

90 degrees and reverse the direction in which it increases without changing the

magnetic field. The wave function is then calculated for each vector potential

and averaged over all four choices.

In spite of the very large magnetic field required by the quantisation condi-

tions, the change in the probability distribution is found to be small, being most

prominent in the vector u quark. The effect observed is the elongation of the dis-

tribution along the axis of the field while localising the distribution in the plane

perpendicular to the field. The vector u quark exhibits the most spin dependence,

with the probability distribution being more localized when the spin is aligned

with the magnetic field. This effect can be understood in terms of a constituent

quark model where the constituent quark mass increases in the presence of the

magnetic field.

In spite of a small variation in the wave function of the proton, the mass

changes as expected with the field strength, increasing or decreasing depending

on the whether the spin is aligned or anti aligned with the field. These results

show promise for the background field method, as there is little change to the

structure of the proton in these large magnetic fields.

Wave functions at non-zero momentum are also calculated, and Lorentz con-

traction is qualitatively observed. When source smearing parameters are chosen

by using the methods discussed in Chapter 5, we find a cleaner signal at higher

momentum than with a non-optimised source, further demonstrating the effec-
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tiveness of those techniques.

In this first study of the quark probability distribution within excited states of

the nucleon, we show that all the states accessed in our correlation matrix analysis

display the node structure associated with radial excitations of the quarks. For

example the first excited state associated with the Roper resonance displays a

node in the d quark wave function consistent with a radial excitation of the d

quark. The second and third excitations display two and three nodes respectively.

On comparing these probability distributions to those predicted by the con-

stituent quark model, we find good qualitative similarity with interesting dif-

ferences. The core of the states is described very well by the model and the

amplitudes of the S-wave shells between the nodes are predicted very accurately

by the constituent quark model. The discovery of a node structure provides a

deep understanding of the success of the smeared-source/sink correlation matrix

methods of Ref. [45].

Finite volume effects are shown to be particularly significant for the excited

states explored herein at relatively light quark mass. As these excited states have

a multi-particle component, the interplay between the lattice volume, the wave

function and the associated energy are key to extracting the resonance parameters

of the states.

Fascinating structure in the d-quark probability distributions of the nucleon

excited states is revealed when separating the u quarks from the origin. As the

u quarks are separated the original node structure of the wave function shrinks

in size. For example, the Roper reveals a ringed structure in the surface plots

corresponding to an empty shell in three dimensions as the node collapses to

the origin. The second excited state reveals a four-peaked structure at mid-

range quark separations. At large separations these states all display diquark

clustering with the d quark most likely found near one of the u quarks. The

third state reveals the most exotic structure with new nodes centred about the u

quarks appearing after the original nodes collapsed to the origin.

This thesis shows a distinct congruency between the wave functions of states

on a lattice and some of the techniques widely used in Lattice QCD. Analysis

of the wave function can serve as a vital tool for the determination of finite

volume, relativistic and electromagnetic effects on hadrons. Future calculations

will explore the structure of these states in more detail, examining the effect of the
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introduction of isospin-1/2 spin-3/2 interpolating fields [85, 86] to reveal the role

of D-wave contributions. While our use of improved actions suppresses lattice

discretization errors, ultimately simulations will be done at a variety of lattice

spacings directly at the physical quark masses. An analysis of finite volume effects

will also be interesting to further reveal the interplay between the finite volume

of the lattice, the structure of the states and the associated energy of the states;

thus connecting the lattice QCD simulation results to the resonance physics of

Nature.
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