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Abstract

Chloride (Cl ) is an essential micronutrient for plant growth, but can be toxic at high concentrations resulting in reduced2

growth and yield. Although saline soils are generally dominated by both sodium (Na ) and Cl+ 2 ions, compared to Na+

toxicity, very little is known about physiological and genetic control mechanisms of tolerance to Cl toxicity. In hydroponics2

and field studies, a bread wheat mapping population was tested to examine the relationships between physiological traits
[Na , potassium (K ) and Cl concentration] involved in salinity tolerance (ST) and seedling growth or grain yield, and to+ + 2

elucidate the genetic control mechanism of plant Cl accumulation using a quantitative trait loci (QTL) analysis approach.2

+ 2

accordance with phenotypic responses, QTL controlling Cl accumulation differed entirely between hydroponics and field2

locations, and few were detected in two or more environments, demonstrating substantial QTL-by-environment
interactions. The presence of several QTL for Cl2 concentration indicated that uptake and accumulation was a polygenic
trait. A major Cl2 concentration QTL (5A; barc56/gwm186) was identified in three field environments, and accounted for 27–
32% of the total genetic variance. Alignment between the 5A QTL interval and its corresponding physical genome regions
in wheat and other grasses has enabled the search for candidate genes involved in Cl2 transport, which is discussed.
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Introduction

Worldwide, salinity poses a serious threat to agricultural

production, with globally salt-affected soils (including saline and

sodic soils) totalling around 830 million hectares [1]. Saline soils

are generally dominated by sodium and chloride ions, and the

ability of crop plants to exclude these ions is often equated to

salinity tolerance-ST (i.e. improved growth or yield under salinity

stress). Despite intensive research and numerous scientific reports

over several decades, there is a lack of consensus on whether Na+

exclusion is always a useful trait to select for to improve ST, at

least in the case of bread wheat. Few studies have shown good

phenotypic correlation between Na+ exclusion and ST [2–5],

while others have reported weak [6,7] or no correlation [8–10]. In

contrast to Na+ exclusion, there has been very little research on the

role of Cl2 exclusion and its contribution to ST [3,11–13]. Similar

to Na+ exclusion, these few studies on Cl2 reported either

significant phenotypic correlation or no correlation with ST. It is

clear that future research needs to place equal emphasis on the

impact of Cl2 in ST as not only Na+ but also Cl2 is present at

toxic concentrations in saline-affected growth media used in the

assessment of ST [13,14].

In screening studies for ST, sodium chloride is the most

commonly used salt. Despite both Na+ and Cl2 ions being present

at toxic concentrations in growth media, there has been a lack of

interest in Cl2, which may be attributed to the earlier reports that

Na+ was more toxic than Cl2 [15]. Although these authors

cautioned about assumptions made from extrapolations of two

lines of bread wheat, their findings were not verified with a large

set of genotypes differing in ST. This was later questioned by

Martin and Koebner [16] on the basis that while attempting to

separate the toxic effects of Na+ and Cl2, the authors used

phytotoxic concentrations of nitrate in their experiments. Martin

and Koebner [16] concluded that Cl2 was more toxic than Na+,

but the full toxic effect was apparent only when Na+ and Cl2 were

present simultaneously. However, more recent studies in barley

found that Na+ and Cl2 had a similar effect upon plant growth

[17]. While the issue of whether Na+ or Cl2 is more detrimental to

plant growth remains controversial, it is appropriate to measure

the concentration of both ions in the plant and to determine their

relevance to ST for reasons mentioned earlier. Munns and Tester

[18] argued that toxicity of Na+ versus Cl2 can be best studied

through genetic approaches as the alternative method of using

different salts has to date produced equivocal results. The potential

of the genetic approach has not been employed extensively.

Chloride is an essential micronutrient and has several functions

in plant metabolism; enzyme activation, photosynthesis, a counter

ion for cation transport, osmoregulation, and movement of

stomata. Like most anions, it is weakly bound to soil particles,

mostly in a soluble form in soil solution, and at high concentrations
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Plant Na or Cl concentration were moderately correlated (genetically) with seedling biomass in hydroponics, but showed
no correlations with grain yield in the field, indicating little value in selecting for ion concentration to improve ST. In

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0098845&domain=pdf


can be toxic to plant growth. Critical toxicity concentration in

plants was estimated at 110–200 mmol kg21 DW (4,000–

7,000 mg kg21 DW) and 420–1400 mmol kg21 DW (15,000–

50,000 mg kg21 DW) for sensitive and tolerant species, respec-

tively [19]. At present there is very little information on genetic

control mechanisms of Cl2 exclusion in plant species. A better

understanding of genetic control of Cl2 exclusion and identifica-

tion of molecular markers has the potential to speed up breeding

for a complex trait such as ST. To date, rice and barley appear to

be the only cereal species in which genetic control of Cl2 exclusion

has been investigated. In two studies involving rice F2 and RIL

populations derived from a cross between salt tolerant and salt-

sensitive varieties CSR27 and MI48 respectively, few Cl2

concentration QTL were co-located with Na+ concentration

QTL, while others mapped to different regions [20,21]. Similar

findings were also reported in barley [22,23]. If QTL for Na+ and

Cl2 concentration map to different locations, this would suggest

separate genetic control mechanisms for regulation of these ions.

At present, we are not aware of any reports on QTL mapping of

Cl2 concentration in wheat.

Screening for ST is usually conducted in one of three main

environments: hydroponics, soil-based pot assays or field trials.

Due to inherent difficulties with field screening such as non-

uniform distribution of salinity throughout the experimental area,

fluctuations in rainfall and potential nutritional deficiencies,

controlled environments are often preferred. However, as reported

in recent studies [24], the results of controlled environments can

be quite different from those of field environments and, therefore,

require verification. The only two genetic studies on Cl2

accumulation to date have been conducted in hydroponics, and

how these results correlate to field environments is unknown. It is

important to note that the ability of controlled environmental

studies to predict yield responses in the field is rarely addressed in

the scientific literature, and the validation of controlled environ-

mental studies in the field is important for plant breeding.

In previous studies in hydroponics and field trials [24,25], we

reported QTL for grain yield, grain number m22, 1000-grain

weight, maturity, plant height, seedling biomass, tiller number,

chlorophyll content, leaf symptoms, Na+ and K+ concentrations of

leaves and shoots for a bread wheat mapping population (Berkut/

Krichauff). With the recent renewed interest in Cl2 [13], we

revisited this population to (i) elucidate the genetic control

mechanisms of Cl2 homeostasis via a QTL approach, and (ii)

investigate the relationships among seedling biomass, grain yield

and plant Na+, K+ and Cl2 concentrations. Here we report for the

first time identification of a major QTL for Cl2 concentration in

bread wheat and discuss its importance for marker-assisted

selection and fine mapping/discovery of genes involved in Cl2

transport in bread wheat. We also demonstrate that Cl2

accumulation is a polygenic trait, but does not appear to be a

reliable predictor of ST based on grain yield alone.

Materials and Methods

Plant material
A doubled-haploid (DH) population (152 lines) from a cross

between bread wheat (Triticum aestivum L.) genotypes Berkut

[Irene/Babax//Pastor] and Krichauff [Wariquam//Kloka/Pi-

tic62/3/Warimek/Halberd/4/3Ag3/Aroona] was used in this

study. The rationale for screening this population for plant Cl2

concentration and subsequent QTL detection was that a previous

study revealed significantly lower shoot Cl2 accumulation in the

Krichauff parent than in the Berkut parent [26].

Phenotyping and trait analysis
Growth room and field studies were described previously

[24,25]. The data for grain yield, grain number m22, 1000-grain

weight, maturity, plant height, seedling biomass, tiller number,

chlorophyll content, leaf symptoms and Na+ and K+ concentra-

tions of penultimate leaves and shoots were reported earlier

[24,25]. In the present study shoot and leaf Cl2 concentrations of

DH population grown in hydroponics and field trials (Roseworthy,

Balaklava and Georgetown in South Australia) characterised by

low, moderate and high salinity [24] were determined. Either

single (hydroponics, two replicates) or 15–20 plants per entry (field

trials, two replicates) were sampled for elemental analysis. Shoot

(hydroponics) and leaf samples (field trials) were dried at 65uC for

48 h and dry weights recorded. The dried plant samples were then

ground and analysed for Cl2, calcium (Ca2+) and magnesium

(Mg2+) concentration using either Inductively Coupled Plasma

Optical Emission Spectrometry (ICP-OES) (ARL 3580 B, Appl.

Res Lab. SA, Ecublens, Switzerland) [27,28] or a chloride meter

(Model 926, Sherwood, Cambridge, UK). For analysis of Cl2

using the ICP-OES method, 0.1 g of ground shoot sample was

extracted with hot (95uC) 4% HNO3 acid in 50 mL capped

polypropylene tubes for 90 minutes, whereas for measurements of

Cl2 using the chloride meter, 0.5 g of ground sample was digested

in 40 mL of 1% HNO3 at 85uC for 5 hours in a 54well HotBlock

(Environmental Express, Mt. Pleasant, South Carolina, USA).

ICP-OES was used initially for analysis of the Cl2 concentration

of hydroponically-grown plants, but due to prohibitive cost, leaf

samples of field-grown plants were analysed using a chloride

meter. As two different analytical methods were used for

determination of Cl2 concentration in plant tissues, a number of

samples were analysed using both methods, and the high

correlation of the measurements between the two methods

(hydroponically-grown samples, r2 = 0.98, n = 45; field-grown

samples, r2 = 0.97, n = 15) indicated that the methods were

comparable. As single measurements were taken from each

extraction, duplicate analysis (one sample per batch of 24) was

carried out to determine the homogeneity of the samples, and

relative standard deviations between the two measurements were

below 5% in all cases. Chloride concentration was expressed on a

dry mass basis (mmol kg21 DW).

Linkage map and interval construction
Genotyping and construction of a genetic linkage map for the

Berkut/Krichauff population was described earlier [24,25]. The

constructed linkage map initially comprised 557 markers across 21

chromosomes. After omission of co-locating markers this was

reduced to 403 markers with an average interval distance of

9.16 cM. For computational purposes the alleles of the Berkut (A)/

Krichauff (B) population were then converted into 1 and -1

respectively and missing marker scores were imputed using the

flanking marker method of Martinez and Curnow [29]. A total of

384 inferred interval markers were then constructed using the mid-

point interval method of Verbyla et al. [30].

Multi-environment analysis
To understand the genetic relationships of the DH lines across

the field trials and growth room a multi-environment trials (MET)

analysis was conducted for each of the traits Na+, K+ and Cl2. For

grain yield the MET analysis was restricted to field sites only. The

analysis approach follows Smith et al. [31] which involves a linear

mixed model including the parsimonious modelling of genetic

effects of the DH lines through an appropriate genotype by

environment interaction model and also captures non-genetic

sources of variation through the use of separate spatial models for

A Major Locus for Chloride Accumulation in Wheat
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the plot errors at each site. The method initially involves the

assessment of the spatial or environmental variation occurring at

each site through the investigation of the assumption of variance

homogeneity, detection of outliers, and the identification of global

trends that may exist across the rows or columns of the

experiment. For trends existing due to adjacency of plots in a

trial, the model included a separable row by column autoregressive

correlation structure. Stronger linear trends in either direction are

fitted as fixed effects in the model. Design parameters such as

genotypic replication or blocking structures were fitted as separate

random effects.

The genotype by environment interaction model involved the

use of an unstructured heterogeneous correlation matrix that

appropriately captures the genetic relationship of the DH lines

between trials. If a strong positive genetic correlation exists

between any two trials then the relative performance or rankings

of the varieties at each of the trials will be similar. As a

consequence these trials will most likely share common or co-

locating QTL with a common parent being favoured at each

locus. Trials that exhibit little or no genetic correlation between

them would exhibit different relative rankings for the varieties and

most likely have unshared QTL. Each multi-environment analysis

was performed using residual maximum likelihood (REML) and

the estimated genetic correlations between sites were extracted for

interpretation.

Multivariate analysis
A multivariate linear mixed model analysis of four traits (Na+,

K+, Cl2 and grain yield) was conducted for each field trial in order

to estimate genetic correlations of the DH lines between traits. A

multivariate analysis was also conducted for the traits in the

growth room and included Na+, K+, Cl2, and seedling biomass.

For each of the trials, estimates of the genetic relationships

between DH lines were modelled through the use of a trait by

genotype interaction with an unstructured heterogeneous correla-

tion matrix. The model also included a separable trait by row by

column spatial model for the plot errors with an unstructured

heterogeneous correlation matrix for the trait component of the

model. This unstructured correlation matrix ensures that traits

collected from the same trial are connected phenotypically. This

separable structure for the spatial model also assumes that the

traits have a common row by column separable autoregressive

correlation structure. Similar to the MET models, strong trends

for any given trait were captured using the appropriate fixed

effects, and random effects were used to model genotypic

replication as well as blocking structures existing within each trial.

Each multivariate analysis was performed using REML and the

estimated genetic correlations between traits were extracted for

interpretation.

QTL analysis
For each of the field sites and the growth room the detection

and estimation of QTL for the measured traits was accomplished

using the R [32] package wgaim [33]. The package is a

computational implementation of Verbyla et al. [30,34]. In this

approach, an initial base linear mixed model is established that

contains non-genetic effects that account for extraneous variation.

These include an appropriate spatial model for the errors as well as

fixed and random effects that are relevant to the trial being

examined. The base model also includes a random effect term that

captures the genetic variation between the DH lines. Following

Verbyla et al. [34] the base model is then extended by including

the complete set of inferred interval markers into the base linear

mixed model as a contiguous block of random effects with a single

variance parameter. The significance of this variance parameter is

then checked using a simple residual likelihood ratio test. If found

significant, an alternative outlier model is formulated and the

inferred interval marker with the largest outlier statistic is chosen

as a putative QTL. This inferred interval marker is then removed

from the contiguous block of random effects and placed as a

separate random covariate in the original base model as well as the

extended model that includes the remaining set of inferred interval

markers. The forward selection process is then repeated until the

variance parameter associated with the remaining inferred interval

markers is not significant. The complete set of putative QTL

selected appears additively as random covariates and is summa-

rised using the methods of Verbyla et al. [34]. The summary

includes the left and right flanking markers of the individual QTL,

their effect sizes, approximate LOD scores as well as individual

contributions to the overall genetic variance.

For all traits analysed in the present study, the best linear

unbiased predictions of the genotypes were extracted from the

base linear model and were used to calculate a generalized (broad-

sense) heritability using the formula developed by Cullis et al. [35].

Comparative analysis and candidate genes co-located
with the 5A Cl2 concentration QTL

To align the genetic position of the 5A Cl2 QTL to its physical

position in the wheat genome, the sequence of RFLP markers with

nearby location to the QTL-flanking SSR markers gwm304 and

barc141 were identified using the database GrainGenes 2.0

(wheat.pw.usda.gov). The sequences of co-located RFLP markers

bcd21 and psr128 were 451 bp and 430 bp, respectively, and were

both derived from ESTs (GrainGenes 2.0). The sequences were

used for homology searches using the BLAST tool at https://urgi.

versailles.inra.fr/blast/blast.php. The search was carried out

against the sequences of all bread wheat chromosomes showing

the best hits on 5AL, as expected. The gene sequence hits were

used for synteny analysis using the Genome Zipper v5 across

wheat, rice, Brachypodium and sorghum revealing the syntenic

regions between 64 non-rendundant wheat ESTs, Brachypodium

chromosome 4, rice chromosome 9 and sorghum chromosome 2.

To assign potential functions to the wheat genes underlying the

5A Cl2 QTL interval, all 64 non-redundant wheat ESTs were

used as queries for homology searches at the National Center for

Biotechnology Information (NCBI) using BLASTN against the

non-redundant nucleotide database.

Results

Responses to salinity stress, distributions and
relationships between traits

Data on Cl2 concentration provided an opportunity to re-

examine the relationships amongst traits associated with ST such

Na+ and K+ accumulation, seedling biomass and grain yield in low

(Balaklava), moderate (Roseworthy) and high (Georgetown and

growth room) saline environments [24]. Krichauff had 10–20%

lower Na+ concentration than Berkut in field trials, and these

differences diminished in hydroponics, whereas Krichauff had 14–

25% lower Cl2 concentration than Berkut in all environments

ranging from 362–669 and 482–775 mmol kg21 DW for

Krichauff and Berkut, respectively (Table 1), similar to previous

studies [26]. It was interesting to observe that Cl2 concentrations

were much higher than Na+ concentrations. Berkut had slightly

higher K+ concentration than Krichauff but only at low to

moderately saline field trials at Roseworthy and Balaklava (812–

934 and 729–882 mmol kg21 DW for Berkut and Krichauff

respectively; Table 1). As for seedling biomass and/or grain yield

A Major Locus for Chloride Accumulation in Wheat
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production under salinity stress, Berkut produced 18% higher

seedling biomass than Krichauff in hydroponics, whilst Krichauff

had 6–7% higher grain yield in field trials (Table 1). In all traits,

there was evidence of transgressive segregation.

To determine whether selection for Na+ and/or Cl2 exclusion

or even K+ accumulation would lead to improved ST, multivariate

analysis of concentrations of Na+, Cl2, K+, seedling biomass and

grain yield was performed for each of the environments (Table 2).

The analysis showed that there was generally a good estimated

correlation between Cl2 and either Na+ or K+ with two

exceptions: there were negligible correlations for Na+ vs Cl2,

and K+ vs Cl2 at Balaklava and in hydroponics respectively. A

negative but moderate correlation was observed between seedling

biomass and either Na+ (r = 0.479) or Cl2 (0.527).

To analyse genotype by environment interaction for each of the

measured traits, multi-environment analyses and genetic correla-

tions were estimated between environments. Representing low

(Balaklava) to moderate (Roseworthy) saline environments, corre-

lations for Na+, Ka+, Cl2 concentrations and grain yield were

consistently high between these sites whereas low to moderate

correlations were observed for these traits between other higher

saline environments (Table 3). Therefore, it is reasonable to

assume that selection for similar trait values may not be consistent

between higher saline sites, indicating environmental effects

controlling ion accumulation and grain yield.

Table 1. Parental means, population mean and range for Na+, Cl2, K+, Ca2+ and Mg2+ concentrations (mmol kg1 DW)
in penultimate leaves (field trials) and whole shoots (hydroponics), seedling biomass [shoot DW (g plant1)] and
grain yield (t ha1) in Berkut/Krichauff DH population tested for ST in hydroponics and field trials (Roseworthy,
Balaklava and Georgetown).

Parental Lines DH population

Test environment Trait Berkut Krichauff mean range Heritability h2

Hydroponics Na+ conc. 298 295 270 194–361 0.58

(100 mM NaCl ,10 dS m1) Cl2 conc. 457 376 378 236–480 0.67

K+ conc. 771 779 749 661–869 0.82

Shoot DW 1.523 1.296 1.537 1.210–1.835 0.57

Ca2+ conc. 107.2 87.3 97.9 77.4–116.7 0.83

Mg2+ conc. 94.7 77.5 84.1 73.2–95.1 0.77

Roseworthy Na+ conc. 15.2 12.6 12.4 8.8–15.9 0.57

(low salinity, ECe,4 dS m1) Cl2 conc. 482 362 393 272–510 0.82

K+ conc. 812 729 739 621–847 0.64

Grain yield 2.237 2.392 2.116 1.451–2.489 0.76

Balaklava Na+ conc. 13.1 11.6 10.9 7.4–14.5 0.78

(Moderate salinity, ECe = 4–8 dS m1) Cl2 conc. 557 447 474 301–598 0.82

K+ conc. 934 882 865 749–1011 0.77

Grain yield 2.714 2.888 2.671 1.758–3.035 0.81

Ca2+ conc. 121.3 97.2 110.7 71.9–151.4 0.82

Mg2+ conc. 77.2 62.2 73.5 52.0–95.1 0.79

Georgetown Na+ conc. 20.5 16.3 18.7 10.9–30.4 0.60

(High salinity, ECe.8 dS m1) Cl2 conc. 775 669 688 571–884 0.84

K+ conc. 1363 1332 1328 1064–1523 0.76

Grain yield 0.645 0.686 0.573 0.277–0.792 0.72

The means represent predicted values from MET (Na+, Cl2, K+) and single environment (Ca2+ and Mg2+) analysis of each trait. Broad-sense heritability is also given for
individual traits at each environment.
doi:10.1371/journal.pone.0098845.t001

Table 2. Estimated genetic correlations between shoot DW (hydroponics), grain yield (field) Na+, K+, and Cl2 (field
and hydroponics) extracted from the fitted multi-trait model at each environment.

Environment Na+ vs Cl2 K+vs Cl2 Shoot DW or yield vs Na+ Shoot DW or yield vs K+ Shoot DW or yield vs Cl2

Hydroponics 0.875 0.195 20.486 20.146 20.531

Roseworthy 0.451 0.634 0.200 0.097 0.053

Balaklava 0.122 0.517 20.200 0.060 0.097

Georgetown 0.319 0.763 0.066 0.148 0.082

doi:10.1371/journal.pone.0098845.t002

A Major Locus for Chloride Accumulation in Wheat
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Generalized (broad-sense) heritability (h2)
Estimates of h2 differed with trait and environment, ranging

from moderate to high (0.6–0.8) (Table 1). Amongst the mineral

elements, Na+ concentration had the lowest h2, while Cl2

concentration had the highest h2. Heritability of shoot DW (0.6)

was lower than that of grain yield (0.7–0.8). Heritability of

individual traits across environments showed relatively consistent

(Ca2+, Mg2+ and Cl2 concentration) to inconsistent patterns (Na+

concentration). As reported earlier [24], consistently higher h2

values indicate greater ability for selection for the traits, while

lower and variable h2 suggest the presence of substantial

environmental effects, difficulty for direct selection, and the need

for more replications.

QTL for Cl2 concentration
In the initial analysis in which differences in phenology were not

included, there were few Cl2 concentration QTL co-locating with

QTL for maturity on 5A and 5D (data not shown). Similar to

Bonneau et al. [36], after the known differences in the genetic

component of the phenology were addressed by fixing the maturity

genes in the analyses, 14 QTL were identified (Table 4). However,

most QTL were specific to single environments, and only three

QTL were detected in two or more environments (3A, 5A, 7D)

indicating some genotype by environment interaction. Interest-

ingly, there were no co-located QTL controlling trait variation

from hydroponics and field trials. The most significant QTL in

hydroponics on chromosome 2A explained 20% of the total

genetic variance and the Krichauff allele was responsible for

increased Cl2 concentration. QTL on chromosome 3A and 7D

were detected from multi-location trials and explained 4–11% of

the total genetic variance, while QTL on 5A accounted for 27-

32% of the total genetic variance (Table 4). Either the Berkut (3A,

5A) or the Krichauff (7D) allele was associated with increased Cl2

concentration at these loci. As the two QTL on 5A appear in

tandem, these loci were further investigated to determine whether

there may just be one rather than two separate QTL. The plot of

outlier statistics (Figure 1) shows that there is in fact just one QTL

on 5A expressed at all field locations. The QTL detected at one

location only accounted for a small proportion of the total genetic

variance, varying from 3.6 to 9.9% with either the Berkut or

Krichauff allele being associated with increased Cl2 concentration

(Table 4).

Some QTL for Cl2 concentration were co-located with QTL

for either Na+ or K+ concentration from hydroponics and field

trials (Table 4). It was interesting to observe that in hydroponics

QTL for Cl2 concentration were co-located with QTL for Na+

concentration (2A, 2B, 2B, 3A, 7A), while in field trials they were

co-located with both Na+ (3A, 5A, 7D) and K+ (5A).

QTL for calcium (Ca2+) and magnesium (Mg2+)
concentration

As Ca2+ and Mg2+ nutrition of the plant can also be affected by

salinity [26,37–40], their genetic control under salinity stress was

also investigated, in a limited way, using a QTL mapping

approach. A total of 13 QTL for Ca2+ concentration and 6 QTL

for Mg2+ concentration were identified in hydroponics and the

field (Table 5). At those loci, either the Berkut or Krichauff allele

increased the concentration of these cations. The most significant

QTL for Ca2+ concentration was the QTL in hydroponics

accounting for 13% of the genetic variance (Table 5). This QTL

was also co-located with the Cl2 concentration QTL detected in

hydroponic conditions (Table 4). For Mg2+ concentration, the

QTL on 3A in hydroponics was the most significant, explaining

15% of the genetic variance (Table 5). This QTL was also co-

located with a QTL for Cl2 concentration detected in environ-

ments with low to moderately saline conditions (Roseworthy and

Balaklava) and hydroponics e (Table 4). However, there were no

common QTL that were detected under hydroponics and the field

for either of these two cations.

Table 3. Estimated genetic correlations extracted from the fitted multi-environment model for individual traits.

Roseworthy Balaklava Georgetown

Na+ concentration Balaklava 0.861

Georgetown 0.016 0.167

Growth room 0.182 0.186 0.464

Roseworthy Balaklava Georgetown

K+ concentration Balaklava 0.794

Georgetown 0.568 0.598

Growth room 0.361 0.322 0.225

Roseworthy Balaklava Georgetown

Cl2 concentration Balaklava 0.897

Georgetown 0.582 0.462

Growth room 0.276 0.427 0.339

Roseworthy Balaklava

Grain yield Balaklava 0.706

Georgetown 0.130 0.338

doi:10.1371/journal.pone.0098845.t003
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Known chloride transporters/channel in grass genomes
and the 5A Cl2 QTL’

In previous studies, employing transcription analysis under salt

stress, cellular localization and transgenesis for functional charac-

terization, CLC (chloride channel) and CCC (cation chloride co-

transporter) genes had been identified to play a role in Cl2

homoeostasis in plants; examples are CLC1 in tobacco and

soybean [13,41,42,43] and CCC in Arabidopsis [44].

To investigate the presence of candidate genes such as CLCs,

CCCs and other ion transporters within the QTL interval on

chromosome 5A, we physically positioned the 5A Cl2 concentra-

tion QTL in the wheat genome sequence. For this purpose, the

gene-based sequences of RFLP markers, bcd21 and psr128 with

close linkage to the QTL-flanking SSR markers gwm304 and

barc141 (Figure 2) were used to find wheat genome sequences. As

expected, both RFLP sequences had their best hits in bread wheat

chromosome 5AL and allowed to retrieve matching contigs of

4.2 kb and 9.1 kb for bcd21 and psr128, respectively. As both

RFLPs had originally been derived from ESTs, the corresponding

wheat genome contigs (4.2 and 9.1 kb) identified gene hits in rice

chromosome 9 (Os09g0321900 and Os09g0412200). These rice

genes functioned as borders of the physical interval in the

comparative analysis between rice, Brachypodium and wheat using

the alignment in Genome Zipper v5 (Figure 2). In rice (MSU

Release 7 at rice.plantbiology.msu.edu/cgi-bin/gbrowse/rice/

#search), the syntenic interval contained 547 genes.

Within the physical interval underlying the 5A Cl2 QTL, there

were five different classes of genes encoding different transporters

or channels: eleven ABC-transporter genes, and single genes

encoding a nucleobase-ascorbate transporter, a vacuolar iron

transporter (VIT1), a voltage-dependent anion channel (VDAC1)

and a potassium transporter (HKT23-like) (Table 6).

Discussion

Implications of screening for Cl2 concentration in
hydroponics and field environments

Phenotyping for ST is generally conducted under hydroponic

conditions, and results are rarely validated in relevant field

environments. Our recent studies in bread wheat demonstrated

that phenotyping for Na+ exclusion or ST in hydroponics had

limited value in predicting field responses, and QTL differed vastly

between hydroponics and field locations [24]. Given the renewed

interest in Cl2 exclusion and ST [13], we analysed Cl2

concentration of hydroponically- and field-grown plants of

Berkut/Krichauff DH population to determine the value of

hydroponics for QTL analysis of Cl2 concentration, and elucidate

genetic control mechanisms of Cl2 accumulation. The results

demonstrated that plant Cl2 accumulation varied significantly

between hydroponics and field trials and as a result, different QTL

were identified between the two systems. As was the case with Na+

concentration [24,25], this was most probably due to the two

systems being vastly different [24]. These results suggest that there

may be very little value in hydroponics testing to predict field

responses to Cl2 concentration in bread wheat, and future studies

should consider field testing or soil-based-pot assays as an

alternative.

ST and Na+ or Cl2 exclusion
In most studies to date Na+ exclusion, and to a limited extent

Cl2 exclusion, are traits contributing to ST. However, studies that

also examined relationships between ST (absolute or relative

growth) and Na+ or Cl2 concentration reported inconsistent

correlations [3–8,10,12,45–48]. It is noteworthy that studies

reporting high correlations (r2.0.5) analysed either a small

Figure 1. Location of Cl2 concentration QTL (barc56/gwm186) on chromosome 5A detected in field trials (Balaklava, Georgetown
and Roseworthy) with varying salinity levels. The outlier statistics represent LOD scores (Table 4).
doi:10.1371/journal.pone.0098845.g001
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number of genotypes or were conducted under controlled

environmental conditions [4,7,12,46,49]. In the present study

genetic correlations were investigated using multivariate analysis.

Moderate correlations in controlled environments (generally

phenotypic) are not uncommon [13,21–23,25], while such

correlations involving a large number of genotypes in the field

are almost non-existent [24]. The lack of genetic correlation

between Na+ and/or Cl2 exclusion and grain yield in field studies

suggests that other biochemical and physiological processes need

to be taken into consideration for identifying mechanisms

associated with ST. These results also indicate that a reductionist

approach, such as selection for Na+ and/or Cl2 exclusion only,

may not substantially improve ST in bread wheat. A more reliable

approach would be to select for grain yield, unless specific

physiological traits are shown to have significant and consistent

correlations with grain yield under saline environments.

Ion channels and transporters involved in Na+, K+ and Cl2

homeostasis
Here we aim to introduce a brief discussion on transport of

these ions from the soil solution into the root cell and their

movements within the plant with respect to ion channels and

transporters. However, a greater focus will be placed on Cl2, and

for Na+ and K+, readers are referred to recent reviews [41,50,51].

It is well established that the initial entry of Na+ from the soil

solution into the root cell is passive along the concentration

gradient [52], and Na+ uptake occurs primarily via non-selective

cation channels and transporters [41,51,53]. However, Na+ efflux

(from cytosol into vacuole or removal from xylem) as a tolerance

mechanism has to be active as it requires energy [41]. Potassium

uptake from the soil solution into the root cell is an active process

(i.e. moving across the membrane against its concentration

gradient) and largely mediated by genes encoding channels and

transporters [54]. Chloride uptake can be both active and passive

depending on the external concentration. Under non-saline

conditions transport of negatively charged Cl2 across negatively

charged plasma membrane requires energy, therefore is an active

process and mediated by transporters, while under saline

conditions most Cl2 influx across the plasma membrane becomes

passive [14]. However, its movement within or out of the plant

must be active and aided by transporters [13]. Despite being the

most abundant anion in the plant cells, compared to a number of

well characterised Na+ and K+ transporters and encoding genes

[41], very little is known about Cl2 transport mechanisms and the

genes involved. To date two groups of gene families have

repeatedly been discussed in relation to Cl2 homeostasis: CLCs

and CCCs. From limited studies, it appears that CLCs, with their

location in endomembranes, are involved in turgor regulation,

stomatal movement and NO3
2 transport [55] but not root Cl2

uptake [41], while CCCs are involved in long distance transport of

Na+, K+ and Cl2 and function as K+:Cl2, Na+:Cl2 or Na+:

Figure 2. Inferred physical position of the Cl2 concentration QTL on 5AL in Berkut/Krichauff identified at Roseworthy field location
onto 5AL in wheat.
doi:10.1371/journal.pone.0098845.g002
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K+:Cl2 co-transporters [44,56]. However, there may be other

gene families involved in Cl2 transport, as discussed by Teakle and

Tyerman [13].

Genetic control mechanisms of Na+, K+ and
Cl2homeostasis under salinity stress

A good understanding of inheritance of homeostasis of these

ions is required for a successful breeding strategy. Our present

knowledge of mechanisms of their inheritance is a mere reflection

of the number of studies conducted on them. For instance, due to

greater focus on Na+, we know more about Na+ than K+ or Cl2.

The limited studies in rice and wheat suggest that Na+ and K+

homeostasis under salinity stress are under separate genetic control

[25,57–59], although studies in barley [22,23] found that QTL for

Na+ co-located with QTL for K+, suggesting one or more genes

regulating Na+ and/or K+ transport such as vacuolar sodium-

hydrogen antiporter (NHX) genes [22]. As for Cl2, to date there

have been only four quantitative genetic studies that reported

QTL for Cl2 concentration; two in rice [20,21] and two in barley

[22,23]. In those studies as well as in the present study, moderate

correlations between Cl2 and either Na+ or K+, and QTL for

different ions mapping to the same and/or different regions

indicate the presence of common (i.e. CCCs) and specific

transporters for the uptake of these ions [i.e. high-affinity

potassium (HKT) and (CLCs)] which in turn suggests common

and separate genetic control. For instance, in the present study,

Cl2 QTL on 2A and 5A co-located with QTL for Na+ and K+

concentration, respectively [24]. A physiological explanation for

these co-locations and correlations between cations (Na+ and K+)

and anions (Cl2) may be the charge balance between these two

groups of ions since the net movement of ions must be balanced so

that there is charge equivalence with small difference [13].

Whereas there were no CCC and CLC genes physically close to

the Cl2 concentration QTL on chromosome 5A there are 15

transporter and channel genes in the physical interval as

candidates for the observed Cl2 accumulation. Although we have

used the latest release of the comparison between wheat ESTs and

contigs with sequenced grass genomes (Genome Zipper v5), it is

possible that other genes reside in this region in wheat and the

microsynteny is less well preserved as it appears to be so far.

Nguyen et al. [22] recently reported a Cl2 concentration QTL

under salt stress in barley but used an incorrect barley

chromosome nomenclature so that the actual chromosome 5H

was mislabelled as 7H (other chromosomes were also mislabelled).

The physical position of the RFLP markers ABC324 and ABC302

that flank their barley Cl2 QTL on 5HL [22] suggest a position

close to the physical chromosomal region corresponding to the

5AL Cl2 concentration QTL reported here. In fact, the physical

position of the northern flanking marker ABC324 (position

chromosome 5H: 399,222,591) slightly overlaps with the position

of the southern end of the5A QTL flanked by RFLP marker

psr128 (position chromosome 5H: 412,653,548). It is possible that

both QTL are caused by orthologous genes in wheat and barley,

although this is far from certain as the QTL intervals contain

hundreds of genes and the barley QTL was identified under salt

stress in a hydroponics system whereas the QTL in wheat was

repeatedly observed under salt stressed field conditions but not in

hydroponics. Only further work such as fine mapping and gene

expression analysis of the candidate genes will prove unequivocally

Table 6. Candidate genes underlying the physical interval of the Cl2 QTL on chromosome 5A.

Brachypodium (v1.2)
Rice (Gene ID at MSUa/at IRGSP
v2) Sorghum (v1.4) Wheat (v5b) Predicted protein functiona

- - Sb02g022750 - ABC transporter

Bradi4g28660 LOC_Os09g19734/OS09G0361400 Sb02g022910 WHE0957_E03_J05ZT;
Traes_5AL_99BEC1C3B

Voltage dependent anion
channel 1 (VDAC1)

Bradi4g29102 LOC_Os09g20480/Os09g0371000 Sb02g023340 Traes_5AL_F8B48EC59 ABC transporter

Bradi4g29110 LOC_Os09g20490/Os09g0371100 Sb02g023370 - ABC transporter

Bradi4g29120 ‘‘ Sb02g023380 - ‘‘

Bradi4g29110 LOC_Os09g20500/Os09g0371200 Sb02g023370 - ABC transporter

Bradi4g29120 ‘‘ Sb02g023380 - ‘‘

Bradi4g29140 LOC_Os09g20510/Os09g0371300 Sb02g023360 - ABC transporter

Bradi4g29110 LOC_Os09g20520/Os09g0371400 Sb02g023370 - ABC transporter

Bradi4g29120 ‘‘ Sb02g023380 - ‘‘

Bradi4g29347 LOC_Os09g21000/Os09g0376900 Sb02g023620 Traes_5AL_B64648FE6 Potassium transporter family
(HKT23-like)

Bradi4g29440 LOC_Os09g21340/Os09g0381100 Sb02g023720 WHE1104_A05_B10ZS;
WHE0807_A06_B11ZS;
Traes_5AL_3E0C865DF

Nucleobase-ascorbate
transporter

Bradi4g29650 LOC_Os09g23110/Os09g0394500 Sb02g024060 Traes_5AL_01A13992D;
Traes_5AL_B8B668113

ABC transporter

Bradi4g29720 LOC_Os09g23300/Os09g0396900 Sb02g024130 WHE1787_E02_I03ZS;
Traes_5AL_F80B422BA

Vacuolar iron transporter 1 (VIT1)

Bradi4g29810 LOC_Os09g23640/Os09g0401100 - Traes_5AL_678EA44B2 ABC transporter

aaccording to MSU Rice Genome Annotation Project release 7, Ensembl Plants release 22 or NCBI;
bGenome Zipper v5.
doi:10.1371/journal.pone.0098845.t006
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the identity of the underlying gene for the differential Cl2

accumulation between Berkut and Krichauff. The present study

provides a compelling case that the 5A QTL contains a K+:Cl2

co-transporter gene several other candidates capable of moving

Cl2 ions across membranes. However, as this is the first report in

wheat, there is clearly a need for testing other mapping

populations and genetics resources to identify other Cl2

transporter gene(s) to gain a better understanding of genetic

control mechanisms of Cl2 homoeostasis in crops.

Genetic control mechanisms of Ca2+ and Mg2+

accumulation under salinity stress
The inheritance of plant Ca2+ and Mg2+ accumulation was also

investigated, given the reports of salinity-induced nutritional

deficiencies such as Ca2+ and Mg2+ [26,37,39,40] and the

importance of maintenance of adequate nutrition for these

essential elements to plant growth and yield under salinity stress.

To our knowledge, there have only been two studies in barley

[22,23] that investigated inheritance of Ca2+ and Mg2+ uptake or

accumulation under salinity stress. However, only in one study

[23] QTL for Ca2+ and Mg2+ were detected under salinity stress;

one QTL for Mg2+ concentration on 6H, and three QTL for Ca2+

concentration on 1H, 6H and 7H. The QTL on 6H was common

not only to Ca2+ and Mg2+ but also to ST. To our knowledge, this

is the first time in the literature that a QTL for a nutrient other

than Na+ was co-located with ST, providing evidence for the role

of Ca2+ and Mg2+ nutrition in growth and yield under salinity

stress. These results also indicate that Ca2+ and Mg2+ uptake may

occur through common as well as independent pathways. In

contrast to the barley study, in the present study, none of the Ca2+

and Mg2+ concentration QTL co-located with each other or ST

(measured as seedling biomass or grain yield), suggesting

independent genetic control. However, further studies are

required to enable better understanding of their genetic control

mechanisms.

Conclusions

As was the case with Na+ [24], plant Cl2 responses and related

QTL differed widely between hydroponics and field tests,

indicating substantial genotype and QTL interactions with

environments. The results also indicated that hydroponics-based

seedling assays may be very limited in their ability to predict field

responses to salinity, and soil-based assays may be the second best

option after field testing. As Cl2 concentration in the plant

correlated only moderately with seedling biomass and showed no

correlation with grain yield in the field, it does not appear, on its

own, to be a reliable physiological parameter to select for in a

breeding context, at least in bread wheat. Further research

involving other mapping populations/genetic resources is war-

ranted to be definitive. In the short term, selection for grain yield,

which is integrative of all tolerance mechanisms, appears a more

reliable strategy, while in the long term identification of donors for

various physiological traits and subsequently combining them in a

genotype (pyramiding) is likely to be the way forward [60]. This

latter process can be fast-tracked via marker assisted selection.

Finally the presence of several QTL for Cl2 concentration

indicates that Cl2 uptake/accumulation is a polygenic trait. The

discovery of a major QTL for Cl2 concentration on 5A that co-

locates with several candidate genes that could be involved in Cl2

transport in bread wheat provides a starting point for further

analysis through fine mapping and functional studies.
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