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Abstract

Background: Why have birds evolved the ability to reject eggs? Typically, foreign egg discrimination is interpreted
as evidence that interspecific brood parasitism (IP) has selected for the host's ability to recognize and eliminate
foreign eggs. Fewer studies explore the alternative hypothesis that rejection of interspecific eggs is a by-product of
host defenses, evolved against conspecific parasitism (CP). We performed a large scale study with replication across
taxa (two congeneric Turdus thrushes), space (populations), time (breeding seasons), and treatments (three types of
experimental eggs), using a consistent design of egg rejection experiments (n = 1057 nests; including controls), in
areas with potential IP either present (Europe; native populations) or absent (New Zealand; introduced populations).
These comparisons benefited from the known length of allopatry (one and a half centuries), with no gene flow
between native and introduced populations, which is rarely available in host-parasite systems.

Results: Hosts rejected CP at unusually high rates for passerines (up to 60%). CP rejection rates were higher in
populations with higher conspecific breeding densities and no risks of IP, supporting the CP hypothesis. IP rejection
rates did not covary geographically with IP risk, contradicting the IP hypothesis. High egg rejection rates were
maintained in the relatively long-term isolation from IP despite non-trivial rejection costs and errors.

Conclusions: These egg rejection patterns, combined with recent findings that these thrushes are currently
unsuitable hosts of the obligate parasitic common cuckoo (Cuculus canorus), are in agreement with the hypothesis
that the rejection of IP is a by-product of fine-tuned egg discrimination evolved due to CP. Our study highlights the
importance of considering both IP and CP simultaneously as potential drivers in the evolution of egg discrimination,

parasite-host coevolution.

parasitism, Species introductions

and illustrates how populations introduced to novel ecological contexts can provide critical insights into brood

Keywords: Coevolution, Collateral damage, Discrimination, Heterospecific brood parasitism, Intraspecific brood

Introduction

Why do birds recognize their own eggs and reject foreign
ones? This question has fascinated researchers for centur-
ies [1]. Most previous studies concluded that birds dis-
criminate foreign eggs as defence against interspecific
brood parasites, e.g., common cuckoos (Cuculus canorus;
hereafter: cuckoo) [2,3]. However, egg discrimination abil-
ities are detected even in species that are not known to be

* Correspondence: tomas.grim@upol.cz

'Department of Zoology and Laboratory of Ornithology, Palacky University,
17. listopadu 50, CZ-771 46 Olomouc, Czech Republic

Full list of author information is available at the end of the article

( BioMVed Central

impacted by interspecific parasites, including those that
seem to be unsuitable cuckoo hosts [2].

Here, we investigate the potential causes of egg rejec-
tion in birds that are currently not impacted by interspe-
cific brood parasitism, yet are known to be able to reject
foreign eggs in the nest: Turdus thrushes [2]. Cuckoo
parasitism was documented in all six species of thrushes
that occur in Europe, and most often in our two study
species, the European blackbird (Turdus merula; here-
after: blackbird) and the song thrush (7. philomelos) [4].
However, these parasitism rates were overall an order of
magnitude lower than those in typical current or previ-
ous cuckoo hosts [4], casting doubts on the hypothesis
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that cuckoo parasitism was the selective force for egg re-
jection in European thrushes. Moreover, previous studies
contradicted each other, classifying these thrushes as ei-
ther suitable [2] or unsuitable [5] hosts for the cuckoo.
A recent, large-scale study [6] suggested that thrushes
are currently unsuitable hosts of cuckoos in Europe:
under natural conditions, cuckoo chicks do not survive
until fledging in thrush nests, which prevents long-term
coevolution between cuckoos and thrushes; the alterna-
tive, but directly untestable interpretation is that cuckoo
parasitism was prevalent in the distant past and these
hosts have beaten it to cause the extinction of the
thrush-race of cuckoos [7]. Regardless, cuckoo parasit-
ism, even if currently unsuccessful for the cuckoo chick
[6], is still costly for the host because of incubation costs
of the foreign egg [8] and the egg eviction by the hatch-
ling parasite [6]. But long-term existence of such costs
from interspecific parasitism (IP) may be unlikely, given
that cuckoos should evolve to avoid laying eggs in un-
suitable hosts' nests, and thus cuckoos would impose
small-to-no cost on those hosts. Therefore, a more
plausible hypothesis might be that conspecific brood
parasitism (CP) has selected for egg rejection [9,10].

Egg rejection in response to CP is tested considerably
less often than host responses to IP [2,11-17]. The ma-
jority of brood parasitism studies considered only rejec-
tion of IP eggs (Figure one in [18]). Testing both IP and
CP scenarios in the same study is crucial because rejec-
tion of IP eggs may theoretically be a by-product of host
adaptations against CP; this “collateral damage” hypoth-
esis was previously tested [2,9,11,16,19-24] but sup-
ported only in a single non-passerine, waterfowl system
[24]. Here we provide the first empirical evidence for
collateral damage in passerine birds.

IP and CP are not mutually exclusive as sources of selec-
tion for egg rejection, because both can operate in any
particular host species [1,9]. If antagonistic interactions
between both interspecific and conspecific parasites and
their hosts converge to produce the same antiparasitic
adaptation in host behaviors (egg rejection: [1]), then how
can we differentiate between the two alternative functional
explanations? Several types of concurrent experiments
with consistent methodologies, but with alternative pre-
dictions, are required to test the two hypotheses (Table 1).
These predictions are based on one of the cornerstones of
evolutionary theory: “In the absence of these antagonistic
interactions, hosts should be expected to lose their de-
fenses either through genetic drift or natural selection.”
[25], p. 162. General evolutionary theory predicts “evolu-
tionary loss of useless structures” [26], p. 529. Therefore,
behavioral and cognitive traits that are not positively
selected, e.g., in allopatry with parasites, should decay
because of mutation pressure [26], genetic drift [25,26],
costs of maintenance of neural networks [27] and rejection
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costs and errors [28]. All of these factors independently and
additively lead to decay of any organismal trait which does
not have any current adaptive function. However, even
without any genetic change, the same patterns are predicted
from phenotypic plasticity: decreased realized or perceived
parasitism pressure should lead to lower antiparasite re-
sponses [29]. Indeed, such patterns were often documented
in cuckoo hosts (see below) but not in some hosts of North
American brown-headed cowbirds (Molothrus ater) [30].

We took advantage of the known length of allopatry
with IP in blackbirds and song thrush introduced to
New Zealand where they live in isolation from common
cuckoos; this allows for a powerful test for roles of IP
and CP in the evolution of egg discrimination in these
birds as already suggested by a pioneering study of [17]
(see also [31,32], Methods, and Table 1). CP has been
documented in both of these Turdus species, and
in both their native (our study populations in Czech
Republic) and introduced ranges ([13,33,34], our own
observations), implying that the evolution of egg rejec-
tion in these taxa may have been due to parasitic egg
laying by conspecifics. We tested following predictions:

(i) If CP selected for egg discrimination, then thrushes
should be able to selectively reject foreign conspecific
eggs. If IP selected for egg discrimination, then hosts
should not reject conspecific eggs.

The evolution of fine-tuned egg discrimination is un-
necessary in the absence of parasitic eggs that closely re-
semble those of hosts, e.g., from conspecific parasites or
interspecific parasites with closely mimetic eggs [16,35].
This view is supported both by theory [36,37] and empir-
ical data, i.e., the positive correlation between the match
of cuckoo egg mimicry of host eggs, and the hosts’ egg
discrimination abilities [3,38]. Crucially, most typical
cuckoo hosts reject dissimilar eggs but accept conspecific
eggs [2], except for taxa with the best mimicry of host eggs
by the cuckoo (e.g., great reed warbler Acrocephalus arun-
dinaceus: [39]). Known suitable cuckoo hosts/populations
that do reject conspecific eggs are often currently avoided
by cuckoos, but there is ample evidence for IP in historical
and museum records [4] and, without exception, these
species are/were parasitized by highly mimetic cuckoo
eggs [11,16,19,40,41]. In contrast, no known cuckoo eggs
are similar to Turdus eggs: cuckoo eggs are about half the
size of thrush eggs [6] and do not closely resemble thrush
eggs in either color or patterning [4]. Therefore, IP alone
could not provide sufficient selection pressure on thrushes
to evolve abilities to discriminate conspecific eggs [36].

(ii) If CP selected for egg discrimination, then egg re-
jection rates of conspecific natural eggs should be higher
in populations with higher breeding densities.

Just as greater perceived risks of cuckoo parasitism (due
to naturally higher cuckoo densities or their experimental
presentations at host nests) increase host rejection of
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Table 1 Summary of contrasting predictions of conspecific parasitism (CP) and interspecific parasitism (IP) hypotheses
and the results for the two focal host species in this study

Response CcpP IP Results of this study

(thrushes) (cuckoo) Blackbird Song thrush
Conspecific egg rejection + - + +
CP rejection rate CZ<NZ na. CZ<NZ CZ<NZ
CP rejection latency CZ>NZ na. CZ<NZ CZ~NZ
IP rejection rate na. CZs>CZp>NZ CZs<CZp>NZ CZs~CZp~NZ
IP rejection latency n.a. (CZs<CZp<NZ CZs~CZp~NZ CZs~CZp~NZ

Populations of European blackbirds and song thrush, in the Czech Republic (CZ) are either sympatric (S) or micro-allopatric (A; as denoted by subscripts),
populations in New Zealand (NZ) are all macro-allopatric with common cuckoos. CP predictions for Czech Republic vs. New Zealand populations are based on dif-
ferences in the breeding densities of thrushes (higher in New Zealand for both species) and refer to host responses to conspecific eggs. IP predictions are based
on sympatry vs. allopatry with cuckoos and refer to non-mimetic cuckoo-like model eggs. See Introduction for the rationale of predictions. n.a. = not applicable.

cuckoo eggs [2] and nest defense [2,42], perceived risks of
conspecific parasitism (due to higher conspecific breeding
densities) increase host rejection of conspecific eggs
[43-45]. Our New Zealand study populations show con-
sistent spatio-temporally higher densities (more than
twice) than those of our European populations [32]. His-
torical data from the same general areas we studied
suggest that both blackbird and song thrush breeding
densities were twice as high or even higher in New
Zealand than in Czech Republic at least a half century ago
[46,47]. Therefore, New Zealand populations should reject
conspecific eggs at higher rates than do the European
populations. Our allopatric study populations [prediction
(iii)] happen to be the ones with higher breeding densities;
however, this is not a critical confound, and rather, a
possible advantage because the CP and IP hypotheses
make predictions which are opposite for these same
populations and concern different types of experimental
eggs (conspecific vs. cuckoo-like), and therefore provide
a powerful test of our hypotheses (Table 1).

(iii) If CP selected for egg discrimination, then latency
to egg rejection should be shorter in populations with
higher breeding densities. Egg rejection may be quicker
in denser host populations with higher perceived risks
or realized costs of CP [45].

(iv) If IP selected for egg discrimination, then egg rejec-
tion rates of cuckoo-like models should decrease from sym-
patry, through micro-allopatry to macro-allopatry with
cuckoos. Cuckoo hosts show high phenotypic plasticity and
adjust their anti-parasite responses according to the per-
ceived risk of parasitism [48]. Notably, egg rejection rates
drop with a decline in the density of cuckoos within years
[49] or decades [29,42,50]. Irrespective of the mechanism
(rapid evolution [51], or phenotypic plasticity [29]), current
cuckoo hosts typically show lower defenses in allopatry
than in sympatry with cuckoos [2,48,49,52,53]. However,
some allopatric host populations still reject experimental
parasitism frequently [7]. For all such hosts there is ample
evidence of frequent parasitism in the past and highly
evolved cuckoo egg mimicry. There is no such evidence for

any Turdus species. Egg rejection rates across host taxa and
populations positively correlate with local IP rates [54]. In
contrast, [6] found no evidence for such patterns in
thrushes. However, [6] did not know the length of pre-
sumed sympatry/allopatry. Here, we studied not only popu-
lations in “micro-allopatry” (i.e., within Europe) where the
length of allopatry cannot be known in principle but also
populations in “macro-allopatry”, with known length of
allopatry between distant regions with and without
cuckoos (see Methods). In the New Zealand study pop-
ulations, where local brood parasites do not use intro-
duced species [17], the two thrush species have been
isolated from common cuckoos for a period that is an
order of magnitude longer (century and a half) than the
duration of allopatry presumed in the studies conducted in
Europe (see above), which provides the strongest available
test of our hypotheses [17]. To our knowledge, only two
study systems with known (and not estimated, [30,55])
length of allopatry with interspecific parasites were exam-
ined with consistent methods across different populations
to date [17,20,35].

(v) If IP selected for egg discrimination then the la-
tency to egg rejection of cuckoo-like models should
increase from sympatry, through micro-allopatry to
macro-allopatry with cuckoos. This is because the pre-
sence of adult cuckoos is known to increase the speed
of host responsiveness to costly foreign eggs [53].

A survey of previous experimental work on blackbirds
and song thrush in both sympatry [2,5,13,33,56,57] and
allopatry [13,17,31] demonstrated consistently higher
rejection rates of non-mimetic cuckoo-type eggs than
conspecific-like model or real conspecific eggs. Gene-
rally, authors interpreted these patterns as a support for
IP hypothesis. However, such patterns are equally con-
sistent with CP hypothesis, which also predicts a graded
response of higher rejection rates to increasingly dissimi-
lar foreign egg phenotypes relative to their own eggs
[58], irrespective of whether the foreign egg is that of a
conspecific or a heterospecific (as predicted by [36]; see
also [2,3,39,59]).
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Published experimental methods, treatments, tools,
and criteria have often varied between the host species,
study sites, and areas with and without cuckoos in previ-
ous studies, preventing meaningful quantitative compar-
isons. Different authors used different model eggs with
respect to material, size, and color ([2] vs. [17]),
employed different criteria for assessing acceptance of
alien eggs (6 days in [5] vs. 4 days in [56]), typically stud-
ied a single host population [33] and did not include ex-
perimental treatments with conspecific eggs between site
types within the same study [13]. In the present work,
we used (a) taxonomic replicates (two Turdus species),
(b) geographical replicates (several populations within
both allopatry and sympatry), (c) temporal replicates
(different breeding seasons within each study site), and
(d) treatment replicates (three types of experimental
eggs) with (e) a large number of nests (1057 egg experi-
ments; this is the largest sample size for egg experi-
ments in a single study of brood parasitism to date). To
address methodological constraints of previous studies,
we employed consistent experimental approaches in all
population (e.g., identical model eggs manufactured by
one person) to generate quantitatively comparable re-
sults and strong tests of the alternative hypotheses.

Results

Overall, we obtained information on host responses
under the 6-day response criterion for 685 blackbird
nests (402 blue, 106 spotted, 107 conspecific, 70 con-
trols) and 372 song thrush nests (181 blue, 87 spotted,
61 conspecific, 43 controls).

Nest desertion

In blackbirds, nests with experimental conspecific eggs
were deserted statistically more often than control nests,
when only statistically significant predictors were included
in the model (Additional file 1: Appendix 1). But nest de-
sertion was not a significant outcome of the experimental
manipulation in blackbirds when other predictors were not
taken into account. In song thrush, nest desertions did not
statistically differ across treatments (Additional file 1:
Appendix 1). Previous studies did not reach a consensus
on whether nest desertion was a specific response to para-
sitism or not [6,57,60,61]. Therefore it remains unclear
whether these statistical conclusions reflect a biological
role of blackbird nest desertion in response to parasitism.
According to our new statistical results here, we include
desertion as a response only for conspecific treatment in
blackbirds. We also, conservatively, present statistical
models of egg rejection rates both including and exclud-
ing nest desertion for all treatments for both thrushes
(Additional file 1: Appendix 2). This also makes our re-
sults quantitatively comparable to all previous studies, i.e.,
for future meta-analyses. All conclusions of the present
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study remain the same regardless of including and exclud-
ing nest desertion (Additional file 1: Appendices 1 and 2).

Responses to experimental conspecific parasitism vs.
breeding densities

To test whether conspecific parasitism (CP) was respon-
sible for the evolution of egg discrimination abilities in
thrushes, we experimentally simulated conspecific brood
parasitism by adding a real, natural egg from a different
nest (Figure 1). Both blackbirds and song thrush rejected
conspecific parasitic eggs at very high frequencies regard-
less of inclusion or exclusion of desertions (Figure 2a).

Both species rejected CP more often in areas with
higher breeding densities, but the difference compared
with areas with lower breeding densities was statistically
significant only in blackbirds (Table 2, Figure 2a). No
other predictors explained variation in CP rejection rates
in any of the thrushes (Table 2).

Blackbirds rejected conspecific eggs more quickly in areas
of lower breeding density; the latency to rejection did not
covary with breeding density in the song thrush (Table 2,
Figure 2b). Song thrush latencies decreased with increas-
ing clutch size: latency = 7.01(+1.96) + 1.10(+0.99) x Czech
Republic — 1.12(+0.49) x clutch size). However, the sample
sizes were quite small (range: 6-14 nests per treatment) for
CP latency analyses, limiting our ability to conclude
whether other factors may have covaried with latency.

Responses to experimental interspecific parasitism vs.
sympatry-allopatry

To test whether interspecific parasitism (IP) was respon-
sible for the evolution of egg discrimination abilities in
thrushes, we experimentally simulated cuckoo parasitism
using artificial models resembling eggs laid by two wide-
spread cuckoo’s host races (see Methods). Blackbirds
and song thrush rejected the different model eggs at dif-
ferent rates: blue model eggs were rejected more often
by blackbirds and spotted model eggs by song thrush
(Table 2, Figure 3a).

Neither of the thrush species rejected experimental IP
more often in areas sympatric with the cuckoo; the only
statistically significant difference was a pattern opposite to
what was predicted: we found higher rejection rate by
blackbirds in micro-allopatry than in sympatry (Tukey—
Kramer HSD: P=0.02) and macro-allopatry (Tukey—
Kramer HSD: P = 0.005), with sympatry and macro-allopatry
being statistically similar (Tukey—Kramer HSD: P =0.94;
Table 2, Figure 3a). Rejection probabilities increased with
advancing nest stage in blackbirds (Table 2).

Neither species rejected experimental IP faster in po-
pulations sympatric with the cuckoo (Table 2, Figure 3b, c).
Latency to rejection decreased with advancing nest
stage (in days) in blackbirds and decreasing clutch size



Samas et al. Frontiers in Zoology 2014, 11:34
http://www.frontiersinzoology.com/content/11/1/34

Page 5 of 12

I lem

500 600 700
Wavelength (nm)

Figure 1 Representative reflectance spectra (5 nm running means) of the eggs used in experiments. Examples (from left to right) depict

100 -
. Song thrush
90 | ® Blackbird
g0 4 | ® Blue model
1| ® Spotted model
70 A
< 60 A
p ]
g 50
8 ]
3 40
CGE_) 4
30
20 +
10
0 —— T
300 400
song thrush and blackbird natural eggs and blue (redstart) and spotted (meadow pipit) model eggs.

in song thrush. Blackbirds rejected blue models faster
than the spotted models (Figure 3b).

Conspecific parasitism in the study populations

Estimated CP rates (see Methods) in Czech Republic
blackbirds were 3.1% (n =128 nests). This included two
cases where two new eggs were laid per day and one nest
where six eggs appeared in the nest within four days (i.e.,
two parasitism cases). We did not record any CP cases in
New Zealand blackbirds. A putative case of CP was an ex-
treme clutch of 8 eggs in a Czech Republic blackbird (only
three nestlings hatched; median blackbird clutch size in
the study population is four eggs [32]).

We did not observe any cases of CP in Czech Republic
song thrush. Estimated CP rates in New Zealand song
thrush were 2.2% (n =90 nests). This included two eggs
appearing in the nest within one day (total clutch was 5
eggs), and a new egg that appeared four days after clutch
completion (original clutch of 3 eggs).

We further observed one case of Czech Republic
blackbird clutch (two eggs) laid into a fresh song thrush
nest, a probable case of nest usurpation (we do not
know whether the blackbird removed any already laid
song thrush eggs). Another Czech Republic blackbird fe-
male laid three eggs into an old song thrush nest
(fledged earlier in the same year) but the nest was depre-
dated before the end of incubation.

Ejection costs/errors

We detected both rejection costs (own eggs damaged
during successful rejection of a foreign experimental
egg) and rejection errors (rejection of own eggs either

with or without rejecting parasite egg). The latter may
also represent rejection costs when damaged eggs were
removed by nest owners before we checked the nest
content. We found such events in both study species in
areas of both sympatry and allopatry.

In blackbirds, frequency of costs/errors varied across
populations and years from 2.8 to 10.0% (7 population-
year-specific estimates with at least 10 nests per sample)
with overall frequency of 5.6% (n = 323 nests). Frequency
of costs/errors did not differ between Czech Republic
and New Zealand populations (8.8% vs. 2.3%; Fisher's
exact test P =0.13). In song thrush, frequency of costs/
errors varied across populations and years from 1.4 to
7.7% (4 population-year-specific estimates with at least
10 nests per sample) with overall frequency of 4.1% (n =
121 experimental nests). Frequency of costs/errors did
not differ between Czech Republic and New Zealand
populations (5.5% vs. 5.9%; Fisher's exact test P =1.00).
We also observed cases of possible rejection errors at
control nests both in blackbirds (2.9%, n =70 nests) and
song thrush (6.9%, n = 43 nests).

Discussion

The aim of our study was to solve an evolutionary and
ecological paradox suggested by recent work [6]: if Turdus
thrushes are unsuitable cuckoo hosts and could not co-
evolve with this interspecific parasite in the long term,
why do they reject foreign eggs, including mimetic ones,
and at high rates? Our data provide no consistent support
for IP, and instead, strong directional support for CP as
the main driver of the evolution of egg discrimination.
This support was generally consistent across the two
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Figure 2 Host responses to experimental conspecific brood parasitism (CP) measured as (a) egg rejection and (b) latency to egg
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thrush species, populations, years and experimental treat-
ments. Thus, the rejection of IP eggs by these passerine
hosts is likely an epiphenomenon of selection by CP; this
“collateral damage” hypothesis was previously considered
but not supported for several other species known to re-
ject foreign eggs [2,11,16,19-22]. This effect, documented
so far only in a non-passerine waterfowl system [24], con-
tributes critically to the evolutionary dynamics of realized
unsuitability of potential hosts of IP because pre-existing
defenses to reject foreign CP eggs also provides instantan-
eous protection from incipient IP (see [6]).

The single strongest evidence for the CP hypothesis
here is that hosts selectively ejected (i.e., removed a for-
eign egg and incubated the rest of the clutch) foreign
conspecific eggs at high frequencies (~20-40%),

comparable to the rejection rates shown to some model
cuckoo eggs in our experiments (Figures 2, 3). Some of
these rates are exceptionally high, because published
data show that, even strong rejecters of IP, often show
nil rejection of experimental CP (e.g., [2]), including
some other Turdus thrushes [22,62]. In other host taxa,
where rejecters of IP reject some CP, they typically reject
CP much less so than IP (e.g., [19,39,63]). Strikingly,
these high rates of conspecific egg ejection were coupled
with high nest desertion rates relative to control nests in
blackbirds, confirming that nest desertion may be a spe-
cific response to CP in blackbirds (but not in song
thrush) [60]. The implications of our findings for both
thrush species are that they are poorly suited as poten-
tial hosts for both interspecific and conspecific parasites;
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Table 2 Egg rejection response and latency to rejection
by thrushes

Page 7 of 12

Type of parasitism Blackbird Song thrush

ddf F P ddf F P
CONSPECIFIC
(R)ejection
Breeding density 105 531 0.02 41 301 009
Clutch 101 143 024 39 079 038
Nest stage 98 100 040 35 067 057
Laying date 97 092 034 38 063 043
Latency to (r)ejection
Breeding density 48 294 009 11 122 029
Clutch 44 019 066 11 513 0.04
Nest stage 41 070 056 8 138 032
Laying date 47 064 043 7 005 082
INTERSPECIFIC
Ejection
Geography 455 730 0.0008 216 059 055
Egg model 455 29.57 <0.0001 216 20.40 <0.0001
G*E 446 111 033 206 024 079
Clutch 449 040 053 208 070 040
Nest stage 455 541 0.001 213 231 0.08
Laying date 448 004 085 212 163 020
Latency to ejection
Geography 308 016 086 101 253 008
Egg model 308 29.87 <0.0001 101 033 057
G*E 300 253 008 95 133 027
Clutch 303 029 059 101 7.99 0.006
Nest stage 308 3.86 0.01 98 197 012
Laying date 302 005 082 97 040 053

Response to conspecific egg in blackbirds includes nest desertion (i.e,, abandoning
the whole clutch), together with egg ejection (i.e., selective removal of a foreign
egg), as rejection response to parasitism (see Results, and the Additional file 1:
Appendices). All other responses (conspecific in song thrush, and interspecific in
both thrushes) exclude desertion from analyses (for complete results, see Additional
file 1: Appendix 2). Test statistics and P-values for non-significant terms are from
backward elimination procedure just before the particular term (being the least sig-
nificant) was removed from the model. Results of significant predictors from final
models are in boldface. For effect sizes see Figures 2, 3 and Results. G = geography,
E = egg model.

the resulting low potential benefits of parasitizing con-
specifics may explain the currently low levels of ob-
served CP.

Both thrushes rejected simulated CP more often in pop-
ulations of higher breeding densities as is predicted for
conspecific parasites [43-45]. In turn, neither thrushes
rejected simulated IP more often in populations with
higher risks of cuckoo parasitism. This is contrary to pre-
dictions from general evolutionary theory [25,26] and em-
pirical data from typical cuckoo hosts [29,49,50,54], but
see [64]. Even in hosts of North American cowbirds,
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Figure 3 Host responses to experimental interspecific brood
parasitism (IP) with model cuckoo eggs measured as (a) egg
rejection, and latency to egg rejection in (b) blackbirds and (c)
song thrush. IP was simulated by adding a blue or a spotted egg
model (Figure 1). Responses were compared between areas in
sympatry (CZ-S), micro-allopatry (CZ-A) and macro-allopatry (NZ-A)
with common cuckoos (“CZ" — Czech Republic, “NZ" — New Zealand);
see hypotheses (iv) and (v) in Introduction. Blackbirds (b) and song
thrush (c) latencies to ejection (black) and to rejection (i.e., including
desertion; grey) are presented as the raw data’s means + SE. Sample
sizes (nests) are given inside bars (a) or above x-axis (b,c).
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rejection rates are not higher in areas of allopatry than
sympatry with IP [30].

Rejection costs and errors were similar in Czech
Republic and New Zealand song thrush, and even
smaller in New Zealand than Czech Republic blackbirds,
contrary to general expectations that costs and errors
should be more frequent where hosts have less reliable
cues of IP presence [48]. Similarly in contrast to predic-
tions of the IP hypothesis, rejection rates did not de-
crease and, in some cases, were even much larger in
New Zealand than Czech Republic. In contrast, many
other life-history parameters of introduced New Zealand
blackbirds, including egg and clutch sizes, have changed
predictably compared to native European populations
[32]; this implies that IP (or its absence) is unlikely to
have shaped behavioral and life history shifts in the in-
troduced populations of these two thrush species.

Taken together, all these lines of evidence consistently
support the view that thrushes evolved egg (r)ejection in re-
sponse to CP, and reconciles divergent views on thrushes in
the literature, which has previously classified them both as
suitable [2] and unsuitable cuckoo hosts [5]. Both black-
birds and song thrush are striking outliers in many
parasitism-related host traits in the context of IP. In con-
trast to known coevolved hosts of the cuckoo [54], thrushes
do not show any consistent differences between areas of
sympatry vs. allopatry with cuckoos in either aggression to-
ward cuckoo dummies [6] or rejection response to model
eggs [17; this study], including the repeatability of egg rejec-
tion and latencies to rejection [61]. In contrast to cuckoo
hosts that strategically adjust their defenses against parasit-
ism based on risks and costs [42], there is no such evidence
in our study species [6,17,31,61]. Contrary to actual cuckoo
hosts, thrushes are unable to raise the cuckoo chick suc-
cessfully [6]. Together with our new findings here, the most
parsimonious explanations for these divergent patterns is
that thrushes are, or previously were, hosts impacted by
conspecific parasitism.

Sophisticated egg discrimination has evolved in several
species where effects of IP can be excluded [65,66] or
played a secondary role to CP [9]; see also [11,16,24,63].
The costs of providing parental care for genetically unre-
lated young in CP are sufficient to drive evolution of
some host defenses [67-69], even if CP occurs at low fre-
quencies [70]. This is supported by the egg rejection
abilities of hosts that are not parasitized by heterospeci-
fics, e.g., in gulls [71], terns [72], murres [73], coots [68],
rails [74], communally nesting cuckoos [69] and wood-
peckers [75], and various passerines that are unsuitable
cuckoo hosts, e.g., starlings (Sturnus vulgaris) [2], house
sparrows (Passer domesticus) [65,66,70,76] and Eurasian
tree sparrows (P. montanus) [77]. These patterns empir-
ically reject theoretical arguments that CP is not suffi-
ciently costly to select for host defenses.
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Reports of CP are increasing in a number of species [10]
and appear so disproportionately more in altricial birds
[78]. CP was also detected in both blackbirds ([13]; K.
Weidinger pers. comm.) and song thrush ([33], p. 1887 in
[34]; K. Weidinger pers. comm.), and in the closely related
redwings (Turdus iliacus; [22]), fieldfares (T. pilaris; [12])
and mistle thrush (7. viscivorus; [79]). Thus, CP might be
relatively widespread in the genus Turdus. Here, we conser-
vatively estimated conspecific parasitism rates as a ratio of
cases of CP within a subset of nests found during laying
stage and checked every day or every second day until the
start of clutch incubation. This approach underestimates
CP rates, see Materials and methods. Very high CP egg
ejection rates (up to 40%) combined with high desertion
rates of conspecific eggs (~20%, Figure 2) dramatically de-
crease the benefits of parasitizing conspecifics: 3 out of 4
parasite eggs would never hatch. Thus, the currently low
potential fitness payoffs of parasitic strategy may explain
the low rates of observed CP in these Turdus thrushes.

Conclusions

Using consistent intra- and inter-continental method-
ology, we demonstrate that the rejection of non-mimetic
egg models do not provide clear evidence for interspe-
cific avian brood parasite-host coevolution. Fine scale
discrimination, including of highly mimetic foreign eggs,
may evolve due to selection pressures by conspecific par-
asites. Under the conspecific parasitism scenario, the re-
jection of model or real obligate brood parasitic eggs is
effectively a by-product of adaptations related to conspe-
cific parasitism. This “collateral damage” hypothesis pro-
vides a general framework that may explain why some
potential victims of interspecific brood parasites remain
un-exploited, despite their seeming suitability to serve as
hosts. Therefore, future studies of egg discrimination
should consider both interspecific and conspecific para-
sitism as viable explanations for the rejection of foreign
eggs. Our study also highlights the utility of introduced
avian populations as large-scale ecological experiments.

Materials and methods

Study model species

Both blackbirds and song thrush are common passerines;
they breed in open woodlands and sub/urban areas, build
conspicuous open nests, and may be available for parasit-
ism by cuckoos both in space and time yet are currently
rarely parasitized [6]. The blackbird lays eggs with a pale
blue background and dense, fine, light-brown speckles
(Figure 1). The song thrush lays a bright blue egg, with
dark spots concentrated at the blunt egg pole (Figure 1).

Study sites and species
Sympatric populations: We studied thrushes in Chvélko-
vice (49°35'N, 17°17'E), Grygov (49°31'N, 17°18'E), and
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Luzice (48°51'N, 17°04'E) in the Czech Republic, Europe.
These populations were in forested areas with cuckoos
present during the breeding seasons (see [6]).

Micro-allopatric populations: We monitored thrushes in
Olomouc (49°35' N, 17°15' E) and Brno (49°12' N, 16°38' E),
also in the Czech Republic. These populations were in urban
areas with cuckoos absent during the breeding seasons [6].

Macro-allopatric populations: We travelled to Auckland
(36°51' S, 174°46' E), Hamilton (37°46' S, 175°16' E), and
Tawharanui Regional Park (36°22' S, 174°49' E) on the
North Island, New Zealand. Both blackbirds and song
thrush were introduced to New Zealand in the late 19"
century [80] whereas (i) the common cuckoo was not [80],
(ii) neither blackbirds nor song thrush act as regular hosts
of native brood parasites in New Zealand [17,81], (iii) gene
flow between New Zealand and Europe does not exist
(both species are highly philopatric and non-migratory in
New Zealand and New Zealand has a strict embargo on
bird trafficking [82,83]), (iv) thrushes do not serve as
cuckoo hosts in Asia [84] and there is no evidence for gene
flow between Asia or introduced Turdus populations in
Australia and New Zealand [34], (v) New Zealand popula-
tions breeding for ~150 years in isolation from cuckoos
also show evolutionary changes in their breeding biology
from their European source populations ([32] and refer-
ences therein), and (vi) the biology of the New Zealand
Turdus populations has not been affected by bottleneck ef-
fects [85]. Thus, we can be confident that our New Zealand
populations did not experience any environmental cues
[35], including visual [42] or acoustic signals of the
cuckoo’s presence [86] for more than a century.

We conducted the experiments from April to July
2000-2011 in the Czech Republic and from September to
November 2007-2009 in New Zealand. Because we could
not work at all sites simultaneously even within the same
country, we included first date of egg laying for each nest
as a potential confounding variable in our models.

We avoided testing the same individual twice by work-
ing at each specific locality for only 2-3 weeks. We
ringed some adults in 2008—-2009 in New Zealand (n =
109) and 2008-2011 in Czech Republic (n=154; [82])
which reliably allowed us not to test those individuals
again.

We estimated parasitism rate as ratio of cases of CP
within subset of nests found during laying stage and
checked every day or every second day until the start of
clutch incubation. This approach underestimates CP
rates because (i) we did not conduct a genetic test of
maternity of each freshly laid egg or completed clutch at
our study site [78], (ii) most nests (72%) were not
followed from the first egg laid, and (iii) ~25% of experi-
mentally introduced conspecific eggs were ejected within
one day (i.e., we could miss natural parasitic eggs which
were ejected fast; see [78]).
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Egg experiments

We parasitized nests by introducing one of two types
of artificial egg models or one natural conspecific egg
(Figure 1). Egg models were made from polymer clay
and painted with acrylic colors [87]. Size, mass and
shape of artificial egg models were similar to real cuckoo
eggs [31]. Host reactions toward egg models and real
parasite eggs are similar [2,5,88]. “Blue model” (“red-
start” type) is an immaculate pale blue and cuckoo-sized
egg, representing a cuckoo gens which parasitizes the
common redstart (Phoenicurus phoenicurus; [4]) in Europe.
“Spotted model” (“meadow pipit” type) is a brown-grey
egg, spotted with dark brown blotches, resembling the
meadow pipit’s (Anthus pratensis) and its respective
cuckoo host-race’s eggs [5]. We used these particular
model types (i) because they were employed as a standard
in many previous studies (including [6]), and (ii) it has
been empirically documented that they are rejected at
variable rates at our study sites [31]. This allows for mean-
ingful comparisons between previous and our results.

Conspecific parasitism was simulated by adding a real,
natural conspecific egg, collected from freshly abandoned
clutches. Prior to use, each conspecific egg was checked for
cracks that might also elicit egg rejection and only eggs
without cracks were used. Each conspecific egg was used
only once. All host eggs and conspecific experimental eggs
were individually marked by water-proof, non-toxic marker
on their blunt pole; eggshell numbering at the blunt pole
does not affect cuckoo host responses to eggs [60,89].

Models painted with acrylic colors show different re-
flectances than natural conspecific eggs (Figure 1). This
may be a problem for interspecific comparative studies
(discussed by [57]) but not for the present work where
comparisons are made within species. In fact, the low re-
flectance of artificial models, e.g. in UV part of the
spectrum, is advantageous because it increases the avian
perceived difference by these UV-sensitive hosts [90] be-
tween own eggs and a parasite model and, thus, provides
a stronger test for host ability to reject non-mimetic eggs
than a more “natural”, UV-reflective model might [91].

We checked the nest content daily, or every second
day, for the standard 6-day period used in studies with
European Turdus thrushes [2]. We classified host re-
sponses to experimental eggs as “ejected”, if the egg was
missing whereas host eggs remained in the nest and
were incubated, or “accepted”, if the experimental egg
remained in an incubated clutch for at least 6 days.

Nest desertion in some Turdus thrushes may be a re-
sponse to specific types of brood parasitism [33,60] or
could result from other causes (human disturbance or in-
clement weather) at the nest. Therefore, we also inspected
randomly chosen, unmanipulated, control nests for the
6-day period (these nests were handled just like experi-
mental nests but no eggs were added).
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We did not remove any host eggs because previous ex-
periments showed that egg removal had no effect on the
rejection behavior of several cuckoo hosts, including
both of these thrushes [2,6]. Nonetheless, our experi-
mental approach of adding (model) eggs rather than
switching them with host own eggs might confound our
results because clutch sizes are smaller in New Zealand
than in Czech Republic [32]. Thus, the addition of a
(model) egg would increase the relative clutch size and
its visible area disproportionately more in New Zealand
than in European nests. Therefore, we included the vari-
able “clutch” in our models to test for such possible con-
founding effects.

Statistical analyses

Overall, we obtained information on host responses under
the 6-day response criterion for and for 685 blackbird nests
and 372 song thrush nests. Although we included some
already published data from Czech Republic ([6]; i.e., exclud-
ing data from other European countries) and New Zealand
[31], the critical majority of the data reported here are new:
81% of blue, 80% of spotted and 100% of conspecific experi-
mental data points had not been previously published. The
inclusion of both old and new data also enabled us to test
whether the relevant conclusions of [6] were simply an
artifact of smaller sample sizes in that study.

We followed the statistical approaches of [6], and our
results are therefore directly comparable with previous
studies. We analyzed all data separately for the two
thrushes. We were primarily interested in the effects of
the type of experimental egg (prediction i), breeding
densities (predictions ii and iii), and sympatry and allop-
atry with the cuckoo (predictions iv and v) on host be-
haviors, and we also controlled for factors that were
shown to affect host discrimination behavior in some
species in previous studies (see below). Rejection re-
sponse was analyzed using generalized linear mixed
models (binomial error and logit link function). Latency
to egg rejection (in days) was analyzed with linear mixed
models (identity link).

To test the CP predictions (ii and iii), our statistical
models included, as the major predictor of interest,
“breeding density” as a categorical predictor with two
levels (low — Czech Republic vs. high — New Zealand).
Breeding densities were similar and relatively low in the
Czech Republic populations (both those classified as
sympatric or micro-allopatric with the cuckoos) and sta-
tistically significantly lower than New Zealand breeding
densities [32]. To test the IP predictions (iv and v) our
statistical models included, as the major predictor of
interest, “geography” as a categorical predictor with
three levels (sympatry, micro-allopatry, macro-allopatry).
Additional predictors included “egg model” type (blue
vs. spotted) and its interaction with “geography”.
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Initially, we fitted full models with these explanatory
variables and “nest stage” (age of nest at start of experi-
ment; categorical predictor with four levels: egg laying,
1-3 days of incubation, 4-9 days of incubation, 10 days
of incubation to hatching), “laying date” (first egg laid;
continuous predictor), “clutch” (clutch size at clutch com-
pletion; continuous predictor). Date was centered within
each year for the Czech Republic and New Zealand separ-
ately to remove confounding effects of between-year vari-
ation of seasonal breeding and timing of experiments [32].
Random effects included population identity and year (en-
tered as a nominal variable, [92]) to test for potential
spatio-temporal correlation in the data.

We selected final models by backward elimination of
non-significant terms. First, we sequentially examined the
significance of covariates and kept a main factor of interest
(CP: breeding density; IP: geography and egg model) in the
model regardless its significance [92]. Reanalyzing the data
with the full models does not change our main conclusions.
In all models, the random effects (population identity and
year) were very small (likelihood ratio tests; [93]), i.e., there
was no significant temporal and population-specific vari-
ation in the data (presence/absence of random effects had
no effect on our conclusions). The simpler models without
the random effects, but with the same structure of fixed ef-
fects, had dramatically better fits (much lower AIC.) and
very similar parameter estimates. Hence, we present results
of the models without random effects [93].

All analyses were conducted in SAS v9.2 [94]. Results
are shown as means + SE unless stated otherwise.

Additional file

Additional file 1: Appendix 1. The statistical assessment and the
resulting estimates of nest desertion as a response to brood parasitism in
European blackbirds and song thrush. Appendix 2. Statistical analyses of
egg rejection rates from models with nest desertion as a specific
rejection response to parasitism excluded or included.
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