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ABSTRACT 
The core asset of most mining companies is its mineral resources and reserves. The company 

produces ore from its reserves, which is a subset of its mineral resources associated with 

varying levels of geoscientific confidence and uncertainty. One of the key evaluation 

challenges is to distil technical complexity into a financial model that is usually designed to 

focus only on one or two key valuation indicators, such as net present value (NPV) or internal 

rate of return (IRR).  

 

The driver behind this research was whether conventional evaluation techniques for mineral 

projects can evaluate accurately both the spatial and temporal characteristics of project risks 

in financial terms, due to their inherent nature to understate the true variance, and under-value 

or over-value the actual NPV. How can conventional evaluation methods be compared to an 

innovative, integrated evaluation technique that quantifies the non-linear impacts of spatial 

resource variables on production constraints in financial terms, measured at the appropriate 

temporal scale?  

 

To answer these questions, this research focused on developing an innovative risk evaluation 

methodology for two different diamond deposits and one gold deposit to incorporate spatial, 

non-spatial and financial data across the evaluation pipeline. The author developed an 

integrated evaluation modelling (IEM) framework based on a unique bottom-up methodology 

that follows every estimation block through the mining and processing value chain, i.e., it 

accurately captures the spatial variability of all relevant value chain variables in the ground 

and their correlated impacts on production constraints such as grade, density and processing 

characteristics. This variability is propagated through the processing value chain at a mining 

block (or selective mining unit, “SMU”) scale.  

 

The IEM approach revealed differences in NPV between a ‘bottom-up’ (or Local) evaluation 

method and a ‘top-down’ (or Global) evaluation method – see Figure 1. While the actual 

NPV for the virtual ore body (VBod) was CAD 2.1 million, the figure shows that the local 

evaluation method (bottom-up) more closely approximated the actual NPV of the project than 

the global (top-down) evaluation method, which materially over-estimated the NPV. 
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Figure 1 compares the Local (bottom-up) and Global (top-down) evaluation methods over 

three different sampling campaigns (75m, 50m and 25m spaced drill holes). 

 

The author demonstrated that cash flow constituents derived from annual estimates in a top-

down approach will not correctly reflect the asymmetries due to operational variability on a 

local, daily basis. The ‘bottom-up’ evaluation method represented a more accurate way of 

deriving annual cash flow estimates needed to make decisions on projects by accumulating 

the appropriate values from a bottom-up approach, i.e. daily, monthly, quarterly then derive 

annual estimates for NPV forecasts. 

 

The two main advantages of the IEM methodology are that firstly, it accurately reproduces 

the spatial resource characteristics of blocks at the appropriate temporal scale; and secondly, 

direct linkages are created between the resource–reserve–financial models within a single 

software environment. This allows multiple scenarios to be rapidly assessed for a mineral 

project and the cost/benefits of implementing risk mitigation strategies to be easily evaluated. 

 

Global ‘top-down’ evaluation method compared 
to a Local ‘bottom-up’ method

V-Bod
Scenario 1

Scenario 2
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Local Annual NPV
Global Annual NPV

VBod Scenario 1 
(75m)

Scenario 2 
(50m)

Scenario 3 
(25m)

Global NPV 
(CAD million)

- 91.6 80.1 73.9

Local NPV (CAD
million)

2.1 32.9 31.4 28.3
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This research also quantifies the financial impact of managerial flexibilities by evaluating 

selected hedging strategies that simultaneously consider production and economic 

uncertainties within an IEM framework. All modelled outputs are calculated in NPV terms 

using a modified DCF approach. The importance of linkages within an IEM framework is 

validated between unsystematic risks, with respect to key resource-to-reserve stochastic 

variables, and systematic risks considering the impact of foreign exchange rates.  

 

The author concludes that the greater the variability of key systematic and unsystematic 

variables, the more the mine has to consider flexibility in its mining and processing schedules 

and management hedging strategies; but the real costs of attaining that flexibility needs to be 

evaluated using an IEM framework. The confidence in a NPV estimate for complex mineral 

projects cannot easily be quantified using any closed-form analytical or mathematical 

solution. Complex, non-linear relationships between resources, reserves, financial and 

economic parameters requires a simulation model based on an IEM framework to provide a 

robust solution. 
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GLOSSARY 
AR    Autoregressive time series model. 

ARIMA   Integrated Autoregressive-Moving Average time series model. 

ARMA   Autoregressive-Moving Average time series model. 

AUD   Australian Dollar. 

CAD  Canadian Dollar. Note that for market convention purposes, the foreign 

exchange rate (USD:CAD) is referred to in the ‘Direct’ sense, i.e. 

specifying the number of CAD required to buy or sell one United 

States dollar (USD). 

Call option  Provides the holder of the option with the right but not the obligation 

to buy the underlying asset by paying the exercise price agreed upfront 

in the contract. A call option is referred to be ‘in the money’ when the 

price of the underlying asset is greater than the exercise price and a 

profit could be made by exercising the option. Conversely, the call 

option is ‘out of the money’ if the price of the underlying asset is less 

than the exercise price. 

CAPM  Capital Asset Pricing Model. 

CPHT Carats Per Hundred Tonne (a measure of diamond grade). 

Correlation  A measure of the dependency between two variables; or may be 

calculated as a measure of spatial dependency of a single variable at a 

distance interval. 

Covariance A measure of the dependency between two variables; or may be 

calculated as a measure of spatial dependency of a single variable at a 

distance interval. 

Conditional simulation A geostatistical tool which can be used to generate punctual or block 

‘realisations’ of mineral grades. Each realisation is intended to honour 

the histogram and semivariogram of the true grade distribution, as 

well as honouring known data points. 

Conditional distribution The probability distribution for a variable, given the known value 

of that variable at other locations in space. 

DCF   Discounted Cash Flow. 
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DTA  Decision Tree Analysis estimates the maximum and minimum project 

value by evaluating the probabilities associated with different options 

discounted back at the traditional discount rate. 

European options  Those options that can be exercised only on their maturity date while 

options that can be exercised at any time are referred to as American or 

Real Options. 

Exercise price The amount of money invested to exercise the option if you are buying 

the asset (call option); or the amount of money received if you are 

selling the option (put option). As the exercise price of an option 

increases, the value of a call option decreases and the value of a put 

option increases. This determines the intrinsic value of the option. 

FX Foreign exchange rate. 

Geometallurgy It is a cross-discipline approach between geostatistics, geology, mining 

and metallurgy with the objective of addressing some of the 

complexities associated with determining the value of a resource and 

whether it is economic to exploit.  

Geostatistics  Mathematical techniques used to estimate properties which are 

spatially dependent. 

Heteroskedasticity  Non-constant variance. 

Homogeneity  The property of a spatial series when its characteristics are independent 

of location. Homogeneity is equivalent to stationarity. 

Homoskedasticity  Constant variance. 

IEM Integrated Evaluation Modelling approach, which models the linkages 

and dependencies between resources, mine planning and the financial 

model. 

IRR   Internal Rate of Return.  

Kriging A collection of generalised linear regression techniques for minimising 

an estimation variance defined from a prior model. In contrast to 

classical linear regression, kriging takes into account stochastic 

dependence among the data. 

Kriging variance  The minimised value of the estimation variance. It is calculated as a 

function of the semivariogram model and locations of the samples 

relative to each other and the point of block being estimated. 
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Kurtosis  The kurtosis is a measure of the ‘peakedness’ of a data distribution 

around the mode. A kurtosis: equal to 3 suggests a normal, or 

Gaussian, distribution; < 3 implies a lower concentration near the mean 

than a normal distribution; and > 3 suggests that the distribution has an 

excess of values near the mean. 

MA    Moving Average time series model. 

Markov process  A stochastic process in which a prediction is determined solely by the 

closest n observations, and is stochastically independent from all 

remaining, more distant observations. 

MCS Monte Carlo Simulations - any number of procedures that use 

simulated random samples to methods make inferences about actual 

populations. 

Multivariate conditional simulation An extension of conditional simulation which also 

aims to ensure that the correct dependencies between simulated 

variables are honoured in each realisation. 

NPV   Net Present Value. 

Nugget effect  When the semivariogram does not pass through the origin and arises 

from the regionalised variable being so erratic over a short distance 

that the semivariogram goes from zero to the level of the nugget in a 

distance less than the sampling interval. 

OLS    The regression analysis method of Ordinary Least Squares. 

Ordinary Kriging  The general geostatistical estimation process often simply known as 

kriging. Unlike simple kriging, the mean is unknown. 

PDE   Partial Differential Equation. 

Put option  The converse of a call option – provides the holder of the option with 

the right but not the obligation to sell the underlying asset to receive 

the exercise price. A put option is referred to be ‘in the money’ when 

the price of the underlying asset is less than the exercise price and a 

profit could be made by exercising the option. Conversely, the put 

option is ‘out of the money’ if the price of the underlying asset is 

greater than the exercise price. 

Random field  The application of time series analysis to the spatial variability of 

theory geotechnical properties, and unlike time series analysis, random 

field theory is not confined to one dimension.  
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Range    The distance over which the semivariogram becomes a constant. 

Real Option The application of financial options, decision sciences, corporate 

finance and statistics to evaluating real or physical assets as opposed to 

financial assets (cf. definition of European options). A real option is 

the right but not the obligation to take an action (such as deferring, 

contracting, expanding or abandoning) at a predetermined cost, called 

the exercise price or strike price over the life of the option. 

Regionalised  A variable which has properties that are partly random and partly 

variable spatial, and has continuity from point to point, but the changes 

are so complex that it cannot be described by a tractable deterministic 

function. 

Resource  A ‘Mineral Resource’ is a concentration or occurrence of material of 

intrinsic economic interest in or on the Earth’s crust in such form, 

quality and quantity that there are reasonable prospects for eventual 

economic extraction. The location, quantity, grade, geological 

characteristics and continuity of a Mineral Resource are known, 

estimated or interpreted from specific geological evidence and 

knowledge.  

Reserve An ‘Ore Reserve’ is the economically mineable part of a Measured 

and/or Indicated Mineral Resource. It includes diluting materials and 

allowances for losses, which may occur when the material is mined. 

Appropriate assessments and studies have been carried out, and include 

consideration of and modification by realistically assumed mining, 

metallurgical, economic, marketing, legal, environmental, social and 

governmental factors. These assessments demonstrate at the time of 

reporting that extraction could reasonably be justified.  

ROV   Real Options Valuation. 

Simple Kriging  The same as ordinary kriging, except that the mean is assumed known 

and thus, there is no need to impose the unbiasedness condition, which 

eliminates the final row from all matrices, as is the final column of the 

square matrix.  

Skewness  The Skewness is a measure of the symmetry of a data distribution. A 

skewness of zero suggests a symmetrical distribution, a positive value 

indicates a right-hand skew, and a negative value indicates a left-hand 
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skew. 

Spatial series  A sequence of discrete or continuous data measured at specific 

locations - the spatial equivalent of a time series. 

Stationarity  A term used to denote different degrees of invariance in the 

characteristics of random fields. If the mean and autocovariance of the 

series change with the lag, and not location, the series is said to be 

weakly stationary. If all higher moments depend on the lag, and not 

position, the series is said to be stationary in the strict sense. 

Systematic risks Risks related to economics, such as price and foreign exchange rates 

etc. that can be diversified. 

Time series  A mathematical technique used to estimate properties which are 

analysis temporally or spatially dependent. When applied to 

geotechnical engineering, time series analysis is usually referred to as 

random field theory. 

Trend  An abstract expression of the low frequency, large-scale systematic 

variation of a regionalised variable. The trend may also include bias in 

the test method. 

Turning bands  A simulation algorithm that can produce both non-conditional and 

conditional results. The method works by simulating one-dimensional 

processes on lines regularly spaced in 3D. The one-dimensional 

simulations are then projected onto the spatial coordinates and 

averaged to give the required 3D simulated value. 

Unsystematic risks Project specific risks related to resource/reserve parameters such as 

grade, geology, density etc. 

USD United States Dollar (see FX rate convention in definition of CAD). 

USD/Carat United States dollar per Carat is an expression of revenue for 

diamonds. 

Semivariogram  A quantification spatial correlation of a variable, usually calculated 

from sample information.  

VBod Virtual ore Body, which is an analogue of reality created through 

conditional simulations based on actual drilling results. 

WACC  Weighted Average Cost of Capital. 
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“As far as the laws of mathematics refer to reality, they are not 

certain; and as far as they are certain, they do not refer to reality.”  

― Albert Einstein 

xxvi 
 



 
 

Chapter 1 : Introduction 
1.1 INTRODUCTION 

The fundamental building blocks of most mining companies’ business models are resources, 

associated with varying levels of geoscientific confidence and uncertainty. An understanding 

of this uncertainty is necessary to guide decision makers in the acquisition of or ‘walking 

away’ from new projects and assist in the optimal exploitation of reserves (Kleingeld and 

Nicholas, 2004). Complex mineral projects often have many uncertainties caused by the 

nature of estimating reserves based on limited data, problems in forecasting commodity 

prices and production costs, long evaluation periods during which economic and technologic 

conditions can change, uncertain regulatory and environmental costs and, in many cases, long 

project lives (Torries, 1998).  

 

Given this context, mine management is often expected to make evaluation decisions at 

different stages of projects based on limited and uncertain data. The basic procedure of any 

evaluation is to compare the consequences or relative values of all possible alternative actions 

and then make informed decisions based upon the observed results. The challenge is 

exacerbated by having to distil technical complexity into a financial model that is usually 

designed to focus only one or two key valuation indicators, such as net present value (NPV) 

or internal rate of return (IRR).  

 

While IRR was a popular metric in the 1970s and a1980s, NPV of discounted cash flows is a 

more widely adopted metric today. The payback period (years to get a positive cumulative 

cash flow, or positive cumulative discounted cash flow) and return on investment (ROI) 

metrics are also important considerations for investors when assessing the risk versus return 

of natural resource projects. Investment decisions are typically based on the estimated 

economic viability of a project and the appetite of the corporate investment committee for the 

associated project risk.  

 

It is often expected that when decision-makers review a project that its NPV estimate 

appropriately incorporates the risk of a project, either in terms of embedding the risk within 

the cash flow revenue and cost streams or by adjusting the discount rate to incorporate a 

technical risk premium reflecting the project’s risk. Industry is divided on this issue, either 

1 
 



embedding technical risk by means of conservative assumptions in components of the cash 

flow, e.g. in the ramp-up period of a new mine; or making central estimates of cash flow 

components and then evaluating risk by sensitivity analysis. However, these are superficial 

ways to assess risk and there can be distinct limitations in adopting these methods in some 

cases. Furthermore, it will be shown that an incorrect valuation technique or decision 

criterion may be applied and unknowingly derive an answer that is mathematically consistent 

and may appear reasonable but is still inaccurate, and can mislead decision-makers. As this 

thesis shows, a simulation methodology is needed to determine the production and financial 

impacts of interdependencies of the uncertain components of cash flows. 

 

This thesis is presented from the perspective of a project economist or project manager 

‘within’ a company that has to evaluate whether a specific project is economically viable or 

not. The project is usually evaluated firstly as a ‘stand-alone’ project then assessed whether it 

contributes positively or negatively to the overall project portfolio to ensure that it offers fair 

return to the company’s shareholders. This frame of reference is expanded to include a 

company’s corporate strategy from a risk versus return perspective to understand the most 

appropriate time to invest into, or acquire, a project that on a stand-alone basis may be 

marginally attractive, but will position the company in a market the company feels will 

become more lucrative over time.  

 

Given the vast amounts of capital spent on any one project, each project must be assessed in 

terms of its unsystematic risks (relating to resources and reserves) and systematic risks 

(market related such as prices and foreign exchange rates). While some aspects of market 

related risks are discussed in this thesis, only the USD:CAD (United States versus Canadian 

dollar) foreign exchange rate is explicitly modelled. Commodity prices could have been 

included in the context of systematic risks for this study but given that there are over 16,000 

different price book categories all with their own supply-demand characteristics in De Beers, 

this would have been too complicated for diamonds. The focus of this thesis is on 

unsystematic, technical risks related to resources and reserves in order to quantify their 

financial impact on a project’s NPV. 

 

Although the focus of this research is mainly on diamond deposits, the theories and 

deductions derived from this study are not considered to be exclusive to diamonds. There are 

many estimation and evaluation similarities to non-diamond deposits, such as gold, base 
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metals and iron ore. To demonstrate how these methodologies can be applied outside of the 

diamond industry, two of the three case studies examined in this thesis are diamond deposits 

while the third is a gold-copper deposit. A brief background to the main challenges associated 

with the estimation of diamond deposits and their financial valuation is provided below. 

 

1.2 HYPOTHESES 

The author hypothesized that there would be a material impact (in financial terms) if other 

non-temporal and non-spatial evaluation techniques were used to evaluate mineral projects 

instead of the proposed IEM methodology. This is especially true for mineral projects where 

there is significant resource variability caused by mining and/or processing constraints. The 

following hypotheses were postulated by the author: 

 

1. Sensitivity analyses and conventional risk analyses using Monte Carlo simulations for 

the evaluation of production inputs into financial models are likely to produce 

material prediction errors.  

2. The use of traditional evaluation methods based solely on the annual/global 

assessment of production parameters (i.e. not using a ‘bottom-up’ IEM approach) will 

understate the total variability of mineral projects and provide inaccurate NPV 

estimates. 

3.  A risk assessment that combines real option valuation (ROV) with spatial 

geostatistical modelling of resource parameters within an integrated, ‘bottom-up’ 

evaluation framework will provide a more accurate estimate of the ‘upside’ financial 

potential of marginal mining projects than traditional NPV methods based on 

geostatistical modelling alone. 

 

1.3 BACKGROUND TO DIAMOND ESTIMATION AND 
EVALUATION  

One of the key challenges faced by the project economist is to evaluate a project on the basis 

of sparse sampling data and provide a confidence limit on the evaluation. In addition, the 

appropriate discount rate must be selected that captures the overall risk of the project. The 

project economist is also faced with the dilemma of whether a global evaluation technique 

should be used, which could be used to produce a fairly rapid NPV estimate, or whether more 
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sampling data should be acquired to conduct a detailed evaluation with more confidence in 

the NPV estimate. Does the improvement in accuracy validate the cost and time delay of 

acquiring the additional sampling data? If a particular risk has a considerable material impact 

on the NPV of a project, should this risk be mitigated and would the benefits of implementing 

this mitigation outweigh the costs? 

 

One of the main aims of this research is to quantify the degree of accuracy associated with 

the NPV of an individual project and how best to reflect the associated risk. Mining is 

acknowledged as a complex environment with many sources of uncertainty ranging from 

sampling to economics. In order to optimize investment decision-making, an appropriately 

structured evaluation model must be developed. An evaluation model must be designed to 

encapsulate and integrate complexities across the evaluation cycle, with respect to sampling, 

resource estimation, mine planning and treatment, and financial and economic modelling. 

These complexities are diverse and range from sampling support and scale effects to 

understanding the impact of variability, uncertainty and flexibility on operational efficiency 

and economic viability (Kleingeld and Nicholas, 2004).  

 

These complexities, combined with time and capital constraints, usually do not allow all 

components of evaluation to be integrated into a model. Hence, the model must strike a 

balance between simplified estimation techniques and incorporation of those components of 

the project that will make the most significant impact on the investment decision. These 

aspects may include technical parameters related to resources and reserves, legal, 

environmental, political and economic issues, and taking due cognizance of limited human 

resources and human errors in judgment. 

 

The limited availability of representative sampling data to provide accurate production 

forecasts is an inherent problem for the evaluation of most mineral commodities. What makes 

diamond deposits even more difficult to estimate is that there are stochastic variables 

associated with both its estimation of resources and its revenue (USD/carat) that can lead to 

greater uncertainty in the final NPV estimate.  

 

Retrospective studies that compare resource and reserve estimates with actual production are 

not always practical for diamond projects. Open-pit and underground diamond mining rarely 

depletes ore from a single block for a period lasting a month or more. Ore is extracted and 
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treated from a combination of mining blocks that fulfill both the blending requirements of ore 

being sent to the treatment plant and the financial model requirements to maximize NPV. As 

a result thereof, it is impossible accurately to reconcile resource estimates with production to 

a block model resolution scale. Furthermore, varying economic parameters such as diamond 

prices, exchange rates, commodity prices and labour prices complicate accurate 

reconciliation.  

 

While diamonds are not sampled in detail (at SMU scale) before production due to it being 

too time consuming and expensive, the author recognises that there are classes of deposits 

that are sampled in more detail from blast holes and/or reverse circulation holes, such as 

porphyry copper-gold-molybdenum deposits and volcanogenic massive sulphide (VMS) 

deposits containing copper, zinc, lead, gold and silver. For these deposits, the reconciliation is 

made between ‘delivered to mill’ based on measured or calculated head assays (Parker, 

2012). 

 

For most minerals, the following are required to prepare an estimate of the in situ mineral 

value: 

• Delineation of the lithological units and their continuity;  

• The type of mineralisation within each lithology; and  

• Quantification of the mineral concentration within each lithology.  

 

The steps highlighted above yield a resource estimate of the in situ mineral content or grade. 

The price of the commodity is usually determined by the market value, which can be affected 

by a complex relationship of investor confidence, political, socio-economic and other factors. 

There is usually no requirement to estimate the in situ value of the commodity as a function 

of the commodity’s attributes. 

 

The particulate nature of diamonds, their size, shape, quality, colour and value are vital 

factors in the accurate estimation and evaluation of diamond deposits. Diamond occurrences 

in nature are rare and are usually measured in parts per billion, whereas most other mineral 

commodities are measured in parts per hundred (in percentages). Diamonds are brought to the 

earth’s surface in volcanic host rocks, principally kimberlite and to a lesser extent, 

lamproites. Most of these primary source rocks (or kimberlite pipes) do not contain 
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diamonds, and those that do are very rarely economic, typically less than 1% of all known 

kimberlites (see Gurney et al., 2005 for more information on the economic concentrations of 

diamonds in kimberlites and lamproites).  

 

Figure 2 illustrates the 

comparison between the degree 

of complexity associated with 

estimating diamond deposits 

versus other mineral 

commodities, relative to both 

geological homogeneity and 

average grade (ppm) plotted on 

the x- and y-axes, respectively.  

 

Perhaps unique to diamonds is 

the necessity to take a few large 

bulk samples to infer the size 

frequency distribution of the 

diamonds and the assortment in 

terms of shape, clarity, colour etc. Based on the size of these bulk samples, the revenue 

suggested by the stones recovered may sometimes be increased to account for extremely rare, 

high-value stones that were missed in collecting the sample. Other variables such as the 

geological model, densities and grade (if estimated solely from macro diamonds recovered 

from large diameter drilling) are usually no more difficult to estimate that similar variables 

for most other mineral deposits. Where grade is estimated using micro-diamonds, there is 

considerable dependency on the interpretation of the size frequency distribution determined 

by the resource estimator. 

 

Based on the author’s experience, four key phases of estimating diamond deposits can be 

identified that contribute to the overall estimation complexity (also refer to Kleingeld and 

Nicholas, 2004 for further information on complexities associated with diamond estimation 

and evaluation). While these are similar to the estimation phases for other minerals, the level 

of complexity for each individual phase combined with the correlations between phases are 

unique to diamond deposits. The four key phases are: 

Figure 2. Sampling and estimation difficulty in relation to grade and 

geological continuity (after King et al, 1982) 
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1. Delineation of the geological model; with respect to the outer pipe geometries and 

inner lithological boundaries to ascertain continuity both laterally and vertically; 

2. Estimation of the total content curve used in grade estimation (usually lognormal, 

highly positively skewed distributions);  

3. Estimation of densities and other geometallurgical characteristics that affect mineral 

processing within each lithological unit; and 

4. Revenue estimation, which depends on a further four key variables: viz. 

a. Diamond size distribution  

b. Diamond colour distribution  

c. Diamond quality distribution  

d. Diamond crystal shape. 

 

These additional sources of variability increase the complexity of evaluating diamond 

deposits which typically implies lower confidence levels overall. The sampling scale 

resolution typically has to be very fine (i.e. a tightly spaced grid with many drill holes) to 

detect the short-scale variabilities of each variable. This is usually practically impossible due 

to the high costs of sampling, length of time that it takes and physical environmental and 

geological restrictions, in some cases. As a result, there will always be a degree of uncertainty 

associated with the estimation of the mean and variances of these resource variables. An 

alternative method is sought to quantify the potential error in the project’s NPV based on the 

existing sampling data. 

 

1.4 SPECIFIC AIMS 

1.4.1.  In Scope 

The purpose of this research was to develop an innovative risk evaluation methodology for 

mineral deposits to incorporate spatial, non-spatial and financial data across the evaluation 

pipeline in an integrated software environment. The drivers for this research focused on 

whether conventional evaluation techniques for mineral projects have the capacity to evaluate 

accurately both spatial and temporal characteristics of project risks in financial terms, due to 

their inherent nature to understate the true variance, and hence under-value or over-value a 

project’s actual NPV. The author strived to understand how conventional evaluation methods 

could be quantitatively compared to an innovative evaluation technique that more 
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appropriately captures the non-linear effects of spatial resource variables on production 

constraints taking into consideration the short (block-by-block) spatial and temporal scales. 

 

This research includes the modelling of both unsystematic (project specific) risks for 

resources and reserves, and systematic (market) risks such as foreign exchange rate. The 

financial value of the mineral project is computed in conventional discounted cash flow 

(DCF) NPV terms and then compared to a real options valuation (ROV) method.  

 

The author undertook the following research and development: 

 Generated resource models (through geostatistical kriged estimates and conditional 

simulations) using ISATIS geostatistical software (Geovariances, 2008);  

 Designed and developed the software environment to link resources to mining and 

processing constraints using MS EXCEL and VBA coding language;  

 Created, and modified existing, financial models (in MS EXCEL, versions 2007 and 

2010) to provide an integrated evaluation framework using VBA coding;  

 Generated forward models for FX rates using a real options valuation (ROV) 

framework in VBA code (with kind assistance from CERNA, Ecole des Mines); 

 Ran various risk analysis tests (sensitivity analyses, Monte Carlo Simulation analysis 

etc.) to compare conventional evaluation methods to the author’s proposed 

methodology using Palisade’s @Risk software (Palisade, 2008); and 

 Developed, evaluated and linked selected FX rate hedging strategies to resource 

model uncertainties (using geostatistical conditional simulations) to assess the 

combined impact of both systematic and unsystematic uncertainties on a project’s 

NPV. 

 

The author developed this methodology using an integrated evaluation modelling (IEM) 

framework, (Nicholas et al., 2006) and compared the advantages and limitations of 

production and financial outputs with conventional risk analysis techniques based on linear 

kriged estimates, Monte Carlo Simulations (MCS) and sensitivity analyses.  

 

The objectives of the research were to: 

1. Assess the financial impact of the information effect on a diamond project valuation 

by systematically imposing a sequence of ‘virtual’ drilling grids onto an analogue or 
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virtual ore body (VBod) that represents a version of reality. The resource estimate and 

subsequent financial NPV estimate of the project were re-calculated each time as the 

number of drill holes increased. The evaluation focuses on the degree of variance and 

shift in the median NPV estimate as a function of increasing the information effect 

and attaining greater knowledge about technical risks of the project; 

 

2. Estimate whether the non-linear effect of spatial resource variables on production 

constraints for a diamond project is material or not in production and financial terms. 

Furthermore, compare the temporal scale assessments of evaluating multiple spatial 

resource variables on a short-scale (block-by-block, daily basis) to that of a 

conventional longer-term, annual scale; 

a. The resource impact is assessed using geostatistical conditional simulations on 

a block-by-block basis to compare production and financial results for 

different temporal scales (viz. daily, monthly, quarterly and annually); and 

b. The correlated impacts of resource variables (linear and non-linear); and their 

interaction with reserve (mining and processing) constraints and their system 

dependencies are evaluated. 

3. Calculate the combined impact of technical (unsystematic) risks with economic 

(systematic) risks on project value to assess whether it provides more value than the 

conventional valuation approach, which only considers systematic risks, to evaluate 

various hedging strategies. This approach focuses on capturing and modelling spatial 

resource uncertainties with reserve constraints and economic uncertainties to quantify 

the combined impact on decision-making and how the cost/benefits of risk mitigations 

strategies could best be evaluated. An economic forward model using a real options 

valuation (ROV) approach is used to represent foreign exchange (FX) rate 

uncertainty. The five scenarios considered are: 

• A flat nominal foreign exchange rate of 1.21 (reflecting management’s 

simplified assumption of an average FX rate over a three year period); 

• Actual foreign exchange rates;  

• No hedging but stochastic spot foreign exchange rates following a Garman-

Kohlhagen; 

• Hedging with zero-cost foreign exchange rate collars; and 
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• Hedging with calls evaluated using the Garman-Kohlhagen call option models 

(with an additional consideration for volatility uncertainty in the input 

parameters using a range of FX strike rates). 

 

4. Evaluate the levels of predictive accuracy (and associated confidence limits) when 

using Monte Carlo Simulations (MCS) versus spatial geostatistical techniques to 

value mineral projects. There are several increasingly sophisticated MCS techniques 

to capture the uncertainty of resource, reserve and financial parameters. While MCS 

techniques may offer a degree of simplicity and significantly shorter processing time 

compared to geostatistical techniques, little has been documented in terms of their 

possible prediction errors; 

a. The use of sensitivity and MCS risk analyses techniques are compared with 

detailed spatial modelling techniques (examining differences at each stage of 

the evaluation pipeline, viz. resources, production and financial); 

b. The impact of correlation among parameters; number of simulations (iterations 

in MCS); probability density (shape) assumptions; and influence of the 

information effect (number of drill holes) are evaluated between MCS, 

sensitivity analyses and the use of conditional simulation techniques; and 

c. Different approaches to run MCS within the resource estimation stage, after the 

production (mining and processing) stage and within the financial model are 

examined and compared to capturing technical risks through conditional 

simulations. 

 

5. Provide quantifiable confidence limits for cash flows per year and NPV estimates 

over the life of a project based on correctly accounting for spatial resource, reserve 

and economic uncertainties. In addition, identify high-risk periods (years) in the life 

of mine schedule where the combined production and economic uncertainties may be 

below an expected economic threshold or value-at-risk. 

a. Cumulative probability density curves are produced for the NPV of the project 

based on multiple resource scenarios generated by geostatistical simulations to 

quantify confidence limits; and 

b. Similarly, confidence limits are quantified for each cash flow period. 
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It is worthwhile to mention the differences between accuracy and precision in the context of 

this study. Accuracy is generally defined as the ability of a measurement to match the actual 

value of the quantity being measured. Precision, on the other hand, refers to the ability of a 

measurement to be consistently reproduced, and to the number of significant digits to which a 

value has been reliably measured (Taylor, 1999). The scope of this study focuses on 

measuring the accuracy of the estimated NPV in relation to the true NPV, while striving to 

reproduce results in a repeatable, objective and scientific manner, i.e. accuracy and precision 

are objectives of this study. 

 

1.4.2.  Out of Scope 

For the purposes of this study it will be assumed that the main risks affecting project 

valuation are associated with resources and reserves, in terms of understanding resource 

variability and its consequential impact on production/engineering design and operational 

cash flows. This is supported by results from a CIM survey conducted by Smith (2000).  

 

The author recognises that since the widespread adoption of geostatistics in the industry and 

disciplined approach to resource and reserve estimation imposed by the JORC code (first 

published in 1989 and the latest being the 2012 update), and other codes following the 

CRIRSCO template (CRIRSCO, 2013), the proportion of project failures related to inaccurate 

resource and reserve estimates has declined. In the last decade, the main problem has been 

the estimation of capital and operating costs, linked inextricably to rising labour costs, 

falling/fluctuating commodity prices, under-estimation of the length of time required for 

various environmental, financial and legal approvals to be in effect, and sometimes a case of 

poor engineering design for the mine/processing plant in relation to the assumed variability of 

the estimated reserves. 

 

While the focus of this research is on evaluating the economic impact of resource and reserve 

risks, it is not intended to provide a comprehensive overview of all resource and reserve risks. 

It will be assumed that modifying factors such as political, legal, social and environmental 

enabling the successful conversion from resources to reserves have already been considered 

and are in place. 
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Holton (2004a) states that risk comprises two essential components, viz. exposure and 

uncertainty. While this research focuses predominantly on uncertainty, the concept of 

exposure is equally important. In general, projects are exposed to those scenarios 

(propositions) that have material consequences for a company. The issue “would we care?” 

questions the materiality of the risk proposition on a project.  

 

Analysts tend to measure and characterize those risks that they perceive will have the biggest 

impact on NPV. How is the exposure to risks characterized if they have not been identified 

and measured? While this research focuses on the impact of resource variability on reserves 

and the financial model, it tends to concentrate on those resource variables that can and have 

been measured, and have the biggest material impact on business decision-making. In all 

three of the case studies discussed in this study, the key resource variables affecting the 

business have already been identified. However, the impact of their variability on the 

financial model is unknown, which is the focus of this research. It has been assumed that 

historical production and/or drilling information has been used to identify these key variables 

in each of the case studies. 

 

Lastly, this research does not focus on the optimization of block selections within a resource 

block model based on a set of mining, processing or economic criteria. Typically, these 

optimization studies focus on optimization of production schedules (mining and processing) 

aimed at being incorporated into commercial software packages but while this work is 

admirable, it is often conducted under the hypothesis that the block values are accurate. The 

problem is that mining companies often do not drill in detail their high-grade areas and other 

areas scheduled for early production, which can materially affect the estimation of NPV. The 

author’s focus is on assessing the impact of resource variability on a set of given mining and 

processing constraints (rather than optimization) and expressing the outputs in clear, financial 

terms. It also assesses the combined impact of resource plus economic uncertainties on 

reserve constraints and risk mitigation decision-making. 

 

1.5 ORGANIZATION OF THESIS 

The first part of this thesis evaluates a diamond project with limited sampling data. Global 

evaluation methods are used to estimate a NPV. More sampling data are systematically 
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acquired and the NPV is re-estimated each time to assess improvements in accuracies. Global 

evaluation methods are compared to more detailed, local evaluation methods contrasting the 

improvement in prediction accuracies with the cost of acquiring additional sampling data. 

Two different kimberlite deposits are examined; an underground mining operation and the 

other, an open-pit mine. In each case, the full sampling data sets are used to develop a virtual 

ore body (VBod) representing the ‘actual’ deposit.  

 

Sampling campaigns are virtually drilled into the VBod and resources and reserves estimated, 

which form inputs into the financial model. The advantage of the VBod is that it provides a 

perfect example of a deposit where all values are known, thus allowing all subsequent 

resource and reserve estimates to be compared against it. This allows the economist the 

opportunity to quantify his/her improvement in accuracy as more data are acquired. 

 

The first part of this thesis (up to chapter five) quantifies the risk in NPV terms and identifies 

the main time period during which this risk occurs. The second part of this thesis (chapter 

six) focuses on developing an evaluation method to mitigate the main risks in a project using 

a real options valuation (ROV) method. It evaluates a risk mitigation strategy by 

synchronizing managerial and operational flexibility with the uncertainty during these risky 

periods to mine the deposit in an optimal manner. The author considers that results from this 

particular exercise will be unique to this problem, however, the broader application of ROV 

to a project considering technical uncertainties will be common to other mineral projects. 

 

This thesis comprises seven chapters, organized as follows:  

 

Chapter 1. The specific aims of this thesis are discussed and the overall context (background) 

in which diamond estimation and evaluation problems are defined.  

 

Chapter 2. A literature review discusses seminal papers in the areas of risk analysis, project 

evaluation and finance. A gap statement is established, which articulates that portion of the 

problem that the author is undertaking. The thesis objectives are then summarised at the end 

of this chapter. 
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In Chapter 3 the experimental designs and techniques are described that are used to develop 

the IEM framework, which includes the generation of a virtual ore body (VBod) and spatio-

temporal techniques to build resource, reserve and financial models.  

 

Chapter 4 discusses the resource and reserve variance analysis results from experiments 

conducted in Chapter 3, comparing conventional risk evaluation methods with the author’s 

proposed IEM modelling approach. Sensitivity analyses, Monte Carlo simulation analyses 

and geostatistical outputs are compared with each other.  

 

Chapter 5. The most appropriate methods of capturing and modelling technical risks in the 

financial valuation of a diamond project are investigated. Relationships between the technical 

component of the discount rate, capital expenditure and techno-economic factors are 

quantified through heuristic experiments. These outcomes together with the VBod approach 

are used to provide a quantitative breakdown of the technical component of the discount rate. 

 

Chapter 6 evaluates the combined impact of foreign exchange rate uncertainty with resource 

stochasticity on the NPV for a diamond project. Various hedged and unhedged FX rate 

scenarios are evaluated to identify the preferred management strategy. A real options 

valuation (ROV) approach is used to generate the FX rates to evaluate the mining flexibility 

option and quantify the cost/benefit relationship of implementing this real option. 

 

The thesis concludes with Chapter 7 which includes a final discussion, conclusions and 

recommendations for evaluating future technical risks in mineral projects. 
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Chapter 2 : Literature Review 
2.1 INTRODUCTION 

The core assets of most mining companies are their mineral resources and reserves. The 

discovery, estimation, evaluation, development and optimal management of mineral reserves 

are critical to ensure a profitable supply to meet market demand. The basis of this consistent 

supply is reserves. The essential building blocks of reserves are resources, associated with 

varying levels of geoscientific confidence (Kleingeld and Nicholas, 2004). Resource 

estimation generally includes several variables such as volume, densities of host and waste 

rocks, tonnage and grade. Although the accuracy of these estimates typically increases as the 

amount of data increases, the true values are never known. At any given stage of a project the 

accuracy of resource and reserve estimates is influenced by the uncertainties of quantitative 

(e.g. grade) and qualitative (e.g. geological complexity) data, which are affected by the 

amount, quality and spatial characteristics of the available sampling information.  

 

Holloway (1979) identified four main characteristics of problem-solving that would require 

some form of analytical analysis, viz. when there is a large number of factors; more than one 

decision-maker; multiple attributes and uncertainty. He noted that where there is one or more 

of these factors present it is very difficult to integrate all aspects of the problem and ensure 

that all have been adequately addressed. Typical mineral project and mine evaluation 

problems are characterized by multiple attributes, which are often associated with both 

complexity and uncertainty. 

 

Lawrence (1994) identified four main areas of mineral property valuation, viz. green field 

exploration areas; advanced exploration properties; pre-development projects and developing 

mines; and existing/operating mines. This thesis focuses predominantly on advanced 

exploration projects and operating mines. This is because there are usually more data 

available to support detailed evaluation approaches compared to early-stage green field 

exploration projects. The evaluation process can be divided into two related phases: the 

evaluation phase and the decision phase (Torries, 1998). Since decision-making and 

operations research are large fields in their own right, this study focuses primarily on the 

evaluation process and makes reference to the decision-making processes as needed. “Start 

with the innovative question in mind that drives the risk evaluation”, (Hatchuel et al., 2001).  
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Torries (1998) identified three general types of users of project evaluation results: private 

investors (including privately owned corporations), lenders and governments. Private 

investors are usually the project sponsors and operators. Lenders include commercial banks 

and institutional organizations, such as the World Bank, or downstream processors who lend 

money in exchange for exclusive rights to purchase the mine’s products. Governments at both 

the national and local levels may be participants as lenders, contributors of equity, or taxing 

or regulatory agencies.  

 

Each of these types of users has different investment and evaluation decision criteria. 

Therefore, each will interpret the results of a project evaluation differently, and each may use 

different evaluation methods (Torries, 1998). “ . . . It is in the treatment of imprecise data and 

risk that valuers differ in their opinions of what method is appropriate for particular 

valuations” (Sorentino, 2000). Many mineral projects, and almost all large ones, involve all 

three of these types of users of project evaluation results. Not only must each party 

understand the project from its own perspective, each must understand the position of the 

others if an optimal, mutually acceptable position is to be reached. 

 

Governments are usually most interested in the evaluation model to ensure that they receive 

their portion of royalties, corporate taxes and any other income derived from the exploitation 

of mineral projects. Federal and State governments also have a role to perform to ensure that 

local and regional communities benefit from the social infrastructure of mining development 

while making certain the environment is successfully rehabilitated at the end of the mine’s 

life. Banks and lenders on the other hand are most concerned with the ‘downside’ risk, i.e. 

repayment of the capital borrowed plus all interest paid within the designated payback period. 

Private investors are attracted to dividend payments from a mining company, which represent 

higher returns than the stock markets, plus any ‘upside’ opportunities to increase profitability 

and/or increase longevity of stable dividend payments over an extended life of mine.  

 

Uncertainties in each component of the evaluation model, such as revenue, costs and capital 

can materially affect the economic viability of a project, which influence the project portfolio 

of a company. Uncertainties for each resource model can result in larger variations between 

predicted and actual production outputs and cash flows. Correlations between variables plus 

the ‘system linkages’ between variables and their response to process constraints in the 
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evaluation model must also be appropriately captured and modelled. This implies that it is 

vital to understand resource risks with respect to their stochastic inputs (such as statistical 

means and covariances) and their associated uncertainties. Mine designs, sequencing and 

scheduling requirements are based on resource models, which in turn, provide the run of mine 

(ROM) outputs into the treatment process.  

 

In addition to technical risks relating to resources, the legal, political, social, environmental 

and economic risks must also be evaluated in order to convert resources to reserves. Project 

risks, such as plant ramp-up and time series modelling of project delays, are also important 

considerations. Other fundamental aspects such as technological limitations or improvements 

over time, people skills availability or the potential impact of ‘bad management’ on decision-

making also need to be considered. Risks should be ranked according to their perceived 

probability of occurrence and potential impact on the project valuation. Numerous 

probability-impact techniques are available to assist in this regard (Vose, 2002) and (Aspinall 

and Brown, 2004).  

 

Holton (2004a) states that risk comprises two essential components, viz. exposure and 

uncertainty. While it is acknowledged that some projects and/or companies have higher 

exposure to risk than others, the focus of this study is on uncertainty in the evaluation 

components, and its consequential impacts.  

 

2.2 RISK ANALYSIS OVERVIEW 

The use of numerous risk analysis techniques available in the industry today depends mainly 

on the applicability to the problem, time constraints, availability of accurate data and the level 

of competency of the analyst. Risk analysis techniques range from eliciting expert opinion 

using weighted combinations of expert judgments as adopted by Aspinall et al (2002) and 

subjective risk assessments, (Vose, 2002); to more quantitative modelling using Monte Carlo 

simulations and Geostatistical simulations (Ravenscroft, 1992); (Berckmans and Armstrong, 

1997); (Dowd, 2000); (Dimitrakopoulos et al., 2002) and (Dowd and Dare-Bryan, 2004). 

Boundaries between subjective, semi-subjective and quantitative risk analyses are not always 

definitive. 
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A subjective or qualitative project risk assessment normally commences with a risk 

management plan that assists the risk analyst in identifying project objectives, principal 

stakeholders and provides a time scale for follow-up risk assessments. These approaches 

conventionally use techniques such as probability-impact matrices, risk registers and risk 

matrices. Some risk matrices go one step further and apply weighting factors to the impacts to 

identify those resource risks that are critical to the project. Potential Problem Analysis (PPA) 

or Failure Modes and Effects Analysis (FMEA) are used on stages of projects to facilitate 

proactive risk management of those projects.  

 

A PPA seeks to characterize risk in a systematic way but is not intended to identify every 

conceivable risk or failure mode. PPA performs several risk analyses steps in a logical 

sequence. A risk register is a document or database that lists each risk pertaining to the 

project, along with a variety of information that is useful for the management of those risks. 

The aim of the risk register and PPA approaches is to produce a likelihood of risk occurrence 

table and a Magnitude of Risk Impact table which can be used to plot risks in terms of 

Probability and Impact. 

 

Risk registers and PPA are extremely useful when the time available is limited, for example, 

when due diligence studies are being conducted. They also provide an excellent team-

building opportunity and promote discussion of interconnected risks in various disciplines, 

which forms a basis of understanding for further quantitative risk analyses. While these 

subjective approaches encourage teamwork and provide a good framework for identifying 

problems and their potential impacts, they are primarily based on subjective opinions and the 

results cannot easily be reproduced and/or audited. As a result, these subjective risk registers 

(as stand-alone methods) are inadequate for capturing and modelling technical risks for the 

purposes of a quantitative risk assessment.  

 

The need for an integrated approach to assess the uncertainty on oil and gas investment 

decision-making was recognized by Begg and Bratvold (2001). They introduced the concept 

of a Stochastic Integrated Asset Model (SIAM) which involved trading off some of the 

conventional technical rigour in favour of a more complete and accurate assessment of the 

impacts of uncertainty on the investment decision-making process. This approach 

incorporated non-spatial Monte Carlo simulations, which are better suited to identify and 

quantify those uncertainty parameters that affect the decision the most in early-stage mineral 
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exploration projects rather than pre-feasibility or feasibility studies. The emphasis was on an 

efficient, holistic risk appraisal, rather than attempting to capture or model the spatial 

relationships found in mineral and energy resources or their correlated impacts on reserves, 

and ultimately on decision-making.  

 

In a later paper Bratvold and Begg (2002) pointed out that over the preceding decade many of 

the publications on decision-making analysis tended to focus on quantitative methods at 

portfolio or asset project level in an attempt to provide more ‘quantifiable’ information to 

decision-makers. Most of these publications tended to present elegant mathematical solutions 

using Monte Carlo simulations, Real Options analysis or Markowitz efficient frontier 

optimization algorithms (Markowitz, 1952) to help quantify uncertainty and risk and to 

illustrate how decisions should be made. Unfortunately, many authors found the real world so 

complex that these models were of limited use (see Bratvold and Begg, 2002, for further 

reading on limitations on the use of Markowitz portfolio theory in the oil and gas industry).  

 

Decision-makers preferred making decisions based on intuition, past experiences and 

repetition, ‘what’s worked in the past’. “Unfortunately, intuition and repetition are unreliable 

teachers at best. Research shows that the less competent people are, the less likely they are to 

know it. Overconfidence is a deeply rooted human characteristic” (Bratvold and Begg, 2002). 

 

No mineral industry project is completely free of risk nor is its success completely certain; 

there is always a risk of failure. Risk cannot be eliminated (unless the orebody has been 

totally depleted) so the aim of risk analysis and assessments is to highlight the best risk 

mitigation strategy. A general strategy for dealing with risk comprises the following: identify 

the risk; assess and quantify the risk; reduce the risk; determine the minimum acceptable 

level of risk; reduce the risk to a minimum (where necessary); and manage the residual risk 

(Dowd, 1997 and Vose, 2002). In general, risk is analysed by project analysts (or engineers) 

and communicated to decision makers who, based on their perception of the risks, have to 

make informed investment decisions on the economic viability of a project, relative to the 

company’s project portfolio. 
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2.3 PROEJCT EVALUATION OVERVIEW 

An evaluation framework should be designed to encapsulate and integrate the complexity 

across the evaluation cycle, i.e. sampling, resource estimation, mine planning and processing, 

and financial and economic modelling. This complexity is diverse and ranges from sampling 

support and scale effects to understanding the impact of variability, uncertainty and flexibility 

on operational efficiency and economic viability. These complexities, combined with time 

and capital constraints, usually do not allow all aspects of evaluation to be integrated into a 

single model. The model must strike a balance between simplified estimation techniques and 

sufficient incorporation of aspects of the project that will make a material difference to the 

investment decision (Nicholas et al., 2006). 

 

Many of the well-established resource and reserve classification codes refer to a mineral 

resource as having some “reasonable and realistic prospects for eventual economic 

extraction” (JORC, 1999, 2004 and 2012; SAMREC, 2000, 2007 and 2009; and NI43-101, 

2001 and 2011). The more recent versions of these codes make specific reference to the 

definition of resources that ‘… allow the application of modifying factors in sufficient detail 

to support mine planning and evaluation of the economic viability of the deposit’ (for the 

definition of an Indicated Resource); and for the definition of a Measured Resource ‘… allow 

the application of modifying factors to support detailed mine planning and evaluation of the 

economic viability of the deposit’.  

 

These codes offer guidelines for assessing the criteria required to define mineral reserves but 

do not stipulate any quantitative confidence limits associated with tonnages, grade and 

revenue estimates. The selection of measurement scales and their consequential impact on 

reserves and the financial model is likely to have a material impact on the economic viability 

of a mineral project. It is usually the subjective judgment of a competent person as to the 

appropriate resource classification based on the information provided.  

 

Mineral project valuation has progressed substantially since the 1980s to 1990s with the 

emergence of CIMVAL (2003) and VALMIN (1998 and 2005) valuation codes and 

guidelines that govern the technical assessment and valuation of mineral assets and securities. 

They are not prescriptive and do not require quantitative confidence limits to be assigned to 

tonnages, grade and revenue estimates. Even after classification, the uncertainty of resources 
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and reserves cannot easily be translated into quantitative risks that can be incorporated within 

a valuation model.  

 

Mineral project evaluations can be placed in one of the following two broad classes: (1) 

determining the fair market value of a property for taxation or similar purposes or (2) 

determining value for investment purposes. Harrington (1987) defines value as “… the fair 

price that an investor would be willing to pay for a firm, or a portion of a firm, or any other 

asset.” He claimed that value was determined by the size of the anticipated return; the date 

that these returns will be received; and the risk that the investor will take to obtain these 

returns. 

 

Fair market value (FMV) can be defined as the value a willing buyer and willing seller may 

place on the property in the absence of any circumstances that would force the owner to sell 

or the buyer to purchase. However, FMV is usually very difficult to determine for mineral 

projects because of their uniqueness and lack of timely deals on which to base fair market 

value determinations. The investment value can be defined as the value at which a transaction 

would actually take place, in which case the actual investment amount may or may not equal 

the fair market value of a property. It is important to note that there may be a material 

difference in investment value between different investors, for example one investor may be 

interested to acquire the assets of another company because their own reserves are close to 

depletion and hence, place a higher investment value on the transaction. The difference 

between the two values depends on the specific investment requirements and constraints of 

the investor, (Torries, 1998). 

 

2.4 RISK ANALYSIS APPLICATIONS IN MINERAL 
PROJECTS 

Early sampling biases and estimation problems were identified by Krige (1951) on gold 

deposits in the Witwatersrand of South Africa. Later, Krige (1959) focused on the 

relationships between development values and recovery grades on the South African 

goldfields. This pioneering work by Krige in the 1950s used statistical frameworks to define 

the relationships between various factors such as vein width, the combined efficiency of 

sampling, measuring, assaying and mining, and recovery factors that affect recovery grades, 
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and variations between predicted and actual production (referred to as resource to reserve 

reconciliation).  

 

Krige (1972) defined uncertainties into two main categories, viz. ‘decision factors’ for which 

specific alternatives (or options) have to be taken either at the outset of a project or as the 

project develops; and ‘risk factors’ which were subject to errors of estimation, such as ore 

grades, tonnages, working and capital costs, inflation and escalation rates, plant recovery 

factors and waste dilution factors etc. Krige stated that with the exception of ore grades and 

tonnages, and possibly the calculation of plant recovery factors, the other financial and 

economic factors could not be defined in a completely objective way and were subject to 

human judgment errors. 

 

Lowrance (1976) identified the main empirical components of decisions together with the 

characteristic value judgment corresponding to each component. Essentially, risk is perceived 

as the likelihood of an adverse event occurring. Estimation of risks is a scientific question 

utilising typical scientific research methods while the acceptability of risk is deemed more of 

a political question based on the perceptions of risk.   

 

Previous literature, Knight (1921), Dasgupta and Pearce (1972), David et al., (1974), Vose 

(2002) and Kleingeld and Nicholas (2004) distinguished between risk (or variability) and 

uncertainty, where variability was defined as the ‘inherent stochastic nature of a mineral 

deposit’ while uncertainty refers to a lack of information, usually related to sampling data. 

David et al. (1974) work was particularly insightful as they showed that the return from open 

pits designed using conditionally simulated ‘real’ values was substantially above returns from 

open-pits designed using kriged estimates only. Authors, such as Levy and Sarnat (1984) 

often use the terms risk (or variability) and uncertainty interchangeably. They believe that in 

the area of financial investment, ‘probability beliefs are invariably subjective’, i.e. the market 

will impose a value for uncertainty. 

 

In the areas of resources and reserves, it makes sense to distinguish between these two terms 

because they can be modelled separately. Conventionally, the focus has usually been on 

modelling or estimating variability. Geostatistical techniques are routinely used to estimate 

grade, geology and density resource models for most mineral commodities, Matheron (1973) 

and Krige (1951). Since geostatistical simulations were developed (Matheron, 1973 and 
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Journel, 1974), they have been used to model the inherent variability and compare the impact 

of different mining methods or support sizes on resources and reserves. Early work (Dowd, 

1976); (Dumay, 1981); (Chica-Olmo, 1983); and (De Fouquet, 1985) focused on 

understanding the influence of technical aspects related to complex mining constraints and on 

quality control during production. As computer power increased, more simulations could be 

run and different types of simulation methods were developed that allowed more complex 

types of geology to be modelled.  

 

The adoption of a holistic approach to ore estimation and evaluation was clearly elaborated 

upon by King et al (1982). One the main aims of the study was to reduce the possibility of 

gross errors in ‘ore’ reserve estimation through recognition that an ore reserve statement was 

an estimate, not a precise calculation. King (1950) emphasized the importance of geological 

structures in ore estimation and Miskelly (1981) focused on ore reserve reporting practices of 

major Australian mining companies. The Australian Mineral Industries Research Association 

(AMIRA) commissioned the Australian Mineral Development Laboratories (AMDEL) to 

make a study of ore reserve estimation in 1970 but King’s report suggests that industry 

continued to perceive the problems of ore reserve estimation as “mainly computational”.  

 

King analysed some fifty new Australian mining ventures (coal excluded) which reached the 

production phase and revealed that reserves ultimately proved to be significantly less than 

predicted with differences ranging from serious to project abandonment. Those mines that 

had significant variations between predicted and actual production had estimation:realization 

ratios (in grade) of about 100:75 in a large gold mine, 100:70 in a major uranium mine, 

100:55 in a sizeable copper mine and 100:80 in a small nickel mine. The study proposed that 

there is an overlap in the meaning of resources and reserves and identifies some of the key 

resource to reserve factors that should be included in reserve estimation, which could result in 

large resource to reserve reconciliation variations. The study focused on the estimation 

process, metallurgical, marketing and governmental factors that must be considered in order 

to achieve an estimate of what the reserve will yield. The study revealed that an ore reserve 

estimate should not only focus on the in situ estimate (resources) but also what will be fed to 

the mill or recovered (reserves). Ore estimation is the bridge between successful exploration 

projects (resources) and mine planning (reserves). 
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Although the areas of risk can be delineated as financial, technical and environmental (Dowd, 

1997), it is difficult and can be misleading to separate them because they are highly 

interrelated when communicating risks to decision makers. The key to valid risk analysis is 

complete integration of all risks both within specific categories and between categories. It is 

essential to understand the nature of events and their associated uncertainties into risk models 

as drivers of the simulation procedures rather than generate probabilities of a risk occurring 

based purely on summaries of historical data.  

 

Since the 90s, the impact of uncertainty on project economics became increasingly important 

as more marginal projects were discovered. (Ravenscroft, 1992); (Berckmans and Armstrong, 

1997); (Dowd, 2000); (Dimitrakopoulos et al., 2002); (Dowd and Dare-Bryan, 2004); (Godoy 

and Dimitrakopoulos, 2011) and (Dimitrakopoulos and Asad, 2013) have all used a 

combination of objective functions and geostatistical techniques to evaluate the impact of 

resource risks on the mine plan and determine their probabilistic impacts on NPV. These 

techniques incorporate resource uncertainty in the scheduling optimization algorithm 

compared to traditional mine planning methods which could result in sub-optimal reserves.  

 

Dimitrakopoulos and Ramazan (2004) presented a paper on uncertainty based production 

scheduling in open pit mining which emphasized the main limitations of traditional 

scheduling algorithms considering uncertain resource inputs. These limitations are a direct 

result from the input of uncertain resource estimates. Discrepancies between actual 

production and planning expectations arise through uncertainty about the orebody, in terms of 

ore grade, tonnages and quality. Traditional methods fail to consider the risk of not meeting 

production targets caused by uncertainty in estimated grades. Vallee (2000) reported that 

60% of surveyed mines had an average rate of production less than 70% of designed capacity 

in the early years. Rossi and Parker (1994) reported shortfalls against predictions of mine 

production in later stages of production that were due mostly to orebody uncertainty.  

 

Traditional production scheduling optimization methods do not consider risk in not meeting 

production targets which occur as a result of grade uncertainty and variability, leading to sub-

optimal results. Dimitrakopoulos et al (2002) show the limits of traditional optimization in 

the presence of grade uncertainty, and the considerable conceptual and economic differences 

of risk based frameworks compared to methods ignoring geological risk. Ravenscroft (1992) 

discusses risk analysis in mine production scheduling, recommending the use of 
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stochastically simulated orebodies to show the impact of grade uncertainty on production 

scheduling. He concluded that conventional mathematical based programming models cannot 

accommodate quantified risk, thus there is a need for a new generation of scheduling 

formulations that account for production risk. 

 

A mathematical programming model was developed by Dimitrakopoulos et al (2002) based 

on linear programming (LP) that took into account geological uncertainty, equipment 

mobility and access required for scheduling and excavating mine blocks. In this scheduling 

approach, a probability is assigned to each block to represent the ‘desirability’ of that block 

being mined in a given period. The probability, calculated from simulated orebody models, 

represents the chances that a block will contain the desired grade, ore quality and quantity, 

including ore grades above given cutoffs, and recovery and processing characteristics.  

 

Dimitrakopoulos et al (2002) compared simulation based model (SM) scheduling with 

traditional modelling (TM) and identified that the risk-based LP schedule performed 

substantially better than the traditional schedule when comparing the overall deviations in ore 

productions during the first two periods. Incidentally, the first few periods are generally the 

most important with respect to generating sufficient equity to pay back debts/loans and 

therefore require the highest confidence. Higher risk blocks are scheduled later in the life of 

mine plan where the time value of money has less effect than on early production periods.  

 

Many of these papers emphasize resource uncertainty from a grade perspective. However, the 

author recognised that risk evaluation for diamond deposits should not only consider grade 

uncertainty but also geological, density and revenue per carat (in the case of diamonds) 

uncertainties together with mining, processing, financial and economic uncertainties 

(Kleingeld and Nicholas, 2004). 

 

2.5 DISCOUNTED CASH FLOW (DCF) APPROACH 

Over the past 15-20 years the techniques used in financial valuation of mineral projects have 

evolved. The addition of risk premiums for discount rates was popular in the mid-1980s. By 

the mid-1990s to 2000s most companies had adopted the Weighted Average Cost of Capital 

(WACC) method, sometimes with a country-risk premium. Conventional discounted cash 
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flow (DCF) is used as the baseline for decision-making, but most mining companies now 

understand its limitations, Davis (1995) and Smith (2000). Firstly, the technical and financial 

parameters used as inputs in NPV calculations are subject to uncertainty; secondly, mine 

management can and do react to changing circumstances (such as rising or falling commodity 

prices) by adapting the mine plan. In some cases Monte Carlo simulations coupled with 

geostatistical orebody simulations overcome the first limitation; real options were developed 

to try to overcome the second one. 

 

The DCF technique is a standard method of valuing financial and real assets where the net 

cash flows are discounted at some constant, risk-adjusted rate to the present value of the 

asset. The seminal paper by Smith (1982) described how significant sources of risk are 

addressed in project evaluations. Smith considered the discount rate to be a fundamental way 

of reflecting risk in discounted cash flow evaluations. The main constituents of the discount 

rate were identified as the real interest rate, mineral project risks and country risks. He noted 

that differences in opinion regarding the discount rate could result in variations of more than 

50% in the NPV of a project. 

 

Previous economic and finance theory proposed the use of corporate cost of capital as a 

discount rate. This value is the weighted average cost of the funds available to a company, 

including stock, debt and preferred shares referred to as the WACC from Sani (1997). The 

WACC is expressed as an interest rate and is calculated as follows: 

WACC d d p p r r e er w c w c w c w c= + + +  

  where Cd is the cost of new debt 

 Cp is the cost of preferred stock 

Cr is the cost of retained earnings 

Ce is the cost of new (external) equity 

 Wd + Wp + Wr + We are the respective weights which sum to one 
Equation 1. Weighted Average Cost of Capital (WACC). 

 

The derivation of the weights is not defined by a single method and may be calculated in a 

number of ways, such as setting the weights equal to the relative proportions of each type of 

finance in the company’s total capital structure or according to the relative importance of 
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each capital component to the company. If the weights are changed, it will change the 

derivation of the WACC and in turn, affect the discount rate. 

 

For evaluations using an all equity basis only, the Capital Asset Pricing Model (CAPM) from 

Sharpe (1964), Linter (1965) and Treynor (unpublished), is most commonly used. The 

CAPM attempts to deal with risk and portfolio impacts at the same time. It suggests that risk 

can be dealt with through appropriately high discounting, i.e. it is a risk premium model that 

assumes that investors need increasingly high returns to compensate for increasingly high 

risk. The basis of this method is that the return on an individual corporate stock can be related 

to the stock market by expressing the relationship of the cost of equity as the sum of the risk 

free rate, and the products of the risk premium of market returns above the risk free rate and 

the beta factor (β) for the common stock: 

cos tofequity riskfreerate marketreturn betafactorr r R β= +  

Equation 2. Cost of Equity as determined by the CAPM. 

 

The beta (β) between a company and the market portfolio is defined as the covariance 

between the rate of return on the company and the market, divided by the variance of the 

market return, from Brealey and Myers (2003). 

 

 

            

  

where Rj and Rm are the returns of the company project and market, respectively; 

σj and σm are the standard deviations of the returns between the company project and 

market, respectively;  

σ2
m is the variance of the market return; and 

ρ is Pearson’s correlation coefficient between the returns of the company project and 

market rate of return 

 

For determining the beta of a new company project, no empirical rate of return is available 

and a ‘suitable’ proxy must be found. This is a subjective decision where the probability is 

very low for finding an exact match of a mining project that suitably produces the same 

expected rates of return over a specified time period, given the technical and economic risks.  

2
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Equation 3. Beta coefficient in the CAPM. 
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The beta factor is a measure of a stock’s volatility in relation to the overall market. It 

measures the part of the asset's statistical variance that cannot be removed by the 

diversification provided by the portfolio of many risky assets, because of the correlation of its 

returns with the returns of the other assets that are in the portfolio. A beta can be estimated 

for individual companies using regression analysis against a stock market index. It is 

important to consider the assumptions that underpin the beta calculation, viz.  

 investors make choices on the basis of risk and return; 

 all investors have the same expectations of risk and return; 

 returns are measured by the mean (not the variance); and 

 risks are measured by the variance. 

 

Furthermore, when deriving the rate of return on the market, market capitalization weighted 

indices are preferred to equally weighted indices, Bradford (2003). This should consider the 

differences in support sizes (by evaluating a sufficient quantum of data) when determining a 

representative rate of return on the market. Biasness caused by ‘thin-trading’ on the stock 

exchange must also be taken into account in calculating the market return. If a stock is thinly 

traded, then it is likely that the month-end price may not arise from a trade on that day but 

may instead be the last-recorded price. Several researchers have devised techniques, such as 

the ‘trade-to-trade’ and Cohen estimators, for obtaining unbiased beta estimates in 

infrequently traded environments.  

 

Blume (1971) and (1975) was the first to document that individual stock betas had a 

regression tendency towards the ‘grand’ mean of all stocks on the exchange.  This regression 

bias arises when an estimation beta coefficient which is considerably higher than the average 

beta is more likely to be an over-estimate of the true beta than an under-estimate. Similarly, a 

very low beta is more likely to be an under-estimate than an over-estimate. A Bayesian type 

adjustment is necessary to correct for this regression bias.  

 

As highlighted by Smith (1982), the beta factors measure the performance of company stocks 

relative to the stock market, but do not address the risks and characteristics of individual 

projects. He found that many mining companies used a discount rate of about 10% for 

feasibility studies of projects in low risk countries. However, there did not appear to be a 

theoretical basis for a discount rate in the 10% range, other than the fact that a 10% rate of 
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return after taxes was deemed to be a reasonable rate of return on government bonds (3% - 

5%, no inflation before taxes).  

 

Three principal components for a mineral project were identified as the risk free interest rate, 

mineral project risks and country risk. The long term, risk free, real interest rate is based on 

the bond rate. Mineral project risks included risks associated with reserves (tonnage, mine 

life, grade); mining (methods, recovery, dilution, mine layout); process (labour, plant 

availability, metallurgy, recoveries, material balances); construction (costs, schedules, 

delays); environmental compliance; new technology; cost estimation (capital and operating); 

and price and market. Country risk refers to risks that are related to country specific social, 

economic and political factors. Smith (1982) proposed that the discount rate can be related to 

these three components by the equation: 

discountrate riskfreerate portionrate countryriskd I R R= + +  

where ddiscount rate = project specific, constant dollar, 100% equity, discount rate 

  Irisk free rate = real, risk free, long term interest rate (approx. 2.5%) 

  Rportion rate = risk portion of the project discount rate 

  Rcountry risk = risk increment for country risk 
Equation 4. Derivation of the discount rate according to Smith (1982). 

 

Using Equation 4, the risk portion of a project could be calculated. For example, if a project 

used a 10% discount rate as a base and country risk was ignored, the risk portion of a 

feasibility study level is 7.5% (10% - 2.5%). He derived the composition of these risks within 

the 7.5% risk portion; and showed the relative differences between these risk compositions 

for a given project phase; and lastly, calculated different risk portions for different levels of 

project stages, viz early exploration projects, pre-feasibility, feasibility and an operating 

mine. However, he recognized that his risk product values used a pre-determined value to 

calculate the prorate risk factors, viz. 7.5%, which would change if the 10% discount rate 

fluctuated. Sorentino (2000) stated that risk and uncertainty are often treated with 

conservatism in estimation and/or adjustment of the discount rate. Malone (1994) quoted that 

“… it is sound practice to be conservative ... final decision should represent a true value 

qualified slightly on the conservative side”.  
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Some academics and practitioners have a view that project-specific risks (also known as 

unsystematic or ‘unpriced’ risks) such as geological and technical uncertainties are not 

correlated with the overall economy and can be completely diversified through the use of an 

investment portfolio (Samis et al., 2005). They believe that technical risks should not be 

accounted for in a project valuation model. This is usually the perspective of an investor who 

can selectively invest his/her money in various companies in order to acquire a diversified 

portfolio that meets with his/her personal requirements. 

 

Decision-makers ‘within’ a company that only have a small number of project investments 

may not have the luxury of having a ‘well-diversified’ portfolio of projects. Often, projects 

may all be related to the same commodity, e.g. several iron ore or gold projects within a 

portfolio that are correlated by price, exchange rates etc. Given the relatively high investment 

costs for constructing and starting a mine (typically in the order of USD100s million to 

several billion dollars), capital and operating expenditures are inextricably linked to each 

site’s ability to operate effectively.  

 

If a diamond or iron ore company is susceptible to a material decrease in commodity prices 

resulting in a drop in revenue, the company will likely focus its efforts to produce from its 

more cost effective operations in order to remain economically viable overall. This affects 

their ability to blend ore from different sites to attain a required threshold according to market 

expectations and they may be penalized accordingly, resulting in a drop in profitability for 

the company. It is also likely that sites with higher resource variability will result in more 

unpredictable production output, which may result in one or more sites (in the portfolio) not 

meeting planned production either in terms of quantity or quality of product (or both). This 

may affect the company’s entire portfolio and its ability to meet market expectation.    

 

2.6 REAL OPTIONS VALUATION (ROV) APPROACH 

Guzman (1991) noted that non-stochastic DCF methods do not take into account the 

flexibility of management response, based on better judgement which alters the original 

business plan and ultimately, changes the valuation result of a mineral project. Davis (1995) 

concurred with this and noted that a possible explanation of at least some of the shortfall in 

DCF versus ROV techniques is that the DCF approach fails to uncover the value that is 
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attributed to active asset management, i.e. through managerial flexibility. Many mineral 

projects have projected reserves over the life of mine (LOM) that exceed 15 to 20 years. 

Conventional DCF calculations typically fail to reflect the potential value of these cash flows 

for longer LOM projects due to the time value of money effect resulting from the discounting 

rate. As a result, it is often not possible to accurately value mineral projects with long LOMs. 

 

Miller (2002) observed that it is ‘not widely appreciated’ that conventional methods such as 

the internal rate of return (IRR) and DCF (NPV) require the assumption of perfect certainty 

of cash flows, even though this is rarely the case in reality. The NPV analysis of mineral 

assets, with respect to the minerals industry, fails to allow properly for the stochastic nature 

of mineral prices and cash flows. Alternative valuation methods, viz. real options that 

consider the stochasticity of mineral prices and cash flows, will enhance the NPV by 

including the ‘active’ or strategic management of mineral assets in response to these 

uncertainties, Guzman (1991), Lehman (1989), Mann et al (1992), Palm et al (1986) and Sick 

(1990). The two most important types of managerial flexibility that are over-looked in DCF 

analysis are ‘operating flexibility’ and ‘investment flexibility’. 

 

Operational flexibility includes any variation of operating parameters related to increasing or 

decreasing production supply (expansion and contraction); shutting-down; re-opening of 

treatment plants; re-optimizing of cut-off grades etc. Investment flexibility provides the 

ability to delay the start of projects should prices or technical risks be deemed too uncertain. 

The lack of valuing the managerial flexibility available to a mineral project will result in the 

mineral assets (and therefore the company) being undervalued using the traditional DCF 

approach, Davis (1995). The expanded value of the mining project is equal to the DCF value 

plus the value provided by the option premium. It is important to assess the cost of attaining 

this option premium (flexibility) against the benefit that it provides. 

 

 

 

Copeland and Antikarov (2001) stated that it is unrealistic to believe that NPV captures the 

flexibility that decision makers have when they undertake projects and proposed that NPV 

systematically undervalues every project. 

 

Expanded Value = DCF Value + Option Premium 
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Lastly, the risk-averse investor may not recognize that most traditional DCF valuations 

assume ‘flat’ metal prices in the models whereas they could fluctuate considerably during the 

life of a project, Davis (1995). Real options analysis attempts to model the possible 

stochasticity of metal price over time.  A newcomer to real options may be forgiven for 

asking why the DCF technique cannot work for options and flexibility included in the model 

by means of decision tree analysis (DTA). The standard process for valuing an asset is firstly 

to calculate expected cash flows; then secondly, discount them at the opportunity cost of 

capital to calculate their present value. While the first step is mostly feasible, finding the 

opportunity cost of capital is impossible because the risk of an option changes every time the 

stock price moves, Brealey and Myers (1991). The stock price is assumed to follow a random 

walk through the option’s life.  

 

For the above-mentioned reasons, an alternative valuation approach is necessary in which 

real options in terms of flexibility are considered while correctly discounting the values to 

attain the present value of an option. 

 

According to Brealey and Myers (1991) the first person to have recognised the value of 

flexibility was Kester (1984) in an article in the Harvard Business Review. The following 

year, Mason and Merton (1985) reviewed a range of applications to corporate finance and in 

their seminal paper, Brennan and Schwartz (1985) applied option pricing techniques, first 

developed in finance, to the evaluation of irreversible natural resource investments using 

Chilean copper mines to illustrate the procedure. To simplify the mathematics, they assumed 

that the reserves were perfectly homogeneous and that the grades were perfectly known. 

From a mining point of view, these assumptions are unrealistic. Armstrong and Galli (1997); 

Carvalho et al (2000); and Goria (2004) have overcome this by combining geostatistics with 

option pricing.  

 

Bratvold and Begg (2002) distinguished between real options thinking and real options 

valuation. Real options thinking focuses on assessing the value of the option to acquire 

information to reduce uncertainty and the value of flexibility (or options) to exploit, or at 

least mitigate, the impacts of uncertainties. They reserved the term real options valuation to 

mean calculating the value of risky cash flows from the perspective of an external investor, 

where the risk is priced using a portfolio of openly traded market instruments that carry a 

similar level of risk. Classical methods of calculating NPV not only ignore the value of real 
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options thinking and valuation, they penalize any delay in making the investment. 

Experienced decision makers who use NPV are well aware of these limitations and often use 

“gut feel”, or “strategic considerations” to compensate. 

 

In their paper, Brennan and Schwartz (1985) used a geometric Brownian motion based on 

Black and Scholes (1973) method with a convenience yield proportional to price in order to 

model the copper price. This was necessary to try to reproduce the natural variability of 

commodity prices over time. In contrast to many other commodities, diamond prices are not 

as volatile. Factors such as oil prices and the exchange rate are more volatile and can have a 

material impact on a diamond project’s value; the oil price affects costs and the exchange rate 

can directly influence the company’s revenue and operational costs. The author has chosen to 

focus on exchange rate for this study.  

 

Many models have been developed for interest rate and foreign exchange rates, ranging from 

simple extensions of Black and Scholes (1973) through to Vasicek (1997) and on to the latest 

models with stochastic volatility. The book edited by Hughston (1996) provides a good 

overview of the subject. The author chose to use the Garman and Kohlhagen (1983) which is 

a simple extension of the Black and Scholes model – see Equation 5. 

 

 
Equation 5.  interest and foreign exchange rate equation.

 

In this model the drift term is replaced by the difference between the domestic and foreign 

interest rates. If St denotes the spot exchange rate at time t and rd and rf are the domestic and 

foreign interest rates, then sS is the volatility of the exchange rate and dWt is a Brownian 

element. The Garman-Kohlhagen (GK) model is used to price European style foreign 

currency options and assumes that: 

 Foreign and domestic interest rates and the exchange rate are constant; 

 European-style options with a pre-determined expiration date; 

 The market is efficient (i.e. there is no arbitrage); 

 There are no transaction costs; and 

 The exchange rate has a log-normal price distribution. 
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Most fungible commodities such as metals traded on stock exchanges, suffer from future 

price uncertainty. These metal markets are typically cyclical, also referred to as mean-

reverting price models in real options. Forward modelling of these prices entails a complex 

blend of (macro and micro) economic theory, ROV principles and industry, competitor and 

market analyses combined with sound experienced judgement (Gentry and O'Neil, 2007).  

 

Diamond prices are also subject to uncertainty. Future medium and long-term trends of 

diamond prices are highly uncertain and may be influenced by many factors such as 

competition, potential devaluation of stones due to conflict diamonds, the risk of synthetic 

diamonds on the overall trade and fluctuating market demand. The economic viability of 

projects that are revenue sensitive may be particularly susceptible to forward predictions of 

diamond prices. The assumption of flat real or flat nominal may be useful for baseline project 

evaluation but is unrealistic for assessing project risks. 

 

Operational flexibility includes any variation of operating parameters related to increasing or 

decreasing production supply (expansion and contraction); shutting-down; re-opening of 

treatment plants; re-optimizing of cut-off grades etc. Investment flexibility provides the 

ability to delay the start of projects should price or technical risks be deemed too uncertain. 

For these reasons, ROV was developed as a better means of capturing and reflecting ‘real’ 

project flexibilities in the estimation of a NPV. 

 

“Similar to options on financial securities, real options involve discretionary decisions or 

rights, with no obligation, to acquire or exchange an asset for a specified alternate price. The 

ability to value real options (e.g. to defer, expand, contract, abandon, switch use or otherwise, 

alter a capital investment) has brought a revolution to modern corporate resource allocation”, 

Trigeorgis (2002).  

 

A practical definition for real options analysis is defined by Mun (2002), viz. “the application 

of financial options, decision sciences, corporate finance and statistics to evaluating real or 

physical assets as opposed to financial assets”. 

 

A real option is the right but not the obligation to take an action (such as deferring, 

contracting, expanding or abandoning) at a predetermined cost, called the exercise price or 
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strike price, for a predetermined period of time, i.e. the life of the option, Copeland and 

Antikarov (2001). They identified six main variables that influence the value of real options: 

i. The value of the underlying risky asset – in the case of real options, this may 

be a project, investment or acquisition. 

ii. The exercise or strike price – the amount of money invested to exercise the 

option if you are buying the asset (call option); or the amount of money 

received if you are selling the option (put option). As the exercise price of an 

option increases, the value of the call option decreases and the value of the put 

option increases. 

iii. The time to expiration of the option – the value of the option increases as the 

time to expiration increases. 

iv. The standard deviation of the value of the underlying risky asset. The value of 

an option increases as the volatility of the underlying asset increases – i.e. 

there is more upside potential. 

v. The risk-free rate of interest over the life of an option. As the risk-free rate 

goes up, the value of the option also increases. 

vi. The dividends that may be paid out by the underlying asset. Dividend payouts 

will decrease the option value. 

 

A call option is defined as the right to buy the underlying asset by paying the exercise price, 

which was agreed upfront in the contract. At the time of exercise, the profit on the option is 

the difference between the value of the underlying asset and the exercise price. A put option 

is the converse of a call option – it is the right to sell the underlying asset to receive the 

exercise price. A call option is said to be ‘in the money’ when the price of the underlying 

asset is greater than the exercise price and a profit could be made by immediately exercising 

the option. If the price of the underlying asset is below the exercise price, the option is ‘out of 

the money’, Copeland and Antikarov (2001). 

 

European options are those options which can be exercised only on their maturity date while 

options that can be exercised at any time are referred to as American or Real Options. 

 

The main types of options can be summarized from Copeland and Antikarov (2001): 

i. Simple options such as deferring or abandoning a project, contracting (scaling 

back) or expanding a project. 
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ii. Switching options are portfolios of American call and put options that allow 

their owner to switch between two modes of operation at a fixed cost. 

iii. Compound options are options on options such as phased investments of a 

project where each phase is an option that is dependent on the exercise of the 

previous option. 

iv. Rainbow options are options that are affected by multiple sources of 

uncertainty, not only price stochasticity. A mining project that has a 

combination of technical, economic and market uncertainties is a typical 

example. 

v. Compound rainbow options are often necessary to model real-world 

applications. 

 

The holder of an option on real assets is analogous to the scenario where the owner of an 

American call option on a financial asset has the right, but not the obligation, to acquire the 

asset at the strike price on or before the exercise date, and will exercise the option if and 

when it is in his/her best interest to do so, Trigeorgis (2002). The decision makers of a 

company (such as the board of directors) have the right but not the obligation, to make a 

capital investment in a project on or before the anticipated date when the opportunity will 

cease to exist, in order to acquire the present value of expected cash flows generated from the 

project. The real investment opportunities (or real options) of a mineral project corresponds 

with the call options on stocks.  

 

Call option on a stock Real option on a project 

Current value of stock Gross present value of expected cash flows 

Exercise or strike price Investment cost 

Time to expiration Time until opportunity disappears 

Stock value uncertainty Project value uncertainty 

Riskless interest rate Riskless interest rate 
Table 1. Comparison between a call option on a stock and a real option on a project. 

 

The option of including flexibility within a project provides management with an opportunity 

to adapt its future actions depending on the future environment. Trigeorgis (2002) described 

management flexibility as introducing an asymmetry in the normal probability distribution of 

NPV, making it more lognormally, or positively, skewed. This expands the investment 
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opportunity’s true value by improving its upside potential while limiting downside losses 

relative to initial management expectations. Most of the important payoffs of managerial 

flexibility can be captured in a simplified way by combining simple options as building 

blocks. Where many real options need to be considered in a project valuation, then the total 

investment opportunity can be seen as a collection of real options or compound real options.  

 

In the absence of managerial flexibility, ‘static’ or traditional NPV would best value the asset. 

Management would make an initial capital outlay, I, to generate a higher present value of 

cash flows, V. 

NPV V I= −  

The difference between V and I is the current value of the investment. Management may 

delay capital investment in the project but this does not necessarily imply flexibility has been 

included in the project valuation.  

 

Although the value of the immediate investment (i.e. the NPV) may be perceived to be 

important, the actual value of the investment opportunity is of greater importance. Therefore, 

an investment opportunity may still be economically desirable even if the investment is 

unprofitable (i.e. NPV < 0). The opportunity to invest is formally equivalent to a call option 

on the value of a project, V, with the initial investment outlay, I, as the exercise price. 

 

Trigeorgis (2002) calculated the value of the investment opportunity for non-traded assets 

based on the Black-Scholes option-pricing formula, adjusting for a cash dividend payout (or 

return shortfall, δ). 

1 2( , , ) ( ) ( )rC V I Ve N d Ie N dδτ ττ − −= −  

Equation 6. The value of an investment opportunity according to Trigeorgis, 2002. 

 

 where V is the value of a completed project 

 I is the one-time investment outlay 

 τ is the time to expiration before the investment opportunity disappears 

δ is the resulting rate of return shortfall between the expected equilibrium rate of 

return, required in the market by investors, and its actual growth rate 

r is the risk free interest rate  
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N(d1) and N(d2) are cumulative normal probability density functions (as defined in the 

Black-Scholes formula) 

 

A conceptual real options framework was introduced by Trigeorgis (2002). It illustrates that 

projects may fall into different categories of evaluation complexity depending firstly, on 

whether the owners have a proprietary or a shared project, whereby the latter implies that 

management must take account of competition in their decision-making. Projects are then 

divided into simple options that can be evaluated as stand-alone investment opportunities and 

compound options, which comprise a sequence of interrelated simple options. The last 

strategic question faced by management refers to the discretionary nature of the decision, 

with respect to the timing of the investment decision. Management must distinguish between 

investment opportunities that allow them to defer their investment decisions (‘deferrable’ real 

options), after receiving additional information, and projects that involve an immediate 

investment commitment (‘expiring’ investment opportunities).  

 

2.7 PROBLEM DEFINITION  

The application of DCF and NPV techniques to evaluate projects is standard practice for most 

financial practitioners today. However, there are a number of fundamental assumptions and 

limitations of the input parameters of the DCF technique, which have been highlighted earlier 

in this literature review that can materially affect the project valuation outcome. According to 

Miller (2002), there are three main limitations of the DCF valuation technique when applied 

to projects of uncertainty: 

1. The selection of an appropriate discount rate poses a problem; 

2. DCF techniques tend to ignore the value of management flexibility; and 

3. Investment decisions are typically viewed as “now or never” type decisions rather 

than as options that may be delayed. 

 

There appears to be confusion among authors in terms of the best use and applicability of the 

DCF technique to value mineral projects. Ballard (1994) seems content that risk can be 

accommodated through a discount rate estimated based on the capital asset pricing model 

(CAPM) from Sharpe (1964), Linter (1965) and Treynor (unpublished). Runge (1994) on the 

other hand believes that uncertainties in mineral valuation are too project specific to be 
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assessed using the CAPM. Butler (1994) regards Monte Carlo simulation methods as being 

impractical and is satisfied with discrete sensitivities instead. Other authors such as Lonergan 

(1994) and Winsen (1994) insist that management flexibility be incorporated into the 

valuation analysis. 

 

Decision tree analysis (DTA) and Monte Carlo simulations (MCS) can be used to model 

uncertainties associated with the input parameters of the DCF equation, and while it is 

possible to allow for correlations between variables in some methods, this often adds to the 

complexity of the model and can result in erroneous results in some cases (see Nicholas,  

2007). MCS can simply be defined as a mathematical method used to model uncertainty in 

one or more parameters of a model that calculates the expected, probability outcome. The 

user specifies the input probability distributions for each parameter, defines the correlations 

(if any) between parameters, and then runs the MCS to produce multiple realisations (draws) 

from each defined probability density/mass function (pdf) to calculate the expected output.  

 

MC simulations are generally used to provide confidence intervals around an expected 

output, where in the interest of reducing modelling time or for very large evaluation models, 

or the lack of appropriate data, expert opinions can be used to define probabilistic ranges for 

specified parameters. Probabilistic outputs are typically generated which are used to assist in 

understanding the key risks for mineral projects. On the other hand, an IEM approach 

requires more development and modelling time than MCS and DTA techniques but provides 

a unique platform to incorporate technical linkages between variables at the appropriate scale, 

specifically focusing on relationships between resources, mining and treatment processes and 

the cash flow model.  

 

The author recognises the popularity of MCS as a risk analysis tool to model the components 

of cash flows for mineral deposits (see chapter five of this thesis), including the modelled 

correlations between variables. MCS can effectively be combined with DTA to provide a 

more quantitative risk analysis of staged decisions for project evaluation, for example a 

project manager evaluating whether to design and build a processing plant at various 

throughput capacities with the outcome dependent on multiple assessment stages considering  

capital costs, operating costs, ore variability and various mine production rates etc. To this 

extent, DTA and MCS risk analysis techniques could be combined with an IEM approach to 
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assess risk in a more quantifiable manner that appropriately captures the spatial correlations 

and their net impact on production in a staged approach. 

 

Time series models could also be used to include correlation among parameters, such as the 

commodity price. However, they typically assume a fixed project life and discount the future 

cash flows at the traditional discount rate to derive the present value of the investment. 

Combinations of these techniques all introduce different aspects of uncertainty, subjectivity 

and complexity into the NPV result by making certain assumptions and/or assuming rigidity 

in the model. 

 

The selection of an adequate risk-adjusted discount rate is subjective and is usually a function 

of the beta (β), derived from a twin project with similar expected cash flows but not 

necessarily similar extraction and/or treatment risks. The selection of an ‘adequate’ discount 

rate appears to be inextricably linked to the perceived risk of the project. Thus, care must be 

taken to select the appropriate valuation method to ensure that risk is not ‘double accounted 

for’ in both the components of the cash flow model and the discount rate applied. While real 

options also make certain assumptions that are similar to the conventional DCF approach, it 

ultimately produces an evaluation result that is more tractable based on the inclusion of 

stochastic variables and managerial flexibility while considering the owner’s prerogative to 

exercise his/her option(s) at any feasible time.  

 

Galli and Armstrong (1999) compared option pricing, decision trees and Monte Carlo 

simulations for evaluating projects. They evaluated how each method handled uncertainties 

such as reserves, oil price and costs; how they incorporated the time value of money; and 

whether the methods allowed for managerial flexibility. They concluded that despite certain 

obvious differences, the methods are different aspects of a more general project evaluation 

framework with NPV as the static base case scenario. 

 

An alternative approach to reflect project risk adds capital expenditure (Capex) over the 

LOM (or specifically during the risky periods) in the cash flow model. Techno-economic 

factors may also be applied to the revenue component of the Inferred Resources in an attempt 

to compensate for project risk. Conservatism may ‘creep in’ where one or more of these risk 

factors are unwittingly included or ‘double accounted’ for in the valuation model. At the 

same time, critical risks could be overlooked and incorrectly accounted for in the evaluation 
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model. The covariance relationships among resource variables and their interaction with 

reserve constraints are complex and cannot easily be modelled intuitively through expert 

opinion or subjective modelling methods. The problem is exacerbated when uncertainty is 

considered with respect to both the mean and variance of each resource and reserve 

parameter. For these reasons, it is necessary to reflect correctly the resource and reserve 

complexities through an integrated evaluation model (IEM) that more realistically captures 

the operational risks to which a project may be exposed to. 

 

Resource variables are spatially distributed and geostatistical techniques are used to provide 

estimates at an appropriate estimation unit size. The adverse consequences of estimating 

values of small blocks from wide-spaced drilling and their impact on pit design and 

scheduling (Armstrong and Champigny, 1989), (Allard et al., 1994) and (Dowd, 1994) must 

be considered. These unit sizes should correspond to the selective mining unit (SMU) at 

which the reserve will be depleted to ensure that an IEM can be constructed at an appropriate 

scale.  

 

Although previous publications, such as David (1974) referred to mining units, the SMU was 

defined by Parker (1980) to refer to the selective mining unit or the smallest volume that 

could be practically segregated to ore or waste. These were typically rectangular prisms. 

Polygonal boundaries were first used to evaluate blast holes but these were found to be over-

optimistic with regard to dilution and ore loss along boundaries. Kriging or inverse distance 

models of small blocks were then tried with success. The next advance was to use hermitian 

polynomial correction for change of support applied to the Nearest Neighbour (point support) 

models to produce grade-tonnage curves for various SMUs (using rectangular prisms). The 

grade-tonnage curves were matched against production (measured by grade control 

polygons), which led to definitions of SMUs related to production rate, not bucket width (see 

Parker, 2012). 

 

An IEM methodology is essential to ensure that short-scale variabilities associated with 

resource variables reflect the impact of mining and processing constraints at an operational 

time scale, which is usually on an hourly or daily basis. If this temporal scale is ignored, 

material errors could be incurred in the estimation of the NPV. 
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Mining depletion (at short-scale) of reserves is influenced by the modelling of resources at a 

specified estimation unit size, i.e. the estimation unit size must be small enough to capture 

some of the inherent variability of the resources estimates at short-scales while taking 

cognizance of the adverse consequences of estimating values of small blocks from wide-

spaced drilling. Ideally, estimating or simulating within small SMUs will provide a more 

accurate representation of the short-scale spatial and temporal risks that could be encountered 

when the mine plan is depleted.  

 

The larger the block size or panel is, the ‘smoother’ the estimate will be resulting in short-

scale variabilities not easily being modelled or detected. This can create a false sense of 

security that all risk ‘averages’ out over a large panel scale or annual time period but this is 

not necessarily true and short-scale variabilities can materially impact upon the business 

model as demonstrated in Nicholas et al. (2006, 2008). The use of large blocks can result in 

an over-estimation of tonnage and under-estimation of grade, particularly where there is a 

final stage of detailed sampling to select ore from waste. NPV can be materially in error if pit 

limits and production schedule are based on the grades and tonnages of large blocks with 

wide sample spacing lines (see Zhang, 1998 and Parker, 2012). The error is exacerbated 

where processing costs are high. Waste that will be segregated by further sampling 

information is incorporated in the large-block estimates, and the associated processing costs 

attributed to it, which can negatively impact the cash flows. Consequently, the scale at which 

resource risks are defined has a direct bearing on the mining and treatment (reserve) risks and 

ultimately, the overall project risk.  

 

The key components of a conventional DCF style calculation for a diamond project are: 

1. Revenue, derived from the calculation of extracted ore tonnages, recovered carats, 

grade and revenue per carat and subject to a foreign:local exchange rate. 

2. Costs, which comprise variable and fixed costs; the former are usually estimated 

from the unit cost per item multiplied by the quantity of items. Both the unit cost 

price and the estimated quantities are subject to uncertainty. 

3. Capital estimates may broadly be categorized into construction capital costs and 

working and on-going replacement capital, which are related to resource and 

reserve uncertainties. An inversely proportional relationship is generally 

established between the capital expenditure (capex) and the operational 

expenditure (opex) depending on management strategy and their appetite for risk.  
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4. Discount rate approach for diamond projects can vary radically between 

companies. One method entails the use of the weighted average cost of capital 

(WACC) plus any additional premium for technical and/or country risks. While 

the WACC and country risk component can often be derived through market 

measures or ratings from financial houses, the technical risk component is unique 

to each project and the derivation thereof is mostly subjectively derived.  

 

Time affects the estimations of each of the above-mentioned cash flow components. The 

inverse relationship between capex and opex is one of the most important considerations that 

management has to comprehend in developing their project into fully-fledged operating mine. 

Projects that have strong operating margins, i.e. where their opex profile is relatively low in 

comparison to the associated revenue income, can afford to have more of a contractor-style 

model with operating leases leveraged off their operating margins (e.g. mining equipment 

leases with banks or vendors such as Caterpillar etc.). Management of these projects may 

elect this operating model to preserve their balance sheets, i.e. by not having to allocate costs 

to capex, they do not require debt from banks that may result in high gearing (debt to equity) 

ratios penalizing the company by analysts or rating agencies; or increased capex costs may 

result in the project being un-fundable. Conversely, projects that have low operating margins 

may need to capitalise expenses on their balance sheet to preserve their ‘skinny’ operating 

margins. 

 

These capex versus opex considerations have a profound impact on management’s ability to 

successfully get the project into production, and furthermore, to optimize the NPV of the 

project.   The mineral evaluation process must consider that operating decisions made early in 

the life of a mine will likely affect the remaining LOM and influence financial returns. 

Average mining and treatment grades, capex and opex relationships and operational 

flexibilities are key considerations that will materially impact the NPV. For example, 

management’s decision to install only one (instead of two or more) crushers as part of their 

overall processing circuit may reduce the initial capex requirement but severely limit the 

processing plant’s throughput ability and potentially affect the grind size going into the mills, 

which could reduce overall recoveries with the net effect of reducing the operating margin. 

 

The combination of the magnitude and timing of operating and capital costs will ultimately 

influence the project evaluation analysis. The timing and magnitude of mining revenues 
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depends upon factors such as ore reserves, production rates, metallurgical recoveries, 

commodity prices and markets. These variables are often extremely difficult to estimate with 

high confidence. The overall operating environment is another area of concern. In recent 

years, the national and international operating environments of mining properties have been 

severely impacted upon by environmental and other regulatory requirements (Gentry and 

O'Neil, 2007). These constraints have invariably increased operating and capital cost 

requirements and, in some cases, delayed production activities resulting in lower than 

expected NPVs. 

 

The challenge is to try to capture correctly the main risks in an evaluation model and quantify 

their impact on NPV with an associated confidence limit. Finding the most appropriate 

method and position in the evaluation model to reflect these risks is part of that challenge. 

The method of increasing the technical risk premium (project risk portion) of the discount 

rate that is applied to cash flows based on work by Smith (1982) is not recommended as a 

viable approach to capture technical risk in project evaluation. 

 

The standard NPV formula is well known where CF refers to the cash flow in each period i 

and r is the discount rate. This equation can be rewritten as a weighted sum to illustrate the 

impact of the discount rate on the variance of the DCF (see Equation 7).  

 

  

 

 

 

 

When risk analyses are conducted to ascertain the impact of the uncertain cash flows on a 

project’s NPV, the mean net cash flow in each period, i, will be reduced by the weighting 

factor, w. This penalizes cash flows in later years. The weighting factor, w, increases 

exponentially as a function of time, i. If technical risk is included in the discount rate, it 

implies that technical risks increase exponentially over time, which in most mining scenarios, 

is untrue. Usually, as more information is gained over time about the ore body complexity, 

the mining and processing methods are adapted to become even more efficient than in earlier 

years where less information was known. Thus, in reality (and using ‘real options thinking’) 
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Equation 7. Discounted Cash Flow (DCF) equation for deriving the Net Present Value (NPV) 
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technical risks actually decrease over time contrary to the DCF (NPV) formula in the 

equation above. 

 

ROV is acknowledged by the author as an improvement upon conventional DCF (NPV) 

techniques with respect to catering for flexibility options. However, it includes its own set of 

subjective assumptions and is often perceived as a ‘black box’ approach by conservative 

mining managers, thus limiting its practical application to mining projects. Real options 

should be marketed as a complementary tool or enhancement to DCF and NPV analyses 

rather than a replacement technique.   

 

ROV application for mining projects seems to have more benefit in modelling economic 

parameters such as commodity prices and interest rates than addressing technical spatial and 

temporal scale uncertainties, raised in this literature review.  For these reasons, an alternative 

evaluation method was sought that could correctly capture spatial and temporal scale 

technical attributes from resources and reserves in the financial model; and did not deviate 

too far from the conventional DCF (NPV) approach; and allowed flexibility options to be 

easily evaluated.  

 

In order to quantify the impact of the selected scale on valuation, it is recommended that the 

process incorporate a quantitative impact assessment. This assessment should include the 

modelling of unsystematic (specific) risks for resources and reserves, and systematic (market) 

risks, such as foreign exchange variability and costs of commodities such as oil, steel, 

concrete. This would allow confidence limits around project valuation to be quantified as 

objectively as possible in a transparent and scientific integrated, evaluation framework. 

 

2.8 GAP ANALYSIS 

The problem of estimating the NPV of a mineral project, especially for diamond deposits, 

based on a limited quantity of sampling data is complex and not yet clearly understood (as 

discussed in the ‘Problem Definition’ – see Section 2.7). For the purposes of this study, it will 

be assumed that the main risks affecting project valuation are associated with the technical 

and financial aspects of resources and reserves (Smith, 2000). The main reasons for this are:  
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• Uncertainty exists around the means and variances of spatial variables and their 

correlated impacts on production estimates. Many conventional financial models are 

based on some form of kriged resource estimate, which is recognised as the best linear 

unbiased estimate. The combined responses of multiple non-linear resource 

realisations on mining and processing constraints and their cumulative impact on the 

cash flow model have not yet been meticulously documented.  

 

• Variances within, and covariances between, spatial resource variables and their 

combined impacts with non-spatial mining and treatment parameters are often 

characterised by complex relationships. They are influenced by several parameters, 

such as limited data, geological complexity, and mining and processing requirements. 

The evaluation challenge is further complicated when accounting for the temporal 

scales at which production outputs are measured and collated, which can be critical to 

projects that have high resource variabilities combined with limiting mining and 

treatment constraints.  

 

• Literature exists for risk quantification and modelling of spatial resource variables 

using geostatistical techniques (Dowd, 1976, Parker, 1977, Thurston, 1998, Journel 

and Huijbregts, 1978, Dimitrakopoulos et al., 2002b, Krige, 1951). Authors such as 

Dowd and Dare-Bryan (2004) highlighted spatial linkages between resource 

modelling and mining (blasting) to predict dilution/spreading of grade in muckpiles. 

Often production figures are calculated from annually derived estimates that do not 

necessarily capture the impact of short-scale variabilities on planned mining and 

processing constraints. This may under or over-estimate the true financial value of a 

mineral project. The combined effects of spatio-temporal scales are evaluated at a 

block by block (SMU) scale in this thesis. 

 

• A robust methodology has not yet been documented to evaluate the financial 

costs/benefits of operational and management flexibilities in time as a risk mitigation 

strategy, given the combined effects of spatial resource uncertainties, mining and 

treatment constraints and economic uncertainties, e.g. foreign exchange rates.  
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• Quantitative methods for estimating the accuracy and confidence limits for NPV of 

mineral projects have been attempted before, but no consistent quantifiable method 

exists. The limitations of Monte Carlo Simulations (MCS) and sensitivity analyses as 

risk analysis tools for NPV estimation have been documented by Nicholas et al. 

(2007). Other approaches adjust the discount rate applied to cash flows in an attempt 

to represent project and/or technical risk (Smith, 1982). These techniques may 

unwittingly introduce material biases in the project value as they do not appropriately 

consider the spatial covariances between mine blocks or the short-scale temporal scale 

effect on operational constraints. They also tend to focus mainly on ‘downside’ risks 

and ignore the ‘upside’ opportunities. 

 

As a result of the above-mentioned complexities, the confidence in a NPV estimate cannot 

easily be quantified using any closed-form analytical or mathematical solution. Complex, 

non-linear relationships between resources, reserves, financial and economic parameters 

requires a simulation model to be developed to provide a solution.  

 

2.9  OBJECTIVES 

The main objective of this research is to compare quantitatively conventional evaluation 

methods with an innovative, ‘spatially-aware’ IEM evaluation technique that captures the 

non-linear effects of the response variables (such as recovery) related to production 

constraints taking into consideration the short (block-by-block) spatial and temporal scales. 

Using this IEM approach as a platform, the author also aims to understand the combined 

financial impact in NPV terms of economic uncertainties (assessing foreign exchange rate 

variability) with the impact of resource variabilities (grade, geology, density etc.) on reserve 

constraints.   

 

Research in this thesis transcends conventional discipline boundaries and covers the areas of 

geostatistics to generate resource estimates and conditional simulations; mine planning to 

constitute reserve estimates; financial theory and economics; and real options theory to 

evaluate risk mitigation methods using spatial resource simulations. This thesis focuses on 

quantifying the financial impact of the non-linear relationships between stochastic spatial 

resource variables, production constraints and uncertain economic parameters.  
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Empirical work is conducted to quantify inaccuracies in the NPV estimates by comparing 

global versus local evaluation methods for mineral projects. By using a virtual orebody (V-

Bod) as a completely known reality, the NPV can be re-evaluated as more sampling data are 

acquired, and confidence limits calculated. The author also synthesizes the production and 

financial impacts of limited sampling data on resource estimation and the temporal scale at 

which reserves are evaluated. 
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Chapter 3 : Experimental Designs 
3.1 INTRODUCTION 

3.1.1 Experimental Overview  

This chapter describes the experimental designs that need to be developed to provide 

solutions to the estimation and evaluation problems outlined in chapter two of this thesis. 

Begg and Bratvold (2001) identified the need for an integrated approach to assess the impacts 

of uncertainty on oil and gas investment decision-making. Later, Kleingeld and Nicholas 

(2004) recognized the need for a similar integrated evaluation approach to understand the 

impact of resource variability on the business model for diamond deposits.  

 

For diamond evaluation, input resource parameters such as geology, grade, revenue per carat 

and density all have associated uncertainties. Each of these parameters may be composed of 

several contributing variables that are uncertain, for example the mineralization, structural 

and genesis models for geology. These parameters in turn may be correlated with each other. 

Standard practice usually involves using a single resource and reserve model whereupon 

sensitivity analyses are conducted but these do not adequately capture the range of variation 

associated with the compounding effect of resource uncertainties.  

 

For these reasons and, as discussed in chapter two of this thesis, an integrated evaluation 

modelling (IEM) methodology was deemed necessary to capture correctly the correlations 

and system linkages of resource variables on the mining and processing constraints of a 

diamond project (and later, extrapolated to other non-diamond mineral projects). The IEM 

approach attempts appropriately to capture, replicate and model the key linkages between 

resources, reserves and the financial model. Complex resource estimation problems are often 

expressed through ‘simplified’ mathematical equations to solve a global or local geostatistical 

problem.  

 

The production and financial impacts of non-linear resource-to-reserve relationships cannot 

be approximated using a closed-form mathematical solution as each project has its own set of 

resource and reserve variables, which interacts with mining and processing constraints in a 

sequential, non-linear and unique way. The effect of a non-linear valuation function was first 

recognized by Parker and Switzer (1975) and led to the use of conditional probability 
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distributions for each block. Later, Dimitrakopoulos (1998) noted that mining transfer 

functions are usually non-linear. An average type block model may not provide an average 

map of the response of the uncertainty; and the simulation technique selected for modelling 

must be evaluated in terms of mapping the response uncertainty. In addition, there is a direct 

(and often iterative) relationship between reserve constraints (e.g. cut-off grade classes, 

mining and processing routes and costs) and assumptions in the financial evaluation of a 

project.  

 

Each deposit may have several resource variables (e.g. grades of one or more primary or 

secondary variables, density and rock types) that all have inherent but different variabilities. 

These resource variabilities could materially affect a project’s forecasted production 

estimates, i.e. the non-linear impacts of actual variabilities of the ore body on the designed 

mining and processing constraints. Thus, the NPV of a project is directly influenced by the 

actual variability of its resources in relation to the planned mining and processing constraints, 

and management’s ability to mitigate any negative-impacting issues affecting its business 

plan. The greater the perceived variability of key variables, the more the mine has to plan to 

adapt its mining and processing schedule to accommodate variability in the ore feed. 

 

The author considers that failure to account correctly for spatial and temporal risks, by 

estimating the ‘average’ annual production totals instead of accumulating the effects of the 

short-scale (e.g. daily) interactions of resource variables on the mining and processing 

constraints into annual production totals, may result in material errors in estimating a mineral 

project’s value.  

 

This evaluation consideration may be defined as: 

 
 

Equation 8. A mathematic expression of the mining evaluation conundrum. 

 

Equation 8 implies that the expected value ‘E’ of some function f(x) is not equal to the 

function (f) of the expected value E(x). For the purposes of this thesis, the function f(x) may 

be thought of as a transfer function, i.e. the modification of resources to reserves by 

considering the appropriate mining and processing constraints for a particular mineral project. 
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The expected value E(x) refers to the expected value derived from conditional simulations of 

the resource. 

 

Equation 8 translates into two different problems, defined as follows: 

1. If each conditional simulation representing a resource realisation for a specified 

variable (e.g. gold grade) is run one at a time through the mining and processing 

transfer function to derive financial outputs, and the expected value of these outputs 

calculated, then this does not equate to running only the expected value of all the 

resource realisations (statistically referred to as an ‘E-type’ estimate) through the 

same transfer function to produce an expected NPV; and 

 

2. If each mining block (or selected mining unit, SMU) is run through a transfer function 

on a block-by-block basis adopting a ‘bottom-up’ evaluation approach that accounts 

correctly for temporal scale in calculating production tonnages and revenues, this may 

not be equivalent to estimating the average annual production tonnages and revenues 

derived conventionally from running annual averages through the same transfer 

function using a ‘top down’ evaluation approach.   

 

The first problem defined above compares the impact of resource realisations (using 

conditional simulations) and an ‘E-type’ estimate with a conventional linear estimate, such as 

ordinary kriging. This demonstrates the production and financial impacts of considering 

resource variabilities, through non-linear resource modelling. The second problem does not 

necessarily require the use of conditional simulations to demonstrate its impact and makes 

use of kriged estimates as the best linear, unbiased estimator of resources. It aims to compare 

relative NPV estimation accuracies for a conventional ‘top-down’ evaluation approach with a 

‘bottom-up’ evaluation approach using an IEM. 

 

3.1.2 Outline of Case Studies 

Three different case studies are discussed in chapter four of this thesis to demonstrate the 

production and financial impacts on non-linear, resource-reserve-financial relationships of an 

open-pit diamond operation, an underground diamond operation and an open-pit gold mine. 

While a unique IEM was developed for each mineral project, the author conducted variance 
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analyses to attempt to define a generic evaluation approach for future evaluation methods. 

For each case study, outputs were expressed in production totals, cash flow and NPV terms.  

 

The three case studies demonstrate different perspectives of risk evaluation complexities and 

support the hypothesis that the spatial characteristics of some mineral deposits need to be 

evaluated on a block-by-block basis to determine their non-linear impact on production 

constraints and the financial model.  This is a key determinant of the IEM approach as, 

although there are common trends for most mineral projects, the unique relationships 

between the degree of resource variability, the combined impact on production constraints 

and correlations with financial and economic parameters, will likely require each mineral 

project to be uniquely assessed. 

 

The objective of the first case study is to evaluate the impact of several compounding mining 

constraints on the resource model, based on an ordinary kriged estimate, using an IEM 

approach versus conventional evaluation approaches. The second case study quantifies the 

impact of several processing/plant constraints on resource variability (modelled using 

conditional simulations) for an open-pit diamond operation. The purpose of the third case 

study is to evaluate the combined non-linear resource-reserve effects of mining and 

processing constraints on resource variability (modelled using conditional simulations) for an 

open-pit gold operation. An additional aim of this last case study is to demonstrate that the 

IEM approach can readily be extended to other mineral commodities besides diamonds. 

 

A synopsis of each case study is provided below. 

 

1. A Canadian underground diamond operation: 
 

The aim of this case study was to assess the impact of several compounding mining 

constraints on the resource model, considering the geometrical variability of the top surface 

of the dyke (or an ‘ore-bearing’ vein), the thickness of the deposit, and grade. The author 

developed a unique ‘block-by-block’ spatial evaluation technique to evaluate the impact of 

these resource variabilities using ordinary kriging of the deposit, which was then run through 

an IEM to generate financial outputs. 
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One of the challenges of this deposit was that the drilling data were spaced too far apart (grid 

spacing ranged from 25m to 75m) to accurately detect short-scale variability of the geological 

geometry. This was confirmed by a series of geological cross-sectional maps (or ‘face maps’) 

taken from the side-walls of the main mine drive. To simplify the evaluation problem a 

geological face-map from one of the main exposed mining areas was assumed to be 

representative of the entire deposit. A detailed short-term, spatial mine plan was not available 

at the time so a simplified short-term mining sequence and schedule was imposed on the 

resource; this schedule adheres to the relevant mining and processing constraints. 

 

The author re-developed the financial model because the mine’s existing financial model was 

not amenable to risk analysis; i.e. many of the cash flow input parameters (i.e. revenue and 

operational costs) were grouped together and multiple risk and sensitivity scenarios could not 

easily be carried out.  

 

2. An open-pit diamond operation: 
 

The objective of this case study was to assess the combined impact of three resource 

variables (grade, density and yield variability) on the NPV estimate using conditional 

simulations for each variable and to evaluate flexibility options for mitigating risks 

predominantly from a processing perspective. While ordinary kriged estimates were accepted 

as the best linear, unbiased estimator, independent conditional simulations of the three key 

variables were generated so as to more effectively quantify the resource variabilities. 

 

An IEM approach was used to assess the impact of resource uncertainties at the scale of 

planned operational depletion, considering firstly the mining sequence and schedule, and then 

the impact on the treatment plant recovery model. The main objective was to express 

financial risk as a function of resource and reserve uncertainties at the appropriate temporal 

scale. 

 

3. An open-pit gold operation: 
 

The objective of this case study was firstly, to assess the short-term impact of grade 

variability (modelled using geostatistical conditional simulations) on both mining and 

processing constraints; and secondly to run each realisation through the financial model to 

produce confidence limits around production outputs, cash flow and NPV. Particular 
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emphasis was placed on how best to evaluate the impact of mining selectivity and stockpile 

management for variable grades represented by geostatistical simulations. Secondly, this case 

study also demonstrated that the author’s IEM methodology was applicable to other mineral 

commodities, besides diamond deposits.  

 

The author also evaluated the impact of stochastic variables on cut-off grades in terms of 

their impact on production totals and financial indicators. Static global cut-off grades were 

compared to scenarios where the variable cut-off grade was determined by stochastic 

parameters to assess the impact on the planned cut-off grade policy.  

 

3.2 BACKGROUND AND OVERVIEW 

This section provides an overview of the geostatistical, risk and financial backgrounds that 

are pertinent to the development of experimental designs and case studies presented in this 

thesis. This is not intended to be a comprehensive assessment of each discipline but rather to 

highlight the appropriate issues that need to be understood to facilitate the coherent 

understanding of chapter four and the relevant case studies. 

  

3.2.1 An Integrated Evaluation Model (IEM) Approach 

The IEM methodology was developed to provide a more accurate evaluation method to 

assess risks for mineral projects across the entire resource-reserve-financial platform. The 

IEM aims to highlight previously unforeseen risks and opportunities in the conventional 

business models of mineral projects by directly linking resources to mining and processing 

constraints with the financial and economic model. Results from this approach can be 

demonstrated to be materially different from conventional evaluation approaches, which are 

based on linear production estimates that ‘average out’ in quarterly, annual increments. The 

IEM methodology was designed to add value to a single mineral project (e.g. evaluating 

Conceptual/Pre-Feasibility/Feasibility risk studies) or could be applied to existing operations 

(e.g. evaluating expansion/contraction/reconciliation studies). Although beyond the scope of 

this thesis, the approach was also extended to evaluate risks within a portfolio of projects to 

determine the combined effect of resource variabilities or production limitations on the 

overall business model of a large mining corporation. 
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The IEM methodology was based on a ‘bottom-up’ approach that is unique in that it follows 

every block through the mining and processing value chain. It captures correctly spatial 

variability of resource attributes in the ground (grades, deleterious elements, processing 

characteristics, etc.). This variability is then propagated through the processing value chain at 

a mining block (or SMU) scale. The ‘bottom-up’ (as opposed to ‘top down’) evaluation 

approach is necessary to capture correctly the non-linear resource characteristics and their 

correlated impacts on the reserve model, with specific regard to the key mining and 

processing constraints. Results are easily translated into clear, financial metrics with 

confidence limits that provide decision-makers with a clearer understanding of the material 

risks and opportunities in their business models.  

 

The two main attributes of the IEM methodology are firstly, it correctly deals with the spatial 

resource characteristics of block models at the appropriate temporal scale; and secondly, 

direct linkages are created between the resource–reserve–financial models within a single 

software environment. This allows multiple scenarios or ‘options’ to be accurately and 

rapidly assessed for a project and the cost/benefits of implementing risk mitigation strategies 

easily evaluated. Some of the key benefits of the IEM methodology are: 
 

 Confidence limits around all production (tonnes, grade, metal) and financial outputs 

(NPV, IRR, cash flows per month/quarter/year) can be statistically quantified;  

 Costs/benefits of various risk mitigation strategies (e.g. stockpiling/blending) can be 

quantifiably assessed; 

 The financial impact of reducing/increasing production (e.g. initial processing plant 

scaling and planned expansions) can be evaluated relatively straight forwardly;  

 A more realistic short-and long-term assessment of the impact of mining and 

processing constraints on resource variables can be produced in clear, financial terms;  

 Different financial scenarios (e.g. taxation structure, price or cost forecast, exchange 

rate) can be evaluated by correctly considering the resource-to-reserve spatial and 

temporal scale attributes of a particular project; and 

 The bottom-up approach within the IEM framework can relatively easily be extended 

to evaluate and cost different processing pathways, energy requirements/carbon 

footprint etc. 
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The IEM toolkit is not an ‘off the shelf’ software solution but is rather a bespoke solution of 

MS Excel spreadsheets with Visual Basic Application (VBA) programming codes that link 

each component of the evaluation pipeline together. This was later developed into a web-

enabled, dot.net programming environment linked to a SQL database for mining consultancy 

purposes but is beyond the scope of this thesis. In the IEM framework, resource models (such 

as the conventional kriged estimate and multiple resource realisations) are linked directly to 

the mine plan outputs derived from mine sequencing and scheduling software (e.g. NPV 

Scheduler, Whittle and Mine2-4D). This customized software captures both the mining 

constraints (e.g. mine call factor, mining rate, ore selection) and processing constraints (e.g. 

plant call factor, recovery factor/model, ore blending requirement) per period and applies 

these constraints in the appropriate sequence to each mine block (or SMU) for each resource 

realisation. 

 

 
Figure 3. Programming flow chart for an Integrated Evaluation Model (IEM) Approach. The left side of this 

diagram collects n-number of conditional simulations, ‘Get Sim data’ and seeds this data into each SMU in the 

‘Block Model’ then the algorithm is run to calculate the impact of production constraints ‘Access Grade Cut-Off 

Impact’ for each conditional simulation per SMU and results stored in the ‘Summarised Production’ tab. The 
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right side of the diagram pertains to running each of the ‘Summarised Production’ outputs per simulation 

through the ‘Cash Flow’ model to generate financial outputs for each ‘Risk Simulation’ and is captured by the 

‘Summary Tables, Graphs and Analysis’ tab. 

 

Figure 3 provides an overview of the programming logic needed to develop an IEM 

approach. While this is a generic approach, the details of resource modelling and reserve 

constraints are unique to each project and the approach customized accordingly. In the design 

and development of an IEM framework there are several considerations that are 

characteristically similar for each of the three case studies discussed in chapter four.  

 

The geological, sampling data, resource, reserve and financial modelling characteristics 

common to most project evaluation studies are discussed below. 

 

3.2.2 Geological Modelling 

The particulate nature of diamonds, their size, shape, quality, colour and value are important 

factors in the accurate estimation and evaluation of diamond deposits. Diamond occurrences 

in nature are rare and are usually measured in parts per billion, whereas most other mineral 

commodities are measured in parts per million, parts per thousand or in percentages 

(Kleingeld and Nicholas, 2004).  

 

Diamonds are brought to the earth’s surface in volcanic host rocks, principally kimberlite. 

Most of these primary source rocks or kimberlite pipes do not contain diamonds, and those 

that do are very rarely economic (see Gurney et al., 2005 for further information on the 

economic potential of kimberlites and lamproites). Depending on whether diamonds are 

contained in kimberlites or placer deposits, they are either free or locked up in the host rock. 

Though diamond is the hardest natural substance, it is brittle, which makes it susceptible to 

breakage during its release in either sampling, extraction or treatment.  

 

Geological modelling is an essential first step in the estimation process, as typically the 

variability of grade and ore type between lithologies is much higher than the variability 

within individual lithologies. The importance of a good geological model forms the 

foundation for estimation and evaluation modelling, and the use of geostatistics to assist in 
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developing the geological model has been recognised in the past by numerous practitioners 

such as Parker (1997).  

 

In developing a geological model for kimberlites, there are two main considerations, viz. 

defining the overall pipe geometry and the quantity and dimensions of internal lithologies 

within the overall pipe geometry. The delineation of the pipe geometry requires the outer 

boundaries of the kimberlite pipe to be demarcated in order to distinguish between kimberlite 

and waste (or country) rock. In practice, delineation of the pipe geometry is very dependent 

on interpolation between relatively few pierce points from core drilling. The ore/waste 

contact is usually sharp, while the internal boundaries are often gradational and require 

interpretation. This high degree of interpolation and interpretation can result in uncertainty 

around the volume estimates.  

 

Diamond-bearing material within a kimberlite pipe is variable and is the product of different 

depositional processes and the mixture of country rock fragments and kimberlite-derived 

constituents. As a result, different kimberlite lithologies can be recognised within the pipes. 

Lithological boundaries define zones of similar geological and diamond emplacement 

characteristics. Uncertainty is introduced into the lithological boundaries as it is based on 

interpolations between only a few intersections from core drilling.  

 

An understanding of these lithological zones and the boundaries between them is essential for 

estimation purposes. This is necessary so that the geostatistician can model a semivariogram 

using only samples that fall within the boundaries of the delineated lithology. Kleingeld and 

Nicholas (2004) postulated that where lithological zones are appropriately delineated in 

diamond pipes, uncertainty in grade estimates and/or revenue estimates could be substantially 

reduced, which will improve the accuracy of the overall estimate. The definition of 

lithological zones and the boundaries between them are defined from multiple datasets, 

including geological, geochemical, geophysical and structural. Each of these has 

uncertainties. Geological zones must be defined at a scale appropriate to the sampling, 

evaluation and mining processes.  

 

Previous unpublished work by Parker and Brisebois (1999) simulated the kimberlite pipe 

radius in an ‘unrolled’ space using polar coordinates by means of a simple kriging (SK) 

sequential gaussian algorithm. The conditioning data were pierce points of the pipe boundary 
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in core holes. Their client would not provide permission for them to publish the work, pulling 

it out of a presentation in a conference held on conditional simulations in Perth in 1999.  

 

Later, Deraisme and Farrow (2004) were among the first authors to publish a paper on 

defining lithologies for kimberlite estimation and used the concept of simulating the sampling 

of an ore body, combining geostatistical simulations with geological modelling to produce a 

risk analysis of the outer kimberlite pipe boundaries. Their studies focused mainly on the 

quantification of uncertainties in the geological modelling of kimberlite pipes. A simulation 

approach was used that provided maximum flexibility to reproduce realistic limitations of the 

sampling procedure. The idea was to simulate several ‘possible’ pipes with their internal 

geology and estimate them by kriging. While the use of geostatistical simulation and 

geological modelling is not new, this paper was the first published article to address the 

specific problem of analysing uncertainty related to kimberlite pipe boundaries.  

 

Future development of many kimberlite mines depends on mining at deeper levels at which 

sampling and operating costs are likely to increase significantly. Investment decisions require 

accurate resource estimates associated with quantified confidence limits. Usually, one of the 

first sampling decisions requires the selection of the ‘right’ number of drill holes to sample 

the pipe representatively to yield data to calculate estimates within acceptable confidence 

limits.  

 

Once a geological model has been developed, the required sampling strategy for grade and 

revenue determination must be defined. This involves establishing sample support size 

(volume), sample frequency (density) and sample spacing (spatial distribution). The sample 

size used is a function of the complexity of the orebody and the required level of confidence. 

During exploitation, selective mining is undertaken locally to ‘footprint’ (also referred to as 

fingerprinting in some industries) the detailed diamond characteristics per lithology to help in 

forecasting the diamond assortment for planning purposes.  

 

Numerous tools are used to produce an estimate for the dollar per carat revenue and the 

diamond assortment profile such as size frequency distributions (SFD), cumulative pareto-

type distributions and extreme value modelling. Further modelling may be necessary to 

account for diamond breakage in the recovery process, under-recoveries due to plant 
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inefficiencies and differences between bottom cut-off sizes between sample and production 

plants.  

3.2.3 Sampling Considerations 

The primary objective of including more samples in a deposit is to reduce uncertainty 

associated with resource and reserve variables. The natural variability of these variables 

within the deposit cannot be reduced by additional sampling, only uncertainty can be 

reduced. Variability must be managed via the scheduling process in mine plans to allow 

selective mining of the orebody. The collection of data (via drill holes, conveyor belt 

sampling etc.) for estimation and modelling purposes increases the amount of information 

(i.e. reduces uncertainty) but there are several sampling challenges which can lead to 

potential estimation errors if not addressed correctly. 

 

The sampling theory developed by Pierre Gy between 1949 and 1951 related mainly to the 

sampling of broken ore (see Figure 4). Gy later elaborated upon his earlier work (1977, 1982 

and 2004) focusing on the sampling of particulate and discrete materials.  Gy’s sampling 

theory focused mainly on the quantity of material that should be taken from a mass of broken 

rock or mineral to be representative of the original mass. Later, Bongarcon and Gy (2001) 

delved into more detail on components of the total sampling error such as the liberation 

factor, which is of particular importance in the calculations. While these broken ore sampling 

techniques are relevant to metallurgical and processing evaluation stages, they are not 

directly applicable to the in situ sampling of kimberlite deposits using drilling methods.    
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Figure 4. Relationship of sample related errors developed by Pierre Gy, 1949 to 2004. 

 

Kleingeld and Lantuéjoul (1992) recognized that the sampling of a deposit where the 

mineralisation was irregularly distributed (or ‘spotty’) presented a number of unique 

sampling challenges. The first of which was a geometric problem where a sampling bias may 

occur if the ‘spotty’ mineralisation patches were not intersected often enough, whereas in 

mining all the ‘spotty’ patches would be extracted. The second challenge was that the 

mineralisation within each patch was highly variable. Kleingeld and Lantuéjoul identified 

that the impact of the second factor could be reduced if a sample of the same size as the patch 

was taken. The combination of these two factors was considered to account for the observed 

natural variability of the grade within a kimberlite deposit. 

 

Thurston (1998) later studied techniques to develop a quantitative understanding of the 

variability of sampling protocols used to evaluate kimberlite deposits. He simulated a number 

of different sample protocols using a simulation method that took into account the statistical 

and spatial characteristics of the diamond distribution within the kimberlite deposit 

(Kleingeld et al., 1996). He found that the number of samples and sample size were important 
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depending on whether global or local estimation was being carried out, and could be directly 

related to the appropriate confidence limit and accuracy of the estimation technique. 

 

For the purposes of this thesis, it has been assumed that resource estimates do not contain any 

material sampling errors. This assumption is based on the premise that for diamond deposits 

the nugget effect and coefficient of variation for grade would be low due to sufficient number 

of drill holes that have intersected the deposit to mitigate against potential sampling bias due 

to ‘spotty’ mineralisation; and secondly, that the majority of drill holes are large diameter 

drill holes (LDD) recovering sufficient macro diamonds (often corroborated by micro-

diamond estimation analysis assessing the total ‘diamond’ content curve distribution). It 

should be noted that assessing the uncertainty in revenue per tonne (from a sampling error 

perspective) is a topic in its own right that deserves its own thesis and has been eliminated 

from consideration in this research. 

 

3.2.4 Resource Estimation  

3.2.4.1 Diamond Estimation Complexities 

Kleingeld (1987) first discussed the difficulty of diamond estimation and evaluation in 

relation to other mineral commodities in his doctoral thesis on discrete values, then later 

Thurston (1998) referred to it in his doctoral thesis. Figure 2 ranks the complex nature and 

difficulties of estimating diamond deposits compared to other mineral commodities as a 

function of their concentration and homogeneity. Kleingeld attributed this increased 

estimation difficulty due to their extreme value characteristics based on limited sampling data 

and the stochastic nature of the variables used to estimate both their grade and value (revenue 

per carat). The particulate nature of diamonds, their size, shape, quality, colour and value are 

important factors in the accurate estimation and evaluation of diamond deposits.  

 

Kimberlite grades are usually expressed in carats per tonne (cpt) or carats per hundred tonnes 

(cpht) given their concentration in parts per billion. The grade variable ‘cpht’ is calculated as 

a function of carats per cubic metre (cpm3) and density (specific gravity, SG) as shown in 

Equation 9. Note that cpm3 depends on both spm3, which is the concentration of diamonds (or 

‘stones’) within a cubic metre of ore and the carats per stone, which is a function of stone 

size.  
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Sampling challenges that are applicable to other mineral commodities are applicable to both 

the stones per cubic metre and the carats per stone. It is often more complicated to attain high 

confidence in the estimation of the carats per stone relative to the stones per cubic metre, 

because in the case of the former, it is highly improbable that large stones will be recovered 

from drill holes given the relatively small sample cross-sectional area. To address this 

problem, large bulk samples comprising several thousand tonnes of ore may be needed to 

retrieve a sufficient quantity of large stones from the size frequency distribution (SFD) range 

to cater for these extreme values. 

 

 

 

 

 

 

Inputs into estimating the diamond revenue model are uncertain, and hence the revenue 

model itself is uncertain and is influenced by the mineralisation, geological and emplacement 

models. Lithologies delineated on the basis of geology could represent a difference in 

revenue models. The uncertainty associated with diamond revenue modelling is different, and 

in many ways more complex, than price stochasticity affecting other mineral commodities, 

such as the gold price, although diamonds have a degree of price stochasticity as well. 

Diamond valuation has four main attributes to consider rather than only one in the case of the 

gold price, for example. The four main attributes are size, colour, model (or shape) and 

quality. Each of these attributes is associated with inherent variability, and hence, a larger 

sample of diamonds is required to estimate the average USD/carat value than to estimate the 

stone density distribution or the stone size distribution which together constitute the grade.   

 

3.2.4.2 Random Functions and Variables  

In order to understand the variabilities associated with diamond estimation and evaluation, it 

is first necessary to introduce the concepts of regionalised variables, random functions and 

random variables. Sichel (1947, 1952), Krige (1951) and De Wijs (1951) appear to be the 

first to use statistical methods to consider geometrical relationships between blocks and the 

samples used to estimate them. These three authors focused on the significance of the 

Equation 9. The calculation of diamond grade in carats per hundred tonnes (cpht). 
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distribution of regionalised variables combining some of the key concepts which Matheron 

(1963) later formalised as geostatistics. Any variable distributed in space is referred to as a 

regionalised variable. Matheron (1963) discussed the concept of a regionalized variable as an 

actual function, taking a definite value at each point in space.  

 

From a mathematical perspective, a regionalised variable is a function which takes a value at 

every point in the space of regionalization, however, the function varies irregularly from 

point to point in the space of regionalization. This local point to point irregular behaviour can 

be interpreted in terms of random variables, which is a variable taking on a specific value 

according to a certain probability function. The average behaviour of these random variables 

suggests a structure which in turn proposes a functional representation. One way of 

interpreting the characteristics of a regionalised variable is in the probabilistic terms of a 

random function (Dowd, 1978).   

 

The concept of the random function was, as far is known, introduced by Matern (1960) for 

his work in experimental design and analysis in forestry, while Matheron introduced the 

name ‘geostatistics’ in 1962. The random function is the set of random variables at all 

possible locations. The unique outcome that exists at every location is a realisation of the 

random function. Whilst the actual in situ grade is a unique realisation of the random 

function, an infinite number of realisations share the same geostatistical properties. The 

random variables are spatially correlated and the sample values provide realisations of this 

correlation. Because the outcomes of the random variables are known at data locations, this 

information may be used to calculate measures of spatial continuity and infer a spatial 

continuity model for the random function. This model may then be used to minimise the 

variance of the probability distribution at unsampled locations given neighbouring data. 

 

Matheron (1963) recognized that in order to estimate Z in a way that minimises the error and 

is unbiased, it is necessary to accept that grade distribution is the outcome of a process which 

is effectively ‘random’. Grade may be considered as a random variable that assumes a series 

of outcome values at unsampled locations. The series of possible outcome values for the 

random variable at each location is determined by a probability distribution. The variance of 

this probability distribution is zero at datum locations, and is centered on the measured grade 

(assuming accurate measurement). 
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Values of spatial variables are measured at specific locations x. These values z(x), at locations 

x are interpreted as particular realizations of random variables, Z(x), at the locations. The set 

of auto-correlated random variables {Z(x), xϵD} defines a random function. Spatial variability 

is quantified by the correlations among the random variables (Dowd and Pardo-Iguzquiza, 

2002). The definition of a random function expresses both the random and structured aspects 

of a regionalised variable. At any point xi, z(xi) is a random variable. However, any pair of 

random variables z(xi), z(xj) are to some extent correlated in space, and this correlation 

expresses the spatial structure of the regionalised variable Z(x). 

 

For most practical applications of geostatistics, there are limited data (usually from drill 

holes) sampled from a number of points and hence only a finite number of points x1, x2 … xn 

are available at any time. There are only n components of z(x1), z(x2) … z(xn) of the random 

function z(x) available. At each point xi, where i = 1 to n, only one realisation of the random 

variable z(xi) is available, implying that there is an infinite number of possible random 

functions that this single, limited realisation could represent. Any practical solution must 

therefore be limited to some family of random functions that requires the estimation of only a 

small number of parameters; where this family establishes a model of the random function. 

 

Dowd (1978) considers three families (F1, F2 and F3) of random functions with each family 

defined in terms of increasingly restrictive hypotheses. For F1, the family of strictly stationary 

random functions defines a strictly random function as one in which has a distribution law 

which is invariant under translation, i.e. the probability distribution is assumed to be identical 

everywhere so that all random variables in the random function have the same distribution.  

For F2, the family of second order stationary random functions defines a second order 

stationary random function as one in which the expectation E[z(x)] exists and is independent 

of the support x; and a covariance function exists for any pair of random variables z(x) and 

z(x+h) which depends only on the separation distance h. This second order function implies 

that only the mean and variance are assumed to be the same everywhere, however, it also 

assumes that the variance is known, which is often not the case in practical terms.  

 

To overcome this problem, a further restriction is made. For F3, a family of intrinsic random 

functions is defined whereby the expectation E[z(x)] exists and is independent of the support 

x; the increments E[z(x) – z(x+h)] are stationary for all vectors h, and are independent of x. 

This implies that the increments have a finite variance, D2 [z(x+h) - z(x)] = 2γ(h) which is 
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known as the variogram. This hypothesis implies that the two experimental values z(xi) and 

z(xi+h) at two different points xi and xi+h are two different realisations of the same random 

variable z(x). The intrinsic stationarity implies that the mean and variance of pairwise 

differences is assumed to be the same everywhere, i.e. the mean is zero. This family of 

intrinsic random functions (F3) is used in linear geostatistics as in practice there is usually 

sufficient homogeneity of the regionalised variable to allow these assumptions to be made. 

 

There are several tools available to characterise spatial correlation of the random function, of 

which the semivariogram is most commonly used in practice. The ‘semi’ part of the term 

semivariogram refers to half (or ‘semi’) of the variance, D2 [z(x+h) - z(x)] because this gives 

the variance per point when the points are considered in pairs. Thus, γ(h) can be interpreted 

as the variance of the variable at the given separation vector, h, which means that only pairs 

that are spatially separated by the lag h, are considered. The semivariogram uses the pool of 

pairs to quantify the variance of the distribution for that separation distance: 

 

 

 

 

 

 

 

 

 

The experimental semivariogram’s nugget variance indicates the variance of the combined 

distribution of pairs of points separated by an infinitely small distance, where an infinitely 

small distance is zero and the value of the variogram for h = 0 is zero. For an experimental 

variogram the nugget variance is the variance at distances less than the sampling interval, 

while for the model variogram it is the variance of the differences for distances h > 0. The 

latter is inferred from the former. At this separation distance the probability distribution of 

either random variable is unaffected by any knowledge of the other random variable, the sill 

of certain types of semivariograms tends towards the variance of the sample dataset. While 

semivariograms calculated from data may take a variety of forms, very often they have 

asymptotic behavior, reaching a relatively constant plateau at some positive value. This 

plateau is called the sill. The value of h at which this sill is reached is called the range. 

Equation 10. The geostatistical semivariogram 
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In order to deduce the variance of the distribution of squared differences in grade between 

sampled data points; and the variance of the distribution of squared differences in grade 

between sampled data points and unsampled data points, it is necessary to know the 

semivariogram value at separation distances other than those used as lags in the experimental 

semivariogram. A (positive definite) random function model is fitted to the experimental 

semivariogram. The semivariogram models only the variance of squared differences between 

random variables as a function of separation of distance; the distribution (shape) is not 

specified by the semivariogram model. In this study semivariograms were modeled as single 

or multi-structured models using spherical, exponential or Gaussian functions. 

 

3.2.4.3 Domaining Considerations 

Consideration of appropriate estimation domains is critical in resource estimation, where 

domaining is usually a practical sub-division of the orebody into zones to which a specific 

variogram may be applied to the variable within the zone. Estimation domains are generally 

closely related to geological, structural and/or weathering units. Vann (2005) identified the 

following factors that need to be considered in defining estimation domains: 

1. Distribution of lithology; 

2. Distribution of weathering surfaces; 

3. ‘Structural architecture’ of mineralisation; 

4. Sampling and analytical precision; and 

5. Spatial distribution of grade within mineralised structures. 

 

The variography of grades by means of semivariogram modelling is crucial when making 

stationarity domaining decisions. Domaining decisions should be undertaken by a geologist 

and a geostatistical expert based on assumptions about the homogeneity of the zones over 

which the estimation is to take place. 

 

In the case of kimberlites there may be distinct lithologies (also referred to as domain 

boundaries) that need to be considered within a kimberlite pipe for diamond estimation 

purposes. Often these domain boundaries are distinguished from adjacent lithologies in terms 

of mineralogy (associated with a change in geochemistry or structural event such as a dyke 

intrusion or breccia event) and/or chemical weathering at boundary interfaces. Given the 
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extreme value nature of diamond grade estimation and stone size valuation based on limited 

drill hole data, the delineation of these domain boundaries are important properties of the 

phenomena under consideration. 

 

3.2.4.4 Linear versus Non-linear Estimation Methods 

There are a multitude of geostatistical estimation methods that can be applied to mineral 

projects. It is good practice when selecting the appropriate estimation method to consider the 

geology of the deposit (e.g. geological structure, mineralisation trends, domaining) in relation 

to the available sample data, such as drill hole spacing, sample compositing and quality of the 

data. Vann and Guibal (1998) note that in many mining projects, sample grades are highly 

positively skewed and that significant ‘deskewing’ of the histogram and reduction in variance  

can occur when going from sample to block support, where blocks are of considerably larger 

volumes than samples. This ‘change of support concept’ is well known in geostatistics where 

the SMU dimensions in relation to the drill hole sample spacing and panel support size 

should involve some consideration for linear versus non-linear estimation methods. 

 

Examples of linear interpolators are Inverse Distance Weighting (IDW) and Ordinary Kriging 

(OK). OK can in principle be thought of as a linear regression expressed by Equation 11. 

 

 

 

 

 

Some of the key limitations of linear estimation techniques (such as kriging) are that they 

were developed to produce the ‘best linear unbiased estimator’ and not to estimate a 

distribution around the grade value (except in the case of a normal distribution), necessary for 

estimating reserves. The use of linear estimation for highly skewed grades may also be 

problematic when some indication of the distribution may be required to gain a better 

understanding of the mean in relation to the spread of the data. In some instances, such as 

geometallurgy, for non-additive variables there is no linear relationship between the value of 

the variable when measured at different scales (e,g. between the core and block). Implicitly, 

even if every possible core sample within a block was measured for a particular variable, the 

where,  is the slope of the line 

and,  is the value of  when  is zero

m

c y x

= +y mx c

Equation 11. Linear regression equation. 
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average of all these billions of values would not be the value of the block. In these scenarios 

the use of non-linear geostatistical estimation techniques would be more appropriate.  

 

Vann and Guibal (1998) note that non-linear estimation was developed for the specific 

problem of estimating recoverable resources. Non-linear interpolation attempts to estimate 

the conditional expectation, and the conditional distribution of grade at a location, as opposed 

to simply predicting the grade itself. In the case of a Normal distribution ordinary kriging 

(OK) and simple kriging (SK) estimate the conditional expectation. Non-linear geostatistical 

estimators are those that use non-linear functions of the data to approximate the conditional 

expectation. The conditional expectation can be obtained through the following probability 

distribution where the probability of the grade at location Xo is a function of the known 

sampling information at locations Z(Xi).  

 

 

 

Some of the more well-known non-linear estimation methods are Disjunctive Kriging (DK); 

Indicator Kriging (IK) and Multiple Indicator Kriging (MIK); Probability Kriging (PK) and 

Lognormal Kriging (LK); and Uniform Conditioning (UC). For the purposes of this study, 

the linear estimation called ‘kriging’ and non-linear simulation method known as ‘conditional 

simulation’ will be elaborated upon. 

 

3.2.5 Kriging 

Matheron honoured Danie Krige (1951) by coining the term ‘kriging’. There are several types 

of kriging algorithms applied to geostatistical estimation problems such as Indicator Kriging 

(IK) where indicators lie in the range [0;1] and for estimations, the indicators define sample 

values above or below a threshold and once the estimates are obtained, may define 

probabilities or block proportions; and Multiple Indicator Kriging (MIK) which involves 

kriging of indicators at several cutoffs (Journel, 1982); Disjunctive Kriging (DK) is where a 

function is defined as a linear combination of indicators and these indicators are cokriged 

taking into account existing correlations between indicators at various cutoffs (Matheron, 

1976); Lognormal Kriging (LK) which requires data to be strictly lognormally distributed in 

order to take the logs of the data and calculate the resulting conditional expectation (Dowd, 

( ) ( )[ ]0 i 1 to  nP Z x | Z x =

Equation 12. Conditional probability distribution 
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1982); and Probability Kriging (PK) which is an attempt to correct the order relationship 

problems identified with using MIK by cokriging the indicators and the rank transform of the 

data, (Verly and Sullivan, 1985).  

 

Ordinary Kriging (OK) is by far the simplest and most frequently used linear estimation 

method and has been used by the author to develop estimates in each of the three case studies. 

 

Kriging may be defined loosely as an optimal regression against observed Z values of 

surrounding (real) data, and weighted according to spatial covariance values (derived from 

the semivariogram of the data). If the true grade of a block is denoted by Z, then the standard 

kriging equation used to estimate, Z*, of volume, V, is estimated by the weighted sum of n 

sample grades. 

th

where estimated block value

 an unknown weight for the measured value at the  location, 

        where the sum of the weights provides an unbiased estimate of Z, 

        and yields 

i
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i i

i
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the minimum estimation variance

 measured value at the  location
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The goal of kriging is to determine the weights, λα such that the estimation variance is 

minimized (Equation 14) under the unbiasedness constraint (Equation 15). 

 

 

 

 

 

 

For simple kriging, it is assumed that the trend component is a constant and known mean, 

m(u) = m as shown in  

2 *( ) ( ) ( )σ = −  E u Var Z u Z u

Equation 14. Estimation variance. 

* ( ) ( ) 0− =  E Z u Z u
Equation 15. Unbiasedness constraint for the Kriging equation. 

Equation 13. Kriging equation. 
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For ordinary kriging, rather than assuming that the mean is constant over the entire domain, it 

is assumed that it is constant in the local neighbourhood of each estimation point, i.e. m(uα) = 

m(u) for each nearby data value Z(uα) that is used to estimate Z(u), see Equation 17. 

 

 

 

 

 

 

 

 

 

 

It is generally accepted practice for OK to be implemented as a means to minimize 

conditional bias, see Matheron (1963), Ravenscroft and Armstrong (1990), and Krige (1994) 

and (1996). However, minimizing conditional bias results in increased smoothing, yielding 

locally inaccurate predictions of the recoverable tonnes and grade above cut-off. The 

smoothing is partly a function of the drilling density, but also depends on block size, search 

volume and semivariogram. It is well understood that kriging results in smoothing. Because 

of the smoothing associated with kriging, the variance of kriged values Z* is less than that of 

the true grades values Z; the histogram of Z* has more values around the mean but less 

extreme values than the histogram of the true grades, Z.  

 

It is well known that for a kriged estimate, estimates above the mean on average overestimate 

the actual values, and estimates below the mean on average under-estimate the actual values 

(for examples refer to Journel and Huijbregts, 1978; and Goovaerts, 1997). Smoothing is 

acceptable within the stated objectives of kriging because the globally unbiased condition 

only requires that estimation error is zero on expectation over the entire domain of interest. 

This is a weaker criterion than conditional unbiasedness, which requires that estimation error 

[ ]
( )

*

1
( ) ( ) ( )α α

α

λ
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= + −∑
n u
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SKZ u m u Z u m

Equation 16. Simple Kriging equation. 
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is zero on expectation at any grade intervals. The conditional unbiased criterion also entails 

global unbiasedness; global unbiasedness does not necessarily entail conditional 

unbiasedness.  

 

3.2.6 Conditional Simulations 

Geostatistical simulation methods aim to reproduce both the in situ variability and the spatial 

continuity of the input data set. Simulations replicate the spatial structure of a data set as a 

whole rather than providing optimum local estimates of an attribute. The simulated model is 

said to be conditionally simulated, if it reproduces the values at sampled points and 

reproduces the same dispersion characteristics of the original data set, i.e., the mean, variance 

and covariance or semivariogram (Costa et al., 2000). 

 

“The illusion that a sound estimation algorithm suffices for ore reserves evaluation comes 

from the lack of understanding of the trade-offs involved when defining the goodness of 

criterion of an estimate” (Journel and Kyriakidis, 2004). This implies that no estimation 

method, unless it was based on completely exhaustive sampling data, can provide an estimate 

that is ‘good’ for ‘all’ purposes. Most traditional estimation algorithms that involve distance 

based weighting algorithms including kriging, are aimed at providing local (rather than 

global) accuracy.  

 

To some extent this estimation conundrum is described by the Heisenberg uncertainty 

principle (Heisenberg, 1958) which maintains that although one cannot examine two 

complementary observables at the same time, it is important to know them both to understand 

the behaviour of the system. Although Heisenberg formulated the principle for microscopic 

quantum mechanics, there is a conceptual analogy between this inequality principle and the 

geostatistical estimation challenges that are encountered in today’s mining world.  

 

Mathematical techniques are used to develop estimation algorithms in order to provide a level 

of local precision to geostatistical estimates. However, the mathematical models introduce 

inherent uncertainties into the algorithms due to estimates (rather than known values) of 

parameters. By selecting a larger model, the description of the system improves but the local 

precision may become worse. 
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Figure 5 compares conditional simulations with kriged estimates (ordinary kriged and co-

kriged, with copper and gold) for a block cave development. Each conditional simulation 

represents a plausible version of reality and may look similar to each other on a global scale, 

however, they have distinct local variations in relation to each other and when compared to 

the ordinary kriged (OK) and cokriged (CoK) copper-gold estimates. While kriging 

represents the best, linear unbiased estimator it is not designed to represent the variability of 

the deposit. Simulations are used for the analysis and solution of problems in which 

variability is a critical factor (Dowd, 1996). 

 

 
Figure 5. Grade plots for copper comparing four conditional cosimulations (number 25, 50, 75 and 100) with an 

ordinary kriged estimate (Cu OK grades) and co-kriged estimate (Cu CoK grades) – Nicholas, 2009. The 

cosimulations and cokriged estimates considered both copper and gold. High grades are indicated by warmer 

colours (red) while colder colours (blue) reflect lower grades. 

 

Conditional simulations allow the generation of sets of realisations that each reproduce the 

histogram, spatial variability and known data values of the variable of interest. Each 

simulation is independent of the others and equally likely to be drawn from the set as referred 

to by Journel and Huijbregts, (1978); Goovaerts, (1997); Dimitrakopoulos, (1998); 

Dimitrakopoulos et al., (2002); and Journel and Kyriakidis, (2004). The distribution of 
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simulated values at each node represents the conditional cumulative distribution (ccdf) of the 

variable at each node, taking into account all of the factors that influence that distribution. 

 

Journel (1974) described the Turning Bands method in 1974 and later, Parker (1978) ran 

Sequential Indicator Simulations (SIS) to model the uncertainty of ore shoots for the Mt 

Razorback tin deposit in Tasmania; followed by Sequential Gaussian Simulation (SGS) of 

grade and thickness at a uranium mine in New Mexico. Parker (1978) recognised that a SGS 

method would produce an auto-correlated realisation of random variables in space. SGS uses 

simple kriging to estimate the local conditional probability distribution (lcpd). This process 

assumes that the lcpd is the classic normal distribution with the mean and variance of the lcpd 

being equal to the simple kriging estimate and estimation variance, respectively.  

 

Similar to the Turning Bands simulation technique, described by Journel (1974) and 

Montoglou and Wilson (1982), the application of this method requires normalization of the 

data and back-transformation of the results. SIS is based on the estimation of the lcpd using 

Indicator Kriging (IK). SIS does not make any assumptions on the shape of the lcpd, which is 

explicitly estimated. Consequently, SIS is slower and more tedious than the SGS technique.  

 

Conditional cosimulation is the multivariate extension of conditional simulation. Conditional 

cosimulations reproduce the above properties for each variable, but also reproduce the spatial 

correlations. The scenarios in which cosimulation is preferable to simulation are not 

necessarily analogous with scenarios in which cokriging is preferable to kriging. In particular, 

the benefits of cokriging are very limited where the variables of interest are isotopically 

sampled. There are, however, compelling reasons why cosimulation is preferable to 

independent simulation whether or not the orebody is isotopically sampled. 

 

The ccdf of each variable at each node provides a measure of uncertainty for that variable at 

that location. Although the ccdfs of multiple variables can be simulated independently for the 

node, they in themselves cannot be used as a measure of combined uncertainty (for example 

the probability all of the variables exceeding given cutoff grades at the node). Because 

multivariate conditional simulations reproduce the above properties for each variable and the 

spatial correlations among variables, they generate the ccdfs for each variable and the 

combined probability distribution at each node. The latter can be used as a measure of 

combined uncertainty. 
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The application of conditional simulations in mine planning optimization studies has been 

recognized by several practitioners in the past, such as Ravenscroft (1992), Dowd (1994), 

Dimitrakopoulos (1998) and Smith (2001). Conditional simulation techniques have been used 

more regularly in the diamond placer industry than in kimberlites and in the former case, 

have led to techniques such as the Cox process being applied by Kleingeld et al (1996). In the 

case of kimberlites, simulations were focused mainly on grade, density and ‘ore’ thickness 

uncertainties. These are mostly segmented models and do not form part of an integrated 

model that quantifies the financial impact of correlated variables on the business model.   

 

3.2.7 Ore Reserves 

Statistical techniques for the evaluation of in situ ore reserves on a panel-by-panel basis were 

proposed around 60 years ago by Krige (1951) and Sichel (1952). Previous resource 

estimation sections within this thesis described the in situ estimate, which depended mainly 

on sampling, assaying, geological interpretation and estimation modelling techniques. 

‘Recoverable estimates’ or ‘ore reserves’ involves additional considerations such as the 

choice of mining method, judgements or predictions of recovery, mining and recovery 

dilution, mining and recovery throughput rates, mining and recovery efficiencies with 

specific regard to the impact of contaminants/deleterious elements, and of the effects of non-

technical aspects such as socio-political, legal and environmental factors (King  et al., 1982).  

 

Reserves relate to the proportion (tonnage) and average grade of those SMUs of size |v| that 

will be selected as ore within any given panel (V). The author notes that the term ‘ore reserve’ 

has strict definitions in a number of public reporting codes, e.g. JORC, SAMREC. A more 

general use of the term ‘reserve’ is used here. The ‘optimal’ SMU and panel size is selected 

from the mine plan after considering optimal bench heights, equipment type (height, size, 

quantity), mining dilution, mining rate etc. which forms part of the mine plan design, 

sequencing and scheduling considerations. Free selection of constant SMU size |v| is usually 

assumed within each panel. However, the panel V could be of any size, at the maximum limit 

so as to include the entire deposit (D) or as small as to only include one SMU (Journel and 

Kyriakidis, 2004).  
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The panel V should not be so large as to include vastly different mineralisation zones, thereby 

contravening implied geostatistical stationarity, which may result in increasing local 

estimation errors. Neither should the panel V be too small (contain only a few SMUs) as the 

grade histograms derived from the SMUs within each panel may not be reliable and could 

introduce large estimation errors. As noted by Journel and Kyriakidis (2004), the smaller the 

panel V size, the less the error averaging but the larger the uncertainty about its reserves will 

be. In many mining operations, the entire mining panel may not be depleted in a single year, 

which may introduce evaluation errors in the cash flow model due to local estimation errors 

within a panel.  

 

Figure 6 contrasts the increased variabilities associated with SMUs with larger-scale panel 

grades.  

 

 

 

 

 
 

 

 

 

 

Figure 6. Smaller scale SMU grades will have higher variabilities than the larger scale panel grades, which are 

likely to have a degree of smoothing associated with it. Adapted from Journel and Kyriakidis (2004) based on 

the concept of the ‘support effect’. 

 

It is not uncommon for mine planning engineers to develop a long-term mine plan focused on 

an annual block sequence and schedule for each year in the LOM plan. This implies that the 

production tonnes, grades and total carats produced (or metal quantities) have been calculated 

from the mine plan for each year but the exact sequence in which each SMU will be mined 

has not been determined. For advanced projects and operating mines, usually a shorter-term 

plan (on a monthly basis) is developed for the first two years where production outputs have 

been calculated on a monthly, rather than an annual, basis. A medium-term (quarterly plan) 

may be developed for the next 1 – 2 years while the remaining LOM is not likely to have 

more detail than on an annual basis.  
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Mine planning optimisation techniques, such as the Lerchs-Grossmann (LG) algorithm, 

(Lerchs and Grossman, 1965) are based on mathematical models that assume inputs into a 

mine plan are known.  This assumption is untrue for the evaluation of most mineral deposits 

but even more so for diamond deposits, as there are more variables to consider that are 

uncertain. Resource models are not deterministic but are in fact associated with varying 

degrees of uncertainty and resource variables may have varying degrees of correlation 

between them, e.g. kimberlite density, grade and recovery (liberation) may be positively 

correlated in some situations. The base or footwall of kimberlite dykes can be associated with 

higher density material, with more stones (higher grade concentrations) in the footwall 

yielding better processing recoveries (high grades often result in high recoveries).  

 

Traditional production scheduling optimization methods do not consider the risk of not 

meeting production targets which occur as a result of grade uncertainty and variability, 

leading to sub-optimal results. For some more modern cases, the mine plan is reviewed from 

practical and probabilistic perspectives, which may include identifying mine blocks 

associated with greater technical risks and scheduling these blocks later in the project’s life-

of-mine schedule. Discrepancies between actual production and planning expectations arise 

through uncertainty about the orebody, in terms of ore grade, tonnes and quality. Ravenscroft 

(1992) discussed risk analysis in mine production scheduling, recommending the use of 

stochastically simulated orebodies to show the impact of grade uncertainty on production 

scheduling. He concluded that conventional mathematical based programming models could 

not accommodate quantified risk, and identified a need for a new generation of scheduling 

formulations that account for production risk. 

 

Dowd (1994) identified the use of correlated Monte Carlo simulation to conduct sensitivity 

analysis of deposit uncertainty, price and costs to understand the impact on optimal open pit 

design. Dimitrakopoulos (1998) recognized the value of conditional simulation algorithms for 

modelling ore body uncertainty in open pit optimization. Later, Smith (2001) identified that 

the uncertainty associated with production variables could be quantified in each block using 

conditional simulations and that stochastic programming (SP) methods could be used to 

extend linear and integer programming-based production scheduling algorithms into a 

stochastic optimization paradigm. In this SP approach to scheduling, the distribution of the 

production variable in each block is used as input into a single optimization which will 

determine a sequence of block extraction that accounts for the deposit uncertainty.  
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Godoy and Dimitrakopolous (2004) developed a mining transfer optimisation algorithm with 

objective functions that consider orebody uncertainties in relation to financial, mining and 

treatment criteria such as the maximum NPV pit shell, discounted cash flow etc. A 

mathematical programming model was developed based on linear programming (LP) that 

took into account geological uncertainty, equipment mobility and access required for 

scheduling and excavating mine blocks. In this scheduling approach, a probability was 

assigned to each block to represent the ‘desirability’ of that block being mined in a given 

period. The probability, calculated from simulated orebody models, represents the chances 

that a block will contain the desired grade, ore quality and quantity, including ore grades 

above given cutoffs, and recovery and processing characteristics.  

 

The first few years of a mining project are generally the most important with respect to 

generating sufficient equity to pay back debts/ loans and therefore require the highest 

confidence. Higher risk blocks are scheduled later in the life of mine plan where the time 

value of money has less effect than on early production periods. This type of risk based 

scheduling presents the decision maker with an option to either plan a higher optimal NPV 

with lesser regard for technical risks or select a lower NPV but ‘safer’ option and exploit the 

orebody based on the greatest technical confidence.  

 

Other workers have considered objective functions and simulated annealing techniques to 

focus on quantifiably maximizing value (and/or reducing costs) by prioritizing the sequence 

of mine blocks (Dimitrakopoulos and Ramazan, 2004). Open-pit mine planning is generally 

more flexible than underground operations using reverse-stoping and block caving techniques 

etc. This is because to some extent, open-pit operations can adapt their mine designs to 

accommodate an uncertain resource model whereas underground mining defines an ‘almost’ 

irreversible plan that cannot easily adapt.  

 

Where conditional simulations have been used to express the uncertainty of resource models, 

a number of variables such as grade, density and revenue per carat exist for each simulated 

realisation that may or may not be correlated with each other and depends on the geological 

model. Dimitrakopoulos et al. (2002) developed ‘envelope optimisation’ methods, focusing 

mainly on grade, and using geostatistical conditional simulations to produce an output 

envelope of NPV solutions. While these methods are useful in identifying an optimal 

envelope of possible solutions and highlighting the error in focusing only on one estimated 
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NPV, the mean of all the realisation outputs is not an optimal mine design. For each 

simulated realisation, an optimal pit may be designed resulting in the optimal block sequence 

and schedule based on the maximum contribution per block. But which realisation is 

representative of reality based on a range of simulated realisations and which one should the 

mine plan be based on? 

 

For the above-mentioned reasons, the IEM methodology adopted in this thesis assumes that 

an ‘optimal’ mine plan has been derived from the base case resource estimate (e.g. the kriged 

linear model). This mine plan (notably the block sequence and schedule) is imposed on each 

conditionally simulated resource realisation. The aim of which is to determine the impact of 

resource variability on the selected mine plan, which represents the ‘best case’ business 

model for a particular operation. Note that where there is insufficient detail on the specific 

SMU sequence within an annual period, a practically constrained mining logic was applied 

whereby each adjoining SMU must be mined (including a top-down sequence based on z-

elevation for open-pits) rather than adopting a completely random, selective SMU approach 

that may be totally impractical to implement in reality. 

 

3.2.8 Estimation Bias and Selectivity 

There are three main potential sources of error in estimation. These are global bias, local or 

conditional bias, and the problem of selectivity. Global bias can occur when the mean grade 

of the estimated blocks is not equal to the actual mean grade of the region (see Figure 7A). 

Global bias can be largely avoided by carrying out sufficient regularly spaced sampling, 

using sampling techniques that do not introduce bias. Domaining and estimation using a 

representative ‘cloud’ of samples around a block are good preventers of global bias Local or 

conditional bias is the overestimation in high, or underestimation in low, estimated blocks or 

panels (see Figure 7B). The problem of selection (in Figure 7 C) is usually defined as a 

function of the correlation cloud where some blocks or panels will be selected but are in fact 

waste (X1) while other blocks will be left in the ground when they are in fact ore (X2). 
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Figure 7. Global and local bias versus selection graphically depicted. 

 

The ‘bottom-up’ evaluation approach proposed in this thesis has more to do with ‘selection’ 

(in Figure 7C) than global or local bias, although local bias will likely influence the selection 

of SMUs sent to the plant. The error introduced by not adhering to a ‘bottom-up’ approach is 

not solely an estimation error as previously noted but rather a function of how each SMU 

(within the block model) at a local estimation scale interacts with the planned reserve 

constraints, with the latter usually designed to consider the average variability per annum 

rather than at a smaller SMU scale.  

 

The optimal selection of SMUs that contribute to a production target (e.g. annual ore tonnes) 

will be influenced by the estimated grade value allocated to each SMU, plus the grades of 

deleterious variables within that SMU that will affect the efficient processing of that SMU or 

panel. This implies that a SMU with the highest grade may not always be the most profitable 

as it may cost more to process it if the deleterious elements have high grades. 

 

Based on the argument above, the author proposes two additional categories of error 

estimation to those depicted in Figure 7, which will be elaborated upon further in this thesis. 

The first is that of an ‘Evaluation Bias’ depicted in Figure 8 which demonstrates the impact 

of short-scale variability within each SMU on the planned production constraints in any given 

period (month/quarter/year) of evaluation, i.e. this figure represents the non-linear impact of 

evaluation considerations on production estimates, which is not to be confused with the 
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impact of selectivity as a function of inaccurate grade estimation relative to cut-off grade 

shown in Figure 7 (c).  

 

The second is the concept of ‘Scheduling Errors’ shown in Figure 9, which highlights 

potential errors that can take place when selecting blocks for processing based on the well-

known ‘time value of money’ approach applied within a conventional discounted cash flow 

(DCF) financial framework. This figure should be considered as a logical extension of the 

‘evaluation bias’ concept highlighted in Figure 8 with the key differentiator being that Figure 

8 depicts the impact of scheduling bias in NPV terms (not only production estimates per 

period) taking cognisance of production risks in relation to the time value of money. 

 

 

 

Figure 8. Depiction of evaluation bias on production estimates due to the non-linear impact of selectivity and 

short-scale variability on reserve constraints. For example, higher than expected ‘actual’ variability of grades 

results in there being greater opportunity to select those blocks that have higher grades than the average 

estimated grade to feed the plant (where the mine generates more tonnes than actual capacity at the processing 

plant). In this case the production estimate, P1 has been under-estimated (grey shaded area) and should actually 

result in higher production figures for the relevant period. Conversely, P2 (yellow shaded area) shows the 

impact of blocks where the production estimate, P2 has been over-estimated due to the increased variability of 

grades in blocks or processing constraints resulting in lower than expected production outputs for that period. 
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The evaluation bias described in Figure 8 depicts the potential bias that can occur when 

‘higher than expected’ variability in the ore is encountered. This could have a negative 

impact (production totals are over-estimated) or a positive impact (production totals have 

been under-estimated).  

 

Point P1 in Figure 8 depicts a scenario in which the metal/production totals (within any given 

period and/or over the LOM) have been under-estimated, i.e. there is a positive skewness of 

increased metal grades and/or lower grades for deleterious elements within the collective 

SMUs for any given period (estimated through non-linear models), which is greater than the 

expected business case scenario (linear model). The increased variability derived from the 

SMUs is still within the reserve constraints and allows ‘higher than expected’ grades (or 

metal content) to be realized, i.e. the mine produces more ore than what the plant can process, 

and only the ‘best’ SMU grades (or metal content) are selected from the ROM stockpiles to 

feed the plant. This actually produces higher-than-expected production totals (average grade, 

metal content etc.) than originally estimated. Thus, the initial production estimate was under-

estimated.  

 

Point P2 in Figure 8 shows a scenario whereby the metal/production totals (within any given 

period and/or over the LOM) have been over-estimated, i.e. the increased variability (through 

non-linear modelling) of metal grades and/or deleterious elements from the collective SMUs 

for any period is greater than the expected business case (based on some form of linear 

model). Typically, mining and processing constraints are designed on the average variability 

estimated from the business case, which in most cases will be smoother than the actual 

variability encountered within the SMUs at shorter time scales.  

 

Higher grades in some SMUs may be associated with higher-than-expected deleterious 

elements (e.g. arsenic) that have to be blended carefully to avoid exceeding plant thresholds. 

Thus, the increased variability from these SMUs will exceed one or more reserve constraints, 

inhibiting recovery of higher grades (metal content or revenue) but still getting the lower 

grades, which results in an overall decrease in the average recovered production. Therefore, 

the initial production is over-estimated. 
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Figure 9. Scheduling errors that can occur when the short-scale temporal impact of block selection is considered 

in terms of contribution to evaluate the effects in the ‘time value of money’, for a conventional DCF analysis. 

 

The scheduling errors shown in Figure 9 occur when selecting SMUs (as part of a panel or 

ROM mix) to be sent to the plant for processing. In this figure, sectors S1 to S4 assume that 

all the SMUs referred to are already above a designated grade cut-off and have been 

classified as ore, i.e. there has been no misclassification of ore versus waste at this stage. 

Note also that the figure refers to ‘revenue’ and not grade alone because revenue is 

considered to be a function of volume multiplied by grade, by density and by price (in its 

simplest form). 

 

Sector S1 refers to those SMUs that have the highest financial value, i.e. high revenue and 

low cost. These SMUs should ideally be scheduled first in the LOM plan to achieve 

maximum financial value with respect to the time value of money. Sector S2 refers to those 

SMUs with the lowest potential value, i.e. low revenue and high cost. These SMUs should be 

scheduled last in the LOM plan. Sector S3 refers to those SMUs which were mistakenly 

estimated as S1 but are actually high revenue plus high cost. These SMUs should not be 

scheduled first in the LOM plan (nor should they be last in S2 either). Sector S4 refers to 

those SMUs which were mistakenly estimated as S2 but are actually low revenue plus low 
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cost. These SMUs should not be scheduled last in the LOM as they are of slightly higher 

value (nor should they be first in S1). 

3.2.9 Financial Modelling 

The main cash flow components that have been considered in the financial modelling stage of 

this thesis are listed below. They are based on a conventional DCF NPV style calculation for 

a mineral project (i.e. diamond, gold, base metal projects etc.): 

 Revenue, derived from the calculation of extracted ore tonnes, recovered carats (or 

metal), grade and revenue per carat (or USD metal commodity price) and the 

foreign:local exchange rate. 

 Costs, which are a function of both variable and fixed costs; the former is usually 

derived from the unit cost per item multiplied by the quantity of items. Both the 

unit cost price and the estimated quantities are subject to uncertainty. 

 Capital estimates that may broadly be categorized into construction capital costs 

and working and on-going replacement capital, related to resource and reserve 

uncertainties. An inversely proportional relationship is often established between 

the capital expenditure (capex) and the operational expenditure (opex) depending 

on management strategy and their appetite for risk.  

 Discount rate approach for diamond projects, especially, can vary radically 

between companies. One method entails the use of the weighted average cost of 

capital (WACC) plus any additional premium for technical and/or country risks. 

While the WACC and country risk component may be derived through market 

measures or ratings from financial houses (e.g. NM Rothchilds and Sons, Standard 

and Poor), the technical risk component is unique to each project and the 

derivation thereof is mostly subjective.  

 

Each of the above-mentioned cash flow components is associated with uncertainty. Time also 

affects the estimations of each of these cash flow components. Management may decide to 

invest more capex in the early stages of an operation to reduce opex if the mine has a long 

LOM forecast and an acceptable risk profile. Conversely, operations that are associated with 

high risks and marginal returns may only receive minimum capex with relatively higher opex 

to allow management to assess how the economic viability of the operation develops over 

time. The mineral evaluation process must also consider that operating decisions made early 
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during the life of a mineral deposit will likely affect the remaining LOM and influence the 

financial returns. Average mining and treatment grades, capex and opex relationships and 

operational flexibilities are key considerations that will materially impact the NPV.  

 

In some cases, a conventional DCF NPV financial model (typically in Microsoft Excel 

spreadsheet format) may be developed by a mining company. This financial model is often 

designed to evaluate only one set of production inputs and usually comprises a ‘stand alone’ 

set of MS Excel spreadsheets with no direct link to the production inputs, let alone dynamic 

resource model inputs or stochastic economic inputs linked directly to the financial model. 

The assumption of ‘flat real’ or ‘flat nominal’ prices, which implies that management 

assumes prices are constant and fixed for the duration of the evaluation period, may be simple 

but unrealistic for project evaluation. 

 

Financial models are typically developed by the project engineer and/or accountant who have 

usually not been personally involved in the mine planning or resource estimation stages of the 

specified project. As a result, technical risks and opportunities within the project (specifically 

within the resource and reserves) may not be appropriately captured within the financial 

model. One method to compensate for technical risks involves increasing the discount rate of 

the project, which implies that the impact of technical risks increase at an exponential rate 

over the LOM of the project. Little regard for the upside opportunities from a resource and 

reserve perspective is encapsulated in the model.  

 

Furthermore, this deterministic conventional DCF NPV model is not designed to quantify 

flexibilities (such as operational or investment flexibility options) to evaluate correctly the 

‘downside’ risks and ‘upside’ opportunities. Operational flexibility includes any variation of 

operating parameters related to increasing or decreasing production supply (expansion and 

contraction); shutting-down; re-opening of treatment plants; re-optimizing of cut-off grades 

etc. Investment flexibility provides the ability to delay the start of projects should prices or 

technical risks be deemed too uncertain.  

   

The author recognised the limitations of a deterministic conventional DCF NPV financial 

model and adapted these models to accept multiple production inputs with system linkages 

between various software platforms based on the IEM methodology. Visual Basic 

Application (VBA) code was used within a MS Excel environment to compile code that 
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imported the appropriate inputs from sources (e.g. resource models) into another (e.g. reserve 

model) and run these through the financial model to generate a range of financial outputs.  

 

The main advantage of using VBA code was that resource or reserve models could be 

produced in any software format and could easily be imported into the financial model. In 

some instances, the author had to recreate the financial model because it was not adaptable to 

running multiple risk analysis scenarios. Specific detail around the necessary adaptations to 

each financial model and the system linkages forming part of the IEM is discussed in Chapter 

four on a case by case basis. 

 

3.3 SUMMARY 

Standard practice for evaluating mineral deposits often involves using a single resource and 

reserve model whereupon sensitivity analyses are conducted but these do not adequately 

capture the range of variation associated with the compounding effect of resource 

uncertainties. Complex resource estimation problems are often expressed through ‘simplified’ 

mathematical equations to solve a global or local geostatistical problem. However, the 

production and financial impacts of non-linear resource-to-reserve relationships cannot be 

approximated using a closed-form mathematical solution as each project has its own set of 

resource and reserve variables, which interacts with mining and processing constraints in a 

sequential, non-linear and unique way.  

 

Failure to account correctly for spatial and temporal risks, by estimating the ‘average’ annual 

production totals instead of accumulating the effects of the short-scale (e.g. daily) interactions 

of resource variables on the mining and processing constraints into annual production totals, 

may result in material errors in estimating a mineral project’s value. The author recognised 

these constraints and developed an IEM framework, which encapsulates a simulation model 

that attempts appropriately to capture, replicate and model the key linkages between 

resources, reserves and the financial model.  

 

It is demonstrated in the next chapter that the interactions between resources and reserves 

follow a complex, non-linear pattern, which is specific to each project, and has to be 

appropriately accounted for by simultaneously considering spatial and temporal scales of data 
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in the evaluation model. The system architecture and design of this IEM approach is common 

to all three case studies in this thesis and, by inference, to many other mineral commodities 

such as gold and base metals. This is a key determinant of the IEM approach as although 

there is some commonality between mineral projects, the unique relationships between the 

degree of resource variability, its combined impact on the production constraints and its 

correlations with financial and economic parameters will likely require each mineral project 

to be uniquely evaluated. 
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Chapter 4 : Variance Analysis using an 
Integrated Evaluation Model  

4.1 INTRODUCTION 

Managers of mining projects are often challenged to make informed decisions based on the 

financial metrics of projects that are typically derived from several sources of data, 

comprising unsystematic and systematic risks. The challenge is exacerbated by having to 

distil various sources of technical uncertainties into a financial model that is usually 

designed to capture production outputs, summed annually in a cash flow model to produce a 

single net present value (NPV) or internal rate of return (IRR) figure.  

 

While it is frequently assumed that the appropriate technical expertise is incorporated into the 

design process at each stage of a project, it remains a challenge to incorporate accurately the 

spatial and system correlations between technical and financial processes and aptly capture 

the risks and opportunities in the financial output. It is even more demanding to capture and 

express risks of the project in ‘easily digestible’ financial terms. This challenge is magnified 

when the evaluation assessment has to incorporate several risk scenarios into ‘one version of 

the truth’ that is easily understood by decision-makers.   

 

Geostatistical techniques are routinely used to incorporate resource risks such as grade, 

geology and density for most mineral commodities, (Matheron, 1973) and (Krige, 1951). 

Since geostatistical simulations were developed (Matheron, 1973 and Journel, 1974), they 

have been used to model the inherent variability and compare the impact of different mining 

methods or support sizes on resources and reserves. Early work (Dowd, 1976); (Dumay, 

1981); (Chica-Olmo, 1983); and (Fouquet De, 1985) focused on understanding the influence 

of technical aspects related to complex mining constraints and on quality control during 

production. As computer power increased, more simulations were run and different types of 

simulation methods developed that allowed more complex types of geology to be modelled.  

 

Since the 90s, the impact of uncertainty on project economics has become increasingly 

important as more marginal projects were discovered. (Ravenscroft, 1992); (Berckmans and 

Armstrong, 1997); (Dowd, 2000); (Dimitrakopoulos et al., 2002) and (Dowd and Dare-Bryan, 

2004) have used a combination of objective functions and geostatistical techniques to 
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evaluate the impact of resource risks on the mine plan and determine their probabilistic 

impacts on NPV. These techniques incorporate resource uncertainty in the scheduling 

optimization algorithm whereas traditional mine planning methods do not and could result in 

sub-optimal reserves. It is worthwhile reiterating that simulations depend on the available 

data, thus, if conditioning data are not representative, the results can be misleading. This is 

particularly a problem when simulation data are being used at an early stage of project 

development and therefore, should be reviewed in advance to ascertain its reasonableness. 

 

There is a need for an integrated evaluation model to aid management to make more 

informed decisions based on quantifiable information that appropriately incorporates 

systematic risks (price and FX rate uncertainties) and unsystematic risks (resource and 

reserve). Three case studies are described below that demonstrate the value of an integrated 

evaluation model (IEM) framework to obtain greater insight into project dynamics and to 

provide quantitative confidence limits around production and financial outputs. 

 

4.2 CASE STUDY 1: ASSESSMENT OF RESOURCE 
VARIABILITY ON MINING CONSTRAINTS FOR AN 
UNDERGROUND OPERATION 

4.2.1 Technical Overview 

This case study demonstrates the impact of the scale of measurement in NPV terms on the 

evaluation of an underground diamond mine with several mining challenges based on 

resource and reserve uncertainties. Scale of measurement refers to dimensions in both space 

and time that are related to the key variables of the project, such as volume (vein thickness), 

grade, density, costs, revenue and foreign exchange rates. This is critical to a valuation 

assessment for a mineral project, as it will be demonstrated that for certain deposits with 

complex resource characteristics and limited operational flexibility, the valuation is 

materially affected by the use of large-scale, annual average estimates for key resource and 

reserve variables. An integrated evaluation modelling (IEM) methodology is recommended 

using short-term, operational scale numerics that are accumulated into annual estimates to 

derive more realistic NPVs.  
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It is unrealistic to create predictions of resource and reserve estimates on a small block scale 

when sample data are limited and spread over a large volume. In many cases production 

estimates of tonnages and grades are computed on an annual basis rather than a shorter-term 

scale (e.g. daily or weekly). The sum of the local reserve depletions in a year is not equal to 

the total expected production derived from the average global reserve depletions. This is most 

applicable for mineral projects that have a high degree of short-scale geological and 

mineralization variability but only limited sampling data. The effect is amplified when 

resource variability has a substantial impact on mining rate and treatment efficiencies. The 

problem is further exacerbated for marginal projects which usually cannot afford the cost and 

potential time delays of spending additional evaluation capital on attaining close-spaced 

sampling data.   

 

As the scale of data acquisition changes (i.e. more or less data are acquired), the mean and 

variance of the data will typically change. The impact of scale on a single variable depends 

largely on the distribution of the underlying phenomenon, e.g. grade or density. If many 

sample data were acquired, the shape of the distribution (specifically, the means and 

variances) for each variable would be well-defined. In most cases of evaluation, however, 

only limited sampling data are acquired and as a result, changes in the means and variances 

of individual resource variables could have a material impact on the project value.  

 

Two different evaluation approaches were selected in this case study to demonstrate the 

impact of measurement scale, viz. ‘top-down’ and ‘bottom-up’ techniques. The former refers 

to annual forecasts that are calculated from depleting resource estimates through a global 

mine plan. Average expected values per annum are used as inputs into the mine plan to 

produce a NPV estimate. An alternative approach uses a bottom-up evaluation technique 

whereby additional sampling data allow finer resolution resource models to be created. These 

finer scale models provide a way to carry out a quantitative assessment of the impact that 

resource variability has on daily mine output. Annual cash flow forecasts are derived from 

accumulations of daily depletions based on localised resource estimates.  

 

While it may appear that these two methods would produce similar NPV results, there are 

cases where they do not. A case-study of a Canadian underground mine is presented where 

diamonds are contained in an irregular dyke that intrudes into a fractured granitic host rock. 

Two sources of uncertainty were modelled. Firstly, geology was evaluated as a form of 
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unsystematic (specific) risks due to the uncertain thickness of a mineralized dyke and its 

undulating top surface. Secondly, economic uncertainty, in the form of foreign exchange rate 

volatility between the US dollar and the Canadian dollar, was integrated into the evaluation 

model as a systematic (market) risk.  

4.2.2 Geology and Resource Modelling 

The actual geometry of the dyke is deemed to be particularly variable. On the regional scale 

(hundreds of metres) the dyke appears to be a continuous, gently dipping sheet, although 

three areas of offset have been identified by surface seismic imaging (McBean et al., 2001). 

At a more local scale (10-100m), orientation changes and splits and large splays have been 

observed, which are thought to be structurally controlled. On a small scale (0-10m), the dyke 

is typically controlled by two different host rock features. Within the strongly foliated 

metavolcanics, the kimberlite appears to roll and undulate on a small scale matching the 

foliation, while in the granitic host rocks, local variations occur along a primary set of joints 

that are flat lying but affected by secondary jointing resulting in an angular step-like nature to 

the dyke (McBean et al., 2001). 

 

To assess the impact of geological variability on project valuation, the author simplified the 

this problem by assuming that dyke thickness and shape variability derived from face-

mapping in the development tunnels were representative of the entire deposit. A VBod was 

created using a non-conditional geostatistical simulation from a combination of drilling 

information, bulk-samples and face mapping from an exposed part of the dyke.  It is assumed 

to be the ‘reality’ on which various sampling campaigns were conducted to generate sample 

data. Although sampling data were available, the author did not want to run a conditional 

simulation designed to honour sample data because the simulated variance would be 

restricted to that calculated from known drill hole data.  
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Figure 10. Geological representation of a Virtual Ore Body (VBod) derived from a combination of drill hole 

data and geological face maps. In this figure “v1” represents the height from the topographic surface to the top 

of the dyke (mineralised zone) and “Thickness” parameter represents the mineralised thickness. 

 

Figure 10 shows the three variables considered in the evaluation model for this case study: 

• The geometrical variability of the top surface of the dyke (v1), which is a vector 

measured from the surface topography to the top of the ‘lumpy’ orebody;  

• Thickness representing the estimated volume of the dyke; and 

• Grade (in carats per hundred tonnes). 

 

Despite the limitation of this approach that only a single VBod was created due to time 

constraints, it is still deemed appropriate for the purposes of this study as it provides a system 

to quantify the estimation accuracies between the selected evaluation methodologies. Sample 

data were used as input to generate kriged estimates and conditional simulations for grade, 

dyke thickness and geometric surface undulations of the dyke. 

 

If drilling data were limited, it may understate the true variance of the deposit. Hence, an 

unconditional simulation was used to try and model the full range of possible variances. For 

simplicity, one simulation is assumed to be reality (the VBod) rather than as a single 
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realisation of a particular orebody. Comparisons were made between the two techniques and 

the VBod. Three sampling campaigns were conducted on the VBod and resource and reserves 

estimates were recalculated each time using the additional information to assess the impacts 

on differences between the top-down and bottom-up approaches.  

 

Sampling data in any evaluation model are fundamental in producing estimates that reflect 

reality. Although including more spatially representative samples typically reduces 

uncertainty associated with both the mean and variance of resource estimates, it does not alter 

the natural variability within the deposit. In some cases drilling more sample holes may not 

necessarily reduce the variance of the estimated grades derived from sample-sized volumes of 

the deposit, it could reveal an increased in the estimated variance. The variance estimated 

from a finite number of samples will vary as the number of samples varies.  

 

Koch and Link, (1970-71) discussed how variability of the sample mean depends both upon 

the variability of the original population and upon the sample size; variability decreases as the 

sample size increases. Thurston (1988) described considerations for sampling kimberlites and 

identified how the uncertainty in local and global estimates change with different sampling 

configurations, both in terms of the size of the sample and in terms of the number of samples 

taken. The limitations of designing a sampling campaign for multiple variables are discussed 

by Kleingeld and Nicholas, 2004.  

 

Core drilling was used to delineate geological variability on three different grid densities; 

75m by 75m, 50m by 50m and 25m by 25m, creating scenarios one, two and three, 

respectively. A 50m by 50m drilling grid was used to sample for grade, using large diameter 

drilling (LDD). Grade did not have any material variability between scenarios and thus, a 

single sampling campaign sufficed. The same grade estimates were applied to each scenario.  

 

Table 2 describes the design of the simulated sampling campaigns on the VBod; sampling 

occurred at point support and simulation grid nodes were 4m by 4m in dimension. 

 

 

     
V-bod Scenario 1 Scenario 2 Scenario 3

Description reality wide-spaced moderate detailed
Grid Dimensions 4m x 4m 75m x 75m 50m x 50m 25m x 25m
No. of samples/ nodes 399 360 1 136 2 556 10 224
Sample % of V-Bod - 0.28% 0.64% 2.56%
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Table 2 summarises the three sampling campaigns and the VBod. 

 

A single mine plan was created based on combined kriged estimates (for grade, v1 and 

thickness) and overlain onto each estimate and simulation to determine the reserves. All 

output was fed into the financial model. Base maps of the VBod and each sampling campaign 

are shown in Figure 11 (colours towards the red end of the spectrum represent higher values 

while colours toward the blue end represent low values). 
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Figure 11. Compares the thickness and v1 base maps for the kriged and simulated outputs of each scenario (sampling at 

25m, 50m and 75m) with that of the VBod. Grade was held constant between scenarios. Note that v1 represents the 

vector measured from the surface topography to the top of the dyke (or orebody vein) and represents the degree of 

undulation of the orebody 
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Table 3 shows the statistical differences between the VBod and each scenario for grade, dyke thickness and the 

geometrical variability of the dyke surface (v1).  

 

In Table 3 the key variables that were modelled were dyke thickness, v1 and grade with the 

modelling emphasis placed on thickness and v1. Interestingly there is little increase in 

variance for the v1 kriged estimates (or the simulated data in Sim1) but in some ways this is 

expected given the smoother undulating surface of the dyke, which has been modelled by the 

geologist based on available face maps and drilling data. The kriged thickness estimate on the 

other hand shows an increase in variance from scenarios one to three, i.e. as the drilling 

density increases, more variability of the localized thickness parameter has been detected.  
 

4.2.3 Reserve Modelling 

The degree of resource complexity may have less material impact on an operation’s financial 

outcome for operations that are generally unconstrained in terms of mining and treatment 

thresholds (assuming that resource estimates have been estimated accurately). This applies to 

scenarios where sufficient flexibility is included in the mine plan so that no bottlenecks occur 

in the extraction or processing processes. In this case the degree of flexibility would require a 

commensurate degree of homogeneity and the rate and scale of mining would deviate very 

little from plan as a result of resource variabilities. 

 

In contrast, mining operations that operate under strict reserve constraints or resource 

complexity/heterogeneity, such as geotechnical and hydrological constraints in 

environmentally sensitive areas, or operations that must deliver a product to specific 

purchaser contracts with penalties for non-compliance (e.g. some iron ore mines delivering 

off-take product to multiple steel mills) do not have the luxury of unlimited mining and 

treatment flexibilities. In some cases these mines cannot easily respond to changes in 

tonnages or grades as a function of resource variability. In the case of marginal operations 

with limited capital expenditure, the impact of this limited responsiveness is further 
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exacerbated by the presumption of ‘smoothed’ ore horizons due to kriging with limited 

sampling data. The impact of this smoothing will be demonstrated in this case study. 

 

4.2.3.1 Mining 

A conventional room and pillar underground method (Hustrulid and Bullock, 2001) was used 

in this case study combined with the use of ‘slashing and drifting’ mining, depending on 

whether the dyke thickness is less than a specified mining threshold. Slashing and drifting 

was used as opposed to the conventional room and pillar method when dyke thickness 

narrowed and mining had to be more selective to try and minimise dilution (typically 

incurring a slower mining advance rate). An average extraction rate of 75 percent was 

imposed. Each mining block of size 250m by 250m was depleted based on a combination of 

rim tunnels, stope tunnels and stope slashing. An average daily call of 3150 treatment tonnes 

was imposed on the project by management. The mine plan and treatment plant were 

designed to meet this production requirement on average per year. 

 

The tabular nature of this deposit and mining, hydrological and geotechnical restrictions 

severely limit the sequencing and optimization of extraction. Simplistic assumptions were 

made regarding the selection sequence of blocks based on the highest value blocks being 

extracted first to maximize the time value of money. While the author recognizes the work 

done by Dimitrakopoulos and Ramazan (2004); and Dowd and Dare-Bryan (2004) involving 

the optimization of blocks given resource and reserve uncertainties, the focus of this study 

was not on optimization but on attempting to model variability in a unique way that 

considered both the spatial and temporal scales. The mine plan provided an opportunity to 

understand the interaction of the spatial nature of the reserves with the temporal realization of 

their value. 

 

A mining depletion programme was created in MS Excel software (using VBA 

programming) whereby mine blocks were depleted at a smallest mining unit (SMU) scale of 

4 m by 4 m with a minimum mining height requirement of 2.0 m for equipment access into 

stope tunnels. The use of MS Excel software, instead of conventional underground mining 

scheduling software such as Earthworks Production Software (EPS), allowed the interaction 

between multiple resource models with selected reserve constraints. The maximum mining 

heights of stopes were constrained to 2.2m while rim tunnels were 3.5m high.  
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• Rim tunnels were 4m x 4m x 3.5m (height) 

• Stope tunnels were  4m x 4m x minimum 2.0m (height) 

• Stope blocks were 4m x 4m x minimum 1.0m (height)  

 

Pillar dimensions varied depending on the support required but no span greater than 8m was 

created. Figure 12 shows the plan view of the mining depletion plan designed and created in 

MS Excel on the basis of an actual room and pillar mine design with ‘slash and drift’ mining 

to minimise dilution when depleting ore in narrow dykes – special low profile mining 

equipment would be used in this regard. 

 

 
Figure 12. A 2-D plan view of the mining depletion programme created in MS Excel based on an actual mine 

plan incorporating a conventional room and pillar underground mining technique combined with ‘slash and 

drift’ mining techniques to deplete narrow dykes while minimizing dilution. The top right insert shows an actual 

photograph taken of an access tunnel in the underground mine. 
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4.2.3.2 Recovery Modelling 

The estimation of the mean recovery factor and its variance is vital in determining the 

quantity of recovered material at a predetermined throughput treatment rate. The recovery 

factor for diamond projects depended largely on three key considerations: 

• characteristics of the ore type; 

• its liberation and separation properties; and 

• the design and interaction of the treatment process in relation to this ore type. 

 

The challenge of achieving efficient recoveries is to understand these complex three-way 

interactions. For this study, it was assumed that a linear relationship existed between the 

proportion of kimberlite ore and the waste.  

 

The impact of the recovery factor on the recovered carats can be very marked especially if 

there are constraints on the system.  For example, if the cut-off grade is close to the statistical 

mean, subtle variations in the mean cut-off grade could significantly impact the project NPV. 

If the cut-off grade is raised, the average grade above cut-off increases which may require 

mining that is too selective using the current mine design and equipment. 

 

Plant design, by its nature, requires a best fit for the ‘average expected feed’ and hence 

cannot incorporate the daily feed variation that may occur over the project’s LOM. 

Conventional approaches to plant optimization (Parker, 1977) usually entail:  

• adapting the plant to accept the variability; 

• installing a stockpile blending system; and 

• adapting the mining method to increase the number of faces or draw points and use 

smaller equipment to improve selectivity. 

 

The example in this study is fairly fixed in terms of its mine design and equipment selection. 

In addition strict environmental policies regulated the creation of large stockpiles on the 

surface and limited space underground restricted the size of stockpiles below the surface. A 

total stockpile capacity of 3,000 tonnes was created, which included capacity from an 

underground storage bin. While some degree of flexibility was available to adapt the plant 

settings to the ore variability, this was more suited to weekly and monthly fluctuations but 

would not cater for daily variations in the system.  
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While dynamic simulations were considered as a possible means to estimate the short-scale 

variability in the recovery efficiency, this was beyond the scope of this study and not 

considered to be material at this stage. A simpler, pragmatic approach was sought to ascertain 

the impact. Depletions of the simulated 4m by 4m SMUs provided the ore-waste proportion 

information. A simplified linear relationship was imposed on treatment recoveries where the 

total grind and liberation of diamonds were a function of the proportion of waste and 

kimberlite, hence recovery efficiency improved as the proportion of kimberlite increased (see 

Figure 13). A plant surge capacity constraint was included to assess the impact of varying 

dyke thickness (on a 4m by 4m SMU scale) on the feed rate variability using an ‘event-based’ 

simulation.   

 
Figure 13 shows the linear relationship between the processing plant recovery and the proportion of kimberlite 

in the processed ore. Higher recoveries are associated with a higher proportion of kimberlite. 

 

Principal strategic parameters that were considered for mining and treatment were: 

• Annual mining rate in order to produce 3,150 tonnes per day; 

• Total stockpile capacity with a maximum of 3,000 tonnes (comprising 1,500 tonnes in 

an underground storage bin plus a further 1,500 tonnes stockpile at surface); 

• SMU selection (4m x 4m x height in metres); 

• The maximum mining ramp angle (17 degrees); and 
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• A threshold imposed on the waste/kimberlite proportion (70/30); if any blasted block 

had more than 70 per cent waste then it was not sent to the treatment plant. 

 

4.2.3.3 Mine Plan and Treatment Output 

Daily production variations for scenario three (25m sampling campaign) are shown in Figure 

14, which highlights the variability in the total tonnes mined (kimberlite ore plus waste) 

relative to the recovery factor for the first year. The correlation between the recovery factor 

and the proportion of kimberlite can also be seen due to the modelled linear relationship 

(depicted in Figure 13). 

 

 
Figure 14. Graph depicting the relationship between total tonnes mined (ore plus waste) on a daily basis by 

depleting each mine block relative to the recovery factor which is influenced by the proportion of kimberlite 

(ore) sent to the plant on a daily basis. Results are shown over one year for scenario 3 (25m sampling 

programme). 

 

It is important to distinguish between mining recovery and processing recovery. Mining 

recovery considerations included a 75% mining extraction rate that was imposed on each 

mine block. In addition if any blasted block had more than 70 per cent waste, it was not sent 

to the treatment plant but instead sent to waste. There is a further mining constraint in terms 

of the total storage capacity of 3,000 tonnes per day, which includes an underground storage 

bin of 1,500 tonnes and another 1,500 tonne stockpile at the surface. Processing recovery on 

the other hand was determined by the linear relationship shown in Figure 13 whereby 

recovery increased as a function of the proportion of kimberlite ore.  
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As shown in Figure 14 the daily tonnes mined varied as a function of the proportion of waste 

in each mining block combined with the impact of hitting the total stockpile capacity of 3,000 

tonnes per day. In some cases additional ore is still mined on a daily basis as this ore has 

already been blasted and passed the 70% ore/waste criteria so is sent directly to the plant as 

the stockpile capacity threshold has already been reached. The recovery factor is determined 

by the proportion of kimberlite mined in each block, which in turn is influenced by the 

mining sequence. The lowest recoveries are realised when the mine plan depletes the end of a 

sequence of stopes and mines predominantly rim blocks comprising mostly waste material. 

 

Figure 15 shows some of the daily statistics of total tonnes mined in relation to the recovery 

factor over the first year for scenario three (25m sampling campaign). 

 

 
Figure 15. Figure shows the statistics between total tonnes mined (LHS) which is ore plus waste on a daily basis by 

depleting each mine block relative to the recovery factor (RHS), which is influenced by the proportion of kimberlite 

(ore) sent to the plant on a daily basis. Results are shown over one year for scenario 3 (25m sampling campaign). 

 

On average 3,000 tonnes per day was mined which is expected given that the maximum 

stockpile capacity threshold was set at 3,000 tonnes. A total of 10% (P90) of the blocks 

exceeded 3,052 tonnes reaching up to a maximum of 3,120 tonnes mined per day. The plant 

utilization was 95.2% (name plate capacity was set at 3,150 tonnes per day) restricted mainly 
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by the mining bottle-neck, due to there being insufficient mining flexibility (stopes) to get the 

‘right ore tonnes to the plant. The P50 recovery factor was 94.4% with 10% (P90) of blocks 

exceeding 97.6% up to a maximum recovery of 100%, the latter was derived from one block 

which had 100% ore and no waste. 

 

Over a ten year period the minimum total tonnes mined were 2,849 and the average was 

3,000 tonnes reaching a maximum of 3,144 tonnes mined per day. Over this same period the 

P50 plant recovery was 93.8% with 10% (P90) of blocks exceeding 98.0% recovery. The 

minimum recovery over ten years was 63.8% and the plant utilization was 95.2%. 

  

Output from the mining and treatment phase on an annual basis is tabulated in Table 4 for the 

VBod and each of the three scenarios. 

 
Table 4 shows annual production output for the VBod and three scenarios.  

 

4.2.4 Financial Modelling 

One of the most important considerations in the design and development of a financial model 

is temporal scale. This refers to the time interval in which cash flows are estimated, which 

should correspond with the time interval in which mining and treatment production data are 

measured and accumulated. This does not imply that that the financial model should be 

developed at a daily, weekly or monthly scale but rather that the short-term production 

outputs are correctly accumulated to form input into the financial model at an annual scale. 

Reserves depend on the mine plan’s ability to react to resource variability at the appropriate 

operational short scale.  

 

This section of the study demonstrates that cash flow constituents derived from annual 

estimates in a top-down approach will not correctly reflect the asymmetries of operational 

variability on a local, daily basis. A more accurate way of deriving annual cash flow 

estimates required for project decision-making would be to accumulate the appropriate values 

     p

V-Bod Scenario 1 Scenario 2 Scenario 3 Scenario 1 Scenario 2 Scenario 3
Total tons (milion) 10.8 10.8 10.8 10.8 10.8 10.8 10.8
Recovery Factor 92.5 93.6 93.3 93.1 92.1 92.5 93.0
Recovered carats (milion) 16.2 16.6 16.6 16.5 15.7 16.2 16.4
Recovered Grade 149.6 153.8 153.7 153.2 145.7 149.8 151.9

Kriged Results Simulated Results
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from a bottom-up approach, i.e. daily, monthly, quarterly then derive annual estimates for 

NPV forecasts. 

 

The bottom-up approach entailed estimation (via geostatistical kriging) of the main resource 

variables into a fine resolution grid (SMUs of 4 m by 4 m) based on sampling data from each 

campaign. Each SMU was analogous to a mining blast that was assessed to ascertain if it met 

the necessary mining and plant criteria, before either contributing to the daily plant call of 

3,150 tonnes per day or being sent to the waste bin if it comprised more than 70 per cent 

waste. These daily accumulations were added together to form monthly, quarterly and annual 

production totals forming inputs into the cash flow models to derive NPVs for each scenario. 

 

For the top-down approach, it was assumed that the mine plan only incorporated sufficient 

detail to deplete large-scale mine blocks of dimensions 250 m by 250 m. This implied that 

local mine plans (within each large-scale mine block) were not available to allow sequential 

depletion of the SMUs to accumulate tonnages and carats in a given year. Although the 

resource was modelled on a finer resolution (SMUs of 4m by 4m), these values were 

averaged into larger 250m by 250m mine blocks. The mine plan was designed to deplete on 

average 3.3 large-scale mine blocks per annum.  

 

The average resource values for each year were run through this mine plan, assuming a fixed 

daily plant call of 3,150 tonnes per day could be attained. Total recovered carats were 

calculated as a function of depleting the average estimated tonnages (per large-scale mine 

block) at a fixed throughput rate of 3,150 tonnes per day, then  multiplying the depleted 

carats with an  average recovery factor per large-scale mine block. The carats per large-scale 

mine block were accumulated into annual cash flow models to produce global NPV estimates 

for each of the three kriged scenarios. 

 

Table 5 presents local versus global NPVs (in CAD millions) calculated for each scenario 

using bottom-up and top-down approaches, respectively. 

 

    p  (  )
Kriged Kriged Kriged

V-Bod Scenario 1 Scenario 2 Scenario 3
Global Annual NPV - 91.6                80.1                73.9                
Local Annual NPV 2.1                  32.9                31.4                28.3                
Differences -                  58.8                48.7                45.6                
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Table 5 shows differences between the global NPV using a top-down approach (called Global Annual NPV) 

compared to the NPV annual based on a bottom-up approach (or Local Annual NPV). All values were 

calculated using a flat FX rate and are shown in CAD millions. 

 

NPV was used as a key metric to assess whether the project made a profit after all debts, 

invested capital and interests have been repaid. Once the NPV estimate was derived, the 

second step was to plot the annual DCFs as this shows when the major proportion of cash 

flows fall and whether there are any irregularities over the LOM. The annual, locally-derived 

NPVs using the kriged estimates for scenarios one and three are CAD 32.9 million and CAD 

28.3 million, respectively. While the NPV for scenarios one, two and three show that the 

estimated NPV derived from the samples is getting closer to the V-Bod NPV as the sampling 

density increases, it is apparent that even scenario three is still significantly higher than the 

CAD 2.1 million NPV for the V-Bod. It suggests that the smoothing effect of kriging for the 

sampled scenarios is positively (but inaccurately) impacting the calculated cash flows. 

 

Figure 16 compares the annual cash flows and DCF values for these two scenarios. 

 
Figure 16 compares the net cash flows (CF), discounted cash flows (DCF), cumulative discounted cash flows in 

CAD million (LHS) and the percentage discounting (RHS) applied to net cash flows for scenarios 1 and 3.  

 

Figure 16 shows that the period between 2008 and 2012 accounts for more than 60% of the 

project’s positive annual cash flow and 70% of the DCF value. As cash flows generated after 

2012 are discounted at values of 50% and higher, management would have to make 

significant operational changes in order to increase net cash flows beyond 2012.  The 
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challenge with this concept is that typically, mine managers run an operation for a few years 

only and they would need to spend considerable capex during their ‘watch’ that would have 

no immediate benefit to the way they are rewarded (w.r.t. performance bonuses etc.).  

 

A more pragmatic way of thinking would be to plan the mine schedule in such a way that the 

operations have the capability of adapting to the resource/reserve variability over time – this 

may imply spending somewhat more capex in the initial design and construction of the mine 

and processing plants (perhaps adopting a modular approach) in order to provide financial 

benefits further on in the life of the mine. From a DCF NPV estimation perspective, the 

longer the LOM, the more difficult it will be to validate spending upfront capex during initial 

years to benefit the operation much later during its LOM.  Management will more likely be 

inclined to spend capex on improving the net cash flows earlier on to maximize NPV.  

 

4.2.5 Economic Modelling  

In addition to the unsystematic risks, the financial model should also take due cognizance of 

systematic risks by incorporating these stochastic variables at the appropriate time scale 

(support size). In their paper, Brennan and Schwartz (1985) used a geometric Brownian 

motion based on Black and Scholes (1973) method with a convenience yield proportional to 

price in order to model the copper price. This was necessary to try and reproduce the natural 

variability of commodity prices over time. Diamond prices are not as volatile as other 

commodities. Factors such as oil price and exchange rates are often more volatile and have a 

material impact on project value; the oil price affects costs and the exchange rate influences 

the company’s revenue. The author has chosen to focus on the exchange rate for this study. 

 

Many models have been developed for interest rate and foreign exchange rates, ranging from 

simple extensions of Black and Scholes (1973) through Vasicek (1997) and on to the latest 

models with stochastic volatility. The book edited by Hughston (1996) provides a good 

overview of the subject. For this study Nicholas et al. (2006) chose to use the Garman and 

Kohlhagen, 1983 (G-K) model, which is a simple extension of Black and Scholes’ original 

model. In this model the drift term is replaced by the difference between the domestic and 

foreign interest rates. If St denotes the spot exchange rate in terms of the domestic currency 
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(CDN) per US dollar, at time t and rd and rf are the domestic and foreign interest rates 

respectively, then: 

 ( )t t t tSd fdS = r - r S dt + S dWσ  

Equation 18. Garman and Kohlhagen (1983) model for modelling foreign exchange rates. 

where sS is the volatility of the exchange rate; dWt is a Brownian element; and dSt is the 
change in the exchange rate S going from period t to period t+1. A simple overview for the 
G-K model was provided in section 2.6 of this thesis. 
 

Two scenarios considering FX uncertainty were integrated into the evaluation model. In both 

cases, the FX rate was applied only to the revenue component as sales from diamonds were in 

notional USD whereas all costs were assumed to be sourced locally. The first scenario 

assumed a flat rate of 1.21 CAD to a USD. This corresponds to a forward FX price. 

Transaction costs were ignored. The NPV results of the three scenarios relative to the VBod 

using the flat rate were shown in Table 5. 

 

The second scenario assumed that the management team would expose the project to the FX 

rate volatility. FX stochasticity was modelled using a Garman and Kohlhagen (1983) model 

to incorporate mean reversion and volatility parameters. A total of 100 simulations were run 

over a 10-year period emulating the FX uncertainty (Figure 17). 

Figure 17 shows the FX rate stochastic output per year from 100 simulations.  

 

Forex Forward Model Simulations
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Each of the 100 simulations was incorporated into the financial model to produce NPV 

estimates for each scenario and for the VBod. NPV histograms and cumulative probability 

plots for the VBod are shown in Figure 18 and Figure 19.  

 
Figure 18 shows the NPV histogram (in CAD millions) for VBod after including 100 FX simulations. 

 

 
Figure 19 shows the cumulative probability plot of the NPV (in CAD millions) for VBod after 

including 100 FX simulations. 

 

NPV comparisons incorporating the FX rate simulations are tabulated in Table 6 for each 

scenario and for the VBod. All values shown were calculated using the local estimation 

technique (bottom-up approach). 

 

Histogram of NPV output
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V-bod Scenario 1 Scenario 2 Scenario 3

Max. NPV (annual) 255. 2 292. 5 291. 5 287. 6 
Min. NPV (annual) (177.4) (150.3) (152.8) (155.2)
NPV P50 (annual) (6.7) 24. 5 22. 7 19. 6 
P50 difference (%) - 468% 440% 394%
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Table 6 shows the maximum, minimum and 50th percentile NPV of the three scenarios relative to the VBod  

after including FX rate modelling ( % differences are relative to the VBod P50 value). 

 

4.2.6 Conclusions 

This case study demonstrated the impact of resource and economic stochasticity on a 

project’s NPV as a function of both sampling and temporal uncertainties. A virtual ore body 

(VBod) was created using a non-conditional geostatistical simulation where one simulation is 

assumed to be reality to provide a method of comparing scenarios. Three sampling campaign 

grids of 75m, 50m and 25m were conducted on the VBod to produce scenarios one, two and 

three, respectively. It was shown that global annual NPV estimates derived in a top-down 

fashion, markedly over-estimated the VBod NPV. Comparisons between scenarios showed 

material differences in the NPV estimates.  

 

Global NPV derived from kriged estimates for the three scenarios (75m, 50m and 25m) are 

CAD 91.6 million, CAD 80.1 million and CAD 73.9 million, respectively. As drilling grid 

densities increased from 75m to 50m and 25m intervals, the uncertainty of v1 and dyke 

thickness decreases and the estimates improved relative to the actual VBod NPV (CAD 2.1 

million). Nonetheless, all global estimates over-estimated the VBod NPV estimate by a 

magnitude of 43 to 35 times (75m to 25m scenarios). 

 

Local NPV derived from kriged estimates for the three scenarios (75m, 50m and 25m) are 

CAD 32.9 million, CAD 31.4 million and CAD 28.3 million, respectively. Similarly, the 

NPV accuracy improved (relative to the VBod NPV) as more samples were taken. Local 

estimates over-estimated the VBod NPV estimate by a magnitude of 15 to 13 times (75m to 

25m scenarios, respectively).  

 

Note that the number of samples were significantly large (1,136 samples for the 75m 

scenario, 2,556 samples for the 50m scenario and 10,224 samples for the 25m scenario). The 

more complex a deposit (in terms of geological structures and mineralization dispersion), the 

more sample drill holes will be required to reduce uncertainty and produce more accurate 

estimates of the statistical means and variances of relevant variables. Greater NPV 

differences between sampling scenarios would be expected if fewer samples were taken.  
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While kriging produced the best unbiased estimates for key variables, it tended to provide 

‘smoothed’ resource estimates based on limited data. Generally, kriging underestimates grade 

and overestimates tonnage, which produces the smoothing or smearing effect. NPV estimates 

would be over-estimated relative to the actual deposit. Contrary to kriging, spatial simulations 

provide a better indication of the range of variabilities to be expected. The scope of this study 

did not allow a range of simulated realizations for comparison purposes. Thus, only a single 

simulated realization was selected as an example of the expected differences in mean values. 

 

Local NPV based on conditional simulated results for the three scenarios (75m, 50m and 

25m) were CAD -26.1 million, CAD +3.6 million and CAD +18.1 million, respectively. 

These simulated outcomes were significantly lower than the kriged estimates and closer to 

the actual VBod NPV. This gave the impression that the conditional simulations provided 

more accurate NPV than the kriged results but these simulations represented only one 

extraction from a range of simulations. This could represent the tenth or ninetieth percentiles 

(P10 or P90) of the simulated distribution outputs. Further work is recommended to generate 

the E-type estimate from a complete range of conditional simulations to compare with the 

kriged result. 

 

The use of a flat FX rate was compared with a stochastic forward model that considers FX 

rate volatility. A fixed FX rate of 1.21 was used (February 2006 USD:CAD rates) to derive a 

VBod NPV of CAD 2.1 million. Table 5 shows the probable range in NPV for the VBod and 

three kriged scenarios when each of the 100 FX models were run through the financial model. 

The medians (i.e. fiftieth percentile or P50) for scenarios one, two and three are CAD 24.5 

million, CAD 22.7 million and CAD 19.6 million, respectively.  

 

Using variable FX rates, the P50 of the VBod NPV reduces from CAD 2.1 million to 

negative CAD 6.7 million (4 times less). This implies that the project is materially susceptible 

to FX rate volatility. However, as shown in Figure 5, there is considerable upside opportunity 

when the fiftieth to ninetieth percentiles are considered. Projects that are particularly revenue 

or cost sensitive may benefit by conducting forward modelling of the FX rate as it allows 

management to gain an improved understanding of the range of probable NPV. The costs of 

hedging against downside risks of FX rate fluctuations should be weighed against the 

negative impact that it may have on project value.  
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The estimation of resources strives to create a view of the quantity of in situ material that can 

reasonably be mined. It is this ‘reasonable expectation’ of ‘mineability’ that implies it is 

impossible to estimate resources totally independently of all external factors. These factors 

include the economic and technological limits that have to be imposed, and the scale and rate 

of mining.  

 

Lastly, on the basis that one simulation is taken as a reality rather than as a single realisation 

of a particular orebody, it can be concluded that the selection of the appropriate time 

measurement scale in which to evaluate a number of diverse variables in a mineral resource 

project is critical in attaining realistic NPV estimates. If the mine went ahead on the basis of 

the ‘top-down’ global evaluation method, material financial losses would be incurred. If the 

‘bottom-up’ local evaluation method was used, management may have been more concerned 

about the overall economic viability of the project and may have elected to reject this project. 

Analysis of this model demonstrated that components of the evaluation model cannot be 

optimized individually; the synchronization of resource, mining and treatment, and financial 

components is required in order to achieve an optimal balance of the system.  

 

4.3 CASE STUDY 2: ASSESSMENT OF RESOURCE 
VARIABILITY ON PROCESSING CONSTRAINTS FOR AN 
OPEN-PIT OPERATION 

4.3.1 Technical Overview 

In this study the impact of spatial resource variability on an existing business model was 

assessed using conditional simulations for grade, density, revenue per carat and yield 

variables on an open-pit diamond operation. It was deemed prudent to use spatial conditional 

simulations rather than try to reflect risks using Monte Carlo simulations (MCS) because the 

latter cannot easily incorporate the spatial covariance relationships of resource and reserve 

data for mineral projects.  

 

Usually MCS (often using @Risk or Crystal Ball risk modelling software) is used to generate 

risk profiles of production outputs and financial parameters to produce a probability 

distribution of the NPV. While MCS may be useful to model variability around non-spatial 

variables, it is inadequate in the case of spatial resource variables for mineral projects 
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because it does not consider the spatial distribution of variables nor the spatial covariances 

between variables. An alternative approach may use summarized statistics from spatial 

modelling of the resource as input parameters (e.g. the mean and variance) into probability 

distributions for MCS modelling. This method is not recommended because it can lead to 

scenarios where independent, random draws have been taken from the MCS but do not 

reproduce the covariance relationships between geological units in adjacent mine blocks.  

 

The net result is that technical risks may be seriously over- or under-stated and lead to 

scenarios where the NPV risk probability profiles are either too broad or too narrow, 

misleading decision-makers (Nicholas et al., 2007). 

 

A more pragmatic and statistically acceptable approach to evaluate the impact of technical 

risks in mining projects is to use spatial simulations to reflect the resource uncertainty and 

run these simulated outputs through various production (reserves) and financial models, as 

discussed by Dimitrakopoulos et al. (2002); and Dowd and Dare-Bryan, (2004). The 

differences between kriged estimates and conditional simulations have been well documented 

(Journel and Kyriakidis, 2004).  

 

4.3.2 Methodology 

A total of 25 spatial conditional simulations were produced for each variable using the 

geostatistical Turning Bands method by Isatis geostatistical software and incorporated into a 

block model with dimensions of 25m by 25m by12m (independent analysis verified that 

results stabilised after 25 simulations). It should be noted that simulations of the individual 

variables were generated independently of each other rather than co-simulated as there is 

negligible correlation among them. Each estimation unit of the block model comprised four 

resource variables (grade, density, revenue per carat and yield) of which there were 25 

realizations for each variable. The estimation units and the selected mining units (SMUs) 

were the same size. The mine plan was imported into Datamine software and merged with the 

resource block model to produce a depletion volume for each estimation unit. This volume 

was assigned to a specific year according to the depletion sequence.  
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Geometallurgical considerations such as the impacts of dense media separation yield on 

throughput and the impacts of density on both hardness and liberation were incorporated into 

the model. The process plant was designed to accommodate surges in yield by including 

several stockpiles and a purge system. A 17% yield threshold (defined as the maximum 

percentage of heavy mineral concentrate passing through the plant) was incorporated into the 

risk model to quantify the impact of the high yield blocks.  

 

The model assumed that for every 1% yield above 17% in a block, the process throughput 

will reduce by 0.5%. A plant recovery factor was calculated based on a quadratic relationship 

between the density of the block and the liberation that is achieved by the plant. Throughput 

was calculated by multiplying the depleted tonnes by the throughput factor, and then the 

grade of the reduced tonnage was used to calculate the carats fed to the process. These carats 

were modified by the plant recovery factor. 

 

The depletion model was overlain onto the spatial realizations to generate an ore stream, 

translating the spatial data into a time-based framework. Outputs from the mining and 

mineral processing modelling were incorporated into the financial model. It is important to 

note that the mine and treatment plans were based on the kriged estimates. The study aimed 

to represent the impact of risks associated with the uncertainty of resource estimates given 

these ‘fixed’ mining and treatment processes and to demonstrate the uncertainty of the cash 

flows using conditional simulations.  

 

Production outputs for each of the 25 simulations were imported into the financial model, 

which consisted of a sequence of Microsoft Excel spreadsheets. The resultant cash flow 

model for each of the 25 simulation outputs plus the cash flow model (based on the kriged 

estimates) were imported into a Risk Evaluation Model (using Visual Basic Applications 

code) and selected data analyses were carried out. The financial model was not altered in any 

way, other than importing the production outputs from each of the simulations and thereafter, 

exporting the estimated cash flows into the risk evaluation model. 
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4.3.3 Analysis of Results 

Figure 20 plots the cash flows, discounted cash flows and cumulative discounted cash flows 

over the life of mine based on kriged estimates. A NPV of USD103 million was derived with 

an IRR equal to 11.35% at a discount rate of 10%. The kriged results show that the first 5 – 6 

years (2008/9 to 2014/5) of the model were the main contributors of value to the NPV based 

on a discount rate of 10%. From 2016 onwards, less than 50% of the cash flow value 

contributes to the NPV (alternatively it could be stated that the cash flows beyond 2016 are 

discounted by more than 50%) implying that considerable time, money and effort would be 

needed to be expended during this time period to make an improvement to the NPV. As the 

discount rate was increased, the time window decreased placing more focus on the cash flows 

derived from the first few years. The ramp-up in production during 2010 - 2013 is pivotal in 

achieving tonnage throughput and ensuring positively contributing cash flows.  

 

 
 

 

 

Figure 21 compares the kriged results (of Figure 20) with 25 conditional simulations plotted 

as cash flows, discounted cash flows and cumulative discounted cash flows over the project’s 

life of mine. The solid black line represents the cash flow generated from the kriged 

estimates, while the dashed black line shows the corresponding cumulative discounted cash 

flow. The other lines represent 1 – 25 of the conditional simulated cumulative discounted 
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Figure 20 illustrates the cash flows (CF), discounted cash flows (DCF) and cumulative discounted cash 

flows (cum DCF) for the business model based on kriged estimates. 
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cash flows. The P10 shows a 10% chance of achieving a NPV of USD -96 million or less; the 

P50 shows a NPV of USD 39 million while the P90 indicates a 10% chance of achieving 

more than USD 201 million. Note that the P50 simulated result of USD 39 million is 

materially less than the kriged business case of USD 102 million (62% less).  

 

 
 

 

 

While it is expected that the block volume errors may have contributed to the reason why the 

kriged model lies notably higher than the conditionally simulated outputs, a more plausible 

explanation for the lower P50 NPV is that each of the conditional simulations was run 

through an integrated evaluation model (IEM) at the operational scale of planned depletion. 

Each block (25m x 25m x 12m) was run through the transfer function, i.e. the mining and 

treatment plan with fixed constraints.  

 

A study by Nicholas et al. (2006) revealed that the financial impact of running kriged 

estimates through an IEM can be materially different to that generated by the traditional 

assumption of using annual, average mining and treatment constraints. An IEM considers the 

constraints that would be imposed on a block at an hourly or daily temporal scale rather than 

assuming average constraints, calculated over 12 months. 
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Figure 21 compares the cash flows (CF), discounted cash flows (DCF) and cumulative discounted cash 

flows (cum DCF) between the kriged estimates and conditional simulations. 
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The business model based on the kriged estimates was not run through an IEM (it was 

beyond the scope of the study) and instead assumed annual average constraints based on the 

transfer function parameters. Where sampling data were widely spaced, the ‘smoothing 

effect’ of kriging would have the biggest impact. As a result, even if an IEM was used on the 

kriged estimates, a bias may exist in the results by understating the real variance. For this 

reason the use of conditional simulations using an IEM is recommended to provide a better 

reflection of the variability in cash flows. 

 

Figure 22 illustrates how conditional simulations can be used to assist production planning 

(short and long-term). Histograms of the cash flow for each year can be produced to represent 

realizations that consider the impact of resource uncertainties over time. The aim of 

producing these cash flow probability plots is to show the range in expected values and 

compare them to forecasted values (based on the kriged model). The coefficient of variation 

(CV) can be calculated to highlight those specific years which have the greatest variability.  

 

 

 Figure 22 shows how histograms of the forecasted cash flows per year can be generated based on 

results from the conditional simulations. 
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The model consistently found that cash flows between years 2010 and 2012 had the highest 

CV. In the case where more than one resource variable is considered in the simulations, 

variables can be selectively excluded one at a time to identify that particular variable that has 

the greatest impact on the CV of the cash flows. Capital could be made available to mitigate 

the risks by providing adequate flexibility (in the mine plan or treatment plant) identified 

during these years – this should improve the process of capital budgeting. This approach 

should be compared with the prospect of additional drilling, which may be relatively less 

expensive and yield other advantages (confirmation of grades, densities etc.) before making 

mine or plant modifications.  

 

Figure 23 shows the cumulative probability distribution for the NPV of this project, which 

provides a better representation of the risk profile for this project than simply quoting a single 

NPV figure or stating fixed percentiles (e.g. P10, P50 and P90).  

 

 

 

 

 

Figure 23 shows the cumulative probability plot for the NPV of this project (in USD millions) based on 

results from 25 conditional simulations. 
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4.3.4 Conclusions 

This case study demonstrates that conditional simulations can be used alongside kriged 

estimates to quantify the financial impact of resource uncertainties without adjusting the 

discount rate to compensate for technical risks. The financial impact of grade, density, yield 

and revenue per carat uncertainties were quantified. The findings of this study strongly 

suggest that an IEM should be an essential part of the business planning process. This is 

necessary to ensure that spatial resource uncertainties can correctly be translated into the time 

domain via depletion and treatment models, and compared to financial forecasts based on 

kriged estimates.  

 

The use of an IEM is preferred to the approach of applying mining and treatment modifying 

factors (derived from annual averages) to production figures, which are likely to provide 

‘smoothed’ perceptions of the actual variability that will be encountered on a daily basis. This 

could result in an over- or under-estimated financial value of the deposit as it fails to capture 

the short-scale effects of the mining and treatment constraints that are imposed on the 

production estimates on a block by block basis. It can also fail to capture upside opportunities 

where greater resource variability could result in increased production recoveries provided 

the mine and treatment processes are appropriately designed to provide this flexibility.  

 

Depletion of simulated blocks in space and in time allows the financial impact of variability 

during each year to be accurately quantified. While volume, grade and density estimates 

show little variation in the simulations over the life of mine on an annual scale, it is the 

variability of these simulations within each year and the selection and sequencing of blocks 

over time that dictates the contribution to the cash flow model. 

 

 In this case study, the evaluation model shows that the highest variability in cash flows 

occurs early on in the life of mine (2010 to 2012) which has the biggest impact on the time 

value of money. This highlights the need for efficient operational execution to ensure that the 

‘right tonnes from the right areas were mined and treated during the right time’. The use of an 

IEM approach linked to financial modelling provides quantitative information about the 

expected variability of a deposit, which creates a basis for improved mine designing and 

operational planning.  

 

118 
 



4.4 CASE STUDY 3: FINANCIAL IMPACT OF RESOURCE 
VARIABILITY ON AN OPEN-PIT GOLD OPERATION  

4.4.1 Technical Overview 

The main objective of this case study was to assess the impact of resource grade variability 

on the reserve constraints of an open-pit gold operation to quantify the impact on metal 

production in financial terms. Part of achieving this objective entailed modelling and 

analysing the impact of gold grade variability on cut-off grade selection and stockpile 

management to maximise NPV (i.e. ensuring that the highest grade ore mined that met 

blending requirements was sent to the plant for processing). 

 

In order to achieve this objective, an evaluation framework (an IEM) had to be developed that 

would appropriately link conditional simulations with the mining and processing schedules 

and the financial model. This was achieved by running 25 conditional simulations through an 

IEM approach, considering both mining and processing constraints, to generate multiple 

production outputs. These were run through a ‘base case’ financial model to generate a NPV 

output for each of the 25 conditionally simulated resource realisations.  

 

All mining, processing and financial parameters used to develop an IEM for evaluation 

purposes were identical to those used to generate the kriged estimate. The company’s 

financial model was used as a financial template to calculate cash flows per year for each 

realisation. A secondary objective of this case study was to demonstrate that an IEM 

approach could be readily adapted from diamond operations to other commodities, in this 

case an open-pit gold operation.  

 

4.4.2 Modelling Parameters 

The following ‘physical’ variables were included in the evaluation model by the author: 

 

 Stochastic gold grades in the form of 25 conditional simulations; 

 Density (S.G.) was assigned values per rock type;  

 Recovery factors (95% for primary ore and 90% for oxide ore) were assigned to each 

SMU; and 
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 An average (global) cut-off grade policy was applied over the LOM (0.65 g/t for 

oxide material and 0.75 g/t for primary material), derived from the relationship 

between gold price, recovery factors and processing costs – see Equation 19. 

( ) ( )( )$

_ _
( 1 ) Re 31.1035

= Cut-off grade in g/tonne
= Total Process cost in USD/tonne
= Gold Price in USD/ounce
= Royalty as % of revenue
= Refining cost total in USD/ounce

t

t r

PCCut Off Grade
Au RC C Met c

=
× − − × ×

 

 

 

The main geological units for the project were identified as per Table 7 below with densities 

assigned to each unit.  

 Geological 
Unit Code 

Density 
(S.G.) 

Recovery 
Factor 

Plant 
Rock 
Code 

Oxidised 1 1.80 90.0% 1 

Partially Oxidised 2 2.20 90.0% 1 

Primary 3 2.80 95.0% 2 

Other Clays 4 1.90 90.0% 1 
Table 7. Assigned densities and recovery factors per met-code. 

 

It is important to note that individual densities were assigned to each rock type, and 

consequently to each SMU as it was considered for reserve evaluation on a block by block 

basis – see Equation 20. 

 

 

 

Equation 19. Cut-off grade calculation for gold. 

Equation 20. Relevance of incorporating density at a SMU scale. 

*

( ) ( ) * ( / )

( )
( )

31.1035

tonnes volume density

metal g tonnes t grade g t

metal g
metal oz

=

=

=
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This was relevant to how the total metal (initially in grams then converted to ounces) was 

calculated for each SMU as a function of its density multiplied by volume to generate tonnes. 

This was used in grade cut-off calculations to determine the total metal contributing to the 

production call each year. 

 

Metallurgical recovery test work was not sufficiently detailed to assign a recovery or 

indicative value to each geological unit code at the time of conducting this study. Thus, 

geological unit codes 1, 2 and 4 were assigned the same plant rock code (i.e. 90% plant 

recovery) while geological unit 3 was assigned a value of 95% as shown in Table 7. 

 

An E-type estimate was derived by averaging the 25 gold estimates (calculated from each of 

the conditional simulations) at each of the circa 600,000 SMU nodes. This E-type estimate 

represented a materially smoothed estimate in relation to the range of variation in cash flows 

derived from the 25 conditional simulations, but served its purpose as a comparison to the 

conditional simulations. 

4.4.3 Programming Logic  

Similar to the previous two case studies discussed in this chapter, it was necessary to develop 

a bespoke IEM approach for this open-pit gold operation to appropriately capture the unique 

resource and reserve characteristics of the project. An evaluation framework was developed 

that allowed each SMU (at a block scale of 10m x 10m x 4m) to be assigned grade and 

density values and year mined. A recovery factor (90% for oxide material and 95% for 

primary material) was applied per rock type to each SMU in the block model.  

 

Each record (SMU) was then assessed in terms of whether it met the various average grade 

cut-off constraints and then either contributed to the metal processed at the plant or was sent 

to the stockpile or to waste. Ore tonnes from each SMU was accrued to form the annual 

mined and processed totals for that year, which provided input into the financial model to 

calculate forecasted cash flows and the project NPV. 
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Figure 24. Depletion grade cut-off rules for oxide versus primary material. 

 

As per Figure 24, each SMU in the resource block model was assessed in terms of certain 

mining criteria and consequently, either sent directly to the plant or to one of the stockpiles 

depending on whether the cut-off grade was met and whether the plant capacity of 10 million 

tonnes (Mt) had been exceeded. Each SMU was accrued (depending on its rock type and 

destination) to obtain production totals per year in the LOM schedule. These production 

outputs were fed into the financial model to calculate forecasted cash flows per year and 

derive the NPV. This process was repeated for each of the 25 conditional simulations until a 

range of cash flows and NPV were generated and confidence limits derived. 
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Figure 25. Depletion grade cut-off rules applied to each SMU on a block-by-block basis (with assistance 

acknowledged from Quantitative Group consultants). LIFO refers to Last-In-First-Out; HG refers to High 

Grade; and LG refers to Low Grade. 

 

Figure 25, illustrates that the IEM depletion rules require that the “best” 10.0 million tonnes 

available in each year are fed to the plant. “Best” is deemed to be the blocks containing the 

highest total metal, based on the tonnes accrued from each SMU on a block-by-block basis 

depending on whether each SMU meets the specified grade cut-off criteria or not. The IEM 

can distinguish between SMUs selected on a purely grade-cut-off basis as opposed to metal 

content, i.e. the calculated metal in each SMU considers the density per geological unit. 

 

If plant capacity is exceeded, the remaining tonnes above the cut-off grade are sent to a high 

grade stockpile. Tonnes that have a grade between the cut-off grade and the waste cut-off 

grade are sent to a sub-grade, or low grade stockpile, and the tonnage below the waste 

threshold is discarded (programming logic depicted in Figure 26).  
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Figure 26. Programming logic for evaluating each SMU according to the reserve constraints. 

 

In years where tonnes mined from the pit do not meet the available plant, the shortfall is 

made up by recovering material first from the high grade stockpile and then from the low 

grade stockpile. Stockpiles are managed in a last in first out (LIFO) manner, i.e. if there is a 

shortfall of tonnes (above cut-off grade) from the mine, the last block sent to the stockpile, 

will be sent to the plant. This means that the actual grade and metal content in each block can 

be accounted for and the gold balance in the system will be correct.  

4.4.4 Analysis of Results 

Figure 27 provides an illustration of the variability around metal (gold grams) produced after 

plant recovery over the LOM. The chart was generated by running each of the 25 conditional 

simulations through the IEM for the same selected reserve parameters (i.e. mining and 

processing constraints). Thus, the variation in output shown is purely as a result of the spatial 

resource simulation inputs into the evaluation model. 
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Figure 27. Graphical depiction of the metal (gold) produced over the LOM based on the 25 conditional 

simulations of the resource. 

 

The ‘tightness’ in the spread of the simulated metal output indicates that there is not a huge 

amount of variability between realisations, although in latter years, 2021 onwards, (due 

mainly to limited resource drill holes in the resource during this period) the spread in metal 

produced does increase somewhat. 

 

A histogram and cumulative probability plot (based on the 25 conditional simulations) of 

total metal produced over the entire LOM (2010 to 2024) is shown in Figure 28. The 

probability of achieving an estimated metal produced in any particular year can be derived 

from the cumulative probability plot. Similarly, as depicted in Figure 29, cumulative 

probability plots for metal produced in each year can be compared with each other to assess 

the relative variability in relation to production targets. 

0.00

5.00

10.00

15.00

20.00

25.00

30.00

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

M
et

al
 P

ro
ce

ss
ed

 (A
u 

gr
am

s 
in

 M
ill

io
ns

)

Production Year

Metal Processed: Variability per Year based on Conditional Simulation

125 
 



 
Figure 28. Histogram and cumulative probability plot of the metal produced over the entire LOM. 

 

 
Figure 29. Cumulative probability comparison plots of metal produced for years 1 to 3.  

 

These cumulative probability plots for metal produced directly influenced the cash flow 

model used to derive financial metrics such as NPV and IRR.  
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Figure 30. Cumulative probability plots of cash flow comparing years 1 to 3, which were derived from 

processing of each of the 25 conditional simulations through the IEM. 

 

 
Figure 31. Annual cash flows and cumulative DCF plots. The proportional effect of the discount rate against the 

cash flows is plotted (grey line with square turquoise fill) along the secondary y-axis. 

 

Figure 31 plots both the cash flows and cumulative discounted cash flows of each of the 

conditional simulations relative to the E-type (shown as a black dashed line). The proportion 

of cash flow discounting (based on a 7% discount rate) provides a graphical illustration of the 

discounting effect on cash flows due to the time value of money. The cash flow distributions 
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for the conditional simulations and E-type models show three distinct periods where the cash 

inflow is high, of which the most important from a time value of money is the ‘risk in time’ 

period 2010 – 2014. The irregular cash flow distributions are mainly due to the interaction of 

in situ gold grade variability in each of the conditionally simulated realisations with the 

annual production derived from the mine plan schedule, the capped 10 Mt plant throughput 

per year and the effect of stockpiling.  

 

It is immediately apparent that the E-type estimate lies materially below the conditionally 

simulated outputs. Firstly, it should be reiterated that the E-type estimate was directly derived 

from each of the 25 conditional resource simulations. Secondly, it needs to be highlighted 

that the outputs shown in this figure have each been subjected to the specified reserve 

constraints, then run through the financial model, resulting in these differences. The 

cumulative DCF values are higher than the E-type estimate because the E-type represents a 

‘smoother’ reflection of the in situ grade variability compared to the conditional simulations.  

 

As a function of selectivity based on highest to lowest grade material fed from the ROM 

stockpile to the plant, the E-type estimate contains materially lower grades than the 

conditional simulations, resulting in lower cash flows. This implies that it is important that 

SMU estimates designated for ‘optimal’ scheduling between the mine and processing plant, 

must have the correct variability, and can result in significant cash flow benefits as shown in 

Figure 31. NPV for the 25 conditional simulations range from USD59 million to USD165 

million, with percentiles are shown in Table 8. A comparison is also provided between the E-

type estimate and P10, P50 and P90 percentiles for the conditional simulations. 

 

 

Table 8. 10th, 50th and 90th Percentiles for NPV results based on outputs from all conditional simulations 

compared to the E-type estimate (at various discount rates). 

 

NPV Results: Conditional Sims
10% 50% 90%
P10 P50 P90
88 119 150

at a discount rate = 7.00%

NPV Results: Etype estimate
Discount Rate 7.00% 5.00% 10.00%

NPV -114 -43 -187 
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Figure 32. Cumulative probability plot of NPV for the project based on running all conditional simulations 

through the same reserve and financial models. The fiftieth percentile NPV is USD119 million (based on a 7% 

discount rate).  

 

The cumulative probability chart for the NPV output based on running all the conditional 

simulations through the reserve constraints and financial model is shown in Figure 32. The 

P50 NPV is USD119 million, which is considerably more than the -USD114 million based on 

the E-type estimate. There are two main reasons for this difference in NPV which when 

combined, resulted in the material gap. Firstly, each of the conditional simulations has a 

significant variance in the in situ resource gold grades (coefficient of variations ranged from 

112% to 118%), while the E-type estimate (coefficient of variation of 80%) represents a 

‘smoother’ average of these conditionally simulated values at each SMU node. Secondly, the 

processing plant is capable of treating only 10 Mtpa while the mine can generate on average, 

approximately 12 Mtpa. Thus, only those blocks with the best grades (or metal content) were 

selected from the pit (and stockpiles, where necessary) to process through the plant.  

 

The E-type mean grade and the average of all the conditional simulations are the same, 

however, when the ‘best’ 10 Mtpa is selected in each year, the conditional simulations have a 

greater variability range in the top end of the grade distribution than the E-type estimate, 

which results in a higher mean grade for that year and contributed to more metal tonnes. This 
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results in greater cash flow contributions and higher NPV for each of the conditional 

simulations. 

 

It was identified that the LIFO strategy, combined with ranking each SMU grade from 

highest to lowest imposed on selecting blocks from the stockpiles, theoretically implies that 

the grade distribution on the respective high and low grade stockpiles is perfectly known – 

this enables a matrix of blocks ranked from highest to lowest grade with only the best ranking 

SMUs contributing to the 10 Mtpa production target fed to the processing plant. Furthermore, 

it assumed that grade control in the mine was at such a representative spacing and high 

quality that the grades (and densities) of each SMU mined from the pit was perfectly known 

and sent to the stockpiles with perfect knowledge of its location. 

 

While this strategy is likely the best possible scenario for optimal extraction and selection of 

blocks being sent to the plant, it is highly unlikely that it would be achieved in reality. Hence, 

it was deemed necessary to run two alternative stockpile selection scenarios. Test-1 involved 

modifying the original E-type estimate so that the same SMU grades were ranked in 

ascending order from lowest to highest grades (instead of highest to lowest). When the best 

10 Mtpa for sending ore to the processing plant took place, the lowest grades were selected 

first, leaving many of the higher grade SMUs on the ROM stockpile. Test-2 involved 

modifying the original E-type estimate such that an average grade for all SMUs (per mining 

period) was calculated and blocks were sent to the processing plant at the average SMU grade 

above cut-off (rather than their inherent resource grade). Figure 33 depicts the cumulative 

discounted cash flows of these two scenarios in relation to the original E-type estimate (black 

dashed line). 
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Figure 33. Annual cash flows (conditional simulations shown in multi-colours) and cumulative DCF plots of 

conventional E-type estimates sorted from highest-to-lowest grades (black dashed line), E-type Test 1 estimate 

(stockpile facility) sorted from lowest to highest grades (blue dashed line), and E-type Test 2 estimate (stockpile 

facility) with no sorting and grades set to the average grade per period (grey dashed line). 

 

Figure 29 shows that both E-type tests (one and two) lie materially below the original E-type 

estimate. The original E-type estimate represents the theoretical best scenario where blocks 

are sorted in descending order from highest to lowest grades to select the best 10 Mtpa for 

processing at the plant, while the other two tests are sub-optimal scenarios. Test 1 may be 

perceived as the worst case scenario (from a time value of money perspective) where grade 

control, scheduling and blending practices in the pit and on stockpile management are 

minimal to non-existent and the lowest grade blocks are sent to the plant first. Test 1 ‘crosses 

over’ Test 2 at year 2019 due mainly to the fact that there is insufficient ore at that stage from 

the pit and ore needs to be sourced from the stockpiles. Ore from Test 1 has higher grades 

sitting on the stockpile than Test 2, which results in a higher cumulative DCF value. 

 

These two E-type tests demonstrate that it may be worthwhile to implement an effective 

grade control, blending and stockpile management programme, especially where the 

bottleneck is the plant and the ‘best’ tonnes are selected from mining production. Test 1 

showed a difference of USD481 million while Test 2 showed a difference of USD647 million 
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that could contribute to funding grade control and stockpile management programs to 

improve the project’s NPV. 

 

4.4.5 Conclusions 

This case study demonstrates that an IEM could be effectively used to create a simulation 

study to quantify the effects of resource variability for a gold operation on production and 

financial outputs. Additional ore tonnes from the mine creates greater mining flexibility to 

select those blocks first that had the highest ore tonnes for processing to meet the ‘best’ 10 

Mt plant capacity in that year. This is crucial for management in deciding the value (e.g. 

tightness of sampling grid) and quality (e.g. blast holes versus reverse-circulation drill holes) 

of a grade control programme to better understand resource variability and how best to use 

this information to schedule mined blocks in relation to the optimal use of stockpiles, thereby 

ensuring that the best ore is processed first through the plant. 

 

The study demonstrated that the financial benefit of grade control systems and stockpile 

management can be quantified in financial terms by using an IEM. Perfect knowledge of 

grades within each block and its subsequent location on the stockpile implies that an increase 

in NPV of USD481 million (compared to Test-1) and USD647 million (compared to Test-2) 

is possible. While perfect knowledge of the ore body is acknowledged as being impractical, 

this IEM framework does provide a method to quantify the cost/benefit scenarios implement 

grade control and stockpile management systems. 

 

This IEM framework provides a way of studying the planned constraints on the size/capacity, 

quantity, and layout of stockpiles. It was unrealistically assumed in this risk model that 

stockpile capacities were unconstrained. It is likely that as the number of stockpiles increase, 

the total maintenance, trucking and handling costs would also increase, which should be 

reflected in the financial model. In the event that the number, and size, of stockpiles on 

surface needs to be evaluated for environmental purposes, the IEM provides an opportunity to 

evaluate different risk scenarios (which is distinct from conventional optimization studies) to 

provide more confidence and accuracy with mine planning and financial costing exercises.  
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Given the non-linear relationships between resource, mining, processing and financial 

constraints, this particular problem could not have been solved through any form of closed-

form mathematical model – an IEM approach was necessary.  
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Chapter 5 : Risk Analysis  
5.1 INTRODUCTION 

The objective of this chapter is to demonstrate that sensitivity analysis and Monte Carlo 

simulations can provide an improved understanding of project risks but there are limitations 

of using these techniques that need to be understood more clearly. A virtual ore body (VBod), 

as discussed in chapters three and four, is used to evaluate the accuracy of a mineral project 

based on different risk analysis methodologies. Case studies discussed in chapter four are 

expanded to include sensitivity analysis and Monte Carlo simulation techniques with results 

compared to an integrated evaluation modelling (IEM) approach. Finally, financial variance 

reduction techniques are explored in more detail to ascertain whether they represent a viable 

alternative to an IEM approach. 

 

5.1.1 Modelling of Uncertainty and Variance 

Before modelling risk in an evaluation model for a mineral project, it is important to 

understand the inherent correlations among key resource variables, and the system linkages 

(or dependencies) among the various stages in the evaluation pipeline and the temporal scale 

at which to evaluate risks.  

 

Variables such as nickel, iron and sulphur may be spatially correlated with each other and 

their covariance relationships should be appropriately considered in the selected risk analysis 

technique. Relationships between the drill hole spacing, selection of the estimation unit size 

(EUS), desired accuracy (globally and locally) in the selected estimation/modelling 

technique, selected mining unit (SMU) size and associated mining method, management of 

risk mitigation/variance reduction strategies related to mining and processing flexibility 

options, and capital and operating cost expenditures should all be considered as ‘system 

linkages’ in the evaluation model (except for the IEM approach, most conventional risk 

analysis techniques do not). Temporal scale and the required level of detail/depth in the 

evaluation model must be weighed up in terms of the accuracy of the output results versus 

available resolution of the data and time (model set-up and processing) requirements. 
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There is a multitude of risk analysis techniques, ranging from subjective matrix-style 

assessments to objective spatial stochastic modelling, with each technique producing outputs 

that should be considered in terms of the representivity, accuracy and comprehensiveness 

versus detailed characteristics of the proposed solution. The risk analyst/modeller must define 

the question clearly (i.e. the objective of the risk study) and evaluate the suite of risk 

modelling techniques available to ensure that the selected risk analysis technique is the most 

appropriate once all the advantages, disadvantages and assumptions have been considered. 

  

 
Figure 34. Simplistic overview of calculating the economic contribution (i.e. revenue less costs) of a diamond 

mine – each parameter has a stochastic modelling component that should be considered in the overall 

contribution calculation.  

 

Calculation of the contribution derived from operational cash flows is an important 

component in determining the NPV of any mining project. Figure 34 provides a simplistic 

overview of the different components of an evaluation model required to estimate the revenue 

and costs of a diamond project. It can be observed that each component, starting from the 

Revenue

Costs

Rec. Carats x $/carat = Revenue

Carats x Rec. factor = Rec. Carats

Volume x Density = Tonnes

Geological model (domains)

Variable Costs + Fixed Costs

$/tonne mining costs$/tonne treatment costs

Reagent costsSteel costsElectric Power 
(kwh) costs
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geological model to the estimation of revenue, has a stochastic component. The delineation of 

hard and/or soft boundaries for geological domains is usually a subjective decision by the 

modeller/geostatistician that includes the consideration of geology, mineralisation, 

weathering profiles and available data. Similarly, deciding on the appropriate EUS to 

estimate into will determine the block volumes and should consider (usually a multiple of) 

the SMU size of the deposit that the mining engineer will allocate.     

 

In Figure 34 density, grade, the recovery factor and dollar per carat (USD per carat) are all 

stochastic variables in the estimation of diamond revenue. Calculation of costs also comprises 

stochastic variables in terms of both variable and fixed costs. Inputs into variable costs are 

uncertain as they contain estimated usages and costs for electricity (kilowatt hours), diesel 

costs for plant and mobile equipment, steel for construction, reagent costs etc. The final costs 

(variable and fixed) will incorporate these uncertainties and hence, the net contribution will 

typically have a large spread in value. 

 

Consideration of all spatial and non-spatial stochastic variables is not always possible in a 

single evaluation model due to the number of permutations that would need to be modelled if 

every conceivable scenario was contemplated. It is important to recognise where in the 

evaluation model the risk modelling is conducted (i.e. from resources to reserves to financial 

and economic parameters) as there is usually a compromise between the level of detail and 

the required processing time. Computer power has improved processing time dramatically 

over the last decade but is still relatively slow to process simultaneously a large number of 

stochastic variables for medium to large mining projects; e.g. block models of circa 500,000 

nodes comprising more than six to seven variables may take several hours to process. The use 

of Monte Carlo Simulations (MCS), and to a lesser extent, sensitivity analysis, offers risk 

analysts an opportunity to ‘simply’ and ‘speedily’ model risk around some of these 

parameters but due caution should be exercised because there are various limitations, 

elaborated upon later in this chapter.  

 

5.1.2 Sensitivity Analysis Overview 

Sensitivity Analysis (SA) is a technique used to determine how different values of an 

independent variable will impact a particular dependent variable under a given set of 
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assumptions. SA can add value when attempting to assess the impact of the uncertainty in the 

variable. By creating a given set of scenarios, an analyst can determine how changes in one 

variable(s) will impact the target variable (Investopedia, 2011). The parameter values and 

assumptions of any model are subject to change and error. Sensitivity analysis can be 

described as the investigation of these potential changes and errors and their impacts on 

conclusions to be drawn from the model (Baird, 1989).  

 

In very simplistic terms, sensitivity analysis is ‘what if’ analysis, which is an important 

notion at the core of any application of decision tools and may be applied to a wide range of 

uses. Pannell (1997) lists four broad categories of SA applications: decision making or 

development of recommendations for decision makers, communication, increased 

understanding or quantification of the system, and model development. According to him, 

uncertainty is one of the primary reasons why sensitivity analysis is helpful in making 

decisions or recommendations. If parameters are uncertain, sensitivity analysis can provide 

information such as: 

a. How robust the optimal solution is in the face of different parameter values;  

b. Under what circumstances the optimal solution would change; 

c. How the optimal solution changes in different circumstances; and 

d. How much worse off would the decision makers be if they ignored the changed 

circumstances and stayed with the original optimal strategy or some other strategy. 

 

One of the most important decisions in setting up the experimental design for the sensitivity 

analysis is the consideration of: 

a. the contribution of an activity to the objective (e.g. which calculation parameters to 

include in the sensitivity analysis for estimation of the DCF);  

b. the objective (e.g. minimise risk of failure instead of maximising profit); 

c. constraint limits (e.g. the maximum availability of a resource); 

d. the number of constraints (e.g. add or remove a constraint designed to express 

personal preferences of the decision maker for or against a particular activity); 

e. the number of activities (e.g. add or remove an activity); and 

f. which technical parameters to vary. 

 

A crucial consideration in setting the experimental design is whether the parameters will be 

varied one at a time or in various combinations of inter-dependencies. An important issue in 

137 
 



this decision is the relative likelihood of combinations of changes. ‘One-way sensitivity 

analysis’ is the simplest form of sensitivity analysis where one value in the model is varied by 

a given amount to examine the impact that the change has on the model’s results (Taylor, 

2009).  

 

If two parameters tend to be positively correlated (e.g. prices of two similar outputs), the 

possibility that they will both take on relatively high values at the same time is worth 

considering. Conversely, if two parameters are negatively correlated, the modeller should 

examine high values of one in combination with low values of the other. If there is no 

systematic relationship between parameters, it may be reasonable to ignore the low risk that 

they will both differ substantially from their base values at the same time, especially if they 

are not expected to vary widely.  

 

If combinations of changes to two or more parameters are being analysed, a potential 

approach is to use a "complete factorial" experimental design, in which the model is solved 

for all possible combinations of the parameters. While this provides a wealth of information, 

if there are a number of parameters to analyse, the number of model solutions which must be 

obtained can be enormous, and time consuming to process and interpret (Pannell, 1997). 

 

Sensitivity analysis is most commonly applied to the mean parameters used to determine a 

defined output (e.g. NPV) by varying one parameter at a time while keeping all the others 

constant to ascertain which parameter has the biggest effect on the calculated output.  

 

Figure 35 depicts an example in which the mean grades were estimated by ordinary kriging 

(centre figure) and then adjusted by -15% (left figure) and +15% (right figure) by shifting the 

mean estimated kriged grade in each estimation unit of the resource block model by a factor, 

k, in this case first by -15% then by +15% to calculate the response on the cumulative DCF 

output.  
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Figure 35. Effect of sensitivity analysis on kriged diamond grades (centre picture) is shown in the figure above 

by modifying the both the mean and the variance by a factor, k = -15% (left picture) and +15% (right picture). 

Note that warmer colours represent higher grades and cooler colours represent lower grades. 

 

In the author’s experience, not enough thought is given to the effect on the variance when 

sensitivity analyses are conducted; i.e. when the mean is shifted by a factor, k, the variance is 

simultaneously adjusted by a factor k2. The net effect of this variance adjustment can be 

observed in Figure 36 by the dashed red lines representing the +15% and -15% adjustment of 

the estimated kriged grades.  
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Figure 36. Effect of sensitivity analysis on kriged estimated grades, ±15% (shown in dashed red lines) relative 

to conditional simulations (multi-coloured lines) and the VBod reality (black dashed line). 

 

From Figure 36 it is clear that the sensitivity analysis range lies outside the range provided by 

the spatially conditionally simulated realisations (multi-coloured lines). This is also 

evidenced by the distance of both the +15% and -15% sensitivity scenarios away from 

‘reality’ (represented by the black dashed lines of the VBod). The author selected a 

sensitivity range of ±15% to replicate financial analysis conducted by corporate finance and 

banks (typically in the ±10% to ±15% sensitivity range). So in this scenario the benefit of 

using sensitivity analysis needs to be carefully assessed in terms of the original question 

asked. Its use to determine the ‘break-even’ value of a specific parameter may be of more 

value, assuming that the parameter is largely independent of the other parameters used to 

calculate the specified output. In this example sensitivity analysis does not provide an 

accurate reflection of the plausible spread in DCF outputs – this is far better represented by 

conditional simulations or kriging, which takes into consideration the spatial characteristics 

of the deposit based on the available drill hole data.  
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Figure 36 also shows the value of plotting the kriged estimate (and its sensitized ±15% 

values) relative to the VBod reality. In year 1 of the LOM schedule the kriged estimate 

under-estimated the cumulative DCF VBod reality by 5% (circa USD70 million) while in 

year 8, the kriged estimate was over-estimated by 3% (circa USD230 million). While kriging 

represents the best, unbiased linear estimate, it is acknowledged that in certain scenarios there 

will be greater degree of accuracy associated with global rather than local estimates. If it 

could be readily measured, a 3% - 5% level in the accuracy of the kriged estimate relative to 

reality would usually be deemed acceptable but there are scenarios when the degree of 

smoothing associated with ordinary kriging of the resource estimate will result in greater 

discrepancies between global and local estimates due to complex 

geology/mineralisation/structural issues coupled with widely spaced drill hole data (e.g. as 

described in case study one of chapter four).  

 

Because sensitivity analyses are usually conducted on a single, ‘best estimate’ of the resource 

model, it will also reflect that level of local inaccuracy and could be misleading to decision-

makers; especially where banks provide funding to companies and depend on the confidence 

around ‘local’ production and cash flow estimates within short periods (1 – 5 years tenure) of 

the overall LOM schedule. It is suggested that a far better alternative to sensitivity analysis is 

to use spatially representative conditional simulations to reflect the variance of spatial 

parameters. While it may take longer to set-up, it is recommended that an IEM approach 

(discussed in chapters three and four of this thesis) is a more robust solution than traditional 

sensitivity analysis to quantify the risk of spatial attributes and correlations between technical 

parameters within an evaluation model. Sensitivity analyses could then be conducted on the 

non-spatial parameters of the evaluation model. 

 

5.2 A COMPARISON BETWEEN A BOTTOM-UP IEM 
APPROACH, SENSITIVITY ANALYSIS AND MONTE CARLO 
SIMULATIONS 

5.2.1 Background 

Case study one in chapter four of this thesis discussed the impact of scale of measurement, in 

NPV terms, on the evaluation of an underground diamond mine. This case study forms a 

background to the following section to compare the accuracy in calculating the NPV of a 
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project using various evaluation and risk analysis methods. Differences between the use of a 

detailed ‘bottom-up’ evaluation approach using an IEM versus a conventional ‘top-down’ 

evaluation methodology is further elaborated upon from case study one. Furthermore, 

sensitivity analysis and Monte Carlo (MC) simulation methods are compared with the 

‘bottom-up’ IEM method to highlight improvements in accuracy of this risk assessment 

technique. 

 

To assess the impact of geological variability on project valuation, the author simplified a 

real-life problem by assuming that dyke thickness (analogous to an ore vein) and shape 

variability derived from face-mapping in development tunnels of an underground, diamond 

mine were representative of the entire deposit. Three approaches were adopted; a 

conventional sensitivity analysis where the variables, dilution, tonnage throughput and 

recovery were changed by ±5%, ±10% and ±15% from their expected values; MC 

simulations were run on the same variables using expert opinion to parameterize the input 

variables; and finally an IEM was developed to allow both bottom-up and ‘top down’ 

evaluation methodologies. Results of these three approaches were compared with each other 

and against a virtual ore body (VBod). 

 

A virtual ore body (VBod) was created using a non-conditional geostatistical simulation (by 

using Turning Bands in Isatis software) based on data gathered from a combination of drilling 

information, bulk-samples and face mapping from an exposed part of the dyke – this is the 

same VBod described in Chapter four of this thesis.  It was assumed to be the ‘reality’ on 

which the various sampling campaigns were conducted to generate the sample data. Two 

variables were considered in the evaluation model, viz. geometrical variability of the top 

surface of the dyke (v1) and thickness related to the volume of the dyke. Grade was not 

deemed to have any significant variability between scenarios and thus, a single sampling 

campaign on a 50m grid sufficed. 

 

5.2.2 Effect of Information on Project Evaluation 

Three sampling campaigns were used to sample the VBod at point support using the 

geostatistical software, Isatis from Geovariances. Vertical core drilling campaigns were 
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designed on a 75m, 50m and 25m grid to sample for v1 and thickness variables, creating 

resource scenarios one, two and three respectively.  

 

Resource models for v1 and thickness were generated for each scenario based on sampling 

data from each campaign. Ordinary kriging was used to generate estimates for each scenario 

for the selective mining units (SMUs) of 4m by 4m. The same grades were applied to each 

scenario in order to keep grade constant and only assess the impact of geological variability. 

 

Figure 37 graphically demonstrates the effect of sampling information (drill holes) in a 

kimberlite dyke and its corresponding impact on reserve evaluation as a function of the 

interpreted geological and grade complexity. 
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Figure 37. The effect of information (drill holes) on assessing the variability within a kimberlite dyke (Nicholas 

et al., 2007).  
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5.2.3 Bottom-up versus Top-Down Evaluation Approaches 

The IEM used a bottom-up evaluation technique that was based on depletions of the ore body 

at a local SMU scale of 4m by 4m. The SMU grades were seeded directly from kriged 

estimates (discussed in Chapter four of this thesis) and sampled at intervals of 75m x 75m 

(Scenario 1), 50m x 50m (Scenario 2) and 25m x 25m (Scenario 3). Production tonnages and 

grades were calculated from these blasts on a daily basis and accumulated monthly, quarterly 

and annually. Each SMU was analogous to a mine blast that was assessed whether it met the 

necessary mining and plant criteria before either contributing to the call of 3,150 tonnes per 

day or being sent to the waste bin if it comprised more than 70% waste. The increased short-

scale variability of the dyke resulted in the mining and treatment constraints being hit more 

often than estimated in the top-down approach.  

 

The IEM was designed to correlate directly the financial model with the mining and treatment 

databases enabling all production estimates, revenues and costs to be accumulated from a 

blast by blast basis to a daily basis and collected quarterly and annually. These production 

outputs formed inputs into the cash flow model. Conventional DCF valuation was used to 

calculate NPVs at an initial discount rate of 10%. NPVs were calculated in real money terms 

(after royalties and tax deductions, allowing for inflation).  

 

The top-down evaluation approach refers to annual forecasts that were calculated from 

depleting resource estimates through a global mine plan. It was assumed that the mine plan 

only incorporated sufficient detail to deplete large-scale mine blocks of dimensions 250m by 

250m. This implied that local mine plans (within each large-scale mine block) were not 

available to allow sequential depletion of the SMU to accumulate tonnages and carats in a 

given year. The average resource values for each year were run through the same mining and 

treatment constraints as imposed on the bottom-up approach.  

 

However, instead of accumulating actual tonnages from short-scale depletions, the top-down 

approach assumed a fixed daily plant call of 3,150 tonnes per day would be achieved, then 

multiplied depleted carats with an average recovery factor per large-scale mine block. The 

carats per large-scale mine block were accumulated into annual cash flow models to produce 

global NPV estimates for each of the three kriged scenarios. 
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Figure 38. Comparison between the local (bottom-up) and global (top-down) evaluation approaches. 

 

Figure 38 highlights differences in NPV between the ‘bottom-up’ (or Local) evaluation 

method and the ‘top-down’ (or Global) evaluation method. While the actual NPV for the 

VBod was CAD2.1 million, it is clear from the figure above that the local (bottom-up) 

evaluation method more closely approximated the actual project NPV than the global (top-

down) method. It is also apparent that as the drilling grid density increased (from 75m to 

25m), i.e. more holes were drilled, the accuracy in estimating the project NPV improved, 

albeit somewhat marginally. Given that the actual short-scale variability of the dyke operates 

at a scale of less than 10m, there is still significant improvement in the evaluation of the 

project’s NPV to be had by increasing the drilling grid density (closer than 25m spacing) – 

although this would not likely be practical from a logistical and cost-sensitive perspective.  

 

This section of the study demonstrated that cash flow constituents derived from annual 

estimates in a top-down approach will not correctly reflect the asymmetries due to 

operational variability on a local, daily basis. The ‘bottom-up’ evaluation method represented 
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a more accurate way of deriving annual cash flow estimates needed to make decisions on 

projects by accumulating the appropriate values from a bottom-up approach, i.e. daily, 

monthly, quarterly then derive annual estimates for NPV forecasts. 

 

The use of sensitivity analysis to highlight the main parameters affecting project value (e.g. 

NPV) is standard practice but results can be misleading if variables are conventionally 

assumed to be totally independent of each other and plotted relative to each other in a typical 

‘spider diagram’ sensitivity chart. In this case study dilution loss (i.e. excessive waste 

material mined), plant throughput and recovery loss (i.e. lower plant recoveries) have a 

significant influence on NPV by affecting the number of carats produced. Figure 39 portrays 

sensitivities for the 75m sampling campaign (scenario 1 - top-down evaluation method). One 

of the three selected variables is varied at a time while all other input variables are held 

constant to isolate the impact of the chosen variable.  

 
Figure 39. Graphic plot (‘spider diagram’) of sensitivity around NPV (in CAD millions) within a range of 

±15%. 

 

Results from the sensitivity analyses in the figure above show a large range in NPV from 

negative CAD5 million to positive CAD200 million by varying ‘dilution loss’, ‘throughput’ 

and ‘recovery loss’ in the order of ± 5%, 10% and 15%.  

 

Traditionally, the rate of change (the slope) of an activity level of the objective function (e.g. 

cumulative DCF) is compared to changes in a parameter (e.g. dilution loss, throughput or 
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recovery loss). An issue is the need to compare slopes for different parameters. The units of 

measure of different parameters are not necessarily comparable, so neither are absolute slopes 

with respect to changes in different parameters. To get around this problem, ‘elasticities’, can 

be calculated, which are measures of the percentage change in a dependent variable (e.g. an 

activity level) divided by the percentage change in an independent variable (e.g. a parameter) 

– see Equation 21. 

 

Equation 21. Elasticities (e) can be calculated to compare the rate of change (the slope). 

 

For the purposes of the example in Figure 39, it is clear that ‘Throughput’ has the steepest 

slope (or elasticity value), however, the sensitivity range (-15% to +15%) is not based on any 

probabilistic data and does not provide any information on the actual chances of an event 

occurring. Therefore, a 15% decrease in throughput has a big impact on the NPV but the 

probability of that occurring is actually a lot less than a 5% increase in dilution occurring in 

reality. Typically, most sensitivity analyses assume independence between variables, and it is 

highly likely in this instance that an increase in dilution (i.e. harder waste rock mined instead 

of ore) will require additional crushing and grinding, which will slow plant throughput and 

may also negatively impact plant recovery, due to particle lock-up, to achieve the required 

ore-waste blend. Correlation between these parameters needs to be assessed carefully before 

placing too much value on the outcome of this sensitivity analysis, which can mislead 

decision-makers. 

 

Monte Carlo simulations (MCS) were used to provide confidence intervals around the 

expected NPV output for this case study. MCS is a mathematical method used to model 

uncertainty in one or more parameters of a model that calculates the expected, probability 

outcome. The user specifies the input probability distributions for each parameter, defines the 

correlations (if any) between parameters, and then runs the MCS to produce multiple 

realisations (draws) from each defined probability density/mass function (pdf) to calculate the 

expected output.  

 

Expert opinions (derived from project engineers and metallurgists) were used to define the 

probabilistic ranges for dilution loss, throughput and recovery loss. Triangular distributions 
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were used to parameterize the input probability distributions. To convey the typical MCS 

approach used in the diamond industry, no statistical correlations were included between the 

three variables, which are recognized as a limitation of this type of analysis. 

 

Figure 40 demonstrates the cumulative probability plot for NPV based on simultaneous 

random draws from dilution, throughput and recovery probability distributions. Scenario 1 

(75m sampling campaign) is shown, as the variance around the NPV was similar for all three 

scenarios. The MCS results produced NPV ranging from CAD50 million to CAD154 million, 

noticeably outside the NPV from the IEM (CAD28million - CAD33 million). The respective 

NPV for the three sampling campaigns (75m, 50m and 25m) conducted on the top-down 

evaluation method over-estimated the NPV derived from the IEM method in the order of 

160% to 180%.  

 

 
Figure 40 shows Monte Carlo Simulation for the NPV (in CAD millions) based on assuming independence 

between dilution loss, plant throughput and recovery loss.  

 

The difficulty of valuing managerial flexibility in a mineral project usually results in mineral 

assets being undervalued using a traditional DCF approach, (Davis, 1995). However, in this 

study, limited sampling information resulted in a smoother, more continuous estimate of dyke 

thickness for both the top-down and bottom-up evaluation methods relative to the VBod 
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‘reality’. The acquisition of additional sampling data is expected further to reduce deviations 

between estimated NPV and the VBod. However, the likelihood that closer spaced sampling 

grids will actually be drilled is low due to high sampling costs, project delays and other 

practical limitations. The objective of applying an IEM approach is not to recommend closer 

spaced sampling grids but to find a balance between the required sampling resolution and the 

derivation of quantitative estimation errors in NPV.  

 

5.2.4 A Further Analysis of Monte Carlo Simulations 

Case study three in chapter four of this thesis assessed the impact of resource variability (in 

terms of gold grades) on the reserve constraints of an open-pit gold operation to quantify the 

impact on metal content in production and financial terms. The evaluation framework used 

was an IEM ‘bottom-up’ evaluation approach. The author recognised that Monte Carlo 

Simulations (MCS) are often used as a means to express the risk in a project and initiated a 

research project, unpublished work (Boardman and Nicholas, 2009) to compare different 

evaluation approaches using MCS. 

 

There are several ways to include MCS modelling in a project in an attempt to quantify 

physical risks. For this case study it was decided to select two MCS approaches that were 

based on logic derived from statistical analyses of 25 conditionally simulated spatial data 

(discussed previously in case study three). A global and local evaluation method using MCS 

(@Risk from Palisade software) were investigated. The global evaluation method refers to an 

approach using MCS to generate a grade distribution for each year of the life of mine (LOM) 

schedule for the two main ore types, oxide and primary material, i.e. each year comprised a 

sequence of blocks (SMUs) mined and processed to meet scheduled production targets.  

 

Inputs into the probability distribution for each respective year were the mean and standard 

deviation derived from the production statistics calculated from all records falling within each 

respective year – the average mean and variance was calculated, then the square root of the 

variance was used to derive the standard deviation. This is in contrast to the local method that 

used MCS to generate a grade distribution for each record within each year (i.e. n-number of 

records, each with a MCS distribution), then summed up to derive the total output for each 

year of the LOM schedule.  
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Grade was the only stochastic variable as assigned densities were used per ore type 

(described in case study three) to calculate total gold grams, as per the formula below: 

 

Equation 22. Calculation of metal (gold grams and ounces) as a function of density. 

 

A lognormal probability distribution model was fitted to grade data after analyzing stochastic 

data outputs from the spatially simulated resource conditional simulations (described in case 

study three of chapter four). An Anderson Darling fitting provided the best ‘goodness-of-fit’ 

results compared to Chi Square and Kolmogorov-Smirnoff fittings (Vose, 2002). 

 

Goodness-of-fit statistics are not necessarily easy to interpret. They do not provide a true 

measure of the probability that the data actually comes from the fitted distribution, but 

instead provide a probability that that random data generated from the fitted distribution will 

produce a goodness-of-fit statistic value as low as that calculated for the observed data (Vose, 

2002). The Chi Squared (X2) statistic measures how well the expected frequency of the fitted 

distribution compares with the observed frequency of a histogram of the observed data. 
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Equation 23. Chi Squared (X2) goodness of fit statistic. 
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Because the Chi Squared statistic sums the squares of all the errors [O(i) – E(i)], it can be 

disproportionately sensitive to large errors. For example if the error of one bar is twice that of 

another bar, it will contribute four times more to the statistic (assuming the same E(i) for 

both). Hence, the Chi Squared statistic is very dependent on the number of bars (N) that are 

used and by simply changing the number (N) of histogram bars, the goodness-of-fit can easily 

switch between different probability distribution types. 

 

The Kolmogorov-Smirnoff (K-S) statistic (Dn) is an alternative goodness-of-fit method that is 

only concerned with the maximum vertical distance between the cumulative distribution 

function of the fitted distribution and the cumulative distribution of the data. The K-S statistic 

is defined as: 

 

 

 

 

.  

 

 

 

 

The Kolmogorov-Smirnoff statistic is usually more useful than the Chi Squared statistic 

because data are assessed at all data points and it avoids the problem of having to determine 

the number of histogram bars (or bands) to split the data into. However, its value is only 

determined by the one largest discrepancy and does not take into account the lack of fit across 

the rest of the distribution. Usually, the greater the standard deviation of the data distribution, 

the more chance that (Dn) will fall into that part of the range causing the K-S statistic to focus 

on the degree of fit at x-values away from a distribution’s tails. 

 

The Anderson-Darling statistic is the preferred alternative to the Kolmogorov-Smirnoff 

statistic to cater for the fit at the extremes of distributions. The Anderson-Darling statistic is 

preferred to the K-S statistic for the following reasons: 

• ψ(x) allows for the increased variance of the vertical distances between distributions 

(σ2
K - S); 
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Equation 24. Kolmogorov Smirnoff (K-S) goodness-of-fit statistic. 
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• f(x) weights the observed distances by the probability that a value will be generated at 

that x-value. 

• Vertical distances are integrated over all values of x to make maximum use of the 

observed data (whereas the K-S statistic only looks at the maximum vertical distance). 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the case of grade data that have significantly positively skewed tails, the Anderson-Darling 

is a more useful goodness-of-fit statistic than both the Chi Squared and Kolmogorov-

Smirnoff statistics. For this reason the author used the Anderson-Darling technique to fit the 

appropriate distribution to the relevant data. 

 

The mean and standard deviations required as inputs into each MCS probability distribution 

were calculated from the spread in grade data derived from the conditional simulations. 

 

Table 9 describes the output from the two MCS local versus global evaluation methods for 

the first three years (2010 – 2012). 
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Equation 25. Anderson Darling goodness-of-fit statistic. 
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Table 9 shows that differences between the local versus global method were relatively 

immaterial for the first three years considered in the analysis (maximum difference was 

3.4%). In general the local evaluation method tended to provide a marginally higher result (in 

terms of total metal in grammes) than the global evaluation method. Given the amount of 

work and computer processing power (for several hundred thousand records) required to 

generate a MCS probability distribution for each record of the local evaluation method, it is 

deemed unnecessary and the global evaluation method is more practical given the small loss 

in accuracy. 

 

Overall, the MCS method does reasonably well in terms of modelling uncertainties but it is 

unable to deal with the benefits of scheduling by ranking the grades of SMUs and using 

stockpiles. It is recommended that an IEM approach should be the tool of choice in this 

regard. 

Table 9. Differences in the calculated expected metal (gold grams) between the Local versus Global evaluation 

methods for a gold operation with oxide and primary ore types (Boardman and Nicholas, 2009). Note that these 

production figures are all before plant recoveries are considered. 

 

Year Ore type CV Method Total Metal Expected 
(g) 

% difference (local - 
global) 

2010 
Oxide 

72% Local 10,800,00 -1.9% 
Global 11,000,000 

Primary 67% Local 16,000,000 3.4% Global 15,500,000 

2011 
Oxide 

92% Local 3,500,000 0.0% 
Global 3,500,000 

Primary 72% Local 24,000,000 2.1% Global 23,500,000 

2012 
Oxide 

83% Local 2,100,000 2.1% 
Global 2,100,000 

Primary 75% Local 23,900,000 1.4% Global 23,600,000 
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Table 10. Comparison between the Integrated Evaluation Model (IEM) and Monte Carlo Simulation (MCS) 

methods for local and global evaluation, showing total gold grams (oxides plus primary ore) processed for the 

first three years. These figures include plant recovery factors (90% for oxides and 95% for primary ore). 

 

Table 10 lists the differences in metal (grams) processed between the local and global 

evaluation methods relative to the IEM approach for years 2010 – 2012. It can be observed 

that the global evaluation method consistently exceeds results obtained from the IEM method 

for 2010 (+11%), 2011 (+14%) and 2012 (+16%). This trend was investigated further for the 

remaining years of the LOM schedule comparing the global MCS evaluation method against 

the IEM results (see Table 11). Over the LOM, the global MCS evaluation method estimated 

10% more metal than the IEM method with an average of 20% more metal for the global 

MCS method in years 2010 – 2017. The latter years of the LOM schedule (2018 – 2024) 

showed an average of 10% less metal for the global MCS results compared to the IEM.  

2010 2011 2012
Totals Totals Totals

Average 21,974,336        21,954,699        20,326,995     
Max 23,906,984        23,090,792        21,246,444     
Min 20,434,150        20,855,435        18,852,474     

MCS Local Evaluation Local total gold 
grams processed

24,929,689        25,964,137        24,612,886     

MCS Global Evaluation Global total gold 
grams processed

24,608,978        25,490,343        24,264,021     

1.3% 1.8% 1.4%
10.7% 13.9% 16.2%

IEM total gold grams 
processed

Difference (Local - Global)
Difference (Global - IEM)
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Table 11. Comparison between the Integrated Evaluation Model (IEM) and global evaluation method using 

Monte Carlo Simulation (MCS) for years 2010 to 2024, showing total gold grams processed (oxides plus 

primary ore).  

 

It can be deduced from Table 11 that oxide ore (together with primary ore) is mined from 

years 2010 – 2017, while from 2018 – 2024 only primary ore exists. While the precise reason 

for the differences (on average 10% more in the MCS results than the IEM) is not known, it 

is worthwhile noting that the average coefficient of variation (CV) for the oxides expressed as 

a percentage for the period 2010 – 2017 is 95% and only 79% for the primary ore. Thus, there 

is a greater spread of data values for the oxides (about 20% more) than the primary ore. 

IEM Method
Total 

expected 
metal

Plant 
Recovery 
Factors

Processed Au 
metal

Total 
Processed Au 

metal

Total 
Processed Au 

metal
(g) % (g) (g) (g)

Oxide 11,012,098 90% 9,910,888     
primary 15,471,673 95% 14,698,089    
Oxide 3,481,220 90% 3,133,098     

primary 23,533,942 95% 22,357,245    
Oxide 2,100,652 90% 1,890,587     

primary 23,550,983 95% 22,373,434    
Oxide 1,178,371 90% 1,060,534     

primary 18,468,290 95% 17,544,876    
Oxide 2,501,958 90% 2,251,762     

Primary 12,143,079 95% 11,535,925    
Oxide 292,517 90% 263,265        

Primary 16,769,120 95% 15,930,664    
Oxide 120,655 90% 108,590        

primary 25,560,461 95% 24,282,438    
Oxide 9,149 90% 8,234            

primary 31,300,319 95% 29,735,303    
18 primary 22,121,889 95% 21,015,795    19,965,005    18,835,744    
19 primary 10,339,277 95% 9,822,313     9,331,197      11,193,875    
20 primary 13,629,376 95% 12,947,907    12,300,512    12,577,882    
21 primary 24,242,606 95% 23,030,476    21,878,952    17,577,835    
22 primary 24,088,713 95% 22,884,277    21,740,063    20,128,844    
23 primary 17,413,345 95% 16,542,678    15,715,544    18,217,493    
24 primary 2,123,175 95% 2,017,016     1,916,165      9,175,276      

Totals (g) 279,932,371  254,540,101   
total difference (g) 25,392,270    
percentage difference 10%

    12,988,089 

    18,226,379 

    21,813,875 

Global MCS Method

    21,974,336 

    21,954,699 

    20,326,995 

    17,052,058 

    12,496,722 14

15

16

17

    24,608,978 

    25,490,343 

    24,264,021 

    18,605,409 

    13,787,687 

    16,193,929 

    24,391,027 

    29,743,537 

10

11

12

13

Year Ore Type
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While the CVs between the oxides and primary ore will not necessarily drive differences in 

the MCS results, it is likely the shape of the probability distribution specified in the input 

parameters of the IEM that will impact the outputs, while the skewness and kurtosis 

parameters are not usually specified as inputs in a MCS probability distribution.  

 

Further investigation as to the differences between the IEM and MCS methods are beyond the 

scope of this thesis but is recommended in order to determine whether a MCS solution could 

provide an appropriate approximation to the more detailed (but time consuming) IEM 

approach. 

 

5.3 VARIANCE REDUCTION 

This section examines variance and elaborates upon the effects of reducing it versus 

managing it. Previous literature, Knight (1921), Dasgupta and Pearce (1972), Vose (2002) 

and Kleingeld and Nicholas (2004) distinguished between risk (or variability) and 

uncertainty, where variability was defined as the ‘inherent stochastic nature of a mineral 

deposit’ while uncertainty refers to a lack of information, usually related to sampling data. 

Other authors, such as Levy and Sarnat (1984) often use the terms risk (or variability) and 

uncertainty interchangeably so while there is a general appreciation of the concept of risk, 

semantics around the usage and nomenclature are sometimes inconsistent. The concept of 

risk typically includes both undesirable consequences and likelihoods of the risk event 

occurring. A common definition of risk represents it as an asset of scenarios, likelihoods and 

consequences (NASA, 2011).  

  

Resource companies often conduct resource (infill) drilling campaigns to drill closer-spaced 

holes within an existing drilling grid in order better to delineate resources, naively expecting 

to reduce the overall variance while the mean is expected to remain constant (as illustrated in 

Figure 41A). However, Figure 41B illustrates a scenario whereby additional drilling 

delineates a different geological and/or mineralisation structure that fundamentally results in 

the mean shifting over time (and may also result in a change in variance). This particular 

scenario was illustrated in more detail in Figure 37 where additional drilling delineated a 

shorter-scale structural variability that had not been visible before based on ‘assumed’ 

geological continuity from wide-spaced drill holes results. 
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Figure 41. It is intuitively expected that uncertainty should decrease over time as more information becomes 

available (in Fig. A above). However, in reality Fig B may be realized, after Goria (2006). 

 

To provide a better understanding of the relationship between the mean and the variance and 

its relationship in regards to the information effect (i.e. the quantity of drill holes available) 

for a diamond project, case study one of chapter four was further expanded using the virtual 

orebody (VBod) concept. Construction of this VBod was discussed in case study one of 

chapter four and included grade and (ore) thickness variables. This VBod was systematically 

‘virtually’ sampled for both grade and thickness starting at a drilling grid spacing of 1,500m 

by 1,500m and eventually reduced to a 1m by 1m grid (see Table 12). In each sampling 

scenario the mean and variance were recorded. 

 

               
               

    

The Information Effect & Variance Reduction

Fig. A Fig. B

158 
 



 
Table 12. Information effect on grade and ore thickness showing changes in the mean and variance. 

 

Figure 42 and Figure 43 show the change between the mean and variance for both grade and 

(ore) thickness, respectively. The y-axis was normalized to reflect the change in percentage 

difference between the VBod and the virtual sampling scenarios, e.g. a difference of 0% 

implies that the VBod and the specified sampling scenario (in number of samples) plotted on 

the x-axis were identical. Hermite polynomial trends (maximum of six polynomials) were 

plotted for both the mean and variance. By observing the smoother polynomial trend in both 

figures (for grade and thickness) it can be seen that the mean stabilized a lot sooner than the 

variance.  

 

It should also be observed from the short-scale variations (i.e. not the smoother trends) in 

both figures that even though the number of samples increased (on the x-axis), the percentage 

difference (on the y-axis) occasionally increased before reducing further as the overall 

number of samples increased. This implies that there are short-scale variations as illustrated 

Grid Samples Min Max Mean Variance
1,500      8                190.8      283.7      234.1      1,254.1    
1,450      8                175.5      283.7      226.5      1,576.9    
1,400      8                144.8      283.7      212.2      1,447.0    
1,350      8                131.4      283.7      208.9      2,350.2    
1,300      8                163.6      283.7      213.7      1,851.7    
1,250      8                92.1        283.7      230.7      3,349.5    
1,200      8                107.2      283.7      196.0      2,401.7    
1,150      10              86.7        283.7      187.2      2,619.8    
1,100      10              63.4        287.0      231.6      4,379.3    
1,050      10              27.0        283.7      171.5      4,585.3    
1,000      15              157.8      283.7      199.7      1,590.2    

950         15              98.6        283.7      186.3      2,109.0    
900         18              109.0      283.7      203.5      2,102.5    
850         18              141.5      283.7      206.0      1,516.7    
800         18              51.1        287.0      207.3      3,105.1    
750         21              92.1        287.0      216.0      2,802.2    
700         21              104.2      283.7      206.8      1,698.2    
650         21              82.0        283.7      200.7      2,461.0    
600         32              107.2      287.0      204.5      1,486.3    
550         36              63.4        287.0      217.3      2,313.5    
500         36              30.5        283.7      205.2      2,541.8    
450         40              81.3        287.0      201.6      2,405.8    
400         55              51.1        287.0      204.9      2,407.4    
350         65              -          287.0      189.4      3,791.8    
300         90              14.2        287.0      204.3      2,061.2    
250         126            30.5        287.0      197.5      2,573.3    
200         198            -          287.0      200.0      2,739.8    
150         319            -          287.0      195.9      2,719.1    
100         688            -          287.0      198.3      2,971.8    
75           1,176         -          287.0      189.1      3,172.3    
50           2,688         -          287.0      195.6      2,768.5    
25           10,354       -          287.0      192.7      2,822.7    
10           64,218       -          287.0      190.0      2,836.4    
5             256,564     -          287.0      190.7      2,833.5    
1             6,389,760  -          287.0      191.0      2,854.6    

Grade (cpht)
Grid Samples Min Max Mean Variance
1,500 8                   -      2.30    1.61    0.45     
1,450 8                   0.84    2.62    1.75    0.25     
1,400 8                   0.93    2.07    1.65    0.11     
1,350 8                   1.45    2.25    1.79    0.08     
1,300 8                   0.13    2.07    1.53    0.34     
1,250 8                   0.56    2.54    1.63    0.42     
1,200 8                   1.45    2.52    2.03    0.14     
1,150 10                 1.47    2.10    1.78    0.04     
1,100 10                 1.56    2.57    1.91    0.09     
1,050 10                 1.42    2.58    1.82    0.13     
1,000 15                 0.89    2.29    1.72    0.10     

950    15                 1.35    2.80    2.01    0.15     
900    18                 0.24    2.55    1.90    0.25     
850    18                 1.56    2.33    1.92    0.07     
800    18                 1.04    2.44    1.94    0.14     
750    21                 -      2.30    1.68    0.36     
700    21                 0.93    2.38    1.72    0.12     
650    21                 0.13    2.45    1.67    0.20     
600    32                 -      2.80    1.68    0.51     
550    36                 -      2.57    1.74    0.26     
500    36                 -      2.80    1.75    0.33     
450    40                 0.31    2.41    1.83    0.15     
400    55                 -      2.80    1.76    0.23     
350    65                 -      2.80    1.78    0.22     
300    90                 -      2.61    1.74    0.33     
250    126               -      2.80    1.68    0.32     
200    198               -      2.80    1.66    0.29     
150    319               -      2.80    1.73    0.26     
100    688               -      2.80    1.66    0.31     
75      1,176            -      2.80    1.70    0.29     
50      2,688            -      2.80    1.69    0.31     
25      10,354          -      2.80    1.70    0.31     
10      64,218          -      2.80    1.71    0.30     
5        256,564        -      2.80    1.69    0.31     
1        6,389,760     -      2.80    1.70    0.31     

Ore Thickness (m)
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in Figure 41 while the overall trend shows a decrease in variance, which is not uncommon in 

structurally complex diamond projects. 

 

Importantly, the observations from the above-mentioned figures support the logic that it is 

easier to define the mean of a distribution (for both diamond grade and thickness in these 

examples) for a specified number of samples at an acceptable confidence limit, while 

substantially more samples are required to gain confidence around the variance of the same 

distribution.  

 

 
Figure 42. Demonstration of the information effect as variance in grade is reduced by ‘virtually drilling’ more 

holes into the deposit and measuring the change in grade for the mean and variance. The figure shows that as the 

number of samples (drill holes) increases from left to right (x-axis), the mean grade stabilizes quicker than the 

variance, i.e. more samples are needed to stabilize the variance than mean grade. Hermite polynomials are fitted 

to the data to model the trends of both the mean grade and variance. 
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Figure 43. Demonstration of the information effect as variance in ore thickness is reduced by ‘virtually drilling’ 

more holes into the deposit and measuring the change in thickness for the mean and variance. 

 

This exercise demonstrates that the mean of a distribution is usually determined first before 

the variance, as additional holes are drilled into a diamond resource. This is true for grade and 

ore thickness, and by inference, could also be applied to other stochastic variables such as 

stone size, stone quality and density. Thus, total project variance will include several 

stochastic variables used to determine the total value of the resource and its selected reserves. 

As information is made available (usually through drilling more holes, geophysical surveys, 

bulk sampling of mining faces, etc.) the overall project variance will reduce as a function of 

gaining more information and reducing the uncertainty. However, the true inherent variance 

is that random component of the distribution for each variable, which cannot be reduced 

further by gaining more sampling information (see Figure 44).  
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Figure 44. Impact of reduction in variance due to gaining more information (number of drill holes). 

 

This inherent variability needs to be managed through operational and management 

flexibility options, such as blending of ore from stockpiles either in the pit/underground 

and/or on surface, ensuring that a sufficient number of mining faces are available at any one 

time, or that there are multiple processing streams, to name but a few. The fewer the number 

of sample data, the more the likelihood increases of under-estimating the true variance and 

assuming a smoother profile with less variability. This has a compounding effect in that 

management may not understand the degree of resource variability or its potential impacts on 

how the inherent variability could exceed design specifications of the mine and process plans 

on production performance. Consequently, they may be unaware of the importance of 

incorporating sufficient flexibility in the mine and/or processing designs, resulting in 

inadequate capital and time allocation. 

  

The IEM approach introduced and discussed in this thesis provides an innovative means to 

evaluate the cost/benefits of operational and management flexibility options, using a real 

options evaluation approach (to be elaborated upon in chapter 6). Variance related to 

technical risk and its role in conventional DCF financial evaluations are discussed below. 

Number of drill holes

To
ta

l P
ro

je
ct

 V
ar

ia
nc

e

1 50 100 200

Inherent Variability

σ2

Estimation variance reduction curve

0

100

The Information Effect & Variance Reduction

Technical Uncertainty

162 
 



5.4 FINANCIAL VARIANCE ANALYSIS 

The relationship of the weighted average cost of capital (WACC) and the discount rate in the 

calculation of DCF NPV estimates was discussed in the literature review (chapter two) of this 

thesis. Smith (1982) described how the discount rate is a fundamental way of reflecting risk 

in discounted cash flow evaluations. He identified the main constituents of the discount rate 

as the real interest rate, mineral project risks and country risks. He also highlighted that the 

beta factors in the calculation of the cost of equity, based on the capital asset pricing model 

(CAPM) from Sharpe (1964), Lintner (1965) and Treynor (unpublished), actually measure 

the performance of company stocks relative to the stock market, but do not address the risks 

and characteristics of individual projects.  

 

In order to better estimate the risk of an individual project, Smith (1982) proposed that the 

discount rate can be related to these three components by the equation: 

riskcountryrateportionratefreeriskratediscount RRId ++=  

where ddiscount rate = project specific, constant dollar, 100% equity, discount rate 

  Irisk free rate = real, risk free, long term interest rate  

  Rportion rate = risk portion of the project discount rate 

  Rcountry risk = risk increment for country risk 

 
Equation 26. Calculation of the discount rate as a component of the cost of equity in the WACC. 

 

While economic risks such as commodity prices, foreign exchange rates and even country 

risks etc, are diversifiable and can be systematically reduced or managed through portfolio 

diversification (Markowitz, 1952), technical risks related specifically to a project are usually 

classified as unsystematic risks and are not be diversifiable. This view is not shared by Samis 

et al. (2005) who believe that project-specific risks (also known as unsystematic or ‘unpriced’ 

risks) such as geological and technical uncertainties are not correlated with the overall 

economy and can be completely diversified through the use of an investment portfolio. 

However, decision-makers ‘within’ a company that only have a small number of project 

investments may not have the luxury of having a ‘well-diversified’ portfolio of projects to 

offset individual project risks against each other.  
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Project managers usually have to compete against other ‘in house’ company projects on a 

‘stand alone’ risk versus return basis for capital funding while also competing with corporate 

external acquisition targets. Additionally, diamond projects are all related to the same 

commodity within a portfolio and primarily distinguished from each other in terms of risk-

returns that each individual project represents. Capital expenditure costs often run in the 

several hundreds of millions of dollars to billions of dollars, hence, project risks associated 

with a single project could ‘blow out’ and affect the capital and investment fund availability 

for the rest of a company’s project portfolio.  

 

The author recognised that the calculation of project risks (Rportion rate) in Equation 26 was not 

easily quantifiable using a scientific approach. Based on the concept of the VBod (discussed 

in Chapter four and five of this thesis) the author devised a method to back-calculate each 

stochastic component (such as grade, geology and density) of the technical portion of the 

discount rate to ascertain its contribution to the overall project risk (Rportion rate). The case 

study discussed earlier in this chapter (described in Figure 35 and Figure 36) was expanded to 

estimate the effect of stochastic grades on the determination of the project risk portion of the 

discount rate.  

 

The aim of this study was to find an appropriate discount rate (forming part of the DCF NPV 

technical risk premium) that would allow the NPV derived from the kriged estimate to be 

reconciled with the VBod NPV. Samples were virtually taken from the VBod at 100m sample 

spacing, which was equivalent to drilling a total of 17 large diameter holes into the VBod, 

and used to generate kriged estimates and 40 conditional simulations for grades of a major 

open-pit diamond project over an eight year LOM (independent analysis confirmed that 

results stabilized after 40 simulations).  

 

Cash flows for each of the eight years were calculated by running each of the 40 simulations 

plus the kriged estimate (and ±15% sensitivity scenarios) through a pre-determined, open-pit 

mine plan. The mine plan was set-up in NPV Scheduler (using Datamine software) and 

overlain on each of the resource scenarios. For each year of the LOM, these cash flows were 

compared to the VBod cash flows, which was the original source data for both the conditional 

simulations and kriged estimates. 
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The upper-most table in Figure 45 compares the difference (in percentage) in cash flows for 

each of the eight years of the LOM for five selected scenarios (on the left). ‘Highest Cash’ 

refers to the conditional simulation that, on average, returned the highest cash flows per year 

in relation to the VBod. Conversely, ‘Lowest Cash’ refers to the conditional simulation that, 

on average, returned the lowest cash flows per year in relation to the VBod. ‘Kriged Cash’ is 

simply the cash flows returned from the base case kriged resource grades. ‘Kriged (-15%) 

Cash’ and ‘Kriged (+15%) Cash’ refer to the sensitivity scenarios whereby the grades in the 

base kriged scenario were adjusted by -15% and +15%, respectively. 

 

. 
Figure 45. Alternative method to estimate a technical risk premium for the project risk portion of the discount 

rate. 

 

The differences (in percentages) in cash flows for each of the five scenarios were back-

calculated to the present value in ‘today’s money’ terms based on the discount rate (10%) for 

each of the eight years. The bottom-table in Figure 45 shows the average value of the ‘back-

discounted’ differences between the five scenarios. Of specific importance is the 0.6% project 

risk portion derived from the differences in grade estimates between the VBod and the 

GRAPHS COMPARING TECHNICAL DISCOUNT RATE WITH VBOD 'REALITY'

Cash Comparison
1 2 3 4 5 6 7 8

Lowest Cash Sim No. -5% 8% -4% 15% 4% -9% 7% 1%
Highest Cash 15 12% 8% 9% 6% -4% -6% 1% 9%
Kriged Cash 1 -1% -13% -6% 21% 13% -2% 2% -140%
Kriged (-15%) Cash krige -44% -22% -17% -2% -6% -23% -26%
Kriged (+15%) Cash 1 14% 15% 14% 18% 26% 13% 20% 27%

1
Weighted avg rate Cash

rate
Lowest Cash (avg. disc. rate) 0.9% 0.9% 0.9% 0.9% 0.9% 0.9% 0.9% 0.9% 0.9%
Highest Cash (avg. disc. rate) 1.7% 1.7% 1.7% 1.7% 1.7% 1.7% 1.7% 1.7% 1.7%
Kriged Cash (avg. disc. rate) 0.6% 0.6% 0.6% 0.6% 0.6% 0.6% 0.6% 0.6% 0.6%
Kriged (-15%) Cash (avg. disc. rate) -5.1%
Kriged (+15%) Cash (avg. disc. rate) 6.1%

Geology
Grade
Density (S.G)
Other

0.5%
0.6%
0.4%
1.0%
2.5%

Discount Rate

Technical risks
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ordinary kriged estimates. Note that this 0.6% risk portion is the average difference over all 

eight years and, if required, an individual risk portion per year could be calculated for 

inclusion into the total discount rate on an annual basis.  

 

Using a similar approach, the other risk portions for geology, density, etc. could also be 

estimated (by repeating the estimation process derived from virtual samples taken from the 

VBod) to derive the overall technical project discount rate portion. In this example an 

additional 2.5% should be added to the risk free rate and country risk as per Equation 26. 

 

 
Figure 46. Graph modelling the trend (red dashed line) for the Technical Risk Premium (TRP) to be added to 

the basic discount rate. Note how the TRP marginally reduces from 2.69% to 2.25% as the number of drill holes 

increase from 75m to 25m spacing.  

 

The project risk approach to estimate the project risk portion of a discount rate can be further 

expanded to calculate a technical risk premium based on several virtual sampling campaigns 

derived from one or more VBod. Case study one in chapter four of this thesis discussed the 

impact of the scale of measurement in NPV terms for project evaluation based on three 

virtual sampling campaigns (75m, 50m and 25m).  

N
PV

 (m
ill

io
ns

)

Quantify the degree of error associated with a sampling campaign in NPV terms

V-bod sim 75m krige 50m krige 25m krige
0.00% 2.69% 2.51% 2.25%

Avg. Technical Risk Premium over LOM

Next proposed 
sampling campaign
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Figure 46 shows an illustration where an algebraic equation (shown by the dashed red line) is 

estimated by modelling a trend based on the three virtual sampling campaigns derived from 

the VBod (see Table 13). The blue bar in the figure illustrates a sampling campaign at wider-

spaced drilling than the modelled 75m, 50m and 25m grids. Based on the modelled trend, the 

appropriate technical risk premium can be calculated for that drill hole spacing that should be 

applied to the project.  

 

 
Table 13. Three main virtual sampling scenarios (75m, 50m and 25m) derived from the VBod. 

 

The author feels strongly that there are at least two pragmatic arguments against using the 

approaches described above to estimate a risk portion and modelling the average trend 

between the selected virtual sampling campaigns.  

 

Firstly, the use of a technical risk portion that is added to the risk free rate and country risk, 

according to Smith (1982) assumes that technical risk increases exponentially over the LOM. 

In Equation 27 CF refers to the cash flow in each period i and r is the discount rate for the 

standard DCF NPV formula. This equation can be rewritten as a weighted sum to illustrate 

the impact of the discount rate on the variance of the DCF. The equation shows that if a 

technical risk portion is added to the risk free rate to derive a total discount rate, r, then the 

discounting effect, w, will increase exponentially each year.  

 

 

  

 

 

 

 

In reality this is not true for technical risks. For most mid-cap and major mining companies it 

is usual practice to gather and process information derived from close-spaced blast holes and 

   p g p g  g
V-bod Scenario 1 Scenario 2 Scenario 3

Description reality wide-spaced moderate detailed
Grid Dimensions 4m x 4m 75m x 75m 50m x 50m 25m x 25m
No. of samples/ nodes 399 360 1 136 2 556 10 224
Sample % of V-Bod - 0.28% 0.64% 2.56%

( )0               ..................................................... 1
(1 )

1*     or    = *     ............(2)
(1 )

i
i

i i ii

CF
NPV I

r

DCF CF DCF CF w
r

= −
+

 
=  + 

∑

∑ ∑

Equation 27. The effect of the discount rate, r, over each year, i, in the LOM. 
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drilling (as part of grade control practices). These practices together with actual mining 

activities provide insight for operational management into the behaviour of project risks 

related to the ore body over time. Management gains more information and reduces 

uncertainty in project risk issues related to geology, grade, density, mining and processing 

rates, mining and processing efficiencies etc. The only caveat to these statements is where 

historical mining of an ore body is not related to planned future areas of the same ore body, 

possibly due to a change in mining methods or different geological/mineralisation domains.  

 

Secondly, it is probably true for most ore bodies that no two mineral projects are identical to 

each other and each project must be uniquely assessed in terms of its project risks and overall 

risk versus returns. This is even more applicable to diamond projects due to the extreme value 

nature of the commodity in relation to its size, distribution, quality and dollar per carat value 

characteristics. An open-pit mining operation may have many unique characteristics 

associated with the resource (geology, grade, density etc) that need to be considered and 

modelled stochastically. An open-pit project is likely to have vastly different risk-return value 

characteristics to that of an underground operation. Consequently, the trend derived from 

modelling technical risk premiums calculated from virtual sampling campaigns is likely to be 

applicable to that project only and is not directly transferrable to another mineral project.  

 

Furthermore, results derived from virtual sampling campaigns are based only on a single 

VBod realisation. In order to make the estimation of a technical risk premium (TRP) more 

representative it will be necessary to model several VBod realisations (via spatial conditional 

simulations or some form of appropriate non-linear technique) and re-generate the virtual 

sampling campaigns for each VBod. Then the TRP for each VBod realisation will need to be 

modelled and the average trend calculated. This will be particularly time consuming and 

require significant processing power. It will also include subjective assumptions in estimating 

and modelling the stochastic variables, which will influence the expected objective outcomes 

of the exercise. 

 

Based on the above arguments, the author does not advocate the use of a technical risk 

premium as a viable method to better predict the value of a mineral project by considering its 

project physicals. 
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5.5 SUMMARY AND CONCLUSIONS 

The objective of this chapter was to compare the advantages and limitations of conventional 

sensitivity analysis and Monte Carlo simulations with an integrated evaluation model (IEM) 

approach for mineral project evaluation. The risk analyst/modeller has to clearly define ‘the 

foremost question’ (i.e. the objective of the risk study) and select the appropriate risk analysis 

technique to provide a solution to that question while weighing up the benefits versus 

limitations of: 

• the desired accuracy of the risk model output and set-up time for the model;  

• computer processing capabilities and speed of the hardware and software;  

• which parameters and constraints to include in the model and which to exclude;  

• the available information supporting parameterization of risk model inputs;  

• modelling correlations between parameters and capturing the system dependencies 

between key stages of the evaluation pipeline;  

• whether parameters will be modelled (or varied) one at a time or simultaneously 

considered in the risk model; 

• the appropriate level of detail to include in the risk model;  

• where to include risk modelling along the ‘evaluation pipeline’ (i.e. within resources, 

reserves and/or financial modelling); and  

• the core intended use of the risk model outputs and the ability to effectively 

communicate results to decision-makers. 

 

While sensitivity analysis offers many benefits in understanding how different values of an 

independent variable will impact a particular dependent variable under a given set of 

assumptions, there are limitations to this technique as a risk analysis tool that needs to be 

understood. Sensitivity analysis is not recommended for spatial (physical) resource 

parameters in a risk model as it cannot correctly capture the correlations nor variance 

between variables, whereas conditional (spatial) resource simulations are preferred for this 

reason. The plotting of several scenarios on a single sensitivity analysis ‘spider diagram’ 

chart should be interpreted carefully as it can easily mislead interpretations assuming equal 

probabilities between each scenario, which is untrue in reality.  

 

Similar to sensitivity analysis, the use of Monte Carlo simulation (MCS) can be beneficial in 

modelling uncertain parameters in a risk model to determine the expected probabilistic 
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output. MCS is not recommended for spatial (physical) resource parameters in a risk model 

as it is common practice for the user to define the input probability distributions and 

correlations between variables, which is often not straight forward and typically results in the 

risk modeller assuming independence of parameters. Based on the author’s experience MCS 

can mislead decision-makers as they may assume that they have correctly captured the range 

of possible outcomes with the expected outcome (‘the mean’) safely lying within the 

modelled variability range. This is not always true, as demonstrated by the case study within 

this chapter and can result in material evaluation errors (in the range of 160% - 180%).  

 

Different levels of detailed MCS modelling (global versus local) were also investigated as 

part of a gold mine study to determine whether they were material. The case study showed 

that the results were relatively immaterial for the first three years considered in the analysis 

(maximum difference was 3.4%). In general the local (more detailed) evaluation method 

provided a marginally higher result than the global evaluation method but was considerably 

more time consuming, and deemed unnecessary for the small loss of accuracy.  

 

It was also demonstrated that as additional sampling information is acquired, the overall 

project variance reduces as a function of gaining more information and reducing uncertainty. 

The fewer the number of sample data, the greater the likelihood of under-estimating the true 

variance and assuming a smoother profile with less variability where linear estimation 

techniques are used. The objective of implementing an IEM philosophy for mineral project 

evaluation is not to recommend closer spaced sampling grids but to find a balance between 

the required sampling resolution and the derivation of quantitative estimation errors in NPV.  

 

While it may take longer to set-up the IEM model and establish the appropriate correlations 

between parameters and system linkages, it provides an innovative means to evaluate the 

cost/benefits of acquiring more sampling data and quantifying the benefits in financial terms. 
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Chapter 6 : Hedging Strategies using Real 
Options Valuation (ROV) in an Integrated 

Evaluation Model (IEM)  
6.1 INTRODUCTION 

“In a constantly changing and uncertain world marketplace, managerial flexibility and 

strategic adaptability have become crucial to capitalizing successfully on favourable future 

investment opportunities and to limiting losses from adverse market developments or 

competitive moves. Corporate capabilities that can enhance adaptability and strategic 

positioning provide the infrastructure for the creation, preservation and exercise of corporate 

real options”, Trigeorgis (2002). 

 

The objective of this chapter is to quantify the financial impact of managerial flexibilities by 

evaluating different hedging strategies that simultaneously consider production and economic 

uncertainties using an integrated evaluation modelling framework. The importance of 

linkages within an integrated evaluation modelling (IEM) framework are demonstrated 

between unsystematic (project specific) risks related to the resource/reserve parameters and 

systematic (economic) risks, viz. the foreign exchange rate, to evaluate the most appropriate 

management hedging strategy for a diamond mining company.  

 

Instead of conventionally evaluating multiple hedging strategies for foreign exchange rate 

uncertainty using a single production scenario as a basis that is typically generated from a 

kriged resource estimate, each hedging strategy is run against multiple realisations of the ore 

body generated from conditional simulations. Actual foreign exchange rates for the period 

2006 to 2009 are used to compare hedging strategies. This provides a unique opportunity to 

compare selected hedging strategies with reality, i.e. stochastic modelled foreign exchange 

rates are compared with actual rates for that same period, generated for each conditionally 

simulated realisation of the ore body, and then compared to a simulated resource reality, 

referred to as the virtual ore body – see Figure 47. 
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Figure 47 - Overview of model depicting combined reserve uncertainty and economic (FX) rate scenarios to 

generate outputs expressed in NPV terms. A total of 100 conditional simulations reflecting resource uncertainty 

was run through a production model to generate 100 reserve scenarios, and then run through a financial model 

where each reserve scenario was run through five different FX scenarios to compare NPV outputs.  

 

The IEM provides a unique platform to incorporate key technical linkages between resource 

uncertainties, reserve parameters and the cash flow model at the appropriate temporal scale. 

Complex resource estimation problems are often expressed through simplified mathematical 

equations that solve a global or local geostatistical problem. However, the production and 

financial impacts of non-linear resource-to-reserve relationships cannot be approximated 

using a closed-form mathematical solution as each project has its own set of resource and 

reserve variables, which interacts with mining and processing constraints in a sequential, non-

linear and unique way.  

 

It is important to understand that in the modelling approach depicted in Figure 47, each of the 

100 “conditionally simulated” production scenarios is used to evaluate five different hedging 

scenarios. A mean estimate for each hedging scenario is produced in NPV terms once all of 

the 100 simulated production scenarios have been evaluated. Only then are statistical means, 
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percentiles and coefficient of variation statistics calculated on the data set. This is to ensure 

that the modelled hedging outputs capture the full variance of the input data set modelled via 

the conditional simulations. In the context of this approach, it would be incorrect to calculate 

a mean of the 100 conditionally simulated production scenarios and then use it to determine 

the impact on the five different hedging scenarios as the variance would be greatly 

understated in that case. 

 

The economic parameters considered in this chapter are specific to foreign exchange (FX) 

rates as this uncertainty can have a material impact on the profitability of projects and 

diamond companies as a whole. When reserve uncertainty is combined with stochastic FX 

rates, it can be perplexing for management to decide whether to hedge against the domestic 

FX rate and if so, what level of FX exposure the project (or company as a whole) can accept 

before margins are materially negatively impacted. The importance of the FX rate impact in 

calculating the NPV of a mining project as a function of the operational cash flows can be 

explained using the simplified equation: 

( ) ( )

( )

1

  is the set of blocks contributing to the cash flow in period 
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Equation 28 – Simplified equation showing the NPV of a mining operation as a function of the operational 

cash flows and discount rate. 
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In Equation 28 a modified discounted cash flow is used to calculate the sum of all the cash 

flows over the life of mine for j-number of periods (years in this case), discounted by the rate, 

rdr per period to derive the NPV for each of the conditionally simulated realisations. Within 

each period, j, the sum of all the mine blocks (for i = 1 to n) contributing to the operational 

cash flow, CF, is calculated as a function of V, the volume in m3 of the reserve block model, 

SG, the specific gravity (or density); G, the grade in carats per hundred tonnes (cpht); R is the 

processing recovery expressed as a percentage; P is the price (or revenue) per carat in USD. 

 

The function g(rfx) is the selected foreign exchange rate for each of the hedging scenarios 

considered where the currency differential between foreign (in this case USD) currency and 

domestic (in this case CAD) currency; and the total costs (determined in domestic FX rates) 

as the sum of all the mine blocks (1 to n) contributing to the operational cash flow, CF where 

Cf is the fixed portion of operating costs and Cv is the total variable portion of the operational 

costs, comprising the cost per tonne mined (c/tm) and cost per tonne processed (c/tp). For the 

purposes of this equation, no capital expenditure is included.  The author uses the foreign 

exchange market convention and the FX rate in the direct sense, i.e. USD:CAD. It should 

also be noted that for simplicity, it was assumed that the FX rate had no effect on costs. 

 

The discount rate, rdr per period, was determined as a function of the weighted average cost 

of capital (WACC) assuming that the main source of funding is derived from debt funding 

from one or more banks, and that the equity portion is more likely to be derived from retained 

earnings generated from operational cash flows within a company’s portfolio 

 

6.2  ‘PHYSICAL’ AND ECONOMIC PARAMETERS 

It is acknowledged that diamonds are not a very liquid commodity in banking trading terms 

and hence, a tradable hedge market does not exist for diamonds. Consequently, the sale of 

diamonds is highly dependent on committed ‘off take’ agreements with selected sightholders, 

typically renewed on an annual basis. Negotiations around volume (or quantity), quality per 

size frequency distribution and diamond price per category are key issues for both suppliers 

and sightholders to agree on. Diamond suppliers use these volumes and prices, which are 
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contingent on sightholder negotiations to produce their annual budgets and to predict future 

cash flows. 

 

Diamond reserves are uncertain with respect to several stochastic variables such as grade, 

thickness and density, which results in uncertain production estimates. In addition to 

uncertain production estimates, management of producing mines also need to consider 

economic uncertainties such as diamond pricing, diesel/gas prices, cost of labour, foreign 

exchange rates. Internal corporate studies (unpublished) reveal that, of these economic 

uncertainties, diamond prices and FX rates often have the biggest impact on a mine’s 

profitability in NPV terms. 

 

Diamond prices are largely affected by macroeconomics (in relation to supply-demand 

trends) as there is a large degree of subjectivity and private negotiations between diamond 

producers and sightholders to secure tangible volumes and agree on pricing, which cannot 

easily be quantitatively modelled using stochastic models. For this reason, a constant nominal 

diamond price was used for modelling purposes to keep price constant in sensitivity analysis 

studies. 

 

A case-study of an underground diamond mine is presented where diamonds are contained in 

an irregular, structurally-deformed dyke (similar to a narrow vein gold deposit) that intruded 

into a fractured granitic host rock. Geological variabilities considered in the IEM are in the 

form of unsystematic (specific) risks as a function of the uncertain thickness of the 

mineralized dyke, the grade and its undulating top surface (referred to as v1):   

• thickness (in metres) related to the volume of the dyke;  

• grade (in carats per hundred tonnes); and the 

• geometrical variability (v1) of the top surface of the dyke. 

 

A virtual ore body (VBod) was created as a version of reality using non-conditional 

geostatistical simulation based on data from a combination of actual drill hole data, bulk-

samples and face mapping from an exposed part of the dyke. A non-conditional simulation 

was used to capture the full extent of variability as opposed to a conditional simulation where 

limited, available sampling data are used that may generate a reduced range of variability. 

The author recognises that a degree of subjectivity is introduced in terms of which spatial 
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variability model to use but felt that this was acceptable based on a historic understanding of 

geological and mineralisation variability at different scales for similar styles of deposits. 

 

The VBod was used to represent reality upon which three distinct virtual sampling campaigns 

were drilled to generate data (referred to as the 75m, 50m and 25m sampling campaigns). For 

each sampling campaign, the resource and reserves estimates were recalculated using the 

necessary thickness, grade and v1 information to estimate the cash flows and generate the 

NPV. Of the three sampling campaigns, only the 75m campaign was selected for this study to 

demonstrate the combined impact of physical stochasticity combined with economic 

stochasticity in order to save considerable computing time. Resource models for v1, grade 

and thickness were generated based on sampling data from the 75m sampling campaign.  

 

Ordinary kriging was used to generate estimates for the grades and thicknesses of selective 

mining units (SMU) of 4m by 4m. The data were also used to generate 100 conditional 

simulations into each SMU. E-type estimates were generated by calculating the mean of all 

conditional simulated values in each SMU for each variable (v1 geometrical variability, grade 

and thickness). 

 

Reserve considerations focused mainly on mining and treatment processes. Each SMU is 

analogous to a mine blast that was assessed to determine whether it met the necessary mining 

and plant criteria before either contributing to the call of 3,150 tonnes per day or being sent to 

the waste dump if it comprised more than 70% waste. A conventional room and pillar method 

was used with an option of slashing and drifting depending on whether the dyke thickness 

was less than a specified mining threshold. An average extraction rate of 75% was imposed.  

 

Each large planned mining block of size 250m by 250m was depleted based on a combination 

of rim tunnels, stope tunnels and stope slashing. An average daily call of 3,150 treatment 

tonnes was imposed on the project by management. A simplified treatment model was 

assumed for this study based on a linear relationship between the proportion of ore and waste. 

Recovery efficiency improved as the proportion of mineralised dyke increased. A plant surge 

capacity constraint was included to assess the impact of varying dyke thickness on the feed 

rate variability using an ‘event-based’ simulation. A total stockpile capacity of 3,000 tonnes 

was created, which included capacity from an underground storage bin. 
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The IEM was designed so that the financial model was directly correlated with the mining 

and treatment database enabling all production estimates, revenues and costs to be 

accumulated from a blast by blast basis to a daily basis and collected quarterly and annually. 

These production outputs became inputs into the cash flow model. DCF valuation was used 

to calculate NPVs at an initial discount rate of 10%. NPV were calculated in real money 

terms, after royalties and tax deductions, allowing for inflation. 

 

Figure 48 illustrates the modelled relationships of conditional simulations for the 75m 

sampling campaign in relation to the kriged and E-type estimates, expressed in cumulative 

discounted cash flow terms. Figure 48 demonstrates that resource variability has the potential 

to materially affect a project’s production estimates, i.e. the non-linear impacts of ore body 

variabilities are modelled on the designed mining and processing constraints, see Nicholas et 

al. (2006, 2008) for further detail.  

 

Note that in Figure 48, modelled on an underground diamond mine, the kriged and E-type 

estimates are relatively positioned in the middle of the conditional simulations as all 

estimates including the simulations were run through an IEM to capture non-linear reserve 

impacts on the financial model. This should be compared to case study two discussed in 

Chapter four (see Figure 16), modelled on an open-pit diamond project where the kriged 

estimate lies distinctly above the conditional simulations – only the conditional simulations 

were run through an IEM in that case study.  

 

The NPV of a project is directly influenced by the variability of its reserves in relation to the 

mine plan and processing constraints, and management’s ability to mitigate any negative-

impacting issues affecting its business plan. 
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Figure 48 – The 75m sampling campaign depicts the cumulative discounted cash flows (DCF) of the 

conditional simulations (multi-coloured lines) relative to the kriged and E-type estimates – bottom of diagram. 

The discounted cash flows (non-cumulative) are shown towards the top of the diagram. 

 

6.3 REAL OPTIONS VALUATION 

A high-level overview of Real Options Valuation (ROV) was provided in chapter two of this 

thesis. This section elaborates upon the appropriate key points.  

 

Copeland and Antikarov (2001) identified six main variables that influence the value of real 

options: 

i. The value of the underlying risky asset – in the case of real options, this may 

be a project, investment or acquisition. As the stock goes up, the price of a call 

option increases and that of a put option decreases. The reverse is true when 

the stock goes down. The rate of change is denoted by the symbol δ (Delta). 

ii. The exercise or strike price – the amount of money invested to exercise the 

option if you are buying the asset (call option); or the amount of money 

received if you are selling the option (put option). As the exercise price of an 

option increases, the value of the call option decreases and the value of the put 

option increases. This determines the intrinsic value of the option. If the option 
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strike price is OTM (Out-of-the-money) where for a call option, the strike 

price is higher than the price of the underlying stock, it has no intrinsic value. 

An option has intrinsic value when it is ITM (In-the-money) where for a call 

option, the underlying stock price is higher than the strike price. 

iii. The time to expiration of the option – the value of the option increases as the 

time to expiration increases; or alternatively, extra money is required to buy 

more time for the life of the option. The rate of change in time is denoted by 

the symbol θ (Theta). 

iv. The standard deviation of the value of the underlying risky asset. The value of 

an option increases as the volatility of the underlying asset increases – i.e. 

there is more upside potential. If a stock is volatile, the option prices will be 

high; if the stock is not volatile, the option prices will be low. Volatility has 

two components, viz. historical volatility is denoted by the symbol v (Vega) 

and implied volatility ζ (Zeta). 

v. The risk-free rate of interest over the life of an option. As the risk free rate 

goes up, the value of the option also increases. 

vi. The dividends that may be paid out by the underlying asset. Dividend pay-outs 

will decrease the option value. 

 

When it comes to the modelling of options, these Greek parameters are important to 

understand in terms of their impact on the option value: 

• δ measures the rate at which an option price will change relative to the stock price (or 

price of the underlying asset), which is equivalent to speed. 

• γ measures the rate at which the δ changes with respect to the price of the underlying 

asset, which is equivalent to acceleration. 

• θ measures the rate of change of time value. 

• v measures the rate of change of the option value versus the parameter sigma. 

• ρ measures the sensitivity of the option price relative to changes in the risk free 

interest rate. This factor usually does not interest option traders. 

 

These parameters measure the sensitivity to change of the option price under a slight change 

of a single parameter while holding the other parameters fixed. Formally, they are partial 

derivatives of the option price with respect to the independent variables. Traders will 

179 
 



typically make a choice of which parameters to hedge to limit exposure. Financial institutions 

will usually set limits for the parameters that their trader cannot exceed. δ is the most 

important Greek and traders will zero their delta at the end of the day, while γ and v are also 

important but not as closely monitored. 

 

The real investment opportunities (or real options) of a mineral project corresponds with the 

call options on stocks.  

Call option on a stock Real option on a project 

Current value of stock Gross present value of expected cash flows 

Exercise or strike price Investment cost 

Time to expiration Time until opportunity disappears 

Stock value uncertainty Project value uncertainty 

Riskless interest rate Riskless interest rate 
Table 14 – Comparison between financial and real options in a mineral project 

 

To preclude arbitrage opportunities, the prices of European call and European put options 

must satisfy a certain relationship. The put-call parity relationship is defined as the call price 

plus the present value of the exercise price, which must be equal to the put price plus the 

current stock price – see Equation 29: 
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 = call price

 = exercise price

 = put price

 = current stock price
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Equation 29 – Put call parity relationship 

 

Put-call parity is a convenient way to value a call option, given the price of a European put 

option with the same exercise price and expiration (or vice versa). 

 

Black and Scholes (1973) used stochastic partial differential equations (PDE) to calculate the 

option price as a function of the change in the share price less the present value of a bank 

loan based on a fictive portfolio (see Equation 30).  
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Equation 30 – Black and Scholes (1973) equation 

 

Option pricing was originally developed for valuing stock options and other derivatives. 

Black and Scholes (1973) believed that if options were correctly priced in the market, it 

should not be possible to make sure profits by creating portfolios of long and short positions 

in options and their underlying stocks.  

 

They made the following assumptions to derive their formulae and to simplify the 

mathematics. The short-term interest rate is known and is constant through time. The Black 

and Scholes model assumes that the price of the underlying stock follows a geometric 

Brownian motion with a variance rate proportional to the square of the stock price. Stock 

prices are assumed to be lognormally distributed, as opposed to normally distributed which 

would introduce the unrealistic prospect that stock prices could drop by more than 100%. 

While it is acknowledged that stock prices can rise more than 100%, they cannot drop by 

more than 100% to create a negative price. Hence, the assumption of lognormality is an 

important consideration. 

 

The Brownian motion, random walk process is one in which the change in value over any 

time interval is independent of any changes that have occurred in preceding time intervals, 

and the size and direction of the changes in value are in some sense random. For stock prices, 

the applicability of a random walk is based on the assumption that the stock market is 

efficient, i.e., that the stock price at a given moment reflects all the information available at 

that moment. Stock prices change for reasons, but changes that are about to happen will be 

due to new information, which cannot be predicted ahead of time.  

 

Black and Scholes (1973) also assumed that the stock pays no dividends or other 

distributions. The option can only be exercised at maturity (European option). There are no 
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transaction costs in buying or selling the stock option and there are no penalties to short 

selling. It is possible to borrow any fraction of the price of a security to buy it or to hold it, at 

the short-term interest rate. It is also assumed that there are no liquidity restrictions with 

respect to trading shares in that it is possible to sell or buy any quantity at any time. 

 

A lognormal random walk (also known as Geometric Brownian motion with a drift) was used 

to describe the behaviour of the spot price; a fictive portfolio was set-up to mimic reality and 

the ‘no-arbitrage’ argument was invoked to equate the return on the portfolio to the riskless 

rate of return. They found that the trick was to set up an option equivalent by combining 

stock investment and borrowing. The net cost of buying the option equivalent must equal the 

value of the option, Brealey and Myers (2003). 

 

Merton (1973) showed that the value of an option is always greater than the value it would 

have if it were exercised immediately (S0 – X). This general property of the relations between 

option value and stock price is illustrated in Figure 49 for a call option.  

 

The maximum and minimum option values are shown by the dark blue lines which represent 

the maximum and minimum value bounds of the option. The three curved lines represent 

possible option values with different maturity dates at a fixed exercise price of USD50.00. T1 

has a shorter maturity date than T2, which in turn expires sooner than T3. For a call option the 

value of the option increases as the stock price increases, at a constant exercise price. When 

the stock price becomes large, the option value approaches the stock price less the present 

value (PV) of the exercise price. The value of the option increases with both the rate of 

interest and time to maturity. The probability of large stock price changes, during the 

remaining life of an option, depends on the volatility of the stock price per period and the 

number of periods until the option expires. 
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Figure 49 - A call option with a strike price of $50, adapted from Black and Scholes (1973). Note how the value 

of the option increases as the stock price increases. The opposite is true for a put option. 

 

Using the assumption of ‘no arbitrage’, the difference between the value of a call and the 

value of a put option for the same stock (if both could be exercised at maturity) must obey the 

following boundary condition: 

XStSutSw −=− 000 ),(),(  

which can be rewritten as: 
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where w(S0,t) is the value of a call option 

u(S0,t) is the value of a put option 

S0 is the price of the underlying stock 

t is the current time 

T is the time to maturity 

r is the risk free rate 

X is the exercise or strike price  

e is the base of natural logarithms with constant = 2.7182818 
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From the above, the value of the European call and put options, respectively, are:  

)()(),( 2
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  where N(d1) and N(d2) are cumulative normal probability density functions; and 

 σ2 is the volatility or variance 

σ is the standard deviation 
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Equation 31. European call and put options. 

 

A calculated example of the Black and Scholes call option value is shown in Table 15 for two 

scenarios, comparing 0% and 8% risk free rates (purely for illustrative purposes), and 

contrasting these two scenarios in Figure 50 for a range of different volatilities. 

 

 
Table 15. A calculated example of the Black & Scholes European option value. 

 

 

 

 

Call = S0N(d1) - Xe-rT N(d2)

Put = Xe-rT N(-d2) - S0N(-d1)

d1 = ln(S/X) + (r+σ2/2)T / σ(sqrt T)
d2 = d1 - σ(sqrt T) 

X Starting value of stock 53.3 53.3
r Risk free rate 0.00% 8.00%
T total time period 5.00 5.00
σ volatility (sigma) 0.01 0.01
c Strike price or Exercise price 50 50

d1 unit normal variable d1 2.869 20.758
d2 unit normal variable d2 2.847 20.736
N(d1) cumulative normal probability of d1 0.998 1.000
N(d2) cumulative normal probability of d2 0.998 1.000
Call value of the Call option 3.301 19.784

Black & Scholes European Call Option Value
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Figure 50. Graph showing the calculated Black & Scholes European call option values (y-axis) for a range of 

volatilities (x-axis) comparing two scenarios whereby the risk free rates are 0% and 8%, respectively. 

 

6.4 HEDGING STRATEGIES 

6.4.1 Overview  

Hedging is widely practiced, from huge corporations to small individual FX investors. 

Armstrong et al (2009) observed that attitudes to hedging practices in the mining industry 

vary from one sector to another and that, in general, gold miners have been active in hedging 

whereas diversified groups have shied away from it. Large gold miners and their shareholders 

typically criticize the practice of forward sales because locking in prices ahead of production 

closes off opportunities to benefit from a rise in the metal's value. However, it is prudent 

practice for mid-tier, emerging gold producers to hedge against falling gold prices to secure 

operating margins, especially where these companies secure debt loans from banks who may 

insist on mandatory hedging in these circumstances. 

 

Hedging involves using market instruments to offset the risk of any negative movement in 

price. The easiest way to do this is to hedge an investment with another investment, i.e. by 
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simultaneous buying and selling of the same trading instrument. Hedging is generally defined 

as holding two or more positions at the same time, where the purpose is to offset the losses in 

the first position by the gains received from the other position. “Most businesses insure or 

hedge to reduce risk, not to make money” (Myers, 2003). In some cases large corporates 

attempt to insure or hedge away operating divisions’ risk exposures by setting-up internal, 

synthetic (or fictitious) internal markets between each division and the treasurer’s office with 

the objective of mitigating operating managers’ risks outside their control.  

 

There are several arguments for and against hedging and the rationale behind implementing 

hedging in practice, which have been raised by Stulz (1984), Smith and Stulz (1985), 

DeMarzo and Duffie (1995), Graham and Rogers (2002) and Hull (2003). One of the more 

convincing arguments in favour of corporate hedging is that a hedge can be put in place to 

protect cash flow margins for systematic variables that are beyond the control of 

management, and allow a company to focus on those operational issues that are within its 

control. Often, banks will insist on mandatory hedging (commodity and/or foreign exchange 

rate) as a condition precedent to lending money, to protect the company’s cash flow margins 

throughout the loan tenure period (Mineweb, 2013). 

 

The benefits of hedging do not come without costs (Leland, 1998; and Allayannis and Ofek, 

2001). These include fixed costs, direct transaction costs and indirect costs for ensuring that 

managers transact appropriately. Direct costs are related to the costs of trading and include 

the costs of setting up and maintaining information systems sophisticated enough to track 

positions. Indirect costs include the need to monitor positions on trading desks to ensure that 

hedging and speculative positions are within predetermined limits. 

 

Hedging strategies in this research are contemplated from a company/corporation’s 

perspective rather than from a banker/trader or an individual investor’s perspective. While it 

could be argued that a company may not need to hedge, as a private investor can mitigate 

their risks by hedging themselves, in most cases this is not the case. Depending upon the type 

of hedge instrument used, the quantity of hedging and the tenure, large corporations require 

fairly substantial banking limits to be put in place before the hedge can be dealt, which are 

typically beyond the financial reach of private investors. 
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A financial institution that sells an option to a client in the over-the-counter (OTM) markets 

is faced with the problem of managing its risk. If the option is the same as one that it is traded 

on an exchange, the financial institution can neutralise its exposure by buying on the 

exchange the same option it has sold. However, when the option is more bespoke in terms of 

meeting the client’s needs and does not correspond to the standard products traded by 

exchanges, hedging the exposure is more difficult (Hull, 2003). One strategy available to the 

financial institution is to do nothing, referred to as adopting a ‘naked’ position. An alternative 

to a ‘naked’ position is that the financial institution can adopt a ‘covered’ position, which 

attempts to mitigate the risk from the perspective of a balancing portfolio theory.  

 

A company’s simplistic perspective on FX rates may involve fixing, hedging or keeping the 

FX rate floating over a specified time period, typically ranging from a few months up to three 

years. Fixed exchange rates are treated as a permanent (or “nominal flat”) over the specified 

period while the floating exchange rate may drift, up and down, according to certain market 

trends. Floating FX rates are usually more volatile as they are free to fluctuate over time. The 

volatility in FX rates results in an increase of exchange rate risk and may adversely affect the 

economic viability of a company/project. 

 

Hedging strategies presented in this section refer to one of five different foreign exchange 

scenarios considered by management over the period January 2006 to December 2009. Based 

on the cash flow model of a diamond mine (presented in case study one of chapter four), this 

period was considered to be the most sensitive to foreign exchange rate fluctuations when 

considering the time value of money. Five scenarios are considered: 

• A flat nominal foreign exchange rate of 1.21 (reflecting management’s over-

simplified assumption of an average FX rate over a three year period); 

• Actual (historic) foreign exchange rates (from www.FXblog.org/category/canadian-

dollar); 

• No hedging but stochastic spot foreign exchange rates following the GK model; 

• Hedging with zero-cost foreign exchange rate collars; and 

• Hedging with calls evaluated using the Garman-Kohlhagen call option models (with 

an additional consideration for volatility uncertainty in the input parameters using a 

range of FX strike rates).  
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For each scenario, the same methodology was employed to consider simultaneously the 

impact of physical reserve stochasticity with FX rate uncertainty in cash flow and NPV 

terms. One hundred FX rate scenarios were generated for each month of the mine schedule 

(for the period 2006 to 2009). A NPV was generated for each of the 100 conditionally 

simulated reserve realisations (one for each FX rate considered) and the full NPV distribution 

captured. Similarly, 100 NPV were generated for the E-type estimate, Kriged estimate and 

VBod to consider each of the five FX rate scenarios. 

 

6.4.2 FX Rate Models 

Many models have been developed for interest rate and foreign exchange rates, ranging from 

simple extensions of Black and Scholes (1973) to Vasicek (1997) and to the latest models 

with stochastic volatility. The author chose the Garman and Kohlhagen (GK) model (1983) 

which is a simple extension of Black and Scholes, as the risk-neutral process for the stock 

price is: 

( )dS r q Sdt SdWσ= − +  

Equation 32 – Risk-neutral valuation from Black and Scholes with dividend returns, q. 

 

In a risk-neutral world the total return from the stock would be r; and the dividends would 

provide a return of q. Hence, the expected growth rate, or drift, in the stock price is r – q.  S, 

the spot exchange rate (which is the value of one unit of the foreign currency measured in the 

domestic currency) is, by virtue of satisfying Equation 32, a geometric Brownian motion 

process similar to that assumed for stocks.  

 

In this model the drift term is replaced by the difference between the domestic and foreign 

interest rates. The stochastic process for an exchange rate is the same as setting q = rf. If St 

denotes the spot exchange rate at time t and rd and rf are the domestic and foreign interest 

rates, then (see Equation 33): 
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The approach of not imposing a hedging programme and exposing a mining project to the 

variable spot FX rate is a deliberate management strategy and in the context of this chapter, 

should be perceived as one of the scenarios that are available to management when 

considering the economic viability of a project (or company). FX stochasticity was modelled 

using a Garman and Kohlhagen (1983) model. A total of 100 simulations were run over a 10-

year period emulating the FX uncertainty to generate monthly FX rates (cf. Figure 51).  
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Figure 51 – Spot FX rate generated from the Garman-Kohlhagen options model, year 1 (2006) to year 10 (2015).  
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Equation 33. Garman Kohlhagen (1983) equation. 
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Figure 52 depicts the impact of running variable spot FX rates through the mining DCF 

algorithm to derive NPVs for each of the 100 FX rate scenarios. Note that because there is no 

hedging strategy imposed in this strategy, the operational cash flows are fully exposed to both 

the downside and upside scenarios (shown by the ‘unconcatenated’ NPV probability 

distribution). 

 

Mark Garman and Steven Kohlhagen founded the Garman Kohlhagen model in 1976. This is 

an analytic valuation model for European options on currencies using an approach similar to 

that used by Merton for European options on dividend-paying stocks. Two advantages of this 

model are that the exchange rates generated are lognormally distributed and hence positive, 

and that the parameters are easy to estimate.  

 

The call option for the G-K model is defined in Equation 34. 

 
Figure 52 - Graphical representation of the impact of exposing a project to the variable spot FX rate 
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Equation 34 – Call option for the Garman Kohlhagen (1983) equation 

 

The Garman Kohlhagen model is based on a number of assumptions: 

• The distribution of terminal currency exchange rate (returns) is lognormal.  

• There are no arbitrage possibilities.  

• Transactions cost and taxes are zero.  

• The risk-free interest rates, the foreign interest rates, and the exchange rate volatility 

are known functions of time over the life of the option.  

• There are no penalties for short sales of currencies.  

• The market operates continuously and the exchange rates follows a continuous Ito 

process. 

 

An example of deriving Garman Kohlhagen call option values from Equation 34 is shown in 

Table 16 and graphically depicted in Figure 53. 
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Table 16. An example of a calculated Garman-Kohlhagen call option value, referring to the Canadian 

domestic interest rate and the foreign interest rate referring to the USA. The call option value is shown in 

millions of Canadian dollars based on $100m of production cash flows. 

. 

 
Figure 53. An example of Garman-Kohlhagen call option values for two scenarios, Sc-1 at a volatility of 12% 

and Sc-2 at 24%. In both scenarios the values of the call options increase with the current spot exchange rate. 

 

Figure 54 depicts the scenario in which for each reserve scenario, a G-K call option model is 

put in place that limits the downside risk exposure to the cash flows. The net result is that the 

Garman Kohlhagen Call Option Value
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downside exposure in the NPV probability distribution is capped according to the agreed 

strike rate, whereby the call option is exercised when the agreed strike rate is reached. The G-

K option comes at a cost (based on the option call price premium) which needs to be 

deducted from the overall NPV of the project. It is worthwhile noting that this type of 

hedging will need to be declared to shareholders and will need to appear on the balance 

sheets of a company.  

 

The zero-cost collar, or costless collar, is established by buying a protective put (called ‘the 

floor’) while writing or selling an ‘out-of-the-money’ covered call (called ‘the cap’) with a 

strike price at which the premium received is equal to the premium of the protective put 

purchased, The Options Guide (2012) and Financial Review (2012).  Zero-cost  collars can be 

established to fully protect existing long stock positions with little or no cost since the 

premium paid for the protective puts is offset by the premiums received for writing the 

covered calls, or stated in another way, the premium income from selling the call reduces the 

cost of purchasing the put. The amount saved depends on the strike price of the two options. 

If the premium of the long call is exactly equal to the cost of the put, the strategy is known as 

a "zero cost collar".  

 
Figure 54 – Graphical representation of the impact of zero-cost collars on the FX rate  
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By establishing a zero-cost collar hedge strategy, a long-term stockholder will sacrifice any 

profit if the stock price appreciates beyond the striking price of the call written. However, this 

hedge strategy provides maximum downside protection. In a FX rate zero-cost collar, the 

investor seeks to limit exposure to changing foreign exchange rates and at the same time 

lower its net premium obligations.  

 

For the purposes of this study, a company management strategy implements a zero-cost collar 

for the FX rate over a three year period by ‘giving away’ the upside advantage where the 

USD FX rate appreciates above a specified threshold (x + S1) but simultaneously provides 

downside protection where the USD FX rate drops below a specified threshold (x - S2). In 

this instance the value of x is deemed to be equal to parity (1.00 USD:CAD). Here S1 is the 

maximum benefit of a favorable move in FX rates and S2 is the maximum tolerable 

unfavorable change in payable FX rate. 

 

The reader is reminded that the example referred to in this section is that of a diamond 

mining company earning its revenue in USD and converting the majority of it back into its 

domestic CAD currency to service its operational costs. This hedging strategy assumes that a 

mining company implements its FX hedge as a ‘once-off’ strategy locked-in for a three-year 

period rather than ‘rolling’ its hedge each month or quarter. The ‘once-off’ hedging provides 

greater certainty and ‘smoothing’ of cash flows protecting the company from FX rate 

volatility for the duration of the three-year period, but on the other hand, rolling its FX 

hedges every quarter could provide greater flexibility in establishing the FX rate collar 

thresholds at that time. There is no clear solution and depends on management’s overall 

strategy and economics for the project. 

 

One source of risk not mentioned thus far is counterparty risk. If the stock price expires 

below the ‘floor’ of the downside threshold then the counterparty may default on the put 

contract, thus creating the potential for losses up to the full value of the stock (plus fees). If 

not properly managed, options can pose significant risk to a banking institution because 

options held by the bank are usually exercised at the advantage of the holder which could be 

to the disadvantage of the bank (see Houpt and Embersit, 1991; Wright and Houpt, 1996; and 

Angbazo, 1996 for more information on risks to banks).  
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Figure 55 depicts the impact of implementing a zero cost FX rate collar on the mining DCF 

algorithm to derive NPVs for each of the 100 FX rate scenarios. Unlike the variable spot FX 

rate, where there was no hedging strategy imposed, the operational cash flows are not fully 

exposed to downside and upside risks (shown by the ‘capped’ NPV probability distribution). 

This provides management with a degree of certainty that the project cash flows will be 

protected from FX rate volatility for the specified period of three years. 

 

 

Finally, one of the key advantages of using a collar strategy is that it takes the return from the 

probable to the definite (Financial Review, 2012). It is presumed that when an investor owns 

a stock (or another underlying asset) and has an expected return, that expected return is only 

the mean of the distribution of possible returns, weighted by their probability. The investor 

may get a higher or lower return.  

 

When an investor who owns a stock (or other underlying asset) uses a collar strategy, the 

investor knows that the return can be no higher than the return defined by strike price on the 

call, and no lower than the return that results from the strike price of the put. This theory is 

based on the presumption that there are no other stochastic input variables that materially 

 
Figure 55 - Graphical representation of the impact of implementing a zero-cost collar on the FX rate 
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affect returns. In the application of a zero-cost collar hedge strategy to this study, it should be 

noted that this hedge strategy merely reduces the number of probabilistic outcomes (rather 

than providing ‘definite’ returns) by ‘capping’ the downside and upside FX rate scenarios as 

there are several other stochastic variables considered to estimate the NPV returns.  

 

There are several other forms of protective hedging strategies similar to the zero-cost collar 

option strategy, such as bull spreads, bear spreads, butterfly spreads, calendar spreads, 

strangles and straddles which are beyond the scope of this study (the reader is referred to 

McMillan, 2002 and Hull, 2003 for further information).  

 

6.5 OPTION MODELLING  

This section discusses the input parameters, modelling assumptions and model outputs used 

to evaluate management hedging strategies, considering both physical reserve and economic 

uncertainties. 

 

Volatility is an important factor involved in the decision making of investors and policy 

makers with high volatility of the underlying risk asset increasing the value of the option, see 

Davis (1998), Copeland and Antikarov (2001) and Hull (2003) for more. Volatility is 

typically defined as the standard deviation of the change in value of the log return of a 

financial instrument with a specific time horizon, used to quantify risk of the financial 

instrument over that period. Davis (1998) and Trigeorgis (1990) note that miss-estimation of 

the input volatility parameter can have a material impact on the cost of the option. 

 

Historical volatility is the volatility of a financial instrument based on historical returns, 

typically annualized and can be represented by the formulas noted in Equation 35. 
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Equation 35 – volatility equations for homoskedastic and heteroskedastic models 

 

A univariate stochastic process Q is said to be homoskedastic if standard deviations of terms 

Qt are constant for all times t, otherwise it is said to be heteroskedastic (Holton, 2004b). 

Heteroskedasticity can take two forms. A process is unconditionally heteroskedastic if 

unconditional standard deviations σt are not constant. It is conditionally heteroskedastic if 

conditional standard deviations σt|t-1 are not constant. Heteroskedasticity is important in 

finance because asset returns in capital, commodity and energy markets usually exhibit 

heteroskedasticity. Given that FX rates exhibit non-constant volatility, but periods of low or 

high volatility are not known in advance, FX rates appear to be conditionally heteroskedastic. 

 

Using an econometrics approach, an autoregressive conditional heteroskedastic (ARCH) 

model considers the variance of the current error term to be a function of the variance of the 

previous time period’s error terms. ARCH relates the error variance to the square of a 

previous period’s error. This methodology may be used to model FX rates. If an 

autoregressive moving average model is assumed for the error variance, the model is a 

generalized autoregressive conditional heteroskedastic (GARCH) model.  

 

In the available literature of modelling time series volatility, the authenticity and the 

popularity of ARCH family (GARCH, EGARCH and stochastic volatility models) is 

recognized universally. According to Engle (1982) and Bollerslev (1986), time series' models 

are more reliable for capturing the volatility in financial time series as these models are 

specifically designed for volatility modelling. Hsieh (1989) used 10 years (1974 – 1983) of 

daily closing-bid prices, consisting of 2,510 observations, for five countries in comparison 
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with the US dollar to estimate the autoregressive conditionally heteroskedastic (ARCH) and 

generalized autoregressive conditionally heteroskedastic (GARCH) models along with the 

other modified/altered types of ARCH and GARCH. 

 

Methods such as the exponentially weighted moving average (EWMA) use weighting 

schemes to give more weight to recent data. In this instance, the weights decrease 

exponentially as a function of time. In practice, variance rates tend to be more mean 

reverting, Hull (2003). The GARCH model incorporates more mean reversion (recognizing 

that over time the variance tends to get pulled back to a long-run average level), whereas the 

EWMA model does not, and hence, may be more appealing in theory. 

 

For this research, a simplified method of estimating volatility was used to calculate the 

instantaneous standard deviation of historic changes Davis (1998) and Hull (2003) based on 

unweighted 30-day average data (Equation 36). 
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Equation 36 – The instantaneous standard deviation model to calculate historic volatility 

 

An important consideration in Equation 36 is that volatility increases as the time interval 

increases (usually not in proportion), which is a key aspect of the random walk theory. The 

standard deviation scales (increases) in proportion to the square root of time as defined in 

Equation 37. 
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Equation 36 and Equation 37 were used to derive the input volatility parameter into the G-K 

options model based on historical monthly FX rates from January 2003 to December 2005 

over a three year period in order to predict the input parameter for the G-K options model. A 

volatility parameter of 11.77% was derived and used as an input to generate call option prices 

on a monthly basis (over a three year period commencing from January, 2006).  

 

The alternative to using a historical volatility rate is using an implied volatility rate, which 

involves ‘back-calculating’ the price of an option (call or put). In the case of a call option 

actively traded on the underlying stock, the option’s price is back-calculated to derive the 

implied volatility rate. However, there is only a very small likelihood that a similarly priced 

option exists on the market if the option has been customized to suit the client, i.e. not a 

vanilla styled put or call option but a hybrid of several options to make the option as 

appealing as possible to the client. Hence, the use of an implied volatility is impractical in 

this instance. 

 

Due consideration was given to the utilisation of a ‘volatility smile’ which compares the 

implied distribution and lognormal distribution for valuing foreign currency options (Hull, 

2003). It is well known that the implied distribution has heavier tails than the lognormal 
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Equation 37 – Calculation of daily volatilities as a function of the annualized volatility. 
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distribution, which results in the implied distribution giving a relatively higher price for the 

option. Hull examined the daily movements in 12 different exchange rates over a 10-year 

period, and concluded that his evidence supported the existence of heavy tails and the 

volatility smile used by traders. The lognormal model generally under-estimates the standard 

deviation of the foreign exchange rates, relative to the real world data, beyond one standard 

deviation away from the mean. 

 

Davis (1998) notes that miss-estimation of the input volatility parameter can have a material 

impact on the cost of the option. Trigeorgis (2002) showed that a 50% increase in the input 

volatility parameter resulted in a 40% increase in the option value. Many authors on this topic 

recognized the importance of the volatility parameter in their options modelling and produced 

option pricing as a function of a range in volatility parameters. To demonstrate the impact of 

volatility on the option price, this author used the Garman and Kohlhagen model to generate a 

G-K call option as a function of increasing volatilities (ranging from 12% - 116%, increasing 

by increments of 10% each time) and for a range of strike prices on the FX rate (from 1.00 to 

1.10) – see Figure 56.  

 

The colours in the 3-D surface grade from reddish-brown to pink as the call option price 

increases relative to the strike rate and volatilities. If volatility is kept constant at 12% with a 

FX strike rate of 1.00, the option price is CAD 0.19 and decreases to CAD 0.12 at a strike 

rate of 1.10 (the differential between the strike and spot rate is reduced). If the FX strike rate 

is held constant at 1.00, the option price increases from CAD 0.19 to CAD 0.75, for 

volatilities of 10% and 116%, respectively. This option pricing 3-D surface model clearly 

demonstrates the impact of both volatilities and management strategy (in selecting the 

appropriate strike rate relative to the spot rate) on the option price. 
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Figure 56 – Garman Kohlahagen call option pricing in 3-D surface view as a function of the two input 

parameters, FX strike rate and volatility. 

 

Risk free rates are important considerations for input into the G-K option pricing model, and 

were sourced for the periods 2006 to 2009. The author examined both the three-year and 10-

year yield curves to evaluate the impact on the G-K model outputs. The three-year monthly 

rate as at January 2006 was 3.87% and 4.35% for Canada and the USA, respectively. The 10-

year rate was 4.11% and 4.42 for Canada and the USA, respectively. Both scenarios were run 

through the G-K model and only a negligible difference of 1% was noted in the calculated 

option price. Rates were derived from the Treasury Board of Canada, (Trading Economics, 

2012) in Figure 57 and Figure 58 below (the author notes that figures depicting three year 

bonds was unavailable from this website at the time). 
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Figure 57 – Risk free interest rate for Canadian 10 year government bonds (Trading Economics, 2012).  

 

Figure 58 - Risk free interest rate for USA 10 year government bonds, (Trading Economics, 2012).  
 

The current spot rate (as at January, 2006) was 1.20. The three-year bond yields as at January 

2006 were used as inputs for the interest rates (3.87% for Canada and 4.35% for the USA).  

 

6.6 ANALYSIS 

A total of 100 FX simulations were generated using the G-K model (see Figure 51). The 

financial impact of running the variable spot FX rate through the IEM to derive the NPVs for 

each of the 100 conditional simulations is depicted in Figure 59, with the NPV (in Canadian 

dollars) shown on the y-axis and each of the 100 FX scenarios on the x-axis. It can be 

observed that the kriged estimate is marginally above (greater than) the VBod for each of the 

100 FX scenarios (shown on the x-axis). Note that the FX rates were allowed to vary 

unconstrained when calculating the NPVs for each scenario. 
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The multi-coloured lines are spread evenly on either side of the kriged and VBod scenarios 

for all 100 FX scenarios. Over the first three years, FX scenario 4 has the lowest average FX 

rate of 1.06 USD:CAD generating the lowest NPV of -CAD86.7 million (with an average 

NPV of -CAD55.4 million for the minimum values of the 100 conditional simulations), 

which explains why almost all the conditionally simulated scenarios lie below the horizontal 

(x-axis). On the other side of the spectrum, FX scenario 89 has the highest average FX rate of 

1.40 generating the highest NPV of CAD121.5 million (with an average NPV of CAD89.3 

million for the maximum of the 100 conditional simulations).  

 

 
Figure 59 – FX modelled spot rate for each of the 100 conditional simulations. The conditional simulations are 

shown by the multi-coloured lines while the solid black line represents the VBod scenario, and the kriged 

estimate is presented by the black dashed line. 

 

It is important to note that the average NPV estimates were derived by running each spatially 

conditionally simulated realisation of the ore body through the IEM, and mapping it to the 

stochastically generated FX rates to generate 100 NPV. The average of these 100 NPV was 

then compared relative to each other. The derivation of these average NPV should be 
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compared with the NPV of the E-type estimate, where the latter was derived from calculating 

the P50 (fiftieth percentile) of the 100 resource values in the block model.  

 

This E-type estimate was used to derive the NPV as a function of the stochastic FX rates. The 

NPV for the E-type estimate is -CAD62 million (on average 12% less); similarly for FX 

scenario 89, the E-type NPV estimate is CAD83 million. It was observed in each of the 100 

FX rate scenarios that the E-type estimate ‘on average’ under-estimated the average NPV 

derived from the full conditionally simulated distributions by circa 9% (with a significant 

CoV of 1,410% indicating its high variability).    

 

Figure 60 shows the results of classical statistics performed on conditionally simulated NPV 

outputs after considering resource uncertainty and FX stochasticity for variable FX rates.  

 

 
Figure 60 – Basic statistics for the FX spot modelled rate. 

 

From Figure 60, it can be observed that the minimum NPV ranges between -CAD86.7 

million to -CAD29.5 million with a mean of -CAD55.4 million. The maximum NPV ranges 

from CAD50.8 million to CAD121.5 million with a mean of CAD89.3 million. Hence, the 
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full spread of possible NPV outcomes ranges from -CAD86.7 million to CAD121.5 million 

with the average of the 50th percentile (P50) NPVs equal to CAD13.4 million. 

 

Figure 61 depicts the financial impact of running a three year FX rate collar hedge  through 

the IEM to derive the NPVs for each of the 100 conditional simulations, with the NPV (in 

Canadian dollars) shown on the y-axis and each of the 100 FX scenarios on the x-axis. A 

bottom FX rate collar of 1.00 and top collar of 1.25 were used to constrain the range in which 

the FX rates could vary when calculating the NPVs.  

 

 
Figure 61 – FX three year hedge option output for each of the 100 conditional simulations. The conditional 

simulations are shown by the multi-coloured lines while the solid black line represents the VBod scenario, and 

the kriged estimate is presented by the black dashed line. 

 

Unlike the wider spread of NPV shown in Figure 59 (with a range in NPV of -CAD30 

million to CAD121 million), the majority of the NPV in Figure 61 lie approximately between 

-CAD50 million and CAD50 million. FX scenario 8 has the lowest average FX rate of 1.07 

USD:CAD generating the lowest NPV of -CAD66.9 million (with an average NPV of -

CAD34.8 million for the minimum values of 100 conditional simulations). FX scenario 89 

has the highest average FX rate of 1.25 generating the highest NPV of CAD55.9 million (at 

an average NPV of CAD26.3 million for the maximum of 100 conditional simulations). 
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Figure 62 highlights the basic statistical data carried out on the conditionally simulated NPV 

outputs after considering both resource uncertainty and FX stochasticity for variable FX 

rates.  

 

 
Figure 62 – Basic statistics for the FX rate three year collar hedge. 

  

Due to the bottom and top capping implemented through the FX rate three year hedge, the 

minimum, maximum and percentile ranges (P50 – P90) depicted in Figure 62 are much closer 

together (tighter spread) compared to the variable spot FX rate scenario in Figure 60.  

 

From Figure 62, it can be seen that the minimum NPV ranges from -CAD66.9 million to -

CAD7.9 million with a mean of -CAD34.8 million. The maximum NPV ranges from -

CAD9.3 million to CAD55.9 million with a mean of CAD26.3 million. The full spread of 

possible NPV outcomes extends from -CAD66.9 million to CAD55.9 million with the 

average of the 50th percentile (P50) NPV equal to CAD2.9 million. 

 

Figure 63 highlights the financial impact of implementing a hedge using the Garman 

Kohlhagen (G-K) FX rate model through the IEM to derive the NPVs for each of the 100 

conditional simulations, with the NPV (in Canadian dollars) shown on the y-axis and each of 
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the 100 FX scenarios on the x-axis. To generate the NPVs for each scenario, an FX strike rate 

of 1.00 was used with no cap imposed on the higher FX rates. 

 

 
Figure 63 – Garman Kohlhagen call hedge option output for each of the 100 conditional simulations. The 

conditional simulations are shown by the multi-coloured lines while the solid black line represents the VBod 

scenario, and the kriged estimate is presented by the black dashed line. 

 

While the spread and trend in NPV in this chart may appear similar to that of Figure 59, the 

majority of the NPV in Figure 63 derived from the conditional simulations (multi-coloured 

lines), lie approximately between -CAD83.7 million and CAD121.5 million. FX scenario 8 

had the lowest average FX rate of 1.07 USD:CAD generating the lowest NPV of -CAD83.7 

million (with an average NPV of -CAD52.6 million for the minimum values of the 100 

conditional simulations). FX scenario 92 had the highest average FX rate of 1.41 generating 

the highest NPV of CAD121.5 million (with an average NPV of CAD88.9 million for the 

maximum values of the 100 conditional simulations). 

 

Figure 64 highlights the results of basic statistical data carried out on the conditionally 

simulated NPV outputs after considering both resource uncertainty and FX stochasticity for 

variable FX rates.  
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Figure 64 – Basic statistics for the Garman Kohlhagen call hedge option 

 

It can be observed from Figure 64 that the minimum NPV ranges between -CAD83.7 million 

to -CAD26.4 million with a mean of -CAD52.6 million. The maximum NPV ranges from 

CAD50.8 million to CAD121.5 million with a mean of CAD89.3 million. Hence, the full 

spread of possible NPV outcomes ranges from -CAD83.7 million to CAD121.5 million with 

the average of the 50th percentile (P50) NPV equal to CAD13.5 million. 

 

To facilitate comparisons, Table 17 lists key differences in NPV terms for the conditionally 

simulated outcomes between the three FX rate hedging structures, viz. the variable spot rate, 

the three year collar and the Garman Kohlahagen (GK) option model.  
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Table 17 – Comparison between three hedging structures for the conditionally simulated NPV outputs (in 

millions of Canadian dollars), viz. the variable spot rate, the three year FX collar hedge and the Garman 

Kohlagen (GK) Option model. 

 

From Table 17, there is a clear distinction between the NPV outputs of the variable spot rate 

and the three-year collar hedge; and similarly between the three-year collar hedge and the GK 

option model. The highlighted cells in blue in the table emphasise the same NPV outputs 

between scenarios. This is to be expected, and further confirms the calculation consistencies 

in the model, as the “3yr Collar Hedge” had the same bottom threshold as the “GK Option” 

and shows the same minimum NPV outputs. However, unlike the “3yr Collar Hedge” that 

had an upside threshold, the “GK Option” was uncapped and hence produced the same 

maximum NPV outputs as the un-hedged “Variable Spot Rate”. 

 

The ‘average’ referred to in the table above is derived as a function of calculating the average 

of all the average NPV across the 100 conditional simulations, which in turn has been derived 

from the matrix of NPV for each of the 100 conditional simulations run through the 100 FX 

rates. Thus, the ‘average’ in the table refers to a much smoothed ‘average of an average’ NPV 

output. The Average P50 NPV for the “GK Option” is marginally higher than the “Variable 

Spot Rate” but notably higher than the “3yr Collar Hedge”. 

 

The average P50 NPV is higher for the un-hedged variable spot rate scenario than the three-

year hedged collar scenario, which may imply that it would be preferable to remain un-

hedged for the first three years. However, it is recognised that the rationale supporting the 

implementation of a FX rate hedge is not to maximize the upside NPV but to minimize the 

downside scenario. There is, however, a financial cost to a mineral company for minimizing 

this downside scenario.  

  Variable Spot Rate 3yr Collar Hedge GK Option

Minimum NPV -86.7 -83.7 -83.7

Average Min NPV -55.4 -52.6 -52.6

Maximum NPV 121.5 55.9 121.5

Average Max NPV 89.3 26.3 89.3

 Average P50 NPV 13.4 1.5 13.5

FX rate Hedged vs Un-hedged Scenarios
(for 100 Conditional Simulations)
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The cost of implementing a FX three-year collar hedge may be interpreted in two ways. 

Firstly, the mineral company will require a line of credit (or “credit limit”) with a bank or 

financial institution. This means that the provider of the hedging strategy will need to review 

a mineral company’s financial statements and assess the health of the company to determine 

whether a credit line should be extended.  

 

If the mineral company is deemed to be a ‘wholesale client’ of the bank and already has an 

existing banking credit limit; or the mineral company wanting the hedge is prepared to place 

a cash deposit with the bank for an equivalent amount to the required credit limit, there is a 

good likelihood that the company would have credit limits extended to it to allow the hedge 

to be placed. This would allow the mineral company to deal the three-year FX collar hedge 

without incurring any material additional hedging costs.  

 

Secondly, however, if a mineral company does not have an existing line of credit with a bank, 

then the cost of implementing a credit limit to deal a FX rate hedge must be calculated. A 

general ‘rule-of-thumb’ for banks to calculate the credit limit is provided below: 

where

 credit limit requirement

volatility

 = time period
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Equation 38 – ‘Rule-of-thumb’ calculation of the credit limit requirement for banks 

 

If a volatility input of 11.77% is used with time equal to three years and a face value of circa 

CAD230.0 million (which is the P50 of the total revenue generated over the first three years 

from the 100 conditional simulations), then a credit limit requirement of CAD47.8 million is 

derived from the equation above. This represents approximately 21% of the cost of capital for 

the face value of the transaction. It should be noted that this limit of CAD47.8 million may be 

interpreted as the maximum credit amount required as usually the credit limit will decrease 

over time according to an amortised profile for the three year tenure of the hedge (for 
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simplicity in this section, the full CAD47.8 million will be considered in hedging scenario 

comparisons).  

 

Typically, this credit limit is an internal risk requirement and does not necessarily imply that 

that a mining company has to place the full equivalent amount on deposit as a cash-backing 

to allow the FX hedge to be placed. It is a bank’s credit risk regulatory function that requires 

the credit limit allocation but it is also the bank’s commercial discretion as to whether this is 

waived or not to determine whether hedging is allowed to be placed as an unsecured (no asset 

security or ‘cash backing’ serving as collateral) or a secured transaction. These considerations 

will influence the overall cost and NPV (shown previously in Table 17) for determining the 

economic viability of implementing the zero-cost hedging strategy. 

  

At face value, the NPV outputs between the un-hedged variable spot rate and the GK option 

model appear relatively similar (less than 4% difference between the minimum NPV and 5% 

between the average minimum NPV). However, it should be noted that the NPV displayed in 

Table 17 excludes the actual cost of hedging the FX rate using the GK option model, which 

was calculated according to Equation 34. The actual cost of hedging the FX rate to convert 

revenue generated in USD to CAD is displayed in Table 18. 

 

 
Table 18 – Calculated cost (in dollars) of hedging the Garman Kohlhagen call option for the three-year period 

(2006 – 2008) at minimum and maximum modelled volatilities of 12% (top) and 116% (bottom), respectively. 

 

The minimum, maximum and fiftieth percentile costs of the GK hedging options shown in 

Table 18 were generated from multiplying the GK costs (shown previously as a 3-D surface 

view in Figure 56) by the range of revenues derived from running all 100 conditionally 

Cost of a Garman Kohlhagen Call Hedge Option
Volatility = 12% and FX strike rate = 1.00

Total 2006 2007 2008
Min 208,555,419          70,672,549       65,720,020       72,162,849           
P50 230,027,757          77,310,202       74,754,655       77,962,901           

Max 247,507,951          82,783,797       81,543,701       83,180,453           

Volatility = 116% and FX strike rate = 1.00
Total 2006 2007 2008

Min 834,481,869          282,778,367     262,962,073     288,741,428         
P50 920,398,011          309,337,260     299,111,882     311,948,869         

Max 990,340,593          331,238,468     326,276,539     332,825,586         
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simulated outputs through the IEM. It is apparent from Table 18 that the total cost for the GK 

hedge option ranges from a minimum of CAD208.6 million (at a volatility of 12%) to a 

maximum of CAD990.3 million (at a volatility of 116%). These GK option costs represent 

approximately 18% of the minimum revenue (CAD1,152 million), to 77% of the maximum 

revenue (CAD1,294 million) for the three year period 2006 to 2008. 

 

It can be deduced that the NPV for the GK option model scenario, after deducting the GK 

hedge costs are substantially less than the un-hedged variable spot rate scenario and less 

viable than the three-year zero-cost collar hedge. The GK NPV for the E-type estimate is 

CAD6.7 million less the CAD208.6 million costs (at a minimum volatility of 12%) for 

dealing the hedge, which results in a net loss of -CAD201.8 million. Similar sized net losses 

would be applicable to the conditional simulations outputs, the kriged estimate and the VBod 

model. The GK option model is not the preferred solution in this case. 

 

Table 19 summarises the main differences between various hedging strategies. All NPV 

shown in the table for the GK call FX option exclude costs for hedging the NPV option. The 

values in Table 19 for the Avg. FX rate column depend on the scenario modelled. For each of 

the five hedging scenarios, a matrix of FX rates was generated for each month of the year 

(over a three-year period) and for each of the 100 conditional simulations; then the average 

across every row was calculated for all of the 100 conditional simulations. Finally, the 

average of these 100 values was derived, referred to as the Avg. FX rate.  

 

 
Table 19 – Comparison of hedging strategies in NPV terms (in millions of Canadian dollars) relative to the E-

type, Kriged estimate and VBod. Note that in each case, the mean NPV is shown (while in the case of the 

conditional simulations, the mean is calculated from the mean NPV over 100 conditional simulations). 

 

NPV Comparison for 100 Cond. Sims & 100 FX sims
  

Cond. Sims Etype Kriged Vbod Avg. FX rate CoV % min max

Actual FX rate -$46.31 -$53.13 -$50.18 -$51.42 1.09           6.72% 0.97 1.23

3yr Collar 1.10 $2.40 -$3.98 -$1.19 -$4.12 1.19           2.54% 1.10 1.25

3yr Collar 1.00 $1.04 -$5.35 -$2.57 -$5.48 1.19           2.89% 1.00 1.25

Fixed FX rate $8.79 $2.46 $5.27 $2.10 1.21           - - -

Modelled spot FX $12.88 $6.58 $9.42 $6.41 1.22           4.56% 0.93 1.61

GK call FX option $12.93 $6.68 $9.51 $6.50 1.22           4.53% 1.00 1.61

NPV's in millions FX rate statistics
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Table 19 compares two subtly different FX collar hedging scenarios with each other where 

the bottom collar threshold in the first scenario is fixed at a FX rate of 1.10 compared to 1.00 

for the second scenario (the latter rate corresponds with the bottom threshold of the GK 

option). The higher bottom collar of 1.10 provides an improved NPV of -CAD4.1 million for 

the VBod scenario as opposed to -CAD5.5 million for the 1.00 FX rate. However, the higher 

bottom threshold of the collar (at a rate of 1.10) is likely be more expensive to protect the 

minimum downside cash flow scenario, and financial institutions implementing this hedge 

may require more of the upside potential in the FX rate. For pragmatic reasons, the collar 

using the FX rate of 1.00 was compared with the GK call option hedging scenario as they 

both used the same bottom threshold. 

 

The Modelled spot FX rate has an average rate of 1.22, resulting in a lower NPV than the GK 

call option output, also at an average FX rate of 1.22. The reason for this only becomes 

apparent by expressing the coefficient of variation (CV) as a percentage (4.56%) which is 

marginally higher than that of the GK option CV (4.53%). This is not the highest CV of the 

five scenarios even though the actual spread for the Modelled Spot FX rate is greater than 

that of the Actual FX rate although the latter has a greater CV of 6.72%. In the case of the 

Actual FX rate, the mean is materially lower than the Modelled Spot FX rate resulting in a 

higher CV. 

 

Figure 65 supports the results discussed in Table 19 and shows why running the actual FX 

rates through the IEM resulted in the lowest NPV compared to the modelled FX outputs. The 

first ten simulated FX rate outputs for the Garman Kohlhagen (G-K) model and FX Collar 

(with a bottom floor of 1.00 and ceiling of 1.25 USD:CAD FX rate) are compared with the 

actual FX rates for this period. It can be observed that the actual FX rates (black dashed 

series) are visibly lower than the modelled rates and also portray higher variance compared to 

the smoother modelled FX outputs, bearing in mind that the FX models were generated from 

raw FX data prior to 2006. In general the FX Collar rates (blue series) are located relatively 

in the middle of the graphed data (due to its capped floor and ceiling rates) while the G-K 

rates (pink-orange series) have a wider spread. Only the first ten (of 100 each) simulated 

outputs of the G-K and FX Collar models are shown due to the sheer size of showing all data.  
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Figure 65. Comparison of actual FX rates for the period 2006 – 2007 (black dashed series) with the first ten 

simulated outputs for the Garman Kohlhagen (G-K) model (pink-orange series) and the Zero-Cost Collar Rates 

(blue series). In general the FX Collar rates are located mostly in the middle (due to its capped floor and ceiling 

rates) while the G-K rates have a wider spread. Actual FX rates appear more variable and lower than the 

modelled FX outputs. 

 

6.7 CONCLUSIONS 

As the DCF NPV calculation includes the time value of money, the FX rate in earlier years 

for the Modelled spot FX rate has a lower rate on average than the GK call option output 

even though in later years the FX rate increases. The statistical mean of the FX rate over the 

entire cash flows in this case is less significant than the variability of the rate during the 

earlier periods of the project. The focus of a hedging strategy should not simply be on 

breaking even over a specified time period by balancing wins and losses in each financial 

year from hedging the foreign exchange rate in dollar terms. It should focus on cash flows 

over time, and in particular, on the higher risk periods in the life of mine schedule to protect 

the downside scenario. 

 

When the costs of hedging are considered in the calculated NPV estimate, it is clear that the 

GK option is too expensive to make financial sense in this instance as the total loss to the 

mine ranges from -CAD202 million to -CAD240 million (at a modelled volatility of 12%). 
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One possibility is hedging only 50% of the FX rate (as opposed to 100% in this model) and 

exposing the project to the variable spot rate. However, it could be deduced in this instance 

that the GK option would still be the most uneconomically viable scenario due to the 

excessive costs associated with this type of option hedge.  

 

If the NPV for the GK option (CAD9.51 million) is ignored because of the higher costs 

associated with implementing a GK hedge, the kriged NPV estimate provides the second-

highest return of CAD9.42 million if the project is exposed solely to the variable spot FX rate 

for the first three years. However, the E-type estimate derived from the conditional 

simulations, has a NPV of CAD6.58 million which is closer to the VBod NPV of CAD6.41 

million; while the mean NPV for the conditional simulations is CAD12.88 million. This 

represents a total variation of 3% - 101% from the VBod NPV based on the variable spot FX 

rate, which would represent a significant challenge to management to implement an 

appropriate hedging strategy.  

 

The impact of the Actual FX rate on calculating the NPV is apparent in that the mine runs at 

a distinct loss, ranging from -CAD46 million to -CAD53 million. The real NPV based on 

running the Actual FX rate through the VBod revealed a loss of -CAD51 million. The VBod 

represents reality so it can be argued that the true value of this project ranges from -CAD51 

million to CAD6.50 million depending on whether FX hedges were implemented or not. In 

the absence of perfect information, i.e. assuming that comparisons with the VBod and actual 

FX rates were not possible in the real world, an interpretation of the NPV from Table 19 may 

provide an interesting, yet incorrect, conclusion with respect to whether a mineral company 

should hedge or not. After the GK option, the kriged NPV estimate provided the second-

highest return of CAD9.42 million if no hedge was put in place, and instead the project was 

exposed to the variable spot FX rate for the first three years.  

 

When the cost of the GK call option is deducted from the NPV estimate, it may appear as if 

the kriged modelled (variable) FX spot rate is the preferred hedging strategy. The impact of 

the actual un-hedged FX rate volatility for the kriged estimate was circa 5.3 times lower than 

the modelled volatility and resulted in a worst-case NPV compared to the other scenarios. 

The preferred scenario is to hedge using the zero-cost collar, which would limit losses to a 

mean NPV of negative CAD5.5 million for the VBod model (as opposed to a loss of negative 

CAD51.4 million if the project was exposed to the actual variable FX spot rate). Once 
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unsystematic risks are taken into consideration, the NPV from the mean of the conditional 

simulations for the modelled FX spot rate is the highest (post consideration of the GK option 

costs) at CAD12.88 million, which may further influence management’s decision not to 

hedge.  

 

Cost and revenue estimates within a mineral projects’ cash flow are derived from a reserve 

estimate, which may result in the project (or company) having material exposure to 

commodity prices and/or FX rates if reserve variability is greater than anticipated, negatively 

impacting production targets. This affects cash flow projections and could result in 

significant financial losses if an inappropriate hedging strategy is implemented. A key 

advantage of hedging is that it provides a smoothing effect of cash flows that delivers 

certainty and less volatility to management when evaluating the overall economic viability of 

a mineral project. 

 

Finally, the economic threshold should be evaluated in DCF NPV terms, rather than only 

cash flow or revenue terms to correctly evaluate the impact of ‘risk in time’ as a function of 

the time value of money. Once the economic threshold has been determined to identify the 

trigger point between a project incurring a financial loss versus a profit, numerous hedging 

strategies at various strike rates and volatilities should be modelled. 
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Chapter 7 : Conclusions and 
Recommendations 

7.1  SUMMARY AND CONCLUSIONS 

The fundamental arguments in each of the previous chapters of this thesis are summarised 

below. 

7.1.1 Chapter 1 

Chapter one set out the problem statement from the perspective of a project economist or 

project manager ‘within’ a company that has to evaluate whether a mineral project is 

economically viable or not, considering both technical and economical project risks in the 

face of uncertain and limited information.  

 

The main objective of this research was to compare quantitatively conventional evaluation 

methods with an innovative, ‘spatially-aware’ IEM evaluation technique that captures the 

non-linear effects of the response variables (such as recovery) related to production 

constraints taking into consideration the short (block-by-block) spatial and temporal scales. 

 

The author also strived to understand how the financial impact of economic uncertainties can 

be incorporated within an integrated evaluation framework to generate a range of NPV 

outputs based on stochastic inputs, given the main resource (or ‘physical’) uncertainties in a 

mineral project. Lastly, this research explored some of the hedging strategies that 

management can consider to mitigate economic (or systematic) risks while simultaneously 

considering resource (or unsystematic) risks. 

 

7.1.2 Chapter 2 

Chapter two discussed the literature review and seminal papers in the areas of risk analysis, 

project evaluation, finance and real options valuation. The author recognised that an 

evaluation framework should be designed to encapsulate and integrate complexity across the 

entire evaluation cycle, i.e. resource estimation, mine planning and processing, and financial 

and economic modelling, with specific emphasis on understanding the impact of 

management’s decisions to not incorporate appropriate flexibility in the mine and/or 
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processing plant design to sufficiently cater for resource variabilities. The evaluation model 

has to strike a balance between simplified estimation techniques and sufficient incorporation 

of aspects of the project that would make a material difference to the investment decision. 

 

A gap identification process revealed that the standard practice for evaluating mineral 

deposits often involves using a single resource and reserve model whereupon sensitivity 

analyses are conducted; this approach does not adequately capture the range of variability 

associated with the compounding effects of resource uncertainties. The combined impacts of 

non-linear resource variables on mining and treatment constraints within an integrated 

evaluation model, and their cumulative impact on the cash flow model has not previously 

been adequately documented, especially in the case of diamond projects. The evaluation 

challenge is further complicated when attempting to reproduce both geospatial and temporal 

scales in an integrated evaluation model.  

 

The author postulated that failure to account correctly for spatial and temporal risks, by 

estimating the average annual production totals instead of accumulating the effects of short-

scale interactions of resource variables on the mining and processing constraints into annual 

production totals, could result in material errors in estimating a mineral project’s NPV. There 

was no previously documented robust methodology that quantifiably evaluates the financial 

costs/benefits of operational and management flexibilities in any specified period as a risk 

mitigation strategy, given the combined effects of spatial resource uncertainties, mining and 

treatment constraints and economic uncertainties.  

 

The author recognised that addressing these gaps required research to focus on designing and 

developing an integrated evaluation modelling (IEM) framework that would allow 

unsystematic, technical risks related to the resources and reserves of a diamond mine, to be 

evaluated at the correct spatial and temporal scales. These spatial uncertainties would be 

combined with stochastic foreign exchange rate models in an IEM framework to quantify 

their collective financial impacts on a project’s NPV, reproducing the spatial integrity of the 

data throughout the entire evaluation pipeline. Lastly, conventional evaluation methods 

would be compared to this new IEM technique and compared to a virtual ore body (VBod) 

‘reality’ to determine the impact of various risk mitigation decisions (hedging strategies) that 

management could implement.   
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7.1.3 Chapter 3 

In chapter three the author described the experimental design and techniques used to develop 

an integrated evaluation model (IEM) framework. The IEM is based on a unique ‘bottom-up’ 

methodology that follows every block through the mining and processing value chain, i.e., it 

accurately captures the spatial variability of resource variables in the ground (grade, density, 

processing characteristics, etc.). This variability is then propagated through the processing 

value chain at a mining block (or selective mining unit, “SMU”) scale. The ‘bottom-up’ (as 

opposed to ‘top down’) evaluation approach is necessary to capture correctly resource 

variabilities and their non-linear impacts on the reserve model, with specific regard to key 

mining and processing constraints.  

 

The two main advantages of the IEM approach are that firstly, it reproduces accurately the 

spatial resource characteristics of block models at the appropriate temporal scale; and 

secondly, direct linkages are created between the resource, reserve and financial models 

within a single software environment. This allows the accurate and rapid assessment of 

multiple scenarios for a mineral project and the easy evaluation of the cost/benefits of 

implementing risk mitigation strategies.  

 

The author also introduced the concepts of an ‘evaluation bias’ which demonstrates the 

impact of short-scale variability within each SMU on the planned production constraints, and 

‘scheduling errors’ that highlight potential errors that can take place when selecting blocks 

for processing based on the well-known ‘time value of money’ approach applied within a 

conventional DCF financial framework. Failure to correctly account for spatial and temporal 

risks, by estimating the ‘average’ annual production totals instead of accumulating the effects 

of  short-scale interactions of resource variables on the mining and processing constraints into 

annual production totals, may result in material errors in estimating a mineral project’s value. 

 

7.1.4 Chapter 4 

Chapter four introduced the concept of a virtual ore body (VBod) that was created using a 

non-conditional geostatistical simulation from a combination of actual drilling information, 

bulk-samples and face mapping from an exposed part of the dyke. An unconditional 

simulation was used to try and model the full range of possible variances and for simplicity, 
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one simulation was assumed to be reality (the VBod) rather than as a single realisation of a 

particular orebody. The VBod was sampled on selected grid spacings to generate three 

sampling scenarios (or campaigns). These samples are assumed to be representative of drill 

hole data extracted from a deposit. Samples from each campaign were used to generate 

kriged estimates and a set of conditional simulations for each of the three sampling scenarios. 

These kriged estimates and conditional simulations formed the basis of the inputs into an 

IEM approach to capture correctly the correlations and system linkages of resource variables 

on the mining and processing constraints of diamond projects.   

 

Two examples of diamond mines, one open-pit and one underground, were used to expound 

on the significance of using an IEM approach to evaluate spatial and temporal resource 

variability impacts upon production forecasts and cash flow models. A similar exercise was 

conducted on a gold mine to prove that this IEM approach could also be extended to other 

commodities.   

 

For the first case study, whilst kriging produced the best unbiased linear estimates for key 

resource variables, the smoothing effect of kriging made the kriged estimates less sensitive to 

production constraints, thereby over-estimating the NPV. The second case study 

demonstrated that conditional simulations can be used alongside kriged estimates to quantify 

the financial impact of resource uncertainties without adjusting the discount rate to 

compensate for technical risks.  

 

The financial impact of grade, density, yield and revenue per carat uncertainties were 

quantified in terms of production, cash flows, discounted cash flows and in NPV terms. The 

author advocated the use of an IEM as an alternative to the approach of applying mining and 

treatment modifying factors (derived from annual averages) to production figures, which are 

likely to provide ‘smoothed’ estimates of the actual variability that will be encountered on a 

daily basis.  

 

The author discovered that mining operations that operate under strict reserve constraints or 

are characterised by resource complexity/heterogeneity do not have the luxury of unlimited 

mining and treatment flexibilities, and hence, cannot easily respond to changes in tonnages or 

grades as a function of resource variability. In the case of marginal operations with limited 
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capital expenditure, the impact of this limited responsiveness is further exacerbated by the 

presumption of ‘smoothed’ ore horizons due to kriging with limited sampling data. 

 

Depletion of simulated blocks in space and in time allowed accurate quantification of the 

financial impact of variability during each year. While volume, grade and density estimates 

showed little variation in simulations over the life of mine on an annual scale, it was the 

variability of these simulations within each year and the selection and sequencing of blocks 

over time that directly influenced the contribution to cash flows. The use of an IEM approach 

showed that the highest variability in cash flows occurred early on in the life of mine (“risk 

window”) had the biggest impact on the time value of money. This highlighted the need for 

an efficient operational plan to ensure that the right tonnes from the right areas are mined and 

treated during the right time.  

 

In addition to the discoveries made in the first two case studies, the third case study applied to 

a gold mining operation, demonstrated that the financial benefit of grade control systems and 

stockpile management could be quantified in financial terms by running different scenarios 

through the IEM. Given the non-linear relationships between the resource, mining, processing 

and financial constraints, this particular problem could not have been solved through any 

form of closed-form mathematical model – a simulation approach was necessary.  

 

7.1.5 Chapter 5 

Chapter five compared different risk analysis methodologies, in particular conventional 

sensitivity analyses and Monte Carlo simulations with an IEM approach, to evaluate their 

relative advantages and limitations in mineral project evaluation. The author demonstrated 

that sensitivity analysis and Monte Carlo simulations could provide an improved 

understanding of project risks but there were limitations of using these techniques when 

compared to an IEM approach, which more accurately reproduced the spatial and temporal 

risks in a mineral project. Sensitivity analysis was not recommended for assessing spatial 

(physical) resource parameters in an evaluation risk model as it could not correctly capture 

the correlations or variance between variables, whereas conditional (spatial) resource 

simulations can do so.  
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The author also showed that Monte Carlo simulations could mislead decision-makers in 

thinking that they accurately captured the range of possible outcomes with the expected 

outcome safely lying within the modelled variability range. This is not always true, as 

demonstrated in the case study showing that material NPV errors (in the range of 160% - 

180%) could be realised.  

 

The author also investigated the most appropriate method of incorporating technical risks in 

mineral projects. Relationships between the technical component of the discount rate, capital 

expenditure and techno-economic factors were quantified through heuristic experiments. 

These outcomes together with the VBod were used to provide a quantitative breakdown of 

the technical component of the discount rate, using the concept of variance reduction curves, 

in an attempt to find an alternative technique to the IEM approach. While this method 

produced interesting results that could be extended to other resource variables in this specific 

case study, it was deemed to be too time consuming and conclusions derived were exclusive 

to that case study, limiting the extrapolation of the findings from this technique to other 

problems. 

 

Finally, it was demonstrated that as additional sampling information was acquired, the overall 

project variance reduced as a function of gaining more information and reducing uncertainty. 

The fewer the number of spatially representative sample data, the more the likelihood 

increases of under-estimating the true variance and assuming a smoother profile with less 

variability if linear estimation techniques were used. The objective of implementing an IEM 

approach for mineral project evaluation was not to recommend closer spaced sampling grids 

but to find a balance between the required sampling drilling density and the derivation of 

quantitative estimation errors in NPV. 

 

7.1.6 Chapter 6 

Chapter six quantified the financial impact of managerial flexibilities by evaluating different 

hedging strategies that simultaneously considered production and economic uncertainties 

within an integrated evaluation modelling framework. All modelled outputs were calculated 

in NPV terms for a diamond mine using a modified DCF approach. The importance of 

linkages within an IEM framework were validated for unsystematic (project specific) risks 
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related to resource/reserve parameters and systematic (economic) risks to evaluate the most 

appropriate management hedging strategy for a diamond mining project.  

 

In this chapter instead of conventionally evaluating multiple hedging strategies for foreign 

exchange (FX) rate uncertainty using a ‘single’ production scenario as a basis (typically 

generated from a kriged resource estimate), each hedging strategy was run against ‘multiple’ 

realisations of the ore body generated from conditional simulations (discussed previously in 

chapter four) on a one-to-one mapping with the FX rate. This uniquely quantified the 

financial differences of each hedging strategy between the stochastic output from 

geostatistical conditional simulations of the mineral deposit with the kriged and VBod 

models. 

 

Based on the VBod and actual FX rates for the period 2006 - 2009, it was proven that the true 

value of this project ranges from negative CAD51 million to CAD6.50 million depending on 

whether FX hedges were implemented or not to protect the project revenues from the volatile 

exchange rate. However, in the absence of perfect information, i.e. assuming that 

comparisons with the VBod and actual FX rates were not possible in the real world, the 

author revealed that management may be inclined to make the incorrect decision (in this case 

study) not to hedge.  

 

Management’s decision would have been strongly influenced by the NPV generated from the 

kriged results and mean of the conditional simulations, modelled on the variable FX spot rate, 

which produced NPV greater than any of the hedged positions. However, it was clear from 

the case study that the impact of the actual ‘un-hedged’ FX rate volatility for the kriged 

scenario, which was circa 5.3 times lower than the modelled volatility, resulted in a worst-

case NPV compared to the other scenarios than management could have realised at that time. 

The preferred scenario was to hedge using the zero-cost collar, which would have limited 

losses to a mean NPV of  negative CAD5.5 million for the VBod model (as opposed to a loss 

of negative CAD51.4 million if no hedging was in place and the project was exposed to the 

actual variable FX spot rate). 

 

The author deduced that the focus of the hedging strategy should not simply be on ‘breaking 

even’ over a specified time period by balancing wins and losses in each financial year from 

hedging the FX rate in dollar terms. It should focus on cash flows of the operation over time, 
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and in particular, on the higher risk periods in the life of mine schedule (especially in the 

earlier years from a time value of money perspective) to ensure that profit margins are 

sustainable, by protecting project revenues negatively affected by FX rate volatility. The 

author advocates that a mineral resource company should determine the economic threshold 

(in DCF NPV terms) that a project or portfolio of projects can withstand, based firstly on the 

key physical properties of the resources/reserves, then secondly on a combined range of 

economic criteria within an integrated evaluation framework. 

 

7.1.7 Final Conclusions 

This thesis covered a range of topics from geostatistics to real options valuation to evaluate a 

mineral project, with a consistent theme throughout each of the chapters. Project risks, 

pertaining to both systematic and unsystematic risks, need to be assessed in an integrated 

approach to ascertain whether their financial impact is material or not. The greater the 

perceived variability of key systematic and unsystematic variables, the more the mine has to 

consider flexibility in its mining and processing schedules and management hedging 

strategies; but the real costs of attaining that flexibility needs to be evaluated using an IEM 

framework. 

 

Each deposit may have several resource variables, such as grades, density and rock type 

characteristics that differ in variability. These variabilities affect reserves with respect to the 

planned mining and processing constraints used to calculate the production figures for input 

into the financial model. The NPV of a project depends on the estimated values and 

variabilities of the variables in question from a resource and reserve perspective; the business 

plan including the mining, processing, refining, marketing and sales plans; the project’s 

exposure to key economic risks; and management’s ability to mitigate risks as a function of 

various hedging strategies.  

 

Once resource variabilities have been modelled using an IEM to quantifiably measure their 

impact on reserve constraints and consequent influence on the financial model, it is the 

author’s belief that the next stage should involve management modelling various scenarios 

via the IEM to mitigate these risks. For example, case study one in Chapter four highlighted 

the challenge of having a limited stockpile capacity of only 3,000 tonnes per day which 
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created a bottle-neck to feed the processing plant at the planned rate of 3,150 tonnes per day. 

Management should now incorporate additional capital costs in their financial model for a 

larger underground stockpile capacity to remove this constraint and then re-run the IEM to 

ascertain the cost versus benefit thereof, which is where the IEM becomes an important tool 

to appropriately measure management’s risk mitigation scenarios. 

 

The case studies covered in this thesis demonstrated that each project has its own unique 

challenges, whether in terms of geological, mining or processing complexities or with respect 

to uncertainties associated with systematic and/or unsystematic variables. The author 

designed and developed an IEM framework for each case study but the principles were 

consistent throughout. The IEM framework is essentially a simulation model that strives to 

capture, replicate and model the key spatial and temporal linkages between resources, 

reserves and the financial model.  

 

7.2 ORIGINAL CONTRIBUTIONS OF THIS RESEARCH 

In the last few decades, innovative and faster processing risk analysis methods have been 

developed to model risks related to resource uncertainty. Research on these methods focused 

on commodities other than diamonds, such as gold, iron ore, coal, base metals, and oil and 

petroleum. Where diamond risk modelling took place, it concentrated mainly on alluvial 

deposits rather than kimberlite pipes, which are the main sources of diamonds. 

 

Complex resource estimation problems are typically expressed through ‘simplified’ 

mathematical equations to solve global or local geostatistical problems. However, the 

production and financial impacts of non-linear resource-to-reserve relationships cannot be 

approximated (with any degree of reasonable accuracy) using a closed-form mathematical 

solution as each project has its own set of resource and reserve variables, which interacts with 

mining and processing constraints in a sequential, non-linear and unique way.  

 

The author recognised that failure to account correctly for spatial and temporal risks in a 

mineral evaluation model, by estimating the ‘average’ annual production totals instead of 

accumulating the effects of the short-scale (e.g. daily) interactions of resource variables on 
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the mining and processing constraints into annual production totals, may result in material 

errors in estimating a mineral project’s value.  

 

This research is deemed to be unique in that this study is applied to kimberlite diamond 

projects which have not been previously researched to this extent and in this context. It 

transcends conventional discipline boundaries covering the areas of geostatistics; mine 

planning; financial theory; and real options valuation. This thesis uniquely quantifies the 

impact of key resource variabilities and their non-linear interaction with reserve constraints in 

financial terms, using a modified DCF NPV approach, founded on a single, integrated 

evaluation framework. 

 

The actual IEM toolkit is not an ‘off the shelf’ software solution but is rather a bespoke 

solution of MS Excel spreadsheets with Visual Basic Application (VBA) programming 

coding, developed by the author, that links each component of the evaluation pipeline 

together. This coding was later enhanced into a web-enabled, dot.net programming 

environment linked to a SQL database for larger-scale commercial risk evaluation projects, 

sponsored by Quantitative Group, a Perth-based mining consultancy, but further discussion is 

beyond the scope of this thesis.  

 

7.3 RECOMMENDATIONS FOR FUTURE WORK  

The areas below are recommended to supplement this research in terms of increased depth of 

study and across a broader range of applications.  

7.3.1 Application of multiple VBod’s in an IEM Framework 

While the limitation of using only one virtual ore body (VBod) is acknowledged, this 

research focused on developing the methodology of an IEM framework. The use of a VBod 

provides a way of quantitatively comparing the relative financial outputs. Without the use of 

a VBod, the evaluator would not be in a position to accurately quantify the benefits of an 

IEM approach compared to conventional evaluation techniques. Furthermore, as computer 

technology develops in terms of processing speed and memory storage capabilities, the 

opportunity exists to generate multiple VBod repeating this exercise for several ‘realities’ 

based on each VBod, creating a multi-probabilistic and more objective IEM framework.  
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7.3.2 Evaluating Uncertainty of the Variogram for Estimations 
and Simulations 

The author recognizes that the variogram is vital to any geostatistical estimate or simulation 

but typically, the precision of a variogram estimated from sample data by the method of 

moments is unknown. No uncertainty on the experimental or fitted variogram models was 

included in this study when generating kriged estimates and conditional simulations. Various 

authors have considered variogram uncertainty in a number of different contexts. Journel and 

Huijbregts (1978) distinguished between theoretical and local variograms, also referred to as 

ergodic and non-ergodic variograms, respectively. They noted that the key difference is that 

ergodic variograms are defined as the average over all realisations of the underlying 

stochastic model, and non-ergodic variograms only over the realisation actually sampled (not 

related to a stochastic model). Isaaks and Srivastava (1988) argue that ergodic variograms 

provide more reliable confidence intervals of predictions than non-ergodic variograms as they 

capture the character of spatial variability unique to the domain over which it is defined.  

 

Cressie (1985) used theoretical expressions to fit variogram models in such a way that it 

accounts for the difference in accuracy of the experimental semi-variance at each lag 

distance. Webster and Oliver (1992) measured the uncertainty of variograms estimated from 

different sampling schemes to determine whether the sampling schemes were adequate for 

variogram estimation. Davis and Borgman (1979) conducted considerable research into 

sampling distributions of variograms. Srivastava and Parker (1989) evaluated several 

methods of calculating variograms and concluded that correlogram and pairwise relative 

variogram methods were the most robust of the methods studied. It is generally impractical to 

design a sampling programme that is tailored to calculating variograms.  

 

Rossi et al. (1992) compared the use of ergodic versus non-ergodic variograms on ecological 

studies to show that the use of non-ergodic covariances and correlograms provide a more 

effective description of lag-to-lag spatial dependence by accounting for the changing local 

means and variances. They suggest that the non-ergodic approach may be better than the 

traditional variogram estimator for reproducing the true underlying spatial structure. Müller 

and Zimmerman (1999) and Bogaert and Russo (1999) suggested techniques for designing 

sample schemes where the sample points are positioned to minimize the value of a theoretical 
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expression of variogram uncertainty. They use theoretical expressions to quantify the 

expected error in the experimental variogram as an approximation to the variogram of the 

random process which generated the field. 

 

Further research is recommended on the impact of variogram uncertainty on the kriged 

estimates and conditional simulations for selected case studies in this thesis based on 

sampling campaigns derived from a VBod. In previous studies theoretical expressions have 

been derived to approximate uncertainty in estimates of the experimental variogram and fitted 

variogram models. These expressions typically rely upon various statistical assumptions 

about the data and express variogram uncertainty as functions of the sampling positions and 

the underlying variogram. These expressions can be used to design efficient sampling 

campaigns for estimating a particular variogram.  

 

One research path of interest would be to focus on the role of sample data on reducing 

variogram uncertainty, as a function of acquiring more data by increasing samples derived 

from an even sampling grid, and also by selectively positioning sample points to minimize 

the value of a theoretical expression of variogram uncertainty. A second research path would 

be to compare the ergodic variogram approach with the use of non-ergodic covariances and 

correlograms to quantify potential differences in terms of kriged estimates and simulation 

outcomes and their associated impact on the financial model.  

 

7.3.3 Deeper Analysis into Calculating Input Volatilities 

In chapter six the author recognised the importance of calculating historic volatilities for the 

foreign exchange rate as an input into the Garman-Kohlhagen FX rate predictive model. A 

simplified method was selected to calculate the instantaneous standard deviation of historic 

changes based on an approach from Davis (1998) and Hull (2003) using unweighted 30-day 

average data (see Equation 39).  

228 
 



( )2
1

1

1

*
1

where ln  and 1 .. 

 = the number of observation periods per year
 = the observation number

 = the mean log relative rates 

1,  

n

s i
i

i
i

i

n

i
i

u u
n

Su i n
S

i

u

where u u
n

τσ

τ

=

−

=

= −
−

 
= = 

 

=

∑

∑

 

Equation 39 – The instantaneous standard deviation model to calculate historic volatility. 

 

The author acknowledges that more sophisticated variations to this approach exist such as the 

autoregressive conditional heteroskedastic (ARCH) and generalized autoregressive 

conditional heteroskedastic (GARCH) models. These may be used to model the historic FX 

rates to better detect trends between linear and non-linear dependencies of the means and 

variances of the data. Bera and Higgins (1993) remarked that “a major contribution of the 

ARCH literature is the finding that apparent changes in the volatility of economic time series 

may be predictable and result from a specific type of nonlinear dependence rather than 

exogenous structural changes in variables.”  

 

When dealing with nonlinearities, Campbell, Lo and MacKinlay (1997) distinguished 

between ‘Linear Time Series’ where shocks are assumed to be uncorrelated but not 

necessarily identically and independently distributed (iid); and ‘Nonlinear Time Series’ 

where shocks are assumed to be iid, but there is a nonlinear function relating the observed 

time series and the underlying shocks. Taking this into consideration, the author recommends 

that further work on selected FX rate modelling techniques be investigated to evaluate the 

impact of the following approaches on the predictive Garman-Kohlhagen FX model: 

 

• GARCH uses a general autoregressive moving average model, which is a general 

auto-correlation of data. If an autoregressive moving average model (ARMA model) 

is assumed for the error variance, the model is a generalized autoregressive 

conditional heteroskedasticity. 
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• NGARCH is a nonlinear asymmetric generalized autoregressive conditional 

heteroskedastic model, which is a way of applying adaptive fuzzy logic to infer future 

prices or returns. 

• IGARCH is an integrated generalized autoregressive conditional heteroskedastic 

methodology, which is a restricted form of the GARCH model where the persistent 

parameters sum up to one, and therefore there is a unit root in the GARCH process. If 

the processing is linear, the unit root will be one in the calculations. 

• EGARCH is an exponential general autoregressive conditional heteroskedastic that 

uses a conditional variance and a general error distribution (a standard normal 

variable can also be used).  

• QGARCH is a quadratic generalized autoregressive conditional heteroskedastic 

technique, which is used to model the symmetric effects of positive and negative 

shocks, but not applicable to modelling extreme market conditions like the recent 

global financial crisis (GFC) period in 2008 - 2009. 

 

7.3.4 Alternative hedging strategies 

The author used hedging strategies such as zero-cost collars and an adaptation of Black and 

Scholes called the Garman-Kohlhagen call option, but there are other forms of protective 

hedging strategies similar to the zero-cost collar option strategy, such as bull spreads, bear 

spreads, butterfly spreads, calendar spreads, strangles and straddles that were beyond the 

scope of this study – see McMillan (2002) and Hull (2003) for further information.  

 

Further investigations into these strategies are recommended to ascertain their impact on 

developing a more robust hedging strategy. The alternative hedging strategies to be 

investigated include the following: 

• Bull spreads: A bull spread consists of two or more options of the same type, and 

results in a profit when the underlying asset increases. 

• Bear spreads: A bear spread consists of two or more options of the same type, and 

results in profit when the underlying asset decreases (the opposite to bull spreads). 

• Butterfly spreads: A butterfly spread requires three options of the same type, with 

three strike prices. It’s formed by taking equal positions in the high- and low-priced 

options and twice the opposite position in the middle-priced option. 
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• Calendar spreads: A calendar spread consists of a short expiry option and a long 

expiry option of the same type and same exercise price. 

• Strangles: A strangle is made up of a long call and a long put with the same expiry but 

different strike prices, and profits from large price movements. 

• Straddles: A straddle is made up of a long call and a long put with the same strike 

price and expiry, and profits from large price movements. 

 

7.3.5 Application of Bayes Law for Modelling of Uncertainty 

Discrete Failure Events (DFE) may have a low probability of occurrence for many mining 

operations but if they do occur, their consequential impact can be financially material, 

negatively affecting management’s flexibility options and may require additional expenditure 

to address these issues once they have occurred. Typical DFE for mining operations include 

excessive rainfall that could flood the deepest (and often the most high-grade) parts of open-

pits or stopes of an underground operation; or open-pit wall failures that may be caused by 

geotechnical failures and/or excessive rainfall patterns; or in the case of the underground 

diamond mine (case study one, Chapter four) flooding due to collapse of the mine stope roof  

(which lies beneath a frozen lake), may result in ‘writing off’ material parts of the mine plan 

affecting the NPV.  

 

Some operations that are located in regions of high rainfall, e.g. Batu Hijau (a copper-gold 

mine in Indonesia), will have a higher probability of DFE associated with flood events. It is 

considered good operational management practice to have an understanding of the likelihood 

of occurrence of a DFE to evaluate the production and financial impacts, if any. The author 

recognised the importance of this and investigated modelling DFE using an application of 

Bayes theorem (Bayes and Price, 1763) applied qualitatively (Medow and Lucey, 2011) to a 

set of mining data to evaluate the probability of a DFE involving flooding of the underground 

diamond mine discussed in chapter four of this thesis (using Equation 40).  

 

 

 

  

P(A).P(B|A)P(A|B)=
P(B)

Equation 40. Bayes Theorem 
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A current probability matrix, P(A) was defined based on the mine flood probability and the 

number of production days affected by flooding. A probability decision tree was used to 

calculate the expected value of the tonnages in the affected stopes of the flooded mine. The 

reliability of this predictive information was evaluated by comparing historical trends, i.e. 

actual flooding events in the past were compared with the model’s predicted outcomes to 

determine the posterior distribution, P(B|A). This was used to weight the predictive model by 

the reliability of information and lastly, a full probabilistic decision tree was generated to 

estimate the impact of the various flooding scenarios on the number of mine stopes 

(tonnages) affected and the expected value determined.  

 

The author recommends that this independent study could be incorporated into the IEM 

framework to include DFE into the uncertainty framework to provide a more comprehensive 

probabilistic risk assessment of a mine/project’s risks. Monte Carlo simulations could also be 

included within the current probability matrix. 

 

7.3.6 Further Work on Economic FX Modelling 

In this research the author elected to use a combination of a resource VBod and actual FX 

rates (retrospectively evaluating a time period between 2006 – 2009) in order to compare 

various hedging scenarios to each other and to ‘reality’. It is recommended that various time 

periods be selected to retrospectively evaluate the FX rate volatility (other than the 2006 – 

2009 period) on nominated hedging strategies combined with resource uncertainties. It would 

be interesting to assess if there are any trends in the preferred hedging strategy based on 

multiple FX rate evaluation periods for this diamond study.   

 

There is a broader application of this research into management flexibilities that attempt to 

produce robust hedging strategies for FX rates based on predictive models. The   USD:CAD 

FX rate correlation was used in this research as it seemed logical, particularly as the leading 

case study involved a diamond operation in Canada where revenue was earned in USD, then 

swapped into the local CAD currency to service operational costs. An opportunity exists to 

quantify a relationship between commodity prices and the FX rate to assess the influence of 

commodities on the FX rate to develop better predictive models of FX rates to assist with 

developing robust hedging strategies. 
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Initial research into a comparison between the AUD:USD and USD:CAD revealed a good 

correlation between these two currencies and the commodity index (see Figure 66 and Figure 

67). 

 

 
Figure 66 – Correlation between the Canadian-United States Dollar and the Australian-United States Dollar. 

 

 
Figure 67 – Correlation between the Canadian-United States Dollar and the Australian-United States Dollar in 

relation to the commodities index. 

 

http://currate.com/historical-exchange-rates.php

Correlation between the CAD/USD and AUD/USD

http://www.forexblog.org/wp-content/uploads/2011/06/CAD-AUD-Commodities-2010-2011.jpg

Correlation between the CAD/USD and AUD/USD
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In Figures 59 and 60, both currencies are characterized as ‘commodity currencies’, which 

implies that a rise in commodity prices is matched often by a proportionate appreciation in 

the AUD and CAD relative to the US dollar. It can be observed from the chart that the year-

long commodities boom and sudden drop corresponds to similar movement in commodity 

currencies. Both currencies are seen as attractive proxies for risk and are associated with 

rising commodity prices translating into stronger currencies. It is interesting to note that both 

Australia and Canada are natural resource economies but it appears that the Australian FX 

rate has strengthened more than the Canadian dollar, which could be principally due to 

Australia’s proximity to China and influenced by its large exports of iron ore and coal to 

China.  

 

While the focus of this thesis has been on diamond projects (with exception of the gold 

application of case study three discussed in chapter four), future extension of this research 

using an IEM approach to evaluate unsystematic risks combined with FX rate uncertainty for 

other commodities is recommended. The relationship of commodity prices (especially iron 

ore and coal) to the AUD:USD FX rate could be a stimulating extension of this research to 

evaluate its impact on hedging strategies, considering combined economic and resource 

uncertainties. This would expand the concept of an IEM framework into broader evaluation 

mining applications especially iron ore, which has similar complex unsystematic stochastic 

variables to diamonds that need to be incorporated in the evaluation model other than grade 

uncertainty. 

 

This concludes chapter seven and this thesis. 
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