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ABSTRACT 
The core asset of most mining companies is its mineral resources and reserves. The company 

produces ore from its reserves, which is a subset of its mineral resources associated with 

varying levels of geoscientific confidence and uncertainty. One of the key evaluation 

challenges is to distil technical complexity into a financial model that is usually designed to 

focus only on one or two key valuation indicators, such as net present value (NPV) or internal 

rate of return (IRR).  

 

The driver behind this research was whether conventional evaluation techniques for mineral 

projects can evaluate accurately both the spatial and temporal characteristics of project risks 

in financial terms, due to their inherent nature to understate the true variance, and under-value 

or over-value the actual NPV. How can conventional evaluation methods be compared to an 

innovative, integrated evaluation technique that quantifies the non-linear impacts of spatial 

resource variables on production constraints in financial terms, measured at the appropriate 

temporal scale?  

 

To answer these questions, this research focused on developing an innovative risk evaluation 

methodology for two different diamond deposits and one gold deposit to incorporate spatial, 

non-spatial and financial data across the evaluation pipeline. The author developed an 

integrated evaluation modelling (IEM) framework based on a unique bottom-up methodology 

that follows every estimation block through the mining and processing value chain, i.e., it 

accurately captures the spatial variability of all relevant value chain variables in the ground 

and their correlated impacts on production constraints such as grade, density and processing 

characteristics. This variability is propagated through the processing value chain at a mining 

block (or selective mining unit, “SMU”) scale.  

 

The IEM approach revealed differences in NPV between a ‘bottom-up’ (or Local) evaluation 

method and a ‘top-down’ (or Global) evaluation method – see Figure 1. While the actual 

NPV for the virtual ore body (VBod) was CAD 2.1 million, the figure shows that the local 

evaluation method (bottom-up) more closely approximated the actual NPV of the project than 

the global (top-down) evaluation method, which materially over-estimated the NPV. 
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Figure 1 compares the Local (bottom-up) and Global (top-down) evaluation methods over 

three different sampling campaigns (75m, 50m and 25m spaced drill holes). 

 

The author demonstrated that cash flow constituents derived from annual estimates in a top-

down approach will not correctly reflect the asymmetries due to operational variability on a 

local, daily basis. The ‘bottom-up’ evaluation method represented a more accurate way of 

deriving annual cash flow estimates needed to make decisions on projects by accumulating 

the appropriate values from a bottom-up approach, i.e. daily, monthly, quarterly then derive 

annual estimates for NPV forecasts. 

 

The two main advantages of the IEM methodology are that firstly, it accurately reproduces 

the spatial resource characteristics of blocks at the appropriate temporal scale; and secondly, 

direct linkages are created between the resource–reserve–financial models within a single 

software environment. This allows multiple scenarios to be rapidly assessed for a mineral 

project and the cost/benefits of implementing risk mitigation strategies to be easily evaluated. 

 

Global ‘top-down’ evaluation method compared 
to a Local ‘bottom-up’ method

V-Bod
Scenario 1
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NPV Comparison of Global vs Local

Local Annual NPV
Global Annual NPV

VBod Scenario 1 
(75m)

Scenario 2 
(50m)

Scenario 3 
(25m)

Global NPV 
(CAD million)

- 91.6 80.1 73.9

Local NPV (CAD
million)

2.1 32.9 31.4 28.3
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This research also quantifies the financial impact of managerial flexibilities by evaluating 

selected hedging strategies that simultaneously consider production and economic 

uncertainties within an IEM framework. All modelled outputs are calculated in NPV terms 

using a modified DCF approach. The importance of linkages within an IEM framework is 

validated between unsystematic risks, with respect to key resource-to-reserve stochastic 

variables, and systematic risks considering the impact of foreign exchange rates.  

 

The author concludes that the greater the variability of key systematic and unsystematic 

variables, the more the mine has to consider flexibility in its mining and processing schedules 

and management hedging strategies; but the real costs of attaining that flexibility needs to be 

evaluated using an IEM framework. The confidence in a NPV estimate for complex mineral 

projects cannot easily be quantified using any closed-form analytical or mathematical 

solution. Complex, non-linear relationships between resources, reserves, financial and 

economic parameters requires a simulation model based on an IEM framework to provide a 

robust solution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

xvii 
 



 

 

STATEMENT OF ORIGINALITY 
 

Submitted by Grant Nicholas to the University of Adelaide as a thesis for the degree of 

Doctor of Philosophy to the faculty of Engineering, Computer and Mathematical Sciences, 

March, 2014.  

 

I certify that this work contains no material which has been accepted for the award of any 

other degree or diploma in any university or other tertiary institution and, to the best of my 

knowledge and belief, contains no material previously published or written by another 

person, except where due reference has been made in the text. In addition, I certify that no 

part of this work will, in the future, be used in a submission for any other degree or diploma 

in any university or other tertiary institution without the prior approval of the University of 

Adelaide and where applicable, any partner institution responsible for the joint-award of this 

degree. 

 

I give consent to this copy of my thesis, when deposited in the University Library, being 

made available for loan and photocopying, subject to the provisions of the Copyright Act 

1968. I also give permission for the digital version of my thesis to be made available on the 

web, via the University’s digital research repository, the Library catalogue and also through 

web search engines, unless permission has been granted by the University to restrict access 

for a period of time. 

 

 

 

         30/03/2014  

GRANT NICHOLAS       DATE 

 

 

 

xviii 
 



ACKNOWLEDGEMENTS 
I am sincerely grateful to my family and friends for their encouragement and support over 

these many years that involved not just me giving up my time in order to complete this thesis, 

but also their unrelenting consideration and patience. I especially thank my parents for their 

continued support throughout my career and their financial sacrifices which provided me with 

funding to commence my university studies and lay the foundation for this thesis. To my 

boys, Luke and Alexander, thank you for your kind understanding beyond your young years. 

Most of all, my wife, Abigail, was my rock of support and always provided countless words 

of reassurance and personal devotion throughout my many years of study. I am so grateful for 

her persistent support through our many years of marriage, for standing by me through good 

and bad times. 

 

I owe a debt of gratitude to Prof. Peter Dowd and Dr. Mark Jaksa at the University of 

Adelaide as my supervisor and co-supervisor, respectively, and for making time in their busy 

schedules to review my work to provide guidance to me. Their helpful advice and empathy 

when work commitments resulted in delays to progress on my thesis are very much 

appreciated. I would also like to express my heartfelt thanks to Mr. Scott Jackson as my 

external co-supervisor, from Quantitative Group (QG) mining consultancy, who took the time 

to provide invaluable feedback to me.  

 

Dr. Wynand Kleingeld deserves special recognition as the person who inspired me to study 

geostatistics and commence my thesis. He was my initial external co-supervisor and still 

remains as my mentor, who unselfishly introduced me to his many key contacts around the 

world to speed up my learning process, which I am most grateful for. 

 

I am especially thankful for the earlier years of my studies working with Dr. Kleingeld, my 

expert panel and my colleagues as part of the De Beers, Mineral Resource Management R&D 

Group based in Wells, UK. Those years in Wells provided me with a unique opportunity to 

share ideas in an environment fostered towards challenging the conventional and seeking 

innovative, time efficient and more cost effective ways to evaluate diamond projects and turn 

them into operating mines. Special reference must be made to my colleague, Stephen 

Coward, who defied me to think differently and together we shared many ideas, wrote several 

papers, and solved numerous challenging problems in our work environments. 

xix 
 



 

My expert panel, during the years in Wells and even thereafter, formed an important part of 

my learning process and strongly influenced my conviction to complete this thesis. Dr. Harry 

Parker’s overall understanding of the importance of the linkages between geostatistics, mine 

planning and financial evaluation was an inspiration for me to continue my thesis and I am 

deeply honoured that he always made time to offer me advice and words of encouragement.  

 

Prof. Roussos Dimitrakopoulos’ ideas on the use of conditional simulation algorithms for 

modelling orebody uncertainties had a profound influence on my understanding of the 

linkages between geostatistics and mine planning. Mr. David Vose’s expertise in the area of 

risk evaluation, and the many interesting discussions we had, are also much appreciated. 

Special mention is also necessary to both Dr. Margaret Armstrong and Dr. Alain Galli from 

CERNA, Ecole des Mines de Paris, for their continued support and for providing me with 

countless helpful suggestions, training and guidance in the area of real options valuation.  

 

Lastly, I am most grateful to the De Beers Group, Quantitative Group (QG) and the 

University of Adelaide who all, at different times, assisted me with funding and support for 

my studies.  

 

Thank you all so much. 

 

 

 

  

xx 
 



GLOSSARY 
AR    Autoregressive time series model. 

ARIMA   Integrated Autoregressive-Moving Average time series model. 

ARMA   Autoregressive-Moving Average time series model. 

AUD   Australian Dollar. 

CAD  Canadian Dollar. Note that for market convention purposes, the foreign 

exchange rate (USD:CAD) is referred to in the ‘Direct’ sense, i.e. 

specifying the number of CAD required to buy or sell one United 

States dollar (USD). 

Call option  Provides the holder of the option with the right but not the obligation 

to buy the underlying asset by paying the exercise price agreed upfront 

in the contract. A call option is referred to be ‘in the money’ when the 

price of the underlying asset is greater than the exercise price and a 

profit could be made by exercising the option. Conversely, the call 

option is ‘out of the money’ if the price of the underlying asset is less 

than the exercise price. 

CAPM  Capital Asset Pricing Model. 

CPHT Carats Per Hundred Tonne (a measure of diamond grade). 

Correlation  A measure of the dependency between two variables; or may be 

calculated as a measure of spatial dependency of a single variable at a 

distance interval. 

Covariance A measure of the dependency between two variables; or may be 

calculated as a measure of spatial dependency of a single variable at a 

distance interval. 

Conditional simulation A geostatistical tool which can be used to generate punctual or block 

‘realisations’ of mineral grades. Each realisation is intended to honour 

the histogram and semivariogram of the true grade distribution, as 

well as honouring known data points. 

Conditional distribution The probability distribution for a variable, given the known value 

of that variable at other locations in space. 

DCF   Discounted Cash Flow. 
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DTA  Decision Tree Analysis estimates the maximum and minimum project 

value by evaluating the probabilities associated with different options 

discounted back at the traditional discount rate. 

European options  Those options that can be exercised only on their maturity date while 

options that can be exercised at any time are referred to as American or 

Real Options. 

Exercise price The amount of money invested to exercise the option if you are buying 

the asset (call option); or the amount of money received if you are 

selling the option (put option). As the exercise price of an option 

increases, the value of a call option decreases and the value of a put 

option increases. This determines the intrinsic value of the option. 

FX Foreign exchange rate. 

Geometallurgy It is a cross-discipline approach between geostatistics, geology, mining 

and metallurgy with the objective of addressing some of the 

complexities associated with determining the value of a resource and 

whether it is economic to exploit.  

Geostatistics  Mathematical techniques used to estimate properties which are 

spatially dependent. 

Heteroskedasticity  Non-constant variance. 

Homogeneity  The property of a spatial series when its characteristics are independent 

of location. Homogeneity is equivalent to stationarity. 

Homoskedasticity  Constant variance. 

IEM Integrated Evaluation Modelling approach, which models the linkages 

and dependencies between resources, mine planning and the financial 

model. 

IRR   Internal Rate of Return.  

Kriging A collection of generalised linear regression techniques for minimising 

an estimation variance defined from a prior model. In contrast to 

classical linear regression, kriging takes into account stochastic 

dependence among the data. 

Kriging variance  The minimised value of the estimation variance. It is calculated as a 

function of the semivariogram model and locations of the samples 

relative to each other and the point of block being estimated. 
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Kurtosis  The kurtosis is a measure of the ‘peakedness’ of a data distribution 

around the mode. A kurtosis: equal to 3 suggests a normal, or 

Gaussian, distribution; < 3 implies a lower concentration near the mean 

than a normal distribution; and > 3 suggests that the distribution has an 

excess of values near the mean. 

MA    Moving Average time series model. 

Markov process  A stochastic process in which a prediction is determined solely by the 

closest n observations, and is stochastically independent from all 

remaining, more distant observations. 

MCS Monte Carlo Simulations - any number of procedures that use 

simulated random samples to methods make inferences about actual 

populations. 

Multivariate conditional simulation An extension of conditional simulation which also 

aims to ensure that the correct dependencies between simulated 

variables are honoured in each realisation. 

NPV   Net Present Value. 

Nugget effect  When the semivariogram does not pass through the origin and arises 

from the regionalised variable being so erratic over a short distance 

that the semivariogram goes from zero to the level of the nugget in a 

distance less than the sampling interval. 

OLS    The regression analysis method of Ordinary Least Squares. 

Ordinary Kriging  The general geostatistical estimation process often simply known as 

kriging. Unlike simple kriging, the mean is unknown. 

PDE   Partial Differential Equation. 

Put option  The converse of a call option – provides the holder of the option with 

the right but not the obligation to sell the underlying asset to receive 

the exercise price. A put option is referred to be ‘in the money’ when 

the price of the underlying asset is less than the exercise price and a 

profit could be made by exercising the option. Conversely, the put 

option is ‘out of the money’ if the price of the underlying asset is 

greater than the exercise price. 

Random field  The application of time series analysis to the spatial variability of 

theory geotechnical properties, and unlike time series analysis, random 

field theory is not confined to one dimension.  
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Range    The distance over which the semivariogram becomes a constant. 

Real Option The application of financial options, decision sciences, corporate 

finance and statistics to evaluating real or physical assets as opposed to 

financial assets (cf. definition of European options). A real option is 

the right but not the obligation to take an action (such as deferring, 

contracting, expanding or abandoning) at a predetermined cost, called 

the exercise price or strike price over the life of the option. 

Regionalised  A variable which has properties that are partly random and partly 

variable spatial, and has continuity from point to point, but the changes 

are so complex that it cannot be described by a tractable deterministic 

function. 

Resource  A ‘Mineral Resource’ is a concentration or occurrence of material of 

intrinsic economic interest in or on the Earth’s crust in such form, 

quality and quantity that there are reasonable prospects for eventual 

economic extraction. The location, quantity, grade, geological 

characteristics and continuity of a Mineral Resource are known, 

estimated or interpreted from specific geological evidence and 

knowledge.  

Reserve An ‘Ore Reserve’ is the economically mineable part of a Measured 

and/or Indicated Mineral Resource. It includes diluting materials and 

allowances for losses, which may occur when the material is mined. 

Appropriate assessments and studies have been carried out, and include 

consideration of and modification by realistically assumed mining, 

metallurgical, economic, marketing, legal, environmental, social and 

governmental factors. These assessments demonstrate at the time of 

reporting that extraction could reasonably be justified.  

ROV   Real Options Valuation. 

Simple Kriging  The same as ordinary kriging, except that the mean is assumed known 

and thus, there is no need to impose the unbiasedness condition, which 

eliminates the final row from all matrices, as is the final column of the 

square matrix.  

Skewness  The Skewness is a measure of the symmetry of a data distribution. A 

skewness of zero suggests a symmetrical distribution, a positive value 

indicates a right-hand skew, and a negative value indicates a left-hand 
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skew. 

Spatial series  A sequence of discrete or continuous data measured at specific 

locations - the spatial equivalent of a time series. 

Stationarity  A term used to denote different degrees of invariance in the 

characteristics of random fields. If the mean and autocovariance of the 

series change with the lag, and not location, the series is said to be 

weakly stationary. If all higher moments depend on the lag, and not 

position, the series is said to be stationary in the strict sense. 

Systematic risks Risks related to economics, such as price and foreign exchange rates 

etc. that can be diversified. 

Time series  A mathematical technique used to estimate properties which are 

analysis temporally or spatially dependent. When applied to 

geotechnical engineering, time series analysis is usually referred to as 

random field theory. 

Trend  An abstract expression of the low frequency, large-scale systematic 

variation of a regionalised variable. The trend may also include bias in 

the test method. 

Turning bands  A simulation algorithm that can produce both non-conditional and 

conditional results. The method works by simulating one-dimensional 

processes on lines regularly spaced in 3D. The one-dimensional 

simulations are then projected onto the spatial coordinates and 

averaged to give the required 3D simulated value. 

Unsystematic risks Project specific risks related to resource/reserve parameters such as 

grade, geology, density etc. 

USD United States Dollar (see FX rate convention in definition of CAD). 

USD/Carat United States dollar per Carat is an expression of revenue for 

diamonds. 

Semivariogram  A quantification spatial correlation of a variable, usually calculated 

from sample information.  

VBod Virtual ore Body, which is an analogue of reality created through 

conditional simulations based on actual drilling results. 

WACC  Weighted Average Cost of Capital. 
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“As far as the laws of mathematics refer to reality, they are not 

certain; and as far as they are certain, they do not refer to reality.”  

― Albert Einstein 
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