
PUBLISHED VERSION

http://hdl.handle.net/2440/86485

Xiang Li, Mohammad Reza Bonyadi, Zbigniew Michalewicz, and Luigi Barone
A hybrid evolutionary algorithm for wheat blending problem
The Scientific World Journal, 2014; 2014:967254-1-967254-13

Copyright © 2014 Xiang Li et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Originally published at:
http://doi.org/10.1155/2014/967254

PERMISSIONS

http://creativecommons.org/licenses/by/3.0/

http://hdl.handle.net/2440/86485
http://doi.org/10.1155/2014/967254
http://creativecommons.org/licenses/by/3.0/

Research Article
A Hybrid Evolutionary Algorithm for Wheat Blending Problem

Xiang Li,1 Mohammad Reza Bonyadi,1 Zbigniew Michalewicz,1,2,3 and Luigi Barone4

1 School of Computer Science, The University of Adelaide, Adelaide, SA 5005, Australia
2 Institute of Computer Science, Polish Academy of Sciences, Ulica Ordona 21, 01-237 Warsaw, Poland
3 Polish-Japanese Institute of Information Technology, Ulica Koszykowa 86, 02-008 Warsaw, Poland
4 SolveIT Software, 99 Frome Street, Adelaide, SA 5000, Australia

Correspondence should be addressed to Xiang Li; xiang.li01@adelaide.edu.au

Received 9 November 2013; Accepted 30 December 2013; Published 20 February 2014

Academic Editors: Z. Cui and X. Yang

Copyright © 2014 Xiang Li et al.This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper presents a hybrid evolutionary algorithm to deal with the wheat blending problem. The unique constraints of this
problem make many existing algorithms fail: either they do not generate acceptable results or they are not able to complete
optimization within the required time.The proposed algorithm starts with a filtering process that follows predefined rules to reduce
the search space.Then the linear-relaxed version of the problem is solved using a standard linear programming algorithm.The result
is used in conjunction with a solution generated by a heuristic method to generate an initial solution. After that, a hybrid of an
evolutionary algorithm, a heuristic method, and a linear programming solver is used to improve the quality of the solution. A local
search based posttuning method is also incorporated into the algorithm. The proposed algorithm has been tested on artificial test
cases and also real data from past years. Results show that the algorithm is able to find quality results in all cases and outperforms
the existing method in terms of both quality and speed.

1. Introduction

Wheat is Australia’s most important grain crop. About 80
percentage of Australia’s wheat is exported. Australia is the
world’s fourth-largest exporter of wheat. Usually, wheat is
sold to the central collection sites via truck in batches, called
loads. When submitted, each load is weighted and sampled
and the result of quality checks is given. There are 10 to
20 attributes, such as protein content and moisture, that are
checked. A grade is assigned to each load according to the
result of the quality check. This grade is used to deliver
products (wheat) within given specifications. There are 26
grades in total; each one has its own quality requirements and
price. The value of the wheat is determined by its grade (see
Table 1).

For example, consider grades G1 and G2 (for simplicity,
only the protein content is presented here). To be graded as
G1, the protein content of wheat must be within the 11.0%–
12.5% range, and for G2 the range is from 10% to 11.0%. G1
has a higher requirement on protein and has a higher price.

Now let us consider three loads of wheat and how they will to
be graded.

As shown in Table 2, L1 (with 11.5% of protein) is graded
as G1, L2 (with 10.5% of protein) is graded as G2, and L3 (with
10.0% of protein) is graded as G2. Note that, although L1, L2
have a higher protein value than the required lower bounds,
the price does not increase.

In fact, there are many cases where the quality of wheat
is above the minimum requirement or cases where the wheat
is just short of obtaining a higher grade. One way to improve
the overall value is to blend the wheat.

Blending is the process of mixing wheat of different
qualities. This is usually done by blending low-quality (low
price) wheat with some high-quality wheat to achieve a better
overall value. Blending is a vital part of the entire wheat
supply chain and, as discussed below, plays a major role in
generating profit.

By blending different loads, the mixture (called a lot)
could be assigned with a new grade based on the weighted
average quality result.

Hindawi Publishing Corporation
e Scientific World Journal
Volume 2014, Article ID 967254, 13 pages
http://dx.doi.org/10.1155/2014/967254

http://dx.doi.org/10.1155/2014/967254

2 The Scientific World Journal

Table 1

Grade Protein lower bound Protein upper bound Price per tonne
G1 11.0% 12.5% $240
G2 10.0% 11.0% $220

Table 2

Load Protein Grade Price per tonne Tonne
L1 11.5% G1 $240 100
L2 10.5% G2 $220 100
L3 10.0% G2 $220 80

L1

L2

Lot
G1$220 ∗ 100

$240 ∗ 100

$240 ∗ 200

100 t

200 t

100 t

11.5% protein, G1

10.5% protein, G2

11.0% protein, G1

Figure 1

L1

L3

Lot
G1

L4

L5 L5

150 t
50 t

30 t
30 t

100 t$240 ∗ 100 $240 ∗ 150

$220 ∗ 30

$220 ∗ 80 10.0% protein, G2

11.5% protein, G1

10.0% protein, G2

11.0% protein, G1

Figure 2

Figures 1 and 2 present two examples to illustrate the
basics of blending.

In Figure 1, there are two loads, L1 and L2. L1 is 100 tonnes,
with a protein percentage of 11.5% that would be graded as
G1. L2 is 100 tonnes, with a protein percentage of 10.5% that
would be graded as G2.The price of G1 is $240 per tonne and
G2 is $220 per tonne.

Suppose that the requirement ofG1 is to have at least 11.0%
of protein. Clearly, L1 exceeds the protein requirement of G1
(with no additional benefit) and can be mixed with L2 to
achieve a better total value. If L1 and L2 are blended together,
the mixed lot will have a protein percentage of 11.0% and thus
still meet the requirement of G1.This results in an increase of
total value: the value before blending sums to $46,000 and the
value after blending is $48,000, realising an uplift of $2,000.

Figure 2 represents a more complicated example. There
are two loads, L1 and L3. L1 is 100 tonnes, with a protein
percentage of 11.5% that would be graded as G1. L3 is 80
tonnes, with a protein percentage of 10.0% that would be
graded as G2. The price of G1/G2 is still $240/220 per tonne.
Since L3 has less protein than L2, in this case, the blending of
L1 and L3 no longer meets the protein requirement of G1.

Instead, we can split L3 into two subloads, L4 with 50
tonnes and L5 with 30 tonnes, and then blend L1 and L4
together to form a G1 lot. In this case, the value before
blending sums to $41,600 and the value after blending is
$42,600, increasing profit by $1,000.

The growers in Australia do not actually do the physical
blending work. However, they could sell their wheat at the
blended price if a blending plan is provided. Thus, the result
of a provided blending plan is directly related to their profit.
In fact, for growers with hundreds of loads of wheat, the profit
of blending can be easily beyond $200,000.

However, building a good blending plan is a very complex
task even for experts. As an example, in Australia, the grading
standard includes up to 20 attributes (protein, moisture,
screening, earth, etc.) and 2 unique constraints (discussed in
Section 2) to determine the grade of wheat. Moreover, one
individual grower might have more than 500 loads of wheat,
all with different qualities. As a result, a good blending plan
often needs hours or days of work.

During the harvest season, the prices of wheat change
daily or even more frequently. As the price of wheat changes,
the optimal way to blend also changes.This indicates that not
only the quality of the blending plan is important, but the time
taken to generate that plan is also important. A good plan
created after hours of work might be already outdated due to
the changes of the price.There is not enough time tomanually
build a good blending plan every time the price changes. A
tool which can generate the blending plan in a short period
of time is in much demand.

This paper extends our previous work [1] where we
proposed a linear programming guided hybrid evolutionary
algorithm to address the wheat blending problem. The
proposed algorithm is hybridized with an evolutionary algo-
rithm, a heuristic algorithm, and a linear programming
algorithm. In addition to these, a heuristic based initialization
method is used to reduce the search space and a local search
is also applied to fine-tune the final result. During the 2013
harvest season, the proposed algorithm helped thousands
of growers build their blending plans and generate tens of
millions dollars profit for the growers. In this paper, more
experiment results are presented and detailed stage-by-stage
performance analysis is included as well.

The rest of the paper is organized as follows. Section 2
introduces the blending problem in detail. Then Section 3

The Scientific World Journal 3

provides some background on related work for solving the
underlined problem.The proposed hybrid evolutionary algo-
rithm is described in Section 4. In Section 5, the proposed
algorithm is applied to the test cases and the results of
comparison with a heuristic algorithm in current use are
provided. The impact of each stage is included in Section 6
and Section 7 concludes the paper.

2. Model of the Problem

Wheat is one of themost important agricultural commodities
in Australia and is one of Australia’s most valuable exports.
Blending is an important stage in the whole wheat supply
chain. Before milling, wheat with different levels of quality
may be mixed together to balance the cost and quality. The
price of wheat is based on many quality attributes and some
wheat may have higher quality values than required. In these
cases, high-quality wheat can be blended with low-quality
wheat to balance the quality, thereby having a better overall
value.

This problem can be described by the following model.
Assume that 𝐿 is the number of loads, 𝐺 is the number of
grades, 𝑙 represents a load, and 𝑔 represents a grade. Also,
𝑆 𝐿, 𝑆 𝐺, 𝑃 𝐿𝑙, and 𝑃 𝐺𝑔 represent the set of all loads, the set
of all grades, the price per tonne of load 𝑙, and the price per
tonne of grade 𝑔 wheat, respectively. Consider that 𝑡 is the
decision variables vector defined by 𝑡𝑙,𝑔 which is the number
of tonnes from load 𝑙 that has been blended into grade 𝑔 lot.
The objective of this blending problem is to

find 𝑡 ∈ 𝑅
𝐿
× 𝑅
𝐺 such that

maximize ∑

𝑙∈𝑆 𝐿

(∑

𝑔∈𝑆 𝐺

(𝑃 𝐺𝑔 − 𝑃 𝐿𝑙) 𝑡𝑙,𝑔) .

(1)

In (1), (𝑃 𝐺𝑔−𝑃 𝐿𝑙) is the earned profit when load 𝑙 is blended
into a lot with grade 𝑔. This refers to the fact that maximizing
the profit generated by blending is desirable.

Then,𝑀𝑙 is the number of tonnes of load 𝑙 originally and
(2) and (3) indicate that the total tonnes of load 𝑙 used in
blending should always be greater than or equal to 0 and less
than or equal to its original tonne weight:

∑

𝑔∈𝑆 𝐺

𝑡𝑙,𝑔 ≥ 0 ∀𝑙, (2)

∑

𝑔∈𝑆 𝐺

𝑡𝑙,𝑔 ≤ 𝑀𝑙 ∀𝑙. (3)

Equations (4) and (5) are the constraints on the quality
standards of each grade. 𝑞 represents one quality attribute,
for example, the protein percentage. 𝑄𝑞,𝑙, 𝑄 Max𝑞,𝑔, and
𝑄 Min𝑞,𝑔 are the quality attribute 𝑞 of load 𝑙, the maximum
requirement of quality attribute 𝑞 for grade 𝑔, and the
minimum requirement of quality attribute 𝑞 for grade 𝑔,
respectively.Theweighted average result of quality attribute 𝑞

for the blended lot with grade 𝑔 should always be within the
min/max range:

∑

𝑙∈𝑆 𝐿

(𝑄𝑞,𝑙𝑡𝑙,𝑔) ≤ 𝑄 Max𝑞,𝑔 ∑
𝑙∈𝑆 𝐿

(𝑡𝑙,𝑔) ∀𝑔, 𝑞, (4)

∑

𝑙∈𝑆 𝐿

(𝑄𝑞,𝑙𝑡𝑙,𝑔) ≥ 𝑄 Min𝑞,𝑔 ∑
𝑙∈𝑆 𝐿

(𝑡𝑙,𝑔) ∀𝑔, 𝑞. (5)

Linear constraints usually cannotmodel real-world prob-
lems precisely. As in our problem, there are two nonlinear
constraints involved which makes the problem quite unique.

Firstly, the Australian standards suggest that the weight-
ing of wheat is precise down to the 10 kilo range. Thus 100𝑡𝑙,𝑔
is required as an integer vector since it used tonnes based
weighting. This hard constraint corresponds to

100𝑡𝑙,𝑔 is integer ∀𝑙, 𝑔. (6)

There is also one more constraint which further compli-
cates the problem. As proposed, it is possible to just take a
part from load 𝑙 to use in blending, known as a split. However,
the total number of splits allowed for the entire blending plan
is limited, and this may differ from grower to grower. This
constraint is included in

∑

𝑙∈𝑆 𝐿

(∑

𝑔∈𝑆 𝐺

⌈

𝑡𝑙,𝑔

𝑀𝑙

⌉ − 1) ≤ 𝑆, (7)

where 𝑆 is the number of splits allowed and ⌈𝑥⌉ is the ceiling
function which returns the smallest integer not less than 𝑥.

3. Related Work

In this section, related algorithms for solving the general
blending problem are detailed and a brief introduction to the
epsilon level constraint handling is included.

3.1. Linear Programming. Linear programming (LP) is an
optimization technique that has been designed for addressing
continuous space (decision variables are continuous) opti-
mization problems. LP requires that the objective function
and constraints are all linear and LP algorithms are able
to solve such optimization problem to optimality. There are
many methods to solve linear programming problems such
as simplex, criss-cross, and interior point methods [2].

In this blending problem, the objective function (1) and
constraints (2), (3), (4), and (5) are all linear. Thus the linear
relaxed version, which only considers (1) to (5), can be solved
efficiently using a linear programming algorithm.There have
been a few attempts to solve similar blending problems
(with only linear constraints) using linear programming
algorithms, especially before the early 1990s [3].

However, for this problem, (6) and (7) affect the model
significantly. The result from a linear-relaxed model might
break either or both of the constraints. Firstly, linear pro-
graming is operated in the continuous space; thus there is
no guarantee that the result is feasible for (6). Secondly, the
result might use any number of splits, which breaks (7). Both

4 The Scientific World Journal

of the constraints are important for business. Constraint (6)
is clearly stated in the Australian standards and (7) comes
from the capacity limitation for the shared storage space. In
addition, (7) is also used by the business to control hidden
operational cost.

We can partially solve the problem of (6) by rounding the
results. A simple half-up rounding will do the job but then
the result is no longer guaranteed to satisfy all the constraints
from (2) to (5). During our experiments, there are around
30%of the cases inwhich the result after the half-up rounding
is still feasible. Some heuristic based rounding methods
could increase the chance to 60%, but those methods are
computationally expensive and are not the focus of this paper.

Again, we can use rounding (if the variable representation
is transformed from 𝑡𝑙,𝑔 to (𝑡𝑙,𝑔/𝑀𝑙) and capping the cases
where the value is roundedup to 1) to solve the problemof (7).
However, the variations needed are significant and feasibility
of the solution is not guaranteed either.The result is also quite
possibly a suboptimal solution, since those extra splits used
usually contribute major sources of profit.

3.2. Mixed Integer Programming. Blending problems are also
often modelled as mixed integer programming problems,
especially for real-world cases [4]. Integer programming (IP)
is a type of linear programming in which decision variables
are integers andmixed integer linear programming (MILP) is
a variety where only some of the variables are constrained to
be integers. There are different methods for IP/MILP: some
are exact (such as the methods which use branch and bound
or cutting plane) and some are approximation methods. In
the exact methods, normally the relaxed version of the prob-
lem is solved by LP and then this information is used (e.g., in
branch and bound) to find optimal solutions. However, the
time complexity of these methods is exponential [3].

There are many studies using exact algorithms to solve
blending problems. Bilgen andOzkarahan proposed amixed-
integer linear programming model for optimizing a wheat
supply chain. The objective is to minimize the total cost for
blending, loading, transportation, and storage [5]. Ashayeri
et al. apply the model to the blending of chemical fertilizers
[6]. Jia and Ierapetritou also use a mixed-integer linear
programmingmodel to optimize the blending of gasoline [7].
TheMILPmodel is also used in the blending of water [8] and
oil [9].

MILP could model the problemmore precisely than a LP
since (6) is not relaxed. However, (7) is still not solved. In
addition, the execution speed is limiting the usage of exact
methods in here. One grower could have up to 700 loads and
it may need days of time for those exact algorithms to finish.
Thus, those exactmethods are not applicable for this problem.
Actually, unlike academic researchers, real-world users are
usuallymore concerned of the speed of the tool, instead of the
optimality of the solution. Usersmight be happy to have a cup
of coffee while waiting for the result, but, in general, waiting
for hours is not acceptable, especially in decision support
systems.As a rule of thumb, a casual user usually prefers a tool
that is fast and generates a quality result, but not necessarily
the optimal result.

3.3. Metaheuristic. Metaheuristic algorithms are also a pop-
ular choice for solving complex mixed-integer programming
problems [10]. Examples include applying evolution strategy
to the problem of optimal multilayer coating design [11] and
to optimize chemical engineering plants [12]. Other cases
include an ant colony system for optimizing electrical power
distribution networks [13], a genetic algorithm to optimize
the design of antenna [14], to optimize the deployment of
patrolmanpower [15], and to optimize exosensor distribution
for smart home systems [16]. Yokota et al. proposed a genetic
algorithm to solve nonlinearmixed integer programming [17]
and there are many other algorithms created for solving the
general MILP [18–20].

However, those algorithms are either too general or too
specific for the underlying problems. To obtain the best result,
real-world constraints like (7) usually need specially designed
methods and intense tuning [21].

3.4. Evolutionary Algorithm. An evolutionary algorithm
(EA) is a stochastic population-based metaheuristic that
mimics biologically inspired operators such as mutation,
recombination, and selection. In an EA, a set (known as the
population) of initially generated solution candidates (known
as individuals) is processed (generations: the main loop of
the EA). In each generation, a subset of the individuals
in the population is selected (via the selection operator, to
mimic the competition between individuals). The selected
individuals are then modified (via the mutation and/or
recombination operator), resulting in a new set of individuals.
This subset is merged into the original population and after
a selection process (to mimic the “survival of the fittest”
process), a new population is generated. This process is
repeated until a certain termination criterion is met (such as
reaching themaximum generation limit or the solution is not
being improved for a long time) [22].

In many practical cases, it has been reported that
hybridizing an EA with other methods is effective [23].There
are many ways to hybridize an EA with other methods. For
example, one way would be to incorporate with other meth-
ods to create problem dependent operators [24]. Another
way would be to apply another method to improve the final
solutions found by the EA [25]; It is also possible to use
problem specific representation [26] or to run one or more
algorithms interactively [27].

3.5. Heuristic Algorithm. One existing tool has been used by
growers to help them build the blending plan, and it uses a
heuristic based algorithm. The heuristic is based on the fact
that protein percentage is the main attribute to differentiate
grades. Thus the algorithm tries to find a load that has the
best (profit/protein cost) ratio. If given a load 𝑙 and a target
lot with grade 𝑔, the ratio can be calculated as

𝑃 𝐺𝑔 − 𝑃 𝐿𝑙

𝑄 Minprotein,𝑔 − 𝑄protein,𝑙
, (8)

where 𝑃 𝐺𝑔 is the unit price of grade 𝑔 wheat, 𝑃 𝐿𝑙 is the
unit price of the load 𝑙,𝑄 Minprotein,𝑔 is theminimumprotein

The Scientific World Journal 5

hasNext = true
While hasNext
hasNext = false
𝑙𝑜𝑎𝑑𝑡𝑎𝑟𝑔𝑒𝑡, 𝑙𝑜𝑡𝑡𝑎𝑟𝑔𝑒𝑡 = SELECT BY BEST RATIO(L)
blends = COMBINATIONS(L, 𝑙𝑜𝑎𝑑

𝑡𝑎𝑟𝑔𝑒𝑡
, 𝑙𝑜𝑡
𝑡𝑎𝑟𝑔𝑒𝑡

)
𝐵𝑙𝑒𝑛𝑑𝑏𝑒𝑠𝑡 = null
for each blend in blends
if NOT VALID(blend)
continue

end if
if NO PROFIT(blend)
continue

end if
If 𝑏𝑙𝑒𝑛𝑑𝑏𝑒𝑠𝑡 or blend is better than 𝑏𝑙𝑒𝑛𝑑𝑏𝑒𝑠𝑡

𝑏𝑙𝑒𝑛𝑑𝑏𝑒𝑠𝑡 = 𝑏𝑙𝑒𝑛𝑑

end if
end for
if 𝑏𝑙𝑒𝑛𝑑𝑏𝑒𝑠𝑡 is not null
APPLY(𝑏𝑙𝑒𝑛𝑑𝑏𝑒𝑠𝑡)
hasNext = true

end if
end while

Algorithm 1: Heuristic algorithm.

requirement of grade𝑔, and𝑄protein,𝑙 is the protein percentage
of load 𝑙 respectively.

After that, the algorithm tries to find one or more
companion loads which have better quality attributes to
improve the weighted average quality.The combination of the
selected load, the target lot, and the companion loads is called
a blend. The algorithm stops if it cannot find any blend with
profit.

The method used to find the companion loads is to do an
exhaustive searchwith all the combination of 3 (or less) loads.
The whole process is summarized as in Algorithm 1. The
NOT VALID method tests whether any constraint violation
is introduced. The NO PROFIT method tests whether any
profit is generated.

This algorithm was a lot faster than doing the blending
manually, but the generated result was often suboptimal.This
tool could solve some simple problems but, formore complex
cases, the user typically used the tool to generate a base
solution and then tweaked it to get a better result (in fact,
our proposed algorithm follows the same ways as the users.
It generates an initial solution first and then tweaks it to get
a better result). The users were generally happy with the tool
but always seek for a better tool that could generate a quality
blending plan all the time while keeping the execution time
short.

3.6. Epsilon Level Constraint Handling. Epsilon (𝜀) level
constraint handling (𝜀 LCH) is a method that transforms
the constrained optimization problems into unconstrained
problems [28]. The transformation is done by replacing
the ordinary comparison operator by the 𝜀 level comparison
operator. The 𝜀 level comparison operator combines the

constraint violation values and objective values for evaluating
candidate solutions.

In short, the 𝜀 level comparison compares two solutions
by their constraint violation values first. The solution which
has a lower constraint violation value is ranked higher.
However, if both the violation values are under a small
threshold 𝜀, then the constraint violation values are ignored,
and the two solutions are only compared by their objective
function values.

Suppose there are two candidate solutions 𝑥1 and 𝑥2, 𝑓1
and 𝑓2 are the objective values, and ℎ1 and ℎ2 are constraint
violation values of 𝑥1 and 𝑥2; then the 𝜀 level comparison
operator <𝜀 and ≤𝜀 is defined by the following:

𝑥1 <𝜀 𝑥2 ≡

{{

{{

{

𝑓1 < 𝑓2 if ℎ1, ℎ2 ≤ 𝜀

𝑓1 < 𝑓2 if ℎ1 = ℎ2

ℎ1 < ℎ2 otherwise,

𝑥1 ≤𝜀 𝑥2 ≡

{{

{{

{

𝑓1 ≤ 𝑓2 if ℎ1, ℎ2 ≤ 𝜀

𝑓1 ≤ 𝑓2 if ℎ1 = ℎ2

ℎ1 ≤ ℎ2 otherwise.

(9)

There are many ways to control the threshold 𝜀. The
formula used by the proposed algorithm is included in
Section 4.

4. The Proposed Hybrid
Evolutionary Algorithm

The proposed algorithm contains four stages: search space
reduction, initialization, evolutionary loop, and local search.
The working flow is shown in Algorithm 2.

6 The Scientific World Journal

BEGIN
search space reduction(Stage 1)
initialization(Stage 2)
while not terminated
mutation(Stage 3–1)
heuristic(Stage 3–2)
simplex(Stage 3–3)

end while
local search(Stage 4)
END ALGORITHM

Algorithm 2

In Sections 4.1 to 4.4, each of those stages is presented.
Firstly, the algorithm tries to eliminate all the obvious bad
choices using predefined rules.Then the algorithm solves the
linear-relaxed version of the problem and uses the result as
a clue to build an initial solution of the nonrelaxed version.
After that, the algorithm tries to tweak the solution in an
iterative fashion. In each iteration, there is an evolutionary
algorithm to optimize the loads to blend, a heuristic to choose
the right loads to split, and the use of a linear programming
algorithm to find the optimal way to split. Final tune-up is
done by a local search.

Additionally, Section 4.5 introduces a specially designed
constraint handling method that is proposed into the algo-
rithm to encourage the exploration of infeasible regions.
Local search in the main loop is included in Section 4.6.

4.1. Search Space Reduction. In this stage, the algorithm tries
to eliminate some obvious bad choices before it starts the
stochastic process. This is done by a rule-based filtering
process.These rules are based on advice from domain experts
and experimental results. Some rules include the following.

(i) Never blend a load to a lot which requires at least
another 2% of protein. As the protein percentage
is generally from 10% to 14%, overcoming the 2%
margin is too costly.

(ii) Never blend a load that has an extra 1.5% of protein
above the grade requirement, unless there are only
few choices. This rule attempts to save the good
quality loads for a better global result.

After this filtering process, the search space (number of
possible blends) of the problem is greatly reduced.

The key of this stage is to ensure that there is no bad
choicemade. To do so, the thresholds of the rules are carefully
chosen. Those values could almost guarantee that it does not
have a negative impact on finding the optimal solution.

4.2. Initialization. Since the execution speed is crucial for this
problem, the algorithm uses a heuristic based initialization
method instead of any random initialization method. This
might sacrificed the diversity of solutions but the algorithm
could get a good basic solution with the least computation.

The algorithm starts with applying the simplex algorithm
[3] to solve a linear-relaxed version of the problem. The

linear-relaxed version is the same problem but only consider
constraints (2) to (5). Then the algorithm uses the heuristic
(8) to build a solution of the nonrelaxed problem, but with
a threshold of 15. Only loads that have the profit-protein
ratio greater than 15 are considered. After that, the algorithm
extracts the common parts from both solutions and generates
an initial solution based on them.

The threshold value 15 is a very high number for the
profit-protein ratio. This is to ensure that the algorithm is
not too greedy at the beginning. The simplex result is used
to double check that and also serves as a clue for reaching the
global optimal.The decisionsmade in this step are then fixed,
not possible to modify by the latter stages.

The purpose of this stage is to generate a basic solution
with no or few bad choices and further reduce the search
space. Since we have chosen a very high threshold number,
we can ensure that the decisions are all obvious good ones.

4.3. Evolutionary Loop. This is the main loop where the new
solutions are generated. It contains an evolutionary algorithm
to optimize the loads to blend, a heuristic to choose the right
loads to split, and the use of a linear programming algorithm
to find the optimal way to split. The operators used in this
stage are as follows.

(i) Mutation: for a randomly selected load, change its
allocation to a random lot.

(ii) Heuristic: it is to choose which load to split. For all
the possible combinations of load 𝑙 and target lot with
grade 𝑔, this applies the 2-way tournament selection
to choose 𝑆 combinations from the top 2𝑆 that have
the best value of

𝑃 𝐺𝑔 − 𝑃 𝐿𝑙

𝑄 Minprotein,𝑔 − 𝑄protein,𝑙
𝑀𝑙. (10)

(iii) Simplex algorithm: the selected loads in the heuristic
step form a subproblem and the problem is solved
with unlimited splits allowed using the simplex algo-
rithm.

In each iteration, the algorithm tries to modify the ex-
isting solution by the mutation operator one or more times
(by some probabilities). The probabilities are to ensure that

The Scientific World Journal 7

input: 𝑛, 𝑝𝑚, 𝑝𝑙
output: 𝑡

𝑏𝑒𝑠𝑡

SEARCH SPACE REDUCTION()
𝑡𝑖𝑛𝑖𝑡= INITIALIZE()
𝑡𝑏𝑒𝑠𝑡 = 𝑡𝑖𝑛𝑖𝑡

While none of termination condition was met
𝑡𝑏𝑎𝑠𝑒 = 𝑡𝑏𝑒𝑠𝑡

for 𝑖 = 1 : 𝑛

𝑡𝑛𝑒𝑤1 = MUTATE(𝑡𝑏𝑎𝑠𝑒)
𝑟 = RANDOM(0,1)
while 𝑟 < 𝑝𝑚

𝑡𝑛𝑒𝑤1 = MUTATE(𝑡𝑛𝑒𝑤1)
𝑟 = RANDOM(0,1)

end while
𝑡
𝑛𝑒𝑤2

= ROUND(SIMPLEX(𝑡
𝑛𝑒𝑤1

, GET SPLIT(𝑡
𝑛𝑒𝑤1

)))
𝑟 = RANDOM(0,1)
if 𝑟 < 𝑝𝑙 and 𝑡𝑛𝑒𝑤2 is feasible

𝑡𝑛𝑒𝑤2 = LOCAL SEARCH(𝑡𝑛𝑒𝑤2)
end if
if 𝑡𝑛𝑒𝑤2 is better than 𝑡𝑏𝑒𝑠𝑡

𝑡𝑏𝑒𝑠𝑡 = 𝑡𝑛𝑒𝑤2

end if
end for
𝑡𝑏𝑒𝑠𝑡 = LOCAL SEARCH ALL(𝑡𝑏𝑒𝑠𝑡)

end while

Algorithm 3

the algorithm is possible to perform bigger variations. The
generated new solution contains no split and is called raw
solution. Then, the algorithm iterates over all the loads using
the heuristic mentioned above and tries to find 𝑆 good
candidates to do the split. After that, the algorithm builds
a linear-relaxed model with only the selected 𝑆 loads and
solves it using the simplex algorithm.The generated solution
is called split solution and always satisfies (7) since there are
no more than 𝑆 variables in the model.

Thus, each solution has actually two forms: raw and split
form. Note that the mutation only operates on the raw form
and the simplex algorithm resulting in a solution in the split
form. Also, the result of the simplex algorithm might not
satisfy (6). In those cases, rounding is applied.

4.4. Local Search. Random modification is usually very
inefficient when the result is close to the optimal point. It
needs to be really lucky to find any improvement and it is
often much more time consuming than doing an exhaustive
search. Thus, a local search method is applied at the end to
fine-tune the result. It tries to finds all possible combinations
that could give an increase of profit. The procedure is as
follows.

(i) For all possible combinations of load 𝑙 and target lot
with grade 𝑔, apply the one which gives the most
profit until there are no combinations that could
generate any profit.

4.5. Constraint Handling. As a highly constrained problem,
the search space of this problem is generally separated by the

constraints into many isolated feasible regions. The simplex
result from the initialization stage is used here to guide the
search jumping out of a single feasible region. The idea is to
depenalise any blend that also can be found in the simplex
result. Such blend might be a bad move by itself but is also
possiblely a vital part of a bigger profitable blend.

More detailedly, if any blend violates any of the con-
straints (2) to (5) and the same blend can be found in the
linear-relaxed result, its constraint violation value is reduced.
The formula used is

𝑐new =

{{{{{

{{{{{

{

0.5𝑐 if (
𝑆𝐿 − 𝑆

𝑆
) ≥ 0.5

(
𝑆𝐿 − 𝑆

𝑆
) 𝑐 if 0.5 ≥ (

𝑆𝐿 − 𝑆

𝑆
) ≥ 0.1

0.1𝑐 otherwise,

(11)

where 𝑐 is the original constraint violation value, 𝑐new is the
reduced constraint violation value, 𝑆 is the number of splits
allowed, and 𝑆𝐿 is the number of splits used by the simplex
result, respectively.

Also, in this algorithm, solutions are compared using the
𝜀 level comparison operators. The value of 𝜀 is set according
to the following equations:

𝜀0 = ℎ (𝑥0) ,

𝜀𝑡 =

{

{

{

𝜀0 (1 −
1.5𝑡

𝑇 𝐼
) if 0 < 1.5𝑡 < 𝑇 𝐼

0 if 𝑡 ≥ 𝑇 𝐼,

(12)

where 𝜀0 is the initial 𝜀 value, ℎ(𝑥0) is the constraint violation
value for the best solution in the initialization step, 𝜀𝑡 is the 𝜀

8 The Scientific World Journal

Table 3: Result of test cases with unlimited splits allowed.

Test
case

Number of
loads

Known best Heuristic algorithm Hybrid algorithm

Splits used Percentage to
known best

Splits
used

Time used
(seconds)

Percentage to
known best

Splits
used

Time used
(seconds)

R1 34 3 10.3 5 15.3 0 3 1.4
R2 145 2 17.9 3 11.9 0 2 2.3
R3 26 0 0 0 1.4 0 0 1.0
R4 332 1 0 0 6.5 0 0 5.9
R5 127 2 23.7 5 22.1 0 2 2.2
R6 718 2 36.5 46 732.4 0 3 49.9
R7 129 2 15.8 2 28.9 0 3 2.2
R8 610 5 20.4 22 139.7 1.2 6 25.3
R9 49 2 2.2 7 10.1 0 2 1.6
R10 47 2 9.6 3 14.5 0 2 2.9

Table 4: Result of test cases with 1 split allowed.

Test
case

Number of
loads

Heuristic algorithm Hybrid algorithm
Percentage to
upper bound

Splits
used

Time used
(seconds)

Percentage to
upper bound

Splits
used

Improvement
over heuristic

Time used
(seconds)

RS1 34 10.6 1 11.7 6.6 1 4.4 1.4
RS2 145 18.1 1 9.4 1.8 1 19.8 2.6
RS3 26 0 0 1.4 0 0 0 1.0
RS4 332 0 0 6.5 0 0 0 5.9
RS5 127 23 1 17.2 0.1 0 29.6 3.5
RS6 718 18.4 1 572.5 0.3 1 22.2 58.6
RS7 129 15.8 1 28.4 0.5 0 18.1 2.3
RS8 610 18.4 1 85.9 1.3 0 20.9 37.8
RS9 49 2.7 0 7.8 0.5 0 2.2 1.6
RS10 47 9.8 1 12.1 0.3 1 10.4 2.9

value at iteration 𝑡, and𝑇 𝐼 is the iterations limit.This formula
suggests that the methods will be focusing on finding feasible
solutions when 1.5𝑡 ≥ 𝑇 𝐼.

4.6. Local Search in the Evolutionary Loop. Within the main
evolutionary loop, the generated solution also gets a chance to
perform a single local search step and is used to speed up the
convergence. Many different quality solutions are generated
during the evolutionary loop and they are all good starting
points for the local search. The algorithm only performs the
local search by a single step.This is to ensure that the result is
not suffering from premature convergence significantly.

4.7. Summary. The complete steps are shown in Algorithm 3.
The parameters are

(i) 𝑛: the number of offspring;

(ii) 𝑝𝑚: the probability of applying additional mutation;

(iii) 𝑝𝑙: the probability of applying one local search step
within the evolutionary loop.

And the termination conditions are defined as
(1) no improvement after 𝑇 𝐼 iterations;
(2) total number of evaluations is over 𝑇 𝐸.

5. Experimental Results

In this section, the proposed algorithm is applied to 20
selected real-world and 73 artificial test cases. All real-
world test cases are created using the data from past years
and should cover the most typical scenarios. The proposed
algorithm is compared with the existing heuristic based
algorithm here and the results were averaged over 20 runs for
each test case.

5.1. Parameters Setting. The proposed algorithm has been
implemented as aweb service, running ondistributed servers.
To improve convergence, we always set the population size
to 1 and use elitism selection. The main parameters in this
experiment were set as follows:

(i) 𝑛 = 7,
(ii) 𝑝𝑚 = 0.6,

The Scientific World Journal 9

Table 5: Result of test cases (A1–A28).

Test
case

Number of
loads

Heuristic
algorithm

Hybrid
algorithm

A1 4 Pass Pass
A2 7 Pass Pass
A3 6 Pass Pass
A4 6 Pass Pass
A5 3 Pass Pass
A6 5 Pass Pass
A7 4 Pass Pass
A8 6 Pass Pass
A9 3 Pass Pass
A10 3 Fail Pass
A11 3 Pass Pass
A12 3 Pass Pass
A13 5 Pass Pass
A14 3 Pass Pass
A15 5 Pass Pass
A16 4 Pass Pass
A17 7 Pass Pass
A18 5 Pass Pass
A19 4 Fail Pass
A20 5 Pass Pass
A21 7 Pass Pass
A22 7 Pass Pass
A23 3 Fail Pass
A24 6 Pass Pass
A25 4 Fail Pass
A26 4 Fail Pass
A27 3 Pass Pass
A28 4 Pass Pass

(iii) 𝑝𝑙 = 0.1,
(iv) 𝑇 𝐼 = 100,
(v) 𝑇 𝐸 = 50, 000.

The values of those parameters are selectedmanually.This
set of parameters gives the best averaged result on the 10 real-
world test cases (R1–R10, see Section 5.2).

A larger population size is also tested. It is completely
applicable but there is no fundamental improvement up to
the size of 4. After that, the execution time is increased
significantly. In cases where the population size is more than
1, the 2-way tournament selection is used.

5.2. Test Cases. The 10 real-world test cases (R1–R10) are
selected by domain experts, aiming to cover the most typical
scenarios. The number of loads ranges from 26 to 718 in each
case and is the dominant factor in the complexity. R8 is the
largest case and quite possibly the most complex. R6 is a
combined case (loads from two growers) to test the extreme
scenario. The profit generated ranges from thousands to a

quarter-million dollars. Note that test cases R1–R10 do not
have any limitation on the split allowed.

The result of the proposed algorithm is compared with
the heuristic based tool in current use. The benchmark here
is the known best results which are optimized manually by
domain experts (supported by computer tools). The experts
have spent weeks of time on those cases and they believe the
results are good enough to be used as the benchmark.

Test cases RS1–RS10 are the same ones as R1–R10, but with
only 1 split allowed. Those cases are more constrained and
are harder (slower) to optimize. Note that there is no known
best result in these cases (the proposed hybrid algorithm
outperforms them). Instead, we use the known best result
from R1–R10 to serve as the upper bound.

The 28 artificial tests (A1–A28) are simple test cases which
contains many typical pitfalls. The number of loads ranges
from 3 to 7.The first 20 tests (A1–A20) do not require any split
to obtain the optimal solution but the rest (A21–A28) do.

There are 45 more artificial tests (AC1–AC45) which are
pair-wise combination of the real-world test cases R1–R10.
Those tests are more time consuming but also have more
potential to optimize. The linear-relaxed result is served as
the upper bound.

5.3. Results. Table 3 shows the result on cases where there
are an unlimited allowed number of splits. With the split
limit constraint relaxed, those cases are relatively easy. The
proposed algorithm found a close-to-optimal result in all
cases, while the heuristic algorithm only succussed in the
most simple cases. N8 is the only case where the hybrid
algorithm is greater than 1% from the known-best result. In
all cases, the hybrid algorithm is significantly faster.

Table 4 shows the result on cases with only 1 split allowed.
In real-world cases, the split limit is normally set as 1 to 10
depending on the choice made by the user. The proposed
algorithm still outperforms the heuristic algorithm in terms
of both quality and speed, and the results are very close to
the upper bound except for RS1. Note that for RS5, RS6, and
RS8, the heuristic algorithm generates better results than the
cases with an unlimited split allowed. This suggests that the
heuristic algorithm can easily get stuck in local optima.

Table 5 shows the result of the artificial tests (A1–A28).
The generated blending plan is required to be the same or
equal-valued with the precalculated optimal result to be able
to pass the test. The proposed algorithm passes all the tests
while the heuristic fails on 5 cases.

Table 6 shows the result of the combination cases (AE1–
AE45). Again, the proposed algorithm outperforms the
heuristic algorithm. AE5, AE13, AE20, AE27, and AE44 are
the only cases where the results are greater than 3% from the
linear-relaxed upper bound. It also shows that the heuristic
algorithm is rarely generating good solutions for large test
cases (likeAE26,AE28,AE33,AE36,AE37, etc.).This suggests
that the heuristic algorithm might be too greedy at the
beginning and cannot get out of the local optima. In contrast
to this, the results from the proposed algorithm do not suffer
much from a large number of loads. Additionally, the running
time of the proposed algorithm grows significantly slower
than the heuristic algorithm.

10 The Scientific World Journal

Table 6: Result of test cases (AE1–AE45).

Test
case

Number of
loads

Heuristic algorithm Hybrid algorithm
Percentage to
upper bound

Splits
used

Time used
(seconds)

Percentage to
upper bound

Splits
used

Improvement
over heuristic

Time used
(seconds)

AE1 179 19.7 2 21.4 2.4 2 21.49 5.5
AE2 60 4.3 1 18.0 1.8 1 2.67 3.0
AE3 366 38.0 8 192.6 1.3 5 59.36 7.5
AE4 161 22.7 1 22.3 1.4 4 27.46 5.5
AE5 752 36.0 6 912.1 7.8 12 43.92 46.4
AE6 163 12.5 6 13.5 2.2 4 11.75 4.9
AE7 644 28.5 9 491.7 1.5 8 37.85 62.5
AE8 83 4.2 1 19.1 0.7 2 3.57 2.9
AE9 81 5.2 3 18.1 1.4 1 4.00 3.7
AE10 171 26.2 1 21.9 2.5 3 32.20 6.3
AE11 477 20.5 8 57.4 0.9 8 24.70 9.1
AE12 272 15.3 4 39.0 1.6 5 16.17 4.1
AE13 863 16.5 4 738.1 4.8 7 14.01 39.2
AE14 274 19.1 5 24.7 1.0 3 22.41 5.8
AE15 755 31.1 7 438.1 1.0 9 43.67 83.1
AE16 194 20.4 2 35.6 2.1 5 23.01 3.2
AE17 192 12.5 4 20.4 1.5 4 12.54 5.5
AE18 358 28.0 5 145.8 2.3 5 35.67 7.3
AE19 153 5.3 4 16.6 1.9 5 3.66 2.8
AE20 744 31.3 9 478.6 10.6 12 30.12 77.7
AE21 155 25.2 4 15.9 1.3 4 32.05 6.3
AE22 636 36.3 6 405.6 2.2 9 53.64 48.1
AE23 75 15.1 3 13.9 0.8 4 16.94 4.4
AE24 73 17.6 2 16.7 0.3 2 20.86 3.2
AE25 459 25.9 4 89.5 1.4 7 33.05 18.0
AE26 1050 36.0 18 654.7 1.7 13 53.62 164.4
AE27 461 25.3 2 358.6 3.8 1 28.70 26.8
AE28 942 26.1 5 1796.6 0.8 10 34.26 120.9
AE29 381 8.1 12 746.7 0.6 6 8.19 12.2
AE30 379 15.4 2 510.5 0.2 4 18.00 9.6
AE31 845 32.5 9 757.2 1.7 8 45.59 89.2
AE32 256 24.6 2 289.0 0.6 5 31.83 12.8
AE33 737 52.2 6 1038.5 0.2 5 108.92 41.9
AE34 176 28.9 4 23.6 0.9 3 39.36 7.0
AE35 174 9.3 5 32.5 1.4 6 8.68 5.1
AE36 847 22.7 11 998.2 0.8 9 28.21 130.7
AE37 1328 51.6 10 1104.3 2.6 6 101.24 219.1
AE38 767 54.7 7 501.3 1.6 4 117.31 31.5
AE39 765 36.1 4 695.0 2.3 4 52.87 72.5
AE40 739 34.3 6 390.0 2.1 7 48.82 60.8
AE41 178 25.4 3 47.3 0.3 4 33.58 4.1
AE42 176 21.0 4 34.8 0.6 3 25.90 8.7
AE43 659 41.6 8 767.3 1.3 5 69.17 37.7
AE44 657 26.4 5 568.2 3.8 8 30.73 23.1
AE45 96 11.3 2 27.4 0.3 3 12.37 3.7

The Scientific World Journal 11

Table 7: Result of performance evaluation I.

Test
case

No search space reduction No initialization No main loop
Value

(percentage)
Time used
(percentage)

Value
(percentage)

Time used
(percentage)

Value
(percentage)

Time used
(percentage)

R1 100 95.83 100 135.09 75.53 25.65
R2 99.13 92.86 100 178.67 80.15 32.48
R3 100 93.88 100 114.50 100 33.18
R4 100 92.24 100 120.91 100 33.12
R5 100 92.88 100 140.90 93.34 21.39
R6 98.79 92.01 100 119.67 86.92 29.90
R7 100 92.34 100 155.93 95.11 32.20
R8 98.77 93.76 99.94 154.80 72.92 22.78
R9 100 95.43 100 111.32 100 31.79
R10 100 94.53 100 135.21 95.46 26.58
RS1 100 92.22 100 112.37 75.53 25.65
RS2 97.50 92.37 100 155.02 80.15 32.48
RS3 100 95.68 100 115.96 100 33.18
RS4 100 94.95 100 143.69 100 33.12
RS5 100 93.14 100 125.32 93.34 21.39
RS6 98.69 94.32 100 112.92 86.92 29.90
RS7 100 95.30 100 195.11 95.11 32.20
RS8 96.50 94.41 99.21 115.04 72.92 22.78
RS9 100 94.87 100 118.70 100 31.79
RS10 100 93.47 100 157.74 95.46 26.58

6. Performance Evaluation

The proposed hybrid algorithm consists of 4 stages: search
space reduction, initialization, evolutionary loop, and final
tune-up. In this section, the performance evaluation on each
stage is investigated.

Tables 7 and 8 show the results if each of the functions
is disabled. The value column is used to indicate the loss of
quality, and the time used is used to indicate the loss of speed
(less than 100 means the algorithm runs faster than the full
version).

The search space reduction stage requires around 7% of
the running time. However, it builds a good base for further
optimizing, as in some cases the quality of the solution drops
if these two stages are missing.

The initialization stage greatly reduces the processing
time required. For RS7, the time required is almost doubled if
initialization is missing. And for R8 and RS8, it also improves
the quality of result.

The main loop contributes a huge improvement on the
quality of the generated solution. For cases like R3, R4, and
R9, the algorithm can still provide good solutions just using
initialization and posttuning, but not for the other cases. The
result for RS1 to RS10 is the same as R1 to R10, since, without
the main loop, the algorithm is not able to use any split.

The constraint handling methods (linear-guided and 𝜀

level comparison) do not require much time but could

improve the result up to 30% for nontrivial cases. This
suggests that the proposed algorithm is able to escape from
the local optima with the constraint handling methods.

The local search in the main loop plays a major role
in improving the quality of the solution. It also requires a
significant chunk of time but is worthwhile. As mentioned
before, at the later stage of the optimization process, an
exhaustive search is usually more efficient than a stochastic
variation.

The final tune-up improves the result slightly for some
cases without much execution time needed. Note that the
local search in the main loop could partially replace the effect
of the final tune-up since they are basically the same method.
This stage is to ensure that there is no missing profit.

7. Conclusions and Future Work

In this paper, a hybrid evolutionary algorithm for solving
the Australian wheat blending problem is proposed. The
algorithm starts with a filtering process to reduce the search
space. The filtering is based on predefined rules suggested
by domain experts. Then the algorithm generates its initial
solution by extracting the common parts from both the
result from the linear-relaxed version of the problem and
the result from a heuristic method. The main loop of the
algorithm uses a combination of an evolutionary algorithm,
a heuristic method, and the simplex algorithm to improve

12 The Scientific World Journal

Table 8: Result of performance evaluation II.

Test
case

No constraint handling No local search in loop No final tune-up
Value

(percentage)
Time used
(percentage)

Value
(percentage)

Time used
(percentage)

Value
(percentage)

Time used
(percentage)

R1 100 97.36 97.59 82.74 100 99.87
R2 85.09 95.09 82.64 77.85 100 99.14
R3 100 96.62 100 84.63 100 98.68
R4 100 97.63 100 80.67 100 97.59
R5 73.62 95.70 83.74 77.46 100 99.33
R6 70.15 96.09 88.22 79.76 100 98.63
R7 100 94.52 95.59 86.82 100 98.20
R8 82.74 93.06 87.95 79.54 99.9 97.37
R9 100 95.97 100 87.22 100 99.73
R10 98.28 94.47 97.99 81.94 100 97.88
RS1 99.52 97.72 97.69 83.66 100 98.51
RS2 70.42 95.53 88.15 81.55 99.9 99.08
RS3 100 97.37 100 89.30 100 98.07
RS4 100 94.66 100 81.50 100 98.63
RS5 95.14 95.01 81.10 78.79 100 99.62
RS6 80.95 96.62 82.00 82.49 99.9 98.35
RS7 97.60 97.92 92.81 80.91 100 99.31
RS8 93.69 97.99 97.92 79.60 100 97.73
RS9 100 95.70 100 89.28 100 98.26
RS10 98.16 97.31 98.63 80.85 100 99.68

the solution while maintaining the feasibility of the solution.
For the constraint handling part, the result from the linear-
relaxed problem is used in conjunction with the epsilon
level comparison. Those constraint handling methods help
the algorithm explore the infeasible regions more efficiently.
Final tune-up is performed by a local search method. The
proposed algorithm is tested on 20 real-world test cases
and 73 artificial test cases. Result shows that the proposed
algorithm always finds equal or better results compared with
the existing heuristic algorithm.

For further study, the parameter setting of this algorithm
could be investigated. One promising way to improve the
algorithm is to design an adaptiveway to control themutation
probability, the local search probability, and especially the
threshold used in 𝜀 LCH.

There are also additional functionalities requested by the
growers. The growers have signed a few supply contracts
before the harvest and they want to fulfil their contracts with
minimum cost and maximize the profit of the rest products.
Additionally, sometimes it is beneficial for the growers to buy
some wheat from the other growers. Therefore, the growers
also want the optimizer to generate a blending plan with
the consideration of trading between multiple growers. The
blending of other types of wheat is also requested.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work was partially funded by the ARCDiscovery Grants
DP0985723, DP1096053, and DP130104395, as well as by
Grant N N519 5788038 from the Polish Ministry of Science
and Higher Education (MNiSW).

References

[1] X. Li, M. R. Bonyadi, Z. Michalewicz, and L. Barone, “Solving a
real-world wheat blending problem using a hybrid evolutionary
algorithm,” in Proceedings of the IEEE Congress on Evolutionary
Computation (CEC ’13), pp. 2665–2671, Cancún, Mexico, June
2013.

[2] H. Karloff, Linear Programming, Birkhäuser, Boston, Mass,
USA, 2nd edition, 2008.

[3] G. B. Dantzig, Linear Programming and Extensions, Princeton
University Press, Princeton, NJ, USA, 1998.

[4] Y. Pochet and L. A. Wolsey, Production Planning by Mixed
Integer Programming, Springer, New York, NY, USA, 2006.

[5] B. Bilgen and I. Ozkarahan, “A mixed-integer linear program-
ming model for bulk grain blending and shipping,” Interna-
tional Journal of Production Economics, vol. 107, no. 2, pp. 555–
571, 2007.

[6] J. Ashayeri, A. G. M. van Eijs, and P. Nederstigt, “Blending
modelling in a process manufacturing: a case study,” The
European Journal of Operational Research, vol. 72, no. 3, pp.
460–468, 1994.

[7] Z. Jia and M. Ierapetritou, “Mixed-integer linear programming
model for gasoline blending and distribution scheduling,”

The Scientific World Journal 13

Industrial and Engineering Chemistry Research, vol. 42, no. 4,
pp. 825–835, 2003.

[8] D. Randall, L. Cleland, C. S. Kuehne, G. W. B. Link, and D. P.
Sheer, “Water supply planning simulation model using mixed-
integer linear programming ‘engine’,” Journal ofWater Resources
Planning and Management, vol. 123, no. 2, pp. 116–124, 1997.

[9] L. F. L. Moro and J. M. Pinto, “Mixed-integer programming
approach for short-term crude oil scheduling,” Industrial and
Engineering Chemistry Research, vol. 43, no. 1, pp. 85–94, 2004.

[10] L. Costa and P. Oliveira, “Evolutionary algorithms approach
to the solution of mixed integer non-linear programming
problems,” Computers and Chemical Engineering, vol. 25, no. 2-
3, pp. 257–266, 2001.

[11] T. Bäck and M. Schütz, “Evolution strategies for mixed-integer
optimization of optical multilayer systems,” in Evolutionary
Programming IV: Proceedings of the 4th Annual Conference on
Evolutionary Programming, pp. 33–51, MIT Press, Cambridge,
Mass, USA, 1st edition, 1995.

[12] M. Emmerich, M. Grötzner, B. Groß, and M. Schütz, “Mixed-
integer evolution strategy for chemical plant optimization with
simulators,” in Evolutionary Design and Manufacture, I. C.
Parmee, Ed., pp. 55–67, Springer, Berlin, Germany, 2000.

[13] J. F. Gómez, H. M. Khodr, P. M. de Oliveira et al., “Ant colony
system algorithm for the planning of primary distribution
circuits,” IEEE Transactions on Power Systems, vol. 19, no. 2, pp.
996–1004, 2004.

[14] R. L. Haupt, “Antenna design with a mixed integer genetic
algorithm,” IEEE Transactions on Antennas and Propagation,
vol. 55, no. 3, pp. 577–582, 2007.

[15] B. B. Pal, D. Chakraborti, P. Biswas, and A. Mukhopadhyay,
“An application of genetic algorithm method for solving patrol
manpower deployment problems through fuzzy goal program-
ming in traffic management system: a case study,” International
Journal of Bio-Inspired Computation, vol. 4, no. 1, pp. 47–60,
2012.

[16] M. P. Poland, C. D. Nugent, H. Wang, and L. Chen, “Genetic
algorithm and pure random search for exosensor distribution
optimisation,” International Journal of Bio-Inspired Computa-
tion, vol. 4, no. 6, pp. 359–372, 2012.

[17] T. Yokota, M. Gen, and Y.-X. Li, “Genetic algorithm for non-
linear mixed integer programming problems and its applica-
tions,” Computers and Industrial Engineering, vol. 30, no. 4, pp.
905–917, 1996.

[18] Y. C. Lin, F. S.Wang, andK. S. Hwang, “A hybridmethod of evo-
lutionary algorithms for mixed-integer nonlinear optimization
problems,” in Proceedings of the IEEE Congress on Evolutionary
Computation (CEC ’99), vol. 3, Washington, DC, USA, 1999.

[19] C. T. Su and C. S. Lee, “Network reconfiguration of distribution
systems using improved mixed-integer hybrid differential evo-
lution,” IEEE Transactions on Power Delivery, vol. 18, no. 3, pp.
1022–1027, 2003.

[20] K. Deep, K. P. Singh, M. L. Kansal, and C. Mohan, “A real
coded genetic algorithm for solving integer and mixed integer
optimization problems,” Applied Mathematics and Computa-
tion, vol. 212, no. 2, pp. 505–518, 2009.

[21] F. G. Lobo, C. F. Lima, and Z. Michalewicz, Parameter Setting in
Evolutionary Algorithm, Springer, Berlin, Germany, 2007.

[22] T. Bäck, Evolutionary Algorithms in Theory and Practice: Evolu-
tion Strategies, Evolutionary Programming, Genetic Algorithms,
Oxford University Press, New York, NY, USA, 1st edition, 1996.

[23] C. Grosan, A. Abraham, and H. Ishibuchi, Hybrid Evolutionary
Algorithms, Springer, Berlin, Germany, 2007.

[24] M. Lin and L. T. Yang, “Hybrid genetic algorithms for schedul-
ing partially ordered tasks in a multi-processor environment,”
in Proceedings of the 6th International Conference on Real-Time
Computing Systems and Applications (RTCSA ’99), pp. 382–387,
Hong Kong, 1999.

[25] P. Moscato, C. Cotta, and A. Mendes, “Memetic algorithms,” in
New Optimization Techniques in Engineering, chapter 3, pp. 53–
85, Springer, Berlin, Germany, 2004.

[26] L. M. O. Queiroz and C. Lyra, “Adaptive hybrid genetic
algorithm for technical loss reduction in distribution networks
under variable demands,” IEEE Transactions on Power Systems,
vol. 24, no. 1, pp. 445–453, 2009.

[27] C. P. Gomes and B. Selman, “Algorithm portfolio design: theory
vs. practice,” inProceedings of the 13thConference onUncertainty
in Artificial Intelligence (UAI ’97), pp. 190–197, Providence, RI,
USA, 1997.

[28] T. Takahama and S. Sakai, “Constrained optimization by 𝜀

constrained particle swarm optimizer with 𝜀-level control,” in
Soft Computing as Transdisciplinary Science and Technology, A.
Abraham, Y. Dote, T. Furuhashi, M. Köppen, A. Ohuchi, and Y.
Ohsawa, Eds., pp. 1019–1029, Springer, Berlin, Germany, 2005.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

