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SUMMARY 30 

The Shigella flexneri polysaccharide co-polymerase class 1a (PCP1a) protein, WzzBSF, regulates 31 

lipopolysaccharide (LPS) O-antigen (Oag) chain length to confer short (S) type Oag chains of ~10 - 32 

17 Oag repeat units (RUs). The S-type Oag chains affect S. flexneri virulence as they influence 33 

IcsA-mediated actin based motility. However, they do not confer resistance to complement; this is 34 

conferred by the very long (VL) type Oag chains determined by WzzBpHS2. Colicins are bacterial 35 

proteins produced by some Escherichia coli strains to kill related strains. While the presence of Oag 36 

chains has been shown to shield outer membrane proteins from colicins, the impact of Oag chain 37 

length against colicins is unknown. In this study, initial testing indicated that a S. flexneri Y 38 

wzz::kanr mutant was more sensitive to colicin (Col) E2 compared to the wild-type strain. A set of 39 

plasmids encoding Wzz mutant and wild-type PCP1a proteins conferring different Oag modal chain 40 

lengths were then expressed in the mutant background, and tested against purified Col E2. Analysis 41 

of swab and spot sensitivity assays showed that strains expressing either S-type or long (L) type 42 

Oag chains (16 – 28 Oag RUs) conferred greater resistance to Col E2 compared to strains having 43 

very short (VS) type (2 – 8 Oag RUs), intermediate short (IS) type (8 – 14 Oag RUs), or VL-type 44 

(>80 Oag RUs) Oag chains. These results suggest a novel role for LPS Oag chain length control 45 

that may have evolved due to selection pressure from colicins in the environment. 46 

 47 

 48 

49 
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INTRODUCTION 50 

Lipopolysaccharide (LPS) is a major virulence determinant of Shigella flexneri and is composed of 51 

three domains: the lipid A domain anchored to the outer membrane (OM), the core sugar domain, 52 

and the O-antigen (Oag) polysaccharide chains which extend out from the bacterium into the 53 

extracellular milieu (Raetz & Whitfield, 2002). Oag is a polymer of Oag repeat units (RUs) and the 54 

basic Oag RU of S. flexneri is a tetrasaccharide of three rhamnose sugars and one N-55 

acetylglucosamine sugar. Synthesis of Oag is carried out by the Wzy-dependant polymerisation 56 

pathway (Morona et al., 2009; Raetz & Whitfield, 2002; Samuel & Reeves, 2003; Tocilj et al., 57 

2008). The number of Oag RUs on a S. flexneri LPS structure is regulated by two Oag chain length 58 

regulators belonging to the polysaccharide co-polymerase class 1a (PCP1a) family of proteins, 59 

known as WzzBSF and WzzpHS2. The chromosomally encoded WzzBSF protein confers short (S) 60 

type Oag chains of ~10 - 17 Oag RUs (Morona et al., 1995), while the plasmid encoded WzzpHS2 61 

protein confers very long (VL) type Oag chains of approximately >80 Oag RUs (Stevenson et al., 62 

1995).  63 

 64 

The role of Oag chain length regulation is variable among different bacterial species. In S. flexneri, 65 

S-type Oag chains have been shown to contribute to IcsA mediated actin based motility (Van Den 66 

Bosch & Morona, 2003) and affect virulence (Van Den Bosch et al., 1997), while loss of the VL-67 

type Oag chains in S. flexneri has been shown to enhance bacterial sensitivity to complement (Hong 68 

& Payne, 1997). In Pseudomonas aeruginosa, absence of LPS with long (L) type Oag chains 69 

resulted in greater sensitivity to complement killing and reduced virulence in mice (Kintz et al., 70 

2008). Similarly, the presence and regulation of Oag in Yersinia enterocolitica O:8 is essential for 71 

virulence in orally infected mice and rabbits (Al-Hendy et al., 1992; Najdenski et al., 2003; Zhang 72 

et al., 1997). In Salmonella typhimurium, LPS structure is regulated by WzzB and FepE which 73 
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confer the L-type Oag chains (16 – 28 Oag RUs) and VL-type Oag chains (>80 Oag RUs), 74 

respectively. Both modal Oag chain lengths have been shown to confer resistance to complement 75 

(Murray et al., 2003, 2005), but appear to have conflicting roles in bile acid resistance. Expression 76 

of the Salmonella typhimurium VL-type Oag chains is suggested to confer resistance to bile acid 77 

(Crawford et al., 2012), while expression of the L-type Oag chains in Salmonella typhimurium 78 

appears to impair Salmonella growth in bile by interfering with enterobacterial common antigen 79 

mediated bile resistance (May & Groisman, 2013). Recent data in Salmonella enteric suggests that 80 

loss of VL-type Oag chains may optimize capsule mediated immune invasion (Crawford et al., 81 

2013). In E. coli, the presence of LPS Oag has been shown to shield OM protein receptors and 82 

confer resistance to colicin (Van der Ley et al., 1986), but the effect of Oag chain length regulation 83 

against colicins is unknown. 84 

 85 

Colicins are plasmid encoded bacterial proteins produced by strains of E. coli in response to stress 86 

conditions (Riley & Gordon, 1999). They are lethal to other related strains of E. coli and the 87 

production of small immunity proteins by the colicin-producing E. coli strains prevents the colicin 88 

from killing the producing cell (Bowman et al., 1971). There are various types of colicins with 89 

different modes of action (Nomura, 1964) but they generally kill cells by four main mechanisms: 90 

forming channels in the cytoplasmic membrane, inhibiting cell wall synthesis, degrading cellular 91 

DNA or by inhibiting protein synthesis. Colicin (Col) E2 is a DNase that interacts with the OM 92 

receptor BtuB to enter cells (Sharma et al., 2007). Colicins have also been shown to be produced by 93 

Shigella strains (Smajs et al., 1997).       94 

 95 

In this study, we investigated the effect of Oag modal chain length on sensitivity to colicins by 96 

initially testing a S. flexneri Y and a S. flexneri Y wzz::kanr mutant against various colicin 97 
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producing strains, and then tested a set of plasmids encoding a range of Wzz mutant and wild-type 98 

PCP1a proteins conferring different Oag modal chain lengths against Col E2. Analysis of swab and 99 

spot sensitivity assays performed with purified Col E2 protein suggests that the S-type and L-type 100 

LPS modal lengths commonly present in E. coli strains (Franco et al., 1998) are optimal for 101 

conferring colicin resistance, and WzzB proteins conferring these Oag chain lengths may have 102 

evolved as a result of selection pressures from colicins in the environment.  103 

104 
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METHODS 105 

Ethics Statement. The anti-WzzBSF antibody was produced under the National Health and Medical 106 

Research Council (NHMRC) Australian Code of Practice for the Care and Use of Animals for 107 

Scientific Purposes and was approved by the University of Adelaide Animal Ethics Committee. 108 

 109 

Bacterial strains and growth conditions. The bacterial strains used in this study are listed in 110 

Table 1. Strains were routinely grown on Luria-Bertani (LB) agar (10 g l-1 Tryptone, 5 g l-1 yeast 111 

extract, 5 g l-1 NaCl, 15 g l-1 agar) or in LB broth. Strains carrying pQE30 constructs requiring 112 

induction were grown in the presence of 0.01 mM IPTG at 37C in LB broth with aeration for 16 h, 113 

subcultured 1/20 into fresh broth with 0.01 mM IPTG and grown for another 4 h. Strains carrying 114 

pRMCD77 and pWSK29 constructs did not require induction and were grown under the same 115 

conditions without IPTG. Antibiotics were used at the following concentrations: 100 μg ampicillin 116 

(Amp) ml-1;  25 μg chloramphenicol (Cml) ml-1; 50 μg kanamycin (Kan) ml-1; and 100 μg 117 

streptomycin (Sm) ml-1. 118 

 119 

DNA methods. The plasmids used in this study are described in Table 1. Unless otherwise stated, 120 

plasmids constructs were extracted from E. coli DH5 or XL10-Gold (Stratagene) strains using the 121 

QIAprep Spin Miniprep kit (Qiagen). Electroporation and preparation of electrocompetent cells 122 

were as previously described (Purins et al., 2008). 123 

 124 

LPS PAGE and silver staining. LPS samples and gels were prepared as described previously 125 

(Murray et al., 2003; Papadopoulos & Morona, 2010). 126 

 127 

 128 
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SDS-PAGE and Western immunoblotting. Bacteria grown and induced as described above were 129 

harvested by centrifugation, resuspended in 2X sample buffer (Lugtenberg et al., 1975) and heated 130 

at 100C for 5 min, prior to SDS-PAGE on 15% gels for 1 h at 200 V. Western transfers were 131 

performed at 400 mA for 1 h. Protein gels were then subjected to Western immunoblotting on 132 

nitrocellulose membrane (Medos) with either polyclonal WzzBSF antibodies (prepared by Daniels 133 

& Morona, 1999) at 1:500 dilution or monoclonal BtuB antibodies (kindly provided by Prof. 134 

Robert Nakamoto at the University of Virginia) at 1:1000 dilution in 2.5 % (w/v) skim milk. 135 

Detection was performed with goat anti-rabbit horseradish-peroxidase-conjugated antibodies (KPL) 136 

and chemiluminescence reagent (Sigma). BenchMark protein ladder (Invitrogen) was used as the 137 

molecular mass standard.  138 

 139 

Preparation of OM samples. Strains carrying pWSK29 constructs were grown as described above 140 

in 100 ml LB, harvested by centrifugation (9,800xg, 10 min, 4C, Beckman J2-21M Induction 141 

Drive Centrifuge) and resuspended in 10 ml buffer (500 mM NaCl, 50 mM sodium phoshate, pH 142 

7). Cells were then sonicated, re-centrifuged (to remove cell debris) and whole membrane (WM) 143 

pellets were collected by ultracentrifugation (126,000xg, 1 h, 4C, Beckman Coulter Optima L-100 144 

XP Untracentrifuge). Pellets were solubilised in 1 ml buffer containing 2 % (v/v) Triton X-100 + 10 145 

mM MgCl2 for 1 h at room temperature and OM pellets were collected by re-ultracentrifugation (as 146 

above). OM pellets (~2 g) were resuspended in 2X sample buffer (Lugtenberg et al., 1975) and 147 

heated at 100C for 5 mins, prior to SDS-PAGE on 15% gels. Gels were stained with Coomassie 148 

Blue to visualise protein bands and Western immunoblotting was carried out as described above. 149 

 150 

Purification of Col E2. E. coli BL21(DE3) carrying pET41b expressing C-terminal His8-tagged 151 

Col E2 (kindly provided by Prof. William Cramer at the Purdue University (Sharma et al., 2009)) 152 
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was grown at 37C for 16 h with aeration, subcultured 1/20 into 1 L LB, and grown to an OD600 of 153 

~0.8 prior to induction with 1 mM IPTG for another 3 h.  Cells were then harvested by 154 

centrifugation (11,300xg, 10 min; Beckman J2-21M Induction Drive Centrifuge), resuspended in 155 

30 ml buffer A (300 mM NaCl, 50 mM sodium phosphate, pH 8.0), passed through a cell disruptor 156 

once at 30,000 psi (Constant Cell Disruptor System) and re-centrifuged to remove cell debris. 157 

Soluble fractions were collected by ultracentrifugation (126,000xg, 1 h, 4C; Beckman Coulter 158 

Optima L-100 XP Ultracentrifuge) and purified using an AKTA prime plus (GE Life Sciences) 159 

with a HisTrap column as described by the manufacturer. The column was washed with buffer A 160 

containing 10 % (v/v) glycerol (pH 6.0) and protein was eluted with buffer A containing 10% (v/v) 161 

glycerol and 500 mM imidazole (pH 6.0). Eluted protein was mixed 1:1 with 2X sample buffer 162 

(Lugtenberg et al., 1975), checked by 15% SDS-PAGE and Coomassie Blue staining for the 163 

presence of the ~66 kDa Col E2 protein band. Dialysis was carried out with 20 mM Tris (pH 7.5) 164 

and purified protein was mixed 1:1 with 100 % (v/v) glycerol and stored at - 80C. Protein was > 165 

95 % pure and the yield was 20 mg.  166 

 167 

Colicin sensitivity assays. The double layer sensitivity assay was performed as described 168 

previously (Davies & Reeves, 1975; Masi et al., 2007). In brief, colicin producing strains (Table 1) 169 

were grown at 37C for 16 h and streaked across 20 ml LB agar plates with cotton swabs. Plates 170 

were incubated overnight at 37°C, treated with 400 μl of chloroform (added to a piece of Whatman 171 

paper placed inside the lid of the upturned plate) for 30 min and then overlaid with 20 ml LB agar. 172 

The S. flexneri strains to be tested were streaked across the original colicinogenic streak line and 173 

plates were incubated at 37°C for 16 h. Any inhibition of growth was recorded. For swab sensitivity 174 

assays, 0.1 g ml-1 of purified Col E2 was swabbed onto selective 25 ml LB agar plates with cotton 175 

swabs and allowed to dry. Individual bacterial strains were then swabbed perpendicular to the Col 176 
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E2 streak and plates were incubated at 37C for 16 h. The zone of growth inhibition was measured 177 

in mm. For spot sensitivity assays, bacteria (~5 x 108 cells) were spread onto selective 25 ml LB 178 

agar plates and spotted with 5 l of purified Col E2 protein in Milli-Q water at the following 179 

concentrations (g ml-1): 0.0156, 0.03125, 0.0625, 0.125, 0.25, 0.50, 1.0, 2.0, 4.0, 8.0, 16, 32, 64, 180 

128, 256, 512 and 1024. Plates were incubated at 37C for 16 h and the minimal inhibitory 181 

concentration (MIC), defined here as the lowest concentration that generated a clear zone of 182 

inhibition, was recorded. Each strain was assayed a minimum of three times.  183 

 184 

Complement bactericidal assay. Complement assays were carried out as described previously 185 

(Murray et al., 2005). Strains carrying pWSK29 constructs were grown as described above and 5 x 186 

108 bacterial cells were collected by centrifugation. Cells were serially diluted to 1 × 106 cfu ml-1 in 187 

PBS + Cml (Cml was added to prevent growth during the assay) in 1.5 ml reaction tubes. Human 188 

pooled serum (Murray et al., 2005) was added to 10% (v/v) final concentration and mixtures 189 

incubated at 37°C without agitation. For controls, serum was heat-inactivated by incubation at 56°C 190 

for 30 min. Viable counts were taken at 30 min intervals by plating on LB agar and expressed as a 191 

percentage of initial concentration (% survival). Each strain was assayed a minimum of three times.  192 

 193 

Bacterial growth assay. Bacteria grown at 37C with aeration for 16 h were subcultured 1/20 in 194 

LB and incubated at 37C with shaking in a 96 well tray sealed with Breath easy membrane 195 

(Sigma) in Powerwave XS (BioTek). Absorbance readings at 600 nm were taken every 30 min for 196 

22 h. 197 

198 
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RESULTS  199 

Sensitivity of S. flexneri Y to colicins. To investigate the effect of S-type LPS Oag chains on 200 

sensitivity to colicins, S. flexneri strains RMA2162 (S. flexneri Y) and RMA2163 (S. flexneri Y 201 

wzz::kanr strain) were initially tested against different E. coli strains producing Col A, D, E1, E2, 202 

E3, Ia or K (Table 1) using the double layer sensitivity assay. S. flexneri strains were swabbed 203 

perpendicular to E. coli strains producing different colicins on a plate and strains that grew over the 204 

E. coli streak line were considered resistant (R) (0 mm), while strains that could not (> 0 mm) were 205 

considered sensitive (S). Some inhibition of growth (but not complete clearing) at the streak line 206 

was denoted as slightly sensitive (S/S). Analysis of the results obtained showed that wild-type S. 207 

flexneri Y was sensitive to E. coli strains producing Col E2 (15.0 mm) and Col E3 (8.0 mm) (Table 208 

2), with the mutant S. flexneri Y wzz::kanr strain showing higher sensitivity to Col E2 (20.0 mm) 209 

and Col E3 (14.5 mm) (Table 2). S. flexneri strains 2457T (S. flexneri 2a) and RMA696 (S. flexneri 210 

2a wzz::kanr strain) were also tested and a similar trend was observed. The S. flexneri 2a strain was 211 

sensitive to Col E2 (12.0 mm) and resistant to Col E3 (0.0 mm) (Table 2), while the S. flexneri 2a 212 

wzz::kanr mutant was more sensitive to Col E2 (16.0 mm) and Col E3 (showing slight sensitivity, 213 

S/S) (Table 2). These results suggest that wzz confers some level of resistance to Col E2 and Col 214 

E3, and that the level of resistance (especially to Col E3) can differ between serotypes. Since both 215 

mutants showed higher sensitivity to Col E2 than Col E3, Col E2 was chosen for subsequent 216 

experiments.  217 

 218 

Characterisation of the LPS profile conferred by Wzz mutant and wild-type PCP1a proteins 219 

in RMA2163 background. The effect of Oag modal chain length on sensitivity to Col E2 was 220 

further investigated by introducing plasmids encoding a range of Wzz mutant and wild-type PCP1a 221 
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proteins conferring different Oag modal chain lengths (Table 1), into either RMA2163 or 222 

RMA4053 (RMA2163 carrying pCDFDuet-1) (Table 1). Plasmid pCDFDuet-1 encoding lacIq was  223 

chosen in preference to the F′ (lacIq) plasmid used previously (Papadopoulos & Morona, 2010), as 224 

the latter was observed to confer some non-specific resistance to Col E2 (data not shown). Wzz 225 

mutant proteins were either expressed from pQE30 with IPTG induction (in the RMA4053 226 

background), or constitutively expressed from pRMCD77 (in the RMA2163 background). Wild-227 

type PCP1a proteins were expressed from pWSK29, a low copy number vector (in the RMA2163 228 

background). Since strains RMA2163 and RMA4053 carrying these plasmids have not been 229 

published before, the LPS profiles conferred by these new strains were re-analysed by SDS-PAGE 230 

and silver staining. This allowed for a direct comparison of their LPS profiles which was critical to 231 

this study. The LPS Oag modal chain length distribution conferred by each construct is summarised 232 

in Table 3 and Fig. 1. The wzz mutant constructs (referred to by their Wzz mutant proteins in Table 233 

3 and Fig. 1) were grouped into 5 different phenotypic classes (adapted from Papadopoulos & 234 

Morona (2010)): class I (non-modal Oag chain length), class II (very short [VS], 2 to 8 Oag RUs), 235 

class III (intermediate short [IS], 8 to 14 Oag RUs), class IV (short [S], 10 to 17 Oag RUs) and 236 

class V (long [L], 16 to 28 Oag RUs).  237 

 238 

The LPS profiles shown in Fig. 1a are similar to that of Wzz mutant proteins expressed from 239 

pQE30 described previously (Papadopoulos & Morona, 2010). Class I profiles were observed for 240 

strains encoding Wzz mutant proteins i32, i163, i290, i161, i279, i199 and i66 (Fig. 1a, lanes 3 - 9), 241 

class II profiles for Wzz mutant proteins i231, i191, i255, i247 and i219 (Fig. 1a, lanes 10 - 14), 242 

class III profiles for Wzz mutant proteins i92 and i138 (Fig. 1a, lanes 15 - 16), class IV profiles for 243 

Wzz mutant proteins i80 and i81 (Fig. 1a, lanes 17 - 18), and class V profiles for strains encoding 244 

Wzz mutant proteins i128 and i131 (Fig. 1a, lanes 19 - 20). The strain carrying pRMCD30 245 
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encoding wild-type WzzBSF had LPS with S-type Oag chains (Fig. 1a, lane 1) and the strain 246 

carrying pQE30 had LPS with unregulated Oag chains, as expected (Fig. 1a, lane 2).  247 

 248 

Inspection of the LPS profiles of Wzz mutant proteins expressed constitutively from the pRMCD77 249 

vector (Daniels & Morona, 1999) showed that strains encoding Wzz mutant proteins K31A and 250 

P292A were in class I, Wzz mutant proteins G305A/G311A and I35C/M32T were in class II, Wzz 251 

mutant protein M32T was in class III, and Wzz mutant proteins I35C, G305A, P283A, G311A, 252 

G305A/G209A and K267N were in class IV (Table 3 & Fig. 1b, lanes 3 - 13). The strain carrying 253 

pRMCD78 encoding wild-type WzzBSF had LPS with S-type Oag chains (Table 3 & Fig. 1b, lane 254 

2), and the vector control strain carrying pRMCD77 had LPS with unregulated Oag chains, as 255 

expected (Table 3 & Fig. 1b, lane 1).  256 

 257 

Investigation of the final set of plasmid constructs encoding different wild-type PCP1a proteins 258 

expressed from pWSK29 showed that LPS with extremely short (ES)-type Oag chains of 1 – 4 Oag 259 

RUs was conferred by the strain carrying pWSK29-WzzO139, LPS with S-type Oag chains of 10 - 260 

17 Oag RUs was conferred by the strain carrying pWSK29-WzzBSF, LPS with L-type Oag chains of 261 

16 – 28 Oag RUs was conferred by the strain carrying pWSK29-WzzBST, and LPS with VL-type 262 

Oag chains of >80 Oag RUs were conferred by the strains pWSK29-WzzpHS2 and pWSK29-FepEST 263 

(Table 3 & Fig. 1b, lanes 14 - 18). The vector control strain carrying pWSK29 had LPS with 264 

unregulated Oag chains, as expected (Table 3 & Fig. 1b, lane 19). Western immunoblotting 265 

performed on whole cell lysates from S. flexneri strains expressing the above Wzz mutant and wild-266 

type PCP1a proteins with anti-Wzz antibodies detected a band consistent with the size of the wild-267 

type WzzBSF protein (~37 kDa) for all strains expressing Wzz mutant proteins (Table 3 & Fig. S1). 268 

No band was detected for control strains (carrying pQE30, pRMCD77 or pWSK29), and strains 269 
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expressing the FepE, WzzO139 and WzzBpHS2 proteins (pWSK29-FepEST, pWSK29-WzzO139 and 270 

pWSK29-WzzBpHS2), as expected (Table 3 & Fig. S1). A band of ~37 kDa was however detected 271 

for the strain carrying pWSK29-WzzBST (Table 3 & Fig. S1), suggesting that as the WzzB proteins 272 

from S. flexneri and S. typhimurium are similar, the rabbit anti-Wzz antibody used was cross-273 

reactive and detected shared epitopes.        274 

 275 

Effect of LPS modal chain length on sensitivity to Col E2. Having thoroughly characterised the 276 

LPS profiles conferred by the various Wzz mutant and wild-type PCP1a proteins, sensitivity to Col 277 

E2 was then investigated using swab sensitivity assays with purified Col E2. Strains with different 278 

LPS Oag modal chain lengths were swabbed perpendicular to a 0.1 g ml-1 Col E2 streak on a plate 279 

and those that grew over the Col E2 streak line were considered resistant (R) (0 mm), while strains 280 

that could not (> 0 mm) were considered sensitive (S). Representative data for Wzz mutants 281 

proteins expressed from pQE30 is shown in Fig. 2. The strain carrying pRMCD30 encoding wild-282 

type WzzBSF (Fig. 2 and Table 3) and strains encoding class IV and V (S-type and L-type) Wzz 283 

mutant proteins (i80, i81, i128 and i131) were resistant to Col E2, while strains encoding class I – 284 

III Wzz mutant proteins (i199, i279, i32, i163, i161, i290, i66, i231, i255, i247, i191, i219, i92 and 285 

i138) (conferring non-modal, VS-type and IS-type Oag chains) were sensitive (Fig. 2 and Table 3). 286 

The vector control strain carrying pQE30 was sensitive to Col E2 as expected (Fig. 2 and Table 3). 287 

A similar trend was also observed for Wzz mutant proteins expressed constitutively from 288 

pRMCD77. The strain carrying pRMCD78 encoding wild-type WzzBSF, and strains encoding all 289 

class IV Wzz mutant proteins showed resistance to Col E2 (Table 3), while strains encoding class I 290 

– II Wzz mutant proteins showed sensitivity to Col E2 (Table 3). When strains encoding the 291 

different wild-type PCP1a proteins were tested, pWSK29-WzzBSF (conferring S-type Oag chains) 292 

and pWSK29-WzzBST (conferring L-type Oag chains) were resistant to Col E2, while strains with 293 
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either pWSK29-WzzO139 (ES-type Oag chains) or pWSK29-FepEST and pWSK29-WzzBpHS2 (VL-294 

type Oag chains) were sensitive (Table 3). These results indicated that expression of S-type and L-295 

type LPS Oag chains confer resistance to Col E2. 296 

 297 

In addition to the Col E2 swab sensitivity assays described above, spot sensitivity assays were also 298 

carried out as an alternative method to quantitatively investigate the sensitivity of strains with 299 

different LPS Oag modal chain lengths. The lowest concentration that generated a clear zone of 300 

inhibition was defined as the minimal inhibitory concentration (MIC). Spot sensitivity assays were 301 

repeated three times and the average MIC is shown in Table 3. The strain carrying pRMCD30 302 

encoding wild-type WzzBSF showed resistance to Col E2 (MIC = 32 g ml-1) (Fig. 3a & h and 303 

Table 3), while the control strain expressing pQE30 was sensitive to Col E2 (MIC = 0.25 g ml-1) 304 

(Fig. 3b and Table 3). Hence, LPS Oag modal length control by WzzBSF conferred a 128 fold 305 

increase in resistance to Col E2. Strains encoding class I Wzz mutant proteins i32, i163, i290, i161, 306 

i279, i199 and i66 (represented by i32 in Fig. 3c) and class II Wzz mutant proteins i231, i191, i255, 307 

i247 and i219 (represented by i219 in Fig. 3d) conferring non-modal or VS-type Oag chains were 308 

all sensitive to Col E2 (MIC  0.5 g ml-1) (Table 3 and Fig. 4a). Strains encoding class III Wzz 309 

mutant proteins i92 and i138 (represented by i92 in Fig. 3e) conferring IS-type Oag chains were 310 

slightly more resistant to Col E2 (MICs of 2 g ml-1 and 8 g ml-1, respectively) (Table 3 and Fig. 311 

4a). Strains encoding class IV Wzz mutant proteins i80 and i81 (represented by i81 in Fig. 3f & i) 312 

and class V Wzz mutant proteins i128 and i131 (represented by i131 in Fig. 3g & j), conferring S-313 

type and L-type Oag chains respectively, were resistant to Col E2 (MICs = 32 g ml-1 for class IV, 314 

and MIC = 64 g ml-1 for class V) (Table 3 and Fig. 4a). These results suggest that expression of 315 

class IV and class V Wzz proteins confer resistance to Col E2.  316 

 317 
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Spot sensitivity assays carried out on strains expressing wild-type WzzBSF and Wzz mutant proteins 318 

expressed from pRMCD77 showed a similar trend. The strain carrying pRMCD78 encoding wild-319 

type WzzBSF was resistant to Col E2 (MIC = 32 g ml-1) (Table 3 and Fig. 4b), while the control 320 

strain carrying pRMCD77 was sensitive to Col E2 (MIC = 2 g ml-1) (Table 3 and Fig. 4b) but at a 321 

higher concentration than that observed for the strain carrying pQE30 above (MIC = 0.25 g ml-1) 322 

(Table 3 and Fig. 4b), suggesting that the pRMCD77 background confers some resistance to Col 323 

E2. Despite this, LPS Oag modal length control by WzzBSF conferred a 16 fold increase in 324 

resistance to Col E2 in the pRMCD77 background. In comparison to the control strain carrying 325 

pRMCD77, strains encoding class I Wzz mutant proteins K31A and P292A, and the class II Wzz 326 

mutant protein I35C/M32T were sensitive to Col E2 (MICs = 2 g ml-1) (Table 3 and Fig. 4b), 327 

while one class II Wzz mutant protein G305A/G311A showed slight resistance (MIC = 4 g ml-1) 328 

(Table 3 and Fig. 4b). However, strains encoding class IV Wzz mutant proteins M32T, I35C, 329 

G305A, P283A, G311A, G305A/G209A and K267N were more resistant to Col E2 (MICs ranging 330 

from 8 - 32 g ml-1), conferring at least a 4 fold increase in resistance to Col E2 (Table 3 and Fig. 331 

4b) when compared to the control strain carrying pRMCD77. Similar to the trend observed for Wzz 332 

mutants expressed from pQE30, only class IV mutant proteins in the pRMCD77 background 333 

showed resistance to Col E2.  334 

 335 

Spot sensitivity assays were then carried out on strains expressing wild-type PCP1a proteins 336 

expressed from the low copy number vector pWSK29. Strains with pWSK29-WzzBSF (conferring 337 

S-type Oag chains) and pWSK29-WzzBST (conferring L-type Oag chains) showed resistance to Col 338 

E2 (MICs of 32 and 64 g ml-1 respectively) (Table 3 and Fig. 4c), while strains with pWSK29-339 

WzzBpHS2 and pWSK29-FepEST (conferring VL-type Oag chains) were sensitive to Col E2 (MICs = 340 

0.5 g ml-1) (Table 3 and Fig. 4c), supporting the observation made above that S-type and L-type 341 
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Oag chains confer resistance to Col E2. The control strain carrying pWSK29 was sensitive to Col 342 

E2 (MIC = 0.25 g ml-1) (Table 3 and Fig. 4c), as expected. Interestingly, the strain with pWSK29-343 

WzzO139 (conferring ES-type Oag chains of 1 – 4 Oag RUs) was more sensitive to Col E2 (MIC = 344 

0.031 g ml-1) (Table 3 and Fig. 4c) than the pWSK29 control strain.  345 

 346 

Detection of the Col E2 receptor. Since the primary E. coli OM receptor which allows import of 347 

Col E2 into cells is BtuB (Sharma et al., 2007), expression of the BtuB receptor was also 348 

investigated to determine if the level of BtuB protein was affected by expression of the different 349 

Wzz proteins. Since different LPS profiles might cause changes in the OM composition and hence 350 

affect insertion of BtuB, OM samples were prepared from S. flexneri strains expressing wild-type 351 

PCP1a proteins in the pWSK29 background and analysed by Western immunoblotting (Fig. S2). 352 

All strains grew at the same growth rate (Fig. S2a) and a band consistent with the size of the BtuB 353 

protein (~66 kDa) was detected for all strains with monoclonal anti-BtuB antibodies (Fig. S2c, 354 

lanes 2 - 7). Equivalent levels of other major OM proteins OmpF+OmpC and OmpA were also 355 

observed by Coomassie staining (Fig. S2b, lanes 2 - 7). These results suggest that the differences in 356 

colicin resistance observed is due to the length of the LPS Oag modal chain length conferred by 357 

each Wzz PCP1a protein, and not due to differences in the OM expression levels of the BtuB 358 

receptor. Whole cell lysates from S. flexneri strains expressing Wzz mutant proteins in the pQE30 359 

and pRMCD77 backgrounds were also investigated for expression of the BtuB receptor and 360 

Western immunoblotting with monoclonal anti-BtuB antibodies showed a band consistent with the 361 

size of the BtuB protein (~66 kDa) for all strains (Table 3). 362 

 363 

Effect of LPS modal chain length on serum resistance. Strains expressing wild-type PCP1a 364 

proteins expressed from pWSK29 were also subjected to complement sensitivity assays in 10% 365 
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human serum over a period of 1 h. Strains with pWSK29-FepEST and pWSK29-WzzBpHS2 (both 366 

conferring VL-type Oag chains) showed serum resistance with >90% and >50% survival, 367 

respectively (Fig. 5a), while strains with pWSK29-WzzBSF, pWSK29-WzzBST and pWSK29-368 

WzzO139 all showed sensitivity to serum (with 0% survival) (Fig. 5a). Incubation with heat-369 

inactivated serum (HIS) as a control showed that all strains demonstrated > 90% survival, with the 370 

exception of pWSK29-WzzO139 which demonstrated ~30% survival (Fig. 5b), suggesting that other 371 

active factors (not inactivated by heat) in the serum may effect strains expressing ES-type Oag 372 

chains.  373 

374 
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DISCUSSION 375 

In this study, we used a range of plasmids encoding various Wzz mutant proteins and wild-type 376 

PCP1a proteins to confer different LPS Oag modal chain lengths in a common background (S. 377 

flexneri RMA2163/RMA4053), and performed assays with Col E2 to investigate the effect of LPS 378 

Oag modal chain length on Shigella sensitivity to this colicin. The results showed that strains with 379 

S-type and L-type LPS Oag profiles due to class IV and V proteins, respectively, had higher 380 

resistance to Col E2 than strains expressing the shorter Oag chain lengths due to Class I – III 381 

proteins (non-modal, VS-type and IS-type), suggesting that expression of near wild-type WzzBSF 382 

Oag modal chain lengths is essential for resistance to Col E2 (Fig. 2 – 3 and Table 3).  Furthermore, 383 

when various constructs expressing different PCP1a proteins were assayed, strains with pWSK29-384 

WzzBSF (conferring S-type Oag chains) and pWSK29-WzzBST (conferring L-type Oag chains) 385 

were also more resistant to Col E2 (Table 3 and Fig. 4c) than strains with plasmids conferring ES-386 

type or VL-type Oag chains. The resistance observed was also not due to differences in the level of 387 

BtuB receptor present (Fig. S2). These results confirm that these LPS Oag modal chain lengths are 388 

optimal for conferring Col E2 resistance. We hence hypothesise that the VL-type Oag chains have 389 

potentially different polysaccharide interactions which may allow Col E2 to move more readily 390 

between the LPS molecules. Interestingly, the strain with pWSK29-WzzO139 (conferring ES-type 391 

Oag chains of 1 – 4 Oag RUs) was more sensitive to Col E2 than the pWSK29 control strain (Table 392 

3 and Fig. 4c), and we speculate that the expression of these ES-type Oag chains provide no 393 

protection against Col E2 as the colicin is readily able to come into close contact with the bacterial 394 

OM surface and its receptor BtuB. In comparison, the smooth (though unregulated) LPS expressed 395 

by the strain carrying pWSK29 may still provide some hindrance to Col E2. Notably, the pWSK29-396 

WzzO139 strain was also more sensitive to incubation with HIS than the pWSK29 control strain (Fig. 397 
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5), and this may be due to other active factors besides complement in the serum which are not 398 

inactivated by heat.  399 

 400 

Loss of the S-type Oag chains in S. flexneri WzzBSF has been shown to result in a defect in S. 401 

flexneri virulence (Van Den Bosch et al., 1997) and its presence allows IcsA to function in actin 402 

based motility (Morona et al., 2003). Our data suggests that S-type LPS Oag chains may also act to 403 

impede the access of colicins into bacteria and hence reduce their susceptibility towards Col E2 404 

killing. We hypothesise that colicins such as Col E2 present in the environment may be the 405 

selective pressure that has resulted in the evolution of Wzz proteins that confer S-type and L-type 406 

Oag modal chain lengths. While LPS Oag has previously been shown to shield OM proteins from 407 

colicin in E. coli (Van der Ley et al., 1986), the impact of Oag chain length against colicins has not 408 

been investigated. We propose here that S. flexneri regulation of S-type Oag chains is required for 409 

conferring resistance to colicin, while S. flexneri regulation of the VL-type Oag chains is required 410 

for conferring resistance to complement (Hong & Payne, 1997) as shown by our serum killing 411 

assay (Fig. 5). Interestingly, growth-phase regulation of certain serovars of Salmonella expressing 412 

L-type Oag chains can also confer resistance to serum but it is the expression of the VL-type Oag 413 

chains that confers higher levels of resistance (Bravo et al., 2008). Our study suggests that 414 

expression of both S- and VL-type modal chain lengths by S. flexneri is essential for optimal 415 

virulence (Morona et al., 2003) and for survival inside the host environment, as well as in the 416 

external environment, as a result of competition with colicin producing Enterobacteriaceae. Our 417 

data also presents a novel and effective method for screening S. flexneri (or S. typhimurium) for the 418 

presence of S-type and L-type modal Oag chain lengths using the Col E2 sensitivity streak assay, as 419 

only strains conferring ~10 to 17 Oag RUs and ~16 to 28 Oag RUS were observed to be resistant to 420 

Col E2 (Fig. 2).  421 
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 422 

During the course of this study, the crystal structure of S. flexneri WzzBSF was recently solved 423 

(Kalynych et al., 2012). Analysis of the Wzz mutant proteins expressed from pQE30 (18 in total) 424 

on this 3-dimensional structure of WzzBSF (PBD 4E2H; Fig. S3) showed that almost all mutants 425 

had insertion mutations located on the inside curvature of the WzzBSF open trimer, with the 426 

exception of three class I Wzz mutant proteins (i161, i163 and i279), one class II Wzz mutant 427 

protein (i247) and one class III Wzz mutant protein (i138). Two Wzz mutant proteins (i32 and 428 

i290) were located in undefined regions of the crystal structure so their location could not be 429 

determined. Since class I mutant proteins confer non-modal Oag chain length, this suggests that the 430 

majority of the Wzz mutations conferring an effect on LPS modal Oag chain length are located 431 

inside the curvature of the WzzBSF trimer. This supports our recent study which showed that 432 

residues inside the E. coli FepE PCP1a protein oligomer were essential for LPS Oag modal chain 433 

length determination (Tran & Morona, 2013). 434 

 435 

In summary, our results show that the specific S-type (~10 - 17 Oag RUs) and L-type (~16 - 28 Oag 436 

RUs) LPS Oag chains determined by S. flexneri WzzBSF and Salmonella typhimurium WzzBST, 437 

respectively, confer Col E2 resistance in S. flexneri, and most likely explains why these modal Oag 438 

chain lengths are common in bacteria. The biophysical basis for this function requires further 439 

investigation as the VL-type (>80 Oag RUs) LPS Oag chains determined by WzzpHS2 and FepEST were 440 

unable to confer resistance to colicin, although they do provide a high level of resistance to 441 

complement.    442 
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Table 1 562 

TABLE 1. Bacterial strains and plasmids 

Strain/plasmid Description Source/reference 

Escherichia coli  

XL10 Gold endA1 glnV44 recA1 thi-1 gyrA96 relA1 lac Hte 
Δ(mcrA)183 Δ(mcrCB-hsdSMR-mrr)173 tetR F'[proAB 
lacIqZΔM15 Tn10(TetR Amy CmR)] 

Stratagene 

AB1133 thi argE his proA thr leu ara mtl xyl galK lacy supE StrR  
- F - 

(Davies & Reeves, 1975) 

E92 E. coli BZB2101 carrying a plasmid encoding Colicin A (Achtman et al., 1983) 

E94 E. coli BZB2103 carrying a plasmid encoding Colicin D (Achtman et al., 1983) 

E95 E. coli BZB2104 carrying a plasmid encoding Colicin E1 (Achtman et al., 1983) 

E96 E. coli BZB2125 carrying a plasmid encoding Colicin E2 (Achtman et al., 1983) 

E97 E. coli BZB2106 carrying a plasmid encoding Colicin E3 (Achtman et al., 1983) 

E103 E. coli BZB2279 carrying a plasmid encoding Colicin Ia (Achtman et al., 1983) 

E105 E. coli BZB2116 carrying a plasmid encoding Colicin K (Achtman et al., 1983) 

   

Shigella flexneri  

RMA2162 S. flexneri PE860 serotype Y, cured of virulence plasmid 
and pHS-2 

Laboratory stock 

RMA2163 S. flexneri PE860 serotype Y wzz::kanr, cured of virulence 
plasmid and pHS-2; KanR 

Laboratory stock 

RMA4053 RMA2163 carrying pCDFDuet-1 Laboratory stock 

2457T S. flexneri serotype 2a Laboratory stock 

RMA696 S. flexneri serotype 2a wzz::kanr, KanR (Van Den Bosch et al., 1997) 

   

Plasmids 

pCDFDuet-1 expression vector carrying lacI q, SmR Novagen 

pQE30 IPTG inducible, expression vector, AmpR Qiagen 

pRMCD30 pQE30 with S. flexneri 2a wzzBSF gene, AmpR (Daniels & Morona, 1999) 

pMPRMA45 pQE30 encoding Wzz mutant  i32 (Papadopoulos & Morona, 2010) 
pMPRMA41 pQE30 encoding Wzz mutant  i231 (Papadopoulos & Morona, 2010) 
pMPRMA50 pQE30 encoding Wzz mutant  i219 (Papadopoulos & Morona, 2010) 
pMPRMA38 pQE30 encoding Wzz mutant  i92 (Papadopoulos & Morona, 2010) 
pMPRMA52 pQE30 encoding Wzz mutant  i138 (Papadopoulos & Morona, 2010) 
pMPRMA53 pQE30 encoding Wzz mutant  i80 (Papadopoulos & Morona, 2010) 
pMPRMA39 pQE30 encoding Wzz mutant  i128 (Papadopoulos & Morona, 2010) 
pMPRMA48 pQE30 encoding Wzz mutant  i131 (Papadopoulos & Morona, 2010) 
pMPRMA40 pQE30 encoding Wzz mutant  i163 (Papadopoulos & Morona, 2010) 
pMPRMA42 pQE30 encoding Wzz mutant  i290 (Papadopoulos & Morona, 2010) 
pMPRMA43 pQE30 encoding Wzz mutant  i191 (Papadopoulos & Morona, 2010) 
pMPRMA44 pQE30 encoding Wzz mutant  i161 (Papadopoulos & Morona, 2010) 
pMPRMA46 pQE30 encoding Wzz mutant  i279 (Papadopoulos & Morona, 2010) 
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pMPRMA47 pQE30 encoding Wzz mutant  i255 (Papadopoulos & Morona, 2010) 
pMPRMA49 pQE30 encoding Wzz mutant  i81 (Papadopoulos & Morona, 2010) 
pMPRMA51 pQE30 encoding Wzz mutant  i247 (Papadopoulos & Morona, 2010) 
pMPRMA55 pQE30 encoding Wzz mutant  i199 (Papadopoulos & Morona, 2010) 
pMPRMA56 pQE30 encoding Wzz mutant  i66 (Papadopoulos & Morona, 2010) 
   
pRMCD77 Modified pET17b (Novagen) vector, AmpR (Daniels & Morona, 1999) 
pRMCD78 pRMCD77 with S. flexneri 2a wzzBSF gene (Daniels & Morona, 1999) 
pRMCD108 pRMCD77 encoding Wzz mutant K267N (Daniels & Morona, 1999) 
pRMCD109 pRMCD77 encoding Wzz mutant P283A (Daniels & Morona, 1999) 
pRMCD111 pRMCD77 encoding Wzz mutant G311A (Daniels & Morona, 1999) 
pRMCD112 pRMCD77 encoding Wzz mutant G305A/G309A (Daniels & Morona, 1999) 
pRMCD113 pRMCD77 encoding Wzz mutant G305A/G311A (Daniels & Morona, 1999) 
pRMCD116 pRMCD77 encoding Wzz mutant P292A (Daniels & Morona, 1999) 
pRMCD119 pRMCD77 encoding Wzz mutant K31A (Daniels & Morona, 1999) 
pRMCD121 pRMCD77 encoding Wzz mutant I35C (Daniels & Morona, 1999) 
pRMCD122 pRMCD77 encoding Wzz mutant I35C/M32T (Daniels & Morona, 1999) 
pRMCD125 pRMCD77 encoding Wzz mutant G305A (Daniels & Morona, 1999) 
pRMCD127 pRMCD77 encoding Wzz mutant M32T (Daniels & Morona, 1999) 

pWSK29 Low copy number cloning vector, AmpR (Wang & Kushner, 1991) 
pWSK29-WzzBSF pWSK29 with S. flexneri 2a wzzBSF gene (Murray et al., 2006) 
pWSK29-WzzBST pWSK29 with Salmonella typhimurium wzzBST gene (Murray et al., 2006) 
pWSK29-FepEST pWSK29 with Salmonella typhimurium fepEST gene (Murray et al., 2006) 
pWSK29-WzzO139 pWSK29 with Vibrio cholerae wzzO139 gene (Murray et al., 2006) 
pWSK29-WzzpHS2 pWSK29 with S. flexneri wzzpHS2 gene (Murray et al., 2006) 

563 
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Table 2 564 

 565 

TABLE 2. S. flexneri sensitivity to colicins in double layer assays with colicin producers 

Colicin producer RMA2162 RMA2163 2457T RMA696 
E. coli K-12 
AB1133 

   
E92 (Col A) R R R R S (9.0) 
E94 (Col D) R R R R S (11.0) 
E95 (Col E1) R R R R S (12.5) 
E96 (Col E2) S (15.0) S (20.0) S (12.0) S (16.0) S (26.0) 
E97 (Col E3) S (8.0) S (14.5) R S/S (-) S (19.0) 
E103 (Col Ia) R R R R S (8.0) 
E105 (Col K  R R R  S (6.0) 
      
 
Sensitivity to E. coli colicin producer streak line: S, sensitive (0 mm); R, resistant (> 0 mm); 
S/S, slightly sensitive (some inhibition of growth observed on streak line).  
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Table 3 566 
 567 
TABLE 3. Summary of LPS profile, Col E2 sensitivity and protein detection 

Plasmid 
Wzz mutant 

protein 
LPS Oag modal 

chain length 
Wzz mutant 

class* 
Col E2 sensitivity assays‡ Protein detection§ 

  Streak assay† 
(mm, S/R) 

Spot assay 
(g ml-1) 

Wzz BtuB║ 

     
pQE30 - Non-modal na     S (7.0) 0.25 - (+++) 
pRMCD30 - 10 - 17 na     R 32.00 +++ (+++) 
pMPRMA55 i199 Non-modal I     S (7.0) 0.25 ++ (+++) 
pMPRMA46 i279 Non-modal I     S (5.0) 0.33 + (+++) 
pMPRMA45 i32 Non-modal I     S (8.0) 0.33 +++ (+++) 
pMPRMA40 i163 Non-modal I     S (6.0) 0.33 ++ (+++) 
pMPRMA44 i161 Non-modal I     S (5.0) 0.50 ++ (+++) 
pMPRMA42 i290 Non-modal I     S (6.0) 0.50 +++ (+++) 
pMPRMA56 i66 Non-modal I     S (4.0) 0.50 +++ (+++) 
pMPRMA41 i231 2 - 6 II     S (7.0) 0.33 ++ (+++) 
pMPRMA47 i255 2 - 8 II     S (6.0) 0.25 + (+++) 
pMPRMA51 i247 2 - 8 II     S (7.0) 0.25 ++ (+++) 
pMPRMA43 i191 2 - 8 II     S (7.0) 0.50 + (+++) 
pMPRMA50 i219 2 - 10 II     S (8.0) 0.50 +++ (+++) 
pMPRMA38 i92 8 - 13 III     S (3.0) 2.00 +++ (+++) 
pMPRMA52 i138 8 - 14 III     S (3.5) 8.00 ++ (+++) 
pMPRMA53 i80 10 - 20 IV     R 32.00 ++ (+++) 
pMPRMA49 i81 10 - 20 IV     R 32.00 +++ (+++) 
pMPRMA39 i128 16 - 20 V     R 64.00 +++ (+++) 
pMPRMA48 i131 16 - 22 V     R 64.00 +++ (+++) 
      
pRMCD77 - Non-modal na     S (5.0) 2.00 - (+++) 
pRMCD78 - 10 - 17 na     R 32.00 +++ (+++) 
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pRMCD119 K31A Non-modal I     S (5.0) 2.00 +++ (+++) 
pRMCD116 P292A Non-modal I     S (5.0) 2.00 +++ (+++) 
pRMCD122 I35C/M32T 2 - 8 II     S (5.0) 2.00 +++ (+++) 
pRMCD113 G305A/G311A 2 - 8 II     S (5.0) 4.00 +++ (+++) 
pRMCD127 M32T 9 - 16 IV     R 16.00 +++ (+++) 
pRMCD112 G305A/G309A 10 - 17 IV     R 8.00 +++ (+++) 
pRMCD111 G311A 10 - 17 IV     R 8.00 +++ (+++) 
pRMCD125 G305A 10 - 17  IV     R 16.00 +++ (+++) 
pRMCD109 P283A 10 - 17 IV     R 16.00 +++ (+++) 
pRMCD121 I35C 10 - 17 IV     R 32.00 +++ (+++) 
pRMCD108 K267N 10 - 20 IV     R 16.00 +++ (+++) 
      
pWSK29 - Non-modal na     S (5.0) 0.25 - +++  
pWSK29-WzzO139 - 1 - 4 na     S (8.0) 0.031 - +++  
pWSK29-WzzBSF - 10 - 17 na     R 32.00 +++ +++ 
pWSK29-WzzBST - 16 - 28 na     R 64.00 ++ +++  
pWSK29-WzzBpHS2 - >80 na     S (5.0) 0.50 - +++  
pWSK29-FepEST - >80 na     S (5.0) 0.50 - +++  
     
  
 Wzz mutant classification adapted from Papadopoulus & Morona (2010); Class I, non-modal Oag chain length; class II, very short (VS) 
(~2 to 8 Oag RUs); class III, intermediate short (IS) (~8 to 14 Oag RUs); class IV, short (S) (~10 to 17 Oag RUs); class V, long (L) (~16 
to 28 Oag RUs); na, not applicable. 
† Sensitivity to 0.1 g ml-1 Col E2 streak: S, sensitive; R, resistant; S/S, slightly sensitive.  
‡ Spot sensitivity assays were repeated three times and the average MIC (defined as the lowest concentration that generated a clear zone 
of inhibition) is shown in the column above. 
§ +++, wild type; +, less than wild type; -, not detected.  
║(+++), detected from whole cells only. 
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FIGURE LEGENDS 568 

Fig. 1. LPS profile conferred by Wzz mutant proteins expressed from pQE30/pRMCD77 and 569 

wild-type PCP1a proteins. LPS was isolated and detected from whole cell lysates of S. flexneri strains 570 

carrying plasmids encoding (a) Wzz mutant proteins expressed from pQE30, or (b) Wzz mutant 571 

proteins expressed from pRMCD77, or wild-type PCP1a proteins, as indicated above. The first 15 Oag 572 

RUs and the positions of the L-type and VL-type Oag chains are indicated on the side of the gel. 573 

Mutant proteins conferring similar Oag modal chain lengths are grouped as Class I (non-modal Oag 574 

chain length), Class II (~2 to 8 Oag RUs), Class III (~8 to 14 Oag RUs), Class IV (~10 to 17 Oag RUs) 575 

and Class V (~16 to 28 Oag RUs). Each lane contains ~2 x 108 bacterial cells of each strain. 576 

 577 

Fig. 2. Col E2 swab sensitivity assays for Wzz mutant proteins expressed from pQE30. Purified 578 

Col E2 (0.1 g ml-1) was swabbed onto LB agar plates and individual S. flexneri strains carrying 579 

pRMCD30, pQE30 or expressing the Wzz mutant proteins indicated above were swabbed 580 

perpendicular to the Col E2 streak. Strains that grew over the Col E2 streak line were considered 581 

resistant (R), and strains that did not were considered sensitive (S). Half plates are shown above, and 582 

the strain carrying pRMCD30 was used as a control on each plate. 583 

 584 

Fig. 3. Col E2 spot sensitivity assays for different classes of Wzz mutants. S. flexneri strains 585 

carrying pRMCD30, pQE30 or expressing the Wzz mutant proteins indicated above were spread onto 586 

selective LB agar plates and spotted with different concentrations of purified Col E2 protein (g ml-1) 587 

as indicated.  588 

 589 

Fig. 4. Analysis of Colicin E2 sensitivity. S. flexneri strains expressing the indicated (a) Wzz mutants 590 

proteins from pQE30 or (b) Wzz mutants proteins from pRMCD77 or (c) wild-type PCP1a proteins, are 591 
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shown on the x axis. The MIC of Col E2 (in g ml-1) required to generate a clear zone of bacterial 592 

growth inhibition is shown on the y axis (n = 3). Columns bars shaded in black in (a) and (b) refer to 593 

strains carrying pRMCD30 and pRMCD78, respectively.  594 

 595 

Fig. 5. Survival of strains expressing wild-type PCP1a proteins in 10% human serum. S. flexneri 596 

strains expressing the indicated wild-type PCP1a proteins were incubated in (a) 10% (v/v) human 597 

serum or (b) heat inactivated human serum (HIS) for 1 h at 37C. Samples were taken at 30 min 598 

intervals for viable counts. Data points represent percentage survival (mean  S.D., n = 3 assays). 599 

600 
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Figure 1  601 

 602 
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Figure 2 603 

 604 

605 
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Figure 3 606 

607 
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Figure 4 608 

 609 

610 
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Figure 5 611 

 612 
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Fig. S1 1 

 2 

 3 

Fig. S1. Western immunoblotting with anti-Wzz antisera. Western blots on whole cell lysates of S. 4 

flexneri strains carrying plasmids encoding (a) Wzz mutant proteins expressed from pQE30, or (b) Wzz 5 

mutant proteins expressed from pRMCD77, or wild-type PCP1a proteins (as indicated above), were 6 

probed with rabbit anti-Wzz antisera. The size of the full length His6-WzzBSF protein (~37 kDa) and 7 

degraded/altered His6-WzzBSF (~30 kDa) is indicated. Each lane contains 5 x 107 bacterial cells of each 8 

strain. 9 

10 
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 Fig. S2 11 

 12 

 13 

Fig. S2. Growth curve and analysis of OM samples from strains carrying wild-type PCP1a 14 

proteins. (a) Growth curves of S. flexneri strains carrying plasmids encoding wild-type PCP1a proteins 15 

(as indicated) sub 1/20, incubated at 37°C with aeration, and OD600 readings taken at 30 min intervals 16 

for 22 h; (b & c) OM samples prepared from the strains indicated above were analysed by (b) 17 

Coomassie staining and (c) Western immunoblotting with mouse anti-BtuB antisera. The migration 18 

positions of the Benchmark Prestained Marker (M) Standards (Invitrogen) are indicated on the left in 19 

kDa. The major OM proteins OmpF+OmpC and OmpA are indicated by the two arrowheads in (b) and 20 

the size of the full length BtuB protein (~66 kDa) is indicated in (c). 21 
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Fig. S3 22 

 23 

 24 

Fig. S3. Location of Wzz mutations on the 3D structures of WzzBSF. The Wzz mutations located (a) 25 

outside and (b) inside the WzzBSF structure (PDB 4E2H) are mapped on the WzzBSF monomer (chain 26 

B) and WzzBSF open trimer, respectively.  27 


