
Software-based Reference Protection for
Component Isolation

By

Yuval Yarom

September 12, 2014

A Thesis Submitted for the Degree of

Doctor of Philosophy

In the School of Computer Science

University of Adelaide

Contents

Abstract viii

Declaration ix

Acknowledgements x

1 Introduction 1

1.1 Classification of Reference Protection Systems 5

1.2 Exported Types . 7

1.3 Implementation of Exported Types 8

1.4 Summary of Contributions . 8

1.5 Thesis Structure . 9

2 A Model and Classification of Reference Protection 10

2.1 Zones . 10

2.2 Complete Isolation . 15

2.2.1 MVM . 16

2.2.2 JX . 16

2.2.3 The .Net Framework . 17

2.2.4 JNode . 18

2.2.5 OVM . 18

2.2.6 Summary . 19

2.3 Object Sharing . 20

2.3.1 KaffeOS . 20

2.3.2 Singularity . 21

2.3.3 Rust . 22

2.3.4 XMem . 23

2.3.5 CoLoRS . 24

2.3.6 Real-Time Java . 24

2.3.7 Summary . 25

2.4 Partial Isolation . 25

2.4.1 J-Kernel . 26

ii

2.4.2 Confined Types . 27

2.4.3 Ownership Types . 27

2.4.4 Summary . 28

2.5 Initial Isolation . 28

2.5.1 I-JVM . 29

2.5.2 Alta . 29

2.5.3 Summary . 29

2.6 Isolation Techniques . 30

2.6.1 Reachability Roots . 30

2.6.2 Controlling Reference Propagation 33

2.7 Evaluation of the Classification . 34

3 Exported Types 38

3.1 Type Systems . 39

3.2 Partial Isolation and Types . 41

3.3 Component Name Spaces . 44

3.4 Creating the Interface Zones . 45

3.5 The Remote Interface . 47

3.6 Compatibility with Language Features 49

3.6.1 Structure-based Type Equivalence 49

3.6.2 Implicit Operations on Types 50

3.6.3 Universal Methods . 51

3.6.4 Special Semantics of Types . 52

3.6.5 Reflection . 53

3.7 Summary . 53

4 An Implementation of Exported Types 55

4.1 The Java Virtual Machine . 58

4.1.1 Class Loaders . 59

4.1.2 Security Manager . 60

4.1.3 Byte Code Verifier . 61

4.1.4 Summary . 62

4.2 JikesRVM . 62

4.2.1 Compilation Framework . 63

4.2.2 Memory Management . 64

4.2.3 Compiler Magic . 65

4.2.4 Library Interface . 66

4.2.5 Virtual Machine Build . 66

4.2.6 Security . 67

4.3 An Overview of S-RVM . 69

iii

4.4 Import and Export . 72

4.5 The VM Interface Layer . 73

4.6 Creating a Trust Boundary . 76

4.7 Privileged Access for the virtual machine Task 77

4.8 Exceptions . 79

4.9 Implementation Verification . 80

4.10 Summary . 81

5 Performance Evaluation 82

5.1 Memory Usage . 83

5.2 Application Task Startup . 85

5.3 Steady-State Execution Speed . 86

5.4 Summary . 92

6 Summary and Conclusions 93

6.1 Classification Framework . 93

6.2 The Exported Types Design . 94

6.3 S-RVM . 95

6.4 Revisiting the Classification Framework 96

6.5 A Multi-tasking Virtual Machine . 99

6.6 Structure-based Type Equivalence . 100

6.7 Summary . 101

A Exported Types Specifications 102

A.1 Type Systems . 102

A.2 Exported Types . 103

A.3 Mapping to zones . 105

B S-RVM Implementation Details 107

B.1 The Upcall Interface . 107

B.2 Initialising RVMTask . 110

B.3 String Backing Store . 111

B.4 Exception Conversion . 114

C Performance Data 117

Bibliography 138

iv

List of Tables

2.1 Methods for controlling reference propagation 34

2.2 Zones in systems providing reference protection 35

2.3 Classification of reference protection 36

2.4 Classification of reference protection 37

5.1 Minimum heap size . 84

5.2 Normalised execution times of the DaCapo benchmarks on S-RVM

relative to JikesRVM with 90% confidence intervals (Same Heap Size

scenario) . 88

5.3 Normalised execution times of the DaCapo benchmarks on S-RVM

relative to JikesRVM with 90% confidence intervals (Same Heap Pres-

sure scenario) . 89

6.1 Zones in systems providing reference protection 97

6.2 Classification of reference protection 98

6.3 Classification of reference protection 99

C.1 Mean execution times of the DaCapo benchmarks at the 1st iteration

(ms) . 118

C.2 Mean execution times of the DaCapo benchmarks at the 2nd iteration

(ms) . 119

C.3 Mean execution times of the DaCapo benchmarks at the 3rd iteration

(ms) . 120

C.4 Mean execution times of the DaCapo benchmarks at the 4th iteration

(ms) . 121

C.5 Mean execution times of the DaCapo benchmarks at the 5th iteration

(ms) . 122

C.6 Mean execution times of the DaCapo benchmarks at the 6th iteration

(ms) . 123

C.7 Mean execution times of the DaCapo benchmarks at the 7th iteration

(ms) . 124

v

C.8 Mean execution times of the DaCapo benchmarks at the 8th iteration

(ms) . 125

C.9 Mean execution times of the DaCapo benchmarks at the 9th iteration

(ms) . 126

C.10 Mean execution times of the DaCapo benchmarks at the 10th iteration

(ms) . 127

C.11 Mean execution times of the DaCapo benchmarks at the 11th iteration

(ms) . 128

C.12 Mean execution times of the DaCapo benchmarks at the 12th iteration

(ms) . 129

C.13 Mean execution times of the DaCapo benchmarks at the 13th iteration

(ms) . 130

C.14 Mean execution times of the DaCapo benchmarks at the 14th iteration

(ms) . 131

C.15 Mean execution times of the DaCapo benchmarks at the 15th iteration

(ms) . 132

C.16 Mean execution times of the DaCapo benchmarks at the 16th iteration

(ms) . 133

C.17 Mean execution times of the DaCapo benchmarks at the 17th iteration

(ms) . 134

C.18 Mean execution times of the DaCapo benchmarks at the 18th iteration

(ms) . 135

C.19 Mean execution times of the DaCapo benchmarks at the 19th iteration

(ms) . 136

C.20 Mean execution times of the DaCapo benchmarks at the 20th iteration

(ms) . 137

vi

List of Figures

1.1 The spectrum of isolation using reference protection 6

2.1 A component system with isolated zones 12

2.2 A component system with isolated zones and a shared zone 13

2.3 A component system using sealed zones 13

2.4 Structure of the JX system . 17

2.5 Heap structure in KaffeOS . 21

2.6 The exchange heap in singularity . 22

2.7 Taxonomy of methods for handling reachability roots 31

3.1 A component system with partial isolation 42

3.2 Overlaying the sealed zones model over the type hierarchy 43

3.3 Sealed zones . 44

3.4 Type hierarchies with exported types 45

3.5 Type hierarchies after import . 46

3.6 Extending an imported type . 47

4.1 The JikesRVM runtime environment 63

4.2 Type hierarchy in JikesRVM . 68

4.3 The S-RVM runtime environment . 69

4.4 RVMTask class diagram . 71

4.5 Bi-directional communication between tasks 74

4.6 Classloader class hierarchy . 74

5.1 S-RVM Boot image overhead . 84

5.2 Class loading during task startup . 85

5.3 Mean execution time on S-RVM relative to JikesRVM. 90

5.4 Steady state normalised execution times of the DaCapo benchmarks

on S-RVM at several heap sizes . 91

5.5 Separate vs. combined profiling . 92

6.1 A multi-tasking virtual machine . 99

vii

Abstract

Reference protection mechanisms are commonly used to isolate and to provide pro-

tection for components that execute within a shared run-time environment. These

mechanisms often incur an overhead due to maintaining the isolation or introduce

inefficiencies in the communication between the components. Past research oper-

ated under the assumption that some performance loss is an acceptable price for the

added security that comes with better isolation. This thesis sets out to demonstrate

that good isolation does not imply performance loss.

While numerous models for implementing reference protection have been sug-

gested, there is a lack of a unified terminology that allows the comparison of systems

from across the domain. This thesis presents a classification framework that cap-

tures the trade-offs present in the design of reference protection. It identifies four

main models of reference protection: complete isolation, where components do not

share references to objects; object sharing, where components can share data while

still maintaining private, unshared data; partial isolation, where components have

private, unshared data and an exposed interface that allows other component’s indi-

rect access to the private data; and initial isolation, where components are isolated

when created, but the model allows the programmer to share references without

restriction.

Applying the classification to systems providing reference protection identifies a

gap in the prior research. Partial isolation promises the level of security expected

from component isolation combined with efficient communication. Yet, the only

implementation of partial isolation of components uses expensive run-time checks

to enforce the protection.

To bridge this gap, this thesis presents the Exported Types design. Exported

Types is a type system design that enforces partial isolation at compile time. Us-

ing compile-time checks removes the run-time overhead of enforcing the protection

model. The design is applied to a meta-circular Java virtual machine to isolate the

virtual machine code from the application. Applying reference protection in this

scenario reduces the number of classes the virtual machine exposes to the appli-

cation by two orders of magnitude. Performance tests demonstrate that reference

protection, and the higher security it provides, are achieved at no performance cost.

viii

Declaration

I certify that this work contains no material which has been accepted for the award

of any other degree or diploma in any university or other tertiary institution and, to

the best of my knowledge and belief, contains no material previously published or

written by another person, except where due reference has been made in the text. In

addition, I certify that no part of this work will, in the future, be used in a submission

for any other degree or diploma in any university or other tertiary institution without

the prior approval of the University of Adelaide and where applicable, any partner

institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis, when deposited in the University Library,

being made available for loan and photocopying, subject to the provisions of the

Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available

on the web, via the University’s digital research repository, the Library catalogue

and also through web search engines, unless permission has been granted by the

University to restrict access for a period of time.

Yuval Yarom

September 12, 2014

ix

Acknowledgements

Ithaka gave you the marvelous journey.
Without her you would not have set out.
She has nothing left to give you now.

—Constantine Cavafy, “Ithaka”

The journey described in the following pages would not have been possible with-

out the dedicated guidance of my supervisors Dave Munro and Katrina Falkner. It

is through the wisdom they shared, the encouragement they provided and the pa-

tience they exercised that this work has come to fruition. It was an honour working

with them and the lessons they have taught will stay with me for the rest of my life.

I would also like to thank Henry Detmold who for a long time acted as an

unofficial supervisor. Many thanks also to Steve Blackburn, Ron Morrison and John

Zigman for the help they provided and their useful suggestions in various stages of

this work. Thanks are also due to Richard Jones and to the anonymous examiner

for the careful reading of this thesis and for the wise and helpful comments provided.

I am indebted to Kathy Cooper, Cathie Liersch, Sharyn Liersch, Julie Mayo,

Jo Rogers and Tracey Young who helped navigating the treacherous waters of the

university administration and for providing some geek-free refuge. Thanks also to

William Brodie-Tyrrell, Diana Hill, Peter Kelly, Ekim Kocadag, Joseph Kuehn,

Matt Lowry, Peter Nguyen, Travis Olds and Stani Ovtcharova who, over the years,

shared the working space with me and helped make the time spent on this PhD an

enjoyable experience.

The sages teach that without food there is no learning.1 It would be futile to try

listing all fine establishments providing sustenance around the university. However,

special mention must be made of the spicy chicken at Raah Cafe, the mayonnaise

chicken at Zen Garden and everything at Vego and Love’n It.

Most of all, I would like to thank my wife Karen Gekker and my children Yarden

and Itay for their help, support and encouragement throughout the years. I ac-

knowledge and deeply appreciate the sacrifices they made to allow me to continue

my studies.

1Ethics of the Fathers 3:17 . אין תורה ,אם אין קמח Lit.:If there is no flour, there is no (study
of the) Torah.

x

Chapter 1

Introduction

In recent years virtual machines1 that provide the run-time environment for exe-

cuting programs have proliferated all aspects of life. They run inside Web browsers

and inside Web servers. They are an integral part of desktop environments and of

embedded electronic devices.

Software running in these virtual machines often comprises multiple software en-

tities which provide abstractions of parts of the functionality of the system. These

entities are developed independently of each other, but may cooperate through com-

mon interfaces. Examples of such entities include code libraries, packages of mobile

code and third-party extensions, to name a few. This thesis refers to these entities

as components.

Components running in the same system are often developed by multiple, poten-

tially mistrusting parties. In such cases, components cannot trust the code of other

components. It is, therefore, desirable to limit the access an untrusted component

is given to the data of other components. Furthermore, even when there is mutual

trust, components may fail due to software errors. Containing component failures

and limiting their effect on the operation of the system is, therefore, desired.

To contain component failures and to protect the system from hostile compo-

nents, the virtual machine needs to isolate these components from one another.

Isolating components, however, reduces the efficiency and the ease of communica-

tion between them, hampering cooperation. Thus, the level of component isolation

a virtual machine provides presents a trade-off between the level of security and the

efficiency of inter-component communication. This trade-off is the domain of this

thesis.

This thesis explores the isolation provided by reference protection, or the use of

1The term “virtual machine” may refer to two distinct types of entities. The first is a software
entity that provides a run-time environment for a high-level language, such as Java or C# and the
second is a software entity that provides a virtualised system environment, e.g. VMware. “Virtual
machine” in this thesis always refers to the former.

1

software mechanisms to control the propagation of references between components.

Software-based protection has a finer granularity than hardware-based protection

and, therefore, allows greater flexibility. However, reference protection often incurs

a performance overhead due to the need to trace references to control their prop-

agation. Prior research into the use reference protection for component isolation

regards this overhead, as well as the costs of inefficient inter-component communi-

cation, as an acceptable price for the added security of component isolation. This

thesis shows that both performance and security can be delivered and there is no

need to sacrifice one to achieve the other.

The thesis presents a new classification framework for reference-protection mech-

anisms and describes a type system designed to enforce component isolation at

compile time while maintaining efficient inter-component communication. The type

system design is accompanied by a proof-of-implementation demonstrating that iso-

lation is provided at no performance cost.

The current popularity of virtual machines can be traced back to the introduc-

tion of the Java programming language [Gosling and McGilton, 1996, Lindholm and

Yellin, 1999]. Virtual machines have existed earlier [Shillington and Ackland, 1979]

and the concept that programming languages are implemented through a combina-

tion of hardware and software machines is even older [Neuhold and Lawson, 1971].

However, Java was one of the first languages to gain widespread acceptance by users,

programmers and researchers. The success of implementing Java using a virtual ma-

chine prompted many high level languages to use the approach [Bolz et al., 2009,

ECMA, 2006, Evans, 2011, Fagerholm, 2005, Ierusalimschy et al., 2005].

With the numerous languages that are implemented using virtual machines and

with the wide spectrum of environments in which virtual machines are employed, it

is no surprise that the nature of components is also varied. Examples of components

include applets downloaded to the browser [Dean et al., 1996], third-party exten-

sions to software systems, OSGi [OSG, 2011] bundles and tasks in multi-tasking

virtual machines [Aiken et al., 2006, Back et al., 2000a, Czajkowski, 2000]. While

these components are very different from each other, they do have a few common

properties.

In all of these systems, components are run-time software entities. As software

entities, they have code and data associated with them and the system keeps track

of when a particular component is executing. Furthermore, each component has

an identity which can be used for referring and managing it. For example, OSGi

bundles have an associated Bundle object that manages their life cycle and is used

for referring to them.

Components do not execute in a vacuum. For their operation they need to

2

communicate with the run-time environment and with other components. To that

aim, components support some sort of an interface and a communication protocol

that specifies how this interface is used. Yet, components also maintain some private

state, which is not accessed directly by other components.

Components, like all software, may fail. Furthermore, as components are often

downloaded from the Internet, they may include malicious code. Virtual machines

implement protection mechanisms whose aim is to isolate components, so that code

in one component can only affect the behaviour of other components via the use of

the communication protocol between them.

Software-based isolation mechanisms take one of two forms: reference protection2

and type protection [Morris, 1973]. Reference protection is the ability to declare

objects that are limited to a scope such that only code within that scope can name

or hold a reference to these objects. Type protection, most often implemented as

protection scopes, e.g. public and private scopes, refers to the ability to allow

access to members of an object based on the scope of the accessing code. These

forms correspond to implicit and explicit protection, identified by Bershad et al.

[1995a].

While reference protection is not as ubiquitous as type protection, extensive

research into it has been done within the context of component isolation [Aiken et al.,

2006, Back and Hsieh, 2005, Back et al., 2000a, Binder et al., 2001, Czajkowski,

2000, Czajkowski and Daynès, 2001, ECMA, 2006, Golm et al., 2002, Hawblitzel

et al., 1998, JNode, Rust Reference Manual, Spring et al., 2007, Tullmann et al.,

2001] in alias control [Clarke et al., 1998, Vitek and Bokowski, 2001] and in memory

management [Armbruster et al., 2007, Bollella et al., 2000, Grossman et al., 2002].

The principle of least privilege [Saltzer and Schroeder, 1975] is a central idea in

computer security. As formulated by Saltzer and Schroeder [1975], it states:

Every program and every user of the system should operate using the

least set of privileges necessary to complete the job.

Components communicate through the interfaces they provide. They do not need

to have access to the private state of other components. Hence, components do not

need references to the private states of each other. Consequently, the principle of

least privilege implies that references to the private state of a component should not

be accessible from outside that component.

Reference protection can isolate components and maintain the protection re-

quired for private data, preventing the propagation of references to the data. Type

protection can also be used for controlling reference propagation. However, without

2The original term Morris [1973] uses for this form is Memory Protection. As this term has
since been overloaded this thesis uses the less confusing term reference protection.

3

reference protection, the onus of maintaining the safety of the private data remains

with the programmer, and programmers are known to be fallible.

Implementations of reference protection vary with respect to the level of isola-

tion they provide. The choice of the isolation level presents a trade-off between the

level of security guarantees provided and the efficiency of the inter-component com-

munication. When isolation is strict, i.e. when components do not share references

to memory objects, communication between components must use indirect mecha-

nisms that require data copying and, often, marshalling. On the other hand, strict

isolation provides the benefit of a simple operation model which delivers higher se-

curity and is, usually, easier to implement. Less strict isolation permits some object

sharing. Sharing avoids the need for data copying and marshalling and, therefore,

allows for a more efficient communication. However, sharing is less secure than strict

isolation because it opens more ways of interaction between components. Further-

more, the need to distinguish between sharable and non-sharable data complicates

the implementation of reference protection models that support sharing.

Previous works on reference protection implicitly assume that the added security

provided by component isolation justifies the overhead which results from data copy-

ing or from tracing references. This thesis challenges this compromise and claims

that isolation can be provided at no run-time performance overhead. More specifi-

cally, it demonstrates that the performance overheads of isolation can be eliminated

by enforcing reference protection at compile time and by allowing direct references

from components to the interface of other components.

This thesis provides a new classification of reference-protection systems which

captures the trade-offs and creates a unified model for describing systems providing

reference protection. As part of the classification, it introduces partial isolation—a

reference-protection model that permits inter-component references to those ob-

jects that provide a communication interface. Although the partial isolation model

promises a combination of efficient communication and good isolation, past imple-

mentations of the model relied on expensive run-time enforcing of reference protec-

tion, which degrades the system performance.

To fill this gap, this thesis presents a design of a type system that provides

partial isolation of components. The design allows inter-component references, but

includes limitations on types in the system that prevent references from components

to the private data of other components. Access to public data promises an efficient

communication channel between components, whereas preventing access to private

data maintains the required level of protection.

Lastly, the thesis presents S-RVM [Yarom et al., 2012], a proof-of-implementation

of the type system design. This implementation is carried out within the context

4

of a meta-circular Java virtual machine. Meta-circular virtual machines execute

the virtual machine in the same run-time environment they provide for the applica-

tion. Thus, the application and the virtual machine are two separate components

executing within that run-time environment. S-RVM uses the type system design

to separate these two components and to protect the internal state of the virtual

machine from the application.

The rest of this chapter introduces the work presented in this thesis. It presents

the classification, the type system and the implementation. The chapter concludes

with a summary of the contributions of this thesis and a road map to the rest of the

thesis.

1.1 Classification of Reference Protection Systems

As mentioned above, an extensive body of research into reference protection exists.

Comparing research in this area is complex due to the absence of a consistent de-

scription that applies to all systems. The purpose of the classification framework

described in this thesis is to provide such a description.

The classification is based on the concept of a zone, which is a group of objects

to which protection is applied uniformly. The thesis defines zone types that are

sufficient to describes the protection policies used in existing systems.

• An isolated zone consists of objects that can only be referenced from within

the zone.

• A shared zone consists of objects that can be referenced from multiple zones.

• A sealed zone contains objects that can be referenced from within the zone as

well as from a single interface zone. The interface zone itself is a shared zone.

Privileged zones are special zones that are not affected by the restrictions of

other zones. That is, references from objects in a privileged zone are permitted to

any zone, overriding the restriction of the target zone. Privileged zones appear in

components that implement system functionality and may, therefore, require access

to any object in the system. The privileged zone itself can be of any of the three

zone types.

The combination of zones in a system and the way these zones are associated

with the components defines the protection model of the system. Existing research on

reference protection offer four protection models which represent different trade-offs

between the level of security and the efficiency of communication mechanisms.

Complete isolation is achieved by using isolated zones exclusively, where the data

of different components resides in different zones. As references between components

are not permitted, components cannot directly affect the computation of one another.

Hence, the components are isolated from each other. With the absence of inter-

5

component references, communication between components can only be achieved

through system-provided communication channels.

Isolation with object sharing extends complete isolation by adding shared zones.

Objects in the shared zones can be used for sharing data between components.

Sharing facilitates transferring information between domains. Sharing, however,

reduces the level of isolation because components can directly affect the computation

of other components by modifying shared values.

Partial isolation is achieved by the use of sealed zones. A sealed zone encom-

passes the private data of each component. Objects in the corresponding interface

zone are permitted to hold references into the sealed zone. These objects are, them-

selves, shared, hence other components may hold references to the objects in the

interface zone. Consequently, by invoking methods of objects in the interface zone

of a component, other components can get indirect access to the private data of that

component. By providing indirect access to private data, partial isolation offers a

lower level of security than object sharing. At the same time, the ability to invoke

code in another component provides communication options that are not supported

by the more strict levels of isolation.

When components are created in systems providing initial isolation, the data

of a component is initially, i.e. when the component is initialised, isolated. The

component may, however, share references to its internal data and the system does

not enforce any restrictions on this sharing. With this model the decision on the

trade-off between communication and security is left to the developers.

Figure 1.1 shows where the described protection models fit within the spectrum

of isolation. Systems to the left of the chart offer fewer restrictions on communication

and, consequently, less security. Systems to the right of the chart are more secure

but only offer less efficient channels of communication.

Security

Isolation
Partial

Isolation

Isolation with
Object Sharing

Complete
Isolation

HigherUnrestricted

Communication

Initial

Figure 1.1: The spectrum of isolation using reference protection

The spectrum can be extended both to the right, through the use of hardware

protection mechanisms or separate hardware, and to the left, for example by not

using reference protection or by using languages with no type safety. As the topic

of this thesis is reference protection, these extensions are outside the scope of this

thesis.

Because the partial isolation model does not allow references to objects in the

private data of components, the level of isolation it provides is sufficient for compo-

nent isolation. As such, of all the models described, partial isolation provides the

6

most flexible communication options, without breaching the isolation requirements.

Yet, past implementations of the model for component isolation enforce the model

using run-time tests, which introduce a performance overhead. The next section

describes a design of a type system that uses static type rules to enforce partial

isolation using sealed zones.

1.2 Exported Types

Exported Types is a design of the essential characteristics of a type system that

provide component isolation with sealed zones. Exported Types can be applied to

the type system of existing languages as well as be a part of the design of a new

type system.

The main benefit of Exported Types is that it enforces partial isolation at compile

time. That is, the type information associated with references is sufficient for the

compiler to prevent assignments that would breach the reference-protection model.

Thus, Exported Types avoids the overhead of making reference protection related

decisions at run time.

To separate components, Exported Types partitions the types in the system into

multiple name spaces and associates each component with a name space. Textual

type names used by a component are resolved within the component’s name space.

Unless otherwise configured, name spaces are disjoint. The types in different compo-

nents are not shared and the type safety of the language prevents inter-component

references.

Two operations are used for creating the interface zones. Components export

types to make these types available to other components. Components import pre-

viously exported types, binding the imported type names to the previously exported

types. Thus, objects of exported types are accessible from components importing

the types, allowing efficient inter-component communication.

Exported types may include members that should not be accessible from outside

the exporting component. This could be the result of the exported type inheriting

these members from its superclasses or could be a software engineering decision of

providing elevated privileges to the code of the exporting component.

Protecting members from access from outside the component is achieved by

adding a remote scope for exported types. Members of exported types that can be

accessed remotely are annotated to be included in the remote scope. Members not

annotated are only accessible from the exporting component. The use of an explicit

scope ensures that only methods intended to be used remotely are used from outside

the component.

7

1.3 Implementation of Exported Types

S-RVM is a proof of implementation of providing reference protection using the

Exported Types design. It is a Java virtual machine based on JikesRVM [Alpern

et al., 1999, 2000]. Like JikesRVM, S-RVM is a meta-circular virtual machine. That

is, it is written in the same language and executes in the same run-time environment

that it provides. Unlike JikesRVM, S-RVM maintains a strict separation between

the virtual machine and the application. Separating the virtual machine from the

application protects the internal data and interfaces of the virtual machine and

ensures that the application does not access them. Hence, the design of S-RVM is

inherently more secure than that of JikesRVM.

S-RVM uses the Exported Types design to separate the application from the

virtual machine. The virtual machine and the application each execute as separate

components. Reference protection prevents references from the application to pri-

vate virtual-machine objects. Yet, the use of the Exported Types design, allows the

virtual machine to export types of objects that provide virtual-machine services to

the application. Application objects may hold references to objects of these exported

types.

One consequence of the design of S-RVM is that it maintains separate copies of

library types for the virtual machine and for the application. Each of the copies of the

library is optimised for its corresponding workload. Consequently, the performance

of optimised code in S-RVM is marginally better than in JikesRVM.

Basing S-RVM on an existing virtual machine provides a real, non-artificial base-

line to compare the performance of the design. The interface between the application

and the virtual machine is frequently exercised during the lifetime of the application.

Hence, using Exported Types in this specific settings heavily uses the interface be-

tween components, and demonstrates that the Exported Types design can provide

the added security with no performance cost.

1.4 Summary of Contributions

This thesis challenges the common point of view that isolation costs and demon-

strates that there is no need to sacrifice performance for the sake of security.

The thesis presents a new classification framework for systems providing reference

protection. The classification captures the salient features of reference protection

with respect to both the level of security and the efficiency of inter-component

communication. It creates a unified terminology for comparing systems from across

the domain and is useful for specifying isolation properties when designing reference-

protection mechanisms.

8

The thesis also provides the first design of type system that enforces the partial

isolation protection model. The design can be used as a basis for a type system for

a new language as well as to extend an existing type system.

S-RVM, a proof of implementation of the type system design is described. The

implementation enhances the security of the JikesRVM Java virtual machine by

isolating the implementation of the run-time environment from the application exe-

cuting within it. S-RVM slightly outperforms JikesRVM in the steady state. While

this improvement is not statically significant, S-RVM does achieve the goal of pro-

viding increased security at no performance cost.

1.5 Thesis Structure

The next chapter develops the classification of reference-protection systems and

presents a survey of existing systems. It identifies the absence of a solution that

enforces partial isolation at compile time. This gap motivates the development of

the Exported Types design, described in Chapter 3.

S-RVM, described in Chapter 4, is an application of the Exported Types design to

separate the virtual machine from the application in a meta-circular virtual machine.

The performance of S-RVM is analysed in Chapter 5, which demonstrates that the

design provides the security of isolation with no performance degradation.

Chapter 6 presents the conclusions of this work and suggests directions for future

research.

The appendices provide a semi-formal description of the Exported Types design

(Appendix A), a more detailed information on the implementation (Appendix B)

and detailed performance data (Appendix C).

9

Chapter 2

A Model and Classification of

Reference Protection

This thesis promotes the use of the partial isolation model for component isolation

using reference protection. This chapter introduces the vocabulary required for dis-

cussing reference-protection models, including the description of the partial isolation

model. The chapter presents a classification of reference-protection models that suc-

cinctly captures the trade-offs the models make between the level of isolation and

efficiency of inter-component communication.

The next section presents the novel concept of zones, which is central to the

classification of reference-protection models. The following four sections present the

protection models identified in this thesis and surveys existing systems that support

each of the models. Section 2.6 discusses the techniques used for providing reference

protection. Section 2.7 concludes the chapter with a discussion of the effectiveness

of the classification.

2.1 Zones

Memory protection, or the ability to keep memory references local to a scope, is

not a new concept [Lampson and Redell, 1980, Morris, 1973]. For many years,

however, research into memory protection was focused on hardware mechanisms

and how to use them to protect memory [Bershad et al., 1995a]. Early languages

and software-based operating systems such as Mesa [Lampson and Redell, 1980,

Mitchell et al., 1979], Pilot [Redell et al., 1980], Cedar [Swinehart et al., 1986] and

SPIN [Bershad et al., 1994, 1995b, Sirer et al., 1996] do not support software-based

memory protection.

Research into software-based control of the propagation of references, or reference

protection, started shortly after the introduction of the Java programming language.

10

From its inception, Java was designed to handle mobile code and the security issues

related to it [Gosling and McGilton, 1996]. Language mechanisms to control the

behaviour of mobile code were included in early versions of Java and were later de-

veloped, becoming the security architecture of modern Java implementations. Java,

however, does not support reference protection. Consequently, while it may be pos-

sible to create a Java-based operating system [Sun Microsystems, Inc., 1996], the

language’s lack of reference protection limits its use for component isolation and the

protection that the operating system can provide for components [Back and Hsieh,

1999, Czajkowski, 2000].

Many approaches for adding component isolation through reference protection to

Java and other languages have been suggested [Aiken et al., 2006, Back and Hsieh,

2005, Back et al., 2000a, Binder et al., 2001, Czajkowski, 2000, Czajkowski and

Daynès, 2001, ECMA, 2006, Golm et al., 2002, Hawblitzel et al., 1998, JNode, Rust

Reference Manual, Spring et al., 2007, Tullmann et al., 2001]. Naturally, reference

protection restricts sharing and, therefore, limits communication. In systems that

enforce strict isolation between components no sharing of data is supported and

all data communication requires copying. In other systems, sharing of data and of

computation is permitted at the cost of a less rigid isolation.

While many approaches for component isolation have been suggested there is

a lack of a unifying terminology that allows comparing the different approaches to

reference protection. To better understand the landscape this thesis introduces the

concept of zones, where a zone is a group of objects to which a protection rule is

applied uniformly.

The role of zones in a reference-protection system is similar to the role of memory

segments in hardware-based memory protection [Bensoussan et al., 1969, Organick,

1972]. To avoid the need to track the permissions for each and every memory address,

hardware protection mechanisms combine ranges of addresses into segments and

apply protection rules uniformly to all the addresses within a segment. In a similar

fashion, because it is easier for the run-time environment to make decisions based

on groups of objects than to track permissions for each and every object, zones are

implicit in the design of reference-protection systems.

Zones can be classified according to how inter-zone references are permitted and

managed. The classification provided here identifies types of zones that represent a

trade-off between the level of isolation and the ease of communication that reference-

protection systems provide. These zone types form the basic building blocks from

which any reference protection system constructs its reference protection policy.

11

Isolated Zones

Objects in isolated zones can only be referenced from within the zone. External

references into isolated zones are prohibited.

Component A

Component B

Component C

Figure 2.1: A component system with isolated zones

Figure 2.1 shows a system with multiple isolated zones. Objects can hold refer-

ences to other objects within the zone. However, references across zone boundaries

are not permitted. As external references into the isolated zones are prohibited,

these zones are the reference-protection equivalent of task-private memory segments

in traditional operating systems [Organick, 1972].

The main advantage that isolated zones offer is the guarantee that, due to the lack

of external references, the values in the zone can only be accessed by the component

associated with it. Thus, isolated zones offer security and simplify programming.

This isolation, nevertheless, has a downside. Because external references to the zone

are not allowed, components cannot share the data in the zone. The only way to

communicate data is using message passing, i.e. by copying it out of the zone.

Shared Zones

Shared zones are zones that can have incoming references from multiple other zones.

They are the reference-protection equivalent of shared segments in traditional op-

erating systems and are used in a similar manner [Organick, 1972]. Systems that

support shared zones use them in combination with isolated zones. In such systems

isolated zones are used for components’ private data and shared zones are used for

efficient communication between components.

A system supporting multiple components that communicate using shared zones

is presented in Figure 2.2. As can be seen in the diagram, each of the two components

has its own isolated zone. References from these zones to the shared zone are

12

− Shared Zone

Component A Component B

Shared Zone

− Isolated Zone

Figure 2.2: A component system with isolated zones and a shared zone

permitted. However references to the isolated zones, either from the shared zone or

from other isolated zones, are prohibited.

Sealed Zones

A sealed zone is a zone that can only have incoming references from a corresponding

interface zone. The interface zone itself is shared and external objects can hold

references to it. Sealed zones and their corresponding interface zones are used to

model the private data and the communication interface of components. The sealed

zone contains the private data of the component and the interface zone contains

the public data. The interface zone “wraps” the sealed zone controlling all external

access to the private data.

Component C

Component A

O1

O2

O3

− Interface Zone

− Sealed Zone

Component B

Figure 2.3: A component system using sealed zones

Sealed zones are demonstrated in Figure 2.3. As can be seen in the diagram, ex-

ternal references to objects in the interface zones are permitted. However references

13

to objects in a sealed zone are only allowed from objects within that zone or from

objects in the corresponding interface zone.

Sealed zones provide a more relaxed isolation than shared and isolated zones

provide. In sealed zones systems, a component can refer indirectly to another com-

ponent’s private data. Figure 2.3 shows an example of this, where object O1 in

Component B refers, via object O2, to object O3—a private object of Component C.

The main advantage of sealed zones is that they support method invocation

across component boundaries. Systems using isolated zones only cannot share data.

Instead they must use sequential communication mechanisms to copy data.

Systems supporting shared zones reduce the overhead of communication by shar-

ing data, but they do not include a mechanism for transferring control. To share

computation between components, the components must agree on a Remote Proce-

dure Call (RPC) protocol.

With sealed zones, a component can hold references to objects in the interface

zone of another component. It can use this reference to invoke methods of these

objects, effectively gaining access to the other component. This access is not, how-

ever, unrestricted. Type protection can be used to limit the access from external

components to those members of interface objects that are safe for external access.

Systems using sealed zones can support nested zones. Such systems allow more

flexibility in the access control than is possible with a flat system. Ownership types,

described in Section 2.4.3 is an example of a system supporting nested sealed zones.

Sealed zones have no immediate counterpart in memory protection. Some hardware-

based mechanisms that achieve similar effects have been suggested. System calls in

traditional operating systems are the most common example of transferring control

across component boundaries. Another example is lightweight remote procedure

calls [Bershad et al., 1990], which use a combination of system traps and system

code to allow transfer of control between tasks.

Privileged Zones

Each of the zone types described above can be designated as being privileged. Out-

going references from privileged zones are allowed to any object, overriding the

restrictions of the target zone. Privileged zones are used for system code that may

require access to any object in the system. They are, therefore, the reference pro-

tection counterpart of the traditional operating-system kernel.

Systems combine the zone types described above to construct their reference-

protection model, which is a broad classification of the permissions and restrictions

the system imposes on references. This thesis identifies four reference-protection

models. Systems that provide the complete isolation model use isolated zones exclu-

14

sively. With no references crossing zones boundaries, this model achieves the highest

level of isolation. However, inter-component communication in these systems can-

not use data sharing, introducing an overhead through the use of data copying and

marshalling.

The object sharing model uses both isolated and shared zones. Isolated zones

are used for the components, whereas shared zones are used for shared data. As the

model supports data sharing, inter-component communication in systems using this

model is more efficient than when the complete isolation model is used. However,

sharing reduces the level of isolation provided by the system.

Partial isolation is a reference-protection model that uses sealed zones and their

corresponding interface zones to model components. The model allows indirect

references to the private data of a component. Hence, it further relaxes the isolation

provided by the object sharing model. At the same time, indirect references allow

components to invoke methods on objects within other components, enhancing the

communication options provided by the system.

The fourth model is initial isolation. In this model, when components are in-

stantiated they are isolated from other components. However, the system provides

primitives for sharing object references between components without imposing re-

strictions on what can be shared. Consequently, in the initial isolation model, the

onus of ensuring that references to private data do not escape from the component

lies with the programmer.

The next four sections provide a survey of systems supporting reference protec-

tion, grouped by the reference-protection model provided by the systems.

2.2 Complete Isolation

Systems providing complete isolation aim to achieve a level of component isolation

similar to that provided by a traditional operating-system process abstraction. By

preventing any sharing of data, these systems ensure that components can only

communicate through system-defined communication channels.

Systems using this approach partition the object space to isolated zones such

that each component has its own zone. Using only isolated zones implies that the

system prohibits both incoming and outgoing references from the components’ data.

Some of the systems in this section use a shared zone for objects that are guar-

anteed to be immutable. Sharing immutable objects relaxes the isolation slightly,

but still prevents a component from changing data visible to other components.

15

2.2.1 MVM

The Multitasking Virtual Machine (MVM) [Czajkowski, 2000, Czajkowski and Daynès,

2001, Czajkowski et al., 2003] is a Java virtual machine that executes multiple in-

dependent tasks, or isolates [Java Community Process, 2006] in the same virtual

machine. The system aims to isolate the tasks from one another, while sharing as

much code and metadata as possible.

MVM isolation is based on the observation that the only initially shared values

in Java classes are the static fields, the associated Class objects and String literals.

By providing each application with its own set of values MVM completely isolates

the applications.

Reports on MVM describe two versions. The earlier [Czajkowski, 2000] is imple-

mented using bytecode manipulations that replace static fields with arrays and the

static field access operations with array access operations. The later version [Cza-

jkowski and Daynès, 2001] modifies the virtual machine itself to achieve a similar

effect, however class representation, including both bytecode and compiled code,

remains shared between the applications.

Sharing the code amortises the memory footprint of the virtual machine over

the running applications, reducing the total memory footprint required for running

multiple instances of the same application. It also reduces the application start up

time for repeated executions of the same application. Shared compiled code may,

however, result in a loss of optimisation opportunities. For example, constant prop-

agation of static fields cannot be used if the field’s value is not shared [Czajkowski,

2000].

The overhead of replacing all static fields ranges from almost nil for benchmarks

that hardly use static fields to about 70% when static fields are heavily used. When

sharing static final primitive fields, String literals and constant arrays, the max-

imum overhead is about 5% for the first version [Czajkowski, 2000] or 7% for the

second [Czajkowski and Daynès, 2001].

2.2.2 JX

The JX Operating System [Golm et al., 2001, 2002, Wawersich et al., 2002] is an

operating system that employs software protection for component isolation. Its main

aim is to demonstrate that a Java-based operating system can be built without a

large performance degradation.

JX has a small microkernel written in C and assembly. The rest of the system

is composed of components loaded into domains. JX Components are collections of

code and do not have any specific role in protection. Thus, JX components are not

components in the sense used for the rest of this thesis. In JX, the unit of isolation,

16

or what the rest of this thesis refers to as “component,” is the JX domain.

Figure 2.4: Structure of the JX system (from Golm et al. [2002])

Figure 2.4 demonstrates the structure of the JX System. Each domain main-

tains its own heap, garbage collection and threads and has its own type hierarchy.

Objects of one domain are not assignment compatible with types of other domains.

Consequently, cross-domain references violate the type safety and cannot be created.

Domains communicate via portals, which are communication endpoints attached

to services in other domains. Portals are, technically, Java interfaces that extend

the Portal interface. To maintain method invocation semantics, the calling thread

blocks on portal calls while a service thread at the target domain handles the request.

Arguments of portal calls are deep-copied to avoid cross-domain references.

Deep copying implies that, unlike Java semantics, objects are passed by value. A

consequence of passing by value is that objects lose their identity when transferred

across portals. This may result, for example, in two copies of the same object being

created in the server.

A JX component can be loaded into multiple domains. To reduce the memory

footprint the code of the classes in the JX component is shared between all the

domains loading it.

2.2.3 The .Net Framework

The Microsoft .Net framework [ECMA, 2006] is a software framework used primarily

on Microsoft Windows, with the aim of providing a common environment for running

applications written in multiple languages and supporting language interoperability.

17

Applications in .Net run within application domains, which are completely isolated

from each other.

Software components (assemblies) are loaded into application domains. Assem-

blies loaded as domain neutral share the code across all domains they are loaded

into. Assemblies that are loaded as domain specific have their own copy of the

code. Sharing code allows the system to reduce the memory footprint at a slight

performance cost.

.Net supports the concept of remote types which allow applications to commu-

nicate across the application-domain boundaries. Remote types are implemented as

proxies that transparently marshall and send data across the communication chan-

nels. The marshalling process creates proxies for objects of remote types. Deep-

copying is used for other objects.

2.2.4 JNode

The Jnode Operating System [JNode] is an attempt to build a Java-based oper-

ating system. Jnode implements the Application Isolation API [Java Community

Process, 2006], where programs execute within separate entities called Isolates and

communicate using communication channels called Links. Isolates are isolated by

providing each with its own set of values for static fields.

The JNode operating system itself executes within the root isolate. As the root

isolate manages the system, it needs to be able to access all the objects in the system,

regardless of the isolate the objects belong to. Consequently, references from the

root isolate to other isolates are not restricted, and the root isolate is privileged.

Furthermore, to avoid the communication overhead through Links, isolates hold

references to root isolate objects. JNode isolation, therefore, only applies between

non-root isolates. As all isolates can hold references to root isolate objects, the root

isolate is a shared zone.

2.2.5 OVM

OVM is a real-time meta-circular Java virtual machine. The system architecture

consists of one executive domain which runs the virtual machine and multiple user

domains that execute user programs [Armbruster et al., 2007, Spring et al., 2007].

Each domain in OVM has its own name space which is completely segregated

from other domains. Hence, types in one domain are not assignment compatible with

types in other domains and cross-domain references are prohibited. Consequently,

the objects in each domain form an isolated zone.

The zone of the executive domain is privileged. The executive domain includes

a special type Oop, which can refer to any object in the system. Oop references are

18

used by the executive domain for managing the user domains.

Cross-domain calls are supported between the executive domain and the user

domains. The executive domain uses reflection on Oop objects to invoke methods in

the user domains. The user domains use methods of the type LibraryImports

for invoking executive domain methods. The compiler intercepts invocation of

LibraryImports methods and translates those to calls to methods of a RuntimeExports

object in the executive domain.

Communication between the user domains and the executive domain in OVM

does not, therefore, require data marshalling or copying. However, this communica-

tion mechanism relies on the privileged nature of the executive domain and on the

special treatment of the LibraryImports class. Hence, this communication mecha-

nism cannot be extended to general cross-domain communication without breaking

the isolation properties of the system.

2.2.6 Summary

Three observations are made on the systems described above. The first is that

static fields and boxed literals are implicitly shared by all code running in a virtual

machine. Having a separate copy of these values for each component is, therefore,

a necessary condition for complete isolation.

The second observation is that in a type-safe language there is no way to forge

or create a reference to an object. The only way code can get a reference to an

object is by following the reference chains from objects it already has references

to. Combining these observations implies that in the absence of an explicit way of

transferring references between components, separating the static values and boxed

literals is sufficient for complete isolation.

The third observation is that where performance information is available, shar-

ing code between components presents a trade-off between memory footprint and

performance. Sharing reduces the amount of memory required for storing multiple

copies of the code, but there are limitations on optimisations that can be applied to

shared code, reducing its overall performance.

Components in systems using complete isolation cannot use the memory for

communication and must rely on communication channels. Communication channels

introduce an overhead for marshalling and unmarshalling data. They also introduce

changes in language semantics due to the pass-by-value nature of communication.

Sharing objects between components can reduce the communication overhead.

19

2.3 Object Sharing

Isolation with object sharing is the reference-protection equivalent of using shared

memory. In systems that provide isolation with sharing, components are still asso-

ciated with isolated zones. In addition, the system provides shared zones which are

used for inter-component communication. These systems restrict references coming

into the components’ private data but allow outgoing references.

Object sharing reduces the overhead required for marshalling and unmarshalling

objects across communication channels.

2.3.1 KaffeOS

KaffeOS [Back, 2002, Back and Hsieh, 2005, Back et al., 2000a,b] is a Java oper-

ating system that supports the abstraction of a process. It is based on the Kaffe

virtual machine [Kaffe] which is a free implementation of a Java virtual machine.

Each process in KaffeOS has its own heap, where a process’s heap is garbage col-

lected independently of other processes’ heaps. References between process heaps

are prohibited.

To facilitate efficient inter-process communication, KaffeOS supports sharing

objects between multiple processes. Shared objects are located within special shared

heaps. Types of objects in shared heaps come from a central name space, ensuring

that all processes sharing the heap have the type information for the objects in the

heap.

KaffeOS also includes a kernel heap which is used for the implementation of

KaffeOS itself. All heaps can hold references to kernel objects and kernel object

can hold references to any object in the system. The kernel heap is, therefore, a

privileged shared zone. Figure 2.5 demonstrates the heaps structure of KaffeOS.

Once created, a shared heap is frozen. New objects cannot be created and objects

are not reclaimed from the heap. Heap objects are reclaimed en masse when none

of the heap’s objects is externally accessible. Freezing a shared heap is required for

meeting KaffeOS’s goal to account precisely for the memory used by processes [Back

and Hsieh, 2005].

While the composition of a shared heap cannot change, objects in the heap

are not constant and their fields are mutable. Write barriers [Wilson, 1992] are

used to ensure that references from shared heaps do not point to objects in the

processes heaps. The write barriers, which are invoked on every reference store,

cause a performance overhead of up to 7% [Back et al., 2000a]. The total overhead

of KaffeOS over Kaffe is up to 25% [Back and Hsieh, 2005].

20

Figure 2.5: Heap structure in KaffeOS (from Back et al. [2000a])

2.3.2 Singularity

Singularity [Aiken et al., 2006, Fähndrich et al., 2006, Hunt et al., 2005] is an

operating systems research project in Microsoft. The approach it takes is: building

on advances in programming languages and programming tools to develop and build

a new system architecture and operating system (named Singularity), with the aim

of producing a more robust and dependable software platform [Hunt et al., 2005].

The Singularity operating system supports two levels of isolation. Hardware

Isolated Processes (HIPs) are similar to processes in traditional operating systems.

Each HIP has its own virtual address space and protection is maintained using the

hardware protection mechanisms of the processor.

Software Isolated Processes (SIPs) are, as their name implies, processes that rely

on software protection for isolation. Several SIPs can reside in a single HIP, each

one of them being a closed object space, with no references crossing between SIPs.

SIPs communicate using channels , which are strongly typed connections between

processes. The Sing# language used in Singularity is a variant of C# that provides

constructs for specifying program behaviour. One of the features Sing# provides is

channel contracts which specify the legal sequences of messages on channels.

Each HIP also features an exchange heap (Figure 2.6) that can be used for sharing

data between SIPs. The syntax of Sing# makes an explicit distinction between ref-

erences to values in the process’s heap and references to values in the exchange heap.

Singularity restricts the types of values in the exchange heaps to primitive types,

21

structures and vectors of exchange heap types. Structures are further restricted to

not include references to the process’s heap.

Figure 2.6: The exchange heap in singularity (from Hunt et al. [2005])

The restrictions on values in the exchange heap imply that all references in the

exchange heap must point to values in the exchange heap. Hence, the exchange heap

cannot propagate references to processes’ heaps, ensuring that SIPs are isolated.

Also, since the exchange heap cannot contain objects, Singularity does not allow

sharing behaviour. Only data can be shared between processes.

The semantics of Singularity prevent concurrent access to shared values. A value

in the exchange heap has exactly one owner that can access it. References to shared

values can be transferred in messages. Transferring a reference also transfers the

ownership of the referenced value preventing any further access by the sender.

2.3.3 Rust

The Rust programming language [Rust Reference Manual] aims to provide a type-

safe, memory-safe and concurrent programming platform. Its design is oriented

towards creating and maintaining boundaries—both abstract and operational—that

preserve large-system integrity, availability and concurrency [Rust Reference Man-

ual].

Rust supports lightweight tasks and the primitives required for task communica-

tion. Each Rust task has its own garbage-collected heap. These heaps are completely

isolated, with no cross-task references allowed.

In addition, Rust supports a shared heap that is used for values that are shared

between tasks. As in Singularity, no concurrent access to shared values is supported,

yet references to shared values can be transferred between tasks without the need

to copy these values.

22

Tasks communicate using communication channels that allow sending and re-

ceiving values. Only scalar values and pointers to shared-heap values can be sent in

messages.

The shared heap itself is created implicitly and consists of all the owned values

of owned types. Owned values in Rust are values pointed to by owning pointers,

which is Rust term for unique pointers [Aldrich et al., 2002, Minsky, 1996]. Each

owned value has exactly one owning pointer referring to it. Owning pointers are

moved rather than copied, ensuring that the one-to-one relationship between owning

pointers and owned values is maintained.

Owned types in Rust are all the scalar types, the types of owning pointers to

owned types and structural types whose members are owned types.

The structure of the shared heap prevents data races by not allowing concurrent

access to values. By only allowing transfer of owning pointers of owned types, Rust

guarantees that the receiving task is the only task that has access to the transferred

value or any of the values reachable from it.

One consequence of the design of owned types is that pointers in owned types

always refer to values in the shared heap, ensuring that no references from the

shared heap to the tasks heaps exist. Another consequence is that it enforces a tree

structure on values in the shared heaps. Cyclic structures in the shared heap are

not reachable and cannot be used.

Rust initialises new tasks with a closure [Landin, 1964] that specifies both the

function the task executes and the values in the environment that the function needs.

Only owned closures (closures with data in the shared heap) can be used for task

initialisation. The ownership of the closure is transferred to the new task, ensuring

that no part of the initial environment of the task is shared with any other task.

2.3.4 XMem

The aim of XMem [Wegiel and Krintz, 2008] is to provide a type-safe shared memory

between isolated programs, each executing in a separate operating system process.

Shared objects are allocated in a shared memory region which is mapped in the

same virtual address of all participating processes.

XMem only shares object representations. Class metadata and static fields are

stored in the private data of each process. XMem ensures classes of shared objects

are loaded on all participating processes. It also verifies that all participating pro-

cesses use the same implementation of globally-shared classes. Each program also

executes an XMem management thread. These threads cooperate to perform global

operations, such as shared class loading, which require synchronisation across the

system.

23

To maintain referential integrity within the shared region, XMem disallows ref-

erences from it to private objects. XMem employs a write barrier to check each

reference-store operation and verify that it does not breach the restriction. As with

KaffeOS, the write barriers impose an overhead, which in XMem’s case ranges from

0.3% to 3.5% [Wegiel and Krintz, 2008].

XMem does not provide reference protection and relies, instead, on hardware-

based mechanisms for protection. However, having a type-safe shared memory region

and the need to maintain referential integrity raise issues similar to those found in

systems that offer reference protection with object sharing. XMem’s approach to

these issues is, therefore, relevant to the current discussion.

2.3.5 CoLoRS

Co-Located Runtime Sharing (CoLoRS) [Wegiel and Krintz, 2010], like XMem, is

a system that provides type-safe shared memory between isolated programs. Like

XMem, CoLoRS creates a shared memory region and maps it in the same address

in all participating processes. Unlike XMem, CoLoRS targets heterogenous environ-

ments, allowing sharing e.g. between Java and Python programs.

The shared memory region in CoLoRS is managed by a dedicated server process.

The use of a separate process obviates the need for global synchronisation and the

per-program threads found in XMem.

Referential integrity of the shared region in CoLoRS is maintained by write

barriers. To reduce the overhead of these barriers, CoLoRS optimistically com-

piles methods with the assumption that they only access private objects. CoLoRS

guards these methods, and reverts to the interpreter and to recompilation if the

assumption does not hold. Even with the speculative optimisation, CoLoRS incurs

a performance overhead of 5%.

2.3.6 Real-Time Java

Real-time Java is a specifications of an extension of the Java language to support

real-time programming [Bollella et al., 2000]. As part of its memory management,

real-time Java supports scoped regions [Tofte and Talpin, 1994]. Scoped regions

create a hierarchy of regions, such that objects in higher levels of the hierarchy can

hold references to objects in lower levels, but not vice versa. This restriction allows

collecting the top level regions en masse when they become unreachable, thereby

reducing the pressure on the garbage collector. By not requiring the use of a garbage

collector for collecting scoped regions, the system can meet the real-time guarantees.

The specifications do not specify how to prevent references from lower-level re-

gions to higher-level regions. It does, however, require that assignment are checked

24

before being executed, thereby hinting at the use of write barriers. It also suggest

that optimisations through the use of static analysis are acceptable. OVM imple-

ments the real-time Java specifications within its user domains [Armbruster et al.,

2007]. The OVM implementation uses wrte-barriers.

Objects in scoped regions can be referenced by objects in multiple other regions.

Hence, scoped regions are shared zones. Scoped regions, however, are not designed

for component isolation, consequently, the design does not specify any isolated zones.

Furthermore, while there are obvious restrictions on reference propagation in the

system, the classification presented here is not expressive enough to capture these.

2.3.7 Summary

The main issue that systems providing isolation with object sharing need to address

is how to prevent references from the shared zone to isolated zones. Unless restricted,

code that has access to both the shared and the isolated zones could break reference

protection.

Some systems use write barriers that check reference-store operations at run time

to ensure that the operations do not breach reference protection. Validating each

and every store operation can incur a significant performance overhead. However,

compiler techniques, such as the optimistic optimisation in CoLoRS, can reduce this

overhead.

An alternative approach for preventing breaches to reference protection is to limit

the types of objects in the shared zones so that references from them to objects in

the isolated zones are not type safe. When type safety is enforced at compile time,

this approach does not incur a run-time performance overhead.

Shared zones facilitate sharing of large quantities of data between components.

However they rely on the use of additional mechanisms to transfer control, e.g. for

invoking code in another component. Partial isolation, discussed in the next section,

provides direct method invocation across component boundaries.

2.4 Partial Isolation

Partial isolation makes a distinction between private and public objects within the

component space. Cross-component references are permitted only to public objects.

Systems that support partial isolation use sealed zones and their corresponding

interface zones to model components. Objects private to the component are within

the component’s sealed zone whereas public objects are in the interface zone. Be-

cause the interface zone is shared, components can access objects in the interface

zones and by invoking methods of object in the interface zones components can get

25

an indirect access to other components’ private data. The design of the system

ensures that methods of the objects in the interface zones do not disclose references

of objects in the sealed zones.

2.4.1 J-Kernel

The J-Kernel [Hawblitzel, 2000, Hawblitzel et al., 1998] aims to explore developing

an operating system in Java and to enhance the protection provided by the language.

Protection domains in the J-Kernel are separated through the use of a special

class loader which modifies the bytecode of loaded classes to prevent sharing through

the system classes.

The J-Kernel is a capability-based system [Dennis and Van Horn, 1966, Needham

and Walker, 1977], which uses capabilities to provide cross-domain access. Capabil-

ities in the J-Kernel are implemented as wrapper objects which wrap objects that

implement the Remote interface. Capability classes are automatically generated by

the class loader when classes that implement the Remote interface are loaded.

The J-Kernel imposes a special calling convention on cross-domain method calls.

In these calls, arguments and return values are passed by reference only if they are

capabilities. The capability wrappers perform deep copy of non-capability objects to

avoid sharing of these objects. An immediate consequence of these calling conven-

tions is that cross-domain references are only allowed to capability objects. Thus,

domain objects form a sealed zone, with the capabilities that wrap objects in the

domain being the corresponding interface zone.

For a domain to get capabilities of other domains, there must be some mode

of communication between domains. One mechanism suggested is a system-wide

repository, which is basically a name service that allows domains to publish ca-

pabilities [Hawblitzel et al., 1998]. A second mechanism suggested relies on the

hierarchical relationship between domains. When a parent domain creates a child

domain, the parent domain gets a capability to the child which allows it to send

capabilities to the child [Hawblitzel, 2000].

The main advantage of the J-Kernel capabilities design is that it provides remote

method invocation. Furthermore, in addition to implementing the cross-domain

calling conventions, the code in the capabilities supports capability revocation. By

revoking a capability when the domain that created it terminates, capability revo-

cation helps achieving clean domain-termination semantics.

The extra processing required for creating capabilities and converting data when

invoking remote methods results in an overhead of about 10% [Hawblitzel et al.,

1998].

26

2.4.2 Confined Types

The aim of Confined Types [Vitek and Bokowski, 2001] is to isolate objects internal

to a Java package to prevent references from outside the package to these objects.

The design imposes statically enforceable restrictions on types identified as confined

to ensure that references to confined objects do not escape the package scope. These

restrictions ensure, for example, that objects of confined types are not returned by

public or protected methods of unconfined types. They also prevent inadvertent

escape by disallowing widening of references of confined types to an unconfined

supertype.

The combined effect of the restrictions is that only objects whose types are in

the package can hold references to objects of confined types. As such, objects of the

confined types of a package form a sealed zone, with objects of unconfined types in

the package being the corresponding interface zone.

A major limitation of the confined types design is its inability to protect the

components of compound data structures, i.e. data structures that are created from

multiple objects. If these components are not defined in the package, they cannot be

confined to the package and might, therefore, escape the scope. External access to

these components may compromise the protection of the compound data structure.

Consequently, while confined types may be a useful tool for protection, they are less

than ideal for the purpose of general component isolation.

2.4.3 Ownership Types

Ownership Types [Aldrich and Chambers, 2004, Aldrich et al., 2002, Clarke, 2001,

Clarke et al., 1998, Dietl and Müller, 2005] is a technique for alias control that uses

reference protection to protect the internals of compound data structures.

Ownership types impose a hierarchical structure on the heap by assigning each

object a single “owner”. The ownership relation is specified by tagging references

within structures. The syntactic rules of the language ensure that tagged references

do not escape the scope they are restricted to.

Several models of ownership types have been suggested. Under the owner-as-

dominator model [Clarke, 2001, Clarke et al., 1998], all reference paths from a public

root to an owned object must go through the owner. With this model, the owned

objects are private data which can only be accessed through a single public object—

the owner.

The ownership domains model [Aldrich and Chambers, 2004] relaxes the strict

requirements of the owner-as-dominator model by allowing owners to specify do-

mains of owned objects with different access rules for each domain. This model

supports multiple public objects owned by the same owner, all of them can access

27

the private objects.

The owner-as-modifier model [Dietl and Müller, 2005] allows external read-only

references to owned objects. n this model, all owned objects are potentially acces-

sible from outside the owner’s scope. Hence, this model does not provide reference

protection.

In ownership types, reference tagging only applies to instance fields. Conse-

quently, ownership types cannot protect static members of types, limiting their use

for component isolation.

2.4.4 Summary

Partial isolation allows direct communication between components. It also maps

naturally to a component model where the component has a public interface and

private data.

Both confined types and ownership types use separate types for the sealed zones

and for the interface zones.1 As the sealed types can be identified in compile time,

reference protection in these system is statically enforced. However, these systems

focus on alias control and are too limited for use in component isolation.

The J-Kernel does provide partial isolation of components, but it implements

the model using run-time tests which incur a significant performance overhead. En-

forcing partial component isolation at compile time is not supported in any system.

All the systems described so far offer reference protection, i.e. guaranteed restric-

tions on reference propagation. Some systems offer a more relaxed level of isolation,

where components are isolated when instantiated, but there is no ongoing system

guarantee that references do not propagate. This model is the topic of the next

section.

2.5 Initial Isolation

To provide reference protection, the system needs to have two properties. It needs

to instantiate components so that they are isolated and it must maintain this state

throughout the execution of the code. This section discusses systems that offer the

former without the latter.

Strictly speaking, these designs do not offer reference protection. That is, they

do not impose any restriction on the propagation of references. Instead, they leave

the onus of controlling what is shared with the programmer.

1Note that for ownership types, tagged and untagged versions of the same type name are not
assignment compatible, hence they are not the same type.

28

Nevertheless, as these systems do offer some level of isolation and as they use

techniques similar to those used by systems described earlier to achieve the initial

isolation, a description of these system is included here.

2.5.1 I-JVM

I-JVM [Geoffray et al., 2009] aims to improve the security of the OSGi frame-

work [OSG, 2011]. OSGi supports extensibility through the addition of bundles. To

increase the security of OSGi, I-JVM employs the same isolation technique used by

MVM: each bundle has its own set of static fields, String literals and Class objects.

When I-JVM initialises a bundle, it also provides the bundle with a reference

to the shared OSGi name service. The name service can be used to register object

references and to find foreign references. Once an object reference is shared, further

references can be accessed through the interface that the object provides. I-JVM

does not control this sharing of references or any subsequent reference propagation.

2.5.2 Alta

Alta [Tullmann, 1999, Tullmann and Lepreau, 1998] is a Java-based operating sys-

tem that implements the nested process model [Ford et al., 1996] using software

protection. Processes in Alta can spawn sub-processes which remain under the con-

trol of the spawning process.

Each Alta process has its own type space. This type space is controlled by the

spawning process, which can substitute the class implementation for the spawned

subprocess, if required.

While the type spaces of processes are disjoint, the virtual machine has sufficient

information to allow sharing of object references while maintaining type safety. Alta

uses interprocess communication channels to send these object references between

processes. To restrict sharing, these communication channels can be monitored by

the spawning process.

Accesses to shared objects are not considered part of the interprocess commu-

nication channels. These accesses are not restricted and may, potentially, allow

unrestricted sharing of object references.

2.5.3 Summary

Both Alta and I-JVM improve the isolation that the Java language provides by en-

suring that no external references point to the component’s data upon initialisation.

The components can, theoretically, maintain that state by not disclosing references

to their data through the communication mechanisms that the systems provide.

29

Both systems, however, do not enforce this isolation. Components can share

reference to their internal data and once shared, the systems impose no restrictions

on the use of these data. Preventing further sharing is left to the programmer.

This concludes the exploration of the classification framework of reference-protection

systems. The next section describes the techniques used for providing isolation and

how they relate to the classification.

2.6 Isolation Techniques

Preceding sections demonstrate that the suggested zones model is sufficient to clas-

sify the existing systems. Examining the techniques used for component isolation

further demonstrates the strength of the model. It turns out that there is strong

relationship between the techniques a system employs for component isolation and

the level of isolation it offers.

Systems that provide reference protection need to make two guarantees. They

need to ensure that the reachability roots do not breach the reference-protection

model. Reachability roots are those objects that are a priori accessible to a com-

ponents. These include static values in classes, as well as other values that can be

directly referenced, e.g. Class and String literals.

The second guarantee is that the execution of the program does not breach the

model. That is, that there are restrictions on reference assignments that ensure that

protection is maintained.

Various techniques have been suggested for maintaining both these guarantees.

These are discussed below.

2.6.1 Reachability Roots

The reachability roots of a program are the set of values that can be accessed by the

code directly, without the need to follow other references. In Java, for example, the

reachability roots include static fields and the Class and String literals.

Different systems take different approaches for handling reachability roots. Fig-

ure 2.7 presents a taxonomy of the different approaches systems take.

Sharing Reachability Roots

A straightforward approach is to share the reachability roots. Sharing the reach-

ability roots implies that the values referred by these roots are shared between

components. This sharing must be consistent with the reference-protection model

and is, therefore, not applicable to systems that only support isolated zones.

30

Sharing

Reachability Roots

Avoiding

Indirection
Separate

Compilation

Multiple

Types
Ownership

Separating

Handling

Figure 2.7: Taxonomy of methods for handling reachability roots

KaffeOS is an example of a system that shares reachability roots. In KaffeOS

values of static members of library types are considered to be part of the kernel heap

which is shared by all user processes. Sharing the reachability roots in KaffeOS

is only applied to library classes. Application classes in KaffeOS are not shared

between processes and therefore their static members are not shared.

Separating the Reachability Roots

Separating the reachability roots is a technique that provides each component with

its own copy of the reachability roots. Systems use one of two implementation

methods to achieve separation. The simpler method is to replace each reachability

root with an array of values and modify the program code to reference the correct

entry in the array based on the accessing component. The main advantage of this

method is that it can be implemented without changing the internals of the virtual

machine. Systems like MVM implement this method by modifying the Java bytecode

as it is loaded into the virtual machine.

It should be noted, however, that this method is not fully transparent. Reflection

and handcrafted bytecode can be used to access the array, which would breach the

protection. Czajkowski [2000] argues that the reflection system can be modified to

behave as it did with unmodified classes and that further checks can prevent loading

code that directly accesses the arrays. However, these are not demonstrated and

the question of whether it would be possible to implement these modifications with

no changes to the virtual machine remains to be settled.

Replacing the reachability roots with arrays introduces an extra level of indirec-

tion which affects the performance of the code. It also results in loss of optimisation

opportunities. Having an array of possible values for reachability root means that

the compiler cannot assume that there is a single possible value for the reachabil-

ity root and cannot use a constant value in the compilation. Czajkowski [2000]

demonstrates that sharing of immutable reachability roots can reduce the overhead

31

associated with both issues but does not completely eliminate it.

The overheads of indirection can be completely eliminated by specialising the

code for each component. With this approach, the code that accesses the reachability

roots is compiled separately for each component the code is used in. As the identity

of the component is known at compile time, the compiled code can bypass the

indirection required for accessing the correct reachability root, thereby avoiding

both the overhead of extra indirection and the loss of optimisation opportunities.

While this approach generally provides a better performance, it does have some

down sides. Multiple copies of compiled code have a larger memory footprint than

a single copy would require. Furthermore, recompiling the code for each component

uses CPU resources and results in a longer component set-up time. Finally, this

approach cannot be implemented without modifying the virtual machine itself and

is, therefore, less portable than using indirection.

Avoiding Shared Reachability Roots

Rather than trying to work around the problem of shared reachability roots, the

language can be designed to avoid the issue. Two approaches for avoiding shared

reachability roots have been suggested. One approach is to use a separate type

hierarchy for each component. For example, Singularity avoids the shared roots

by using a separate type hierarchy for each Software Isolated Process (SIP). Non

shared types used in a Singularity SIP are completely isolated from the types of

other SIPs. Even when the same code is loaded into multiple SIPs, the code is

separately compiled, reachability roots are separate and even the data layout is not

guaranteed to be the same.

Shared types in Singularity are shared between SIPs. These types, however, only

specify instance data layout. As discussed, they do not specify behaviour and do

not have static members. Thus, shared types do not include any reachability roots.

Rust takes a different approach for avoiding shared reachability roots. The Rust

language does not have any static or class members. The reachability roots of a

task are the values included in the closure used for initialising the task. Because

only owned closures can be used for task initialisation and as the ownership of these

closures is transferred to the new task, these values are guaranteed not to be shared

between tasks.

Controlling the reachability roots is required for ensuring the reference-protection

model. However, as evident from systems supporting initial isolation, it is not always

sufficient. Further strategies for controlling the propagation of references are needed

to ensure that the reference protection model is maintained throughout the lifetime

of the system.

32

2.6.2 Controlling Reference Propagation

The various strategies for controlling the reachability roots ensure that components

do not breach the reference-protection model when initialised. Control of reference

propagation ensures that the running code maintains the protection model. Several

methods for controlling reference propagation have been suggested. The specific

method used is closely tied to the reference-protection model. These methods are

further discussed below.

Complete Isolation

Control of propagation is implicit in systems providing complete isolation. In these

systems, the reachability sets of the components are disjoint and the system does

not provide mechanisms for transferring references between components.

Without mechanisms that transfer references, components can only access refer-

ences that are reachable from the reachability roots. With disjoint sets of reachabil-

ity roots, no cross-component references can be reached and isolation is maintained.

When the protection model supports sharing, implicit control of propagation no

longer works. The system needs to guarantee that the code running in the system is

safe and does not store references in contravention of the reference-protection model.

Object Sharing

In systems supporting shared zones, a running application code may have access to

values in its isolated zone and to values in a shared zone. The code, in this case, may

create a reference from the shared zone to the isolated zone. The model prohibits

external references to the isolated zone. The system, therefore, must ensure that

the code does not create them.

Preventing such references at run time is achieved by adding a write barrier

for each reference-store operation. The write barrier verifies that the reference-

store operation complies with the reference-protection model. Complying stores are

allowed to proceed whereas stores that conflict with the protection model are not

executed.

The performance overhead of adding a write barrier to each and every reference-

store operation may be significant. Compile-time prevention of non-complying

reference-store operations avoids this overhead. This method relies on only allow-

ing certain object types in the shared zone. These shared types are restricted to

only hold references to shared object types. The type safety of the language, then,

guarantees that shared objects do not hold references to isolated objects.

33

Partial Isolation

Limiting reference stores is not sufficient for ensuring safety in systems supporting

sealed zones. In these systems, components may have access to objects in the

interface zone of other components. Consequently, the system needs to prevent

components from following the references from interface objects to sealed objects.

Transfer of references to sealed objects can be prevented by interposing transfer

barriers between components. The transfer barriers check each reference as it is

moved across the boundary between components. The J-Kernel capability objects

are an example of transfer barriers.

Tracking the reference in compile time is used in both ownership types and con-

fined types to prevent external references to sealed zones. These systems distinguish

between types of objects in the sealed zones, or sealed types, and types of objects

that can be shared. References of sealed types are only allowed in code that has

access to the sealed zone, preventing the transfer of these references outside of the

corresponding interface zone.

Reference Tracking Time

As the discussion above demonstrates, the techniques for controlling reference pro-

tection can also be classified based on whether it enforces the protection model in

run time or at compile time. Table 2.1 summarises the methods used for propagation

control.

Model Run Time Compile Time
Complete Isolation Implicit
Object Sharing Write Barriers Shared Types
Partial Isolation Transfer Barriers Sealed Types

Table 2.1: Methods for controlling reference propagation

2.7 Evaluation of the Classification

Preceding sections describe the classification of systems providing reference protec-

tion introduced by this thesis; survey prior research and demonstrate how it fits

within the classification; and demonstrate that the techniques a system uses to

achieve reference protection are closely tied to the classification of the system. This

section evaluates the effectiveness of the classification.

The first measure of the evaluation is whether it captures all of the zone types

used in systems supporting reference protection. Table 2.2 presents the classification

of zones that are used by the systems reviewed in this chapter. Systems that provide

34

initial isolation do not control the propagation of references and do not manage

zones. As such, these systems are not included in the table.

System Zone Zone Type
CoLoRs Process heaps Isolated

Shared region Shared
Confined Types Objects of confined types Sealed

Objects in the package Interface
J-Kernel Domain Capabilities Interface

Domain objects Sealed
JNode Root Isolate Privileged Shared

Application Isolates Isolated
JX Domains Isolated
KaffeOS Kernel Heap Privileged Shared

Shared Heaps Shared
Process Heaps Isolated

MVM Isolates Isolated
.Net Application Domain Isolated
OVM User Domains Isolated

Executive Domain Privileged Isolated
Ownership Types Owning objects Interface

Owned objects Sealed
Real-time Java Regions Shared
Rust Processes Isolated

Shared Values Shared
Singularity Process Isolated

Exchange heap Shared
XMem Process heaps Isolated

Shared region Shared

Table 2.2: Zones in systems providing reference protection

Table 2.2 identifies the system, the system’s name for each zone and the type of

the zone. For example, each domain in JX has its own heap and its own type hier-

archy. Types in one domain are not assignment compatible with types in another.

Consequently there are no references between domain heaps and the domains are

isolated.

This table demonstrates the effectiveness of the classification for outlining isola-

tion boundaries. Identifying the zone types in a system concisely identifies the al-

lowed references between these zones and, with them, the level of isolation between

the components built from these zones. This concise description allows comparing

the level of isolation provided by different systems. For example, both JNode and

OVM provide a similar level of isolation, where user tasks (called application iso-

lates in JNode and user domains in OVM) cannot access the objects in each other,

whereas the system component can access objects in every task.

35

As can be expected, the conciseness of the classification comes at a cost of losing

some details. For example, the classification fails to capture the hierarchical struc-

ture of ownership types. It also ignores the temporal nature of ownership transfer

in Rust and Singularity.

Table 2.2 also reveals that there are only a few combination of zone types used

in the same system. Ignoring privileged zones, which are used for system compo-

nents, there are only three such combinations in use. These combinations define the

reference-protection model provided by the system. Systems that only use isolated

zones provide complete isolation. Systems that use isolated and shared zones pro-

vide the object sharing model. Systems that use sealed and interface zones provide

the partial isolation model.

Table 2.3 summarises the reference-protection models and implementation meth-

ods used by each of the systems. As before, systems that use initial isolation are not

included in the table. The table illustrates that the classification applies to every

system surveyed. It also demonstrates the relationship between the techniques used

for reference-propagation control and the reference-protection model provided by a

system. That is, implicit propagation control is used with complete isolation, shared

types and write barriers with object sharing and sealed types and transfer barriers

with partial isolation.

Run Time Reachability Propagation
System Model Control Control
CoLoRs Object Sharing Multiple Types Write Barriers
Confined Types Partial Isolation Shared Sealed Types
J-Kernel Partial Isolation Multiple Types Transfer Barriers
JNode Complete Isolation Indirection Implicit
JX Complete Isolation Multiple Types Implicit
KaffeOS Object Sharing Shared Write Barriers

Multiple Types
MVM Complete Isolation Indirection Implicit
.Net Complete Isolation Indirection Implicit

Separate Compilation
OVM Complete Isolation Multiple Types Implicit
Ownership Types Partial Isolation Shared Sealed Types
Real-time Java Object Sharing Shared Write Barriers
Rust Object Sharing Ownership Shared Types
Singularity Object Sharing Multiple Types Shared Types
XMem Object Sharing Separate Compilation Write Barriers

Table 2.3: Classification of reference protection

Switching the focus from the systems to the reference-protection model and its

implementation results in Table 2.4. The table divides the systems based on the tech-

nique used for controlling propagation. As demonstrated in Table 2.1, the technique

36

depends on the reference-protection model and the time of enforcing the control of

reference propagation. Hence, Table 2.4 replicates the structure of Table 2.1, but

replaces the techniques used with the systems that employ them.

Run Time Compile Time

Complete
Isolation

JNode
JX

MVM
.Net
OVM

Object
Sharing

CoLoRs
KaffeOS
XMem

Real-time Java

Rust
Singularity

Partial
Isolation

J-Kernel
Confined Types

Ownership Types

Table 2.4: Classification of reference protection

It is interesting to note that the only systems that provide the partial isolation

model and enforce it in compile time use shared reachability roots, severely lim-

iting their use for component isolation. This is a surprising result because, of all

the reference-protection models described, the partial isolation model promises the

most flexible communication options and its enforcement at compile time promises

minimal implementation overhead.

The next chapter continues the investigation of the partial isolation model. It

presents Exported Types—a design of a type system that provides the partial iso-

lation protection model. As the model is supported in the type system, it avoids

the performance overhead of run-time checks. The design uses the multiple types

approach to avoid sharing the reachability roots and provides a compile-time control

of reference propagation, avoiding the costs of transfer barriers.

37

Chapter 3

Exported Types

The previous chapter identifies a gap in the prior work on reference protection.

The classification of systems providing reference protection that Chapter 2 presents

demonstrates the trade-offs the systems make between the level of isolation and the

flexibility of the inter-component communication options they provide. As noted,

the partial isolation reference-protection model provides the most flexible commu-

nication options of all the models that achieve the level of protection expected for

components. Nevertheless, the only existing implementation of the partial isola-

tion model for component isolation does not achieve efficient inter-component com-

munication because it uses costly transfer barriers that add a significant run-time

overhead.

This chapter bridges the gap in the prior work. It presents Exported Types, a

type system design that merges the protection model with the type system, using

the types of references to identify the zone the referenced objects are in. Using the

reference type information available to the compiler, the compiler can enforce the

protection model during compile time. Enforcing the model at compile time avoids

expensive run-time tests and supports an efficient implementation.

The Exported Types design relies on name-based type equivalence [Albano et al.,

1989, Connor et al., 1990]. It separates components by associating each component

with a name space and resolving type names for the component within that name

space. These name spaces are the main mechanism behind the implementation

of the sealed zones. Type names of one component do not resolve to types in

another component by default and types in different components are not assignment

compatible.

In addition to the component name spaces, Exported Types supports a shared

name space and two operations which are used to create the interface zones. The

export operation registers a type name in the shared name space and associates it

with a type. The import operation binds a type name in the importing component’s

name space with the type associated with that name in the shared name space.

38

Importing an exported type provides access to objects of the type. Thus, ex-

porting a type places it and all it subtypes in the interface zone of the exporting

component. The programmer may wish to give the exporting component privileged

access to objects of the exported type. To provide the programmer with some con-

trol over access to objects of exported types, the Exported Types design adds an

explicit remote protection scope. Inter-component access to members of an exported

type is only allowed if those members are explicitly marked as being in the remote

scope.

Exported Types specifies those features that are required for implementing par-

tial isolation. Other features, such as the nature of subtyping or type-protection

mechanisms, are to be completed by the language designer. Thus, Exported Types

can be used as a basis for a type system for a new language. Alternatively, it can

be applied as an extension to the type system of an existing language, assuming

the type system of the language supports the features required for implementing

Exported Types. It is backwards compatible in the sense that code that does not

use the export or import operations executes within its own component as if it was

executing in an unmodified language runtime.

The rest of this chapter describes the Exported Types design. The description

provided is, mostly, informal, describing the type system design by way of examples.

For a more rigorous description, see Appendix A.

This chapter consists of three main parts. The first two sections provide prelim-

inary background on types and type systems and describe the relationship between

type systems and partial isolation and how it affects the design of Exported Types.

The following three sections describe the design in detail, including the components

name spaces, the import and export operations and the remote interface. The last

part of this chapter describes language specific issues with examples from the Java

language.

3.1 Type Systems

Data values in computer systems are represented as sequences of bits. The type of

the value specifies how the value is represented as well as restricts the operations

on the sequence of bits to only those operations that conform with the type. For

example, a type int in Java specifies that the value is a numeric integer, represented

as a 32-bits sequence using the two’s complement representation and that floating

point operations are not to be applied to the value.

Languages provide a set of primitive types, which are types that exist a priori.

These are used as building blocks to compose the complete set of types in the

language. The type algebra is the subset of the language that allows the programmer

39

to create composite types by combining primitive and other composite types.

Composite types raise the question of type equivalence—how the equivalence

of two type declarations is determined [Albano et al., 1989, Connor et al., 1990].

In structural type systems, types are considered equivalent if their definitions are

considered equivalent. In nominative or name-based type systems, the equivalence

of types depends on other characteristics of the types, such as the type name or the

code location the type is defined in.

Languages sometime mix nominative and structural features in their type sys-

tems. For example, classes in Java use name-based equivalence. Different class

declarations declare different classes even if the declarations specify the same struc-

ture. Java arrays, on the other hand, use structural equivalence. Array types are

considered equivalent if their element types are equivalent, irrespective of the code

location the array types are declared in.

Primitive types are, usually, unboxed. That is, the identity of the values of the

type is intrinsic to the bit sequence. Values of unboxed types are considered identical

if the bits in the values are the same, irrespective of where the values are stored.

Bit sequences representing boxed types are stored in “boxes” of memory. The

identity of values of these types is the box in which they are stored and is unrelated

to the bit sequence that represents the value. Values of boxed types are, therefore,

a combination of a memory location and the bit sequence stored in it. This thesis

uses the term object for values of boxed types.

Having a reference to a value implicitly identifies it by its memory location.

Hence, references can only be created to boxed values.

During compilation, semantics and access decisions do not depend on the values.

They only depend on the types of the values. Thus, the compiler uses types to

represent the potential set of values that can be used in their place. Types, therefore,

can be considered to be sets of values, where the members of a type are all the values

that have that type.

A type hierarchy is a partial order of types using the subtype relation [Cardelli

and Wegner, 1985, Liskov, 1987]. The subtype relation has the substitution property

which, essentially, means that values of a subtype can always be used where the

program expects values of the supertype [Liskov, 1987]. Consequently, the set of

values of a subtype is a subset of the set of values of a supertype. Similarly, a value

of a subtype is also a value of all of the subtype’s supertypes.

When the program expects a value of a supertype, the program uses the repre-

sentation of the supertype for the value. For the program to correctly use values of

subtypes when it expects values of a supertype, the representation of the supertype

must be applicable to bit sequences that represent values of the subtypes. Hence,

the representations of subtypes must be extensions of the representations of their

40

supertypes.

The substitution property also limits the restrictions that the compiler can im-

pose on access to values of subtypes. As values of the subtype can be used wherever

values of the supertype are expected, any operation allowed on values of the super-

type is also implicitly allowed on values of the subtype. The compiler, therefore,

cannot impose restrictions on access to values of the subtype unless the same or

stronger restrictions are imposed on access to values of the supertype. The Java

language provides an example of this limitation. When a Java class declares a

public method, subclasses of the class cannot narrow the scope of the method, e.g.

by overriding it with a private method.

Types and zones are both collections of objects. Using types to encode the

zone that objects are in allows the compiler to apply the access rules of reference

protection.

3.2 Partial Isolation and Types

This section explores the relationship between types and zones and highlights the

underlying properties of type systems that can support partial isolation.

Partial isolation is a reference-protection model that protects the private data

of components yet supports inter-component access to interface objects. Under

the model a component consists of two zones. The sealed zone of a component

encompasses the private data whereas the interface zone contains the component’s

interface. Figure 3.1 (reproduced from Figure 2.3) embodies the main concepts of

the partial isolation model. It demonstrates three components and shows values

or objects within the zones and possible references between these objects. The

important property of partial isolation is that direct references from one component

to the sealed zone of another are prohibited. For example, Object O1 cannot hold

a direct reference to Object O3.

To enforce the model at compile time, the compiler needs to make access decisions

regarding permitted references. Compilers make decisions on access to objects based

on the objects’ types. Hence, to enforce reference protection at compile time, the

zone structure should be reflected in the type system. That is, knowing the types

of values should be sufficient to determine whether references between them are

allowed.

As discussed above, the compiler uses types to represent sets of values. The

compiler does not know which specific values of the set will be used at run time

and must, therefore, be conservative when permitting access. If a certain access

is not permitted to even one of the values of the type, the compiler should either

disallow that access to any value of the type or defer the decision to run time. The

41

Component C

Component A

O1

O2

O3

− Interface Zone

− Sealed Zone

Component B

Figure 3.1: A component system with partial isolation

compiler can only permit an access without run-time tests if the access is allowed

to all potential values of the type.

In the context of compiler-enforced partial isolation, the compiler makes the

decisions about which references are allowed to objects. If a type can include an

object in the sealed zone of a component, the compiler must treat objects of the

type as potentially being in that sealed zone and prevent any references from outside

the component to objects of the type. Also, due to the substitution property, all

supertypes of the type are considered to be in the sealed zone.

The association of types that contain objects in the sealed zones with the sealed

zone means that types cannot span the sealed zones of multiple components. That

is, if an object of a type is in the sealed zone of a component, the type is associated

with that sealed zone and no object of the type can be in the sealed zone of another

component.

Exported Types builds upon this association of types to zones to overlay the type

hierarchy with zone information. In Exported Types, each type is associated with

a zone in the component that declares the type. By default, types are associated

with the sealed zone of the component and are considered private to the component.

Types declared as exported are associated with the interface zone of the component.

Diagram 3.2 shows the relationship between types and zones in Exported Types.

It is worth noting that all the supertypes of types in a sealed zone are in the same

zone. For example, TB1 and TB2, the supertypes of type TB3, are both in the sealed

zone of component B. This is a consequence of the substitution property. The set

of values represented by a subtype is a subset of the set of values represented by a

supertype. If the subtype may include values in the sealed zone, the supertype may

include them as well. Hence, the supertype must be in the sealed zone.

The converse does not hold. Subtypes of sealed types may be in the interface

42

Component A

A1

T
C2

T
C1

T
C3

T
B1

T
B2

T
B3

Component B

Component C

T

Figure 3.2: Overlaying the sealed zones model over the type hierarchy

zone. For example, type TC2 in the interface zone of Component C is a subtype

of TC1 which is in the sealed zone of the same component. The implication is that

type TC1, while being associated with the sealed zone of Component C, may include

objects in the interface zone of the component.

Diagram 3.2 also displays some of the inter-component references permitted be-

tween object types. All objects of types associated with the interface zone of a

component are in the interface zone. Hence, inter-component references are per-

mitted when the referent type is associated with an interface zone of a component.

To prevent inter-component references to objects in sealed zones, Exported Types

prevent component code from being able to refer to types associated with the sealed

zones of other components.

Exporting a type allows access not only to the objects, but also to the type

definition itself. Components may extend types exported by other components,

creating subtypes of these exported types. For example, type TC3 in Component C

is a subtype of type TA1 of Component A. As a result, objects of type TC3 are in the

interface zones of both components A and C. Objects in the interface zones of two

components can hold references to objects in the sealed zones of both components.

Code of such objects is associated with only one of the components and cannot,

therefore, access objects in the sealed zone of the other.

Associating types with the component that declares them implies that the type

system is not purely structural. Not being purely structural is an inherent property

of type systems that support partial isolation. This is because different components

often have objects that have identical structures in their private data. With struc-

tural type systems these objects would be considered of the same type. As discussed

above, objects in the sealed zones of different components, i.e. the private data of

the components cannot have the same type. Hence, even though the objects have

43

the same structure, they are of different types. Thus, type equivalence is not defined

solely by the structure of the type.

A nominative type system is required for the Exported Types design. The design

uses the concept of type name spaces to associate types with components. The use

of name spaces in Exported Types is discussed in the next section.

3.3 Component Name Spaces

The key to component isolation with the Exported Types design is creating a sep-

arate name space for each component. Type names for the component are resolved

within the name space, creating a separate type hierarchy for each component. Fig-

ure 3.3 shows the type hierarchies of two components.

B

Object

String

Component A

String

Object

Component

Figure 3.3: Sealed zones

The hierarchies of the components are completely separated. Types in one hi-

erarchy are not assignment compatible with types in another. For example, in Fig-

ure 3.3, each name space includes the Object and String types. A String object

from Component A cannot be assigned to a String reference in component B and

vice versa. Likewise, no object from Component A can be assigned to an Object

reference in component B. As inter-component references are prohibited, separating

the name spaces achieves complete isolation.

It should be noted that the name space separation only applies to boxed types.

Values of unboxed types are not shared, hence these types can be shared without

risk of breaching the reference-protection model. Unboxed types provide a basic set

of types shared between components, allowing communication between the compo-

nents.

When applying the Exported Types design to extend the type system of an ex-

isting language, the use of a separate name space for each component results in each

component having a type hierarchy that mirrors the original type hierarchy of the

language. Consequently, code that does not use the export and import operations

of the Exported Types design is enclosed within a component with no incoming

or outgoing references. The absence of inter-component references means that the

44

code cannot directly access the memory space of other components, nor can other

components access the memory space of the code.

The concept of separate name spaces is not new. OVM [Armbruster et al., 2007,

Spring et al., 2007], .Net [ECMA, 2006] and JX [Golm et al., 2001, 2002, Wawer-

sich et al., 2002] use separate name spaces to achieve complete isolation between

components.

The Exported Types design uses the name spaces to create components. The

next section describes the mechanisms used for splitting components into sealed and

interface zones.

3.4 Creating the Interface Zones

The main contribution of the Exported Types design is the ability to selectively

add types to the interface zone of a component while preserving the substitution

property. Type export and import are realised through the use of a shared name

space. When a type is exported, the type name is registered in this name space.

Components wishing to use the type can, then, locate it in the shared name space

and gain access to the type.

String

Object

Component A Component B

Object

String

Shared

Name Space

Exp

Exp

Figure 3.4: Type hierarchies with exported types

Figure 3.4 shows the class hierarchies and the name spaces after component A

exports the class Exp. As the diagram demonstrates, the Exp type is in the interface

zone of component A. The name of the type is registered in the shared name space,

where it is associated with the type. (Shaded boxes in the diagrams in this chapter

indicate names that are bound to types declared in other name spaces.)

Using a shared name space raises the issue of conflicts when multiple components

export types with the same name. The Exported Types design leaves the decision

on how to address these to the language or system designer. For systems where

the likelihood of conflicts is low, a simple first-comes-first-served approach may be

suitable. An example of such a scenario is an application, such as a Web browser,

45

that publishes an interface for third-party extensions or plug-ins. As the application

is the only component to publish an interface there is no risk of conflicts.

Other scenarios may present a greater likelihood of conflicts. An example of

such a scenario is a fully-fledged multi-tasking virtual machine where tasks publish

interfaces for services they provide. Such systems may require a more elaborate

approach, such as hierarchical naming schemes or a naming service.

To use an exported type, components must explicitly import it. Explicit imports

are required to ensure that the programmer intends to import types. Forcing explicit

imports ensures that only code that needs to access remote components has that

access. This is particularly important when Exported Types is used to extend an

existing language, as it guarantees that the semantics of legacy code do not change

by inadvertently importing types.

Name Space

Object

String

Exp

Exp

Exp

Component ComponentA B

String

Object

Shared

Figure 3.5: Type hierarchies after import

Figure 3.5 shows the type hierarchies described above after component B imports

the type Exp. As the diagram demonstrates, the type name Exp in component B is

bound, through the shared name space to the type Exp in component A. References

of type Exp in component B can, therefore, point to objects of the type, which are

part of the interface zone of component A.

Importing types gives the importing component access to the type declaration.

The importing component can, then, subtype and extend the imported type. One

use of extending an imported type is for implementing callbacks, e.g. for use in

mutual recursion. Figure 3.6 demonstrates a possible way of implementing callbacks.

In this scenario, Component A provides a service and publishes an interface for this

service that Component B uses. As part of that interface, Component A occasionally

needs to invoke callbacks in Component B.

The approach for implementing the callbacks is for the service provider (Com-

ponent A) to declare and export an abstract interface type (AbstractCallback).

The abstract interface type specifies the signature of the possible callback methods

that the service provider may invoke. The client (Component B) imports and ex-

46

String String

Object

Component A BComponent

Concrete
Callback

Abstract
Callback

Abstract
Callback

Abstract
Callback

Shared

Name Space

Object

Figure 3.6: Extending an imported type

tends the abstract interface by providing a concrete implementation of the callback

methods it responds to (ConcreteCallback). Objects of ConcreteCallback are in

the interface zone of Component B and can, therefore, access its private data. By

the substitution principle, these objects are also of type AbstractCallback, which

is the same type in both Component A and Component B. Thus, Component B

can pass an object of ConcreteCallback as a method argument to Component A,

which can, then, use it for invoking callbacks to Component B.

Objects of ConcreteCallback are in the interface zones of the two components.

However, the code of these objects is not shared. Each method of the object is

associated with the component that provides its implementation and cannot access

references to the sealed zone of another component. For example, methods imple-

mented as part of the declaration of the AbstractCallback can access objects in

the sealed zone of Component A but not those of Component B.

Explicitly marking the members of exported types that can be accessed by code

associated with other components provides the mechanism that prevents the prop-

agation of references to objects in the sealed zone between components.

3.5 The Remote Interface

The remote interface of an exported type is the set of members of the type that

can be used by code external to the component. As the remote interface allows

transfer of references between components, it plays a crucial role in maintaining

reference protection. References can cross component boundaries by assigning them

to or reading them from fields of exported types. They can also cross component

boundaries when used as arguments, return values or exceptions of methods of

exported types.

The concept of a remote interface is not new. Two approaches have been used

to declare a remote interface. The first, which is used in the Luna operating sys-

47

tem [Hawblitzel, 2000, Hawblitzel and von Eicken, 2002], is to add a remote protec-

tion scope wider than the public scope. Type members annotated with remote can

be accessed across component boundaries. Other type members are only accessible

from within the component.

Another approach for declaring the remote interface is used by the J-Kernel [Haw-

blitzel et al., 1998] and the Java RMI [Sun Microsystems, Inc., Waldo, 1998]. In this

approach, interface types (i.e. Java interfaces) are used for the remote interface.

These systems use a markup Remote interface. The Remote interface does not have

any members, however, all interfaces that extend it are remotely accessible. Conse-

quently, classes that implement any such interface are remotely accessible and are

in the interface zone of the implementing component. The remote interface of these

classes is the methods of the implemented interface.

Communication between components uses the remote interface. Hence, by ensur-

ing that references to objects in sealed zones cannot be used on the remote interface,

Exported Types can guarantee that references to these objects do not leave the scope

of the component they belong to. To maintain this property, Exported Types re-

quires that only unboxed, exported or imported types are used in the signatures of

members that are part of the remote interface.

Unboxed types are safe to use in the remote interface because their values are

not objects and do not have references pointing to them. Exported and imported

types are, by definition, associated with the interface zone of the component that

exports them. As discussed in Section 3.2, all the objects in these types are in the

interface zone of the component. Consequently, passing references to these objects

between components cannot breach the reference protection.

It should be noted that the above restrictions on signatures are sufficient to

implicitly define the remote interface. That is, the remote interface could be defined

as the collection of all members of types associated with interface zones that only

include unboxed, imported and exported types in their signatures. Exported Types,

however, requires that the remote interface is explicitly declared. The rationale

for this requirement is that implicit declaration of the remote interface does not,

necessarily, agree with the programmer’s intentions.

When the remote interface is implicitly declared, the programmer does not have

a direct control over which members are included in the interface. For example, the

programmer cannot prevent external components from accessing methods whose

arguments and return values are of unboxed types. When components do not trust

one another, such methods need to be secured against potentially malicious access.

Explicit declaration of the remote interface ensures that only those members that the

programmer intends to expose are indeed exposed and protects against inadvertent

exposure of members e.g. through exporting a type that was hitherto sealed.

48

Explicit declaration of the remote interface also enables early verification that

types used on the remote interface are safe for that use. The explicit declaration

is a positive indication of the programmer’s intent to allow inter-component use of

the member. This indication allows the compiler to verify that the member will,

indeed, be accessible at run time. If, on the other hand, the system relies on type

information to decide which members are in the remote interface, the fact that a

member is not in the interface will only be realised when the member is used, rather

than declared.

The discussion so far presents the features and properties of Exported Types

design. Some language features, however, are not compatible with the design. These

are the topic of the next section.

3.6 Compatibility with Language Features

Ideally, it would be possible to decide for each type whether it is exported or not and,

consequently, whether to allow its use on the remote interface. However, particularly

when extending an existing language, language features may be incompatible with

the design and may result in the semantics of exported types differing from those of

other types.

This section identifies five language features that cause difficulties with the Ex-

ported Types design: structure-based type equivalence, implicit operations on types,

special semantics of types, universal methods and reflection. It describes the dif-

ficulties and suggests some approaches for handling them. The examples of these

issues are taken from features of the Java language. Similar problems are found in

other programming languages, such as Simula, C# or Scala.

3.6.1 Structure-based Type Equivalence

To avoid the need to explicitly declare every type, languages do not always use

pure name-based type equivalence. They often include some features of structure-

based equivalence. Arrays in Java, Simula and C# are examples of types that

use structure-based equivalence. Array types in these languages are not explicitly

declared and are not named. They are considered equivalent if their element types

are equivalent. As exporting relies on type names identifying types, structure-based

types cannot be exported.

A possible solution is to use named array types, similar to array types in ADA [Amer-

ican National Standards Institute, Inc., 1983]. ADA uses name-based equivalence

for all types, including array types. When declaring a named array type, the pro-

grammer associates a name with the type. The name of the array type is used for

49

variable declarations and arrays are considered of the same type only if they are

declared using the same array type name.

Such a solution may be useful when designing a new language. Adding named

array types to an existing language may result in significant changes to the language

semantics and to its implementation. A possible workaround to structure-based

equivalence is to use a wrapper class that hides the structure-based type. The

structure-based type is never exported. Hence objects of this type are always in the

sealed zone of a component. The wrapper class type is exported to provide remote

components with indirect access to objects of the structure-based type it wraps. An

example of a wrapper class is provided in the next section.

3.6.2 Implicit Operations on Types

Arrays in Java also highlight the issue of implicit operations. The operations of

getting and setting elements of the array are implicitly defined. Consequently, op-

erations on arrays are supported in all contexts in Java and there is no way to limit

their use, e.g. to create immutable arrays.

Another example of implicitly defined operation in Java is the use of objects

for synchronisation. Every object in Java has an intrinsic lock that can be used

for synchronisation. The Java bytecode supports two operations on the objects

locks: monitorenter, which locks the lock, and monitorexit, which releases it. In

the Java language, both these operations are implemented using the synchronized

keyword, which is used to tag critical sections.

Because these operations are implicit, the language does not include the syntax

to declare them. Consequently, when exporting a type, there is no easy method

of deciding whether an implicit operation is included in the remote interface of the

type.

One possible solution to this problem is to use a special syntax for these op-

erations. For example, implementations of Exported Types for Java can use Java

annotations to decide whether objects of an exported type can be locked by a remote

component.

An alternative solution which is applicable to Java arrays, is to provide indirect

access to the array via an exported wrapper class [Gamma et al., 1993]. This wrap-

per class can, then, filter undesired access to the wrapped array. Listing 3.1 shows

the code for a wrapper class that wraps an int array, providing external components

with read-only access to the array. The class IntArrayWrapper in the example has

two remote methods: getLength and get. These methods allow external compo-

nents to get the length of the array and to get the value of an array entry. As no

other methods or members are in the remote interface, no other access to the array

50

is provided.

@Export
public class IntArrayWrapper {

final int[] intArray;

public IntArrayWrapper(int[] intArray) {
this.intArray = intArray;
}

@Remote
public int getLength() { return intArray.length; }

@Remote
public int get(int i) { return intArray[i]; }
}

Listing 3.1: Int-array wrapper

3.6.3 Universal Methods

Closely related to implicit operations are universal methods. These are methods

that can be applied to any object. In the Java language these are the methods of

the Object class. E.g. hashCode, which computes the hash code of the object, or

equals, which compares two objects for equality.

The signature of many universal methods includes arguments or return values of

types that cannot be exported. For example, the equals method accepts an Object

argument. Object is the supertype of all other reference types, hence exporting

Object would implicitly export every class.

These Universal methods cannot be in the remote interface of exported types.

Consequently, imported types cannot be subtypes of the importing component’s

Object type.

Language features, such as Java generics [Bracha, 2004], and library code, such

as the Java Collection framework, rely on either universal methods or on upcasting

to Object, and often on both. These features cannot be used with imported types.

As with implicit operations, wrapper classes can be used to overcome the lack

of universal methods. Listing 3.2 demonstrates a wrapper that can be used to

wrap objects of an imported type Exp. As the wrapper class is a subtype of the

importing component’s Object type, these wrappers can be used with the Java

Collection framework. It is assumed that Exp declares the methods hashCode()

and equalsTo(Exp other) and places them in the remote interface.

51

public class ExpWrapper {
final Exp theExp;

public ExpWrapper(Exp exp) {
this.theExp = exp;
}

public int hashCode() { return theExp.hashCode; }

public boolean equals(Object other) {
if (!other instanceof ExpWrapper)

return false;
return theExp.equalsTo(((ExpWrapper)other).theExp);
}
}

Listing 3.2: A wrapper for an imported type

3.6.4 Special Semantics of Types

Some types have special meaning in the language. An example from Java is exception

handling where objects of type Throwable are used to signal exceptional termination

of program code.

As a Throwable object from one component is not of type Throwable in any

other component, exceptions created in one component are not considered excep-

tions outside that component, hence exceptions thrown in one component cannot

be delivered to code in another component. This incompatibility does not have a

straightforward solution.

One possible approach is to share the exception types defined by the system

between the components. This approach would allow catching an exception thrown

by another component. However, methods of the class Throwable include arguments

and return values that are not exported. Thus, any implementation that would allow

one component to catch exceptions thrown by another would have to take care of

these methods to ensure they do not disclose sealed values.

Another approach for handling the cross-component exceptions issue is to convert

exceptions that are thrown across component boundaries to the corresponding ex-

ception type in the catching component. Exceptions can be converted by serialising

them at the throwing component and deserialising it at the catching component. As

cross-component exceptions are not common, the overhead of the serialisation pro-

cess is not expected to have a significant impact on the performance of the system.

Furthermore, the overhead can be reduced using the fast copy technique suggested

by Hawblitzel et al. [1998], that makes direct copies of the data in objects without

first serialising them.

52

3.6.5 Reflection

Reflection is a language feature that allows programs to inspect and affect their own

calculation [Smith, 1982]. More specifically, reflection allows programs to query the

type information of values at run time and to operate on values based on the queried

type information rather than based on statistically assigned type tags. For example,

a program can use reflection to test whether an object supports a certain method

and to invoke the method if supported.

Values exported from a component can hold references to values private to the

exporting component. Unchecked use of reflection on values of exported types can,

therefore, leak these references to the importing component, resulting in a breach

of the reference protection.

To protect against this breach of reference protection, reflection can be limited to

only operate on values that are guaranteed not to hold references to private values of

other components. One way of achieving this is to allow reflection on values if all the

types the values have are declared by the accessing component. This would allow

reflection to operate on all values in the sealed zone of the component. It would also

allow reflection to operate on values in the interface zone of the component if these

values are not also in the interface zone of other components.

3.7 Summary

The Exported Types design enforces reference protection with partial isolation. It

is useful both as a basis for a new type system design and as an extension to an

existing language.

The design overlays the partial isolation model over the type hierarchy to cre-

ate compile-time-enforceable reference protection. One of the consequences of this

overlay is that all the supertypes of types in the sealed zone of a component are also

in the same sealed zone.

The use of explicit operations in the Exported Types design ensures backwards

compatibility when the design is used to extend an existing language. Legacy code

does not use any of the Exported Types operations and can continue executing

within a component without any change to its semantics.

Exported Types separates components by associating each component with a

type name space. Name-based type equivalence is, therefore, inherent in the design.

The main novelty of the Exported Types design is its support for exporting and

importing types, which lets components access types declared in other components.

The design places significant importance on explicit operations. Types are ex-

plicitly imported and exported, ensuring that external access is not inadvertently

53

granted. Also, to avoid inadvertent exposure of members, the remote interface of

types is explicitly declared.

Some language features conflict with the Exported Types design. Many of these

can be addressed by using wrapper objects, however in many other cases there is no

generic solution to these issues.

The next chapter presents a concrete implementation of the Exported Types

design.

54

Chapter 4

An Implementation of Exported

Types

This chapter continues the exploration of the partial isolation reference-protection

model. The previous chapter presents Exported Types, a type system design that en-

forces partial isolation in compile time. This chapter describes a proof-of-implementation

of the design, demonstrating that it can be implemented and that it can be applied

to an existing language. The next chapter analyses the performance of the imple-

mentation, demonstrating that the increased security the isolation provides does not

incur a run-time performance cost.

This chapter describes the implementation of S-RVM [Yarom et al., 2012], a Java

virtual machine based on JikesRVM [Alpern et al., 2000] that implements Exported

Types. JikesRVM is a research-oriented Java virtual machine notable for being

meta-circular. Meta-circular virtual machines are virtual machines that execute

within the same environment they provide. In the case of JikesRVM it means

that it is written in Java and that it runs itself. S-RVM increases the security

of JikesRVM by providing a clear boundary between the application code and the

virtual machine code, using reference protection to protect the virtual machine code

from the application.

The virtual machine code is responsible for enforcing the type safety of the

language. To maintain protection for virtual machine code, there is a need for a clear

boundary between the trusted virtual machine and the untrusted application [Back

and Hsieh, 1999]. That is, the virtual machine needs to be able to easily determine

the context within which code executes.

In JikesRVM, the application and the virtual machine share the type hierarchy,

including the Java library classes. Hence, the same library code can be executed by

both the virtual machine and the application. Sharing the library code, therefore,

blurs the boundaries between the virtual machine and the application. As a result,

there is no one consistent solution for deciding whether code executes within the

55

virtual machine or the application context [Jones and Ryder, 2008, Lin et al., 2012].

Sharing the type hierarchy means that application code has access to virtual

machine types. Access to virtual machine types allows application code to bypass

the type safety of the language and the blurred boundaries in JikesRVM hinder pro-

tecting the virtual machine from application access. As the Java language security

depends on type safety, direct access to virtual machine objects allows applications

to bypass the Java security.

S-RVM increases the security of JikesRVM by using the Exported Types design

to reinstate a clear boundary between the virtual machine and the application. It

segregates the virtual machine and the application into separate components, called

tasks, where each object and the code associated with it is unambiguously associated

with one task. The inherent protection of the Exported Types design ensures that

virtual machine types are not accessible to the application except where explicitly

declared to be in the interface zone of the virtual machine task.

The virtual machine executes within the root task. The interface zone of the

root task provides the application in the application task with the virtual machine

services it requires for its execution. As the application has direct access to this

zone, the services are provided at no performance overhead.

The interface between the virtual machine and the application also forms a trust

boundary. That is, the virtual machine does not trust any code that runs within

the application task, including the Java library code. Not trusting the application’s

library code reduces the virtual machine attack-surface area [Manadhata and Wing,

2011]. It also decouples the Java library from the virtual machine allowing the

use of different implementations of the Java library for the virtual machine and

the application. This facilitates porting versions of the Java library for application

use, obviating the need for handling the circular dependencies between the virtual

machine and the Java library it uses.

S-RVM uses Java annotations to implement the export and import operations

of the Exported Types design. When the virtual machine loads a class annotated

with the @Export annotation, it adds the name of the class to a shared name space,

allowing the application task to import the class. When it loads a class annotated

with the @Import annotation the virtual machine searches for the class in the shared

name space, replacing the previously exported class for the loaded class.

S-RVM also uses annotations for specifying the remote interface of exported

classes. Only methods of exported classes annotated with @Remote annotation are

accessible from the application task.

Implementing the Exported Types design to separate the application from the

virtual machine presents several challenges that are specific to this context. Princi-

pal among these is the asymmetric nature of access required. Some of the functions

56

of the virtual machine, e.g. garbage collection, require unrestricted access to ap-

plication objects. Consequently, virtual machine code needs to be able to bypass

the protection provided by the Exported Types design. Hence, the implementation

needs to support privileged zones.

Another challenge is the need to maintain the Java library interface. Some

library classes, e.g. Thread or ClassLoader, represent virtual machine entities. The

straightforward implementation of these classes is as virtual machine types that are

exported to the application. Such implementation, however, is not compatible with

the Java language specifications both because these classes are not subclasses of the

importing task Object class and because the specifications of these classes include

types in the sealed zone of the application.

A third challenge stems from enforcing a trust boundary between the virtual

machine and the application. In a typical Java virtual machine implementation the

Java library is part of the trusted code base. Trusting the library means that it can

perform operations that are not allowed for application code. For example, Java

library code can modify the backing store of String objects and is trusted not to do

that in a way that would break the Java language security. To reduce the amount

of trusted code and to reduce the attack-surface area of the trusted code, S-RVM

does not trust the Java library of the application task. Consequently some parts of

the Java library need to be redesigned.

Basing S-RVM on an existing system, rather than building it from scratch, is a

double-edged sword. The main advantage of this approach, and the motivator for

choosing it, is that JikesRVM is a mature, well-established, high-performance, Java

virtual machine. Consequently, it provides a solid basis to compare the performance

effects of adding Exported Types. Furthermore, the use of a mainstream language

allows using standard performance benchmark suites which include “real” workloads.

These would not have been available for a new language designed from the ground

up with support for Exported Types.

The downside of using JikesRVM is that neither the Java language nor JikesRVM

itself were designed to support Exported Types. As discussed in Chapter 3, some

language features are not compatible with the Exported Types design. Furthermore,

JikesRVM was designed to support the Java type system. Exported Types changes

the semantics of the type system, and this change affect diverse areas of the code of

JikesRVM, including the type system, the optimising compiler, the interface to the

Java libraries and the Java Native Interface.

With several areas of JikesRVM being affected, it is little surprise that the

changes for supporting Exported Types are quite involved. The implementation

of S-RVM includes modifications to over 70 JikesRVM classes and almost 60 new

class files. Overall more than 25,000 source lines were added or modified, covering

57

about 3% of the JikesRVM code base.

It is worthwhile noting that most of the changes required in JikesRVM are,

basically, the result of a single design change. JikesRVM is designed to support the

Java type system where each type in the core library is uniquely identified. That is,

there is a single java.lang.Object type, a single java.lang.String type, etc.

S-RVM adds to JikesRVM the support for multiple, disjoint, type name spaces.

Consequently, there are multiple copies of the Java core libraries and the code can

no longer assume that unique semantics of a Java core library type apply to only one

type. For example string literals in a class file need to be created with the String

type of the name space the class is loaded into and references can be assigned to

variables of type Object only if the references types are in the same name space as

the Object type.

Thus, the single change to the design of the type system percolates through

the various parts of JikesRVM code and affects multiple components of JikesRVM.

This chapter describes this change and the modifications it induces on the code of

JikesRVM.

The next two sections provide a brief introduction to features of the Java lan-

guage and of JikesRVM that are required for understanding the implementation of

S-RVM. This introduction is followed by an overview of S-RVM and its main data

structures. The implementation of the export and import operations is discussed

next. The discussion, then, proceeds to the design of the interface layer between

the application and the virtual machine, followed by the issue of asymmetric access

required for the virtual machine and the implementation of cross-task exceptions.

This chapter concludes with a discussion on S-RVM implementation verification.

4.1 The Java Virtual Machine

The introduction of the Java language in 1995 reignited the interest in high-level-

language virtual machines. Java is an object-oriented, type-safe and secure language.

From its inception, the language was designed to support mobile code and the

security challenges related to it [Gosling and McGilton, 1996]. This section provides

an introduction to relevant aspects of the Java virtual machine, with focus on the

language’s security features.

The Java front-end compiler javac compiles Java code into Java bytecode [Gosling,

1995]. The Java bytecode is an intermediate instruction format for an abstract stack-

based machine. Java bytecode is packaged in Java class files which the Java virtual

machine executes. Hence, strictly speaking, the Java virtual machine executes Java

bytecode [Lindholm and Yellin, 1999].

The Java virtual machine emulates the abstract machine to execute bytecode.

58

For this emulation it either interprets bytecode instructions one at a time or, for

improved performance, compiles the bytecode into machine code and lets the CPU

execute the compiled code.

The Java virtual machine is designed to execute mobile code, that is, code that

is delivered to the machine over the network. In many cases the origin of this mobile

code is unknown and the code cannot be trusted. One of the main functionalities of

the Java security architecture is to limit such code to a restricted environment called

the sandbox, that prevents hostile code from harming the computer it executes on.

The Java security architecture has evolved over the years to an intricate frame-

work that supports encryption, authentication and access control [Gong, 1997, Oaks,

2001]. As reference protection falls under the umbrella of access control, this section

focuses on this area.

Access control in Java consists of three main components [Gong, 1997, Gong

et al., 1997, Yellin, 1995]. The first is the class loader which is both a mechanism for

introducing (loading) code into the virtual machine and a naming and a protection

scope for the code it loads [Liang and Bracha, 1998]. The second component of the

security architecture is the security manager which verifies that code has authori-

sation to execute sensitive operations [Gong, 1997]. The third component is the

bytecode verifier, which ensures that bytecode is type-safe and that it only manipu-

lates objects using operations sanctioned by their type [Gosling, 1995, Leroy, 2003].

These three components are described in more details below.

4.1.1 Class Loaders

A Java class loader is an object used to locate Java class files and to load them to

the virtual machine. A Java virtual machine starts execution with at least two class

loaders: the base class loader (a.k.a. the bootstrap class loader) and the system class

loader. The base class loader is used for loading the classes of the Java libraries,

whereas the system class loader is used for loading the main program code.

In addition to the system-provided class loaders, the program can instantiate

user-defined class loaders [Liang and Bracha, 1998]. These class loaders are used, for

example, to load classes from remote locations or from different storage back ends.

User-defined class loaders can also manipulate the bytecode before it is loaded and

even dynamically generate the bytecode for the classes.

Class loaders act both as name spaces and as naming scopes for Java. Each class

loader is associated with a name space for the classes it loads. Thus, run-time types

are identified by their name and the class loader which loaded them. This scheme

prevents conflicts between components that load classes with the same name. When

the components are loaded by different class loaders, the types they load are different

59

even if they have the same name.

As a naming scope, the class loader is responsible for resolving type names ap-

pearing in code it loads. The class loader may locate the class and load it. Al-

ternatively, the class loader may delegate the resolution process to another class

loader.

To prevent class loaders from overriding critical system classes, the virtual ma-

chine ensures that core library classes (classes with names starting with java.*) are

always loaded by the base class loader. These classes include the root of the Java

type hierarchy—java.lang.Object.

Having a single root type hampers reference protection. In a static hierarchical

type system, supertypes cannot support operations that are prohibited by subtypes.

Otherwise, casting to the supertype would allows bypassing the restrictions on the

subtype. As there are no restrictions on assigning to Object references in Java,

the type system in Java cannot control the propagation of references in compile

time. All extensions of Java that enforce reference protection at compile time create

multiple Object types, either explicitly or implicitly.

When the class loader loads a class, it also records the location the code was

loaded from, information on digital signatures associated with the code and any

default permissions for the code. This information is used by the security manager,

described in the next section, for authorising access to resources.

4.1.2 Security Manager

The security manager is the main authorisation module in Java. It manages the

security policy and authorises access to resources, including files, URLs, class loaders

and others.

Code that requires access control must explicitly invoke the security manager

to authorise access. When invoked, the default security manager traverses the run-

time stack to establish a security context, which is used to authorise the access.

To establish the security context, the security manager relies on the identity of the

class loader that loaded the active code and any information that the class loader

recorded for that code.

The run-time call to the security manager and the cost of the stack traversal

result in an overhead of 5%-100% to the cost of operations that require protec-

tion [Herzog and Shahmehri, 2005]. Consequently, the security manager is not used

for protecting fine-grained frequent operations. Furthermore, due to the costs in-

volved, the security manager is often disabled.

Requiring an explicit call to the security manager implies that the security it

provides is discretionary. Code that fails to invoke the security manager and code

60

that allows bypassing the call to the security manager is not secure. To prevent

bypassing the call to the security manager, programmers rely on the type safety of

the language. The bytecode verifier, discussed in the next section, is the principal

tool for enforcing type safety.

4.1.3 Byte Code Verifier

Java is a type-safe language. It ensures that access to objects is restricted to only

those operations sanctioned by the types of the objects. When Java code is compiled

to Java bytecode, javac ensures that the code does not breach type safety. For

example, the compiler ensures that methods the code invokes actually exist, that

their arguments and return values are compatible with those used in the call site and

that code within the lexical scope of the call site is allowed to invoke the method.

Two separate issues can cause difficulties with verifying type safety by the Java

compiler. The first is that the compiler can only rely on static, compile-time, in-

formation. Yet, the correctness of some operations cannot be verified at compile

time. Two examples are type cast to a subtype and array bound checking. In

both examples, the type safety of the operation depends on the actual values of the

operands. Java resolves this issue by introducing run-time checks that verify type

safety against the actual operands.

The second issue is that the types used to check type safety of the code are not

necessarily the same types that will be used at run time. The Java compiler has

no control over which Java bytecode files are shipped to the virtual machine for

execution. It also has no control over which class loader is used to load these types

and, consequently, over the run-time types used. Using different types at run time

may void any type checks done at compile time. To overcome this issue, the Java

virtual machine must verify that the bytecode it executes is type safe.

The discrepancy between compile-time and run-time types is not the only moti-

vation for verifying bytecode in the Java virtual machine. Bytecode can be generated

by tools other than the Java compiler [Bruneton et al., 2002, Chiba, 2000, Dahm,

1999] and there is no guarantee that code generated by such tools is type safe.

The bytecode verifier is a component of the Java virtual machine that verifies the

Java bytecode loaded at a machine. It checks, inter alia, that the types of operands

match the operators or the methods invoked, that methods do not cause stack

overflow or underflow, that all registers and objects are initialised before use, and

that scoping rules are not bypassed. Describing the implementation of a bytecode

verifier is beyond the scope of this thesis. Leroy [2003] provides an excellent survey

of algorithms and strategies for implementing a bytecode verifier.

61

4.1.4 Summary

This section presents some areas of the Java virtual machine that have relevance to

the implementation of S-RVM. First amongst these is the distinction between the

Java language and the Java bytecode. The Java virtual machine does not execute

Java code. It executes Java bytecode. Consequently, “compile time” as used in this

thesis is the time that the virtual machine compiles bytecode into machine code,

rather than the time that javac compiles Java code into Java bytecode.

The observation that the Java virtual machine executes Java bytecode also im-

plies that, for type safety, the Java bytecode needs be verified. The bytecode ver-

ifier, therefore, provides the protection which underlies any security mechanism in

the language.

The primary role of class loaders in the Java virtual machine is to find and

load class files. They are, however, also used to create type name spaces. These

name spaces are not isolated, allowing sharing of types between class loaders. The

forced use of the base class loader for Java core types is useful for creating a set of

types common to all code. However, sharing Object, the top of the type hierarchy,

hampers reference protection.

Thus, Java type system does not provide any control of reference propagation.

Programmers that need to control the propagation of references in Java have to rely

on other mechanisms. The security manager, which is the mechanism Java uses for

access control, is both discretionary and adversely impacts performance.

The next section describes JikesRVM, the Java virtual machine which provides

the basis for the implementation of S-RVM.

4.2 JikesRVM

JikesRVM is a Java virtual machine oriented toward providing a flexible test-bed for

experimentation with virtual machine design. Having been used for many research

projects, JikesRVM is a widely accepted experimental platform. Hence, its use as

a basis for S-RVM provides a baseline to measure and compare the performance

against S-RVM.

JikesRVM is a meta-circular virtual machine. That is, it executes in the same

run-time environment it provides. Figure 4.1 shows the high-level structure of the

JikesRVM run-time environment. Similar to other Java virtual machines, the run-

time environment is layered, with the virtual machine executing at the bottom layer,

the Java libraries in the middle layer and the application at the top. But, as most

of the code of the virtual machine is written in Java, it uses some core services of

the Java library, e.g. class loading and string objects.

62

VM

Java Library

Application

Core Services

Figure 4.1: The JikesRVM runtime environment

Executing the virtual machine and the application within the same run-time en-

vironment offers performance benefits by removing the language barriers between

the virtual machine and the application. When the virtual machine and the appli-

cation share the run-time environment, they use the same object format, the same

calling conventions, the same data representation and the same semantics. Thus,

there is no need to convert data when it is transferred between the application and

the virtual machine.

Furthermore, the use of the same language allows the compiler to inline virtual

machine code in the application. When the application code invokes a virtual ma-

chine method, either explicitly by calling the method or implicitly when the virtual

machine method implements a specific bytecode operation, the code of the virtual

machine method can be subsumed into the application code and compiled together

with it. The compiler can then use information it has for the specific call site when

compiling the virtual machine code and optimise the virtual machine code for the

specific call site.

This section presents the structure of JikesRVM with focus on areas required

for understanding the implementation of S-RVM. It describes the compilation and

memory management frameworks in JikesRVM, the use of magic, the interface be-

tween the Java library and JikesRVM, virtual machine initialisation and the impli-

cation of the shared run-time environment on the security of the virtual machine.

4.2.1 Compilation Framework

Unlike most Java virtual machines, JikesRVM never interprets bytecode. In JikesRVM

bytecode is always compiled into native machine code which is executed directly by

the processor. JikesRVM supports two compilers which represent a trade-off be-

tween compiler efficiency and code performance. The baseline compiler consists of a

single pass that directly translates bytecode into native code without any intermedi-

ate representation. Instead of performing register allocation, the baseline compiler

emulates the Java operand stack in memory. This simplistic approach to compila-

tion results in very inefficient code. The compilation process, however, is very quick,

reducing the overhead of compilation.

63

The optimising compiler translates bytecode to an intermediate representation

on which it performs optimisations. It supports several optimisation levels that

attain different trade-offs of compilation overhead vs. native code performance.

JikesRVM also supports an adaptive optimisation framework [Arnold et al.,

2004] that uses information about compilation speed and native code quality to

choose the appropriate compiler and optimisation level. Adaptive optimisation al-

lows JikesRVM to focus the compilation effort on frequently used code and to adapt

the optimisations to characteristics of the code.

In a typical scenario, method code is compiled using the baseline compiler when

the method is first invoked. The compiled code collects profiling information on the

frequency of execution of the method code. The profiling information is used to

identify “hot” methods, which are recompiled using the optimising compiler. The

optimising compiler also relies on some profiling information for decisions such as

method inlining, which reduces the overhead of popular method calls, and branch

prediction, which improves performance by reducing the need to flush the processor

pipeline.

4.2.2 Memory Management

For memory management JikesRVM uses the MMTk toolkit [Blackburn et al., 2004,

2006a]. MMTk is an extensible framework for building high-performance garbage

collectors.

To achieve high performance, MMTk focuses on the fast path—the code execution

path taken in the more common or frequent cases. As part of that focus, MMTk

uses thread-local data structures to handle the common case, avoiding the overhead

of synchronisation on the fast path. To avoid the overhead of method invocation,

methods on the fast path are inlined into the calling context. Inlining also allows

the called methods to be optimised with the calling code, which allows the inlined

code to be specialised to the context.

As Java uses automatic memory management, the application code needs to

interface with the memory management in two ways. Memory is allocated through

bytecode operations. The JikesRVM compiler implements these operations as calls

to MMTk methods.

Memory is reclaimed by an offline garbage collection process. All the collectors in

MMTk are stop-the-world collectors [JikesRVM User Guide]—the application code

stops while garbage collection executes. To stop the application threads for garbage

collection, the JikesRVM compiler inserts yield points at the entry code of every

method and inside each loop in the code. The yield point checks whether garbage

collection is required and synchronises the thread with the garbage collector.

64

The memory management needs low-level primitives, such as direct access to the

memory and to the run-time stack. These primitives are not supported by the Java

language because they can be used to bypass the type safety of the language. The

next section describes the mechanisms that implement low-level primitives, including

those required for memory management.

4.2.3 Compiler Magic

As a meta-circular virtual machine, the code of JikesRVM is written in Java. How-

ever, some of the low-level operations that the virtual machine needs to execute

cannot be implemented in Java. Examples of such operations include invoking na-

tive code generated by the compiler, scanning and rewinding the execution stack

when an exception is thrown and the allocation and reclamation of memory.

JikesRVM uses compiler magic [Frampton et al., 2009] to implement these op-

erations. Compiler magic is code for which the compiler applies different semantics

than specified by the language.

Three main forms of magic are implemented in the JikesRVM compilers. Magic

methods are methods for which the compiler implements special semantics. When

the compiled code includes a call to a magic method, the compiler intercepts the call,

inserting code for the special semantics instead of the code for a method invocation.

Examples of such operations include primitives for atomic access to memory, which

are required for implementing low-level synchronisation, and operations that access

the stack of the current thread.

Type extensions are another form of magic that extends the language type sys-

tem. These include types like Address, which is an unboxed reference to a memory

address. The Address type defines some operations such as reading and writing

data from the memory or converting between Object references and the memory

address the referenced object is stored in.

As Address is an unboxed type, values of the type are not objects and have no

method dispatch table. Instead, all methods of Address are magic, and the compiler

replaces calls to them with the native code that implements them. For example,

calls to Address.loadByte() are replaced with the machine code to load a byte

from the memory and calls to type conversion methods are simply eliminated from

the resulting native code.

The third form of magic is using compiler pragmas to change the semantics of

code within a scope. Examples of such pragmas are the @Inline and @NoInline

annotations that override the compiler’s inlining algorithm by forcing or preventing

the inlining of the methods they annotate.

Another example is the @Uninterruptible annotation that is used for methods

65

whose execution should never be interrupted. Interruptions caused by the code are

prevented by forbidding the use of bytecode operations, such as synchronisation or

memory allocation, that may result in interrupts and by only allowing the code to

invoke other uninterruptible methods. Furthermore, the compiler does not generate

yield points in uninterruptible methods, avoiding unintended pre-emption during

the execution of the method.

4.2.4 Library Interface

The execution environment of a Java program includes both the virtual machine and

the Java library. Some of the Java library classes abstract virtual machine entities.

Hence, the implementation of the Java library needs to interface with the virtual

machine. At the same time, JikesRVM itself is written in Java. As such, it depends

on some Java classes and needs an interface to the library.

JikesRVM can be built with either the GNU Classpath [GNU Classpath] im-

plementation of the Java library or with the Apache Harmony [Apache Harmony]

implementation. As currently S-RVM only supports GNU Classpath, only the in-

terface with this implementation is described here.

The GNU Classpath implementation is mostly written in Java. A few classes,

including the floating point numbers, basic I/O and graphics packages, are imple-

mented in C. To interface with the virtual machine, the GNU Classpath uses a set of

hooks, which are classes that are expected to be implemented by the virtual machine

provider.

Hooks are defined as package-scoped classes. The names of hook classes are

the name of the class they provide the implementation to with the prefix VM. For

example, the class VMClass provides the hooks required for the implementation of

the Class class, and the class VMString provides those required for String.

For some of the library classes, GNU Classpath also includes a protected field

for virtual machine specific data. When the field is provided, GNU Classpath also

provides the hooks required for its initialisation.

JikesRVM occasionally needs access to internal members of Java library classes.

Instead of modifying the public interface of these classes, JikesRVM adds the class

JikesRVMSupport to the Java library package. The methods of JikesRVMSupport

provide access to package-scoped members of library classes.

4.2.5 Virtual Machine Build

A substantial set of services is required for the virtual machine to start operating.

The virtual machine needs to be able to load classes, compile code, allocate memory

and support other miscellaneous virtual machine services before it can load other

66

services and execute a program. To provide the initial set of services JikesRVM

builds a boot image that contains a memory image of the virtual machine.

To create the boot image JikesRVM uses the boot image writer program. The

boot image writer is a Java program that runs on any existing Java virtual machine.

It creates a mock-up of a running JikesRVM, including loaded classes and compiled

methods. It then converts objects from the mock-up it created to the JikesRVM

object model, creating an image of a running JikesRVM virtual machine. This image

is written to the boot image file.

A minimal boot image need only use the baseline compiler and does not need to

include the optimising compiler in the image. However, to reduce startup time and

improve performance, the boot image can include additional classes and the code in

it can be compiled with the optimising compiler.

To run the virtual machine, JikesRVM uses a small C program that maps the

boot image into the memory and jumps to the virtual machine initialisation code.

4.2.6 Security

Language-based security is one of the major aims of the Java programming lan-

guage [Gosling and McGilton, 1996]. JikesRVM, however, significantly lacks in that

area. The most obvious security issue in JikesRVM is the absence of a bytecode

verifier [Yellin, 1995]. The bytecode verifier is one of the cornerstones of the Java

security and without it JikesRVM cannot ensure that code does not breach the Java

safety.

Adding a bytecode verifier to JikesRVM does not seem to be a difficult problem.

Algorithms for bytecode verification are available [Leroy, 2003] and the bytecode

verifier is mostly independent of the rest of the virtual machine. A more subtle

problem, yet much more difficult to fix, is the sharing of the run-time environment

between the virtual machine and the application.

Sharing the run-time environment blurs the boundaries between the application

and the virtual machine. The application and the virtual machine share the same

type hierarchy. As Figure 4.2 demonstrates, this hierarchy includes some classes

that are categorically application classes and others that are unambiguously within

the virtual machine. However, the same Java library classes are used by both the

virtual machine and the application.

The direct consequence of the shared type hierarchy is that it provides application

code with access to internal virtual machine types. This access can be exploited by

application programs to bypass the type safety of language. For example, JikesRVM

uses the Statics class to manage values of static fields in the run-time. Application

code has access to the Statics class methods and can use this access to retrieve or

67

Application

Class

Object

String List

ArrayList LinkedList

Library Class

Legend

HelloWorldStatics

RVMClass

RVMType

Primitive

VM Class

Figure 4.2: Type hierarchy in JikesRVM

update the value of any static field in the run-time, irrespective of the access scope

of the fields.

The problem of the Statics class can be solved using a simple mechanism.

Instead of using public static methods for access, the Statics class can be imple-

mented as a Singleton [Gamma et al., 1995], using the instance methods for access.

Releasing the reference to the singleton instance only to trusted callers ensures that

untrusted application code is unable to use the Statics methods.

Three issues with the use of the Singleton pattern make this solution less than

ideal. First, JikesRVM consists of over 1,300 classes. Each of these is accessible

to application code and is, therefore, in the attack surface [Manadhata and Wing,

2011] of the virtual machine.

The second issue is that as the Java library is shared with the application, iden-

tifying trusted code is not easy. Code of Java library classes can execute both in

the application and in the virtual-machine context. Identifying the context in which

library code executes requires expensive dynamic checks [Jones and Ryder, 2008,

Lin et al., 2012].

Thirdly, as Java does not provide any form of reference protection, trusted code

should be trusted not to further disclose the reference to the sensitive objects, such

as the Statics singleton.

S-RVM uses the Exported Types design to separate the type hierarchies of the

virtual machine and the application. Consequently, the attack surface of the vir-

tual machine is significantly reduced, identification of the context code and objects

68

belong to is simple and reference protection ensures that sensitive internal objects

are not disclosed to the application. The next section presents an overview of the

implementation of S-RVM.

4.3 An Overview of S-RVM

The high-level structure of the S-RVM run-time environment is depicted in Fig-

ure 4.3. The run-time environment consists of a root task, which executes the vir-

tual machine and an application task, which executes an untrusted application. The

virtual machine provides services to the application task using a virtual machine in-

terface layer. The root task also executes a trusted application, which is responsible

for launching the application task.

Core Services

Application

Java Library

Application Task

Library
Java

App
Trusted

Root Task

VM Interface Layer

VM

Figure 4.3: The S-RVM runtime environment

To provide reference protection, S-RVM implements the Exported Type design.

In a nutshell, the Exported Types design creates a separate name space for each

component and supports two type operations. The export operation makes a type

of the exporting component available for use by other components and the import

operation binds a type name in a component to a type exported by another compo-

nent. The Exported Types design also creates a remote protection scope to restrict

access to members of exported types.

Each S-RVM task consists of a sealed zone that contains private data and an

interface zone that is accessible by the other task. The interface zone of the root

task consists of types it exports. The interface zone of the application task consists

of subtypes of types it imports from the root task.

S-RVM uses Java annotations [Java Community Process, 2004] for the syntax

of the Exported Types operations. Types to be exported are annotated with the

@Export annotation. The @Remote annotation identifies methods of an exported

type that are in the remote interface of the type. Listing 4.1 shows part of the code

of the type RVMClass, which is JikesRVM’s internal representation of a Java class.

The @Export annotation in line 1 indicates that the class is exported. That is,

code running in the application task can import this class and use it. The method

69

1 @Export
2 public class RVMClass extends RVMType {
3
4 private final RVMClass superClass;
5 private FieldLayoutContext fieldLayoutContext
6
7 @Remote
8 public RVMClass getSuperClass() {
9 return superClass;

10 }
11
12 public FieldLayoutContext getFieldLayoutContext() {
13 return fieldLayoutContext;
14 }
15 }

Listing 4.1: An exported class

getSuperClass in line 8 has the @Remote annotation and is, therefore, accessible

from the application task. The method getFieldLayoutContext in line 12, while

being public, does not have the @Remote annotation. Hence it is not accessible

from code running in the application task.

To import types, the application task loads a stub of the type. Stubs are Java

types which specify the remote interface of an exported type and that have the

@Import annotation. S-RVM provides a tool that parses exported types and auto-

matically generate the stubs. Listing 4.2 shows the stub file generated from the code

in Listing 4.1.

1 @Import
2 public class RVMClass extends RVMType {
3 public RVMClass getSuperClass() { return null; }
4 }

Listing 4.2: An import stub

The @Import annotation in line 1 directs the virtual machine to bind the type

name (RVMClass in this example) to a previously exported type with the same name.

The body of the stub type is not used when importing the type.

The body of stub types includes the remote method declarations with a minimal

method implementation. The minimal implementation is required to allow compila-

tion of the stub into bytecode. The implementation of void methods is empty. For

methods returning boolean, a number or a reference, the minimal implementation

is to return false, 0 or null, respectively.

The body of the stub type helps in early detection of errors in the declaration

70

of, and in the use of, the remote interface. When generating the code for the stub

type, the signatures of remote methods are checked to ensure that they consist of

types that are shared between tasks, i.e. primitive and exported types. Furthermore,

compiling client code against the stub class files instead of against the exported type

ensures that the client code only uses the remote interface of the exported type.

The Exported Types design is based on creating a separate name space for each

task. The crux of separating the application and the virtual machine lies in creating

the separate name spaces using a separate base class loader for each task. The

base class loader in Java is responsible for loading the Java library classes. Using

a separate base class loader for each task implies that the class ClassLoader in

each task is private to the task. Hence, class loaders cannot be shared between the

tasks and class loading cannot be delegated across task boundaries. Using separate

base class loaders, therefore, effectively creates a separate class name space for each

task. The Exported Types design is a partial design of a type system, which can be

used either as a basis for a complete type system or as an extension to an existing

one. S-RVM uses the Exported Types design to extend the Java type system with

support for reference protection.

Tasks in S-RVM are represented by RVMTask objects. The RVMTask object rep-

resenting the root task is created during the S-RVM build time. The trusted appli-

cation within the root task creates the RVMTask object representing the application

task. The ability to dynamically create multiple tasks provides an initial support

for extending S-RVM to a multi-tasking Java virtual machine.

The key members of the RVMTask object are the base class loader of the task and

the upcall interface into the task. A partial class diagram is displayed in figure 4.4.

The base class loader object, whose type is BootstrapClassLoader, provides the

functionality required to load the implementation of the classes in the core Java

library. The class is a subclass of RVMClassLoader which is used for storing the

virtual machine’s representation of a class loader.

Application

RVMTask

id: int

name: String
BootstrapClassLoader

RVMClassLoader

MuImplementation

MuLibInterface

VM

Figure 4.4: RVMTask class diagram

RVMClassLoader as well as the upcall interface form part of the VM Interface

Layer, which provides the mean for communication between the application task

71

and the root task. The layer consists of types exported by the root task, which the

application task can use for accessing the root task, as well as of exported types that

the application task extends to allow the root task access to the application task.

These are described in further detail in Section 4.5, following the description of the

implementation of the import and export mechanisms.

4.4 Import and Export

Having a base class loader for each task creates the tasks name spaces required for

the Exported Types design. Type export and import require a shared name space.

S-RVM implements this shared name space as a simple hash table that translates

from a name to a type.

When S-RVM parses a class file it checks for the existence of the @Export and

@Import annotations. Exporting a type takes two steps. First, when finding an

@Export annotation while parsing a class file, the name of the class is reserved,

ensuring that no concurrent attempts to export a type of the same name succeeds.

After parsing completes, the type is created and is associated with the reserved

name.

The purpose of the two phase process is to avoid a potential race condition

when two classes that share the same name are exported. Reserving the name when

parsing the class file ensures that only the first one of these will complete parsing

and will be created.

The handling of @Import annotations is straightforward. When the class file

parser finds the annotation, it searches the shared name space for the type name,

returning the exported type if found and throwing an exception otherwise. The only

complication is that this approach does not handle imported magic types.

In JikesRVM there are a fixed number of magic types. The JikesRVM compiler

identifies type references as magic by comparing them to each of the known type

references of magic types. In S-RVM, import occurs when the type is loaded. Hence,

when a type is first referenced, S-RVM cannot know whether the type will be im-

ported, let alone whether it is an imported magic type. This results in two problems.

First, the number of type references that can refer to magic types is no longer fixed

and comparing against a fixed list no longer works. Second, the compiler cannot

know if a type reference is for a magic type without loading the type.

S-RVM solves these two problems by forcing the load of imported magic types

during task initialisation and by marking type references as magic. (See Listing B.5

in Appendix B.2.) The main downside of this scheme is that the identity of the

imported magic types must be known at virtual machine build time. However, this

is not a major limitation because a priori knowledge of magic types is required for

72

handling them even when they are not exported.

The virtual machine interface layer consists of 49 exported types. Compared with

1,300 classes in the JikesRVM virtual machine and over 5,000 Java library classes

that JikesRVM trusts, this represent a reduction of over two orders of magnitude in

the number of classes exposed to the application.

Exporting a class puts it in the VM interface layer. Design patterns used for this

layer are described in the next section.

4.5 The VM Interface Layer

The root task provides the run-time environment for the application task. For the

application to interact with its environment, it needs to communicate with the root

task. This communication includes transferring both data and control between the

application and the root task.

Due to the separate base class loaders, types in the root task are incompatible

with types in the application task. That is, references to objects in the root task are

not type compatible with and cannot be assigned to references in the application

task and vice versa.

To support communication between the tasks, S-RVM implements the Exported

Types Design. Types that the root task exports are imported by the application

task, allowing the application task to hold references to object of these types. These

objects form the VM Interface Layer (Figure 4.3), which provides the means for

communication between the tasks.

Importing types creates a dependency on the task that exports the types. To

avoid mutual dependencies between the root and the application tasks, only the root

task exports types. A type exported by the root task can be used for downcalls, i.e.

calls from the application task to the root task. To support upcalls, or calls from

the root task to the application task, S-RVM uses the callback mechanism described

in Section 3.4. That is, the application task extends abstract types exported by the

root task. As the application task provides the implementation of these extended

types, objects of the extended types have access to objects of the application task.

References to these objects can be used by the root task, by virtue of these extended

types being subtypes of types declared and exported by the root task.

Figure 4.5 presents the class diagram of a typical pattern used for bi-directional

communication between the root and the application tasks. The root task exports

two types: DowncallInterface and AbstractUpcall. The application uses down-

calls by invoking methods of the class DowncallInterface. The class AbstractUpcall

declares the upcall methods that the root task may invoke.

The pattern consists of two objects, one in each task. The DowncallInterface

73

Application Task

DowncallInterface

ConcreteUpcall

AbstractUpcall

Root Task

Figure 4.5: Bi-directional communication between tasks

object provides the interface for the application task to invoke downcalls. The

ConcreteUpcalls, whose type extends the exported type AbstractUpcalls, imple-

ments the upcalls.

An example of using this pattern is shown in Figure 4.4 where an object of

the class RVMTask provides a downcall interface for task-related requests from the

application task. Examples of services include loading native libraries, access to the

base class loader and querying the type of an object.

The upcall interface is declared in the exported abstract class MuLibInterface

and is implemented in the application task class MuImplementation. Upcalls are

required when the root task needs to create or access objects in the application

task. For example, when the root task loads an application class, it needs to cre-

ate the Class object representing the loaded class. The Class class of the created

object is within the application task. To create this object, the root task invokes

the method MuLibInterface.createClassForType(), which calls a protected con-

structor of the Class class. (See Listing B.2 in Appendix B.1.) Other methods of

MuLibInterface are used for application task initialisation and for implementing

Java Native Interface (JNI) calls [Liang, 1999].

Another example of this use of the pattern for bi-directional communication is

the implementation of the interface for managing Java threads. A partial class

diagram for the classes involved with Java threads is shown in Figure 4.6. The class

Thread is the Java library implementation of a thread abstraction. RVMThread is

the class that represents a thread in the root task. VMThread provides both the

Classpath hook (Section 4.2.4) and the implementation of the upcall interface for

the thread. The upcall interface itself is defined in the abstract class MuThread.

run()

Thread

run()

VMThread

RVMThread

run()

MuThread

run()

Application task

Root task

0..1

Figure 4.6: Classloader class hierarchy

74

Hence, for example, when a thread is started, the root task needs to invoke its

run() method. To achieve this it invokes the run() method of RVMThread which

makes an upcall to the VMThread hook object, which, in turn, invokes Thread.run().

The use of this approach introduces an extra object (of class VMThread in the

example above) that acts as intermediary between the Java library object (Thread)

and the root task representation of a thread (RVMThread). As additional objects

incur overheads, it is worth examining why this intermediary object is required.

There are three possible ways to avoid the intermediary object. The upcall

functionality can be merged into the root task object, it can be merged into the

Java library object and the root task can use reflection for implementing the upcall

functionality.

Merging the upcall functionality into the root task object can be achieved by

the application task extending the root task object type. There are, however, two

problems with this approach. First, it makes the root task object dependent on

types defined in the application task. This creates a circular dependency for objects

that need be created before the task can be active. For example, when an application

class is loaded, the root task needs to create the objects representing methods of the

class. If these objects need to be of a type that the application task defines, these

objects cannot be created until that type is loaded, preventing the loading of this

type until after it is loaded.

The second problem is that the application task needs to extend the root task

object, limiting the type hierarchy within the root task. It would mean that the

types exported by the root task cannot be final and cannot be extended at the

root task without affecting the application task.

The second approach for avoiding the intermediary object is to merge it into the

Java library class. The problem with this approach is that classes that implement

upcall methods need to be subtypes of root task types. The specification of the

Java library define the type hierarchy of the Java library classes, preventing this

subtyping. Furthermore, even if the specifications are relaxed, Java library classes

in the application task are expected to be subtypes of the application task Object

type. They cannot, therefore, extend root task types.

The third approach, using reflection, is feasible. However, the reflection interface

is less intuitive than the method invocation interface and reflection misses optimi-

sation opportunities, such as inlining the invoked method.

Due to the limitations of the alternative approaches, S-RVM uses the pattern

described above, with the intermediate object.

To ensure the protection of the root task, code in the root task does not trust

the code in the application task. The next section discusses implementation issues

that relate to this lack of trust.

75

4.6 Creating a Trust Boundary

As discussed above, the interface layer is a trust boundary. Unlike most Java Virtual

Machines, S-RVM does not trust the Java library code used by the application.

Instead, the interface layer is designed to provide a security barrier and to protect

the virtual machine from malicious applications.

Lack of trust is manifested in extra tests in interface methods. For example,

to prevent the application code from using reflection on virtual machine types the

virtual machine method getObjectType(), which returns the type of an object

is replaced with a secure version which, when invoked by the application, ensures

that the object is an application object. Listing B.2 in Appendix B.1 demonstrates

another case of extra tests due to lack of trust.

Lack of trust also implies that arrays cannot be shared between the applica-

tion and the virtual machine. Instead, S-RVM uses wrapper classes to provide the

application with read-only access to virtual machine arrays.

A slightly more involved consequence of the lack of trust is the handling of

string objects. JikesRVM uses the String implementation from the GNU Classpath

library, in which a String object uses an array of characters as a backing store. It

also records the offset into the array and the length of the string. The contents of the

backing store is considered to be constant and is only shared with code trusted to

maintain this property. The backing store can, therefore, be shared between String

objects.

Strings are frequently transferred across the boundary between the virtual ma-

chine and the application. Common operations that manipulate String objects are

JNI functions and creation of String literals during class loading. Copying String

objects when transferring them between the application and the virtual machine

would introduce a significant overhead. On the other hand, sharing String objects

or their backing stores would reduce isolation and require the virtual machine to

trust the application not to modify the contents of String objects.

A simple approach for safely sharing the backing store is to only provide the

application read access to it. The backing store is an array of characters and, as

mentioned in Chapter 3, Java arrays cannot be exported and must be wrapped.

Wrapping, however, introduces an overhead due to the extra reference required for

accessing the array through the wrapper. As string operations are fairly common,

this overhead is not acceptable.

To provide read-only access without the overhead of the wrapper, S-RVM intro-

duces the unboxed wrapper type MuCharArray. MuCharArray supports two exported

magic operations get() and length() which translate to the corresponding opera-

tions on the array. The virtual machine can also unwrap MuCharArray to get access

76

to the backing store. However, the unwrap operation is not exported, ensuring that

the untrusted application code cannot modify the backing store.

Read only access to the backing store is insufficient. The Java library needs a way

of creating strings, which require modify access to the backing store. The backing

store of strings, then, goes through two phases: initialisation and use. During the

backing store initialisation phase, the application needs modify access while sharing

is prohibited. During the use phase, the application only needs read access to the

backing store, while sharing is desired.

S-RVM implements the initialisation phase using the unboxed wrapper Mu-

WriteableCharArray. This wrapper is used for read/write access to an underlying

virtual machine character array. It also provides a seal operation, which both pre-

vents further modifications to the underlying array and returns the MuCharArray

corresponding to it.

Implementing the seal operation requires keeping the phase information in the

backing store. Unfortunately, Java does not support any feature similar to C’s

flexible array members [International Standardization Organization], and keeping a

flag with an array requires an extra level of indirection. To avoid that extra level

of indirection, S-RVM uses the first element in the array (at index 0) as a flag.

When the value of the first element is 0, the backing store is modifiable. The seal

operation sets the value to 1, preventing further modifications to the backing store.

As the seal operation is the only way for the application to get the MuCharArray

wrapper for the backing store, this scheme guarantees that sharing only occurs after

the backing store is sealed.

For efficiency, the S-RVM interface also includes some utility methods that allow

copying to unsealed MuWriteableCharArrays and from MuCharArrays using the

virtual machine implementation of the array copy functions. It also includes the

MuString class which, like String, contains a MuCharArray, an offset and a length.

MuString is used for packing the information about String objects when these are

transferred between the application and the virtual machine. Appendix B.3 shows

details on creating and using the String backing store.

The root task, unlike the application task, is privileged and needs unfettered

access to all the objects in the system. The next section presents the mechanisms

for providing privileged access from the root task to the application task.

4.7 Privileged Access for the virtual machine Task

The virtual machine requires privileged access to application objects for a few special

purposes, including garbage collection, passing references between application code

and native code, exception throwing and array copying.

77

To allow passing of references between the virtual machine and the application

S-RVM adds the type MuObject which is an unboxed reference to any object in the

system. MuObject supports a single generic constructor that creates a MuObject

reference from any object reference and a generic get method which returns the

referenced object.

References that can refer to all the objects in the system present the risk of

breaching the reference protection. S-RVM relies on the virtual machine not trans-

ferring MuObject references that refer to root task objects into the application task.

However, it does not introduce checks to ensure that references passed as MuObject

do not breach the protection. Instead, for the case of a badly behaved virtual ma-

chine, S-RVM relies on the generic nature of the MuObject.get() method. Generic

methods in Java introduce a dynamic type check. If the virtual machine does trans-

fer a reference which breaches the reference protection, the dynamic type check will

fail and the reference will not be used.

In JikesRVM the type hierarchy is shared between the virtual machine and the

application. Hence, in JikesRVM an Object reference can point to any application

object. Some of the JikesRVM code relies on that property and uses Object ref-

erences to point to application objects. Replacing these references with MuObject

references would require rewriting significant parts of the JikesRVM code. To avoid

this rewrite, S-RVM allows references of the virtual machine Object type to point

to any application object.

Unboxed wrapper types are used for passing arrays from the application task to

the root task. These are required for array copying and for transferring the bytecode

representation of classes that are loaded to the virtual machine. For efficiency,

S-RVM provides a specialised array copy method for each primitive array type.

S-RVM cannot, however, trust the application task to use the correct array type for

each method. To avoid using dynamic type checks, S-RVM uses multiple unboxed

wrapper types—one type for each primitive array type and an additional type for

all reference arrays. It relies on the type safety of the language to ensure that the

wrapped array type matches the wrapper and, consequently, that the wrapped array

types match the specialised array copy methods.

Like the MuObject type, the unboxed array types present a risk of breaching

the reference protection. This risk is, however, much smaller. S-RVM does not

provide any interface that passes wrapped arrays from the virtual machine to the

application, nor does it provide any interface that allows the application to unwrap

these wrappers.

To use the array wrappers, the virtual machine unwraps them and casts the ref-

erences to the corresponding virtual machine array types. This implies that virtual

machine array type references can refer to application array types.

78

S-RVM’s implementation of the Exported Types design allows sharing the types

of method arguments and return values. It does not, however, handles exceptions.

S-RVM approach for handling cross-task exceptions is the topic of the next section.

4.8 Exceptions

When Java code encounters an exceptional situation it can abort execution and

throw an object of type Throwable or any of its subtypes. The virtual machine is

required to generate and throw exceptions when certain conditions occur, e.g. when

the application references a null pointer or when running out of memory.

Due to the separate type hierarchies, exceptions generated in the root task in

S-RVM are not compatible with exceptions in the application task and vice versa.

S-RVM combines two methods for ensuring exceptions are signaled and handled as

expected.

When the exception is the result of a hardware trap, such as when it is the result

of a null pointer reference or a division by zero, S-RVM uses an upcall to the task

to generate the required exception object. For other exceptions, S-RVM wraps each

remote method with an exception handler that converts exceptions thrown across

the VM interface layer to an equivalent exception type in the receiving task. The

code for wrapping remote methods and for converting exceptions is further discussed

in Appendix B.4.

When S-RVM converts an exception it may lose some type information. This loss

occurs because the application can declare exception types that have no equivalent

in the root task. In these cases, S-RVM converts application exceptions to the most

specific supertype defined in the virtual machine.

This loss of information cannot affect the virtual machine’s response to the excep-

tion because the virtual machine can only handle the exception types it recognises.

If, however, the virtual machine does not catch the exception before returning to the

application or if the virtual machine re-throws the exception, the loss of information

may affect the application.

To rectify the information loss, the conversion code can keep a reference to

the original exception and use it instead of converting the exception back to the

application. However, as relying on the information loss is very rare, this solution

has not yet been implemented. The information loss does not affect any of the test

cases tried.

79

4.9 Implementation Verification

The implementation of Exported Types in S-RVM is not complete. The lack of a

bytecode verifier means that malicious code can bypass the protection offered by

the remote interface and can, consequently, breach the protection model. Further

opportunity for breaching the model exists through the trust placed on the virtual

machine code to not abuse the MuObject unboxed wrapper and the assignment

compatibility of every type with the virtual machine’s Object type. Additionally,

there is no guarantee that programming errors in the virtual machine code do not

inadvertently expose more risks to the protection model. The implementation of

S-RVM itself does not include mechanisms to verify its correctness. This section

illustrates some potential approaches for achieving verification.

Techniques for implementing bytecode verifiers have been surveyed in Leroy

[2003]. Adapting a bytecode verifier to support Exported Types, as implemented in

S-RVM, may require two modifications. Some type information, e.g. the assumption

that every object can be assigned to the Object type, may be hard-coded within

the implementation of the verifier. Such assumptions may no longer hold for S-RVM

and the implementation of a bytecode verifier will have to be changed to avoid these

assumptions. The second modification is the implementation of the remote interface

which is not a part of the Java language. In the absence of a concrete implemen-

tation of a bytecode verifier, it is hard to estimate the amount of work required for

these modifications.

As discussed above, the MuObject type and similar unboxed wrappers do not pose

a significant security risk because a type check is often introduced before the use of

such values. Nevertheless, a type check is omitted when converting MuObject to the

task’s Object type or when the optimising compiler optimises the type check out.

Furthermore, even though the reference cannot be used, transferring a reference to

a private value constitutes a breach of the protection model. Instrumenting remote

methods of exported classes to check the types of values passed across the interface

is an effective approach for protecting against such inadvertent breaches.

Another possible breach is unexpected transitions between the application and

the virtual machine contexts. The design of S-RVM aims to prevent such transitions,

however, verification can increase the confidence in the implementation. A possible

way to verify this is to instrument the remote interface to keep track of the current

context of each thread. When combined with assertions at key points in the code,

such tracking can provide a validation of the correctness of the implementation.

This approach for tracking the current context is based on the work of Lin

et al. [2012]. That work identifies transition points between the application and the

virtual machine and instruments them to trace the execution context. Lin et al.

80

[2012] reports identifying 41 classes as transition points. This number is similar to

the size of the interface layer in S-RVM—49 types, including 13 unboxed wrappers.

Tracing the execution context, as done by Lin et al. [2012], can be used for

dynamically enforcing reference protection. The reported overhead of tracking the

context is 0.6%. However, this overhead is only for tracking the context. Tracking

the allocation context of objects incurs an overhead of 6% [Lin, 2012] and verification

of reference assignments is likely to incur a prohibitive overhead. Hence, while the

approach is possible, it is unlikely to be used for reference protection.

4.10 Summary

The shared run-time environment in JikesRVM offers performance benefits by re-

moving obstacles to communication between the virtual machine and the applica-

tion. At the same time, it blurs the boundaries between the application and the

virtual machine, exposes the virtual machine to potential attacks and presents a

large attack surface.

S-RVM uses the Exported Types design to separate the virtual machine and the

application. It creates a well-defined boundary between the application and the

virtual machine. Separating the application from the virtual machine reduces the

number of classes exposed to the application by over two orders of magnitude while

at the same time maintaining the benefits of the shared run-time environment.

S-RVM is not a panacea to all the security problems in JikesRVM. It does not

implement a bytecode verifier and it makes only feeble attempts to harden the virtual

machine interface layer. Nevertheless, a smaller attack-surface area implies better

security [Manadhata and Wing, 2011].

S-RVM is a proof-of-implementation of the Exported Types design. It represents

a substantial change in the design of JikesRVM and as such requires significant

modifications to the software system. Many of these changes are generic in nature.

In particular, the use of annotations for the syntax of the Exported Types design,

the stub file generation tool and the creation of name spaces by using multiple base

class loaders can be used for other implementations of Exported Types in Java.

Other modifications are specific to the scenario of separating the virtual machine

from the application.

The lack of attention to security in the design of JikesRVM is a complete antithe-

sis to the focus put on performance. Dozens of researches and developers have poured

countless hours into algorithms and techniques for improving the performance of

JikesRVM. Consequently, JikesRVM provides an excellent baseline to measure the

performance impact of the Exported Types design. This impact is discussed in the

next chapter.

81

Chapter 5

Performance Evaluation

Preceding chapters have described the Exported Types design and its implementa-

tion in S-RVM. S-RVM employs the Exported Types design to separate the virtual

machine from the application. Its main benefit is the enhanced security it provides.

It does not aim to improve the performance of the virtual machine. While security

often comes with a performance cost, the Exported types design is based on the

promise of efficient inter-component communication. The purpose of this chapter is

to measure the overhead that S-RVM, as an implementation of the Exported Types

design, introduces and demonstrate that this overhead is not prohibitive.

The test platform is an IBM x3500 server with two quad-core Xeon E5345 pro-

cessors and 24GB of RAM; running Fedora release 16. The virtual machine was

compiled using the production configuration, which uses edge-count profiling in-

formation collected from running the DaCapo fop benchmark. Both S-RVM and

JikesRVM are retrofitted with the Double.toString() implementation from the

OpenJDK [Oracle Corporation]. The OpenJDK implementation is written in Java,

unlike the Classpath implementation which uses native C code, and provides a sig-

nificantly better performance for both JikesRVM and S-RVM.

The DaCapo benchmark suite version 2006-10-MR2 [Blackburn et al., 2006b,

2008] is used for most of the benchmarks. The suite includes 11 benchmarks of

varying characteristics and is a de-facto standard for measuring the performance of

a Java virtual machine. The newer version of the benchmark suite (version 9.12) was

not used because JikesRVM is not currently compatible with some of its benchmarks.

When an application executes within an S-RVM task, it requires its own copy of

the Java library, separate from the copy of the library the virtual machine uses. This

extra copy requires more memory, both for the static values that are replicated and

for the data used for representing the classes. Consequently, S-RVM has a larger

memory footprint than JikesRVM.

The JikesRVM boot image contains all of the virtual-machine classes as well as

significant parts of the Java library preloaded. By contrast, the application task in

82

S-RVM has no classes preloaded. In addition to loading the code for the application,

the application task needs to load and compile those classes of the Java library that

the application uses. S-RVM, therefore, takes longer to start than JikesRVM.

Furthermore, S-RVM, like JikesRVM, initially uses the baseline compiler to com-

pile methods. Hence, when S-RVM loads library code to the task, the compiled code

is slower than library code pre-compiled in the virtual machine. Consequently, until

the optimising compiler has time to recompile the library code, the application is

slower in S-RVM than in JikesRVM.

On the other hand, the use of a separate library for the application allows pro-

filing data to be collected independently for the virtual machine and for the ap-

plication. This profiling data better represents the different workloads that the

application and the virtual machine generate and allows better optimisation of the

library code in both the virtual machine and the application. The better optimi-

sation offsets the increased code complexity in S-RVM. The result of this better

optimisation is that at the steady state S-RVM does not underperforms JikesRVM.

This chapter presents the costs associated with S-RVM. It discusses the mem-

ory footprint, analyses the application start up costs and presents the steady-state

performance of S-RVM.

5.1 Memory Usage

S-RVM uses more memory than JikesRVM, both for the additional copy of the

Java library classes and for the automatic exception catch block used for exception

conversion. Both the heap usage and the size of the boot image are larger with

S-RVM.

The S-RVM boot-image size is 50.6MB or 2.25MB more than JikesRVM. Of

these, 16.24MB are used for code and 10.7MB are code maps which hold information

required for translating machine code addresses to bytecode addresses, finding the

stack layout at machine code addresses and identifying exceptions that are to be

captured at a machine code address. Diagram 5.1 shows a breakdown of the boot-

image overhead.

1.39MB, or over half of the memory overhead in the boot image is the result of the

exception-conversion code in S-RVM. The exception-conversion code automatically

wraps methods with an exception handler that converts virtual machine exceptions

to application exceptions and vice versa. Wrapped methods include methods on the

virtual machine interface layer as well as virtual machine methods that implement

Java bytecode operations. These wrapped methods are often inlined into code,

resulting in a significant increase in both the code size and the size of code maps

used, for example, by the garbage collector and exception handling code.

83

 0

 0.5

 1

 1.5

 2

 2.5

Total Code Code Maps Other

M
e

g
a

b
y
te

s

Exception Conversion
Other Overhead

Figure 5.1: S-RVM Boot image overhead

Heap usage is compared by measuring the minimum heap size required for the

benchmarks in the DaCapo suite. The minimum heap size is determined experi-

mentally and is the smallest size of a heap that allows 3 iterations of the benchmark

to execute to completion, using the JikesRVM production configuration. Table 5.1

summarises the results.

Without Compiled Code With Compiled Code
Benchmark JikesRVM S-RVM Overhead JikesRVM S-RVM Overhead

antlr 22MB 30MB 8MB (36%) 23MB 32MB 9MB (39%)
bloat 40MB 45MB 5MB (13%) 41MB 48MB 7MB (17%)
chart 36MB 45 MB 9MB (25%) 37MB 47MB 10MB (27%)

eclipse 60MB 69MB 9MB (15%) 66MB 76MB 10MB (15%)
fop 31MB 40MB 9MB (29%) 34MB 41MB 7MB (21%)

hsqldb 102MB 110MB 8MB (8%) 102MB 111MB 9MB (9%)
jython 35MB 44MB 9MB (26%) 39MB 48MB 9MB (23%)

luindex 24MB 31MB 7MB (29%) 26MB 32MB 6MB (23%)
lusearch 45MB 53MB 8MB (18%) 45MB 54MB 9MB (20%)

pmd 37MB 45MB 8MB (22%) 40MB 47MB 7MB (18%)
xalan 47MB 54MB 7MB (15%) 51MB 59MB 8MB (16%)

Average 7.9MB 8.3MB

Table 5.1: Minimum heap size

By default, JikesRVM does not account for compiled code in the heap size. The

table reports the minimum heap size both with this default behaviour, i.e. without

accounting for compiled code, and when accounting for compiled code.

As demonstrated, S-RVM requires about 8MB more than JikesRVM. The number

is fairly consistent across all benchmarks and is the result of having a separate

copy of the Java library. The overhead for compiled code is less than 1MB. It is

hard to experimentally measure the exact overhead because JikesRVM uses a 1MB

granularity on heap size.

The added copy of the library also slows down the application start up. This is

discussed in the next section.

84

5.2 Application Task Startup

The JikesRVM image contains significant parts of the Java library pre-compiled at

a high optimisation level. By contrast, the application task in S-RVM has no classes

preloaded. In addition to loading the code for the application, the application task

needs to load and compile those classes of the Java library that the application uses.

When starting to execute, S-RVM is, therefore, much slower than JikesRVM.

Running the time-honoured “Hello World!” application on JikesRVM and on

S-RVM shows that for small applications S-RVM is over four times slower than

JikesRVM. (223ms vs 53ms.) Most of the overhead consists of loading and initialising

classes. Diagram 5.2 shows the main phases in executing an application task in

S-RVM and the number of classes loaded during the execution.

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200

N
u
m

b
e
r

o
f
C

la
s
s
e
s
 L

o
a

d
e

d

Time (ms)

Initialise VM Create
Task

Initialise Application Class Loader

In
itia

lis
e
 M

a
in

 T
h
re

a
d

R
u
n

 H
e
llo

W
o
rld

Figure 5.2: Class loading during task startup

The first step is to initialise various components of the virtual machine and to

parse the command line arguments. This phase takes about 51ms and is required

in both JikesRVM and S-RVM, however, whereas JikesRVM is ready to execute the

application at the end of this phase, S-RVM now needs to create the application

task.

Creating a task takes about 23ms, and consists of creating an RVMTask object,

a base class loader and the library interface object and of loading enough classes to

be able to create String and Class literals. At the end of this phase the task is

able to load further classes.

The third phase is to create an application class loader for the application task.

The application class loader in Java is responsible for loading the code of the main

application executed on a virtual machine. During this phase over 200 different

classes are loaded. Loading and initialising these classes takes 136ms.

85

This phase demonstrates the cost of loading classes. In JikesRVM, creating the

application class loader is part of the virtual-machine initialisation phase. As all

classes required for the application class loader in JikesRVM are already preloaded

in the boot image, the virtual machine only needs to create the application class

loader object and to initialise it, requiring only 61µs.

The last two phases are completing the initialisation of the main thread (15ms)

and executing the main program (6ms). Both these steps require loading further

library classes, which are included in the JikesRVM boot image, and, therefore, take

considerably more than the equivalent steps in JikesRVM (2ms and 230µs).

Preloading and pre-compiling the libraries for the application task can reduce

the start-up overhead of S-RVM. However, this approach is unsuitable for the more

general case of a multi-tasking virtual machine. A possible approach for this more

general case is to share pre-compiled library code between tasks [Czajkowski et al.,

2002]. Further research is required to check the applicability of this approach to

S-RVM.

Library classes are only loaded once during a program’s execution. The overhead

of loading these classes does not, therefore, affect the steady-state performance of

applications. The next section analyses the steady-state performance of S-RVM

compared with JikesRVM.

5.3 Steady-State Execution Speed

Measuring the steady-state performance of a virtual machine is not trivial. Experi-

mental methodologies vary between authors. See Georges et al. [2007] for a concise

survey of available methodologies.

In this thesis, the performance of optimised code is measured using the Da-

Capo benchmark suite 2006-10-MR2. The DaCapo benchmark evaluation method-

ology [Blackburn et al., 2008] recommends testing performance under varying heap

pressures. This thesis measures the execution times of the benchmarks over heap

sizes ranging from twice the minimum heap size, as presented in Table 5.1, to ten

times the minimum heap size. For example, the execution times of the chart bench-

mark are measured with heap sizes ranging from 72MB to 360MB.

The execution time of JikesRVM in each of these heap sizes is compared with

that of S-RVM with the same heap size. However, because S-RVM requires more

memory than JikesRVM, using the same heap size with S-RVM creates a higher

heap pressure. To compensate for the overhead in S-RVM, the execution speed of

JikesRVM is also compared with that of S-RVM with the heap increased by the

S-RVM overhead. Thus, the execution time of the chart benchmark on JikesRVM

with a heap size of 216MB is compared to S-RVM with heap sizes of 216MB and

86

225MB. The latter being the heap size used in JikesRVM with additional 9MB to

compensate for the added memory requirements.

The DaCapo harness executes multiple iterations of the same benchmark in the

same execution environment to allow the virtual machine to adapt to the benchmark.

The default harness is modified to garbage-collect the heap before each and every

iteration. This is done in order to avoid stale data of one iteration introducing

garbage collection in following iterations. This seems to remove most, if not all, of

the state dependency between consecutive iterations which is otherwise evident for

some benchmarks [Kalibera and Jones, 2013].

To track the progress towards the steady state, the time it takes to complete

each of the first 20 iterations is measured. Extending the tests to more than 20

iterations does not seem to change the mean execution time by more than 2%.

To control non-determinism, each measurement is repeated 12 times and the

geometric mean of all these measurements is reported. An alternative approach

for controlling non-determinism is to use replay compilation [Georges et al., 2008].

However, experimenting with compiler replay, as implemented in JikesRVM and as

amended for S-RVM, demonstrates that compiler replay underperforms the adaptive

compiler by 3–5%. For the purposes of this thesis, the better performing option of

using adaptive compilation was chosen. The complete measurement data can be

found in Appendix C.

Tables 5.2 presents the normalised execution times of S-RVM in the first, third,

tenth and 20th iterations with heap sizes of twice, three times, five times and ten

times the minimum heap sizes under the same heap size scenario. Table 5.3 shows

the same results for the same heap pressure scenario. In each result the value

of 100 represents the mean time to execute the corresponding test configuration

on JikesRVM. The table also reports the geometric mean of the results for each

benchmark configuration and the 90% confidence intervals.

Figure 5.3 shows the mean execution time of all the DaCapo benchmarks on

S-RVM. The results are normalised to the execution time on JikesRVM, with larger

numbers indicating longer execution times. Several observations can be made on

this diagram. First, the relative execution time on S-RVM improves as the number

of iterations increases. The normalised mean execution time at the first iteration is

very low (11–14% slower than JikesRVM). This is partly due to the need to load the

library classes used by the benchmark and partly because these library classes are

initially compiled using the baseline compiler.

Compiling the library classes with the baseline compiler means that the compiled

code is slower than the version of the library loaded in the boot image. It also mean

that the optimising compiler needs to optimise more methods before S-RVM reaches

its steady state.

87

Ite
r
a
tio

n
H

e
a
p

S
iz

e
a
n
tlr

b
lo

a
t

c
h

a
r
t

e
c
lip

se
fo

p
h

sq
ld

b

1
st

2
X

1
2
3
.6

(1
2
2
.4

–
1
2
4
.7

)
1
1
5
.9

(1
1
4
.8

–
1
1
7
.1

)
1
0
8
.1

(1
0
7
.2

–
1
0
9
.0

)
1
0
5
.9

(1
0
5
.3

–
1
0
6
.5

)
1
1
5
.6

(1
1
5
.1

–
1
1
6
.1

)
1
1
2
.2

(1
1
1
.0

–
1
1
3
.4

)
3
X

1
2
1
.5

(1
2
0
.3

–
1
2
2
.7

)
1
1
4
.9

(1
1
4
.1

–
1
1
5
.7

)
1
0
6
.7

(1
0
6
.0

–
1
0
7
.4

)
1
0
2
.8

(1
0
2
.3

–
1
0
3
.2

)
1
1
7
.4

(1
1
6
.7

–
1
1
8
.1

)
1
1
1
.3

(1
1
0
.0

–
1
1
2
.6

)
5
X

1
1
9
.2

(1
1
8
.2

–
1
2
0
.2

)
1
1
3
.8

(1
1
2
.5

–
1
1
5
.0

)
1
0
4
.8

(1
0
4
.0

–
1
0
5
.6

)
1
0
3
.3

(1
0
2
.9

–
1
0
3
.6

)
1
1
7
.7

(1
1
7
.0

–
1
1
8
.5

)
1
1
0
.2

(1
0
8
.3

–
1
1
2
.1

)
1
0
X

1
0
7
.9

(1
0
7
.0

–
1
0
8
.8

)
1
0
4
.9

(1
0
3
.9

–
1
0
5
.8

)
9
8
.6

(9
7
.8

–
9
9
.4

)
1
0
1
.7

(1
0
1
.3

–
1
0
2
.1

)
1
0
5
.0

(1
0
4
.2

–
1
0
5
.8

)
9
9
.7

(9
8
.0

–
1
0
1
.4

)

3
rd

2
X

1
1
5
.6

(1
1
4
.3

–
1
1
7
.0

)
1
0
8
.8

(1
0
7
.4

–
1
1
0
.1

)
1
0
0
.2

(9
9
.3

–
1
0
1
.1

)
1
0
2
.0

(1
0
1
.7

–
1
0
2
.4

)
1
0
5
.3

(1
0
4
.4

–
1
0
6
.1

)
1
0
2
.9

(1
0
0
.5

–
1
0
5
.4

)
3
X

1
0
8
.9

(1
0
7
.7

–
1
1
0
.2

)
1
0
4
.3

(1
0
2
.7

–
1
0
5
.8

)
9
9
.0

(9
8
.2

–
9
9
.8

)
1
0
1
.7

(1
0
1
.4

–
1
0
2
.0

)
1
0
4
.1

(1
0
3
.2

–
1
0
5
.1

)
1
0
3
.3

(1
0
1
.5

–
1
0
5
.0

)
5
X

1
0
7
.4

(1
0
6
.1

–
1
0
8
.6

)
1
0
4
.8

(1
0
3
.5

–
1
0
6
.1

)
9
8
.2

(9
7
.5

–
9
8
.8

)
1
0
1
.5

(1
0
1
.1

–
1
0
1
.9

)
1
0
4
.0

(1
0
2
.7

–
1
0
5
.2

)
1
0
2
.0

(1
0
0
.1

–
1
0
4
.0

)
1
0
X

1
0
0
.8

(9
9
.3

–
1
0
2
.3

)
1
0
5
.4

(1
0
4
.6

–
1
0
6
.3

)
9
6
.6

(9
5
.8

–
9
7
.4

)
1
0
0
.6

(1
0
0
.5

–
1
0
0
.8

)
1
0
1
.4

(1
0
0
.9

–
1
0
1
.9

)
9
9
.4

(9
7
.4

–
1
0
1
.4

)

1
0
th

2
X

1
0
7
.7

(1
0
4
.4

–
1
1
1
.2

)
1
0
8
.0

(1
0
5
.9

–
1
1
0
.1

)
9
9
.1

(9
8
.4

–
9
9
.8

)
1
0
1
.4

(1
0
1
.2

–
1
0
1
.7

)
9
9
.6

(9
8
.8

–
1
0
0
.4

)
9
9
.1

(9
7
.8

–
1
0
0
.5

)
3
X

1
0
5
.7

(1
0
3
.2

–
1
0
8
.2

)
1
0
5
.7

(1
0
4
.4

–
1
0
7
.1

)
9
7
.0

(9
6
.5

–
9
7
.6

)
1
0
1
.3

(1
0
1
.0

–
1
0
1
.6

)
1
0
0
.7

(9
9
.7

–
1
0
1
.7

)
9
7
.8

(9
6
.0

–
9
9
.7

)
5
X

1
0
0
.2

(9
9
.3

–
1
0
1
.1

)
1
0
6
.5

(1
0
5
.4

–
1
0
7
.6

)
9
6
.6

(9
6
.0

–
9
7
.1

)
1
0
0
.8

(1
0
0
.3

–
1
0
1
.2

)
1
0
0
.6

(9
9
.8

–
1
0
1
.4

)
1
0
1
.1

(9
9
.0

–
1
0
3
.2

)
1
0
X

9
9
.6

(9
8
.2

–
1
0
1
.0

)
1
0
6
.6

(1
0
6
.0

–
1
0
7
.3

)
9
6
.4

(9
6
.1

–
9
6
.8

)
9
9
.6

(9
9
.3

–
9
9
.9

)
9
9
.1

(9
8
.6

–
9
9
.7

)
9
6
.2

(9
5
.1

–
9
7
.4

)

2
0
th

2
X

1
1
0
.3

(1
0
7
.2

–
1
1
3
.4

)
1
0
7
.3

(1
0
6
.0

–
1
0
8
.5

)
9
9
.2

(9
8
.6

–
9
9
.8

)
1
0
1
.3

(1
0
0
.8

–
1
0
1
.8

)
1
0
0
.5

(1
0
0
.0

–
1
0
1
.0

)
9
6
.3

(9
5
.2

–
9
7
.4

)
3
X

1
0
1
.2

(9
9
.0

–
1
0
3
.6

)
1
0
6
.1

(1
0
4
.9

–
1
0
7
.3

)
9
6
.8

(9
6
.2

–
9
7
.4

)
1
0
1
.0

(1
0
0
.7

–
1
0
1
.2

)
9
8
.7

(9
7
.4

–
1
0
0
.0

)
9
6
.4

(9
4
.7

–
9
8
.2

)
5
X

1
0
1
.0

(1
0
0
.1

–
1
0
2
.0

)
1
0
6
.1

(1
0
5
.4

–
1
0
6
.8

)
9
6
.5

(9
6
.0

–
9
7
.0

)
1
0
0
.8

(1
0
0
.5

–
1
0
1
.1

)
9
9
.0

(9
8
.1

–
9
9
.9

)
9
4
.4

(9
3
.5

–
9
5
.4

)
1
0
X

9
9
.6

(9
8
.2

–
1
0
1
.0

)
1
0
6
.6

(1
0
6
.0

–
1
0
7
.3

)
9
6
.4

(9
6
.1

–
9
6
.8

)
9
9
.6

(9
9
.3

–
9
9
.9

)
9
9
.1

(9
8
.6

–
9
9
.7

)
9
6
.2

(9
5
.1

–
9
7
.4

)

Ite
r
a
tio

n
H

e
a
p

S
iz

e
jy

th
o
n

lu
in

d
e
x

lu
se

a
r
c
h

p
m

d
x
a
la

n
m

e
a
n

1
st

2
X

1
1
3
.8

(1
1
2
.5

–
1
1
5
.1

)
1
1
4
.4

(1
1
3
.8

–
1
1
5
.1

)
1
1
6
.0

(1
0
7
.7

–
1
2
5
.0

)
1
1
8
.2

(1
1
6
.4

–
1
2
0
.1

)
1
1
7
.8

(1
1
7
.3

–
1
1
8
.4

)
1
1
4
.6

(1
1
2
.1

–
1
1
7
.2

)
3
X

1
1
1
.2

(1
0
9
.8

–
1
1
2
.7

)
1
0
9
.6

(1
0
8
.8

–
1
1
0
.3

)
1
1
0
.4

(1
0
5
.4

–
1
1
5
.6

)
1
1
6
.5

(1
1
5
.3

–
1
1
7
.7

)
1
1
5
.1

(1
1
4
.1

–
1
1
6
.0

)
1
1
2
.4

(1
1
0
.6

–
1
1
4
.1

)
5
X

1
0
9
.9

(1
0
9
.1

–
1
1
0
.7

)
1
0
9
.9

(1
0
9
.0

–
1
1
0
.8

)
1
1
2
.9

(1
0
5
.7

–
1
2
0
.5

)
1
1
3
.0

(1
1
2
.1

–
1
1
4
.0

)
1
1
2
.6

(1
1
1
.6

–
1
1
3
.6

)
1
1
1
.5

(1
0
9
.2

–
1
1
3
.8

)
1
0
X

1
0
0
.1

(9
8
.9

–
1
0
1
.3

)
1
0
1
.1

(1
0
0
.4

–
1
0
1
.9

)
1
1
9
.5

(1
0
8
.6

–
1
3
1
.5

)
1
0
1
.5

(1
0
0
.7

–
1
0
2
.2

)
1
0
1
.9

(1
0
1
.1

–
1
0
2
.8

)
1
0
3
.7

(1
0
0
.7

–
1
0
6
.7

)

3
rd

2
X

1
0
4
.9

(1
0
3
.9

–
1
0
5
.9

)
1
0
5
.6

(1
0
4
.8

–
1
0
6
.4

)
1
3
0
.8

(1
2
5
.3

–
1
3
6
.6

)
1
0
7
.3

(1
0
5
.9

–
1
0
8
.6

)
1
1
2
.5

(1
1
1
.5

–
1
1
3
.5

)
1
0
8
.4

(1
0
6
.7

–
1
1
0
.2

)
3
X

1
0
0
.2

(9
9
.6

–
1
0
0
.9

)
1
0
2
.8

(1
0
2
.2

–
1
0
3
.3

)
1
0
9
.4

(1
0
8
.2

–
1
1
0
.6

)
1
0
6
.7

(1
0
4
.5

–
1
0
9
.1

)
1
0
6
.4

(1
0
4
.8

–
1
0
8
.0

)
1
0
4
.2

(1
0
3
.0

–
1
0
5
.4

)
5
X

1
0
0
.8

(9
9
.8

–
1
0
1
.9

)
1
0
1
.5

(1
0
1
.1

–
1
0
1
.9

)
1
1
1
.5

(1
0
9
.2

–
1
1
3
.8

)
1
0
0
.6

(9
9
.6

–
1
0
1
.5

)
1
0
2
.1

(1
0
1
.5

–
1
0
2
.7

)
1
0
3
.1

(1
0
1
.9

–
1
0
4
.2

)
1
0
X

9
9
.9

(9
9
.1

–
1
0
0
.8

)
9
9
.8

(9
9
.2

–
1
0
0
.3

)
1
0
1
.8

(1
0
0
.4

–
1
0
3
.2

)
9
7
.9

(9
7
.2

–
9
8
.6

)
9
8
.9

(9
8
.1

–
9
9
.7

)
1
0
0
.2

(9
9
.2

–
1
0
1
.2

)

1
0
th

2
X

1
0
3
.0

(1
0
1
.9

–
1
0
4
.1

)
1
0
2
.7

(1
0
1
.9

–
1
0
3
.6

)
1
0
8
.9

(1
0
7
.3

–
1
1
0
.5

)
1
0
8
.5

(1
0
7
.1

–
1
1
0
.0

)
1
1
6
.1

(1
1
4
.2

–
1
1
8
.0

)
1
0
4
.8

(1
0
3
.3

–
1
0
6
.3

)
3
X

1
0
0
.6

(9
9
.8

–
1
0
1
.4

)
1
0
0
.1

(9
9
.4

–
1
0
0
.8

)
1
0
0
.6

(9
9
.7

–
1
0
1
.5

)
9
9
.2

(9
7
.2

–
1
0
1
.2

)
1
0
4
.0

(1
0
2
.6

–
1
0
5
.5

)
1
0
1
.1

(9
9
.8

–
1
0
2
.4

)
5
X

1
0
0
.4

(9
9
.1

–
1
0
1
.6

)
9
8
.7

(9
8
.2

–
9
9
.3

)
1
0
1
.7

(1
0
0
.7

–
1
0
2
.8

)
1
0
0
.0

(9
9
.2

–
1
0
0
.8

)
1
0
0
.7

(9
9
.7

–
1
0
1
.7

)
1
0
0
.6

(9
9
.6

–
1
0
1
.6

)
1
0
X

9
9
.3

(9
8
.7

–
1
0
0
.0

)
9
9
.5

(9
8
.9

–
1
0
0
.2

)
1
0
2
.5

(1
0
1
.5

–
1
0
3
.5

)
9
8
.7

(9
8
.1

–
9
9
.4

)
9
9
.5

(9
8
.4

–
1
0
0
.6

)
9
9
.7

(9
8
.9

–
1
0
0
.5

)

2
0
th

2
X

1
0
1
.2

(9
9
.8

–
1
0
2
.6

)
1
0
1
.8

(1
0
1
.1

–
1
0
2
.4

)
1
0
8
.3

(1
0
7
.2

–
1
0
9
.3

)
1
0
6
.1

(1
0
4
.8

–
1
0
7
.5

)
1
1
2
.3

(1
1
0
.3

–
1
1
4
.4

)
1
0
3
.9

(1
0
2
.6

–
1
0
5
.2

)
3
X

9
9
.9

(9
9
.0

–
1
0
0
.8

)
1
0
0
.2

(9
9
.6

–
1
0
0
.8

)
1
0
0
.2

(9
9
.6

–
1
0
0
.7

)
1
0
0
.3

(9
8
.4

–
1
0
2
.1

)
1
0
1
.8

(9
9
.9

–
1
0
3
.7

)
1
0
0
.2

(9
8
.9

–
1
0
1
.5

)
5
X

9
9
.1

(9
8
.0

–
1
0
0
.2

)
9
8
.6

(9
7
.9

–
9
9
.2

)
1
0
1
.5

(1
0
0
.3

–
1
0
2
.7

)
9
9
.3

(9
8
.3

–
1
0
0
.4

)
9
8
.4

(9
7
.2

–
9
9
.7

)
9
9
.5

(9
8
.6

–
1
0
0
.4

)
1
0
X

9
9
.3

(9
8
.7

–
1
0
0
.0

)
9
9
.5

(9
8
.9

–
1
0
0
.2

)
1
0
2
.5

(1
0
1
.5

–
1
0
3
.5

)
9
8
.7

(9
8
.1

–
9
9
.4

)
9
9
.5

(9
8
.4

–
1
0
0
.6

)
9
9
.7

(9
8
.9

–
1
0
0
.5

)

T
ab

le
5.2:

N
orm

alised
ex

ecu
tion

tim
es

of
th

e
D

aC
ap

o
b

en
ch

m
ark

s
on

S
-R

V
M

relative
to

J
ikesR

V
M

w
ith

90%
con

fi
d
en

ce
in

tervals
(S

am
e

H
eap

S
ize

scen
ario)

88

It
e
r
a
ti

o
n

H
e
a
p

S
iz

e
a
n
tl

r
b

lo
a
t

c
h

a
r
t

e
c
li

p
se

fo
p

h
sq

ld
b

1
st

2
X

1
1
9
.4

(1
1
8
.2

–
1
2
0
.5

)
1
1
5
.8

(1
1
4
.5

–
1
1
7
.2

)
1
0
5
.7

(1
0
4
.5

–
1
0
6
.9

)
1
0
4
.9

(1
0
4
.4

–
1
0
5
.5

)
1
1
7
.0

(1
1
6
.3

–
1
1
7
.7

)
1
1
2
.3

(1
1
1
.1

–
1
1
3
.4

)
3
X

1
2
0
.1

(1
1
9
.1

–
1
2
1
.1

)
1
1
5
.1

(1
1
3
.9

–
1
1
6
.3

)
1
0
5
.4

(1
0
4
.7

–
1
0
6
.1

)
1
0
3
.6

(1
0
3
.1

–
1
0
4
.0

)
1
1
7
.7

(1
1
6
.9

–
1
1
8
.6

)
1
1
1
.5

(1
1
0
.4

–
1
1
2
.7

)
5
X

1
1
8
.8

(1
1
7
.6

–
1
2
0
.0

)
1
1
4
.1

(1
1
3
.2

–
1
1
5
.0

)
1
0
5
.2

(1
0
4
.3

–
1
0
6
.1

)
1
0
3
.2

(1
0
2
.9

–
1
0
3
.5

)
1
1
7
.8

(1
1
7
.5

–
1
1
8
.2

)
1
1
1
.2

(1
1
0
.0

–
1
1
2
.3

)
1
0
X

1
0
6
.1

(1
0
4
.6

–
1
0
7
.7

)
1
0
5
.1

(1
0
4
.2

–
1
0
6
.1

)
9
8
.3

(9
7
.5

–
9
9
.1

)
1
0
1
.5

(1
0
1
.1

–
1
0
1
.8

)
1
0
4
.4

(1
0
3
.5

–
1
0
5
.3

)
1
0
0
.3

(9
8
.3

–
1
0
2
.3

)

3
rd

2
X

1
0
9
.5

(1
0
7
.5

–
1
1
1
.6

)
1
0
7
.3

(1
0
5
.3

–
1
0
9
.3

)
9
8
.4

(9
7
.7

–
9
9
.2

)
1
0
1
.8

(1
0
1
.4

–
1
0
2
.2

)
1
0
2
.7

(1
0
1
.9

–
1
0
3
.4

)
1
0
4
.4

(1
0
2
.6

–
1
0
6
.2

)
3
X

1
0
7
.6

(1
0
6
.5

–
1
0
8
.8

)
1
0
4
.4

(1
0
3
.5

–
1
0
5
.2

)
9
8
.6

(9
7
.9

–
9
9
.3

)
1
0
1
.2

(1
0
0
.7

–
1
0
1
.6

)
1
0
4
.1

(1
0
3
.2

–
1
0
5
.0

)
9
9
.5

(9
7
.5

–
1
0
1
.6

)
5
X

1
0
8
.8

(1
0
7
.7

–
1
1
0
.0

)
1
0
5
.4

(1
0
4
.3

–
1
0
6
.6

)
9
8
.1

(9
7
.4

–
9
8
.9

)
1
0
1
.4

(1
0
1
.1

–
1
0
1
.6

)
1
0
3
.5

(1
0
2
.4

–
1
0
4
.7

)
9
9
.8

(9
8
.0

–
1
0
1
.7

)
1
0
X

1
0
0
.1

(9
8
.7

–
1
0
1
.5

)
1
0
6
.0

(1
0
4
.9

–
1
0
7
.0

)
9
6
.6

(9
5
.9

–
9
7
.3

)
1
0
0
.6

(1
0
0
.3

–
1
0
0
.8

)
1
0
1
.9

(1
0
1
.3

–
1
0
2
.5

)
9
8
.1

(9
6
.8

–
9
9
.5

)

1
0
th

2
X

9
8
.1

(9
4
.8

–
1
0
1
.5

)
1
0
7
.0

(1
0
4
.9

–
1
0
9
.0

)
9
8
.0

(9
7
.2

–
9
8
.7

)
1
0
0
.8

(1
0
0
.5

–
1
0
1
.1

)
9
7
.8

(9
6
.6

–
9
9
.1

)
9
7
.6

(9
5
.7

–
9
9
.6

)
3
X

1
0
1
.5

(9
9
.6

–
1
0
3
.5

)
1
0
6
.6

(1
0
5
.3

–
1
0
7
.9

)
9
7
.3

(9
6
.4

–
9
8
.2

)
1
0
0
.9

(1
0
0
.6

–
1
0
1
.2

)
1
0
0
.3

(9
9
.7

–
1
0
0
.9

)
9
6
.4

(9
4
.5

–
9
8
.4

)
5
X

1
0
1
.0

(9
9
.6

–
1
0
2
.5

)
1
0
7
.2

(1
0
6
.2

–
1
0
8
.3

)
9
6
.6

(9
5
.8

–
9
7
.4

)
1
0
0
.7

(1
0
0
.3

–
1
0
1
.0

)
1
0
0
.6

(9
9
.8

–
1
0
1
.4

)
9
9
.4

(9
6
.4

–
1
0
2
.6

)
1
0
X

9
9
.0

(9
8
.2

–
9
9
.9

)
1
0
5
.3

(1
0
4
.1

–
1
0
6
.5

)
9
6
.0

(9
5
.5

–
9
6
.5

)
9
9
.7

(9
9
.5

–
9
9
.9

)
9
9
.6

(9
8
.6

–
1
0
0
.6

)
9
5
.5

(9
3
.7

–
9
7
.3

)

2
0
th

2
X

1
0
0
.6

(9
8
.1

–
1
0
3
.2

)
1
0
7
.0

(1
0
5
.0

–
1
0
9
.1

)
9
7
.0

(9
6
.6

–
9
7
.4

)
1
0
0
.6

(1
0
0
.4

–
1
0
0
.8

)
1
0
0
.0

(9
8
.4

–
1
0
1
.6

)
9
5
.8

(9
4
.2

–
9
7
.5

)
3
X

9
8
.6

(9
7
.2

–
1
0
0
.1

)
1
0
7
.1

(1
0
5
.9

–
1
0
8
.3

)
9
6
.3

(9
6
.1

–
9
6
.6

)
1
0
0
.7

(1
0
0
.4

–
1
0
0
.9

)
9
8
.8

(9
8
.2

–
9
9
.5

)
9
6
.7

(9
5
.5

–
9
8
.0

)
5
X

1
0
0
.3

(9
9
.0

–
1
0
1
.6

)
1
0
7
.2

(1
0
5
.9

–
1
0
8
.4

)
9
6
.7

(9
6
.3

–
9
7
.1

)
1
0
0
.3

(1
0
0
.1

–
1
0
0
.5

)
9
9
.5

(9
8
.7

–
1
0
0
.3

)
9
4
.6

(9
2
.9

–
9
6
.2

)
1
0
X

9
9
.0

(9
8
.2

–
9
9
.9

)
1
0
5
.3

(1
0
4
.1

–
1
0
6
.5

)
9
6
.0

(9
5
.5

–
9
6
.5

)
9
9
.7

(9
9
.5

–
9
9
.9

)
9
9
.6

(9
8
.6

–
1
0
0
.6

)
9
5
.5

(9
3
.7

–
9
7
.3

)

It
e
r
a
ti

o
n

H
e
a
p

S
iz

e
jy

th
o
n

lu
in

d
e
x

lu
se

a
r
c
h

p
m

d
x
a
la

n
m

e
a
n

1
st

2
X

1
1
2
.0

(1
1
1
.1

–
1
1
2
.9

)
1
1
1
.9

(1
1
1
.1

–
1
1
2
.6

)
1
0
9
.3

(1
0
7
.4

–
1
1
1
.3

)
1
1
3
.1

(1
1
1
.4

–
1
1
4
.7

)
1
1
2
.9

(1
1
2
.2

–
1
1
3
.6

)
1
1
2
.1

(1
1
1
.0

–
1
1
3
.3

)
3
X

1
1
0
.0

(1
0
8
.8

–
1
1
1
.3

)
1
0
9
.8

(1
0
9
.0

–
1
1
0
.6

)
1
0
6
.9

(1
0
4
.7

–
1
0
9
.2

)
1
1
4
.0

(1
1
2
.4

–
1
1
5
.6

)
1
1
3
.2

(1
1
2
.3

–
1
1
4
.1

)
1
1
1
.5

(1
1
0
.3

–
1
1
2
.6

)
5
X

1
1
0
.6

(1
0
9
.2

–
1
1
1
.9

)
1
0
9
.7

(1
0
8
.9

–
1
1
0
.6

)
1
1
0
.7

(1
0
5
.2

–
1
1
6
.5

)
1
1
2
.4

(1
1
1
.7

–
1
1
3
.1

)
1
1
2
.0

(1
1
1
.0

–
1
1
3
.0

)
1
1
1
.3

(1
0
9
.5

–
1
1
3
.2

)
1
0
X

9
9
.9

(9
9
.2

–
1
0
0
.7

)
1
0
1
.1

(1
0
0
.6

–
1
0
1
.7

)
1
1
0
.5

(1
0
8
.4

–
1
1
2
.6

)
1
0
1
.0

(9
9
.7

–
1
0
2
.4

)
1
0
3
.3

(1
0
2
.6

–
1
0
4
.1

)
1
0
2
.8

(1
0
1
.7

–
1
0
4
.0

)

3
rd

2
X

1
0
1
.8

(1
0
1
.2

–
1
0
2
.3

)
1
0
2
.5

(1
0
2
.0

–
1
0
3
.1

)
1
2
1
.1

(1
1
7
.0

–
1
2
5
.2

)
1
0
2
.8

(1
0
0
.3

–
1
0
5
.3

)
1
0
6
.3

(1
0
5
.3

–
1
0
7
.3

)
1
0
5
.2

(1
0
3
.5

–
1
0
6
.8

)
3
X

1
0
0
.4

(9
9
.4

–
1
0
1
.4

)
1
0
1
.6

(1
0
1
.0

–
1
0
2
.3

)
1
1
1
.2

(1
0
9
.5

–
1
1
3
.0

)
1
0
3
.4

(1
0
1
.5

–
1
0
5
.4

)
1
0
5
.2

(1
0
4
.3

–
1
0
6
.1

)
1
0
3
.3

(1
0
2
.1

–
1
0
4
.5

)
5
X

1
0
0
.4

(9
9
.8

–
1
0
1
.1

)
1
0
1
.8

(1
0
1
.2

–
1
0
2
.4

)
1
0
9
.0

(1
0
7
.5

–
1
1
0
.6

)
9
9
.4

(9
8
.2

–
1
0
0
.7

)
1
0
2
.5

(1
0
1
.2

–
1
0
3
.8

)
1
0
2
.7

(1
0
1
.6

–
1
0
3
.8

)
1
0
X

9
9
.8

(9
9
.3

–
1
0
0
.3

)
9
9
.5

(9
9
.0

–
1
0
0
.0

)
1
0
0
.4

(9
9
.7

–
1
0
1
.1

)
9
9
.0

(9
8
.2

–
9
9
.7

)
9
8
.8

(9
8
.0

–
9
9
.7

)
1
0
0
.0

(9
9
.2

–
1
0
0
.9

)

1
0
th

2
X

1
0
0
.1

(9
9
.2

–
1
0
0
.9

)
9
9
.6

(9
9
.1

–
1
0
0
.1

)
1
0
2
.4

(1
0
0
.7

–
1
0
4
.1

)
1
0
1
.7

(9
9
.8

–
1
0
3
.7

)
1
0
7
.5

(1
0
5
.6

–
1
0
9
.4

)
1
0
0
.9

(9
9
.3

–
1
0
2
.6

)
3
X

1
0
0
.4

(9
9
.4

–
1
0
1
.4

)
9
8
.7

(9
8
.1

–
9
9
.3

)
1
0
0
.5

(9
9
.4

–
1
0
1
.5

)
1
0
0
.5

(9
8
.2

–
1
0
2
.8

)
1
0
3
.6

(1
0
2
.6

–
1
0
4
.6

)
1
0
0
.6

(9
9
.3

–
1
0
1
.8

)
5
X

1
0
0
.4

(9
9
.5

–
1
0
1
.2

)
9
8
.7

(9
8
.3

–
9
9
.1

)
1
0
0
.6

(1
0
0
.0

–
1
0
1
.2

)
1
0
0
.9

(1
0
0
.1

–
1
0
1
.7

)
1
0
1
.5

(1
0
0
.0

–
1
0
2
.9

)
1
0
0
.7

(9
9
.4

–
1
0
1
.9

)
1
0
X

9
8
.6

(9
7
.9

–
9
9
.4

)
9
8
.9

(9
8
.3

–
9
9
.6

)
1
0
1
.9

(1
0
1
.1

–
1
0
2
.6

)
9
8
.8

(9
8
.1

–
9
9
.6

)
9
8
.6

(9
7
.9

–
9
9
.3

)
9
9
.2

(9
8
.4

–
1
0
0
.1

)

2
0
th

2
X

9
8
.6

(9
7
.5

–
9
9
.7

)
9
9
.5

(9
8
.8

–
1
0
0
.2

)
1
0
1
.9

(1
0
1
.1

–
1
0
2
.7

)
1
0
1
.4

(9
9
.7

–
1
0
3
.1

)
1
0
3
.0

(1
0
1
.8

–
1
0
4
.3

)
1
0
0
.4

(9
9
.1

–
1
0
1
.8

)
3
X

9
8
.9

(9
8
.0

–
9
9
.8

)
9
8
.6

(9
7
.9

–
9
9
.4

)
1
0
0
.6

(1
0
0
.0

–
1
0
1
.3

)
9
9
.9

(9
7
.5

–
1
0
2
.4

)
1
0
0
.6

(9
9
.7

–
1
0
1
.4

)
9
9
.7

(9
8
.6

–
1
0
0
.8

)
5
X

9
9
.1

(9
8
.6

–
9
9
.7

)
9
8
.1

(9
7
.7

–
9
8
.5

)
1
0
1
.1

(1
0
0
.5

–
1
0
1
.7

)
9
9
.4

(9
8
.4

–
1
0
0
.5

)
9
8
.9

(9
7
.9

–
9
9
.8

)
9
9
.5

(9
8
.6

–
1
0
0
.4

)
1
0
X

9
8
.6

(9
7
.9

–
9
9
.4

)
9
8
.9

(9
8
.3

–
9
9
.6

)
1
0
1
.9

(1
0
1
.1

–
1
0
2
.6

)
9
8
.8

(9
8
.1

–
9
9
.6

)
9
8
.6

(9
7
.9

–
9
9
.3

)
9
9
.2

(9
8
.4

–
1
0
0
.1

)

T
ab

le
5.

3:
N

or
m

al
is

ed
ex

ec
u
ti

on
ti

m
es

of
th

e
D

aC
ap

o
b

en
ch

m
ar

k
s

on
S
-R

V
M

re
la

ti
ve

to
J
ik

es
R

V
M

w
it

h
90

%
co

n
fi
d
en

ce
in

te
rv

al
s

(S
am

e
H

ea
p

P
re

ss
u
re

sc
en

ar
io

)

89

 0
 2

 4
 6

 8
 10

 12
 14

 16
 18

 20
10X

9X

8X

7X

6X

5X

4X

3X

2X

 98

 100

 102

 104

 106

 108

 110

 112

 114

 116

N
o

rm
a

lis
e

d
 M

e
a

n
 E

x
e

c
u

ti
o
n

 T
im

e

Same Heap Pressure
Same Heap Size

Iteration Heap Size as a M
ultip

le of th
e M

inimum

N
o

rm
a

lis
e

d
 M

e
a

n
 E

x
e

c
u

ti
o
n

 T
im

e

Figure 5.3: Mean execution time on S-RVM relative to JikesRVM.

A second observation is that for the same heap size scenario, the performance

of S-RVM improves as the size of the heap increases. The explanation is straight-

forward. The memory overhead of S-RVM is the same for small and large heaps.

For small heaps, the same overhead leaves relatively less heap space for application

objects. For larger heap sizes, the overhead is minor relative to the total heap size,

resulting in execution times similar to those of the same heap pressure scenario.

The third observation is that at steady state S-RVM marginally outperforms

JikesRVM. Figure 5.4 further highlights this observation by showing the relative

execution time of each of the benchmarks at steady state, including the 90% confi-

dence interval. As the graph demonstrates, when the heap is large enough, S-RVM

outperforms JikesRVM on most of the DaCapo benchmarks. However, while the

mean execution time on S-RVM is slightly better than on JikesRVM, the difference

is not statistically significant.

Due to the need to support multiple tasks, the implementation of S-RVM is

less efficient than that of JikesRVM. In particular, optimisations that assume that

every object is assignment compatible with the Java Object type are disabled and

additional indirections are introduced in the data structures that represent types.

Based on this information, one would expect S-RVM to underperform JikesRVM.

Consequently, the slight performance improvement, albeit not being significant, is

surprising.

This better performance is a consequence of S-RVM use of separate copies of

90

 90

 95

 100

 105

 110

a
n
tlr

b
lo

a
t

ch
a
rt

e
clip

se

fo
p

h
sq

ld
b

jyth
o
n

lu
in

d
e
x

lu
se

a
rch

p
m

d

xa
la

n

m
e
a
n

Twice Minimum Heap Size
Three Times Minimum Heap Size

Five Times Minimum Heap Size
Ten Times Minimum Heap Size

Figure 5.4: Steady state normalised execution times of the DaCapo benchmarks on
S-RVM at several heap sizes

the Java libraries for the virtual machine and for the application. These copies are

optimised for different workloads, with the virtual machine copy being optimised

for the virtual machine workload and the application copy being optimised for the

application workload.

The virtual machine and the application generate different workload on library

classes. S-RVM, like JikesRVM, collects profiling information on a per-method basis.

This profiling information is used for directing the optimising compiler. S-RVM uses

a separate copy of library methods in each task. Profiling information for each of

these copies matches the workload generated by the task.

In JikesRVM, on the other hand, Java library methods are shared between the

virtual machine and the application. Consequently, the profiling information col-

lected for these methods is combined and is less representative of the use by either

the virtual machine or the application. Optimising code based on the combined

profiling information produces a compromise between workloads resulting in lower

than optimal performance.

The effect of the combined profiling information can be demonstrated by forc-

ing S-RVM to combine the profiling information of library methods in the virtual

machine and the application. Figure 5.5 shows the results of executing the DaCapo

benchmarks on a version of S-RVM that combines edge-count profiling information.

(Edge-count information measures the frequencies of taking conditional branches.

91

It is used inter alia in decisions on code reordering to avoid branches in the common

case and in inlining decisions.)

 0
 2

 4
 6

 8
 10

 12
 14

 16
 18

 20
10X

9X

8X

7X

6X

5X

4X

3X

2X

 98

 100

 102

 104

 106

 108

 110

 112

 114

N
o

rm
a

lis
e

d
 M

e
a

n
 E

x
e
c
u

ti
o

n
 T

im
e

Separate profiling
Combined profiling

Iteration Heap Size as a M
ultip

le of th
e M

inimum Size

N
o

rm
a

lis
e

d
 M

e
a

n
 E

x
e
c
u

ti
o

n
 T

im
e

Figure 5.5: Separate vs. combined profiling

While only part of the profiling information is combined, the diagram demon-

strates a slight slowdown of about 0.2%. This slowdown confirms the hypothesis

that the speedup in S-RVM is the result of the profile information better represent-

ing the different workloads. It should be noted, however, that this slowdown, like

the performance improvement of S-RVM, is not statistically significant.

5.4 Summary

S-RVM increases the security of JikesRVM by separating the virtual machine from

the application. This chapter discusses the costs of the better security provided by

S-RVM.

As demonstrated, S-RVM does not incur any cost in the steady state. Due to

the need to load the Java library, program start up in S-RVM is slower than in

JikesRVM. The two copies of the library also result in a larger memory footprint.

S-RVM is the first virtual machine to provide reference protection at no perfor-

mance loss. This achievement is the result of its use of the Exported Types design

for providing reference protection. As such, S-RVM demonstrates the effectiveness

of the Exported Types design.

92

Chapter 6

Summary and Conclusions

Isolating components increases the safety and security of the system by restricting

the way misbehaving components can affect other components. This thesis explores

the area of software-based component isolation. It focuses on finding the right

balance between effective protection and efficient communication between isolated

components.

Work included in this thesis encompasses three main areas: the classification of

of systems providing software-based component isolation, a design of a type system

that supports software-based component isolation and the implementation of the

type system.

This chapter describes the main findings of this work in these areas.

6.1 Classification Framework

The first area of work in this research is the classification of software-based com-

ponent isolation. The classification is centred around the concept of zones, which

are groups of objects to which protection is applied uniformly. It identifies a small

number of zone types based on the permitted inter-zone references and classifies

systems according to the zone types they use.

The benefit of the classification is that it defines the problem space and provides

a context to building reference-protection systems. The main strength of the classi-

fication is that it captures the level of isolation between components. Consequently,

it identifies possible sharing of data and permitted inter-component method invoca-

tion. Thus, the classification identifies the potential use of memory access for direct

communication between otherwise isolated components.

Four levels of isolation are identified. Complete isolation provides the highest

level of isolation where the system guarantees that memory accessible by one compo-

nent is not accessible by others. Hence, in systems that provide complete isolation,

components cannot use the main memory for communication.

93

The second level of isolation, the object sharing protection model, allows multiple

components to access the same data. It does not, however, support direct transfer

of control between components. Additional protocols are required for implementing

cross-component procedure calls and other mechanisms for transferring control.

Cross-component procedure calls are supported by the partial isolation protec-

tion model. In systems supporting partial isolation each component consists of a

sealed zone which is private to the component and an interface zone which is ac-

cessible by other components. Code in the interface zone is granted access to the

sealed zone and can be used to provide other components with indirect access to

the data in the sealed zone.

Initial isolation is a protection model that supports the least level of isolation.

Under this model, components are isolated when created, but they can share ref-

erences with other components. Once references are shared, the system does not

provide any guarantees regarding the extent of sharing.

The classification has proven its usefulness by identifying that partial isolation

has not been explored in conjunction with compile-time enforcement of reference

protection. The partial isolation model maps well to a typical component model in

which each component consists of private data and an RPC interface. The interface

is used for communication between components whereas the private data is not

accessible outside the component. Under the mapping, each component consists of

a sealed zone and an interface zone. The interface zone is used for the interface and

the sealed zone for the private data. Reference protection ensures that only objects

within the component can hold references to private data.

The partial isolation model, therefore, promises to deliver the level of isolation

expected for components while allowing the sharing and method invocation that

components support. Yet, the only prior work to implement this model for com-

ponent isolation used costly run-time enforcement of the model. The next section

describes Exported Types, which bridges this gap.

6.2 The Exported Types Design

Exported Types is a type system design that supports reference protection with the

partial isolation model. Supporting reference protection in the type system allows

the compiler to enforce the restrictions on reference propagation, avoiding run-time

costs. The partial isolation model allows components to directly access the interface

of other components, minimising the inter-component communication costs.

In a nutshell, the Exported Types design separates components by creating a

type name space for each components. Components can export and import types.

Exporting publishes the type so that other components can import it. Importing

94

gives the components access to the type and, therefore, to objects of the type. These

exported types form the interfaces for inter-component communication.

The Exported Types design only covers the aspects of the type system required

for overlaying the partial isolation model over the type hierarchy. It leaves other

details of the type system to be specified by the designer. By only providing those

features essential for reference protection, the Exported Types design can be used

both as a basis for a type system of a new language and as an extension to an

existing language.

By insisting on explicit import and export operations, the design follows the

principle of fail-safe defaults [Saltzer and Schroeder, 1975]. That is, cross-component

access to objects is only allowed if explicitly granted. Explicit operations also help in

achieving backward compatibility when extending existing languages—they ensure

that legacy code is not affected by the new semantics of the Exported Types design.

While the design can be used as an extension to existing languages, various

features of the language’s type system may conflict with the Exported Types design.

The biggest limitation of the Exported Types design is that it is suitable only for

type systems that use name-based type equivalence. It is not applicable for use

with structure-based type equivalence. Language features that use structure-based

type equivalence, e.g. Java arrays, conflict with the Exported Types design. Other

language features, such as implicit operations on types and special semantics of some

types, also cause problems. A common solution to many of these incompatibilities

is to use wrapper classes. These wrapper classes, however, introduce a level of

indirection which might affect performance.

Notwithstanding the conflicts with language features, the Exported Types design

can be applied to existing languages. The third area of work in of this thesis is an

implementation of Exported Types in Java. This implementation is the topic of the

next section.

6.3 S-RVM

S-RVM is a Java virtual machine based on JikesRVM. The main motivation for im-

plementing S-RVM is as a proof of implementation for the Exported Types design. It

uses the Exported Types design to separate the virtual machine from the application

in a meta-circular virtual machine. The main advantage of S-RVM over JikesRVM

is that its design is more secure because it reduces the attack surface of the vir-

tual machine. This increase in security is delivered at no cost to the steady-state

performance of S-RVM.

S-RVM only addresses the large attack-surface area of JikesRVM. It does not,

however, address many other security issues in JikesRVM. Consequently, S-RVM

95

is not secure. Nevertheless, by addressing one of the main security weaknesses of

JikesRVM, S-RVM is a step forward towards a secure meta-circular virtual machine.

Using the Exported Types design in this specific scenario is a mixed blessing. On

the one hand, the interface between the virtual machine and the application is com-

plex and it is used frequently during a program execution. It is used, for example,

for object allocation, synchronisation, cloning and reflection. This scenario, there-

fore, is useful in demonstrating that the costs of inter-component communication

with the Exported Types design are negligible.

On the other hand, meta-circular machines are, admittedly, a rather specific con-

text for using the Exported Types design. Applying the design in a richer scenario,

such as for implementing a multi-tasking virtual machine, may be a more convinc-

ing example of its usefulness. Yet, by separating the application from the virtual

machine and by implementing the type export and import mechanisms, S-RVM lays

the foundation required for implementing the design in a more general context.

One incidental benefit of S-RVM is its marginally, albeit not statistically signif-

icant, improved steady-state performance. This improvement is the consequence of

having two copies of the Java libraries which are optimised independently of each

other. The library code for the virtual machine is optimised for the virtual machine

workload whereas the application copy of the library is optimised for the application

workload.

Duplicating library code also has some downsides. The memory footprint, includ-

ing both the boot image and the heap, of S-RVM is about 10MB larger than that of

JikesRVM. While 10MB is a small amount of memory in most modern architectures,

it can still be a significant size in some environment, e.g. embedded machines. Fur-

thermore, since the application’s copy of the library is not preloaded in the S-RVM

boot image, applications take longer to start and take longer to achieve the steady

state than in JikesRVM.

6.4 Revisiting the Classification Framework

S-RVM is a proof-of-implementation of the Exported Types design. This thesis

develops the Exported Types design to bridge a gap identified by the classifica-

tion presented in Chapter 2. This section applies the classification to S-RVM and

demonstrates that it, indeed, bridges the gap.

The first step in applying the classification is to identify the zones used in the

system. Table 2.2 presents the zones used in the systems covered by Chapter 2.

This table is presented here again as Table 6.1, amended with the information about

S-RVM.

Through the use of unboxed wrapper classes, the root task in S-RVM can access

96

System Zone Zone Type
CoLoRs Process heaps Isolated

Shared region Shared
Confined Types Objects of confined types Sealed

Objects in the package Interface
J-Kernel Domain Capabilities Interface

Domain objects Sealed
JNode Root Isolate Privileged Shared

Application Isolates Isolated
JX Domains Isolated
KaffeOS Kernel Heap Privileged Shared

Shared Heaps Shared
Process Heaps Isolated

MVM Isolates Isolated
.Net Application Domain Isolated
OVM User Domains Isolated

Executive Domain Privileged Isolated
Ownership Types Owning objects Interface

Owned objects Sealed
Real-time Java Regions Shared
Rust Processes Isolated

Shared Values Shared
Singularity Process Isolated

Exchange heap Shared
S-RVM Application objects Sealed

Objects of exported root classes Privileged Interface
Other root task objects Privileged Sealed

XMem Process heaps Isolated
Shared region Shared

Table 6.1: Zones in systems providing reference protection

every object in the system. Hence, zones within the root task are privileged. A

zone is defined as a group of objects to which protection rules are applied uniformly.

Based on this definition, S-RVM has four zones: objects of classes in the hierarchy

of the application task, objects of root task classes that are not exported, objects

of exported classes and objects of application-extended exported classes. It should

be noted that by subtyping, objects of the last zone are also objects of exported

classes. That is, the zones overlap and do not form a partition of the object space.

Objects of non-exported root classes may only be referenced by objects within

the root task. Thus, these objects form a sealed zone, with objects of exported

classes (and their subclasses) being the corresponding interface zone. Similarly,

when ignoring the special rules for privileged zones, objects in the application task

hierarchy form a sealed zone, with the objects of exported classes that the application

extends being in the corresponding interface zone.

97

With the zone type identified, the reference protection and the reachability and

propagation control mechanisms can be identified. Tables 6.2 and 6.3 show where

S-RVM fits with respect to the system surveyed in Chapter 2.

Run Time Reachability Propagation
System Model Control Control
CoLoRs Object Sharing Multiple Types Write Barriers
Confined Types Partial Isolation Shared Sealed Types
J-Kernel Partial Isolation Multiple Types Transfer Barriers
JNode Complete Isolation Indirection Implicit
JX Complete Isolation Multiple Types Implicit
KaffeOS Object Sharing Shared Write Barriers

Multiple Types
MVM Complete Isolation Indirection Implicit
.Net Complete Isolation Indirection Implicit

Separate Compilation
OVM Complete Isolation Multiple Types Implicit
Ownership Types Partial Isolation Shared Sealed Types
Real-time Java Object Sharing Shared Write Barriers
Rust Object Sharing Ownership Shared Types
Singularity Object Sharing Multiple Types Shared Types
S-RVM Partial Isolation Multiple Types Sealed Types
XMem Object Sharing Separate Compilation Write Barriers

Table 6.2: Classification of reference protection

Systems that use sealed zones and their corresponding interface zones offer the

partial isolation reference-protection model. This is, therefore, the protection model

offered by S-RVM. As S-RVM uses type information to decide whether an object is

within a sealed zone, the propagation control mechanism it offers is sealed types.

S-RVM avoids sharing reachability roots. As the type hierarchies are separate,

reachability roots in one task are not accessible from another. S-RVM only allows

method members in the remote interface, never field members. This prevents direct

access from code declared in one task to static fields declared by another, preventing

shared access to these fields.

As it uses sealed types to control reference propagation, S-RVM provides partial

isolation enforced at compile time (Table 6.3). Unlike the other systems that fits

this description, S-RVM avoid shared reachability roots and is, therefore, suitable

for component isolation. Hence, S-RVM bridges the gap identified in the survey pre-

sented in Chapter 2. Furthermore, as Chapter 5 demonstrates, the added security of

reference protection comes at no performance cost. Thus, S-RVM fulfils the promise

of achieving high performance with the added security of reference protection.

While S-RVM fills the gap, it only supports two components. Thus, S-RVM falls

short of providing a generic component-based environment. Extending S-RVM to

98

Run Time Compile Time

Complete
Isolation

JNode
JX

MVM
.Net
OVM

Object
Sharing

CoLoRs
KaffeOS
XMem

Real-time Java

Rust
Singularity

Partial
Isolation

J-Kernel
Confined Types

Ownership Types
S-RVM

Table 6.3: Classification of reference protection

support multiple tasks would overcome this shortcoming. While this extension is

beyond the scope of this thesis some initial directions towards it are presented in

the next section.

6.5 A Multi-tasking Virtual Machine

While S-RVM is not a multi-tasking virtual machine, there are no arbitrary limita-

tions in its implementation that prevent it from being extended to support multiple

application tasks. The VM interface layer can support multiple tasks, as displayed

in Figure 6.1. The trusted application running within the root task, which in S-RVM

creates the application task object and initialises it, can be modified to create mul-

tiple tasks.

Core Services

Application

Java Library

Application Task

Application

Java Library

Application Task

Library
Java

App
Trusted

Root Task

VM Interface Layer

VM

Figure 6.1: A multi-tasking virtual machine

Supporting the creation of multiple tasks is but one aspect of a multi-tasking

virtual machine. Several areas in S-RVM need more work for the system to become

a fully-fledged multi-tasking virtual machine.

Currently, only the root task exports classes. An application task (assuming

multiple tasks are created) cannot export classes. To support application export-

ing classes, the design of the globally shared name space will have to change to

accommodate for potential race conditions in allocating exported type names to

99

tasks.

A related issue is the lack of an interface for managing tasks. Currently, only

the trusted application can create tasks and it does not have an easy mechanism for

managing these tasks. For a system that runs only one task, this model is sufficient.

However, in a multi-tasking virtual machine, tasks should be able to create, manage

and destroy other tasks. This raises the issue of authorisation, e.g. deciding what

permissions a task has for managing other tasks. It also raises the issue of the

semantics of task termination. In particular, the design needs to take into account

the possibility of one task terminating while another holds references to its objects

and decide how this situation is handled.

Task termination also highlights another problem. S-RVM, like JikesRVM, does

not currently support class unloading. Classes in S-RVM (and in JikesRVM) stay

loaded for as long as the virtual machine executes. When there is only one applica-

tion in the virtual machine, this issue mainly affect applications that dynamically

create class loaders. In a multi-tasking system, where tasks are created dynamically,

each terminated task will leave behind a large set of classes that will not be used.

This memory leak limits the number of tasks that can be created over the running

time of the virtual machine.

Another area for further research is the use of partial isolation on type systems

that employ structure-based type equivalence. This is discussed in the next section.

6.6 Structure-based Type Equivalence

As Chapter 3 discusses, any type system that provides reference protection must be

at least partially name-based. The Exported Types design relies on name-based type

equivalence for its operation to the extent that it is incompatible with features of the

underlying type system that use structure-based equivalence. As such, this thesis

does not try to evaluate the extent to which a type system needs to be name-based

to support reference protection.

To increase the understanding of the relationship between reference protection

and type systems it may be useful to question whether component isolation can be

implemented with type systems that predominantly use structure-based equivalence.

A possible direction for investigating this is to build upon tagging references

as implemented in ownership types [Clarke, 2001, Clarke et al., 1998]. Ownership

types use tags on references to indicate the zone of the objects they refer to. Using

a similar technique, it may be possible to support structural equivalence within

zones, limiting the use of name-based equivalence to the specification of the zones

themselves.

100

6.7 Summary

This thesis makes several contributions to the area of reference protection. The

first is the development of a novel framework for classifying reference-protection

systems. The classification captures the salient features of reference protection and

is, therefore, useful for comparing the properties of systems from across the domain.

The second and the most significant contribution of this thesis is the Exported

Types design. Exported Types is the first type system design to support the partial

isolation reference-protection model and is the first to provide component isolation

at no performance costs. The design is complemented by an implementation which

demonstrates that it is applicable to modern mainstream languages and that it

supports full backwards compatibility.

The implementation of S-RVM is a contribution not only because it proves the

feasibility of the Exported Types design. S-RVM explores the interface between the

virtual machine and the application in meta-circular virtual machines. It increases

the security of the system by clearly defining the boundaries between the two and

by ensuring that the application is restricted to only use that boundary. The clear

boundaries between the virtual machine and the application also makes S-RVM

an excellent experimentation platform when code instrumentation is required. By

separating the application from the virtual machine, S-RVM allows instrumentation

of application code without the circular dependencies that result from instrumenting

virtual machine code. Ideas embodied in this aspect of S-RVM have contributed

towards work on library code cloning [Bond, 2013].

The last contribution of S-RVM is that it highlights the benefit of separate

profiling for different workloads. Separate profiling of library code in S-RVM allows

it to achieve a performance marginally better than that of the baseline JikesRVM,

even though the S-RVM code is more complex than that of the baseline.

This thesis set out to explore the area of reference protection for component

isolation. The specific question it addresses is whether the performance cost typically

associated with component isolation can be eliminated. To answer this question,

this thesis maps the research area, identifies a plausible hitherto unexplored system

model, designs a system based on this model and implements the design. The

implemented system demonstrates that, with the correct design, components in a

system can be isolated with no performance loss. It is hoped that future work will

build upon ideas developed in this thesis to provide effective and efficient software-

based isolation mechanisms.

101

Appendix A

Exported Types Specifications

Chapter 3 presents an informal description of the Exported Types design. This

appendix augments the description with a semi-formal specification of the type

system. It starts with a definition of the relevant properties of type systems. It then

describes the Exported Types design as a set of modification to an arbitrary type

system. The last section presents the mapping of values to zones and argues that

the mapping guarantees the security properties of the partial isolation reference-

protection model.

A.1 Type Systems

Programs are sets of instructions for manipulating data values, specified by a pro-

gramming language. The type system is a part of the programming language that

superimposes a structure of sets on the value space of the program. Each such set

corresponds to a type. The main purposes of a type system are to declare the struc-

ture of data values, creating a model of the objects these values represent, and to

provide semantics to the values of the types by restricting the operations a program

can apply on data values to those operations sanctioned by the values’ types.

Type systems typically include two kinds of types. Primitive types are basic types

that exist a priori and form the building blocks for creating other types. Composite

types are types that are created using a type algebra by combining primitive and

other composite types.

To allow the program to refer to types, the type system provides a type-resolution

mechanism that matches textual type names with the types they refer to. To avoid

name conflicts between different sections of the program, some type systems parti-

tion the program code into multiple typing contexts. Type names are unique within

each typing context. However, the same type name may refer to different types in

different typing contexts.

Types in a type system are ordered by the subtype relation, which is the type

102

systems’ nomenclature for the subset relation. Subtyping allows programmers to

benefit from inclusion polymorphism [Cardelli and Wegner, 1985] by re-using code

for processing multiple similar or related values that share part of their semantics.

When a data value is created it is associated with an implementation type, that

describes the structure of the value. Through subtyping, the value may be in the

value set of multiple types. A value in the value set of a type is said to have that

type. The Exported Types design assumes that the implementation type of a value,

as well as the set of types the value has, do not change during the lifetime of the

value. It further assumes that the implementation type of a value is the minimal

type that the value has. That is, the implementation type of a value is a subtype of

any other type the value has.

In addition to managing the types, the type system also manages a set of rules for

accessing type members. The rules specify the members of types that are accessible

at each code location. Typically, the specification associates with each code location

a set of scopes which are determined based on the relationship between the code

location and the types declarations. Access to members of the type is determined

based on the scope of the accessing code and the permissions set for the member.

Thus, a type system is determined by four elements: the primitive types, the

type algebra, the type-resolution process and the access-rules semantics. The next

section describes how the Exported Types design extends a type system to support

components.

A.2 Exported Types

In its core, the Exported Types design is a set of modifications to an underlying

type system that extends the type system to support the partial isolation protection

model. That is, given a type system for a language, Exported Types specifies how

to modify its type algebra, type-resolution process and the access-rules semantics to

support multiple components.

The main concept that Exported Types adds to the underlying type system is a

component. Components are software packages that implement some functionality.

The Exported Types design extends the concept to the type system.

The Exported Types design partitions the type hierarchy along component bound-

aries. Each component is associated with a part of the type hierarchy such that all

the supertypes and all the subtypes of a type are in the same component as the

type. The type algebra is restricted to maintain this property by not allowing the

creation of types unless all their supertypes and subtypes are in the same compo-

nent. These restrictions apply both for type extensions and to declaration of union

and intersection types [Cardelli and Wegner, 1985].

103

For each type, the Exported Type design also tracks the type’s declaring compo-

nent. The declaring component of a type is the component that contains the code

that declares the type. It should be noted that components can declare subtypes

of types from other components. Hence, the declaring component of a type is not

necessarily the same as the component the type is associated with.

Tracking the declaring component means that the type identity is dependent on

its declaration. Consequently, irrespective of the underlying type system, Exported

Types is not a structural type system [Albano et al., 1989].

The Exported Types design adds two operations to the type algebra of the un-

derlying type system. These operations handle exporting types, i.e. making them

available outside a component, and importing types, i.e. using types exported by

other components.

Exporting and importing use a globally shared name space that maps names to

exported types. The export operation associates a type with a name in the globally

shared name space. The arguments for the operation are a reference to the type and

the desired name. Depending on the implementation, the name may be implicit.

For example, the S-RVM implementation of the Exported Types, uses the Java type

name when exporting types.

The import operation associates a previously exported type, identified by the

name used for exporting it, with a local name within a typing context in the im-

porting component. For each typing context, Exported Types maintains a list of

imported type names and the imported types they map to.

The imported-types list is used during the type type-resolution process. When

resolving a type name within a typing context, the first step is to check if the name

appears in the imported-types list. Only if a match is not found, the type-resolution

process proceeds to use the type-resolution process of the underlying type system.

To ensure the consistency of type references within a typing context, importing a

type must take place before the first resolution of the type name within the typing

context.

Primitive types are considered to be part of a special system component. They

are implicitly exported by the system component and are implicitly imported in all

typing contexts. The design assumes that values of primitive types are immutable.

Note that this assumption does not imply that variables of primitive types are

immutable.

The definition of scopes in the underlying type system is limited to the declar-

ing component of a type. Hence, access to members of a type is only allowed to

code within the component that declares the type. To allow access from other

components, the Exported Types design adds a remote annotation. Type members

annotated as remote members can be accessed by code outside the declaring com-

104

ponent. However, the access rules of the underlying type system still apply. For

example, remote members with a protected scope can only be accessed by code in

subtypes of the exported types.

Since non-exported types are not accessible outside a component, the remote

annotation is only relevant to members of exported types. Further restrictions on

remote members are that their types must be explicitly declared, i.e. the system

cannot rely on type inference for determining the types of remote members, and

that types used in creating the remote member signatures must all be exported.

These restrictions are required to ensure that the types used on the interface are

exported and that their names have the same meaning in both the exporting and

the importing components.

A.3 Mapping to zones

This section demonstrates that the Exported Types design implements the partial

isolation reference-protection model. Under partial isolation each component com-

prises two zones: a sealed zone, where private data is stored, and an interface zone

used for communication with other components.

The mapping of values to components is based on the declaring components of

the types the values have. If any of the types a value has is declared in a component,

the value is part of that component.

A value is in the sealed zone of a component if the implementation type of the

value is internal to the component. A type is internal to a component if neither

the type nor any of its supertypes are exported. If the implementation type of a

value or any of its supertypes are exported, the value is in the interface zone of a

component.

To demonstrate that the design maintains partial protection it is sufficient to

show that components cannot hold references to values in the sealed zones of other

components. Generally speaking, components can obtain references to values either

through instantiating the value or by receiving the reference from another component

through the remote interface.

To instantiate a value, the instantiating component needs to specify the imple-

mentation type of the value. The type-resolution process in a component allows the

component to name types it defines and types it imports. Thus, a component can

instantiate values if it defines their implementation types. It may also be possible

for a component to instantiate values whose implementation type is imported by

the component. However, to do that, the implementation types of these values must

be exported by the components that declare them. Hence, a component cannot

instantiate values whose implementation type is internal to other components.

105

The only way a value can be transferred between components is through the

remote interface of an exported type. Remotely accessible members have their types

explicitly specified. Type safety ensures that values passed through the remote

interface are assignment compatible with the members types. In other words, it

ensures that the values have the types specified in the member signatures.

Types mentioned in member signatures of remote members must all be exported.

As such, none of these types can be a supertype of an internal type. Hence, values

in the sealed zone, i.e. whose implementation type is internal, are not assignment

compatible with types used in the signatures of remote members. Consequently,

references to values in the sealed zone of a component cannot be passed to other

components.

106

Appendix B

S-RVM Implementation Details

This Appendix delves into the details of the implementation of S-RVM. It describes

the mechanism presented in Chapter 4 and presents parts of the relevant source

code.

The description assumes some familiarity with the JikesRVM source code. While

an attempt to explain relevant JikesRVM concepts has been made, providing an

introduction to the JikesRVM source is well beyond the scope of this work.

Areas covered include the creation and use of the upcall interface, task initiali-

sation, handling String backing store and cross-task exception conversion.

B.1 The Upcall Interface

MuLibInterface is an abstract class that defines the main upcall interface to the

application task. It is used for services that the application task provides to the

root task. Before the MuLibInterface of the application task is created, the only

access code running within the root task has to application task types is through

reflection. The root task uses reflection to create the MuLibInterface object. This

code is shown in Listing B.1.

Like many initialisation methods in JikesRVM, the code has two main cases.

One for building the virtual machine itself (Lines 814–816) and the other for initial-

ising tasks when the virtual machine is running (Lines 798–812). When the virtual

machine is being built, the code executes on an existing Java virtual machine as part

of the boot image writer program. (See Section 4.2.5.) The only task existing at

this stage is the root task and the code uses Java reflection for creating the object.

When creating the application task, the code is a bit more complex. The Java

reflection methods cannot be used because they are part of the Java library, which

is task dependent. In particular, when the root task refers to the symbolic class

name org.jikesrvm.mu.MuImplementation.class it always means the root task

107

794 private MuLibInterface createLibInterface() {
795 try {
796 MuLibInterface res;
797 if (VM.runningVM) {
798 TypeReference tr = getBootstrapType(”Lorg/jikesrvm/mu/MuImplementation;”);
799 RVMClass cls = tr.resolve().asClass();
800
801 cls.resolve();
802 cls.instantiate();
803 cls.initialize();
804
805 Atom getLibInterfaceName = Atom.findOrCreateAsciiAtom((”getLibInterface”));
806 Atom getLibInterfaceDescriptor =

Atom.findOrCreateAsciiAtom((”()Lorg/jikesrvm/mu/MuLibInterface;”));
807 RVMMethod getLibInterfaceMethod = cls.findDeclaredMethod(getLibInterfaceName,

getLibInterfaceDescriptor);
808
809
810 getLibInterfaceMethod.compile();
811
812 res = (MuLibInterface)Reflection.invoke(getLibInterfaceMethod, null, null, new Object[0], false);
813 } else {
814 Method method = org.jikesrvm.mu.MuImplementation.class.getDeclaredMethod(”getLibInterface”,

(Class[])null);
815 method.setAccessible(true);
816 res = (MuLibInterface) method.invoke(null, (Object[])null);
817 }
818 return res;
819 } catch (Exception e) {
820 throw new Error(e);
821
822 }
823 }

Listing B.1: RVMTask:Creating the upcall interface object

class. Instead, the code uses the JikesRVM reflection and its internal representation

of the class.

Line 798 generates a type reference for the class MuImplementation. A type

reference in JikesRVM is an unresolved symbolic reference to a type qualified by the

classloader that created the reference. MuImplementation is the application task

class that extends MuLibInterface and provides the implementation of the upcall

interface.

Line 799 resolves the type reference. When resolving a type reference, the virtual

machine finds the class loader that loads the class. (Due to class loader delegation

this may be a different than the class loader which creates the reference.) The

resolution process also loads the class to the virtual machine. The class is initialised

in lines 801–803.

Lines 805–807 locate the static method getLibInterface in the loaded class.

The method is compiled to machine code (line 810) and invoked (line 812).

Once a reference to the MuLibInterface object is obtained, the object can be

used for upcalls. For example, Listing B.2 shows how the upcall interface is used to

create the Class object corresponding to a loaded type.

The Java language specifies that synchronized static methods are synchro-

nised using the object lock of the Class object of the class that defines a method.

108

686 private MuObject<Class> createClassForTypeUnchecked(RVMType type) {
687 if (VM.VerifyAssertions) VM. assert(libInterface != null);
688 MuObject<Class> rv = libInterface.createClassForType(type);
689 if (rv.isNull())
690 return rv;
691 RVMType rvType = Magic.getObjectType(rv);
692 if (rvType != getJavaLangClassType())
693 return null;
694 return rv;
695 }

Listing B.2: RVMTask:Creating class objects

To implement this requirement, the virtual machine needs a reference to the Class

object, which it acquires using the code in Listing B.2. The upcall is invoked in

Line 688. The code that implements the method is displayed in Listing B.3. The

code calls the JikesRVM hook method that creates a Class object and wraps it as

a MuObject reference.

103 public MuObject<Class> createClassForType(RVMType type) {
104 return MuObject.fromObject((Class)java.lang.JikesRVMSupport.createClass(type));
105 }

Listing B.3: MuImplementation:Creating class objects

Wrapping is required because the Class is an application object. and the ref-

erence protection prevents the root task from holding unwrapped references to the

object. MuObject is an unboxed wrapper. MuObject.fromObject() is a magic

method, which is intercepted by the compiler and replaced by a change of type in

the parse tree. No machine code is generated for wrapping the reference and the

bit value of the MuObject wrapper is the same as that of the reference to the Class

object.

Another point worth attention is the tests in lines 689–693 of Listing B.2 which

verify that the returned reference is, indeed, a reference to a Class object. This is

part of enforcing the policy on the VM interface layer being a trust boundary. An

untrusted application could return a wrapped reference to an object other than a

Class object. It could, in theory, return a wrapped reference to an exported root

task object, which would allow the root task to lock that object, bypassing the

security of the VM interface layer. The test for object type prevents this risk.

S-RVM, like JikesRVM, creates the Class objects when classes are loaded to the

virtual machine. When initialising the application task, this can cause a circular

dependency. The next section discusses circular dependencies in the application task

initialisation and presents S-RVM’s solution.

109

B.2 Initialising RVMTask

Task initialisation deserves special attention. The main purpose of the initialisation

phase is to get the task to a state that it can load classes. The main difficulty is

circular dependency between classes.

The main causes of circular dependency is the creation of String and Class

literals. As discussed above, when a class is loaded, a Class object representing the

loaded class is created. To create the Class object, the Class class needs be loaded.

Like all classes in Java, Class is a subclass of Object. So, before class Class is

loaded, class Object needs to be loaded. However, class Object cannot be loaded

without creating its Class object.

A similar problem occurs with String literals. To create String literals, class

String must be loaded and the task must be able to intern strings. Classes involved

in interning strings, as well as the class String itself, contain String literals. These

String literals cannot be created before all the classes that use them are loaded and

to load the classes the literals need be created.

To address these problems, S-RVM starts tasks in a foetal state. In this state,

S-RVM loads classes, but only create the Class and String literals once it has

enough context. When it is unable to create the string and class literals, S-RVM

just records the classes it loads. Once enough classes are loaded for creating the

literals, S-RVM uses the records it collected to create the literals it missed.

697 public MuObject<Class> createClassForType(RVMType type) {
698 if (fetalClasses != null) {
699 addFetalClass(type);
700 }
701 if (!canCreateClasses())
702 return null;
703 return createClassForTypeUnchecked(type);
704 }
705
706 private void addFetalClass(RVMType type) {
707 if (nFetalClasses == fetalClasses.length) {
708 if (VM.VerifyAssertions) VM. assert(nFetalClasses < 50);
709 RVMType[] newFetalClasses = new RVMType[nFetalClasses ∗ 2];
710 System.arraycopy(fetalClasses, 0, newFetalClasses, 0, nFetalClasses);
711 fetalClasses = newFetalClasses;
712 }
713 fetalClasses[nFetalClasses++] = type;
714 }

Listing B.4: RVMTask:Creating foetal class objects

The method createClassForTypeUnchecked shown in Listing B.2 is private to

the RVMTask class. Listing B.4 shows the public interface that RVMTask provides for

creating the Class object. As the code demonstrates, if the task is in foetal state it

keeps track of classes created (lines 698–700). The method, then proceeds to create

the Class objects, but only if it can create classes. The method addFetalClass in

line 706 adds newly created classes to the list of foetal classes.

110

218 if (VM.runningVM) {
219 getBootstrapType(”Lorg/jikesrvm/mu/MuCharArray;”).resolve();
220 getBootstrapType(”Lorg/jikesrvm/mu/MuWriteableCharArray;”).resolve();
221 getBootstrapType(”Lorg/jikesrvm/mu/MuObject;”).resolve();
222 getBootstrapType(”Lorg/jikesrvm/mu/MuMagic;”).resolve();
223
224 stringLiterals = new ImmutableEntryHashMapRVM<Atom, Integer>();
225
226 javaLangObjectType = javaLangObjectTypeRef.resolve().asClass();
227 } else {
228 javaLangObjectType = RVMType.JavaLangObjectType;
229 }
230
231 javaLangClassType = javaLangClassTypeRef.resolve().asClass();
232 javaLangThrowableType = javaLangThrowableTypeRef.resolve().asClass();
233 javaLangCloneableType = getBootstrapType(”Ljava/lang/Cloneable;”).resolve().asClass();
234 javaIoSerializableType = getBootstrapType(”Ljava/io/Serializable;”).resolve().asClass();
235
236
237 libInterface = createLibInterface();
238 if (VM.runningVM) {
239 patchFetalClasses();
240
241
242 }
243 flags |= TF CAN CREATE CLASSES;
244
245 javaLangStringType = javaLangStringTypeRef.resolve().asClass();
246 if (VM.runningVM) {
247 internFetalStrings();
248 }
249
250 fetalClasses = null;
251
252 flags |= TF CAN INTERN STRINGS;

Listing B.5: RVMTask: Initialisation

Listing B.5 shows the relevant code from the task initialisation code. The method

creates the initial classes required to be able to load classes, including the magic un-

boxed wrapper types, Object, Class. It also creates and initialises the upcall inter-

face object. In line 239 it calls the method patchFetalClasses to create the missed

Class objects and sets the task flags to indicate it can create classes. Lines 245–252

handle the String literals in foetal classes.

Listing B.6 shows the patchFetalClasses method. As shown. the method

iterates over the foetal classes. For each class it sets the RVMType.classForType

field to a newly created Class object. patchFetalClasses uses the virtual machine

reflection to bypass the final protection of RVMType.classForType. The loop and

check at line 740 is required for handling classes loaded as part of creating the Class

literals.

B.3 String Backing Store

Recall from Chapter 4 that the backing store for Java strings is implemented as

MuCharArray, which is an unboxed wrapper for a root task array of characters.

111

731 private void patchFetalClasses() {
732 int i = 0;
733 int nFetalClasses;
734 do {
735 nFetalClasses = this.nFetalClasses;
736 for (; i < nFetalClasses; i++) {
737 RVMType type = fetalClasses[i];
738 Entrypoints.classForType.setObjectValueUnchecked(type, createClassForTypeUnchecked(type));
739 }
740 } while (nFetalClasses != this.nFetalClasses);
741 }

Listing B.6: RVMTask:Creating fetal Classes

Listing B.7 shows the code of MuCharArray.

24 @Export
25 @Unboxed
26 public final class MuCharArray implements MuGlobalSupertype {
27
28 char[] value;
29
30 public Object get() {
31 if (VM.VerifyAssertions) VM. assert(!VM.runningVM);
32 return value;
33 }
34
35 private MuCharArray(char[] v) { value = v;}
36
37 public static MuCharArray fromCharArray(char[] chars) {
38 return new MuCharArray(chars);
39 }
40
41 public char[] toCharArray() { return value; }
42
43 @Remote
44 public boolean isNull() { return value == null; }
45
46 @Remote
47 public boolean EQ(MuCharArray other) { return this == other; }
48
49 @Remote
50 public int length() { return value.length; }
51
52 @Remote
53 public char get(int index) { return value[index]; }
54 }

Listing B.7: MuCharArray

Several points are worth noting about MuCharArray. First, the class is exported.

Hence, it can be used by both the root task and the application task. Second, it

is an unboxed class. That means that S-RVM does not allocate an object for the

class. Instead, the compiler intercepts the methods of the class, replacing them with

its own implementation. The implementation of the methods in the class file is

provided for use when building the virtual machine. During the build, the S-RVM

code is executed by an external virtual machine that does not provide the magic

semantics of unboxed wrappers. The implementation is semantically equivalent to

the magic the S-RVM compiler implements.

The third point to note is that the he fromCharArray and toCharArray methods,

112

which convert a root task char array to and from a MuCharArray are not in the

remote interface. These methods are only accessible by the root task.

Last, it should be noted that the backing store wrapped by MuCharArray can

only be read. None of the remote operations supports changing the array.

Like MuCharArray, MuWriteableCharArray is an unboxed wrapper of a root

task character array. The application task can, however, modify the contents of

a MuWriteableCharArray. The class definition of MuWriteableCharArray is the

same as that of MuCharArray. To modify the contents of a MuWriteableCharArray,

the application task code uses the exported class MuCharArrayUtils. Some of the

methods of MuCharArrayUtils are presented in Listing B.8.

22 @Remote
23 @Inline
24 public static MuWriteableCharArray create(int length) {
25 char[] value = new char[length];
26 return MuWriteableCharArray.fromCharArray(value);
27 }
28
29 @Remote
30 @Inline
31 public static void set(MuWriteableCharArray array, int index, char c) {
32 char[] value = array.toCharArray();
33 if (value[0] != 0)
34 throw new ArrayIndexOutOfBoundsException();
35 value[index] = c;
36 }
37
38 @Remote
39 @Inline
40 public static MuCharArray seal(MuWriteableCharArray src) {
41 char[] charArray = src.toCharArray();
42 charArray[0] = 1;
43 return MuCharArray.fromCharArray(charArray);
44 }
45
46 @Inline
47 static void safeCopy(char[] src, int src off, char[] dst, int dst off, int len) {
48 if (dst[0] != 0)
49 throw new ArrayIndexOutOfBoundsException();
50 RVMArray.arraycopy(src, src off, dst, dst off, len);
51 }
52
53 @Remote
54 @Inline
55 public static void copy(MuCharArray src, int src off, MuWriteableCharArray dst, int dst off, int len) {
56 safeCopy(src.toCharArray(), src off, dst.toCharArray(), dst off, len);
57 }

Listing B.8: MuCharArrayUtils

The seal method locks a MuWriteableCharArray object, preventing further

changes to it and returns the backing store wrapped as a MuCharArray. For its

implementation, seal needs to use a flag that indicates whether the backing store is

writable. Typically, in Java, this requires creating an object that has a flag field and

an array for backing store. This solution, however, results in a significant overhead,

both in space, for allocating the object, and in time, for dereferencing the object

to access the array. S-RVM reduces the overhead by using the first array element

113

(at index 0) as the flag. The seal method sets the value of the first element to

1, preventing further modifications of the array. All other operations, e.g. set at

line 10 and safeCopy at line 15, check the flag before modifying the array.

1334 public String replace(char oldChar, char newChar)
1335 {
1336 if (oldChar == newChar)
1337 return this;
1338 int i = count;
1339 int x = offset − 1;
1340 while (−−i >= 0)
1341 if (value.get(++x) == oldChar)
1342 break;
1343 if (i < 0)
1344 return this;
1345 MuWriteableCharArray ca = MuCharArrayUtils.create(count + 1);
1346 MuCharArrayUtils.copy(value, offset, ca, 1, count);
1347 int offset = this.offset − 1;
1348 MuCharArrayUtils.set(ca, x − offset, newChar);
1349 while (−−i >= 0)
1350 if (value.get(++x) == oldChar)
1351 MuCharArrayUtils.set(ca, x − offset, newChar);
1352 return new String(MuCharArrayUtils.seal(ca), 1, count);
1353 }

Listing B.9: String.replace()

Listing B.9 demonstrates a typical use of MuWriteableCharArray. The String.

replace() method returns a new String which is created by replacing every in-

stance of the character oldChar with newChar in the String it applies to. Lines 1336–

1344 check for the trivial cases that newChar is the same as oldChar and that

oldChar does not appear in the string. Line 1345 allocates a backing store for the

new string. Note that the allocated length is one more than the string length, to

accommodate for the flag at index 0. Line 1346 copies the original string to the new

backing store, followed by updating the values of the characters in Lines 1348–1351.

Line 1352 seals the backing store and uses it to create a new String object.

B.4 Exception Conversion

As Section 4.8 discusses, exceptions generated at the root task are not application

task objects and are not considered as exceptions by the application task and vice

versa. For a task to catch exceptions generated by the another task, S-RVM converts

the exceptions on crossing the boundary between the tasks. This section describes

the mechanisms that catch and convert the exceptions.

To catch the exceptions the code of interruptible remote methods is extended

with an exception handler. The code in Listing B.10 shows how S-RVM adds the

exception handler. Lines 811–816 add an exception handler to the exception handlers

table for the method. This exception handler covers all the code of the method and

catches the Throwable type of the task the remote method is part of. That is, it is

114

equivalent to enclosing the code of the method with a try{}catch(Throwable t)

block.

803 public void setRemote() {
804 if (remote)
805 return;
806 if (VM.VerifyAssertions) VM. assert(!getDeclaringClass().isResolved());
807 if (VM.VerifyAssertions) VM. assert(getDeclaringClass().isExported() ||

getDeclaringClass().hasExportRuntimeEntrypointsAnnotation());
808 remote = true;
809 if (!isInterruptible())
810 return;
811 int exceptionConversionIndex = getDeclaringClass().getExceptionConversionIndex();
812 if (VM.VerifyAssertions) VM. assert(exceptionConversionIndex > 0);
813 int n = bytecodes.length;
814 if (exceptionHandlerMap == null)
815 exceptionHandlerMap = ExceptionHandlerMap.emptyExceptionHandlerMap();
816 exceptionHandlerMap.addHandler(0, n − 1, n,

getDeclaringClass().getTask().getJavaLangThrowableTypeRef());
817 byte[] newBytecodes = new byte[n + 4];
818 System.arraycopy(bytecodes, 0, newBytecodes, 0, n);
819 newBytecodes[n++] = (byte)JBC invokestatic;
820 newBytecodes[n++] = (byte)((exceptionConversionIndex >> 8) & 0xff);
821 newBytecodes[n++] = (byte)(exceptionConversionIndex & 0xff);
822 newBytecodes[n++] = (byte)JBC athrow;
823 bytecodes = newBytecodes;
824 int calleeSize = summarySize;
825 calleeSize += CALL COST + THROW COST;
826 if (calleeSize > Character.MAX VALUE) {
827 summarySize = Character.MAX VALUE;
828 } else {
829 summarySize = (char) calleeSize;
830 }
831 }

Listing B.10: NormalMethod: Setting up a remote method

Lines 817–823 extend the method body and insert the bytecode that implements

the catch block that handles the exception. The new bytecode inserted in lines 819–

822, perform the equivalent of Java throwMuStackTrace.convertException(t),

where t is the caught exception. The code of convertException is presented in

Listing B.11.

The exception handler invokes the first method displayed (lines 189–196). The

method gets the task of the remote method and the task of the method that invoked

it. If these are the same task, it returns the exception without conversion. To get

the task, the code uses the method getTaskFromStackFrame, which, as its name

suggests, scans the run-time stack to find the task. To reduce the overhead of stack

tracing, the optimising compiler replaces the method call with the task reference

if this is known during compilation. As the convertThrowable method is always

inlined, the identity of the remote method is always available. Hence, stack trace is

only required for finding the task that invoked the remote method and only when

the remote method is not inlined.

If the tasks are different, the second method (lines 198–215) is invoked. It finds

the first supertype of the thrown exception that is loaded by the base class loader of

the thrown exception task. The assumption is that exception types generated by the

115

188 @Inline
189 public static MuObject<Throwable> convertThrowable(MuObject<Throwable> muThrowable) {
190 RVMTask thisTask = RVMClass.getTaskFromStackFrame(1);
191 if (VM.VerifyAssertions) VM. assert(thisTask == Magic.getObjectType(muThrowable).getTask());
192 RVMTask thatTask = RVMClass.getTaskFromStackFrame(2);
193 if (thisTask == thatTask)
194 return muThrowable;
195 return convertThrowable(muThrowable, thatTask);
196 }
197
198 public static MuObject<Throwable> convertThrowable(MuObject<Throwable> muThrowable,

RVMTask thatTask) {
199 RVMType throwableType = Magic.getObjectType(muThrowable.toObject());
200 RVMTask throwableTask = throwableType.getTask();
201 RVMType taskThrowable = throwableTask.getJavaLangThrowableType();
202
203 if (throwableTask == thatTask)
204 return muThrowable;
205
206 MuStackTrace stackTrace = throwableTask.getThrowableStackTrace(muThrowable);
207
208 while (throwableType != taskThrowable) {
209 if (throwableType.getClassLoader().isBootstrapClassLoader())
210 return thatTask.createExceptionOfType(throwableType.getDescriptor(), stackTrace);
211 throwableType = throwableType.asClass().getSuperClass();
212 }
213 if (VM.VerifyAssertions) VM. assert(VM.NOT REACHED);
214 return muThrowable;
215 }

Listing B.11: MuStackTrace: Converting exceptions

base class loader will be available in both tasks. It then uses the destination task to

generate an equivalent exception type. The task, then, resolves the exception name

within the context of its base class loader and uses an upcall to create the exception.

(See Listing B.12.)

955 public MuObject<Throwable> createExceptionOfType(Atom name, MuStackTrace stackTrace) {
956 TypeReference tr = TypeReference.findOrCreate(getBootstrapClassLoader(), name);
957 RVMType type = tr.resolve();
958 return libInterface.createExceptionOfType(type, stackTrace);
959 }

Listing B.12: RVMTask: Creating an exception

116

Appendix C

Performance Data

The tables in this appendix present the performance results of the DaCapo bench-

marks [Blackburn et al., 2006b, 2008] on an IBM x3500 server with two quad-core

Xeon E5345 processors and 24GB of RAM; running Fedora release 16. Consistent

with the DaCapo benchmark evaluation methodology [Blackburn et al., 2008], each

benchmark is executed with varying heap pressures, ranging from twice the mini-

mum heap size (Table 5.1) to ten times the minimum heap size.

Each benchmark is executed for 20 iterations to allow the virtual machine to

adapt to the benchmark. Tables C.1–C.20 summarise the performance results at

each iteration. Each table presents the performance data for each of the DaCapo

benchmarks in each configuration for one of the iterations.

Three results are presented for each configuration: the performance of JikesRVM,

the performance of S-RVM with the same heap size and the performance of S-RVM

with the same heap pressure. (See Section 5.3.) The results are the time to complete

the respective iteration, measured in milliseconds. Each result is the geometric mean

of 12 runs, rounded to the nearest millisecond.

The mean column shows the geometric mean of the results for the DaCapo

benchmarks. The numeric value of the mean has no real-world meaning. However,

as the geometric mean is sensitive to the relative change in the data, this num-

ber can be used as a single figure that measures the relative performance of each

configuration [Fleming and Wallace, 1986]. More specifically, as

GM
(
Xi

Yi

)
=
GM(Xi)

GM(Yi)

the ratio of the geometric means of two data sets is the same as the geometric mean

of the results in the first data set normalised to the second data set.

117

H
e
a
p

S
iz

e
C

o
n

fi
g
u

r
a
tio

n
a
n
tlr

b
lo

a
t

c
h

a
r
t

e
c
lip

se
fo

p
h

sq
ld

b
jy

th
o
n

lu
in

d
e
x

lu
se

a
r
c
h

p
m

d
x
a
la

n
m

e
a
n

2
X

J
ik

esR
V

M
2
,3

6
5

6
,6

7
7

9
,9

2
1

3
1
,6

7
1

2
,3

6
7

2
,8

8
1

7
,0

5
4

8
,5

9
6

3
,1

1
8

5
,7

8
2

3
,1

9
1

5
,4

1
8

S
-R

V
M

-
S

ize
2
,9

2
3

7
,7

4
0

1
0
,7

2
5

3
3
,5

2
7

2
,7

3
7

3
,2

3
2

8
,0

2
9

9
,8

3
6

3
,6

1
8

6
,8

3
5

3
,7

6
0

6
,2

0
8

S
-R

V
M

-
P

ressu
re

2
,8

2
3

7
,7

3
5

1
0
,4

8
6

3
3
,2

3
9

2
,7

6
9

3
,2

3
3

7
,9

0
3

9
,6

1
5

3
,4

1
0

6
,5

3
7

3
,6

0
3

6
,0

7
5

3
X

J
ik

esR
V

M
2
,1

7
5

6
,3

2
0

9
,6

0
5

3
1
,4

0
3

2
,2

4
9

2
,9

1
1

6
,9

2
1

8
,3

9
7

2
,6

3
5

5
,3

3
8

2
,7

7
0

5
,1

0
6

S
-R

V
M

-
S

ize
2
,6

4
2

7
,2

6
1

1
0
,2

4
5

3
2
,2

7
6

2
,6

4
0

3
,2

4
0

7
,6

9
8

9
,2

0
1

2
,9

0
9

6
,2

2
0

3
,1

8
7

5
,7

3
7

S
-R

V
M

-
P

ressu
re

2
,6

1
2

7
,2

7
6

1
0
,1

1
9

3
2
,5

2
5

2
,6

4
7

3
,2

4
6

7
,6

1
5

9
,2

2
0

2
,8

1
8

6
,0

8
6

3
,1

3
6

5
,6

9
1

4
X

J
ik

esR
V

M
2
,1

4
4

6
,3

3
0

9
,4

9
7

3
0
,8

2
7

2
,2

2
1

2
,8

9
8

6
,9

5
8

8
,0

9
8

2
,5

7
9

5
,2

3
9

2
,6

9
6

5
,0

3
3

S
-R

V
M

-
S

ize
2
,5

5
0

7
,1

8
0

1
0
,0

4
4

3
2
,4

6
3

2
,6

3
3

3
,2

0
0

7
,6

9
3

9
,0

3
6

2
,9

3
0

6
,0

0
3

3
,0

2
2

5
,6

4
6

S
-R

V
M

-
P

ressu
re

2
,5

5
2

7
,1

4
4

9
,9

6
2

3
2
,2

7
1

2
,6

4
2

3
,2

2
2

7
,6

4
2

8
,9

2
9

2
,8

4
4

6
,0

0
9

3
,0

3
8

5
,6

2
0

5
X

J
ik

esR
V

M
2
,1

4
4

6
,3

4
6

9
,4

7
2

3
1
,2

6
7

2
,2

3
2

2
,9

1
5

6
,9

1
6

8
,0

6
8

2
,6

6
0

5
,1

7
5

2
,6

3
4

5
,0

3
8

S
-R

V
M

-
S

ize
2
,5

5
5

7
,2

2
0

9
,9

2
9

3
2
,2

8
4

2
,6

2
7

3
,2

1
2

7
,6

0
3

8
,8

6
7

3
,0

0
2

5
,8

5
0

2
,9

6
5

5
,6

1
6

S
-R

V
M

-
P

ressu
re

2
,5

4
8

7
,2

4
0

9
,9

6
8

3
2
,2

7
2

2
,6

3
0

3
,2

4
0

7
,6

4
6

8
,8

5
3

2
,9

4
4

5
,8

1
6

2
,9

4
9

5
,6

0
9

6
X

J
ik

esR
V

M
2
,1

3
5

6
,3

3
7

9
,4

1
9

3
0
,8

9
4

2
,2

2
6

2
,9

0
3

6
,8

9
4

8
,0

6
0

2
,5

6
2

5
,1

0
5

2
,6

6
1

5
,0

0
3

S
-R

V
M

-
S

ize
2
,5

4
2

7
,3

1
1

9
,9

4
1

3
2
,1

3
3

2
,6

3
4

3
,2

3
5

7
,7

0
0

8
,8

7
9

3
,0

3
0

5
,8

8
4

2
,9

4
8

5
,6

3
5

S
-R

V
M

-
P

ressu
re

2
,5

3
9

7
,2

2
8

9
,9

8
9

3
2
,2

2
9

2
,6

3
9

3
,2

4
4

7
,6

7
0

8
,9

0
0

2
,8

6
7

5
,9

0
7

2
,9

8
7

5
,6

1
4

7
X

J
ik

esR
V

M
2
,1

4
4

6
,3

5
4

9
,4

1
5

3
0
,8

0
2

2
,2

1
4

2
,8

9
9

6
,9

2
4

8
,0

6
4

2
,6

1
8

5
,1

5
9

2
,6

8
1

5
,0

2
2

S
-R

V
M

-
S

ize
2
,5

6
1

7
,2

4
2

9
,9

4
6

3
2
,0

3
1

2
,6

3
4

3
,2

1
1

7
,6

5
0

8
,8

7
0

2
,8

6
9

5
,8

7
9

2
,9

6
8

5
,6

0
0

S
-R

V
M

-
P

ressu
re

2
,5

3
7

7
,2

4
3

9
,9

3
7

3
2
,3

9
7

2
,6

3
6

3
,2

0
6

7
,6

7
5

8
,9

1
8

2
,9

7
5

5
,9

3
1

2
,9

7
7

5
,6

2
9

8
X

J
ik

esR
V

M
2
,1

4
2

6
,3

4
8

9
,4

4
5

3
0
,7

9
9

2
,2

3
2

2
,9

2
6

6
,9

2
4

8
,0

2
6

2
,6

4
3

5
,1

4
0

2
,8

1
5

5
,0

5
4

S
-R

V
M

-
S

ize
2
,5

5
7

7
,2

4
0

1
0
,0

1
8

3
2
,0

3
3

2
,6

3
3

3
,2

4
9

7
,6

9
5

8
,8

6
1

3
,0

2
1

5
,8

5
3

2
,9

8
0

5
,6

3
7

S
-R

V
M

-
P

ressu
re

2
,5

5
5

7
,2

6
8

9
,9

0
3

3
2
,2

1
8

2
,6

5
0

3
,2

2
8

7
,6

4
9

8
,8

6
4

2
,8

7
5

5
,8

3
6

3
,0

0
5

5
,6

1
0

9
X

J
ik

esR
V

M
2
,1

3
5

6
,3

4
5

9
,4

0
9

3
0
,7

6
3

2
,2

2
5

2
,9

2
8

6
,9

2
3

8
,0

2
1

2
,5

6
2

5
,1

2
8

2
,5

9
8

4
,9

9
6

S
-R

V
M

-
S

ize
2
,5

4
5

7
,2

6
5

1
0
,0

1
0

3
2
,2

8
0

2
,6

2
6

3
,2

8
3

7
,7

3
2

8
,8

8
5

3
,0

2
5

5
,9

1
1

2
,9

2
4

5
,6

4
4

S
-R

V
M

-
P

ressu
re

2
,5

5
5

7
,2

0
0

9
,9

7
5

3
2
,1

9
5

2
,6

4
0

3
,2

5
4

7
,6

5
2

8
,8

4
3

2
,8

7
9

5
,9

1
7

2
,9

1
6

5
,6

0
2

1
0
X

J
ik

esR
V

M
2
,1

3
0

6
,3

4
5

9
,4

4
8

3
0
,7

8
9

2
,2

3
1

2
,9

4
6

6
,9

4
7

8
,0

4
4

2
,6

1
2

5
,1

1
6

2
,5

8
8

5
,0

1
0

S
-R

V
M

-
S

ize
2
,5

6
0

7
,2

8
8

9
,9

3
0

3
2
,1

8
6

2
,6

3
1

3
,2

4
8

7
,7

1
6

8
,8

6
4

2
,8

6
2

5
,8

9
9

2
,8

9
8

5
,6

0
2

S
-R

V
M

-
P

ressu
re

2
,5

5
5

7
,2

4
0

9
,8

8
5

3
2
,1

3
9

2
,6

2
7

3
,2

2
0

7
,6

5
7

8
,8

8
9

2
,8

9
8

5
,8

6
8

2
,9

2
2

5
,5

9
5

T
ab

le
C

.1:
M

ean
ex

ecu
tion

tim
es

of
th

e
D

aC
ap

o
b

en
ch

m
ark

s
at

th
e

1
st

iteration
(m

s)

118

H
e
a
p

S
iz

e
C

o
n

fi
g
u

r
a
ti

o
n

a
n
tl

r
b

lo
a
t

c
h

a
r
t

e
c
li

p
se

fo
p

h
sq

ld
b

jy
th

o
n

lu
in

d
e
x

lu
se

a
r
c
h

p
m

d
x
a
la

n
m

e
a
n

2
X

J
ik

es
R

V
M

1
,8

8
1

5
,5

6
9

6
,9

7
1

2
6
,3

6
7

1
,7

2
9

2
,0

0
9

5
,0

6
2

7
,5

5
7

2
,1

3
4

4
,7

2
1

2
,5

4
1

4
,1

6
5

S
-R

V
M

-
S

iz
e

2
,2

0
4

6
,0

0
2

7
,1

6
3

2
6
,8

1
7

1
,8

6
6

2
,0

9
4

5
,2

1
8

7
,9

9
8

2
,5

4
3

5
,2

8
4

2
,9

8
2

4
,5

3
3

S
-R

V
M

-
P

re
ss

u
re

2
,0

6
5

5
,8

1
9

7
,0

3
9

2
6
,8

2
8

1
,8

2
4

2
,0

5
7

5
,1

1
6

7
,7

8
3

2
,3

7
8

5
,0

8
0

2
,8

0
2

4
,3

8
3

3
X

J
ik

es
R

V
M

1
,7

2
6

5
,3

7
6

6
,7

1
9

2
5
,6

4
5

1
,7

2
7

2
,0

4
2

4
,8

3
8

7
,3

5
0

1
,6

9
2

4
,2

2
7

2
,1

3
0

3
,8

8
7

S
-R

V
M

-
S

iz
e

1
,9

2
9

5
,7

1
6

6
,7

1
2

2
6
,1

9
1

1
,8

2
4

2
,0

9
1

4
,9

0
4

7
,5

9
0

1
,9

0
3

4
,6

4
4

2
,3

5
4

4
,1

1
5

S
-R

V
M

-
P

re
ss

u
re

1
,9

2
8

5
,7

2
1

6
,7

3
0

2
6
,0

9
7

1
,8

3
3

2
,0

7
6

4
,8

9
1

7
,4

8
4

1
,9

1
6

4
,5

0
7

2
,2

7
4

4
,0

8
6

4
X

J
ik

es
R

V
M

1
,6

9
7

5
,3

3
8

6
,6

0
8

2
5
,3

9
1

1
,7

2
1

2
,0

3
6

4
,8

7
7

7
,1

4
8

1
,7

1
3

4
,0

9
9

2
,0

4
9

3
,8

3
9

S
-R

V
M

-
S

iz
e

1
,8

6
6

5
,6

2
3

6
,6

2
9

2
5
,8

9
3

1
,8

4
3

2
,0

3
9

4
,9

3
4

7
,4

6
6

1
,9

2
2

4
,2

8
0

2
,1

9
2

4
,0

2
5

S
-R

V
M

-
P

re
ss

u
re

1
,8

7
0

5
,6

0
8

6
,6

7
4

2
6
,0

0
3

1
,8

4
8

2
,1

2
3

4
,8

8
5

7
,3

9
3

1
,8

8
9

4
,3

1
7

2
,1

8
0

4
,0

3
3

5
X

J
ik

es
R

V
M

1
,6

9
6

5
,3

6
4

6
,5

6
1

2
5
,5

1
3

1
,7

2
6

1
,9

9
1

4
,8

6
3

7
,1

6
8

1
,7

4
6

4
,1

4
6

1
,9

7
7

3
,8

3
1

S
-R

V
M

-
S

iz
e

1
,8

5
6

5
,6

6
9

6
,5

7
6

2
6
,0

0
8

1
,8

4
4

2
,1

2
8

4
,9

2
1

7
,3

6
8

1
,8

9
8

4
,3

0
8

2
,0

9
1

4
,0

1
6

S
-R

V
M

-
P

re
ss

u
re

1
,8

6
9

5
,7

0
5

6
,5

8
8

2
5
,9

4
4

1
,8

3
7

2
,0

4
7

4
,8

7
5

7
,3

6
8

1
,8

7
2

4
,3

5
5

2
,0

9
3

4
,0

0
1

6
X

J
ik

es
R

V
M

1
,6

9
9

5
,4

0
2

6
,5

5
6

2
5
,2

7
7

1
,7

2
1

2
,0

7
3

4
,8

7
3

7
,1

5
6

1
,7

2
2

4
,1

1
6

1
,9

8
2

3
,8

3
8

S
-R

V
M

-
S

iz
e

1
,8

4
6

5
,6

7
6

6
,5

9
0

2
5
,7

5
5

1
,8

4
7

2
,0

9
9

4
,9

1
6

7
,4

1
6

1
,8

8
6

4
,3

8
0

2
,0

9
2

4
,0

1
3

S
-R

V
M

-
P

re
ss

u
re

1
,8

5
4

5
,6

8
2

6
,5

4
7

2
5
,8

5
5

1
,8

3
6

2
,0

8
0

4
,9

0
2

7
,3

7
1

1
,8

8
9

4
,3

6
8

2
,1

0
3

4
,0

0
7

7
X

J
ik

es
R

V
M

1
,7

1
0

5
,3

8
2

6
,5

9
4

2
5
,3

9
7

1
,7

1
2

2
,0

4
3

4
,8

3
2

7
,1

7
2

1
,7

3
8

4
,1

2
3

1
,9

5
8

3
,8

3
2

S
-R

V
M

-
S

iz
e

1
,8

8
6

5
,7

0
1

6
,5

9
9

2
5
,7

6
6

1
,8

4
5

2
,0

8
2

4
,9

3
6

7
,3

9
1

1
,8

6
2

4
,2

7
7

2
,0

8
2

4
,0

0
5

S
-R

V
M

-
P

re
ss

u
re

1
,8

5
8

5
,7

3
6

6
,5

7
3

2
5
,8

0
2

1
,8

3
4

2
,0

4
5

4
,8

8
9

7
,3

6
9

1
,8

8
5

4
,2

8
2

2
,0

9
6

3
,9

9
5

8
X

J
ik

es
R

V
M

1
,7

0
9

5
,4

2
9

6
,5

8
9

2
5
,5

8
4

1
,7

1
7

2
,0

6
2

4
,8

7
3

7
,1

6
2

1
,7

3
7

4
,1

2
3

1
,8

9
8

3
,8

3
3

S
-R

V
M

-
S

iz
e

1
,8

7
3

5
,7

2
8

6
,5

5
5

2
5
,9

8
9

1
,8

4
1

2
,0

9
1

4
,9

5
9

7
,4

0
1

1
,8

6
3

4
,2

6
5

2
,1

0
1

4
,0

1
0

S
-R

V
M

-
P

re
ss

u
re

1
,8

6
9

5
,7

2
5

6
,5

9
3

2
5
,9

4
6

1
,8

5
9

2
,0

5
3

4
,9

3
8

7
,3

3
1

1
,9

5
9

4
,3

2
4

2
,0

7
7

4
,0

2
2

9
X

J
ik

es
R

V
M

1
,6

9
8

5
,3

4
8

6
,5

6
6

2
5
,2

8
9

1
,7

1
3

2
,0

0
3

4
,8

7
3

7
,1

1
8

1
,7

0
7

4
,1

3
3

1
,8

9
9

3
,8

0
3

S
-R

V
M

-
S

iz
e

1
,8

6
1

5
,7

0
2

6
,5

8
0

2
5
,7

1
7

1
,8

4
2

2
,0

8
5

4
,9

1
0

7
,3

1
9

1
,8

8
1

4
,3

2
1

2
,0

1
9

3
,9

8
9

S
-R

V
M

-
P

re
ss

u
re

1
,8

5
6

5
,6

8
2

6
,5

9
5

2
5
,7

4
3

1
,8

5
0

2
,0

9
6

4
,8

5
9

7
,3

0
7

1
,8

5
9

4
,3

2
4

2
,0

2
9

3
,9

8
5

1
0
X

J
ik

es
R

V
M

1
,6

9
4

5
,3

8
6

6
,5

7
0

2
5
,2

8
7

1
,7

2
5

2
,0

5
2

4
,8

7
1

7
,1

5
0

1
,7

1
9

4
,1

1
5

1
,8

9
1

3
,8

1
6

S
-R

V
M

-
S

iz
e

1
,8

6
1

5
,7

1
6

6
,5

7
8

2
5
,7

7
1

1
,8

4
3

2
,0

7
5

4
,9

0
2

7
,3

2
4

1
,8

5
1

4
,3

3
7

2
,0

4
1

3
,9

8
8

S
-R

V
M

-
P

re
ss

u
re

1
,8

2
9

5
,6

4
9

6
,5

3
6

2
5
,7

2
9

1
,8

3
7

2
,0

6
8

4
,8

8
6

7
,3

4
7

1
,8

9
2

4
,3

7
6

2
,0

3
4

3
,9

8
2

T
ab

le
C

.2
:

M
ea

n
ex

ec
u
ti

on
ti

m
es

of
th

e
D

aC
ap

o
b

en
ch

m
ar

k
s

at
th

e
2n

d
it

er
at

io
n

(m
s)

119

H
e
a
p

S
iz

e
C

o
n

fi
g
u

r
a
tio

n
a
n
tlr

b
lo

a
t

c
h

a
r
t

e
c
lip

se
fo

p
h

sq
ld

b
jy

th
o
n

lu
in

d
e
x

lu
se

a
r
c
h

p
m

d
x
a
la

n
m

e
a
n

2
X

J
ik

esR
V

M
1
,8

2
7

5
,4

1
6

6
,8

8
8

2
5
,6

8
8

1
,6

8
4

1
,9

4
1

4
,6

7
6

7
,4

8
4

1
,8

6
7

4
,5

8
8

2
,4

3
2

3
,9

9
8

S
-R

V
M

-
S

ize
2
,1

1
2

5
,8

9
0

6
,9

0
1

2
6
,2

0
7

1
,7

7
2

1
,9

9
8

4
,9

0
2

7
,9

0
1

2
,4

4
3

4
,9

2
1

2
,7

3
7

4
,3

3
5

S
-R

V
M

-
P

ressu
re

2
,0

0
1

5
,8

0
9

6
,7

7
9

2
6
,1

4
6

1
,7

2
9

2
,0

2
6

4
,7

5
8

7
,6

7
4

2
,2

6
0

4
,7

1
5

2
,5

8
6

4
,2

0
5

3
X

J
ik

esR
V

M
1
,6

9
3

5
,3

2
4

6
,6

3
8

2
5
,0

8
3

1
,6

7
4

1
,9

8
6

4
,5

1
7

7
,2

8
9

1
,6

1
5

4
,0

6
1

2
,0

1
3

3
,7

6
7

S
-R

V
M

-
S

ize
1
,8

4
4

5
,5

5
1

6
,5

7
0

2
5
,5

1
9

1
,7

4
3

2
,0

5
0

4
,5

2
7

7
,4

9
1

1
,7

6
7

4
,3

3
5

2
,1

4
2

3
,9

2
6

S
-R

V
M

-
P

ressu
re

1
,8

2
2

5
,5

5
7

6
,5

4
4

2
5
,3

7
8

1
,7

4
2

1
,9

7
7

4
,5

3
4

7
,4

0
8

1
,7

9
7

4
,2

0
0

2
,1

1
8

3
,8

9
3

4
X

J
ik

esR
V

M
1
,6

4
1

5
,2

1
7

6
,5

5
0

2
4
,8

3
6

1
,6

7
1

1
,9

6
9

4
,4

9
7

7
,1

0
8

1
,5

9
6

3
,9

9
7

1
,9

6
1

3
,7

1
0

S
-R

V
M

-
S

ize
1
,7

9
2

5
,5

2
3

6
,4

9
6

2
5
,2

7
8

1
,7

4
9

1
,9

6
4

4
,5

8
1

7
,2

9
5

1
,8

2
7

4
,0

0
4

2
,0

0
4

3
,8

4
8

S
-R

V
M

-
P

ressu
re

1
,7

6
5

5
,5

3
3

6
,4

3
2

2
5
,3

9
4

1
,7

5
4

2
,0

1
0

4
,5

3
6

7
,2

6
5

1
,7

6
9

4
,0

4
8

2
,0

4
1

3
,8

4
4

5
X

J
ik

esR
V

M
1
,6

5
0

5
,3

0
9

6
,5

3
1

2
4
,9

8
1

1
,6

8
5

1
,9

7
7

4
,5

2
5

7
,1

1
9

1
,5

9
7

4
,0

5
4

1
,8

9
2

3
,7

1
8

S
-R

V
M

-
S

ize
1
,7

7
2

5
,5

6
4

6
,4

1
1

2
5
,3

5
3

1
,7

5
2

2
,0

1
7

4
,5

6
2

7
,2

2
5

1
,7

8
0

4
,0

7
6

1
,9

3
2

3
,8

3
2

S
-R

V
M

-
P

ressu
re

1
,7

9
6

5
,5

9
7

6
,4

0
9

2
5
,3

2
8

1
,7

4
5

1
,9

7
3

4
,5

4
5

7
,2

4
7

1
,7

4
1

4
,0

3
1

1
,9

3
9

3
,8

1
9

6
X

J
ik

esR
V

M
1
,6

2
9

5
,2

7
0

6
,5

0
3

2
4
,6

6
4

1
,8

8
7

1
,9

8
5

4
,5

7
5

7
,1

1
7

1
,6

4
7

3
,9

9
8

1
,8

9
6

3
,7

5
6

S
-R

V
M

-
S

ize
1
,7

5
9

5
,5

5
3

6
,4

4
0

2
5
,1

4
1

1
,7

4
5

2
,0

1
8

4
,5

5
7

7
,2

6
3

1
,7

5
9

4
,1

2
9

1
,9

4
7

3
,8

3
1

S
-R

V
M

-
P

ressu
re

1
,7

8
0

5
,5

6
5

6
,3

8
0

2
5
,1

9
5

1
,7

4
1

2
,0

0
7

4
,5

4
0

7
,2

7
2

1
,7

7
7

4
,0

6
2

1
,9

2
6

3
,8

2
4

7
X

J
ik

esR
V

M
1
,6

5
3

5
,2

6
1

6
,4

8
3

2
4
,7

6
0

1
,6

5
6

1
,9

9
4

4
,4

9
1

7
,1

2
2

1
,6

5
6

4
,0

4
0

1
,8

6
8

3
,7

1
2

S
-R

V
M

-
S

ize
1
,7

9
1

5
,5

7
2

6
,4

3
6

2
5
,1

3
6

1
,7

4
9

2
,0

2
3

4
,5

6
0

7
,2

6
0

1
,7

7
2

4
,0

5
1

1
,9

5
5

3
,8

3
7

S
-R

V
M

-
P

ressu
re

1
,7

6
8

5
,5

3
5

6
,3

9
6

2
5
,2

5
7

1
,7

4
0

2
,0

0
3

4
,5

4
0

7
,2

1
7

1
,7

4
6

4
,0

4
7

1
,9

3
3

3
,8

1
1

8
X

J
ik

esR
V

M
1
,6

5
7

5
,3

6
6

6
,4

8
0

2
4
,8

9
2

1
,6

7
9

1
,9

8
9

4
,5

1
4

7
,1

2
4

1
,6

2
2

4
,0

3
4

1
,8

1
1

3
,7

0
9

S
-R

V
M

-
S

ize
1
,7

8
6

5
,6

1
6

6
,3

8
1

2
5
,2

4
2

1
,7

4
8

1
,9

9
5

4
,5

7
1

7
,2

4
4

1
,7

7
9

4
,0

6
8

1
,8

5
8

3
,8

1
7

S
-R

V
M

-
P

ressu
re

1
,7

8
2

5
,5

7
3

6
,4

1
9

2
5
,2

4
0

1
,7

5
4

1
,9

3
6

4
,5

4
9

7
,2

2
9

1
,8

1
0

4
,0

2
7

1
,8

8
5

3
,8

1
2

9
X

J
ik

esR
V

M
1
,6

5
0

5
,2

6
2

6
,4

6
9

2
4
,7

8
7

1
,6

5
6

1
,9

6
1

4
,5

5
1

7
,0

8
5

1
,6

6
9

4
,0

1
5

1
,8

1
7

3
,6

9
9

S
-R

V
M

-
S

ize
1
,8

0
1

5
,5

8
8

6
,3

8
3

2
5
,0

9
5

1
,7

4
7

1
,9

9
9

4
,5

7
3

7
,2

1
3

1
,7

1
4

4
,1

2
4

1
,8

6
4

3
,8

0
9

S
-R

V
M

-
P

ressu
re

1
,7

6
4

5
,5

9
2

6
,4

2
3

2
5
,1

2
7

1
,7

5
5

2
,0

3
1

4
,5

3
0

7
,1

9
4

1
,8

0
4

4
,0

3
6

1
,8

8
8

3
,8

2
2

1
0
X

J
ik

esR
V

M
1
,6

5
6

5
,2

8
3

6
,4

8
7

2
4
,7

2
3

1
,6

7
6

1
,9

7
4

4
,5

3
0

7
,1

2
7

1
,6

1
1

4
,0

0
3

1
,8

2
7

3
,6

9
7

S
-R

V
M

-
S

ize
1
,7

8
7

5
,5

4
0

6
,3

9
7

2
5
,1

5
2

1
,7

5
5

1
,9

6
8

4
,5

3
4

7
,2

0
8

1
,9

2
5

4
,0

6
2

1
,8

6
3

3
,8

3
2

S
-R

V
M

-
P

ressu
re

1
,7

5
7

5
,5

5
3

6
,3

7
6

2
5
,0

9
0

1
,7

4
5

1
,9

7
9

4
,5

2
6

7
,2

0
8

1
,7

7
9

4
,0

4
5

1
,8

8
8

3
,8

0
1

T
ab

le
C

.3:
M

ean
ex

ecu
tion

tim
es

of
th

e
D

aC
ap

o
b

en
ch

m
ark

s
at

th
e

3
rd

iteration
(m

s)

120

H
e
a
p

S
iz

e
C

o
n

fi
g
u

r
a
ti

o
n

a
n
tl

r
b

lo
a
t

c
h

a
r
t

e
c
li

p
se

fo
p

h
sq

ld
b

jy
th

o
n

lu
in

d
e
x

lu
se

a
r
c
h

p
m

d
x
a
la

n
m

e
a
n

2
X

J
ik

es
R

V
M

1
,8

5
2

5
,4

8
1

6
,8

1
3

2
5
,4

4
5

1
,6

6
1

1
,9

5
6

4
,5

0
9

7
,4

5
4

1
,6

0
8

4
,5

2
0

2
,3

1
2

3
,9

0
6

S
-R

V
M

-
S

iz
e

2
,0

6
9

5
,8

9
4

6
,7

8
9

2
5
,7

8
6

1
,7

1
7

1
,9

4
7

4
,6

4
6

7
,7

8
9

1
,9

2
4

4
,8

9
2

2
,6

7
1

4
,1

6
2

S
-R

V
M

-
P

re
ss

u
re

1
,9

1
4

5
,8

5
6

6
,6

9
6

2
5
,8

1
1

1
,6

9
7

1
,9

3
4

4
,5

4
7

7
,5

6
5

1
,7

9
0

4
,6

6
1

2
,4

8
7

4
,0

2
9

3
X

J
ik

es
R

V
M

1
,6

6
0

5
,3

1
5

6
,6

2
6

2
4
,8

3
1

1
,6

5
1

1
,9

7
0

4
,3

4
6

7
,2

2
7

1
,5

0
0

4
,0

1
1

1
,9

4
3

3
,6

9
1

S
-R

V
M

-
S

iz
e

1
,7

8
2

5
,6

3
9

6
,4

4
0

2
5
,2

2
5

1
,6

9
7

1
,9

9
5

4
,3

6
0

7
,3

4
8

1
,6

1
9

4
,2

9
2

2
,0

1
3

3
,8

1
3

S
-R

V
M

-
P

re
ss

u
re

1
,7

4
9

5
,5

9
8

6
,4

6
0

2
5
,0

6
4

1
,6

9
2

1
,9

5
2

4
,3

3
8

7
,2

8
5

1
,6

2
3

4
,1

0
4

2
,0

3
9

3
,7

7
9

4
X

J
ik

es
R

V
M

1
,6

1
4

5
,2

4
0

6
,5

1
0

2
4
,5

2
4

1
,6

5
1

1
,9

7
7

4
,3

3
3

7
,0

8
6

1
,5

1
6

3
,9

6
6

1
,8

6
8

3
,6

4
7

S
-R

V
M

-
S

iz
e

1
,7

2
7

5
,5

4
0

6
,3

6
7

2
4
,9

4
0

1
,7

0
0

1
,9

1
6

4
,3

6
8

7
,2

3
0

1
,6

2
4

3
,9

0
3

1
,9

2
5

3
,7

2
4

S
-R

V
M

-
P

re
ss

u
re

1
,6

9
9

5
,4

8
9

6
,3

6
5

2
5
,0

8
5

1
,6

9
1

1
,9

3
5

4
,3

7
4

7
,1

8
5

1
,5

9
6

3
,9

5
3

1
,9

2
1

3
,7

1
4

5
X

J
ik

es
R

V
M

1
,6

3
0

5
,2

8
1

6
,5

3
5

2
4
,6

5
4

1
,6

5
5

1
,9

4
9

4
,3

6
5

7
,1

0
3

1
,5

0
0

4
,0

0
3

1
,8

2
2

3
,6

4
7

S
-R

V
M

-
S

iz
e

1
,7

0
4

5
,5

6
7

6
,3

1
8

2
5
,0

6
8

1
,6

8
9

1
,9

5
7

4
,3

9
0

7
,1

2
0

1
,6

1
6

3
,9

9
5

1
,8

6
6

3
,7

1
7

S
-R

V
M

-
P

re
ss

u
re

1
,7

2
2

5
,5

7
9

6
,3

2
6

2
5
,0

5
3

1
,6

9
2

1
,9

2
5

4
,3

8
3

7
,1

4
6

1
,6

2
6

4
,0

0
3

1
,8

6
2

3
,7

1
9

6
X

J
ik

es
R

V
M

1
,6

2
4

5
,2

5
0

6
,4

6
6

2
4
,4

2
5

1
,6

4
4

1
,9

5
1

4
,3

7
9

7
,0

8
3

1
,5

1
8

3
,9

5
5

1
,8

3
1

3
,6

3
7

S
-R

V
M

-
S

iz
e

1
,7

1
2

5
,5

2
5

6
,3

2
7

2
4
,8

9
1

1
,7

0
0

1
,9

5
5

4
,3

8
5

7
,1

6
4

1
,6

1
0

4
,0

0
6

1
,8

6
6

3
,7

1
7

S
-R

V
M

-
P

re
ss

u
re

1
,6

9
9

5
,5

2
6

6
,2

8
8

2
4
,9

2
0

1
,6

8
4

1
,9

5
8

4
,3

5
5

7
,1

7
1

1
,6

3
0

3
,9

7
9

1
,8

5
9

3
,7

0
9

7
X

J
ik

es
R

V
M

1
,6

2
3

5
,2

9
1

6
,4

5
8

2
4
,4

8
7

1
,6

3
4

1
,9

4
3

4
,3

3
8

7
,0

9
6

1
,5

1
1

3
,9

8
2

1
,8

1
3

3
,6

3
1

S
-R

V
M

-
S

iz
e

1
,7

2
4

5
,5

7
8

6
,3

4
8

2
4
,8

2
7

1
,6

7
3

1
,9

5
8

4
,3

8
3

7
,1

5
4

1
,6

1
8

3
,9

6
5

1
,8

8
0

3
,7

1
8

S
-R

V
M

-
P

re
ss

u
re

1
,7

0
3

5
,5

6
9

6
,3

0
1

2
4
,9

4
2

1
,6

8
9

1
,9

1
4

4
,3

5
2

7
,1

5
2

1
,6

1
8

3
,9

6
5

1
,8

6
9

3
,7

0
4

8
X

J
ik

es
R

V
M

1
,6

2
9

5
,3

1
4

6
,4

6
4

2
4
,6

0
4

1
,6

4
9

1
,9

5
7

4
,3

3
9

7
,0

9
5

1
,5

2
5

3
,9

7
5

1
,7

4
4

3
,6

3
1

S
-R

V
M

-
S

iz
e

1
,7

1
8

5
,6

1
4

6
,3

0
1

2
4
,9

4
8

1
,6

9
7

1
,9

4
5

4
,3

8
5

7
,1

8
6

1
,6

4
7

3
,9

7
3

1
,7

8
5

3
,7

1
2

S
-R

V
M

-
P

re
ss

u
re

1
,7

1
0

5
,5

2
4

6
,2

6
9

2
4
,9

3
4

1
,6

9
4

1
,9

2
7

4
,3

8
3

7
,1

5
6

1
,6

1
7

3
,9

5
8

1
,7

7
6

3
,6

8
8

9
X

J
ik

es
R

V
M

1
,6

3
2

5
,2

5
3

6
,4

3
6

2
4
,4

6
7

1
,6

3
8

1
,9

3
1

4
,3

5
7

7
,0

5
0

1
,5

2
1

3
,9

6
8

1
,7

4
1

3
,6

1
5

S
-R

V
M

-
S

iz
e

1
,7

2
0

5
,5

2
7

6
,2

8
9

2
4
,8

4
3

1
,6

8
8

1
,9

2
9

4
,3

6
2

7
,1

2
4

1
,5

8
1

4
,0

1
9

1
,7

8
2

3
,6

8
5

S
-R

V
M

-
P

re
ss

u
re

1
,7

0
7

5
,5

9
5

6
,3

0
3

2
4
,8

1
4

1
,6

8
9

1
,9

4
7

4
,3

6
5

7
,1

0
7

1
,6

0
8

3
,9

4
2

1
,8

0
3

3
,6

9
3

1
0
X

J
ik

es
R

V
M

1
,6

2
9

5
,2

5
1

6
,4

6
8

2
4
,4

2
3

1
,6

3
9

1
,9

6
0

4
,3

5
7

7
,0

8
5

1
,5

0
7

3
,9

5
4

1
,7

3
9

3
,6

1
8

S
-R

V
M

-
S

iz
e

1
,7

1
6

5
,5

4
6

6
,3

0
7

2
4
,8

8
2

1
,6

8
6

1
,9

4
7

4
,3

8
2

7
,1

0
3

1
,6

2
9

3
,9

6
3

1
,7

8
6

3
,6

9
6

S
-R

V
M

-
P

re
ss

u
re

1
,6

9
3

5
,5

0
1

6
,2

9
3

2
4
,8

1
6

1
,6

9
4

1
,9

7
2

4
,3

5
3

7
,1

3
6

1
,6

1
3

3
,9

7
3

1
,7

8
7

3
,6

9
0

T
ab

le
C

.4
:

M
ea

n
ex

ec
u
ti

on
ti

m
es

of
th

e
D

aC
ap

o
b

en
ch

m
ar

k
s

at
th

e
4t

h
it

er
at

io
n

(m
s)

121

H
e
a
p

S
iz

e
C

o
n

fi
g
u

r
a
tio

n
a
n
tlr

b
lo

a
t

c
h

a
r
t

e
c
lip

se
fo

p
h

sq
ld

b
jy

th
o
n

lu
in

d
e
x

lu
se

a
r
c
h

p
m

d
x
a
la

n
m

e
a
n

2
X

J
ik

esR
V

M
1
,7

6
1

5
,6

2
7

6
,7

9
2

2
5
,3

0
2

1
,6

5
5

1
,9

4
0

4
,3

9
6

7
,4

9
5

1
,5

5
2

4
,5

6
8

2
,3

0
0

3
,8

7
3

S
-R

V
M

-
S

ize
2
,0

2
1

6
,1

1
6

6
,7

6
5

2
5
,6

8
1

1
,6

9
0

1
,8

9
5

4
,5

1
8

7
,7

8
2

1
,8

9
9

4
,8

2
0

2
,6

5
0

4
,1

2
4

S
-R

V
M

-
P

ressu
re

1
,9

0
2

6
,0

7
5

6
,6

5
6

2
5
,6

4
1

1
,6

6
7

1
,9

3
2

4
,4

4
3

7
,5

8
7

1
,6

1
3

4
,6

3
3

2
,4

2
8

3
,9

7
2

3
X

J
ik

esR
V

M
1
,6

2
9

5
,3

3
8

6
,6

0
6

2
4
,5

7
4

1
,6

1
9

1
,9

7
3

4
,2

5
4

7
,2

3
0

1
,4

8
3

4
,0

4
1

1
,9

0
0

3
,6

6
0

S
-R

V
M

-
S

ize
1
,7

4
5

5
,6

9
5

6
,4

3
2

2
5
,2

4
6

1
,6

5
1

1
,9

5
9

4
,2

8
3

7
,3

4
8

1
,4

8
9

4
,0

8
4

1
,9

8
0

3
,7

3
6

S
-R

V
M

-
P

ressu
re

1
,7

2
5

5
,6

1
2

6
,4

3
2

2
4
,9

3
6

1
,6

5
4

1
,8

7
4

4
,2

4
4

7
,2

6
1

1
,4

8
5

4
,0

7
8

1
,9

9
2

3
,7

0
2

4
X

J
ik

esR
V

M
1
,6

1
9

5
,2

3
6

6
,4

9
7

2
4
,3

7
9

1
,6

2
1

1
,9

7
1

4
,2

3
1

7
,0

6
3

1
,4

9
0

3
,9

6
3

1
,8

2
1

3
,6

1
5

S
-R

V
M

-
S

ize
1
,6

9
2

5
,5

9
2

6
,3

3
0

2
4
,8

0
9

1
,6

5
7

1
,9

4
3

4
,2

6
7

7
,2

0
8

1
,4

8
9

3
,9

0
6

1
,8

7
2

3
,6

6
5

S
-R

V
M

-
P

ressu
re

1
,6

6
4

5
,6

0
5

6
,3

3
7

2
4
,9

1
1

1
,6

5
7

1
,9

2
4

4
,2

7
0

7
,1

4
3

1
,5

0
7

3
,9

2
5

1
,8

8
8

3
,6

6
4

5
X

J
ik

esR
V

M
1
,6

0
1

5
,2

5
8

6
,5

0
7

2
4
,4

6
7

1
,6

2
8

1
,9

4
6

4
,2

4
0

7
,0

9
6

1
,4

7
9

4
,0

0
3

1
,7

9
1

3
,6

0
9

S
-R

V
M

-
S

ize
1
,6

7
6

5
,5

5
4

6
,2

9
1

2
4
,9

5
1

1
,6

5
8

1
,9

3
5

4
,2

7
5

7
,1

1
3

1
,4

9
1

3
,9

8
1

1
,8

1
6

3
,6

5
1

S
-R

V
M

-
P

ressu
re

1
,6

8
1

5
,6

0
4

6
,2

7
4

2
4
,9

3
3

1
,6

5
4

1
,8

8
8

4
,2

6
3

7
,1

2
5

1
,5

0
3

3
,9

6
6

1
,8

2
4

3
,6

4
7

6
X

J
ik

esR
V

M
1
,5

9
8

5
,2

7
8

6
,4

6
2

2
4
,2

6
1

1
,6

1
5

1
,9

5
2

4
,2

7
3

7
,0

9
5

1
,5

0
2

3
,9

4
1

1
,7

9
0

3
,6

0
6

S
-R

V
M

-
S

ize
1
,6

7
6

5
,5

3
5

6
,2

9
2

2
4
,7

3
5

1
,6

6
7

1
,9

1
8

4
,2

8
3

7
,1

5
4

1
,4

9
6

3
,9

9
3

1
,8

1
2

3
,6

5
0

S
-R

V
M

-
P

ressu
re

1
,6

9
0

5
,5

9
6

6
,2

4
9

2
4
,7

8
7

1
,6

5
6

1
,9

2
5

4
,2

5
0

7
,1

4
4

1
,5

0
2

3
,9

4
6

1
,8

2
3

3
,6

5
0

7
X

J
ik

esR
V

M
1
,6

0
2

5
,3

1
6

6
,4

3
5

2
4
,3

2
3

1
,6

1
5

1
,9

6
4

4
,2

3
4

7
,1

0
7

1
,4

9
2

3
,9

5
0

1
,7

7
1

3
,6

0
3

S
-R

V
M

-
S

ize
1
,6

8
6

5
,5

9
2

6
,3

0
9

2
4
,6

7
3

1
,6

4
2

1
,9

3
5

4
,2

8
1

7
,1

3
4

1
,5

0
5

3
,9

3
7

1
,8

2
3

3
,6

5
1

S
-R

V
M

-
P

ressu
re

1
,6

6
5

5
,6

0
9

6
,2

6
8

2
4
,8

3
8

1
,6

5
6

1
,9

0
7

4
,2

3
3

7
,1

3
9

1
,4

8
8

3
,9

7
4

1
,8

2
1

3
,6

4
2

8
X

J
ik

esR
V

M
1
,5

9
4

5
,3

5
1

6
,4

4
3

2
4
,4

6
7

1
,6

2
2

1
,9

0
2

4
,2

4
3

7
,0

7
9

1
,4

9
9

3
,9

6
2

1
,7

3
2

3
,5

9
1

S
-R

V
M

-
S

ize
1
,6

7
9

5
,6

1
5

6
,2

6
3

2
4
,7

6
5

1
,6

4
9

1
,9

4
3

4
,2

8
4

7
,1

5
8

1
,5

0
4

3
,9

3
6

1
,7

4
1

3
,6

3
9

S
-R

V
M

-
P

ressu
re

1
,6

7
5

5
,5

7
8

6
,2

4
5

2
4
,7

0
5

1
,6

5
8

1
,8

9
9

4
,2

8
3

7
,1

3
9

1
,4

8
9

3
,9

2
8

1
,7

4
5

3
,6

2
4

9
X

J
ik

esR
V

M
1
,6

0
3

5
,2

0
5

6
,4

1
3

2
4
,3

2
0

1
,6

1
9

1
,9

4
8

4
,2

7
5

7
,0

6
9

1
,4

8
1

3
,9

4
2

1
,7

1
7

3
,5

8
1

S
-R

V
M

-
S

ize
1
,6

7
2

5
,5

7
5

6
,2

4
3

2
4
,6

5
2

1
,6

4
6

1
,8

9
1

4
,2

7
0

7
,0

9
1

1
,5

0
7

3
,9

8
3

1
,7

2
0

3
,6

1
9

S
-R

V
M

-
P

ressu
re

1
,6

7
7

5
,6

0
7

6
,2

6
7

2
4
,6

2
4

1
,6

6
0

1
,9

3
1

4
,2

5
0

7
,1

2
0

1
,4

9
4

3
,9

3
5

1
,7

3
6

3
,6

2
9

1
0
X

J
ik

esR
V

M
1
,6

0
9

5
,2

6
0

6
,4

5
2

2
4
,2

8
6

1
,6

2
8

1
,9

6
6

4
,2

6
7

7
,0

9
6

1
,4

7
2

3
,9

3
2

1
,7

3
7

3
,5

9
4

S
-R

V
M

-
S

ize
1
,6

8
2

5
,6

1
3

6
,2

6
7

2
4
,7

2
7

1
,6

5
0

1
,8

8
7

4
,2

8
4

7
,1

1
5

1
,5

0
5

3
,9

8
7

1
,7

2
9

3
,6

3
0

S
-R

V
M

-
P

ressu
re

1
,6

7
2

5
,4

9
1

6
,2

6
1

2
4
,6

4
0

1
,6

6
6

1
,9

2
0

4
,2

5
3

7
,1

2
8

1
,4

9
6

3
,9

5
0

1
,7

4
6

3
,6

2
4

T
ab

le
C

.5:
M

ean
ex

ecu
tion

tim
es

of
th

e
D

aC
ap

o
b

en
ch

m
ark

s
at

th
e

5
th

iteration
(m

s)

122

H
e
a
p

S
iz

e
C

o
n

fi
g
u

r
a
ti

o
n

a
n
tl

r
b

lo
a
t

c
h

a
r
t

e
c
li

p
se

fo
p

h
sq

ld
b

jy
th

o
n

lu
in

d
e
x

lu
se

a
r
c
h

p
m

d
x
a
la

n
m

e
a
n

2
X

J
ik

es
R

V
M

1
,7

9
4

5
,2

9
9

6
,7

7
8

2
5
,0

8
7

1
,6

3
1

1
,9

5
2

4
,3

3
7

7
,4

3
7

1
,5

4
6

4
,5

3
9

2
,3

2
0

3
,8

4
3

S
-R

V
M

-
S

iz
e

2
,0

1
2

5
,6

1
7

6
,7

2
4

2
5
,3

5
6

1
,6

6
3

1
,9

1
8

4
,4

8
6

7
,6

5
0

1
,6

7
2

4
,8

1
6

2
,5

9
7

4
,0

1
8

S
-R

V
M

-
P

re
ss

u
re

1
,9

0
0

5
,5

4
3

6
,6

4
7

2
5
,2

1
0

1
,6

4
0

1
,8

7
4

4
,3

8
3

7
,5

1
8

1
,5

8
4

4
,5

5
9

2
,4

1
4

3
,8

9
3

3
X

J
ik

es
R

V
M

1
,6

4
1

5
,1

5
1

6
,5

9
2

2
4
,4

5
0

1
,6

0
7

1
,9

5
6

4
,1

7
1

7
,2

5
1

1
,4

7
4

4
,1

0
7

1
,8

9
2

3
,6

3
9

S
-R

V
M

-
S

iz
e

1
,7

2
8

5
,4

3
4

6
,4

1
7

2
4
,7

1
1

1
,6

3
4

1
,9

0
9

4
,2

1
8

7
,3

2
8

1
,4

6
2

4
,1

5
1

2
,0

0
1

3
,6

9
3

S
-R

V
M

-
P

re
ss

u
re

1
,6

9
1

5
,5

0
4

6
,4

2
7

2
4
,6

6
3

1
,6

3
2

1
,8

9
0

4
,1

7
4

7
,2

2
6

1
,4

6
7

4
,1

3
5

1
,9

8
8

3
,6

7
6

4
X

J
ik

es
R

V
M

1
,5

9
6

5
,0

8
1

6
,4

7
1

2
4
,2

5
1

1
,6

0
4

1
,9

3
2

4
,1

8
1

7
,0

1
5

1
,4

7
8

3
,9

5
0

1
,8

5
2

3
,5

8
3

S
-R

V
M

-
S

iz
e

1
,6

7
3

5
,4

0
5

6
,3

5
4

2
4
,4

7
1

1
,6

4
2

1
,8

8
3

4
,1

9
4

7
,1

3
8

1
,4

7
7

3
,9

0
5

1
,8

6
5

3
,6

2
0

S
-R

V
M

-
P

re
ss

u
re

1
,6

4
6

5
,4

1
2

6
,3

3
2

2
4
,6

0
6

1
,6

3
6

1
,9

2
7

4
,1

8
6

7
,1

2
3

1
,4

8
7

3
,9

3
0

1
,8

7
5

3
,6

2
7

5
X

J
ik

es
R

V
M

1
,5

9
4

5
,1

1
5

6
,4

9
3

2
4
,3

1
5

1
,6

1
4

1
,9

2
2

4
,1

8
1

7
,0

4
5

1
,4

7
1

3
,9

6
2

1
,7

7
5

3
,5

7
5

S
-R

V
M

-
S

iz
e

1
,6

4
1

5
,4

2
0

6
,2

7
5

2
4
,6

4
3

1
,6

3
4

1
,8

8
1

4
,2

1
5

7
,0

7
8

1
,4

7
2

3
,9

6
6

1
,7

9
5

3
,6

0
2

S
-R

V
M

-
P

re
ss

u
re

1
,6

5
0

5
,5

0
7

6
,2

5
6

2
4
,5

7
6

1
,6

3
5

1
,8

5
8

4
,1

9
2

7
,0

7
3

1
,4

7
0

3
,9

7
1

1
,8

0
0

3
,6

0
1

6
X

J
ik

es
R

V
M

1
,5

9
5

5
,1

3
3

6
,4

5
9

2
4
,2

1
7

1
,5

9
7

1
,9

5
9

4
,2

0
3

7
,0

5
1

1
,4

7
5

3
,9

4
1

1
,7

6
7

3
,5

7
5

S
-R

V
M

-
S

iz
e

1
,6

7
3

5
,3

9
6

6
,2

6
6

2
4
,4

6
1

1
,6

4
7

1
,9

2
0

4
,2

1
4

7
,1

2
1

1
,4

9
2

3
,9

1
9

1
,8

1
5

3
,6

1
9

S
-R

V
M

-
P

re
ss

u
re

1
,6

5
6

5
,4

4
2

6
,2

3
4

2
4
,4

4
8

1
,6

3
2

1
,9

0
7

4
,1

7
9

7
,1

1
3

1
,4

7
4

3
,9

1
3

1
,8

0
0

3
,6

0
1

7
X

J
ik

es
R

V
M

1
,5

9
2

5
,1

0
7

6
,4

2
5

2
4
,2

7
0

1
,5

8
8

1
,9

7
9

4
,1

8
7

7
,0

6
6

1
,4

7
1

3
,9

3
0

1
,7

2
3

3
,5

6
3

S
-R

V
M

-
S

iz
e

1
,6

8
1

5
,4

6
0

6
,2

9
3

2
4
,3

6
4

1
,6

2
9

1
,9

1
0

4
,2

0
8

7
,0

8
2

1
,4

7
4

3
,9

3
3

1
,8

0
7

3
,6

1
2

S
-R

V
M

-
P

re
ss

u
re

1
,6

3
9

5
,4

3
8

6
,2

4
5

2
4
,4

9
1

1
,6

3
4

1
,8

9
1

4
,1

5
2

7
,1

1
6

1
,4

8
0

3
,9

4
6

1
,8

0
4

3
,5

9
9

8
X

J
ik

es
R

V
M

1
,5

7
5

5
,1

2
0

6
,4

3
8

2
4
,3

6
7

1
,6

0
3

1
,9

1
9

4
,1

6
1

7
,0

6
8

1
,4

9
1

3
,9

6
0

1
,7

1
0

3
,5

5
8

S
-R

V
M

-
S

iz
e

1
,6

2
4

5
,4

4
9

6
,2

5
6

2
4
,4

7
3

1
,6

3
3

1
,9

2
3

4
,2

1
6

7
,1

1
3

1
,4

8
6

3
,9

5
9

1
,7

2
2

3
,5

9
4

S
-R

V
M

-
P

re
ss

u
re

1
,6

6
9

5
,3

9
8

6
,2

3
7

2
4
,4

9
5

1
,6

2
5

1
,8

9
7

4
,2

1
5

7
,0

8
3

1
,4

6
9

3
,9

3
1

1
,7

2
1

3
,5

8
5

9
X

J
ik

es
R

V
M

1
,6

0
6

5
,0

1
4

6
,4

0
9

2
4
,2

1
8

1
,6

0
6

1
,9

4
8

4
,2

1
3

7
,0

1
1

1
,5

0
0

3
,9

1
5

1
,6

9
0

3
,5

5
5

S
-R

V
M

-
S

iz
e

1
,6

6
9

5
,4

5
3

6
,2

2
5

2
4
,3

6
9

1
,6

2
4

1
,8

8
1

4
,1

9
7

7
,0

6
1

1
,4

7
9

3
,9

1
4

1
,7

0
6

3
,5

7
9

S
-R

V
M

-
P

re
ss

u
re

1
,6

5
4

5
,4

4
4

6
,2

4
4

2
4
,3

3
4

1
,6

4
9

1
,9

0
6

4
,1

8
4

7
,0

7
5

1
,4

8
3

3
,9

3
9

1
,7

3
4

3
,5

9
3

1
0
X

J
ik

es
R

V
M

1
,6

0
5

5
,1

2
6

6
,4

4
5

2
4
,2

3
0

1
,6

2
6

1
,9

5
9

4
,1

7
9

7
,0

5
3

1
,4

7
0

3
,9

4
7

1
,7

1
1

3
,5

6
9

S
-R

V
M

-
S

iz
e

1
,6

4
7

5
,4

5
3

6
,2

3
6

2
4
,3

5
7

1
,6

3
4

1
,8

8
4

4
,2

0
6

7
,1

0
0

1
,4

9
2

3
,9

6
2

1
,7

2
9

3
,5

9
1

S
-R

V
M

-
P

re
ss

u
re

1
,6

4
3

5
,4

0
1

6
,2

5
1

2
4
,3

1
2

1
,6

3
0

1
,8

5
4

4
,1

7
0

7
,0

9
4

1
,4

8
1

3
,9

2
9

1
,7

2
7

3
,5

7
3

T
ab

le
C

.6
:

M
ea

n
ex

ec
u
ti

on
ti

m
es

of
th

e
D

aC
ap

o
b

en
ch

m
ar

k
s

at
th

e
6t

h
it

er
at

io
n

(m
s)

123

H
e
a
p

S
iz

e
C

o
n

fi
g
u

r
a
tio

n
a
n
tlr

b
lo

a
t

c
h

a
r
t

e
c
lip

se
fo

p
h

sq
ld

b
jy

th
o
n

lu
in

d
e
x

lu
se

a
r
c
h

p
m

d
x
a
la

n
m

e
a
n

2
X

J
ik

esR
V

M
1
,7

7
0

5
,2

0
4

6
,7

5
4

2
4
,9

2
5

1
,6

3
4

1
,8

9
6

4
,2

7
5

7
,3

9
4

1
,5

4
4

4
,4

3
7

2
,2

9
1

3
,8

0
0

S
-R

V
M

-
S

ize
1
,9

7
1

5
,6

9
3

6
,7

0
6

2
5
,2

4
1

1
,6

3
6

1
,8

7
1

4
,3

9
7

7
,6

2
7

1
,6

7
4

4
,7

0
0

2
,5

7
0

3
,9

7
7

S
-R

V
M

-
P

ressu
re

1
,9

2
4

5
,4

6
6

6
,6

3
1

2
5
,0

5
1

1
,6

0
4

1
,9

0
2

4
,3

2
0

7
,4

7
2

1
,5

6
5

4
,5

3
6

2
,3

6
0

3
,8

6
6

3
X

J
ik

esR
V

M
1
,6

0
4

5
,1

2
0

6
,5

8
6

2
4
,2

9
6

1
,5

9
4

1
,9

2
9

4
,1

1
2

7
,1

9
4

1
,4

5
8

3
,9

2
2

1
,8

9
5

3
,5

9
5

S
-R

V
M

-
S

ize
1
,6

9
8

5
,3

3
4

6
,3

9
8

2
4
,5

3
1

1
,6

0
9

1
,9

0
3

4
,1

5
7

7
,2

9
0

1
,4

6
9

4
,0

7
2

1
,9

4
1

3
,6

5
0

S
-R

V
M

-
P

ressu
re

1
,6

8
7

5
,3

8
7

6
,4

2
3

2
4
,4

8
2

1
,6

0
4

1
,8

8
0

4
,1

2
7

7
,1

8
6

1
,4

8
5

3
,9

7
1

1
,9

4
3

3
,6

3
5

4
X

J
ik

esR
V

M
1
,5

7
7

5
,0

5
1

6
,4

7
0

2
4
,0

7
1

1
,5

9
7

1
,9

2
3

4
,1

1
5

7
,0

2
1

1
,4

7
5

3
,9

1
6

1
,8

2
8

3
,5

5
9

S
-R

V
M

-
S

ize
1
,6

4
1

5
,3

6
0

6
,2

8
5

2
4
,3

4
2

1
,6

1
2

1
,8

7
7

4
,1

4
8

7
,0

8
1

1
,4

8
0

3
,8

4
1

1
,8

3
8

3
,5

8
3

S
-R

V
M

-
P

ressu
re

1
,6

3
5

5
,3

6
9

6
,3

3
7

2
4
,4

5
5

1
,6

0
9

1
,8

8
4

4
,1

2
7

7
,0

4
9

1
,4

9
7

3
,8

5
6

1
,8

3
8

3
,5

8
9

5
X

J
ik

esR
V

M
1
,5

7
9

5
,0

7
3

6
,4

7
6

2
4
,2

1
1

1
,5

9
0

1
,9

2
1

4
,1

3
3

7
,0

5
4

1
,4

5
3

3
,9

0
7

1
,7

7
8

3
,5

5
0

S
-R

V
M

-
S

ize
1
,6

2
8

5
,3

3
7

6
,2

7
5

2
4
,4

4
7

1
,6

1
5

1
,8

8
2

4
,1

5
0

7
,0

4
1

1
,4

7
8

3
,8

9
2

1
,7

7
4

3
,5

7
2

S
-R

V
M

-
P

ressu
re

1
,6

3
1

5
,4

5
0

6
,2

7
0

2
4
,7

4
7

1
,6

1
1

1
,8

1
9

4
,1

3
9

7
,0

2
2

1
,4

7
6

3
,9

0
5

1
,7

6
3

3
,5

6
8

6
X

J
ik

esR
V

M
1
,5

9
0

5
,0

2
7

6
,4

4
3

2
4
,0

5
0

1
,5

9
3

1
,9

2
8

4
,1

5
7

7
,0

4
7

1
,4

7
0

3
,8

8
4

1
,7

6
8

3
,5

4
9

S
-R

V
M

-
S

ize
1
,6

4
7

5
,3

4
7

6
,2

6
6

2
4
,2

6
5

1
,6

2
0

1
,9

2
0

4
,1

3
9

7
,0

6
4

1
,4

8
6

3
,8

5
9

1
,7

7
9

3
,5

8
1

S
-R

V
M

-
P

ressu
re

1
,6

3
6

5
,3

9
6

6
,2

4
3

2
4
,2

6
6

1
,6

1
3

1
,9

0
7

4
,1

2
5

7
,0

6
2

1
,4

7
5

3
,8

9
0

1
,7

8
9

3
,5

7
8

7
X

J
ik

esR
V

M
1
,5

8
2

5
,0

6
4

6
,4

2
7

2
4
,1

3
1

1
,5

8
2

1
,8

9
4

4
,1

2
6

7
,0

5
3

1
,4

7
6

3
,8

9
1

1
,7

3
2

3
,5

3
5

S
-R

V
M

-
S

ize
1
,6

4
1

5
,3

9
8

6
,2

9
2

2
4
,1

8
5

1
,6

0
5

1
,9

0
6

4
,1

6
4

7
,0

1
7

1
,4

8
3

3
,8

6
7

1
,8

0
0

3
,5

8
1

S
-R

V
M

-
P

ressu
re

1
,6

2
8

5
,3

9
0

6
,2

6
1

2
4
,3

3
8

1
,6

1
1

1
,9

0
5

4
,1

0
8

7
,0

6
8

1
,4

8
8

3
,8

8
7

1
,7

3
4

3
,5

6
8

8
X

J
ik

esR
V

M
1
,5

7
9

5
,0

9
5

6
,4

4
0

2
4
,2

4
5

1
,5

8
6

1
,9

1
4

4
,1

4
0

7
,0

6
0

1
,4

6
4

3
,9

0
2

1
,6

9
9

3
,5

3
6

S
-R

V
M

-
S

ize
1
,6

3
1

5
,4

0
4

6
,2

5
7

2
4
,3

7
0

1
,6

0
1

1
,8

6
6

4
,1

5
7

7
,0

5
1

1
,4

8
5

3
,9

0
2

1
,6

9
9

3
,5

5
9

S
-R

V
M

-
P

ressu
re

1
,6

4
8

5
,3

7
8

6
,2

4
9

2
4
,3

3
0

1
,6

0
2

1
,8

6
0

4
,1

5
9

7
,0

5
0

1
,4

6
8

3
,8

8
0

1
,6

9
2

3
,5

5
2

9
X

J
ik

esR
V

M
1
,5

8
3

4
,9

7
6

6
,3

9
9

2
4
,0

2
1

1
,5

8
0

1
,9

3
3

4
,1

5
7

7
,0

0
9

1
,4

6
5

3
,9

0
1

1
,6

9
8

3
,5

2
6

S
-R

V
M

-
S

ize
1
,6

6
0

5
,3

7
2

6
,2

2
9

2
4
,1

3
6

1
,6

0
4

1
,8

8
4

4
,1

5
2

6
,9

9
9

1
,4

8
9

3
,8

6
3

1
,6

8
8

3
,5

5
4

S
-R

V
M

-
P

ressu
re

1
,6

4
1

5
,3

6
4

6
,2

5
2

2
4
,2

0
7

1
,6

1
1

1
,9

0
8

4
,1

4
5

7
,0

2
6

1
,4

6
8

3
,8

5
2

1
,6

9
9

3
,5

5
5

1
0
X

J
ik

esR
V

M
1
,5

8
1

5
,0

6
5

6
,4

4
5

2
4
,0

7
3

1
,5

9
2

1
,9

4
2

4
,1

3
7

7
,0

4
5

1
,4

6
0

3
,9

0
1

1
,7

0
1

3
,5

3
7

S
-R

V
M

-
S

ize
1
,6

1
4

5
,3

3
6

6
,2

4
3

2
4
,2

1
2

1
,6

1
8

1
,9

0
2

4
,1

4
1

7
,0

6
7

1
,4

7
3

3
,8

6
1

1
,7

0
2

3
,5

5
2

S
-R

V
M

-
P

ressu
re

1
,6

3
9

5
,3

2
3

6
,2

3
9

2
4
,1

2
5

1
,6

1
4

1
,8

8
1

4
,1

3
4

7
,0

5
1

1
,4

8
5

3
,8

8
5

1
,6

9
1

3
,5

5
1

T
ab

le
C

.7:
M

ean
ex

ecu
tion

tim
es

of
th

e
D

aC
ap

o
b

en
ch

m
ark

s
at

th
e

7
th

iteration
(m

s)

124

H
e
a
p

S
iz

e
C

o
n

fi
g
u

r
a
ti

o
n

a
n
tl

r
b

lo
a
t

c
h

a
r
t

e
c
li

p
se

fo
p

h
sq

ld
b

jy
th

o
n

lu
in

d
e
x

lu
se

a
r
c
h

p
m

d
x
a
la

n
m

e
a
n

2
X

J
ik

es
R

V
M

1
,8

2
8

5
,1

6
8

6
,7

5
9

2
4
,7

4
6

1
,6

1
2

1
,8

7
1

4
,2

3
4

7
,4

1
4

1
,5

2
5

4
,4

0
2

2
,2

2
9

3
,7

7
8

S
-R

V
M

-
S

iz
e

1
,9

7
8

5
,4

9
9

6
,6

9
6

2
5
,1

1
8

1
,6

3
5

1
,8

8
7

4
,4

1
4

7
,6

1
7

1
,6

9
7

4
,7

4
8

2
,5

1
1

3
,9

6
8

S
-R

V
M

-
P

re
ss

u
re

1
,8

6
9

5
,4

4
3

6
,6

0
5

2
4
,9

4
0

1
,5

8
5

1
,8

7
4

4
,2

8
5

7
,3

9
7

1
,5

8
3

4
,4

7
7

2
,3

8
5

3
,8

3
9

3
X

J
ik

es
R

V
M

1
,5

9
9

5
,0

7
9

6
,5

9
4

2
4
,1

1
0

1
,5

8
7

1
,9

7
9

4
,0

7
5

7
,2

0
2

1
,4

4
9

3
,9

9
5

1
,8

4
5

3
,5

8
9

S
-R

V
M

-
S

iz
e

1
,6

9
3

5
,3

4
2

6
,3

8
7

2
4
,4

0
8

1
,5

9
2

1
,8

8
4

4
,0

9
4

7
,2

3
5

1
,4

7
5

4
,0

5
0

1
,9

2
0

3
,6

2
9

S
-R

V
M

-
P

re
ss

u
re

1
,6

6
9

5
,3

6
0

6
,4

1
1

2
4
,3

8
2

1
,5

9
5

1
,8

7
4

4
,0

9
6

7
,1

2
7

1
,4

7
6

3
,9

9
3

1
,9

1
3

3
,6

1
4

4
X

J
ik

es
R

V
M

1
,5

9
0

4
,9

9
1

6
,4

8
1

2
3
,9

3
9

1
,5

8
0

1
,9

3
2

4
,0

6
9

7
,0

2
7

1
,4

5
9

3
,8

7
0

1
,8

1
2

3
,5

4
2

S
-R

V
M

-
S

iz
e

1
,6

2
5

5
,3

1
6

6
,3

3
8

2
4
,1

4
8

1
,5

9
7

1
,8

5
0

4
,1

1
4

7
,0

4
4

1
,4

7
9

3
,8

3
9

1
,8

3
6

3
,5

6
4

S
-R

V
M

-
P

re
ss

u
re

1
,5

9
8

5
,3

2
2

6
,3

0
7

2
4
,3

3
7

1
,5

9
3

1
,8

4
2

4
,0

9
3

6
,9

8
7

1
,4

8
6

3
,8

4
8

1
,8

2
9

3
,5

5
5

5
X

J
ik

es
R

V
M

1
,5

8
4

5
,0

1
9

6
,4

8
9

2
4
,0

1
9

1
,5

6
9

1
,9

1
8

4
,0

9
9

7
,0

6
6

1
,4

5
6

3
,8

9
3

1
,7

4
2

3
,5

3
2

S
-R

V
M

-
S

iz
e

1
,5

9
9

5
,3

4
2

6
,2

5
8

2
4
,3

2
5

1
,5

8
8

1
,8

7
2

4
,1

4
1

7
,0

0
3

1
,4

7
1

3
,9

0
6

1
,7

5
8

3
,5

5
1

S
-R

V
M

-
P

re
ss

u
re

1
,6

2
1

5
,4

1
7

6
,2

5
9

2
4
,2

4
9

1
,5

9
5

1
,8

5
5

4
,1

1
9

6
,9

6
8

1
,4

8
6

3
,8

6
6

1
,7

6
1

3
,5

5
5

6
X

J
ik

es
R

V
M

1
,5

6
7

5
,0

1
5

6
,4

4
9

2
3
,9

3
9

1
,5

6
8

1
,9

1
0

4
,1

0
0

7
,0

5
3

1
,4

6
1

3
,8

8
4

1
,7

3
1

3
,5

2
1

S
-R

V
M

-
S

iz
e

1
,6

2
0

5
,3

2
0

6
,2

8
2

2
4
,1

5
3

1
,6

1
0

1
,9

1
3

4
,1

0
1

6
,9

8
5

1
,4

7
0

3
,8

6
2

1
,7

5
5

3
,5

5
6

S
-R

V
M

-
P

re
ss

u
re

1
,6

3
7

5
,3

4
8

6
,2

3
3

2
4
,1

5
2

1
,5

9
6

1
,9

1
3

4
,0

8
1

7
,0

0
8

1
,4

7
9

3
,8

5
4

1
,7

6
6

3
,5

5
8

7
X

J
ik

es
R

V
M

1
,5

7
5

5
,0

8
8

6
,4

2
3

2
4
,0

0
3

1
,5

7
2

1
,9

2
7

4
,0

9
1

7
,0

5
4

1
,4

6
0

3
,8

5
6

1
,7

1
6

3
,5

2
5

S
-R

V
M

-
S

iz
e

1
,5

9
7

5
,3

4
9

6
,2

9
3

2
4
,1

0
6

1
,5

8
7

1
,8

7
3

4
,1

1
5

6
,9

9
8

1
,4

8
0

3
,8

3
6

1
,7

5
0

3
,5

4
2

S
-R

V
M

-
P

re
ss

u
re

1
,5

9
8

5
,3

6
3

6
,2

4
2

2
4
,1

5
9

1
,5

9
5

1
,8

9
1

4
,0

6
9

7
,0

0
5

1
,4

6
8

3
,8

6
8

1
,7

1
4

3
,5

3
6

8
X

J
ik

es
R

V
M

1
,6

0
3

5
,0

3
2

6
,4

4
6

2
4
,0

8
2

1
,5

7
4

1
,9

2
1

4
,0

8
3

7
,0

5
5

1
,4

7
1

3
,8

9
6

1
,6

7
8

3
,5

2
6

S
-R

V
M

-
S

iz
e

1
,6

1
9

5
,3

6
8

6
,2

4
5

2
4
,2

5
1

1
,5

9
3

1
,9

0
5

4
,1

1
4

7
,0

1
4

1
,4

8
2

3
,8

5
8

1
,6

8
5

3
,5

4
5

S
-R

V
M

-
P

re
ss

u
re

1
,6

3
2

5
,3

5
5

6
,2

2
9

2
4
,2

0
2

1
,5

8
8

1
,8

7
2

4
,1

0
8

6
,9

9
2

1
,4

8
6

3
,8

4
9

1
,6

7
7

3
,5

3
6

9
X

J
ik

es
R

V
M

1
,5

6
8

4
,9

5
6

6
,4

0
9

2
3
,9

1
7

1
,5

6
6

1
,9

1
6

4
,1

1
7

7
,0

2
3

1
,4

6
3

3
,8

6
8

1
,6

6
6

3
,5

0
3

S
-R

V
M

-
S

iz
e

1
,6

3
3

5
,3

7
6

6
,2

1
5

2
4
,0

3
5

1
,6

0
6

1
,8

8
3

4
,1

1
3

6
,9

6
2

1
,4

8
2

3
,8

2
7

1
,6

7
5

3
,5

3
5

S
-R

V
M

-
P

re
ss

u
re

1
,6

2
4

5
,3

5
5

6
,2

4
9

2
4
,1

0
7

1
,6

0
0

1
,8

8
7

4
,0

9
2

6
,9

6
4

1
,4

9
0

3
,8

2
7

1
,6

8
1

3
,5

3
6

1
0
X

J
ik

es
R

V
M

1
,5

8
7

5
,0

8
5

6
,4

5
1

2
3
,9

6
2

1
,5

7
9

1
,9

2
3

4
,0

8
3

7
,0

3
7

1
,4

5
5

3
,8

7
0

1
,6

8
2

3
,5

2
1

S
-R

V
M

-
S

iz
e

1
,6

1
2

5
,3

6
2

6
,2

4
2

2
4
,0

8
0

1
,5

9
5

1
,8

5
8

4
,1

1
5

7
,0

3
3

1
,4

7
4

3
,8

7
0

1
,6

7
9

3
,5

3
2

S
-R

V
M

-
P

re
ss

u
re

1
,6

1
6

5
,3

2
7

6
,2

4
8

2
4
,0

3
2

1
,6

1
0

1
,8

8
2

4
,0

7
4

7
,0

0
2

1
,4

8
3

3
,8

7
7

1
,6

7
7

3
,5

3
5

T
ab

le
C

.8
:

M
ea

n
ex

ec
u
ti

on
ti

m
es

of
th

e
D

aC
ap

o
b

en
ch

m
ar

k
s

at
th

e
8t

h
it

er
at

io
n

(m
s)

125

H
e
a
p

S
iz

e
C

o
n

fi
g
u

r
a
tio

n
a
n
tlr

b
lo

a
t

c
h

a
r
t

e
c
lip

se
fo

p
h

sq
ld

b
jy

th
o
n

lu
in

d
e
x

lu
se

a
r
c
h

p
m

d
x
a
la

n
m

e
a
n

2
X

J
ik

esR
V

M
1
,7

8
8

5
,1

4
5

6
,7

6
7

2
4
,6

3
0

1
,6

1
5

1
,8

8
5

4
,1

9
6

7
,4

4
4

1
,5

3
0

4
,3

9
7

2
,2

3
4

3
,7

7
1

S
-R

V
M

-
S

ize
1
,9

9
9

5
,4

7
0

6
,7

1
2

2
4
,9

4
3

1
,6

0
7

1
,8

9
1

4
,3

6
9

7
,5

5
3

1
,6

7
7

4
,6

5
5

2
,5

2
8

3
,9

4
7

S
-R

V
M

-
P

ressu
re

1
,8

9
0

5
,4

2
4

6
,5

9
2

2
4
,7

7
9

1
,5

9
6

1
,9

0
4

4
,2

5
4

7
,4

2
2

1
,5

7
7

4
,5

2
8

2
,3

5
6

3
,8

4
3

3
X

J
ik

esR
V

M
1
,6

4
7

5
,0

5
9

6
,5

7
5

2
4
,0

4
1

1
,5

7
4

1
,9

2
7

4
,0

3
3

7
,1

9
9

1
,4

6
3

3
,9

7
2

1
,8

6
4

3
,5

8
5

S
-R

V
M

-
S

ize
1
,6

9
4

5
,3

1
6

6
,3

8
6

2
4
,3

3
4

1
,5

7
7

1
,8

6
3

4
,0

7
0

7
,2

2
0

1
,4

8
1

3
,9

6
5

1
,9

1
8

3
,6

1
1

S
-R

V
M

-
P

ressu
re

1
,6

2
6

5
,3

6
8

6
,3

9
3

2
4
,2

5
0

1
,5

7
6

1
,9

0
6

4
,0

6
3

7
,1

0
2

1
,4

6
8

3
,9

1
0

1
,9

0
9

3
,5

9
2

4
X

J
ik

esR
V

M
1
,5

5
9

5
,0

0
0

6
,4

8
1

2
3
,8

2
5

1
,5

7
0

1
,9

5
0

4
,0

2
7

7
,0

1
9

1
,4

7
2

3
,8

8
2

1
,7

8
3

3
,5

3
0

S
-R

V
M

-
S

ize
1
,6

2
7

5
,3

4
5

6
,2

7
8

2
4
,0

7
8

1
,5

8
7

1
,8

7
3

4
,0

6
5

7
,0

1
2

1
,4

6
7

3
,8

2
5

1
,8

0
8

3
,5

5
0

S
-R

V
M

-
P

ressu
re

1
,5

8
4

5
,3

3
3

6
,2

9
9

2
4
,1

4
8

1
,5

7
9

1
,8

6
2

4
,0

6
0

6
,9

6
5

1
,4

8
4

3
,8

3
5

1
,8

0
8

3
,5

4
1

5
X

J
ik

esR
V

M
1
,6

0
0

4
,9

9
3

6
,4

8
8

2
3
,9

5
5

1
,5

6
2

1
,9

1
7

4
,0

5
2

7
,0

6
5

1
,4

6
1

3
,8

6
9

1
,7

1
8

3
,5

2
2

S
-R

V
M

-
S

ize
1
,6

1
1

5
,3

4
0

6
,2

5
8

2
4
,1

9
6

1
,5

7
6

1
,9

2
4

4
,0

9
9

6
,9

8
0

1
,4

8
0

3
,8

6
2

1
,7

5
4

3
,5

5
1

S
-R

V
M

-
P

ressu
re

1
,6

0
0

5
,3

8
1

6
,2

6
0

2
4
,1

4
6

1
,5

7
3

1
,8

6
2

4
,0

9
7

6
,9

5
5

1
,4

6
8

3
,8

9
1

1
,7

5
6

3
,5

3
9

6
X

J
ik

esR
V

M
1
,5

6
1

5
,0

2
4

6
,4

4
2

2
3
,8

0
6

1
,5

6
9

1
,8

9
5

4
,0

6
6

7
,0

5
3

1
,4

6
1

3
,8

8
4

1
,7

3
9

3
,5

1
5

S
-R

V
M

-
S

ize
1
,5

8
1

5
,3

0
8

6
,2

5
2

2
4
,0

6
0

1
,5

9
5

1
,8

9
6

4
,0

8
2

6
,9

8
4

1
,4

7
8

3
,8

3
7

1
,7

5
4

3
,5

3
7

S
-R

V
M

-
P

ressu
re

1
,5

9
6

5
,3

4
2

6
,2

2
4

2
4
,0

5
3

1
,5

8
4

1
,8

7
3

4
,0

8
3

6
,9

8
8

1
,4

7
6

3
,8

3
7

1
,7

4
0

3
,5

3
1

7
X

J
ik

esR
V

M
1
,5

9
4

5
,0

4
0

6
,4

1
4

2
3
,9

2
6

1
,5

6
4

1
,9

0
5

4
,0

5
0

7
,0

6
2

1
,4

6
0

3
,8

7
1

1
,6

6
6

3
,5

0
8

S
-R

V
M

-
S

ize
1
,6

2
5

5
,3

7
4

6
,2

7
6

2
4
,0

1
4

1
,5

8
0

1
,9

2
9

4
,0

9
1

6
,9

8
6

1
,4

8
3

3
,8

2
5

1
,7

5
2

3
,5

5
3

S
-R

V
M

-
P

ressu
re

1
,6

0
3

5
,3

3
5

6
,2

3
2

2
4
,1

0
0

1
,5

9
2

1
,8

6
5

4
,0

6
9

6
,9

9
3

1
,4

8
5

3
,8

2
8

1
,7

5
4

3
,5

3
6

8
X

J
ik

esR
V

M
1
,5

9
3

5
,0

4
1

6
,4

2
9

2
4
,0

5
1

1
,5

6
1

1
,9

0
3

4
,0

5
5

7
,0

3
7

1
,4

6
8

3
,8

9
0

1
,6

4
2

3
,5

0
7

S
-R

V
M

-
S

ize
1
,6

1
7

5
,3

5
9

6
,2

2
8

2
4
,1

5
5

1
,5

7
7

1
,8

7
4

4
,0

9
1

6
,9

7
3

1
,4

7
6

3
,8

6
5

1
,6

8
0

3
,5

2
8

S
-R

V
M

-
P

ressu
re

1
,6

1
9

5
,3

2
3

6
,2

1
5

2
4
,1

4
3

1
,5

8
1

1
,8

9
3

4
,0

8
2

6
,9

7
9

1
,4

8
2

3
,8

3
0

1
,6

6
4

3
,5

2
4

9
X

J
ik

esR
V

M
1
,5

6
1

4
,9

7
6

6
,4

0
4

2
3
,8

1
7

1
,5

5
7

1
,8

8
8

4
,0

5
1

7
,0

1
9

1
,4

6
9

3
,8

8
4

1
,6

4
6

3
,4

8
8

S
-R

V
M

-
S

ize
1
,6

2
6

5
,3

6
7

6
,2

1
2

2
3
,9

4
5

1
,5

9
5

1
,8

4
4

4
,0

8
6

6
,9

3
7

1
,4

8
1

3
,8

4
3

1
,6

6
7

3
,5

2
0

S
-R

V
M

-
P

ressu
re

1
,6

1
3

5
,3

7
8

6
,2

4
8

2
4
,0

2
9

1
,5

8
6

1
,8

6
7

4
,0

8
5

6
,9

5
9

1
,4

7
1

3
,8

0
5

1
,6

5
9

3
,5

1
7

1
0
X

J
ik

esR
V

M
1
,5

6
3

5
,0

5
7

6
,4

3
8

2
3
,8

5
6

1
,5

6
4

1
,9

2
6

4
,0

7
1

7
,0

3
7

1
,4

5
3

3
,8

7
6

1
,6

5
9

3
,5

0
4

S
-R

V
M

-
S

ize
1
,6

0
7

5
,3

0
9

6
,2

4
0

2
4
,0

1
2

1
,5

8
3

1
,8

4
9

4
,0

7
3

7
,0

0
3

1
,4

8
5

3
,8

3
4

1
,6

6
5

3
,5

1
5

S
-R

V
M

-
P

ressu
re

1
,6

2
3

5
,2

9
8

6
,2

3
2

2
3
,9

7
9

1
,6

0
0

1
,8

7
5

4
,0

5
1

6
,9

9
8

1
,4

7
3

3
,8

4
6

1
,6

6
7

3
,5

2
1

T
ab

le
C

.9:
M

ean
ex

ecu
tion

tim
es

of
th

e
D

aC
ap

o
b

en
ch

m
ark

s
at

th
e

9
th

iteration
(m

s)

126

H
e
a
p

S
iz

e
C

o
n

fi
g
u

r
a
ti

o
n

a
n
tl

r
b

lo
a
t

c
h

a
r
t

e
c
li

p
se

fo
p

h
sq

ld
b

jy
th

o
n

lu
in

d
e
x

lu
se

a
r
c
h

p
m

d
x
a
la

n
m

e
a
n

2
X

J
ik

es
R

V
M

1
,8

3
1

5
,1

1
4

6
,7

5
8

2
4
,5

7
0

1
,6

0
8

1
,9

0
1

4
,2

3
9

7
,3

6
3

1
,5

3
5

4
,3

6
5

2
,1

9
1

3
,7

6
9

S
-R

V
M

-
S

iz
e

1
,9

7
2

5
,5

2
3

6
,6

9
7

2
4
,9

1
5

1
,6

0
2

1
,8

8
5

4
,3

6
5

7
,5

6
2

1
,6

7
2

4
,7

3
7

2
,5

4
4

3
,9

5
0

S
-R

V
M

-
P

re
ss

u
re

1
,7

9
6

5
,4

7
1

6
,6

2
1

2
4
,7

6
8

1
,5

7
3

1
,8

5
6

4
,2

4
2

7
,3

3
3

1
,5

7
2

4
,4

4
0

2
,3

5
4

3
,8

0
2

3
X

J
ik

es
R

V
M

1
,6

1
2

5
,0

3
2

6
,5

8
5

2
3
,9

4
1

1
,5

6
7

1
,9

2
1

4
,0

1
2

7
,1

5
8

1
,4

7
3

3
,9

8
9

1
,8

4
5

3
,5

7
0

S
-R

V
M

-
S

iz
e

1
,7

0
4

5
,3

2
0

6
,3

8
9

2
4
,2

5
7

1
,5

7
7

1
,8

7
9

4
,0

3
5

7
,1

6
6

1
,4

8
2

3
,9

5
7

1
,9

1
9

3
,6

0
9

S
-R

V
M

-
P

re
ss

u
re

1
,6

3
7

5
,3

6
3

6
,4

0
7

2
4
,1

6
2

1
,5

7
1

1
,8

5
3

4
,0

2
7

7
,0

6
3

1
,4

8
0

4
,0

0
7

1
,9

1
1

3
,5

9
0

4
X

J
ik

es
R

V
M

1
,6

1
2

4
,9

5
0

6
,4

6
8

2
3
,8

0
1

1
,5

6
9

1
,9

1
6

4
,0

3
3

6
,9

9
6

1
,4

6
6

3
,8

6
2

1
,7

7
6

3
,5

2
6

S
-R

V
M

-
S

iz
e

1
,6

1
4

5
,3

0
0

6
,3

0
5

2
3
,9

8
8

1
,5

7
9

1
,8

7
1

4
,0

4
8

6
,9

9
4

1
,4

8
4

3
,8

0
0

1
,8

0
3

3
,5

4
2

S
-R

V
M

-
P

re
ss

u
re

1
,5

8
0

5
,3

1
2

6
,3

1
4

2
4
,0

7
9

1
,5

7
3

1
,8

9
7

4
,0

2
3

6
,9

4
7

1
,4

8
2

3
,8

1
5

1
,7

9
4

3
,5

3
5

5
X

J
ik

es
R

V
M

1
,5

8
4

4
,9

8
9

6
,4

7
3

2
3
,8

9
9

1
,5

5
5

1
,8

5
3

4
,0

3
3

7
,0

4
6

1
,4

7
3

3
,8

3
1

1
,7

1
3

3
,5

0
1

S
-R

V
M

-
S

iz
e

1
,5

8
7

5
,3

1
4

6
,2

5
1

2
4
,0

8
0

1
,5

6
4

1
,8

7
3

4
,0

4
7

6
,9

5
8

1
,4

9
8

3
,8

3
1

1
,7

2
4

3
,5

2
2

S
-R

V
M

-
P

re
ss

u
re

1
,6

0
0

5
,3

4
9

6
,2

5
1

2
4
,0

5
7

1
,5

6
4

1
,8

4
3

4
,0

4
7

6
,9

5
5

1
,4

8
2

3
,8

6
5

1
,7

3
8

3
,5

2
4

6
X

J
ik

es
R

V
M

1
,5

5
4

4
,9

7
7

6
,4

4
7

2
3
,7

8
1

1
,5

5
8

1
,8

9
3

4
,0

4
6

7
,0

2
0

1
,4

7
1

3
,8

6
0

1
,7

1
9

3
,5

0
1

S
-R

V
M

-
S

iz
e

1
,5

7
1

5
,3

1
7

6
,2

4
8

2
3
,9

5
9

1
,5

8
4

1
,8

8
5

4
,0

5
2

6
,9

6
4

1
,4

8
2

3
,8

1
6

1
,7

3
4

3
,5

2
1

S
-R

V
M

-
P

re
ss

u
re

1
,6

0
2

5
,3

5
0

6
,2

0
9

2
3
,9

7
0

1
,5

7
2

1
,8

6
6

4
,0

2
0

6
,9

8
1

1
,4

8
9

3
,8

2
9

1
,7

3
1

3
,5

2
3

7
X

J
ik

es
R

V
M

1
,5

8
3

5
,0

2
7

6
,4

1
3

2
3
,8

3
3

1
,5

5
1

1
,8

5
4

4
,0

1
0

7
,0

4
3

1
,4

8
8

3
,8

6
4

1
,6

8
7

3
,4

9
8

S
-R

V
M

-
S

iz
e

1
,6

2
6

5
,3

2
6

6
,2

7
3

2
3
,9

6
6

1
,5

6
9

1
,8

6
3

4
,0

8
0

6
,9

6
8

1
,4

8
9

3
,8

1
5

1
,7

5
3

3
,5

3
5

S
-R

V
M

-
P

re
ss

u
re

1
,5

8
7

5
,3

2
0

6
,2

3
4

2
4
,0

3
1

1
,5

7
2

1
,8

8
3

4
,0

1
7

6
,9

7
9

1
,4

7
7

3
,8

3
7

1
,7

0
8

3
,5

1
6

8
X

J
ik

es
R

V
M

1
,5

6
4

5
,0

3
4

6
,4

3
0

2
3
,9

3
0

1
,5

4
7

1
,8

7
5

4
,0

3
5

7
,0

2
8

1
,4

6
8

3
,8

7
7

1
,6

3
9

3
,4

8
8

S
-R

V
M

-
S

iz
e

1
,5

7
8

5
,3

7
2

6
,2

2
6

2
4
,0

9
1

1
,5

7
2

1
,8

8
2

4
,0

6
3

6
,9

7
0

1
,4

8
1

3
,8

3
6

1
,6

7
5

3
,5

1
6

S
-R

V
M

-
P

re
ss

u
re

1
,5

8
5

5
,3

0
2

6
,2

2
1

2
4
,0

8
0

1
,5

7
7

1
,9

1
9

4
,0

5
5

6
,9

7
6

1
,4

7
9

3
,8

1
8

1
,6

4
4

3
,5

1
1

9
X

J
ik

es
R

V
M

1
,5

7
4

4
,9

5
7

6
,4

0
7

2
3
,7

5
9

1
,5

6
4

1
,9

0
2

4
,0

3
7

6
,9

9
2

1
,4

6
7

3
,8

6
5

1
,6

3
9

3
,4

8
7

S
-R

V
M

-
S

iz
e

1
,5

9
3

5
,3

7
8

6
,2

0
3

2
3
,8

8
4

1
,5

9
2

1
,8

4
5

4
,0

6
2

6
,9

0
9

1
,5

0
3

3
,8

0
1

1
,6

6
1

3
,5

0
9

S
-R

V
M

-
P

re
ss

u
re

1
,5

7
6

5
,3

2
5

6
,2

3
6

2
3
,9

4
2

1
,5

7
9

1
,8

2
9

4
,0

1
7

6
,9

6
3

1
,4

8
1

3
,7

9
5

1
,6

3
8

3
,4

8
9

1
0
X

J
ik

es
R

V
M

1
,5

9
0

5
,0

4
0

6
,4

5
2

2
3
,7

9
8

1
,5

5
2

1
,9

0
4

4
,0

4
2

7
,0

1
7

1
,4

6
0

3
,8

7
4

1
,6

6
7

3
,5

0
2

S
-R

V
M

-
S

iz
e

1
,6

0
3

5
,3

1
3

6
,2

3
4

2
3
,9

5
1

1
,5

7
1

1
,8

9
3

4
,0

4
0

7
,0

0
0

1
,4

8
6

3
,7

9
3

1
,6

4
9

3
,5

0
9

S
-R

V
M

-
P

re
ss

u
re

1
,5

9
1

5
,3

4
0

6
,2

3
2

2
3
,9

3
3

1
,5

8
0

1
,8

6
9

4
,0

3
4

6
,9

8
0

1
,4

6
6

3
,8

3
5

1
,6

4
8

3
,5

0
4

T
ab

le
C

.1
0:

M
ea

n
ex

ec
u
ti

on
ti

m
es

of
th

e
D

aC
ap

o
b

en
ch

m
ar

k
s

at
th

e
10

th
it

er
at

io
n

(m
s)

127

H
e
a
p

S
iz

e
C

o
n

fi
g
u

r
a
tio

n
a
n
tlr

b
lo

a
t

c
h

a
r
t

e
c
lip

se
fo

p
h

sq
ld

b
jy

th
o
n

lu
in

d
e
x

lu
se

a
r
c
h

p
m

d
x
a
la

n
m

e
a
n

2
X

J
ik

esR
V

M
1
,7

3
7

5
,0

9
8

6
,7

8
5

2
4
,5

0
4

1
,6

1
5

1
,8

4
2

4
,1

2
7

7
,3

6
9

1
,5

3
4

4
,4

2
2

2
,2

1
0

3
,7

3
9

S
-R

V
M

-
S

ize
1
,9

7
0

5
,4

8
7

6
,6

6
5

2
4
,8

4
3

1
,5

9
5

1
,8

8
6

4
,4

0
6

7
,5

0
6

1
,7

8
6

4
,6

3
5

2
,5

0
6

3
,9

5
4

S
-R

V
M

-
P

ressu
re

1
,8

0
4

5
,3

8
7

6
,6

0
6

2
4
,6

2
1

1
,5

6
2

1
,8

3
1

4
,2

1
5

7
,3

3
5

1
,5

7
5

4
,4

4
2

2
,3

4
2

3
,7

8
6

3
X

J
ik

esR
V

M
1
,6

0
9

4
,9

9
1

6
,5

7
4

2
3
,8

8
3

1
,5

6
2

1
,8

8
3

3
,9

8
2

7
,1

6
2

1
,4

6
0

3
,9

9
9

1
,8

2
8

3
,5

5
0

S
-R

V
M

-
S

ize
1
,7

1
0

5
,3

1
4

6
,3

7
4

2
4
,1

7
6

1
,5

6
2

1
,8

3
2

4
,0

3
3

7
,1

1
2

1
,4

7
1

4
,0

4
8

1
,9

3
4

3
,6

0
2

S
-R

V
M

-
P

ressu
re

1
,6

5
6

5
,3

0
1

6
,4

0
2

2
4
,1

0
3

1
,5

6
5

1
,8

6
4

3
,9

7
9

7
,0

2
5

1
,4

6
2

3
,9

3
1

1
,9

0
4

3
,5

7
2

4
X

J
ik

esR
V

M
1
,5

6
6

4
,9

7
8

6
,4

8
0

2
3
,7

1
8

1
,5

5
9

1
,8

8
5

3
,9

8
3

6
,9

9
6

1
,4

6
8

3
,8

6
7

1
,7

7
7

3
,5

0
8

S
-R

V
M

-
S

ize
1
,5

8
4

5
,3

0
3

6
,2

6
4

2
3
,9

0
6

1
,5

7
1

1
,8

3
2

4
,0

0
5

6
,9

6
0

1
,4

8
1

3
,8

0
9

1
,7

9
4

3
,5

1
8

S
-R

V
M

-
P

ressu
re

1
,6

2
7

5
,2

8
1

6
,3

1
6

2
4
,0

3
7

1
,5

6
6

1
,8

7
7

4
,0

0
4

6
,9

3
2

1
,4

8
4

3
,7

8
9

1
,8

0
5

3
,5

3
6

5
X

J
ik

esR
V

M
1
,5

1
8

4
,9

9
8

6
,4

8
9

2
3
,8

4
7

1
,5

5
2

1
,8

4
6

3
,9

8
7

7
,0

2
2

1
,4

6
1

3
,8

3
8

1
,7

0
1

3
,4

7
7

S
-R

V
M

-
S

ize
1
,5

7
7

5
,3

0
7

6
,2

4
3

2
4
,0

3
2

1
,5

5
9

1
,8

6
8

4
,0

3
0

6
,9

3
0

1
,4

9
1

3
,8

3
4

1
,7

3
6

3
,5

1
5

S
-R

V
M

-
P

ressu
re

1
,5

7
2

5
,3

4
5

6
,2

4
0

2
3
,9

7
2

1
,5

5
7

1
,8

4
1

3
,9

8
0

6
,9

3
6

1
,4

8
6

3
,8

6
1

1
,7

2
6

3
,5

0
6

6
X

J
ik

esR
V

M
1
,5

8
2

5
,0

0
5

6
,4

5
4

2
3
,6

9
0

1
,5

5
7

1
,8

9
4

4
,0

2
6

7
,0

2
4

1
,4

7
2

3
,8

7
9

1
,7

2
9

3
,5

1
0

S
-R

V
M

-
S

ize
1
,5

8
6

5
,3

0
3

6
,2

5
8

2
3
,9

3
1

1
,5

7
3

1
,8

8
3

4
,0

0
9

6
,9

6
1

1
,4

7
9

3
,8

1
2

1
,7

2
8

3
,5

1
6

S
-R

V
M

-
P

ressu
re

1
,5

7
3

5
,3

4
9

6
,2

1
0

2
3
,9

5
8

1
,5

7
4

1
,8

3
5

4
,0

0
9

6
,9

6
1

1
,4

8
6

3
,8

1
8

1
,7

2
8

3
,5

0
8

7
X

J
ik

esR
V

M
1
,5

5
6

5
,0

0
0

6
,4

1
7

2
3
,8

3
2

1
,5

5
8

1
,8

6
9

3
,9

8
9

7
,0

3
6

1
,4

7
3

3
,8

7
4

1
,6

8
0

3
,4

8
9

S
-R

V
M

-
S

ize
1
,5

8
8

5
,3

1
2

6
,2

6
8

2
3
,9

1
3

1
,5

7
3

1
,8

6
0

4
,0

3
1

6
,9

4
5

1
,4

9
0

3
,8

1
5

1
,7

2
4

3
,5

1
6

S
-R

V
M

-
P

ressu
re

1
,5

6
7

5
,3

1
3

6
,2

4
7

2
4
,0

0
4

1
,5

6
7

1
,8

4
3

3
,9

5
7

6
,9

5
4

1
,4

7
7

3
,8

3
3

1
,6

8
2

3
,4

9
3

8
X

J
ik

esR
V

M
1
,5

6
5

5
,0

0
1

6
,4

3
6

2
3
,8

8
0

1
,5

6
4

1
,8

6
0

4
,0

1
4

7
,0

1
5

1
,4

6
6

3
,8

5
5

1
,6

2
3

3
,4

7
9

S
-R

V
M

-
S

ize
1
,5

6
1

5
,3

0
6

6
,2

3
0

2
4
,0

3
7

1
,5

6
0

1
,8

0
0

4
,0

4
3

6
,9

5
1

1
,5

0
0

3
,8

5
6

1
,6

6
5

3
,4

9
2

S
-R

V
M

-
P

ressu
re

1
,5

8
1

5
,2

9
7

6
,2

1
8

2
3
,9

6
0

1
,5

7
5

1
,8

7
6

4
,0

0
0

6
,9

5
2

1
,4

8
6

3
,8

0
4

1
,6

4
1

3
,4

9
5

9
X

J
ik

esR
V

M
1
,5

5
2

4
,9

1
2

6
,4

0
6

2
3
,7

1
8

1
,5

5
7

1
,8

6
4

4
,0

1
9

6
,9

9
4

1
,4

5
5

3
,8

4
8

1
,6

2
6

3
,4

6
3

S
-R

V
M

-
S

ize
1
,5

8
6

5
,3

0
9

6
,2

1
5

2
3
,8

4
2

1
,5

8
0

1
,8

6
2

4
,0

1
9

6
,8

9
6

1
,4

9
3

3
,8

4
1

1
,6

3
1

3
,4

9
5

S
-R

V
M

-
P

ressu
re

1
,5

7
5

5
,3

1
9

6
,2

3
8

2
3
,9

2
6

1
,5

7
7

1
,8

1
7

4
,0

2
3

6
,9

3
4

1
,4

9
5

3
,8

0
5

1
,6

4
3

3
,4

8
9

1
0
X

J
ik

esR
V

M
1
,5

6
7

5
,0

3
6

6
,4

5
0

2
3
,8

0
4

1
,5

6
3

1
,8

5
0

4
,0

1
1

7
,0

0
4

1
,4

7
1

3
,8

6
5

1
,6

3
9

3
,4

8
4

S
-R

V
M

-
S

ize
1
,5

5
7

5
,3

1
9

6
,2

2
6

2
3
,8

8
2

1
,5

7
2

1
,8

6
9

4
,0

0
3

6
,9

8
2

1
,4

8
5

3
,8

2
1

1
,6

5
8

3
,4

9
5

S
-R

V
M

-
P

ressu
re

1
,5

7
5

5
,2

6
5

6
,2

3
3

2
3
,8

4
7

1
,5

7
3

1
,8

2
8

4
,0

1
3

6
,9

8
3

1
,4

8
6

3
,8

4
3

1
,6

7
0

3
,4

9
4

T
ab

le
C

.11:
M

ean
ex

ecu
tion

tim
es

of
th

e
D

aC
ap

o
b

en
ch

m
ark

s
at

th
e

11
th

iteration
(m

s)

128

H
e
a
p

S
iz

e
C

o
n

fi
g
u

r
a
ti

o
n

a
n
tl

r
b

lo
a
t

c
h

a
r
t

e
c
li

p
se

fo
p

h
sq

ld
b

jy
th

o
n

lu
in

d
e
x

lu
se

a
r
c
h

p
m

d
x
a
la

n
m

e
a
n

2
X

J
ik

es
R

V
M

1
,8

0
9

5
,1

3
3

6
,7

8
8

2
4
,4

4
8

1
,5

9
0

1
,8

4
9

4
,0

9
9

7
,3

4
9

1
,5

1
8

4
,3

5
7

2
,3

4
7

3
,7

5
9

S
-R

V
M

-
S

iz
e

1
,9

7
5

5
,4

5
3

6
,6

6
8

2
4
,8

2
3

1
,6

3
8

1
,8

3
2

4
,4

0
2

7
,5

1
4

1
,8

9
8

4
,6

5
1

2
,5

6
4

3
,9

8
3

S
-R

V
M

-
P

re
ss

u
re

1
,8

2
7

5
,4

1
1

6
,5

8
3

2
4
,6

4
6

1
,5

5
9

1
,7

8
8

4
,1

9
3

7
,3

3
0

1
,6

4
0

4
,4

9
0

2
,3

9
0

3
,8

0
5

3
X

J
ik

es
R

V
M

1
,6

4
3

4
,9

9
3

6
,5

7
7

2
3
,8

3
1

1
,5

5
9

1
,8

2
4

3
,9

5
9

7
,1

4
2

1
,4

6
6

3
,9

5
9

1
,8

4
3

3
,5

4
3

S
-R

V
M

-
S

iz
e

1
,7

0
3

5
,2

7
1

6
,3

7
8

2
4
,1

1
0

1
,5

5
5

1
,7

9
9

3
,9

8
2

7
,1

3
2

1
,4

9
4

3
,9

5
9

1
,9

0
9

3
,5

8
0

S
-R

V
M

-
P

re
ss

u
re

1
,6

4
7

5
,2

8
5

6
,3

8
5

2
4
,0

2
1

1
,5

7
7

1
,8

1
4

3
,9

6
5

7
,0

2
4

1
,4

7
9

3
,9

3
1

1
,9

1
2

3
,5

6
5

4
X

J
ik

es
R

V
M

1
,5

8
1

4
,9

3
7

6
,4

7
2

2
3
,6

4
6

1
,5

5
4

1
,8

4
4

3
,9

6
9

6
,9

7
9

1
,4

6
9

3
,8

5
0

1
,7

8
5

3
,4

9
7

S
-R

V
M

-
S

iz
e

1
,5

8
9

5
,2

9
0

6
,2

8
8

2
3
,8

4
3

1
,5

7
1

1
,8

0
4

3
,9

8
2

6
,9

6
1

1
,4

7
8

3
,7

8
2

1
,7

8
9

3
,5

0
8

S
-R

V
M

-
P

re
ss

u
re

1
,5

8
5

5
,2

8
3

6
,2

9
6

2
3
,9

7
7

1
,5

5
5

1
,8

3
3

3
,9

7
5

6
,9

4
0

1
,5

3
0

3
,8

0
4

1
,7

8
9

3
,5

2
2

5
X

J
ik

es
R

V
M

1
,5

5
9

4
,9

8
8

6
,4

8
1

2
3
,7

9
6

1
,5

5
8

1
,8

4
2

3
,9

3
9

7
,0

1
8

1
,4

6
0

3
,8

4
0

1
,7

4
5

3
,4

8
8

S
-R

V
M

-
S

iz
e

1
,6

0
4

5
,2

7
9

6
,2

3
0

2
3
,9

4
3

1
,5

5
4

1
,7

7
0

3
,9

8
5

6
,9

3
3

1
,4

7
8

3
,8

1
5

1
,7

3
4

3
,4

9
1

S
-R

V
M

-
P

re
ss

u
re

1
,5

7
7

5
,4

0
6

6
,2

6
1

2
3
,8

6
3

1
,5

4
9

1
,7

6
6

3
,9

7
2

6
,9

2
0

1
,4

9
5

3
,8

4
1

1
,7

2
1

3
,4

9
4

6
X

J
ik

es
R

V
M

1
,5

6
9

5
,0

0
6

6
,4

4
0

2
3
,7

3
7

1
,5

5
8

1
,8

8
5

4
,0

0
8

7
,0

1
6

1
,4

7
8

3
,8

4
5

1
,7

5
1

3
,5

0
7

S
-R

V
M

-
S

iz
e

1
,6

1
0

5
,2

8
3

6
,2

4
5

2
3
,8

7
3

1
,5

8
0

1
,8

3
1

3
,9

7
6

6
,9

5
4

1
,4

8
8

3
,8

1
5

1
,7

4
3

3
,5

1
2

S
-R

V
M

-
P

re
ss

u
re

1
,5

7
2

5
,3

4
4

6
,2

1
0

2
3
,8

8
9

1
,5

5
7

1
,8

3
3

3
,9

7
1

6
,9

4
4

1
,5

0
9

3
,8

2
2

1
,7

3
8

3
,5

0
6

7
X

J
ik

es
R

V
M

1
,5

7
3

5
,0

2
2

6
,4

1
8

2
3
,7

8
6

1
,5

4
3

1
,8

2
9

3
,9

6
5

7
,0

2
5

1
,4

6
4

3
,8

3
4

1
,6

9
4

3
,4

7
8

S
-R

V
M

-
S

iz
e

1
,5

9
6

5
,3

2
0

6
,2

6
6

2
3
,8

8
0

1
,5

6
2

1
,7

9
2

3
,9

9
1

6
,9

3
1

1
,4

8
4

3
,7

8
1

1
,7

3
9

3
,4

9
8

S
-R

V
M

-
P

re
ss

u
re

1
,5

6
9

5
,3

0
7

6
,2

3
1

2
3
,9

1
7

1
,5

5
1

1
,8

4
6

3
,9

2
7

6
,9

3
4

1
,4

9
2

3
,8

3
3

1
,6

9
8

3
,4

9
1

8
X

J
ik

es
R

V
M

1
,5

7
0

4
,9

6
9

6
,4

2
5

2
3
,9

0
3

1
,5

6
3

1
,8

2
4

3
,9

4
9

7
,0

1
2

1
,4

5
3

3
,8

4
0

1
,6

7
8

3
,4

7
3

S
-R

V
M

-
S

iz
e

1
,5

7
8

5
,3

3
9

6
,2

3
3

2
3
,9

6
3

1
,5

6
3

1
,8

1
6

3
,9

9
5

6
,9

5
4

1
,5

0
0

3
,8

4
1

1
,6

4
6

3
,4

9
2

S
-R

V
M

-
P

re
ss

u
re

1
,5

9
1

5
,3

1
8

6
,2

1
3

2
3
,9

3
7

1
,5

7
1

1
,8

1
4

3
,9

8
0

6
,9

3
7

1
,4

9
6

3
,8

1
0

1
,6

4
5

3
,4

8
8

9
X

J
ik

es
R

V
M

1
,5

3
7

4
,9

3
2

6
,4

0
6

2
3
,6

7
5

1
,5

6
3

1
,8

4
2

3
,9

9
9

6
,9

7
1

1
,4

5
6

3
,8

3
0

1
,6

6
0

3
,4

6
1

S
-R

V
M

-
S

iz
e

1
,5

8
0

5
,3

2
6

6
,2

0
6

2
3
,7

3
8

1
,5

7
6

1
,8

4
5

3
,9

8
6

6
,8

7
7

1
,4

9
0

3
,8

2
7

1
,6

4
2

3
,4

8
7

S
-R

V
M

-
P

re
ss

u
re

1
,5

7
3

5
,3

3
9

6
,2

2
7

2
3
,8

1
0

1
,5

7
5

1
,7

9
2

3
,9

8
2

6
,9

3
5

1
,4

9
9

3
,7

8
3

1
,6

4
4

3
,4

7
9

1
0
X

J
ik

es
R

V
M

1
,5

8
0

5
,0

1
4

6
,4

4
2

2
3
,7

7
1

1
,5

4
6

1
,8

3
1

3
,9

7
8

7
,0

0
9

1
,4

5
3

3
,8

7
2

1
,6

7
1

3
,4

7
8

S
-R

V
M

-
S

iz
e

1
,5

8
8

5
,2

7
0

6
,2

1
6

2
3
,8

5
5

1
,5

6
7

1
,8

0
1

3
,9

8
2

6
,9

8
0

1
,4

9
9

3
,8

0
0

1
,6

3
9

3
,4

8
1

S
-R

V
M

-
P

re
ss

u
re

1
,5

7
9

5
,3

1
3

6
,2

3
1

2
3
,8

3
2

1
,5

6
9

1
,7

8
3

3
,9

6
7

6
,9

8
1

1
,4

8
4

3
,8

2
8

1
,6

5
6

3
,4

8
1

T
ab

le
C

.1
2:

M
ea

n
ex

ec
u
ti

on
ti

m
es

of
th

e
D

aC
ap

o
b

en
ch

m
ar

k
s

at
th

e
12

th
it

er
at

io
n

(m
s)

129

H
e
a
p

S
iz

e
C

o
n

fi
g
u

r
a
tio

n
a
n
tlr

b
lo

a
t

c
h

a
r
t

e
c
lip

se
fo

p
h

sq
ld

b
jy

th
o
n

lu
in

d
e
x

lu
se

a
r
c
h

p
m

d
x
a
la

n
m

e
a
n

2
X

J
ik

esR
V

M
1
,7

7
1

5
,1

0
2

6
,7

5
9

2
4
,3

9
8

1
,6

1
1

1
,8

5
1

4
,1

1
4

7
,3

6
2

1
,5

2
4

4
,4

1
3

2
,3

3
3

3
,7

5
8

S
-R

V
M

-
S

ize
1
,9

4
7

5
,5

5
5

6
,6

8
7

2
4
,7

2
3

1
,5

7
8

1
,7

8
2

4
,4

0
6

7
,4

7
7

2
,0

3
7

4
,6

4
0

2
,6

0
2

3
,9

8
9

S
-R

V
M

-
P

ressu
re

1
,8

2
7

5
,4

5
0

6
,5

9
8

2
4
,5

6
0

1
,5

6
1

1
,7

7
7

4
,1

3
2

7
,3

2
7

1
,8

2
9

4
,4

2
0

2
,4

3
0

3
,8

3
8

3
X

J
ik

esR
V

M
1
,6

2
4

5
,0

1
1

6
,5

7
9

2
3
,8

0
7

1
,5

5
9

1
,8

0
6

3
,9

4
7

7
,1

6
8

1
,4

6
2

3
,9

3
8

1
,8

8
0

3
,5

4
1

S
-R

V
M

-
S

ize
1
,7

0
8

5
,2

9
7

6
,3

6
8

2
4
,1

3
0

1
,5

6
1

1
,7

5
5

3
,9

6
7

7
,0

9
3

1
,5

0
8

3
,9

9
8

1
,9

7
3

3
,5

8
9

S
-R

V
M

-
P

ressu
re

1
,6

4
8

5
,3

4
2

6
,3

8
8

2
4
,0

3
4

1
,5

5
4

1
,7

9
4

3
,9

5
8

7
,0

2
1

1
,5

1
2

3
,9

4
1

1
,9

3
5

3
,5

7
2

4
X

J
ik

esR
V

M
1
,5

6
0

4
,9

7
0

6
,4

7
1

2
3
,6

4
7

1
,5

5
3

1
,8

3
2

3
,9

3
8

6
,9

7
9

1
,4

6
1

3
,8

3
1

1
,8

2
8

3
,4

9
5

S
-R

V
M

-
S

ize
1
,5

7
4

5
,2

7
2

6
,3

1
6

2
3
,8

7
0

1
,5

6
5

1
,7

9
0

3
,9

3
8

6
,9

3
9

1
,5

0
0

3
,8

1
5

1
,8

4
6

3
,5

1
5

S
-R

V
M

-
P

ressu
re

1
,5

9
0

5
,2

8
2

6
,2

9
6

2
3
,9

8
7

1
,5

5
0

1
,7

7
2

3
,9

3
3

6
,9

3
8

1
,5

1
1

3
,7

8
3

1
,8

2
4

3
,5

0
8

5
X

J
ik

esR
V

M
1
,5

6
1

4
,9

5
9

6
,4

7
0

2
3
,7

7
8

1
,5

5
4

1
,8

2
7

3
,9

4
0

7
,0

1
6

1
,4

5
7

3
,8

3
2

1
,7

8
0

3
,4

8
8

S
-R

V
M

-
S

ize
1
,5

9
8

5
,2

3
3

6
,2

2
8

2
3
,9

6
5

1
,5

5
3

1
,7

8
5

3
,9

4
1

6
,9

3
1

1
,4

7
7

3
,8

1
8

1
,7

5
8

3
,4

9
0

S
-R

V
M

-
P

ressu
re

1
,5

8
3

5
,3

4
3

6
,2

4
2

2
3
,8

8
1

1
,5

5
1

1
,7

7
4

3
,9

1
7

6
,9

1
1

1
,5

1
6

3
,8

3
3

1
,7

6
3

3
,4

9
9

6
X

J
ik

esR
V

M
1
,5

3
3

4
,9

6
5

6
,4

4
3

2
3
,6

5
2

1
,5

4
3

1
,8

3
7

3
,9

7
6

7
,0

0
8

1
,4

6
7

3
,8

3
4

1
,7

4
6

3
,4

7
8

S
-R

V
M

-
S

ize
1
,5

8
8

5
,3

0
3

6
,2

4
1

2
3
,8

8
4

1
,5

6
5

1
,7

9
9

3
,9

4
5

6
,9

5
1

1
,5

1
3

3
,8

0
5

1
,7

6
0

3
,5

0
6

S
-R

V
M

-
P

ressu
re

1
,5

6
9

5
,2

9
9

6
,2

0
6

2
3
,8

7
8

1
,5

4
8

1
,8

1
8

3
,9

3
7

6
,9

5
5

1
,5

2
9

3
,8

1
6

1
,7

8
2

3
,5

0
7

7
X

J
ik

esR
V

M
1
,5

5
8

5
,0

0
0

6
,4

0
8

2
3
,7

0
6

1
,5

4
9

1
,8

2
4

3
,9

5
2

7
,0

3
1

1
,4

7
1

3
,8

0
4

1
,7

6
0

3
,4

8
3

S
-R

V
M

-
S

ize
1
,5

8
6

5
,3

3
1

6
,2

6
3

2
3
,8

3
8

1
,5

5
4

1
,7

6
1

3
,9

4
5

6
,9

2
2

1
,4

9
7

3
,7

7
9

1
,7

6
4

3
,4

9
2

S
-R

V
M

-
P

ressu
re

1
,5

6
8

5
,2

6
8

6
,2

1
3

2
3
,8

9
2

1
,5

5
9

1
,7

9
0

3
,8

7
4

6
,9

2
6

1
,5

4
9

3
,8

1
0

1
,7

9
0

3
,5

0
1

8
X

J
ik

esR
V

M
1
,5

3
8

4
,9

6
0

6
,4

3
0

2
3
,9

0
0

1
,5

4
4

1
,8

1
6

3
,9

5
8

6
,9

9
9

1
,4

8
1

3
,8

4
8

1
,6

8
3

3
,4

6
8

S
-R

V
M

-
S

ize
1
,5

8
3

5
,3

1
9

6
,2

2
0

2
3
,8

9
9

1
,5

5
3

1
,7

8
7

3
,9

4
0

6
,9

5
1

1
,5

1
1

3
,8

3
9

1
,7

0
5

3
,4

9
2

S
-R

V
M

-
P

ressu
re

1
,5

7
7

5
,2

9
1

6
,2

1
2

2
3
,9

1
2

1
,5

6
7

1
,8

0
5

3
,9

3
7

6
,9

4
2

1
,5

1
4

3
,8

0
7

1
,6

8
9

3
,4

8
9

9
X

J
ik

esR
V

M
1
,5

2
0

4
,9

5
1

6
,4

0
3

2
3
,6

5
8

1
,5

6
9

1
,8

5
7

3
,9

6
6

6
,9

7
6

1
,4

5
9

3
,8

3
0

1
,6

9
5

3
,4

6
7

S
-R

V
M

-
S

ize
1
,5

9
0

5
,3

0
7

6
,1

9
9

2
3
,6

8
3

1
,5

7
0

1
,7

9
9

3
,9

5
4

6
,8

6
8

1
,5

0
9

3
,8

1
8

1
,7

0
4

3
,4

8
9

S
-R

V
M

-
P

ressu
re

1
,5

9
3

5
,3

0
1

6
,2

2
1

2
3
,7

6
2

1
,5

6
2

1
,7

8
1

3
,9

5
6

6
,9

2
6

1
,4

9
8

3
,7

8
0

1
,6

9
5

3
,4

8
2

1
0
X

J
ik

esR
V

M
1
,5

3
8

5
,0

1
1

6
,4

3
8

2
3
,6

8
7

1
,5

4
1

1
,8

2
1

3
,9

4
5

7
,0

0
7

1
,4

6
5

3
,8

5
7

1
,7

2
9

3
,4

7
4

S
-R

V
M

-
S

ize
1
,5

6
8

5
,2

6
5

6
,2

1
8

2
3
,7

6
8

1
,5

5
8

1
,8

0
4

3
,9

3
8

6
,9

5
1

1
,5

1
9

3
,8

2
1

1
,6

7
9

3
,4

8
3

S
-R

V
M

-
P

ressu
re

1
,5

7
6

5
,2

4
2

6
,2

0
4

2
3
,7

6
5

1
,5

6
5

1
,7

3
7

3
,9

3
5

6
,9

6
6

1
,4

8
0

3
,8

2
4

1
,6

8
0

3
,4

6
4

T
ab

le
C

.13:
M

ean
ex

ecu
tion

tim
es

of
th

e
D

aC
ap

o
b

en
ch

m
ark

s
at

th
e

13
th

iteration
(m

s)

130

H
e
a
p

S
iz

e
C

o
n

fi
g
u

r
a
ti

o
n

a
n
tl

r
b

lo
a
t

c
h

a
r
t

e
c
li

p
se

fo
p

h
sq

ld
b

jy
th

o
n

lu
in

d
e
x

lu
se

a
r
c
h

p
m

d
x
a
la

n
m

e
a
n

2
X

J
ik

es
R

V
M

1
,8

8
4

5
,0

4
6

6
,7

3
1

2
4
,4

3
0

1
,5

7
8

1
,8

1
7

4
,1

0
0

7
,3

8
0

1
,5

6
0

4
,3

4
4

2
,2

3
8

3
,7

4
9

S
-R

V
M

-
S

iz
e

1
,9

7
1

5
,4

4
1

6
,7

2
4

2
4
,6

8
2

1
,5

8
6

1
,7

6
0

4
,4

4
4

7
,5

0
8

1
,9

1
0

4
,5

7
2

2
,5

6
6

3
,9

5
6

S
-R

V
M

-
P

re
ss

u
re

1
,8

3
1

5
,4

3
9

6
,5

7
9

2
4
,5

6
1

1
,5

4
9

1
,7

6
8

4
,1

8
1

7
,3

7
1

1
,9

7
5

4
,4

4
8

2
,3

4
5

3
,8

5
6

3
X

J
ik

es
R

V
M

1
,6

4
0

4
,9

6
4

6
,5

7
9

2
3
,7

4
8

1
,5

7
1

1
,8

4
5

3
,9

2
5

7
,1

1
2

1
,4

5
1

3
,8

9
1

1
,8

4
3

3
,5

3
3

S
-R

V
M

-
S

iz
e

1
,6

7
2

5
,2

8
2

6
,3

7
0

2
4
,0

5
2

1
,5

5
2

1
,7

6
8

3
,9

3
4

7
,1

6
0

1
,5

3
8

3
,9

2
0

1
,9

1
2

3
,5

7
1

S
-R

V
M

-
P

re
ss

u
re

1
,6

5
7

5
,3

2
7

6
,3

8
6

2
3
,9

5
0

1
,5

4
6

1
,7

6
4

3
,9

0
1

7
,0

3
4

1
,5

7
2

3
,8

9
3

1
,8

8
9

3
,5

6
1

4
X

J
ik

es
R

V
M

1
,5

7
9

4
,9

2
7

6
,4

7
9

2
3
,5

8
0

1
,5

5
1

1
,8

0
4

3
,9

2
4

6
,9

7
7

1
,4

7
8

3
,8

5
6

1
,7

6
9

3
,4

8
4

S
-R

V
M

-
S

iz
e

1
,5

8
3

5
,3

3
8

6
,2

7
8

2
3
,7

5
1

1
,5

6
0

1
,7

8
3

3
,9

2
5

6
,9

0
6

1
,5

6
6

3
,7

9
9

1
,8

0
1

3
,5

1
7

S
-R

V
M

-
P

re
ss

u
re

1
,5

6
7

5
,2

9
4

6
,2

9
3

2
3
,8

9
8

1
,5

5
9

1
,7

9
4

3
,9

0
4

6
,9

3
9

1
,5

3
9

3
,8

2
1

1
,8

1
3

3
,5

1
4

5
X

J
ik

es
R

V
M

1
,5

5
1

4
,9

8
1

6
,4

6
8

2
3
,6

7
5

1
,5

5
9

1
,8

1
4

3
,9

3
1

7
,0

0
6

1
,4

7
6

3
,8

1
8

1
,7

2
5

3
,4

7
6

S
-R

V
M

-
S

iz
e

1
,5

6
2

5
,2

6
7

6
,2

2
0

2
3
,8

4
9

1
,5

4
3

1
,7

5
2

3
,9

3
7

6
,9

2
0

1
,5

5
7

3
,8

8
3

1
,7

4
7

3
,4

9
4

S
-R

V
M

-
P

re
ss

u
re

1
,5

6
2

5
,3

4
4

6
,2

4
0

2
3
,7

8
4

1
,5

4
8

1
,8

0
8

3
,9

1
0

6
,9

0
5

1
,5

2
0

3
,8

4
1

1
,7

4
5

3
,4

9
6

6
X

J
ik

es
R

V
M

1
,5

3
5

4
,9

6
1

6
,4

3
9

2
3
,6

0
2

1
,5

4
8

1
,8

2
1

3
,9

3
4

7
,0

1
7

1
,4

7
6

3
,8

1
8

1
,7

1
9

3
,4

6
8

S
-R

V
M

-
S

iz
e

1
,5

8
8

5
,2

9
0

6
,2

4
5

2
3
,8

4
2

1
,5

6
7

1
,7

4
6

3
,9

1
0

6
,9

6
3

1
,5

3
3

3
,8

6
1

1
,7

3
9

3
,4

9
8

S
-R

V
M

-
P

re
ss

u
re

1
,5

7
2

5
,2

8
9

6
,1

9
3

2
3
,7

9
8

1
,5

5
7

1
,7

9
6

3
,8

8
5

6
,9

3
3

1
,5

2
5

3
,8

3
8

1
,7

3
3

3
,4

9
0

7
X

J
ik

es
R

V
M

1
,5

5
5

4
,9

8
9

6
,4

1
5

2
3
,6

8
4

1
,5

3
9

1
,8

2
9

3
,9

1
8

7
,0

0
8

1
,4

7
1

3
,8

2
4

1
,7

2
9

3
,4

7
3

S
-R

V
M

-
S

iz
e

1
,5

6
2

5
,3

7
2

6
,2

6
2

2
3
,7

4
8

1
,5

5
8

1
,7

7
4

3
,9

2
4

6
,9

1
5

1
,5

5
7

3
,8

0
0

1
,7

3
6

3
,4

9
9

S
-R

V
M

-
P

re
ss

u
re

1
,5

8
8

5
,2

7
2

6
,2

2
8

2
3
,8

1
9

1
,5

5
0

1
,7

7
5

3
,8

9
7

6
,9

2
4

1
,5

5
6

3
,8

6
6

1
,7

3
0

3
,4

9
8

8
X

J
ik

es
R

V
M

1
,5

6
0

4
,9

5
8

6
,4

2
7

2
3
,8

2
5

1
,5

4
7

1
,8

4
3

3
,9

3
0

6
,9

8
3

1
,4

8
7

3
,8

5
3

1
,6

5
1

3
,4

6
9

S
-R

V
M

-
S

iz
e

1
,5

7
4

5
,2

9
8

6
,2

1
8

2
3
,8

5
5

1
,5

5
7

1
,7

7
9

3
,9

1
7

6
,9

4
6

1
,5

4
3

3
,8

3
4

1
,6

7
0

3
,4

8
5

S
-R

V
M

-
P

re
ss

u
re

1
,5

7
2

5
,2

6
8

6
,2

1
0

2
3
,8

2
5

1
,5

6
2

1
,7

9
0

3
,9

0
3

6
,9

2
9

1
,5

9
9

3
,8

5
5

1
,6

5
7

3
,4

9
4

9
X

J
ik

es
R

V
M

1
,5

7
5

4
,9

0
6

6
,4

1
7

2
3
,5

5
7

1
,5

5
3

1
,8

3
0

3
,9

5
6

6
,9

9
7

1
,4

7
0

3
,8

2
5

1
,6

3
3

3
,4

5
7

S
-R

V
M

-
S

iz
e

1
,6

0
3

5
,2

9
0

6
,1

9
3

2
3
,6

4
5

1
,5

6
7

1
,8

0
8

3
,9

2
8

6
,8

8
1

1
,5

4
2

3
,8

3
6

1
,6

7
9

3
,4

9
3

S
-R

V
M

-
P

re
ss

u
re

1
,5

7
0

5
,2

9
5

6
,2

2
3

2
3
,6

4
9

1
,5

6
7

1
,7

7
1

3
,9

1
6

6
,9

1
7

1
,5

2
9

3
,8

0
6

1
,6

8
9

3
,4

7
9

1
0
X

J
ik

es
R

V
M

1
,5

4
3

4
,9

9
6

6
,4

5
3

2
3
,6

3
1

1
,5

4
3

1
,8

3
3

3
,9

2
3

6
,9

9
0

1
,4

6
5

3
,8

6
6

1
,6

6
9

3
,4

6
4

S
-R

V
M

-
S

iz
e

1
,5

9
3

5
,2

9
1

6
,2

3
0

2
3
,6

7
0

1
,5

5
9

1
,7

6
4

3
,9

1
5

6
,9

5
3

1
,5

4
9

3
,8

2
0

1
,6

8
7

3
,4

8
8

S
-R

V
M

-
P

re
ss

u
re

1
,5

9
8

5
,2

8
4

6
,2

1
7

2
3
,6

9
5

1
,5

6
9

1
,7

7
4

3
,8

9
6

6
,9

6
8

1
,5

2
0

3
,8

2
9

1
,6

8
8

3
,4

8
6

T
ab

le
C

.1
4:

M
ea

n
ex

ec
u
ti

on
ti

m
es

of
th

e
D

aC
ap

o
b

en
ch

m
ar

k
s

at
th

e
14

th
it

er
at

io
n

(m
s)

131

H
e
a
p

S
iz

e
C

o
n

fi
g
u

r
a
tio

n
a
n
tlr

b
lo

a
t

c
h

a
r
t

e
c
lip

se
fo

p
h

sq
ld

b
jy

th
o
n

lu
in

d
e
x

lu
se

a
r
c
h

p
m

d
x
a
la

n
m

e
a
n

2
X

J
ik

esR
V

M
1
,7

9
3

5
,0

8
7

6
,7

4
1

2
4
,3

4
3

1
,6

0
2

1
,8

1
0

4
,0

4
9

7
,3

1
6

1
,5

6
0

4
,3

5
5

2
,2

2
7

3
,7

3
0

S
-R

V
M

-
S

ize
1
,9

2
0

5
,4

3
6

6
,7

1
8

2
4
,6

7
8

1
,6

1
5

1
,7

3
9

4
,2

6
3

7
,5

1
0

1
,7

1
7

4
,6

7
0

2
,5

1
1

3
,8

9
5

S
-R

V
M

-
P

ressu
re

1
,8

1
0

5
,5

1
6

6
,5

7
6

2
4
,4

6
9

1
,5

4
3

1
,7

7
5

4
,0

9
4

7
,3

4
2

1
,6

9
0

4
,4

6
6

2
,3

6
2

3
,7

9
6

3
X

J
ik

esR
V

M
1
,5

9
3

4
,9

6
1

6
,5

8
6

2
3
,7

4
0

1
,5

7
3

1
,8

0
5

3
,8

9
0

7
,0

8
1

1
,4

6
4

3
,9

4
0

1
,8

4
2

3
,5

2
0

S
-R

V
M

-
S

ize
1
,6

8
0

5
,2

8
8

6
,3

5
8

2
3
,9

9
0

1
,5

6
2

1
,7

7
5

3
,9

2
0

7
,1

4
0

1
,5

6
7

3
,9

2
6

1
,8

8
2

3
,5

7
4

S
-R

V
M

-
P

ressu
re

1
,6

1
0

5
,3

3
3

6
,3

6
9

2
3
,9

1
3

1
,5

5
2

1
,7

8
0

3
,8

7
8

7
,0

0
6

1
,5

9
2

3
,8

8
3

1
,8

8
2

3
,5

5
4

4
X

J
ik

esR
V

M
1
,5

2
9

4
,9

3
7

6
,4

7
0

2
3
,5

2
0

1
,5

5
4

1
,8

3
4

3
,8

8
4

6
,9

5
6

1
,4

8
6

3
,8

4
8

1
,7

6
9

3
,4

7
6

S
-R

V
M

-
S

ize
1
,5

8
4

5
,2

6
1

6
,2

8
4

2
3
,7

5
8

1
,5

6
0

1
,7

3
6

3
,8

6
6

6
,9

0
6

1
,5

5
8

3
,7

7
1

1
,8

0
5

3
,4

9
7

S
-R

V
M

-
P

ressu
re

1
,5

4
2

5
,2

7
9

6
,2

7
6

2
3
,7

9
6

1
,5

4
9

1
,7

6
1

3
,8

6
6

6
,9

2
8

1
,5

6
8

3
,7

7
9

1
,7

8
9

3
,4

9
2

5
X

J
ik

esR
V

M
1
,5

4
0

4
,9

8
3

6
,4

5
9

2
3
,6

1
8

1
,5

5
4

1
,8

0
5

3
,9

0
9

6
,9

9
1

1
,4

7
9

3
,8

1
7

1
,7

3
0

3
,4

6
9

S
-R

V
M

-
S

ize
1
,5

4
9

5
,2

6
1

6
,2

2
0

2
3
,8

4
6

1
,5

3
9

1
,7

7
5

3
,8

9
7

6
,9

1
2

1
,5

9
2

3
,8

2
8

1
,7

0
5

3
,4

8
6

S
-R

V
M

-
P

ressu
re

1
,5

8
8

5
,3

3
0

6
,2

3
1

2
3
,7

1
9

1
,5

4
2

1
,7

6
4

3
,8

7
5

6
,8

8
0

1
,5

4
4

3
,8

1
7

1
,7

0
2

3
,4

8
1

6
X

J
ik

esR
V

M
1
,5

5
1

4
,9

3
4

6
,4

2
8

2
3
,5

1
7

1
,5

5
2

1
,7

9
4

3
,9

4
0

6
,9

9
3

1
,4

8
5

3
,8

3
1

1
,7

2
5

3
,4

6
7

S
-R

V
M

-
S

ize
1
,5

5
1

5
,2

7
3

6
,2

4
1

2
3
,8

0
4

1
,5

7
0

1
,7

8
3

3
,8

9
1

7
,0

2
0

1
,5

6
0

3
,7

9
1

1
,7

3
5

3
,4

9
6

S
-R

V
M

-
P

ressu
re

1
,5

5
5

5
,3

1
1

6
,1

8
7

2
3
,7

8
8

1
,5

5
5

1
,7

8
9

3
,8

5
6

6
,9

0
6

1
,5

5
3

3
,7

9
5

1
,7

2
3

3
,4

8
3

7
X

J
ik

esR
V

M
1
,5

5
1

4
,9

9
1

6
,4

2
0

2
3
,6

1
7

1
,5

4
1

1
,8

1
3

3
,8

8
6

6
,9

8
6

1
,4

6
9

3
,7

9
1

1
,6

6
0

3
,4

5
0

S
-R

V
M

-
S

ize
1
,5

6
1

5
,3

0
2

6
,2

5
9

2
3
,7

3
1

1
,5

6
1

1
,7

7
0

3
,8

8
6

6
,9

2
5

1
,5

6
7

3
,8

0
1

1
,7

4
3

3
,4

9
5

S
-R

V
M

-
P

ressu
re

1
,5

6
8

5
,2

8
9

6
,2

1
8

2
3
,8

1
3

1
,5

5
0

1
,7

5
3

3
,8

3
4

6
,9

1
7

1
,5

2
2

3
,8

3
4

1
,6

9
5

3
,4

6
9

8
X

J
ik

esR
V

M
1
,5

2
9

4
,9

6
7

6
,4

2
6

2
3
,7

6
7

1
,5

5
2

1
,8

1
9

3
,9

1
7

6
,9

9
5

1
,4

6
8

3
,8

4
1

1
,6

4
7

3
,4

5
3

S
-R

V
M

-
S

ize
1
,5

6
2

5
,3

0
5

6
,2

1
7

2
3
,7

8
9

1
,5

4
6

1
,7

6
9

3
,9

1
8

6
,9

3
0

1
,5

5
2

3
,8

2
9

1
,6

7
4

3
,4

7
9

S
-R

V
M

-
P

ressu
re

1
,5

8
0

5
,3

0
7

6
,2

0
5

2
3
,8

6
1

1
,5

5
9

1
,7

5
5

3
,8

7
2

6
,9

4
3

1
,5

7
8

3
,7

7
6

1
,6

5
2

3
,4

7
7

9
X

J
ik

esR
V

M
1
,5

4
7

4
,9

1
0

6
,4

3
5

2
3
,5

6
2

1
,5

5
1

1
,7

9
8

3
,9

3
8

7
,0

2
0

1
,4

7
7

3
,8

1
8

1
,6

3
9

3
,4

4
9

S
-R

V
M

-
S

ize
1
,5

3
6

5
,2

8
5

6
,1

9
0

2
3
,5

8
3

1
,5

5
9

1
,7

7
8

3
,8

8
6

6
,8

7
4

1
,5

3
3

3
,8

0
6

1
,6

6
7

3
,4

6
1

S
-R

V
M

-
P

ressu
re

1
,5

6
9

5
,2

9
8

6
,2

1
9

2
3
,5

9
3

1
,5

5
4

1
,7

4
3

3
,8

8
3

6
,8

9
3

1
,5

7
3

3
,7

6
3

1
,6

5
3

3
,4

6
5

1
0
X

J
ik

esR
V

M
1
,5

2
1

5
,0

0
4

6
,4

5
2

2
3
,5

5
7

1
,5

5
6

1
,7

9
0

3
,9

1
9

6
,9

5
9

1
,4

7
6

3
,8

2
8

1
,6

5
0

3
,4

4
8

S
-R

V
M

-
S

ize
1
,5

4
6

5
,2

6
9

6
,2

2
3

2
3
,6

7
2

1
,5

6
2

1
,7

6
7

3
,8

8
2

6
,9

4
3

1
,5

8
9

3
,8

1
0

1
,6

4
1

3
,4

7
3

S
-R

V
M

-
P

ressu
re

1
,5

4
6

5
,2

2
6

6
,2

0
6

2
3
,6

7
2

1
,5

5
6

1
,7

5
1

3
,8

7
6

6
,9

2
0

1
,5

9
1

3
,8

0
0

1
,6

5
5

3
,4

6
6

T
ab

le
C

.15:
M

ean
ex

ecu
tion

tim
es

of
th

e
D

aC
ap

o
b

en
ch

m
ark

s
at

th
e

15
th

iteration
(m

s)

132

H
e
a
p

S
iz

e
C

o
n

fi
g
u

r
a
ti

o
n

a
n
tl

r
b

lo
a
t

c
h

a
r
t

e
c
li

p
se

fo
p

h
sq

ld
b

jy
th

o
n

lu
in

d
e
x

lu
se

a
r
c
h

p
m

d
x
a
la

n
m

e
a
n

2
X

J
ik

es
R

V
M

1
,8

4
2

5
,0

6
4

6
,7

5
1

2
4
,3

5
3

1
,6

1
0

1
,7

9
6

4
,0

5
1

7
,3

2
6

1
,6

1
3

4
,3

6
5

2
,2

1
8

3
,7

4
9

S
-R

V
M

-
S

iz
e

1
,8

9
9

5
,6

5
9

6
,7

2
8

2
4
,6

9
8

1
,6

1
7

1
,7

6
1

4
,1

6
1

7
,4

9
7

1
,6

6
7

4
,6

6
6

2
,5

5
7

3
,8

9
8

S
-R

V
M

-
P

re
ss

u
re

1
,7

8
5

5
,5

0
3

6
,6

0
5

2
4
,5

2
6

1
,5

4
1

1
,7

4
8

4
,0

6
9

7
,2

9
1

1
,5

4
3

4
,3

9
6

2
,3

7
7

3
,7

4
8

3
X

J
ik

es
R

V
M

1
,6

0
8

4
,9

8
3

6
,5

7
7

2
3
,6

9
0

1
,5

6
5

1
,8

0
0

3
,8

8
3

7
,0

7
3

1
,5

1
4

3
,8

7
5

1
,8

4
5

3
,5

2
5

S
-R

V
M

-
S

iz
e

1
,6

4
5

5
,3

1
3

6
,3

8
0

2
3
,9

5
7

1
,5

5
7

1
,7

3
8

3
,8

5
9

7
,0

9
6

1
,5

1
4

3
,9

4
4

1
,8

7
8

3
,5

4
5

S
-R

V
M

-
P

re
ss

u
re

1
,6

3
9

5
,2

9
0

6
,3

6
8

2
3
,8

9
9

1
,5

5
1

1
,7

5
8

3
,8

3
0

7
,0

0
4

1
,4

9
6

3
,8

3
2

1
,8

6
5

3
,5

2
1

4
X

J
ik

es
R

V
M

1
,5

2
3

4
,9

0
6

6
,4

6
0

2
3
,4

9
0

1
,5

4
4

1
,8

3
9

3
,8

7
1

6
,9

6
5

1
,4

8
9

3
,8

4
9

1
,7

6
6

3
,4

7
0

S
-R

V
M

-
S

iz
e

1
,5

8
0

5
,2

8
1

6
,2

6
7

2
3
,7

3
3

1
,5

5
3

1
,7

6
2

3
,8

6
0

6
,9

0
0

1
,5

3
1

3
,7

6
1

1
,7

7
7

3
,4

8
6

S
-R

V
M

-
P

re
ss

u
re

1
,5

7
0

5
,3

1
4

6
,2

7
6

2
3
,7

3
2

1
,5

5
1

1
,7

7
9

3
,9

0
3

6
,9

2
8

1
,4

9
7

3
,7

6
5

1
,7

9
2

3
,4

9
0

5
X

J
ik

es
R

V
M

1
,5

1
5

4
,9

5
8

6
,4

6
4

2
3
,6

3
8

1
,5

4
3

1
,7

9
1

3
,8

9
1

6
,9

9
1

1
,5

5
6

3
,8

2
0

1
,7

1
3

3
,4

7
0

S
-R

V
M

-
S

iz
e

1
,5

5
4

5
,2

8
1

6
,2

3
4

2
3
,7

5
8

1
,5

3
8

1
,7

3
7

3
,8

5
7

6
,9

1
4

1
,5

1
1

3
,8

0
1

1
,7

2
2

3
,4

6
2

S
-R

V
M

-
P

re
ss

u
re

1
,5

7
6

5
,3

4
7

6
,2

4
2

2
3
,7

1
1

1
,5

3
8

1
,7

5
0

3
,8

8
2

6
,8

8
7

1
,5

1
3

3
,8

3
3

1
,7

0
8

3
,4

7
4

6
X

J
ik

es
R

V
M

1
,5

4
3

4
,9

6
9

6
,4

4
1

2
3
,5

3
9

1
,5

5
2

1
,7

7
7

3
,9

2
2

6
,9

8
9

1
,5

0
8

3
,8

1
7

1
,7

0
0

3
,4

6
4

S
-R

V
M

-
S

iz
e

1
,5

5
4

5
,3

2
1

6
,2

3
5

2
3
,7

7
0

1
,5

6
3

1
,7

6
0

3
,8

5
1

7
,0

0
6

1
,5

3
4

3
,7

8
7

1
,7

1
4

3
,4

8
0

S
-R

V
M

-
P

re
ss

u
re

1
,5

5
3

5
,3

1
0

6
,2

0
4

2
3
,7

1
7

1
,5

4
7

1
,7

5
0

3
,8

4
8

6
,9

0
9

1
,5

3
7

3
,7

8
5

1
,7

1
5

3
,4

6
7

7
X

J
ik

es
R

V
M

1
,5

4
0

4
,9

5
8

6
,4

1
8

2
3
,6

6
4

1
,5

4
3

1
,8

3
0

3
,8

7
8

6
,9

6
5

1
,5

1
4

3
,8

3
1

1
,6

7
7

3
,4

6
4

S
-R

V
M

-
S

iz
e

1
,5

5
8

5
,3

7
2

6
,2

5
2

2
3
,7

4
3

1
,5

5
5

1
,7

3
2

3
,8

7
1

6
,9

0
6

1
,5

0
8

3
,7

6
8

1
,7

2
5

3
,4

7
0

S
-R

V
M

-
P

re
ss

u
re

1
,5

7
3

5
,2

9
4

6
,2

0
7

2
3
,7

7
0

1
,5

4
8

1
,7

4
6

3
,8

1
6

6
,9

1
3

1
,5

2
1

3
,8

1
2

1
,6

8
3

3
,4

6
1

8
X

J
ik

es
R

V
M

1
,5

2
4

4
,9

7
0

6
,4

5
0

2
3
,6

8
1

1
,5

3
5

1
,8

2
3

3
,8

7
7

6
,9

9
9

1
,5

1
9

3
,8

4
9

1
,6

4
7

3
,4

5
8

S
-R

V
M

-
S

iz
e

1
,5

5
4

5
,3

1
1

6
,2

1
0

2
3
,7

4
1

1
,5

4
2

1
,7

3
8

3
,8

6
9

6
,9

3
0

1
,5

3
2

3
,8

1
5

1
,6

4
1

3
,4

5
5

S
-R

V
M

-
P

re
ss

u
re

1
,5

5
8

5
,2

7
0

6
,2

1
6

2
3
,7

9
3

1
,5

5
9

1
,7

4
9

3
,8

6
3

6
,9

2
5

1
,5

0
3

3
,7

9
0

1
,6

1
6

3
,4

4
7

9
X

J
ik

es
R

V
M

1
,5

6
3

4
,9

3
8

6
,4

2
6

2
3
,4

9
2

1
,5

5
8

1
,8

2
0

3
,9

0
3

7
,0

1
6

1
,4

7
8

3
,8

0
0

1
,6

4
3

3
,4

5
4

S
-R

V
M

-
S

iz
e

1
,5

5
9

5
,3

2
2

6
,1

9
1

2
3
,5

6
7

1
,5

5
3

1
,7

5
2

3
,8

6
4

6
,8

6
6

1
,5

4
2

3
,7

9
6

1
,6

3
2

3
,4

5
4

S
-R

V
M

-
P

re
ss

u
re

1
,5

4
6

5
,2

7
2

6
,1

9
1

2
3
,5

7
3

1
,5

5
3

1
,7

3
5

3
,8

5
3

6
,9

0
9

1
,5

2
9

3
,7

6
9

1
,6

4
5

3
,4

4
4

1
0
X

J
ik

es
R

V
M

1
,5

2
7

4
,9

7
2

6
,4

5
6

2
3
,5

2
6

1
,5

5
5

1
,8

0
5

3
,9

0
0

6
,9

6
4

1
,5

2
4

3
,8

2
3

1
,6

4
4

3
,4

5
7

S
-R

V
M

-
S

iz
e

1
,5

5
8

5
,2

7
4

6
,2

2
6

2
3
,6

3
5

1
,5

4
9

1
,7

1
5

3
,8

4
5

6
,9

5
4

1
,5

1
4

3
,7

8
8

1
,6

2
4

3
,4

4
1

S
-R

V
M

-
P

re
ss

u
re

1
,5

6
8

5
,2

4
1

6
,2

1
0

2
3
,5

7
0

1
,5

4
3

1
,7

5
3

3
,8

5
7

6
,9

1
6

1
,5

4
8

3
,7

9
7

1
,6

3
8

3
,4

5
4

T
ab

le
C

.1
6:

M
ea

n
ex

ec
u
ti

on
ti

m
es

of
th

e
D

aC
ap

o
b

en
ch

m
ar

k
s

at
th

e
16

th
it

er
at

io
n

(m
s)

133

H
e
a
p

S
iz

e
C

o
n

fi
g
u

r
a
tio

n
a
n
tlr

b
lo

a
t

c
h

a
r
t

e
c
lip

se
fo

p
h

sq
ld

b
jy

th
o
n

lu
in

d
e
x

lu
se

a
r
c
h

p
m

d
x
a
la

n
m

e
a
n

2
X

J
ik

esR
V

M
1
,7

6
9

5
,0

3
9

6
,7

2
7

2
4
,3

0
9

1
,5

6
3

1
,7

7
4

4
,0

0
4

7
,2

9
9

1
,7

3
4

4
,3

6
3

2
,2

0
7

3
,7

3
5

S
-R

V
M

-
S

ize
1
,8

9
8

5
,4

1
0

6
,7

0
5

2
4
,7

4
2

1
,5

9
5

1
,7

4
0

4
,2

7
1

7
,4

5
6

1
,6

3
8

4
,5

6
3

2
,5

5
5

3
,8

6
5

S
-R

V
M

-
P

ressu
re

1
,8

0
8

5
,4

6
8

6
,5

9
0

2
4
,5

3
4

1
,5

6
6

1
,7

3
2

4
,1

1
0

7
,2

9
1

1
,5

5
3

4
,4

0
6

2
,3

9
2

3
,7

6
0

3
X

J
ik

esR
V

M
1
,6

0
7

4
,9

4
9

6
,5

9
4

2
3
,7

3
6

1
,5

6
8

1
,8

3
3

3
,8

5
6

7
,0

6
6

1
,5

3
9

3
,9

5
5

1
,8

3
9

3
,5

3
9

S
-R

V
M

-
S

ize
1
,6

3
1

5
,2

3
1

6
,3

8
6

2
3
,9

8
2

1
,5

4
5

1
,7

5
7

3
,8

4
4

7
,1

0
4

1
,4

8
3

3
,9

0
5

1
,8

8
3

3
,5

2
9

S
-R

V
M

-
P

ressu
re

1
,6

4
0

5
,2

6
0

6
,3

6
3

2
3
,9

0
8

1
,5

4
9

1
,7

6
4

3
,8

1
3

7
,0

0
2

1
,4

5
7

3
,8

9
6

1
,8

8
0

3
,5

1
8

4
X

J
ik

esR
V

M
1
,5

1
1

4
,8

9
6

6
,4

8
1

2
3
,4

9
2

1
,5

3
9

1
,8

1
1

3
,8

3
8

6
,9

6
6

1
,5

3
3

3
,8

3
2

1
,7

7
2

3
,4

6
8

S
-R

V
M

-
S

ize
1
,5

5
8

5
,3

1
0

6
,3

0
2

2
3
,7

4
7

1
,5

5
4

1
,7

4
5

3
,8

3
6

6
,8

9
5

1
,4

7
4

3
,7

7
6

1
,8

0
8

3
,4

7
5

S
-R

V
M

-
P

ressu
re

1
,5

5
0

5
,2

7
2

6
,2

6
3

2
3
,7

4
7

1
,5

5
3

1
,7

5
3

3
,8

2
1

6
,9

1
2

1
,4

8
5

3
,7

5
7

1
,7

7
9

3
,4

6
6

5
X

J
ik

esR
V

M
1
,5

5
2

4
,9

4
1

6
,4

6
7

2
3
,6

1
6

1
,5

5
1

1
,7

8
2

3
,8

4
3

6
,9

8
0

1
,4

8
0

3
,8

2
1

1
,7

0
7

3
,4

5
5

S
-R

V
M

-
S

ize
1
,5

5
1

5
,2

6
2

6
,2

3
3

2
3
,7

8
7

1
,5

3
6

1
,7

2
4

3
,8

3
2

6
,8

8
4

1
,4

7
8

3
,8

1
3

1
,7

1
5

3
,4

4
7

S
-R

V
M

-
P

ressu
re

1
,5

3
4

5
,3

1
3

6
,2

4
0

2
3
,6

8
9

1
,5

2
7

1
,7

1
9

3
,8

4
1

6
,8

8
9

1
,4

7
0

3
,8

0
8

1
,7

0
9

3
,4

4
1

6
X

J
ik

esR
V

M
1
,5

2
2

4
,9

3
2

6
,4

5
7

2
3
,5

5
1

1
,5

4
3

1
,8

0
0

3
,8

9
7

6
,9

8
4

1
,5

3
6

3
,8

1
1

1
,7

0
7

3
,4

6
4

S
-R

V
M

-
S

ize
1
,5

4
3

5
,2

7
2

6
,2

5
2

2
3
,7

5
6

1
,5

5
2

1
,7

7
7

3
,8

3
8

7
,0

1
0

1
,4

7
0

3
,7

9
0

1
,7

0
4

3
,4

6
0

S
-R

V
M

-
P

ressu
re

1
,5

5
8

5
,3

3
4

6
,2

2
5

2
3
,7

3
4

1
,5

3
6

1
,7

8
1

3
,8

1
2

6
,8

9
3

1
,4

7
6

3
,7

8
6

1
,7

1
7

3
,4

5
9

7
X

J
ik

esR
V

M
1
,5

2
7

4
,9

8
9

6
,4

1
6

2
3
,5

8
7

1
,5

3
6

1
,7

8
4

3
,8

6
9

6
,9

6
8

1
,5

3
1

3
,8

1
4

1
,6

5
0

3
,4

4
9

S
-R

V
M

-
S

ize
1
,5

4
6

5
,3

1
6

6
,2

2
8

2
3
,6

9
5

1
,5

5
8

1
,7

5
6

3
,8

3
7

6
,9

0
2

1
,4

7
5

3
,7

8
2

1
,6

9
6

3
,4

5
2

S
-R

V
M

-
P

ressu
re

1
,5

4
1

5
,3

2
2

6
,2

3
9

2
3
,7

4
7

1
,5

4
1

1
,7

7
7

3
,7

9
1

6
,9

1
4

1
,4

7
2

3
,8

0
9

1
,7

1
3

3
,4

5
5

8
X

J
ik

esR
V

M
1
,5

1
3

4
,9

9
0

6
,4

5
4

2
3
,7

0
0

1
,5

5
0

1
,7

9
5

3
,8

5
2

7
,0

0
6

1
,5

2
4

3
,8

1
4

1
,6

1
4

3
,4

4
6

S
-R

V
M

-
S

ize
1
,5

5
4

5
,3

0
8

6
,2

0
3

2
3
,6

8
1

1
,5

5
2

1
,7

3
9

3
,8

6
0

6
,9

1
4

1
,4

8
2

3
,8

1
5

1
,6

5
6

3
,4

4
7

S
-R

V
M

-
P

ressu
re

1
,5

5
5

5
,2

4
0

6
,2

4
6

2
3
,7

6
3

1
,5

6
1

1
,7

5
5

3
,8

2
2

6
,9

3
1

1
,4

7
0

3
,7

8
5

1
,6

4
8

3
,4

4
2

9
X

J
ik

esR
V

M
1
,5

2
6

4
,8

9
0

6
,4

1
8

2
3
,4

8
0

1
,5

4
8

1
,7

9
4

3
,8

8
3

7
,0

1
9

1
,5

1
9

3
,8

0
5

1
,6

2
8

3
,4

4
1

S
-R

V
M

-
S

ize
1
,5

5
1

5
,3

0
3

6
,2

0
7

2
3
,5

0
7

1
,5

5
5

1
,7

5
5

3
,8

3
3

6
,8

6
4

1
,4

9
1

3
,7

8
7

1
,6

5
3

3
,4

4
2

S
-R

V
M

-
P

ressu
re

1
,5

3
5

5
,2

9
4

6
,2

0
5

2
3
,5

1
0

1
,5

4
4

1
,7

4
8

3
,8

2
8

6
,8

9
6

1
,4

6
5

3
,7

7
5

1
,6

6
8

3
,4

3
2

1
0
X

J
ik

esR
V

M
1
,5

3
1

5
,0

0
2

6
,4

4
6

2
3
,5

0
5

1
,5

5
5

1
,7

9
4

3
,8

7
9

6
,9

5
9

1
,5

2
8

3
,8

2
5

1
,6

5
1

3
,4

5
7

S
-R

V
M

-
S

ize
1
,5

4
8

5
,2

9
0

6
,2

3
0

2
3
,5

5
1

1
,5

5
3

1
,7

3
2

3
,8

3
8

6
,9

5
6

1
,4

9
6

3
,7

6
1

1
,6

5
2

3
,4

4
1

S
-R

V
M

-
P

ressu
re

1
,5

2
2

5
,2

8
2

6
,2

0
5

2
3
,5

2
3

1
,5

4
3

1
,7

5
7

3
,8

1
2

6
,9

0
3

1
,4

8
1

3
,8

0
3

1
,6

4
3

3
,4

3
1

T
ab

le
C

.17:
M

ean
ex

ecu
tion

tim
es

of
th

e
D

aC
ap

o
b

en
ch

m
ark

s
at

th
e

17
th

iteration
(m

s)

134

H
e
a
p

S
iz

e
C

o
n

fi
g
u

r
a
ti

o
n

a
n
tl

r
b

lo
a
t

c
h

a
r
t

e
c
li

p
se

fo
p

h
sq

ld
b

jy
th

o
n

lu
in

d
e
x

lu
se

a
r
c
h

p
m

d
x
a
la

n
m

e
a
n

2
X

J
ik

es
R

V
M

1
,6

9
5

5
,0

2
4

6
,7

5
6

2
4
,3

0
5

1
,5

5
0

1
,8

1
0

3
,9

8
0

7
,2

9
4

1
,5

3
5

4
,3

7
4

2
,2

4
6

3
,6

8
8

S
-R

V
M

-
S

iz
e

1
,9

2
4

5
,5

1
1

6
,7

1
0

2
4
,6

8
4

1
,5

7
5

1
,7

0
2

4
,1

5
3

7
,4

5
7

1
,6

6
1

4
,5

8
0

2
,5

3
8

3
,8

5
8

S
-R

V
M

-
P

re
ss

u
re

1
,7

7
3

5
,3

9
9

6
,5

9
0

2
4
,5

6
1

1
,5

3
5

1
,7

3
0

3
,9

7
7

7
,2

7
8

1
,5

5
5

4
,4

1
4

2
,3

7
3

3
,7

3
0

3
X

J
ik

es
R

V
M

1
,5

7
9

4
,9

6
5

6
,5

7
7

2
3
,6

6
8

1
,5

4
4

1
,7

9
3

3
,8

2
6

7
,0

6
0

1
,4

6
4

3
,9

1
6

1
,8

0
1

3
,4

9
2

S
-R

V
M

-
S

iz
e

1
,6

2
0

5
,2

5
5

6
,3

9
9

2
3
,9

4
2

1
,5

4
2

1
,7

5
7

3
,8

5
4

7
,1

2
9

1
,4

6
6

3
,8

7
4

1
,8

9
7

3
,5

2
6

S
-R

V
M

-
P

re
ss

u
re

1
,5

8
5

5
,3

4
0

6
,3

4
7

2
3
,9

0
2

1
,5

4
1

1
,7

3
7

3
,8

0
5

6
,9

7
0

1
,4

5
5

3
,9

6
7

1
,8

8
5

3
,5

0
9

4
X

J
ik

es
R

V
M

1
,4

9
5

4
,8

7
5

6
,4

7
1

2
3
,4

5
7

1
,5

3
5

1
,7

9
2

3
,8

3
6

6
,9

7
0

1
,4

7
2

3
,8

2
7

1
,7

5
1

3
,4

4
2

S
-R

V
M

-
S

iz
e

1
,5

5
4

5
,2

5
4

6
,3

0
8

2
3
,6

8
7

1
,5

5
5

1
,7

5
3

3
,8

2
8

6
,8

9
0

1
,4

6
9

3
,7

7
7

1
,7

7
9

3
,4

6
6

S
-R

V
M

-
P

re
ss

u
re

1
,5

1
8

5
,2

6
6

6
,2

5
4

2
3
,6

8
4

1
,5

4
6

1
,7

5
8

3
,7

8
5

6
,9

2
4

1
,4

7
2

3
,7

6
4

1
,7

8
5

3
,4

5
4

5
X

J
ik

es
R

V
M

1
,5

1
0

4
,9

1
5

6
,4

6
6

2
3
,5

7
8

1
,5

5
5

1
,8

0
8

3
,8

2
0

6
,9

8
0

1
,4

8
9

3
,8

1
7

1
,7

1
4

3
,4

5
1

S
-R

V
M

-
S

iz
e

1
,5

6
2

5
,2

8
8

6
,2

3
7

2
3
,7

3
7

1
,5

3
3

1
,7

0
2

3
,8

1
4

6
,8

8
3

1
,4

7
3

3
,7

9
7

1
,7

3
7

3
,4

4
6

S
-R

V
M

-
P

re
ss

u
re

1
,5

3
5

5
,3

4
8

6
,2

4
1

2
3
,6

5
7

1
,5

3
2

1
,7

2
3

3
,8

0
9

6
,8

6
9

1
,4

6
8

3
,8

0
6

1
,7

2
3

3
,4

4
3

6
X

J
ik

es
R

V
M

1
,5

2
6

4
,9

4
5

6
,4

5
5

2
3
,5

0
0

1
,5

3
5

1
,8

2
0

3
,8

7
1

6
,9

8
0

1
,5

2
1

3
,8

0
9

1
,7

3
1

3
,4

6
5

S
-R

V
M

-
S

iz
e

1
,5

3
4

5
,2

7
9

6
,2

3
0

2
3
,7

0
2

1
,5

4
8

1
,7

6
1

3
,8

0
8

6
,9

9
3

1
,4

6
7

3
,7

7
0

1
,7

1
7

3
,4

5
0

S
-R

V
M

-
P

re
ss

u
re

1
,5

6
6

5
,2

9
1

6
,2

3
6

2
3
,6

8
6

1
,5

2
9

1
,7

6
5

3
,8

0
4

6
,8

7
6

1
,4

8
0

3
,7

8
6

1
,7

2
2

3
,4

5
4

7
X

J
ik

es
R

V
M

1
,5

0
1

4
,9

7
1

6
,4

1
4

2
3
,5

4
3

1
,5

3
2

1
,7

8
5

3
,8

3
7

6
,9

6
4

1
,4

7
2

3
,7

7
8

1
,6

6
6

3
,4

2
6

S
-R

V
M

-
S

iz
e

1
,5

3
7

5
,3

1
7

6
,2

2
5

2
3
,6

3
2

1
,5

4
8

1
,7

3
0

3
,8

2
7

6
,8

9
3

1
,4

6
9

3
,7

6
2

1
,7

1
6

3
,4

4
3

S
-R

V
M

-
P

re
ss

u
re

1
,5

4
3

5
,2

9
4

6
,2

3
2

2
3
,7

4
8

1
,5

4
2

1
,7

3
9

3
,7

9
7

6
,9

1
5

1
,4

6
0

3
,8

1
7

1
,7

4
0

3
,4

5
1

8
X

J
ik

es
R

V
M

1
,4

8
1

4
,9

4
0

6
,4

3
5

2
3
,6

0
5

1
,5

3
1

1
,7

9
8

3
,8

5
3

6
,9

8
8

1
,4

7
9

3
,8

2
6

1
,6

3
8

3
,4

2
6

S
-R

V
M

-
S

iz
e

1
,5

4
1

5
,3

0
4

6
,1

9
8

2
3
,7

0
8

1
,5

4
3

1
,7

4
1

3
,8

4
8

6
,8

9
3

1
,4

6
4

3
,8

2
0

1
,6

4
9

3
,4

3
7

S
-R

V
M

-
P

re
ss

u
re

1
,5

4
2

5
,2

4
3

6
,2

3
3

2
3
,7

2
4

1
,5

4
9

1
,7

4
8

3
,8

1
6

6
,9

1
8

1
,4

7
8

3
,7

8
6

1
,6

4
5

3
,4

3
6

9
X

J
ik

es
R

V
M

1
,5

1
2

4
,8

9
7

6
,4

1
1

2
3
,3

7
9

1
,5

4
1

1
,8

0
6

3
,8

4
5

7
,0

1
2

1
,5

1
2

3
,7

9
1

1
,6

5
5

3
,4

3
7

S
-R

V
M

-
S

iz
e

1
,5

4
6

5
,2

6
7

6
,2

1
6

2
3
,4

2
2

1
,5

4
9

1
,7

4
5

3
,8

5
5

6
,8

6
4

1
,4

9
2

3
,7

7
6

1
,6

5
3

3
,4

3
7

S
-R

V
M

-
P

re
ss

u
re

1
,5

3
5

5
,2

7
6

6
,2

2
4

2
3
,4

7
8

1
,5

4
1

1
,7

1
2

3
,8

2
5

6
,8

9
8

1
,4

7
7

3
,7

6
6

1
,6

3
8

3
,4

2
1

1
0
X

J
ik

es
R

V
M

1
,5

3
8

4
,9

7
4

6
,4

5
3

2
3
,4

4
1

1
,5

4
5

1
,7

8
7

3
,8

5
4

6
,9

5
2

1
,4

7
2

3
,7

9
7

1
,6

3
4

3
,4

3
4

S
-R

V
M

-
S

iz
e

1
,5

4
2

5
,2

5
5

6
,2

2
1

2
3
,5

1
6

1
,5

5
2

1
,7

5
1

3
,8

0
2

6
,9

5
0

1
,4

6
5

3
,7

8
8

1
,6

6
7

3
,4

3
6

S
-R

V
M

-
P

re
ss

u
re

1
,5

2
4

5
,2

6
1

6
,2

1
7

2
3
,4

4
1

1
,5

4
7

1
,7

5
1

3
,8

2
5

6
,8

9
7

1
,4

6
8

3
,7

5
4

1
,6

3
4

3
,4

2
1

T
ab

le
C

.1
8:

M
ea

n
ex

ec
u
ti

on
ti

m
es

of
th

e
D

aC
ap

o
b

en
ch

m
ar

k
s

at
th

e
18

th
it

er
at

io
n

(m
s)

135

H
e
a
p

S
iz

e
C

o
n

fi
g
u

r
a
tio

n
a
n
tlr

b
lo

a
t

c
h

a
r
t

e
c
lip

se
fo

p
h

sq
ld

b
jy

th
o
n

lu
in

d
e
x

lu
se

a
r
c
h

p
m

d
x
a
la

n
m

e
a
n

2
X

J
ik

esR
V

M
1
,7

6
6

4
,9

8
5

6
,7

3
7

2
4
,3

6
3

1
,5

6
4

1
,8

0
8

4
,0

4
8

7
,2

9
8

1
,5

1
9

4
,3

3
2

2
,2

6
3

3
,7

0
3

S
-R

V
M

-
S

ize
1
,9

5
5

5
,5

1
4

6
,7

1
5

2
4
,6

0
7

1
,5

6
1

1
,7

2
2

4
,0

8
9

7
,4

5
9

1
,6

6
0

4
,5

4
3

2
,5

2
3

3
,8

5
3

S
-R

V
M

-
P

ressu
re

1
,8

0
2

5
,4

2
0

6
,5

6
7

2
4
,5

2
6

1
,5

7
3

1
,7

1
2

4
,0

0
4

7
,2

7
6

1
,5

5
3

4
,4

1
5

2
,3

0
2

3
,7

3
0

3
X

J
ik

esR
V

M
1
,5

5
8

4
,9

5
1

6
,5

7
6

2
3
,6

7
1

1
,5

4
6

1
,7

8
2

3
,7

9
3

7
,0

7
1

1
,4

5
5

3
,8

9
9

1
,8

2
8

3
,4

8
5

S
-R

V
M

-
S

ize
1
,6

1
2

5
,2

8
6

6
,3

9
2

2
3
,4

8
1

1
,5

3
2

1
,7

0
2

3
,8

1
3

7
,0

8
9

1
,4

7
2

3
,9

9
4

1
,8

9
5

3
,5

1
2

S
-R

V
M

-
P

ressu
re

1
,5

8
8

5
,3

1
4

6
,3

4
8

2
3
,8

2
9

1
,5

4
1

1
,7

3
6

3
,7

9
9

6
,9

7
6

1
,4

6
6

3
,8

8
4

1
,8

5
0

3
,4

9
6

4
X

J
ik

esR
V

M
1
,5

3
6

4
,8

7
8

6
,4

8
8

2
3
,4

7
1

1
,5

3
1

1
,8

0
6

3
,8

0
6

6
,9

5
7

1
,4

4
5

3
,8

4
8

1
,7

8
4

3
,4

5
2

S
-R

V
M

-
S

ize
1
,5

3
1

5
,2

6
5

6
,3

3
7

2
3
,6

8
8

1
,5

4
2

1
,7

3
3

3
,7

9
3

6
,8

9
1

1
,4

6
4

3
,7

6
7

1
,7

6
0

3
,4

4
9

S
-R

V
M

-
P

ressu
re

1
,5

2
0

5
,2

5
4

6
,2

6
3

2
3
,6

8
7

1
,5

4
2

1
,7

2
0

3
,8

1
0

6
,9

0
3

1
,4

8
2

3
,7

7
9

1
,7

8
2

3
,4

5
0

5
X

J
ik

esR
V

M
1
,5

1
4

4
,9

3
6

6
,4

4
6

2
3
,5

0
6

1
,5

5
3

1
,7

8
8

3
,8

1
9

6
,9

7
2

1
,4

5
7

3
,8

0
9

1
,7

2
0

3
,4

4
0

S
-R

V
M

-
S

ize
1
,5

4
7

5
,2

3
9

6
,2

3
1

2
3
,7

3
0

1
,5

3
4

1
,7

1
9

3
,8

1
1

6
,8

8
9

1
,4

6
2

3
,8

1
0

1
,7

1
8

3
,4

3
8

S
-R

V
M

-
P

ressu
re

1
,5

4
2

5
,3

1
2

6
,2

4
0

2
3
,6

2
3

1
,5

2
9

1
,7

1
9

3
,8

1
7

6
,8

6
3

1
,4

7
0

3
,7

9
7

1
,7

0
5

3
,4

3
7

6
X

J
ik

esR
V

M
1
,5

0
1

4
,9

3
4

6
,4

6
4

2
3
,5

0
2

1
,5

3
1

1
,7

9
1

3
,8

5
2

6
,9

7
8

1
,4

5
5

3
,8

2
3

1
,7

1
0

3
,4

3
6

S
-R

V
M

-
S

ize
1
,5

1
7

5
,2

6
4

6
,2

4
3

2
3
,6

2
4

1
,5

5
3

1
,7

1
4

3
,8

0
2

6
,9

9
3

1
,4

7
1

3
,7

5
5

1
,7

1
2

3
,4

3
6

S
-R

V
M

-
P

ressu
re

1
,5

2
7

5
,2

8
7

6
,2

6
2

2
3
,6

5
2

1
,5

3
6

1
,7

5
8

3
,7

7
6

6
,8

7
1

1
,4

7
4

3
,7

8
3

1
,7

2
1

3
,4

4
2

7
X

J
ik

esR
V

M
1
,5

1
5

4
,9

5
2

6
,4

0
1

2
3
,5

6
2

1
,5

3
0

1
,7

9
3

3
,8

3
8

6
,9

6
0

1
,4

4
9

3
,8

1
5

1
,6

5
6

3
,4

2
4

S
-R

V
M

-
S

ize
1
,5

4
2

5
,2

8
8

6
,2

2
7

2
3
,6

4
9

1
,5

4
8

1
,7

4
4

3
,8

0
7

6
,8

9
6

1
,4

7
6

3
,7

7
9

1
,7

4
1

3
,4

5
1

S
-R

V
M

-
P

ressu
re

1
,5

2
7

5
,3

1
6

6
,2

5
3

2
3
,6

8
7

1
,5

3
8

1
,7

2
5

3
,7

7
9

6
,9

2
0

1
,4

7
1

3
,8

1
1

1
,7

4
2

3
,4

4
6

8
X

J
ik

esR
V

M
1
,4

9
0

4
,9

4
7

6
,4

3
2

2
3
,6

1
1

1
,5

3
0

1
,7

7
4

3
,8

1
8

6
,9

8
6

1
,4

5
1

3
,8

4
6

1
,6

3
8

3
,4

1
6

S
-R

V
M

-
S

ize
1
,5

3
3

5
,3

0
2

6
,2

1
2

2
3
,6

8
1

1
,5

4
4

1
,7

3
5

3
,8

2
1

6
,9

0
0

1
,4

5
9

3
,8

0
3

1
,6

6
0

3
,4

3
2

S
-R

V
M

-
P

ressu
re

1
,5

3
0

5
,2

4
2

6
,2

5
1

2
3
,7

0
7

1
,5

4
4

1
,7

2
4

3
,8

2
4

6
,9

2
3

1
,4

7
3

3
,7

8
6

1
,6

4
2

3
,4

2
8

9
X

J
ik

esR
V

M
1
,4

9
4

4
,9

1
0

6
,4

0
0

2
3
,3

5
4

1
,5

4
2

1
,7

7
1

3
,8

4
0

7
,0

1
8

1
,4

4
8

3
,7

8
0

1
,6

3
3

3
,4

0
8

S
-R

V
M

-
S

ize
1
,5

3
1

5
,2

9
7

6
,2

4
1

2
3
,3

9
5

1
,5

5
4

1
,7

3
2

3
,7

9
0

6
,8

6
5

1
,4

8
8

3
,7

7
6

1
,6

5
1

3
,4

2
8

S
-R

V
M

-
P

ressu
re

1
,5

3
9

5
,2

6
6

6
,2

2
5

2
3
,4

6
6

1
,5

4
9

1
,7

0
5

3
,8

2
1

6
,9

0
1

1
,4

6
4

3
,7

4
8

1
,6

7
5

3
,4

2
4

1
0
X

J
ik

esR
V

M
1
,5

0
3

4
,9

5
2

6
,4

5
3

2
3
,4

2
2

1
,5

5
7

1
,7

9
0

3
,8

2
8

6
,9

5
3

1
,4

5
1

3
,8

3
3

1
,6

4
0

3
,4

2
5

S
-R

V
M

-
S

ize
1
,5

2
8

5
,2

3
0

6
,2

4
7

2
3
,4

5
9

1
,5

4
9

1
,7

4
4

3
,8

0
5

6
,9

4
3

1
,4

8
0

3
,7

7
9

1
,6

5
5

3
,4

3
0

S
-R

V
M

-
P

ressu
re

1
,5

1
5

5
,2

1
7

6
,2

1
5

2
3
,4

5
7

1
,5

3
8

1
,7

3
2

3
,7

7
9

6
,8

8
9

1
,4

7
4

3
,7

7
5

1
,6

2
8

3
,4

1
0

T
ab

le
C

.19:
M

ean
ex

ecu
tion

tim
es

of
th

e
D

aC
ap

o
b

en
ch

m
ark

s
at

th
e

19
th

iteration
(m

s)

136

H
e
a
p

S
iz

e
C

o
n

fi
g
u

r
a
ti

o
n

a
n
tl

r
b

lo
a
t

c
h

a
r
t

e
c
li

p
se

fo
p

h
sq

ld
b

jy
th

o
n

lu
in

d
e
x

lu
se

a
r
c
h

p
m

d
x
a
la

n
m

e
a
n

2
X

J
ik

es
R

V
M

1
,7

4
0

5
,0

2
7

6
,7

4
2

2
4
,2

6
2

1
,5

1
8

1
,7

4
3

4
,0

0
2

7
,2

7
6

1
,4

8
3

4
,2

9
8

2
,2

1
2

3
,6

5
5

S
-R

V
M

-
S

iz
e

1
,9

1
8

5
,3

9
3

6
,6

8
7

2
4
,5

7
7

1
,5

2
6

1
,6

7
9

4
,0

5
0

7
,4

0
5

1
,6

0
6

4
,5

6
2

2
,4

8
5

3
,7

9
9

S
-R

V
M

-
P

re
ss

u
re

1
,7

5
0

5
,3

7
9

6
,5

4
1

2
4
,4

0
7

1
,5

1
8

1
,6

6
9

3
,9

4
6

7
,2

3
8

1
,5

1
1

4
,3

5
7

2
,2

7
9

3
,6

7
1

3
X

J
ik

es
R

V
M

1
,5

5
6

4
,9

1
2

6
,5

4
6

2
3
,6

1
8

1
,5

2
0

1
,7

4
3

3
,7

7
6

7
,0

4
5

1
,4

2
7

3
,8

6
0

1
,8

0
2

3
,4

5
1

S
-R

V
M

-
S

iz
e

1
,5

7
5

5
,2

1
1

6
,3

3
9

2
3
,8

4
7

1
,5

0
0

1
,6

8
0

3
,7

7
3

7
,0

5
7

1
,4

2
9

3
,8

7
0

1
,8

3
5

3
,4

5
8

S
-R

V
M

-
P

re
ss

u
re

1
,5

3
4

5
,2

6
0

6
,3

0
6

2
3
,7

7
3

1
,5

0
2

1
,6

8
6

3
,7

3
4

6
,9

4
9

1
,4

3
6

3
,8

5
7

1
,8

1
3

3
,4

4
0

4
X

J
ik

es
R

V
M

1
,4

8
7

4
,8

5
3

6
,4

3
7

2
3
,4

2
6

1
,5

1
3

1
,7

8
0

3
,7

7
5

6
,9

3
5

1
,4

2
9

3
,8

2
4

1
,7

4
1

3
,4

1
2

S
-R

V
M

-
S

iz
e

1
,5

4
2

5
,1

9
5

6
,2

6
2

2
3
,5

1
9

1
,5

0
5

1
,6

6
9

3
,7

4
8

6
,8

6
2

1
,4

4
8

3
,7

3
8

1
,7

3
8

3
,4

0
7

S
-R

V
M

-
P

re
ss

u
re

1
,4

9
5

5
,2

1
1

6
,2

2
2

2
3
,5

7
8

1
,5

0
9

1
,7

0
5

3
,7

3
0

6
,8

6
8

1
,4

5
4

3
,7

1
9

1
,7

2
2

3
,4

0
0

5
X

J
ik

es
R

V
M

1
,4

8
6

4
,8

8
9

6
,4

1
7

2
3
,4

5
4

1
,5

0
7

1
,7

7
5

3
,7

9
2

6
,9

5
0

1
,4

2
3

3
,7

8
9

1
,6

7
1

3
,3

9
7

S
-R

V
M

-
S

iz
e

1
,5

0
1

5
,1

8
7

6
,1

9
3

2
3
,6

4
3

1
,4

9
2

1
,6

7
7

3
,7

5
7

6
,8

5
0

1
,4

4
4

3
,7

6
3

1
,6

4
5

3
,3

7
9

S
-R

V
M

-
P

re
ss

u
re

1
,4

9
0

5
,2

4
0

6
,2

0
3

2
3
,5

3
1

1
,4

9
9

1
,6

7
9

3
,7

5
9

6
,8

1
8

1
,4

3
9

3
,7

6
7

1
,6

5
1

3
,3

8
0

6
X

J
ik

es
R

V
M

1
,4

9
6

4
,8

8
8

6
,4

4
5

2
3
,4

4
2

1
,5

1
7

1
,7

6
1

3
,8

2
4

6
,9

5
0

1
,4

3
5

3
,7

7
5

1
,6

6
5

3
,4

0
2

S
-R

V
M

-
S

iz
e

1
,4

8
5

5
,2

1
4

6
,1

8
7

2
3
,5

7
9

1
,5

1
1

1
,6

7
9

3
,7

3
7

6
,9

4
6

1
,4

5
4

3
,7

4
2

1
,6

6
3

3
,3

8
7

S
-R

V
M

-
P

re
ss

u
re

1
,5

0
4

5
,2

3
2

6
,2

1
9

2
3
,6

0
4

1
,5

0
9

1
,7

0
1

3
,7

1
7

6
,8

4
8

1
,4

4
7

3
,7

4
9

1
,6

8
1

3
,3

9
4

7
X

J
ik

es
R

V
M

1
,4

7
4

4
,8

9
9

6
,3

7
6

2
3
,5

0
7

1
,5

0
3

1
,7

4
5

3
,7

8
1

6
,9

2
9

1
,4

3
6

3
,7

5
9

1
,6

1
7

3
,3

7
6

S
-R

V
M

-
S

iz
e

1
,5

2
2

5
,2

8
0

6
,1

8
4

2
3
,1

3
3

1
,5

2
1

1
,6

7
7

3
,7

4
5

6
,8

5
2

1
,4

3
9

3
,7

1
8

1
,6

8
2

3
,3

8
9

S
-R

V
M

-
P

re
ss

u
re

1
,5

1
0

5
,2

5
8

6
,2

0
4

2
3
,6

2
3

1
,5

1
6

1
,6

6
1

3
,7

2
1

6
,8

8
7

1
,4

4
0

3
,7

6
1

1
,6

0
4

3
,3

7
8

8
X

J
ik

es
R

V
M

1
,4

8
2

4
,8

8
3

6
,4

0
1

2
3
,5

3
8

1
,5

0
9

1
,7

3
5

3
,7

7
0

6
,9

5
8

1
,4

3
3

3
,7

9
4

1
,6

1
4

3
,3

7
9

S
-R

V
M

-
S

iz
e

1
,5

1
6

5
,2

0
7

6
,1

7
8

2
3
,5

7
4

1
,5

0
3

1
,7

0
8

3
,7

5
1

6
,8

6
9

1
,4

5
7

3
,7

6
6

1
,5

8
0

3
,3

8
1

S
-R

V
M

-
P

re
ss

u
re

1
,5

0
6

5
,2

2
5

6
,2

0
6

2
3
,6

4
0

1
,5

1
3

1
,6

8
1

3
,7

4
4

6
,8

7
0

1
,4

4
6

3
,7

2
6

1
,5

8
3

3
,3

7
4

9
X

J
ik

es
R

V
M

1
,5

0
0

4
,8

5
6

6
,3

7
0

2
3
,2

7
7

1
,5

2
5

1
,7

6
9

3
,7

8
8

6
,9

9
9

1
,4

3
1

3
,7

6
0

1
,5

8
8

3
,3

8
1

S
-R

V
M

-
S

iz
e

1
,4

8
1

5
,2

0
6

6
,1

7
5

2
3
,3

0
0

1
,5

3
6

1
,7

1
5

3
,7

3
4

6
,8

2
7

1
,4

4
0

3
,7

5
3

1
,5

7
0

3
,3

6
8

S
-R

V
M

-
P

re
ss

u
re

1
,5

0
8

5
,2

4
4

6
,1

9
2

2
3
,4

0
9

1
,5

0
5

1
,6

8
4

3
,7

5
7

6
,8

6
2

1
,4

4
8

3
,7

2
9

1
,5

8
7

3
,3

7
2

1
0
X

J
ik

es
R

V
M

1
,4

9
7

4
,9

2
4

6
,4

2
4

2
3
,3

9
0

1
,5

2
2

1
,7

5
0

3
,7

8
9

6
,9

2
1

1
,4

2
0

3
,7

9
3

1
,5

9
8

3
,3

8
4

S
-R

V
M

-
S

iz
e

1
,4

9
1

5
,2

5
0

6
,1

9
5

2
3
,3

0
2

1
,5

0
9

1
,6

8
4

3
,7

6
4

6
,8

8
9

1
,4

5
6

3
,7

4
5

1
,5

9
0

3
,3

7
4

S
-R

V
M

-
P

re
ss

u
re

1
,4

8
2

5
,1

8
4

6
,1

6
8

2
3
,3

2
2

1
,5

1
5

1
,6

7
1

3
,7

3
8

6
,8

4
8

1
,4

4
7

3
,7

4
8

1
,5

7
5

3
,3

5
8

T
ab

le
C

.2
0:

M
ea

n
ex

ec
u
ti

on
ti

m
es

of
th

e
D

aC
ap

o
b

en
ch

m
ar

k
s

at
th

e
20

th
it

er
at

io
n

(m
s)

137

Bibliography

Mark Aiken, Manuel Fähndrich, Chris Hawblitzel, Galen Hunt, and James Larus.

Deconstructing process isolation. In Proceedings of the 2006 Workshop on Memory

System Performance and Correctness, pages 1–10, San José, California, United

States, October 2006. ACM.

Antonio Albano, Alan Dearle, Giorgio Ghelli, Chris Marlin, Ron Morrison, Renzo

Orsini, and David Stemple. A framework for comparing type systems for database

programming languages. In Richard Hull, Ron Morrison, and David Stemple, edi-

tors, Proceedings of the Second International Workshop on Database Programming

Languages, pages 170–178, Gleneden Beach, Oregon, United States, 1989. Morgan

Kaufmann.

Jonathan Aldrich and Craig Chambers. Ownership domains: Separating aliasing

policy from mechanism. In Proceedings of the 18th European Conference on

Object-Oriented Programming (ECOOP04), pages 1–25, Oslo, Norway, June 2004.

Springer-Verlag.

Jonathan Aldrich, Valentin Kostadinov, and Craig Chambers. Alias annotations

for program understanding. In Proceedings of the 17th Annual ACM Conference

on Object-Oriented Programming, Systems, Languages, and Applications (OOP-

SLA’02), pages 311–330, Seattle, Washington, United States, November 2002.

Bowen Alpern, John J. Barton, Susan Flynn-Hummel, Ton Ngo, Janice C. Shep-

herd, Clement R. Attanasio, Anthoni Cocchi, Derek Lieber, Mark Mergen, and

Stephen Smith. Implementing Jalapeño in Java. In Proceedings of the 1999 ACM

SIGPLAN Conference on Object-oriented Programming Systems, Languages and

Applications (OOPSLA’99), pages 314–328, Denver, Colorado, United States,

November 1999.

Bowen Alpern, Clement Richard Attanasio, John J. Barton, Michael G. Burke, Perry

Cheng, Jong-Deok Choi, Anthony Cocchi, Stephen J. Fink, David Grove, Michael

Hind, Susan Flynn-Hummel, Derek Lieber, Vassily Litvinov, Mark F. Mergen, Ton

Ngo, James R. Russell, Vivek Sarkar, Mauricio J. Serrano, Janice C. Shepherd,

138

Stephen E. Smith, Vugranam C. Sreedhar, Harini Srinivasan, and John Whaley.

The Jalapeño virtual machine. IBM Systems Journal, 39(1):211–238, February

2000.

American National Standards Institute, Inc. The Programming Language Ada Ref-

erence Manual, ANSI/MIL-STD-1815A-1983, volume 155 of Lecture Notes in

Computer Science. Springer-Verlag, 1983.

Apache Harmony. http://harmony.apache.org.

Austin Armbruster, Jason Baker, Antonio Cunei, Chapman Flack, David Holmes,

Filip Pizlo, Edward Pla, Marek Prochazka, and Jan Vitek. A real-time Java

virtual machine with applications in avionics. ACM Transactions on Embedded

Computing Systems, 7(1), December 2007.

Matthew Arnold, Stephen Fink, David Grove, Michael Hind, and Peter F. Sweeney.

Architecture and policy for adaptive optimization in virtual machines. Research

Report RC23429, IBM, November 2004.

Godmar Back. Isolation, Resource Management and Sharing in the KaffeOS Java

Runtime System. PhD thesis, University of Utah, May 2002.

Godmar Back and Wilson C. Hsieh. Drawing the red line in Java. In Proceedings of

the Seventh Workshop on Hot Topics in Operating Systems, pages 116–121, 1999.

Godmar Back and Wilson C. Hsieh. The KaffeOS Java runtime system. ACM

Transactions on Programming Languages and Systems, 27(4):583–630, July 2005.

Godmar Back, Wilson C. Hsieh, and Jay Lepreau. Processes in KaffeOS: Isolation,

resource management, and sharing in Java. In Proceedings of the Fourth Sympo-

sium on Operating Systems Design and Implementation, San Diego, California,

United States, October 2000a. USENIX Association.

Godmar Back, Patrick Tullmann, Leigh Stoller, Wilson C. Hsieh, and Jay Lepreau.

Techniques for the design of Java operating systems. In Proceedings of the 2000

USENIX Annual Technical Conference, pages 197–210, San Diego, California,

United States, June 2000b.

A. Bensoussan, C. T. Clingen, and R. C. Daley. The Multics virtual memory. In Pro-

ceedings of the Second ACM Symposium on Operating Systems Principles, pages

30–42, Princeton University, New Jersey, United States, October 1969. ACM.

Brian N. Bershad, Thomas E. Anderson, Edward D. Lazoska, and Henry M. Levy.

Lightweight remote procedure call. ACM Transactions on Computer Systems

(TOCS), 8(1):37–55, February 1990.

139

Brian N. Bershad, Craig Chambers, Susan Eggers, Chris Maeda, Dylan McNamee,

Przemys law Pardyak, Stefan Savage, and Emin Gün Sirer. SPIN—an extensi-

ble microkernel for application-specific operating sytem services. In Sixth ACM

SIGOPS European Workshop, pages 68–71, Dagstuhl Castle, Germany, September

1994.

Brian N. Bershad, Stefan Savage, Przemys law Pardyak, David Becker, Marc Fi-

uczynski, and Emin Gün Sirer. Protection is a software issue. In Proceedings of

the Fifth Workshop on Hot Topics in Operating Systems (HotOS-V), pages 62–65,

Orcas island, Washington, United States, May 1995a.

Brian N. Bershad, Stefan Savage, Przemys law Pardyak, Emin Gün Sirer, Marc E.

Fiuczynski, David Becker, Craig Chambers, and Susan Eggers. Extensibility,

safety and performance in the SPIN operating system. In Proceedings of the Fif-

teenth ACM Symposium on Operating Systems Principles, pages 267–283, Copper

Mountain Resort, Colorado, United States, 1995b. ACM. ISBN 0-89791-715-4.

Walter Binder, Jarle G. Hulaas, and Alex Villazón. Portable resource control in

Java: the J-SEAL2 approach. In Proceedings of the 16th Annual ACM Con-

ference on Object-Oriented Programming, Systems, Languages, and Applications

(OOPSLA’01), pages 139–155, Tampa, Florida, United States, October 2001.

Stephen M. Blackburn, Perry Cheng, and Kathryn S. McKinley. Oil and water?

High performance garbage collection in Java with MMTk. In Proceedings of the

26th International Conference on Software Engineering (ICSE 2004), pages 137–

146, Edinburgh, United Kingdom, May 2004. ISBN 0-7695-2163-0.

Stephen M. Blackburn, Robin Garner, and Daniel Frampton. MMTk: The

Memory Management Toolkit, September 2006a. URL http://cs.anu.edu.au/
∼Robin.Garner/mmtk-guide.pdf.

Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khan, Kathryn S.

McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton,

Samuel Z. Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot,

B. Moss, Aashish Phansalkar, Darko Stefanović, Thomas VanDrunen, Daniel von

Dincklage, and Ben Wiedermann. The DaCapo benchmarks: Java benchmarking

development and analysis. In Proceedings of the 21st Annual ACM Conference

on Object-Oriented Programming, Systems, Languages, and Applications (OOP-

SLA’06), pages 169–190, Portland, Oregon, United States, October 2006b. ACM

Press.

Stephen M. Blackburn, Kathryn S. McKinley, Robin Garner, Chris Hoffmann, As-

jad M. Khan, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Framp-

140

ton, Samuel Z. Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee,

J. Eliot B. Moss, Aashish Phansalkar, Darko Stefanović, Thomas VanDrunen,

Daniel von Dincklage, and Ben Wiedermann. Wake up and smell the coffee:

Evaluation methodology for the 21st century. Communications of the ACM, 51

(8):83–89, August 2008. ISSN 0001-0782.

Greg Bollella, Ben Brosgol, Peter Dibble, Steve Furr, James Gosling, David Hardin,

and Mark Turnbull. The Real-Time Specification for Java. Addison-Wesley, June

2000. ISBN 0-201-70323-8.

Carl Friedrich Bolz, Antonio Cuni, Maciej Fijalkowski, and Armin Rigo. Tracing the

meta-level: PyPy’s tracing JIT compiler. In Proceedings of the fourth Workshop

on the Implementation, Compilation, Optimization of Object Oriented Languages

and Programming Systems (ICOOOLPS’09), pages 18–25, Genova, Italy, 2009.

Michael Bond. Static cloning of library methods for application and VM contexts.

http://sourceforge.net/p/jikesrvm/research-archive/39/, April 2013.

Gilad Bracha. Generics in the Java programming language. http://java.sun.com/

j2se/1.5/pdf/generics-tutorial.pdf, July 2004.

Eric Bruneton, Romain Lenglet, and Thierry Coupaye. ASM: A code manipulation

tool to implement adaptable systems. In Adaptable and Extensible Component

Systems, Grenoble, France, November 2002.

Luca Cardelli and Peter Wegner. On understanding types, data abstraction, and

polymorphism. Computing Surveys, 17(4):471–522, 1985.

Shigeru Chiba. Load-time structural reflection in Java. In Proceedings of the 14th

European Conference on Object-Oriented Programming (ECOOP00), pages 313–

336, Cannes, France, June 2000.

David Clarke. Object Ownership & Containment. PhD thesis, University of New

South Wales, July 2001.

David G. Clarke, John M. Potter, and James Noble. Ownership types for flexible

alias protection. ACM SIGPLAN Notices, 33(10):48–64, 1998. ISSN 0362-1340.

Richard C. H. Connor, Alfred L. Brown, Quintin I. Cutts, Alan Dearle, Ron Mor-

rison, and John Rosenberg. Type equivalence checking in persistent object sys-

tems. In Implementing Persistent Object Bases, Principles and Practice, Proceed-

ings of the Fourth International Workshop on Persistent Objects, pages 154–167,

Martha’s Vineyard, Massachusetts, United States, September 1990. Morgan Kauf-

mann.

141

Grzegorz Czajkowski. Application isolation in the Java Virtual Machine. In Pro-

ceedings of the 15th ACM SIGPLAN Conference on Object-Oriented Programming

Systems, Languages, and Applications (OOPSLA’00), pages 354–366, Minneapo-

lis, Minnesota, United States, October 2000.

Grzegorz Czajkowski and Laurent Daynès. Multitasking without compromise: a

virtual machine evolution. In Proceedings of the 16th Annual ACM Conference

on Object-Oriented Programming, Systems, Languages, and Applications (OOP-

SLA’01), pages 125–138, Tampa, Florida, United States, October 2001. ACM.

Grzegorz Czajkowski, Laurent Daynés, and Nathaniel Nystrom. Code sharing among

virtual machines. In Proceedings of the 16th European Conference on Object-

Oriented Programming (ECOOP02), pages 155–177, Málaga, Spain, June 2002.

Grzegorz Czajkowski, Laurent Daynès, and Ben Titzer. A multi-user virtual ma-

chine. In Proceedings of the 2003 USENIX Annual Technical Conference, pages

85–98, San Antonio, Texas, United States, June 2003.

Markus Dahm. Byte code engineering. In JIT’99, Java-Informations-Tage, pages

267–277, Düsseldorf, Germany, September 1999.

Drew Dean, Edward W. Felten, and Dan S. Wallach. Java security: From HotJava

to Netscape and beyond. In Proceedings of the IEEE Symposium on Security and

Privacy, pages 190–200, Oakland, California, United States, May 1996.

Jack B. Dennis and Earl C. Van Horn. Programming semantics for multiprogrammed

computations. Communications of the ACM, 9(3):143–155, March 1966.

Werner Dietl and Peter Müller. Universes: Lightweight ownership for JML. Journal

of Object Technology (JOT), 4(8):5–32, October 2005.

ECMA. Standard ECMA-335: Common Language Infrastructure (CLI), fourth edi-

tion, June 2006.

Jason Evans. The HipHop virtual machine. https://www.facebook.com/note.php?

note id=10150415177928920, December 2011.

Fabian Fagerholm. Perl 6 and the Parrot virtual machine. http://www.parrot.org/

sites/www.parrot.org/files/Fagerholm-Parrot.pdf, April 2005.

Manuel Fähndrich, Mark Aiken, Chris Hawblitzel, Orion Hodson, Galen Hunt,

James R. Larus, and Steven Levi. Language support for fast and reliable message-

based communication in Singularity OS. In Proceedings of the 2006 EuroSys Con-

ference, pages 177–190, Leuven, Belgium, April 2006. ACM.

142

Philip J. Fleming and John J. Wallace. How not to lie with statistics: the correct way

to summarize benchmark results. Communications of the ACM, 29(3):218–221,

March 1986.

Bryan Ford, Mike Hibler, Jay Lepreau, Patrick Tullmann, Godmar Back, and

Stephen Clawson. Microkernels meet recursive virtual machines. In Proceedings of

the Second Symposium on Operating Systems Design and Implementation, pages

137–151, Seattle, Washington, United States, October 1996. USENIX Association.

Daniel Frampton, Stephen M. Blackburn, Perry Cheng, Robin J. Garner, David

Grove, J. Eliot B. Moss, and Sergey I. Salishev. Demystifying magic: High-

level low-level programming. In Proceedings of the 2009 International Conference

on Virtual Execution Environments (VEE 2009), pages 81–90, Washington, DC,

United States, 2009. ACM.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns:

Abstraction and reuse of object-oriented design. In Proceedings of the 7th Euro-

pean Conference on Object-Oriented Programming (ECOOP93), pages 406–431,

Kaiserslautern, Germany, July 1993. Springer-Verlag.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:

Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995. ISBN

0-201-63361-2.

Nicolas Geoffray, Gaël Thomas, Gilles Muller, Pierre Parrend, Stéphane Frénot, and

Bertil Folliot. I-JVM: a Java virtual machine for component isolation in OSGi.

In the 39th International Conference on Dependable Systems and Networks (DSN

2009), pages 544–553, Lisbon, Portugal, June 2009. IEEE Computer Society.

Andy Georges, Dries Buytaert, and Lieven Eeckhout. Statistically rigorous Java

performance evaluation. In Proceedings of the 22nd Annual ACM SIGPLAN Con-

ference on Object-Oriented Programming Systems and Applications, pages 57–76,

Montreal, Quebec, Canada, October 2007.

Andy Georges, Lieven Eeckhout, and Dries Buytaert. Java performance evaluation

through rigorous replay compilation. In Proceedings of the 23rd Annual ACM SIG-

PLAN Conference on Object-Oriented Programming Systems and Applications,

pages 367–384, Nashville, Tennessee, United States, October 2008.

GNU Classpath. http://www.classpath.org/.

Michael Golm, Jürgen Kleinöder, and Frank Bellosa. Beyond address spaces - flex-

ibility, performance, protection, and resource management in the type-safe JX

143

operating system. In Proceedings of the Eighth Workshop on Hot Topics in Oper-

ating Systems (HotOS-VIII), pages 3–8, Elmau/Oberbayern, Germany, May 2001.

Michael Golm, Meik Felser, Christian Wawersich, and Jürgen Kleinöder. The JX op-

erating system. In Proceedings of the 2002 USENIX Annual Technical Conference,

pages 45–58, Monterey, California, United States, June 2002.

Li Gong. Java security: Present and near future. IEEE Micro, 17(3):14–19,

May/June 1997.

Li Gong, Marianne Mueller, Hemma Prafullchandra, and Roland Schemers. Going

beyond the sandbox: An overview of the new security architecture in the Java

Development Kit 1.2. In Proceedings of the USENIX Symposium on Internet Tech-

nologies and Systems (USITS ’97), pages 103–112, Monterey, California, United

States, December 1997.

James Gosling. Java intermediate bytecodes. In ACM SIGPLAN Workshop on

Intermediate Representations, pages 111–118, San Francisco, California, United

States, January 1995.

James Gosling and Henry McGilton. The JavaTM language environment. White

paper, Sun Microsystems, 1996.

Dan Grossman, Greg Morrisett, Trevor Jim, Michael Hicks, Yanling Wang, and

James Cheney. Region-based memory management in Cyclone. In PLDI ’02:

Proceedings of the 2002 ACM SIGPLAN Conference on Programming Language

Design and Implementation, pages 282–293, Berlin, Germany, June 2002. ACM

Press.

Chris Hawblitzel. Adding Operating System Structure to Language-Based Protection.

PhD thesis, Cornell University, August 2000.

Chris Hawblitzel and Thorsten von Eicken. Luna: A flexible Java protection system.

In Proceedings of the Fifth Symposium on Operating Systems Design and Imple-

mentation, pages 391–401, Boston, Massachusetts, United States, December 2002.

USENIX Association.

Chris Hawblitzel, Chi-Chao Chang, Grzegorz Czajkowski, Deyu Hu, and Thorsten

von Eicken. Implementing multiple protection domains in Java. In Proceedings

of the 1998 USENIX Annual Technical Conference, pages 259–270, New Orleans,

Louisiana, United States, June 1998.

Almut Herzog and Nahid Shahmehri. Performance of the Java security manager.

Computers & Security, 24(3):192–207, May 2005.

144

Galen Hunt, James Larus, Mart́ın Abadi, Mark Aiken, Paul Barham, Manuel

Fähndrich, Chris Hawblitzel, Orion Hodson, Steven Levi, Nick Murphy, Bjarne

Steensgaard, David Tarditi, Ted Wobber, and Brian Zill. An overview of the Sin-

gularity project. Technical Report MSR-TR-2005-135, Microsoft Research, 2005.

Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and Waldemar Celes. The

implementation of Lua 5.0. Journal of Universal Computer Science, 11(7):1159–

1176, July 2005.

International Standardization Organization. Programming languages — C.

ISO/IEC 9899:1999, International Standardization Organization, December 1999.

Java Community Process. JSR-175: A Metadata Facility for the JavaTM Program-

ming Language, September 2004.

Java Community Process. JSR 121: Application Isolation API Specification, June

2006.

JikesRVM User Guide. http://jikesrvm.org/User+Guide.

JNode. http://www.jnode.org/.

Richard Jones and Chris Ryder. A study of Java object demographics. In Proceedings

of the Seventh International Symposium on Memory Management (ISMM’08),

pages 121–130, Tucson, Arizona, United States, June 2008.

Kaffe. https://github.com/kaffe/kaffe.

Tomas Kalibera and Richard Jones. Rigorous benchmarking in reasonable time.

In Proceedings of the International Symposium on Memory Management, pages

63–74, Seattle, Washington, United States, June 2013.

Butler W. Lampson and David D. Redell. Experience with processes and monitor

in Mesa. Communications of the ACM, 23(2):105–117, February 1980.

Peter J. Landin. The mechanical evaluation of expressions. The Computer Journal,

6(4):308–320, January 1964.

Xavier Leroy. Java bytecode verification: Algorithms and formalizations. Journal

of Automated Reasoning, 30(3–4):235–269, 2003.

Sheng Liang. The JavaTM Native Interface Programmer’s Guide and Specification.

Addison-Wesley, June 1999. ISBN 0-201-32577-2.

145

Sheng Liang and Gilad Bracha. Dynamic class loading in the Java virtual machine.

In Proceedings of the 13th ACM SIGPLAN conference on Object-oriented pro-

gramming, systems, languages, and applications, pages 36–44, Vancouver, British

Columbia, Canada, 1998. ACM.

Yi Lin. Personal communication, 19 July 2012.

Yi Lin, Stephen M. Blackburn, and Daniel Frampton. Unpicking the knot: Teasing

apart vm/application interdependencies. In Proceedings of the Eighth Interna-

tional Conference on Virtual Execution Environments (VEE 2012), pages 181–

190, London, United Kingdom, March 2012. ACM.

Tim Lindholm and Frank Yellin. The JavaTM Virtual Machine Specification.

Addison-Wesley, second edition, April 1999. ISBN 0-201-43294-3.

Barbara Liskov. Data abstraction and hierarchy. In Proceedings on Object-

Oriented Programming Systems, Languages and Applications, pages 17–34, Or-

lando, Florida, United States, 1987. ACM.

Pratyusa K. Manadhata and Jeannette M. Wing. An attack surface metric. IEEE

Transactions on Software Engineering, 37(3):371–386, May 2011.

Naftaly H. Minsky. Towards alias-free pointers. In Proceedings of the 10th European

Conference on Object-Oriented Programming (ECOOP93), pages 189–209, Linz,

Austria, July 1996. Springer-Verlag.

James G. Mitchell, William Maybury, and Richard Sweet. Mesa language manual.

Technical Report CSL-79-3, XEROX Palo Alto Research Center, April 1979.

James H. Morris, Jr. Protection in programming languages. Communications of the

ACM, 16(1):15–21, January 1973.

Roger M. Needham and R. D.H. Walker. The Cambridge CAP computer and its

protection system. SIGOPS Operating Systems Review, 11(5):1–10, November

1977.

Erich J. Neuhold and Harold W. Lawson. The PL/I Machine: An Introduction to

Programming. Addison-Wesley, 1971.

Scott Oaks. Java Security. O’Reilly Media Inc., Sebastopol, California, United

States, second edition, May 2001. ISBN 978-0-596-00157-5.

Oracle Corporation. OpenJDK. http://openjdk.java.net/.

146

Elliot I. Organick. The Multics System: An Examination of Its Structure. The MIT

Press, 1972. ISBN 0-262-15012-3.

OSGi Service Platform Core Specification, Release 4, Version 4.3. The OSGi Al-

liance, April 2011.

David D. Redell, Yogen K. Dalal, Thomas R. Horsley, Hugh C. Lauer, William C.

Lynch, Paul R. McJones, Hal G. Murray, and Stephen C. Purcell. Pilot: An

operating system for a personal computer. Communications of the ACM, 23(2):

81–92, February 1980.

Rust Reference Manual. http://doc.rust-lang.org/doc/0.6/rust.pdf, April

2013.

Jerome H. Saltzer and Michael D. Schroeder. The protection of information in

computer systems. Proceedings of the IEEE, 63(9):1278–1308, September 1975.

Keith Allan Shillington and Gillian M. Ackland, editors. UCSD Pascal System II.0

User’s Manual. March 1979.

Emin Gün Sirer, Stefan Savage, Przemys law Pardyak, Greg P. DeFouw, Mary Ann

Alapat, and Brian N. Bershad. Writing an operating system with Modula-3. In

Workshop on Computer Support for System Software, February 1996.

Brian Cantwell Smith. Procedural Reflection in Programming Languages. PhD thesis,

Massachusetts Institute of Technology, February 1982.

Jesper Honig Spring, Filip Pizlo, Rachid Guerraoui, and Jan Vitek. Reflexes: Ab-

stractions for highly responsive systems. In Proceedings of the Third International

Conference on Virtual Execution Environments (VEE 2007), pages 191–201, San

Diego, California, United States, June 2007. ACM.

Sun Microsystems, Inc. JavaOS: A standalone Java environment. White Paper,

May 1996.

Sun Microsystems, Inc. JavaTM remote method invocation specification. http:

//java.sun.com/j2se/1.5/pdf/rmi-spec-1.5.0.pdf, 2004.

Daniel C. Swinehart, Polle T. Zellweger, Richard J. Beach, and Robert B. Hagmann.

A structural view of the Cedar programming environment. ACM Transactions on

Programming Languages and Systems, 8(4):419–490, October 1986.

Mads Tofte and Jean-Pierre Talpin. Implementation of the typed call-by-value λ-

calculus using a stack of regions. In Proceedings of the 21st ACM SIGPLAN-

SIGACT Symposium on Princples of Programming Languages, pages 188–201,

Portland, Oregon, United States, January 1994.

147

Patrick Tullmann. The Alta operating system. Master’s thesis, Department of

Computer Science, The University of Utah, December 1999.

Patrick Tullmann and Jay Lepreau. Nested Java processes: OS structure for mobile

code. In Proceedings of the Eighth ACM SIGOPS European Workshop, pages

111–117, Sintra, Portugal, September 1998.

Patrick Tullmann, Mike Hibler, and Jay Lepreau. Janos: A Java-oriented OS for

active network nodes. IEEE Journal on Selected Areas in Communications, 19

(3):501–510, March 2001.

Jan Vitek and Boris Bokowski. Confined types in Java. Software–Practice and

Experience, 31(6):507–532, May 2001.

Jim Waldo. Remote procedure calls and Java Remote Method Invocation. IEEE

Concurrency, 6(3):5–7, September 1998.

Christian Wawersich, Meik Felser, Michael Golm, and Jürgen Kleinöder. The role of

IPC in the component-based operating system JX. In The Fifth ECOOP Work-

shop on Object-Orientation and Operating Systems, pages 43–48, Málaga, Spain,

June 2002.

Michal Wegiel and Chandra Krintz. XMem: Type-safe, transparent, shared mem-

ory for cross-runtime communication and coordination. In Proceedings of the 2008

ACM SIGPLAN Conference on Programming Language Design and Implementa-

tion, pages 327–338, Tucson, Arizona, United States, June 2008. ACM Press.

Michal Wegiel and Chandra Krintz. Cross-language, type-safe, and transparent ob-

ject sharing for co-located managed runtimes. In Proceedings of the ACM Inter-

national Conference on Object-Oriented Programming Systems, Languages, and

Applications, pages 223–240, Reno/Tahoe, Nevada, United States, October 2010.

Paul R. Wilson. Uniprocessor garbage collection techniques. In Yves Bekkers and

Jacques Cohen, editors, Proceedings of the International Workshop on Memory

Management, pages 1–42, St. Malo, France, 1992. Springer-Verlag.

Yuval Yarom, Katrina Falkner, and David S. Munro. S-RVM: a secure design for a

high-performance Java virtual machine. In Proceedings of the Sixth International

Workshop on Virtual Machines and Intermediate Languages (VMIL 2012), pages

13–22, Tucson, Arizona, United States, October 2012.

Frank Yellin. Low level security in Java. In Proceedings of the Fourth International

World Wide Web Conference, pages 369–379, Boston, Massachusetts, United

States, December 1995. O’Reilly.

148

	TITLE: Software-based Reference Protection for Component Isolation
	Contents
	List of Tables
	List of Figures
	Abstract
	Declaration
	Acknowledgements

	Chapter 1 Introduction
	Chapter 2 A Model and Classification of Reference Protection
	Chapter 3 Exported Types
	Chapter 4 An Implementation of Exported Types
	Chapter 5 Performance Evaluation
	Chapter 6 Summary and Conclusions
	Appendix A Exported Types Specifications
	Appendix B S-RVM Implementation Details
	Appendix C Performance Data
	Bibliography

