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Abstract

Reference protection mechanisms are commonly used to isolate and to provide pro-
tection for components that execute within a shared run-time environment. These
mechanisms often incur an overhead due to maintaining the isolation or introduce
inefficiencies in the communication between the components. Past research oper-
ated under the assumption that some performance loss is an acceptable price for the
added security that comes with better isolation. This thesis sets out to demonstrate
that good isolation does not imply performance loss.

While numerous models for implementing reference protection have been sug-
gested, there is a lack of a unified terminology that allows the comparison of systems
from across the domain. This thesis presents a classification framework that cap-
tures the trade-offs present in the design of reference protection. It identifies four
main models of reference protection: complete isolation, where components do not
share references to objects; object sharing, where components can share data while
still maintaining private, unshared data; partial isolation, where components have
private, unshared data and an exposed interface that allows other component’s indi-
rect access to the private data; and initial isolation, where components are isolated
when created, but the model allows the programmer to share references without
restriction.

Applying the classification to systems providing reference protection identifies a
gap in the prior research. Partial isolation promises the level of security expected
from component isolation combined with efficient communication. Yet, the only
implementation of partial isolation of components uses expensive run-time checks
to enforce the protection.

To bridge this gap, this thesis presents the Exported Types design. Exported
Types is a type system design that enforces partial isolation at compile time. Us-
ing compile-time checks removes the run-time overhead of enforcing the protection
model. The design is applied to a meta-circular Java virtual machine to isolate the
virtual machine code from the application. Applying reference protection in this
scenario reduces the number of classes the virtual machine exposes to the appli-
cation by two orders of magnitude. Performance tests demonstrate that reference

protection, and the higher security it provides, are achieved at no performance cost.
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