Software-based Reference Protection for
Component Isolation

By
Yuval Yarom

September 12, 2014

A Thesis Submitted for the Degree of
Doctor of Philosophy
In the School of Computer Science
University of Adelaide

Contents

Abstract
Declaration
Acknowledgements
1 Introduction
1.1 Classification of Reference Protection Systems
1.2 Exported Types
1.3 Implementation of Exported Types
1.4 Summary of Contributions
1.5 Thesis Structure
2 A Model and Classification of Reference Protection
2.1 Zomes.
2.2 Complete Isolation
221 MVM . .. e
2.2.2 JX e
2.2.3 The .Net Framework
224 JNode
225 OVM
2.2.6 SUmMmMAary
2.3 Object Sharing
2.3.1 KafteOS
2.3.2 Singularity Lo
233 Rust
234 XMem
235 CoLoRS
2.3.6 Real-Time Java
237 SUumMmary ...
2.4 Partial Isolation
24.1 J-Kernel

i

viii

ix

24.2 Confined Types o 27

2.4.3 Ownership Types 27
244 SUmMMAry ... oL 28
2.5 Imitial Isolation o 28
251 LJVM oo 29
252 Alta 29
2.5.3 Summary e 29
2.6 Isolation Techniques 30
2.6.1 Reachability Roots 30
2.6.2 Controlling Reference Propagation 33
2.7 Evaluation of the Classification 34
Exported Types 38
3.1 TypeSystems 39
3.2 Partial Isolation and Types 41
3.3 Component Name Spaces 44
3.4 Creating the Interface Zones 45
3.5 The Remote Interface 47
3.6 Compatibility with Language Features 49
3.6.1 Structure-based Type Equivalence 49
3.6.2 Implicit Operations on Types 50
3.6.3 Universal Methods 51
3.6.4 Special Semantics of Types. 52
3.6.5 Reflection 53
3.7 Summary ... 53
An Implementation of Exported Types 55
4.1 The Java Virtual Machine 58
4.1.1 Class Loaders 59
4.1.2 Security Managero 60
4.1.3 Byte Code Verifier 61
414 Summary ... 62
4.2 JikesRVMo 62
4.2.1 Compilation Framework 63
4.2.2 Memory Management 64
4.2.3 Compiler Magic L 65
4.2.4 Library Interface oL 66
4.2.5 Virtual Machine Build 66
4.2.6 Security 67
4.3 An Overview of SRVM 69

1l

4.4 TImport and Exporto 72

4.5 The VM Interface Layer 73
4.6 Creating a Trust Boundary 76
4.7 Privileged Access for the virtual machine Task 7
4.8 Exceptions 79
4.9 Implementation Verification 80
4.10 Summary 81
Performance Evaluation 82
5.1 Memory Usage 83
5.2 Application Task Startup 85
5.3 Steady-State Execution Speed00 86
5.4 Summary . o.o.o. ... 92
Summary and Conclusions 93
6.1 Classification Framework 93
6.2 The Exported Types Design 94
6.3 S-RVM 95
6.4 Revisiting the Classification Framework 96
6.5 A Multi-tasking Virtual Machine 99
6.6 Structure-based Type Equivalence 100
6.7 Summary 101
Exported Types Specifications 102
A1 Type Systems 102
A2 Exported Types 103
A3 Mapping to zones 105
S-RVM Implementation Details 107
B.1 The Upcall Interface 107
B.2 Initialising RVMTask 110
B.3 String Backing Store. oo 111
B.4 Exception Conversion 114
C Performance Data 117
Bibliography 138

v

List of Tables

2.1
2.2
2.3
24

0.1
5.2

2.3

6.1
6.2
6.3

C.1

C.2

C.3

C4

C.5

C.6

C.7

Methods for controlling reference propagation
Zones in systems providing reference protection
Classification of reference protection.

Classification of reference protection.

Minimum heap size

Normalised execution times of the DaCapo benchmarks on S-RVM
relative to JikesRVM with 90% confidence intervals (Same Heap Size

SCENATIO) .« v v v v v i e

Normalised execution times of the DaCapo benchmarks on S-RVM
relative to JikesRVM with 90% confidence intervals (Same Heap Pres-

SUTE SCENATIO) . . v v v v v v et e

Zones in systems providing reference protection
Classification of reference protection.

Classification of reference protection.

Mean execution times of the DaCapo benchmarks at the 1% iteration
T
Mean execution times of the DaCapo benchmarks at the 2*¢ iteration
(MS) .« .«
Mean execution times of the DaCapo benchmarks at the 3™ iteration
(IMS) . .
Mean execution times of the DaCapo benchmarks at the 4™ iteration
T
Mean execution times of the DaCapo benchmarks at the 5™ iteration
(IS) .« o o
Mean execution times of the DaCapo benchmarks at the 6" iteration
(MS) . .
Mean execution times of the DaCapo benchmarks at the 7™ iteration

)

C.8 Mean execution times of the DaCapo benchmarks at the 8 iteration
(MS) . . .
C.9 Mean execution times of the DaCapo benchmarks at the 9" iteration
G
C.10 Mean execution times of the DaCapo benchmarks at the 10™ iteration
(MS) . .
C.11 Mean execution times of the DaCapo benchmarks at the 11** iteration
(MS) .« .
C.12 Mean execution times of the DaCapo benchmarks at the 12 iteration
(IS) . o o
C.13 Mean execution times of the DaCapo benchmarks at the 13" iteration
(MS) . .
C.14 Mean execution times of the DaCapo benchmarks at the 14" iteration
(IS) . . o
C.15 Mean execution times of the DaCapo benchmarks at the 15™ iteration
(MS) . .
C.16 Mean execution times of the DaCapo benchmarks at the 16 iteration
(MS) . .
C.17 Mean execution times of the DaCapo benchmarks at the 17 iteration
(IS) . o o
C.18 Mean execution times of the DaCapo benchmarks at the 18" iteration
(MS) . .
C.19 Mean execution times of the DaCapo benchmarks at the 19* iteration
(MS) .« .
C.20 Mean execution times of the DaCapo benchmarks at the 20™ iteration

(MS) . .

vi

List of Figures

1.1

2.1
2.2
2.3
2.4
2.5
2.6
2.7

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2
4.3
4.4
4.5
4.6

5.1
5.2
2.3
0.4

3.5

6.1

The spectrum of isolation using reference protection 6
A component system with isolated zones 12
A component system with isolated zones and a shared zone 13
A component system using sealed zones 13
Structure of the JX system 17
Heap structure in KaffeOS 21
The exchange heap in singularity 22
Taxonomy of methods for handling reachability roots 31
A component system with partial isolation 42
Overlaying the sealed zones model over the type hierarchy 43
Sealed zones 44
Type hierarchies with exported types 45
Type hierarchies after import 46
Extending an imported typeo 47
The JikesRVM runtime environment 63
Type hierarchy in JikesRVM 68
The S-RVM runtime environment 69
RVMTask class diagram 71
Bi-directional communication between tasks 74
Classloader class hierarchy 74
S-RVM Boot image overhead 84
Class loading during task startup 85
Mean execution time on S-RVM relative to JikesRVM. 90
Steady state normalised execution times of the DaCapo benchmarks

on S-RVM at several heap sizes 91
Separate vs. combined profiling 92
A multi-tasking virtual machineo 99

vil

Abstract

Reference protection mechanisms are commonly used to isolate and to provide pro-
tection for components that execute within a shared run-time environment. These
mechanisms often incur an overhead due to maintaining the isolation or introduce
inefficiencies in the communication between the components. Past research oper-
ated under the assumption that some performance loss is an acceptable price for the
added security that comes with better isolation. This thesis sets out to demonstrate
that good isolation does not imply performance loss.

While numerous models for implementing reference protection have been sug-
gested, there is a lack of a unified terminology that allows the comparison of systems
from across the domain. This thesis presents a classification framework that cap-
tures the trade-offs present in the design of reference protection. It identifies four
main models of reference protection: complete isolation, where components do not
share references to objects; object sharing, where components can share data while
still maintaining private, unshared data; partial isolation, where components have
private, unshared data and an exposed interface that allows other component’s indi-
rect access to the private data; and initial isolation, where components are isolated
when created, but the model allows the programmer to share references without
restriction.

Applying the classification to systems providing reference protection identifies a
gap in the prior research. Partial isolation promises the level of security expected
from component isolation combined with efficient communication. Yet, the only
implementation of partial isolation of components uses expensive run-time checks
to enforce the protection.

To bridge this gap, this thesis presents the Exported Types design. Exported
Types is a type system design that enforces partial isolation at compile time. Us-
ing compile-time checks removes the run-time overhead of enforcing the protection
model. The design is applied to a meta-circular Java virtual machine to isolate the
virtual machine code from the application. Applying reference protection in this
scenario reduces the number of classes the virtual machine exposes to the appli-
cation by two orders of magnitude. Performance tests demonstrate that reference

protection, and the higher security it provides, are achieved at no performance cost.

viil

Declaration

I certify that this work contains no material which has been accepted for the award
of any other degree or diploma in any university or other tertiary institution and, to
the best of my knowledge and belief, contains no material previously published or
written by another person, except where due reference has been made in the text. In
addition, I certify that no part of this work will, in the future, be used in a submission
for any other degree or diploma in any university or other tertiary institution without
the prior approval of the University of Adelaide and where applicable, any partner
institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis, when deposited in the University Library,
being made available for loan and photocopying, subject to the provisions of the
Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available
on the web, via the University’s digital research repository, the Library catalogue
and also through web search engines, unless permission has been granted by the

University to restrict access for a period of time.

Yuval Yarom
September 12, 2014

1X

Acknowledgements

Ithaka gave you the marvelous journey.

Without her you would not have set out.

She has nothing left to give you now.
—Constantine Cavafy, “Ithaka”

The journey described in the following pages would not have been possible with-
out the dedicated guidance of my supervisors Dave Munro and Katrina Falkner. It
is through the wisdom they shared, the encouragement they provided and the pa-
tience they exercised that this work has come to fruition. It was an honour working
with them and the lessons they have taught will stay with me for the rest of my life.

I would also like to thank Henry Detmold who for a long time acted as an
unofficial supervisor. Many thanks also to Steve Blackburn, Ron Morrison and John
Zigman for the help they provided and their useful suggestions in various stages of
this work. Thanks are also due to Richard Jones and to the anonymous examiner
for the careful reading of this thesis and for the wise and helpful comments provided.

I am indebted to Kathy Cooper, Cathie Liersch, Sharyn Liersch, Julie Mayo,
Jo Rogers and Tracey Young who helped navigating the treacherous waters of the
university administration and for providing some geek-free refuge. Thanks also to
William Brodie-Tyrrell, Diana Hill, Peter Kelly, Ekim Kocadag, Joseph Kuehn,
Matt Lowry, Peter Nguyen, Travis Olds and Stani Ovtcharova who, over the years,
shared the working space with me and helped make the time spent on this PhD an
enjoyable experience.

The sages teach that without food there is no learning.! It would be futile to try
listing all fine establishments providing sustenance around the university. However,
special mention must be made of the spicy chicken at Raah Cafe, the mayonnaise
chicken at Zen Garden and everything at Vego and Love'n It.

Most of all, I would like to thank my wife Karen Gekker and my children Yarden
and Itay for their help, support and encouragement throughout the years. I ac-
knowledge and deeply appreciate the sacrifices they made to allow me to continue

my studies.

'Ethics of the Fathers 3:17 NN PN MNP PN ON. Lit.:If there is no flour, there is no (study
of the) Torah.

	TITLE: Software-based Reference Protection for Component Isolation
	Contents
	List of Tables
	List of Figures
	Abstract
	Declaration
	Acknowledgements

