
STRUCTURAL INTERPRETATION IN THE

MOUNT WOODS INLIER

By James Finlay

This thesis is submitted in part fullfilment of the Bachelor of Science (Hons.) Degree, Department of Earth Sciences, Monash University.

November 1993

ABSTRACT

The Mount Woods Inlier (MWI) is an Early to Mid-Proterozoic terrane represented by numerous small scattered outcrops of metasediments and granitoids, located approximately 100 km southeast of Coober Pedy, north-central South Australia.

Field mapping of three outcrops reveal the following deformation history:

- 1. D_1/M_1 was a high T, low P event that produced an S_1 foliation defined by sillimanite, cordierite \pm almandine garnet (Flint and Benbow, 1977).
- 2. D2 produced folding on scales from microscopic crenulations of S₁ to macroscopic folding of metasedimentary units over tens of km. Steep fold axes and variations in fold orientations throughout the MWI appeal to fold interference (ie re-folding), which probably occurred during the subsequent D₃ shearing event.
- 3. D3 was a shearing (+ folding) event that produced discrete zones (100's m long) and a large scale shear zone (≥ 7 km) in the Spire Hills-Skylark Hills area. Kinematic indicators such as Type I S-C mylonite fabrics suggest movement was predominantly strike-slip. The discrete shear zones appear to be the result of strain caused by dextral movement on the large scale shear zone.

Dating of a foliated granitoid interpreted as syn-D₁/M₁ at ~1700 Ma and a granite interpreted as post-D₂ and pre- to early syn-D₃ at ~1580 Ma has constrained the timing of tectonism to within these dates. This deformation is synchronous with D₃ of the Kimban Orogeny, the Olarian Orogeny, the Ernabellan deformation of the Musgrave Block, D₁ of the Peake-Denison Inlier and deformation and metamorphism in the Karari Fault Zone.

The early high T, low P metamorphism, syn-D₁ intrusion of I-type granitoid and subsequent folding show many similarities with the tectonic model of Etheridge et al (1987), in which this sequence of events is produced by rifting-resulting from small scale mantle convection and magmatic underplating-followed by compression due to thermal subsidence and crustal delamination.

Large scale geophysical analysis infers the early granitoid is more widespread than indicated from outcrop and has locally affected F₂ fold geometry. Fold interference patterns have been interpreted as the result of D₃ shear and refolding. Two broad anomalies have been interpreted as late (1580 Ma) plutons at 1 - 3 km depth. A large east-west shear zone along the northern boundary of the MWI appears related to the ~1700 Ma Karari Fault Zone, however the D₃ shear event (1580 Ma) suggests subsequent movement on the shear zone.

TABLE OF CONTENTS

1. IN	TROI	DUCTION	
	1.1	PREAMBLE	•
	1.2	AIMS	
	1.3	METHODS	2
	1.4	LOCATION	2
	1.5	GEOLOGY OF SOUTH AUSTRALIA	2
	1.6	LOCAL HISTORY	4
	1.8	PREVIOUS WORK	
	1.9	PREVIOUS GEOCHRONOLOGY	(
	1.10	THESIS LAYOUT	7
2. RC	ОСК Т	YPES	
	2.1	INTRODUCTION	9
	2.2	META-SEDIMENTS	9
	2.3	INTRUSIVES	1.
	2.4	MIGMATITES	1
	2.5	COMMENTS	1
3. DE		MATION, METAMORPHISM AND ATIONSHIPS	
	3.1		19
	3.2		23
	3.3		2:
		3.3.1 Evidence For Bedding (S ₀)	2.
		3.3.2 D1/M1	24
		3.3.3 D2	2.
		3.3.4 D3	29
		3.3.1 Discrete Shear Zones	3.
	*	3.3.2 The Large Scale Shear Zone	3
	3.4	INTRUSIVE RELATIONSHIPS	33
		3.4.1 The Engenina Adamellite	33
		3.4.2 The Balta Granitoid Suite (Red Brick Granite)	3′

3.5 DISCUSSION: IMPLICATIONS OF PLUTON - DEFORMATION RELATIONSHIPS			
3.5.1 D ₁ /M ₁ Fabric Formation, High Temperature Metamorphis and Syn-Deformation Adamellite Intrusion			
3.5.2 Origins of D ₂ Fold Geometry	44		
4. GEOCHRONOLOGY			
4.1 Summary	46		
4.2 Introduction	46		
4.3 Location of Samples	46		
4.4 Results	47		
4.5 Sample Selection	47		
4.6 Correlates	48		
5. LARGE SCALE COMBINED GEOLOGY & GEOPHYSICAL			
INTERPRETATION			
5.1 INTRODUCTION	49		
5.2 GEOPHYSICAL DATA			
5.2.1 Magnetic Stratigraphy	49		
5.2.2 Magnetic Image	50		
5.3 INTERPRETATION	51		
5.3.1 Preamble	51		
5.3.2 The Spire Hills - Skylark Hills	53		
5.3.3 Mount Woods	53		
5.3.4 The Mirage Hills	54		
5.3.5 Adjacent Areas- Plutons At Depth	54		
5 3 6 Large Scale Structural Geometry	55		

6 REGIONAL TECTONIC SYNTHESIS

6.1 INTRODUCTION	57
6.2 The Gawler Craton	57
6.3 Willyama Domain	57
6.4 The Karari Fault Zone	59
6.5 The Musgrave Block	59
6.6 The Ammooradinna Inlier	60
6.6 The Peake-Denison Inlier	60
6.7 Integration of Tectonic History and Structural Geometry	61
6 CONCLUSIONS	63
5 55116H6516116	03

REFERENCES

APPENDIX Sample Details

List of Figures

Figure	1.1	Pre Cambrian provinces of South Australia	3
Figure		Outcrop map of Mt. Woods Inlier	4
Figure		Folding in the Banded Iron Formation, Mt Woods	10
Figure		Meta-conglomerate overlain by sandstone interbeds, Spire Hills	11
Figure		Sedimentary Xenolith in Adamellite, Central Spire Hills	13
Figure		Gneissocity in Mirage Gneiss	14
Figure		Equigranular Red Brick Granite, South Central Spire Hills	15
Figure		Banded Iron Formation in the Balta Migmatite (melt), South Central	
Ū		Spire Hills	17
Figure	3.1	Tîme event diagram	21
Figure		Sedimentary layering in Banded Iron Formation, North west	
		Spire Hills	23
Figure	3.3	Photomicrograph of Banded Iron Formation, North west	
		Mt. Woods	24
Figure .	3.4	Inclined F ₂ folds in Banded Iron Formation, North west	
•		Mt. Woods	25
Figure :	3.5	Structural map of Mt. Woods	26
Figure :	3.6	3D schematic diagram of layer at Mt. Woods	27
Figure :	3.7	Structural map of Spire Hills	28
Figure :	3.8	Rootless folding in migmatite sample	29
Figure :	3.9	Shear sense diagram	30
Figure :	3.10	Type I S-C shear fabrics in adamellite, North east Spire Hills	30
Figure :	3.11	Large shear zone, North west Skylark Hills	32
Figure :	3.12	Representation of foliation through xenolith	34
Figure :	3.13	Photomicrograph (PPL). Biotite defining foliation in the	
_		Engenina Adamellite, Spire Hills	35
Figure :	3.14	Photomicrograph (XPL). Engenina Adamellite, Skylark Hills	35
Figure 3	3.15	Random orientation of phenocrysts within Engenina Adamellite,	
		west Skylark Hills	36
Figure 1	3.16	Well defined phenocrysts in Engenina Adamellite, south	
		Skylark Hills	36
Figure 3	3.17	Photomicrograph (PPL). Fibrolite cross cutting biotite in	
		migmatite, southeast Spire Hills	38
Figure 3	3.18	Migmatite hand speciment from southeast Spire Hills	39
Figure 3	3.20	Geotherm diagram	40
Figure 3		Etheridge model for magmatic underplating	43
Figure 5		Magnetic stratigraphy	50
Figure 5		Effects of High Pass Filter	51
Figure 5		Magnetic Image	52
Figure 5	5.4	Depth of Balta pluton	55