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Abstract 

Human embryos for embryonic stem cell (ESC) derivation have often been cryopreserved for 

5-10 years prior to their donation for research purposes. Many of these embryos will have 

been cultured in media conditions now known to be perturbing to embryo viability and which 

support only low levels of blastocyst development, necessitating that cleavage stage transfers 

be utilised for the majority of IVF cycles performed. As such, embryos for hESC derivation are 

often donated at the cleavage stage and require further culture to the blastocyst stage before 

hESC derivation can be attempted. These embryos are normally of poor quality and the 

efficiency of hESC derivation is low. This thesis investigated the hypothesis that the culture of 

cleavage stage embryos to the blastocyst stage represents a window of opportunity during 

which embryo culture conditions can be optimised to produce blastocysts with a greater 

potential to give rise to ESCs. 

Using a mouse model it was demonstrated that the culture of embryos in simple medium, 

which models the aforementioned historic conditions, perturbs their development and 

reduces the number of ESC progenitor epiblast cells within the blastocyst. Furthermore, the 

transfer of embryos exposed to simple medium during the cleavage stage in a modern 

complex medium purpose designed to support embryo development from the 8-cell stage was 

insufficient to restore these embryos, despite improving epiblast cell number somewhat. As 

such, it was shown that additional interventions are necessary to fully utilise the 8-cell to 

blastocyst period of culture. 

The growth factor insulin, despite having previously been shown to increase inner cell mass 

(ICM) cell number and improve embryo viability, is not routinely included in the majority of 

embryo culture media commercially available for the culture of human embryos.  It was 

demonstrated in this thesis that supplementation of culture medium from the 8-cell to 

blastocyst stage with 1.7ρM insulin is able to increase the epiblast cell number (as shown by 

OCT4 and Nanog co-expression) as well as the proportion of the ICM which is made up of 

epiblast cells. The molecular mechanism of this effect was investigated using small molecule 

inhibitors, and it was shown that insulin increased epiblast cell number via the activation of 

phosphoinositide-3-kinase, which subsequently inactivates glycogen synthase kinase 3 and 

p53, which, when active, inhibit the transcription of pluripotency supporting transcription 

factor Nanog through direct and indirect means. 
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Culture in the presence of insulin was shown to increase the number of OCT4 and Nanog 

positive cells in blastocysts on days 4 and five as well as day 6. However, OCT4 and Nanog co-

expression was only restricted to the epiblast on day 6. Prior culture of embryos with insulin 

had no effect on the number of epiblast cells in outgrowths when blastocysts were plated on 

days 4 or 5. However, when blastocysts where plated on day 6 blastocysts which had been 

cultured with insulin from the cleavage stage gave rise to outgrowths with more epiblast cells 

compared with blastocysts cultured in control conditions. Efficiency of attachment and the 

percent of outgrowths which contained an epiblast were also improved by prior culture with 

insulin for blastocysts plated on day 6. When blastocysts cultured in control conditions were 

plated day 6 they were shown to give rise to outgrowths with increased numbers of epiblast 

cells compared with day 4 and day 5; demonstrating that, as with humans, the optimal time 

for plating mouse blastocysts is after lineage restriction has occurred. 

The culture of embryos from the cleavage stage to the blastocyst stage in the presence of 

insulin was validated as a strategy for improving their capacity to give rise to ESCs by 

generating primary ESC colonies from day 6 plated outgrowths and confirming their 

pluripotency by OCT4 and Nanog staining. Embryos cultured with insulin had a two fold 

increase in their probability of successfully giving rise to an ESC colony. As embryos were 

cultured individually embryo morphological development was able to be tracked and 

compared to ESC generation success. Interestingly, which markers most successfully predicted 

ESC generation success differed for control and insulin cultured embryos. The most predicative 

morphological marker of future ESC generation was cavitation on day 4 for blastocysts 

cultured in control conditions, while for blastocysts cultured with insulin the most predictive 

marker was being hatched on day 6. The capacity of the model system used to support the 

derivation of a genuine ESC line was validated by generating a line from a blastocyst cultured 

in the presence of insulin and characterising it for pluripotency and self renewal by directed 

differentiation and karyotyping after multiple passages. 

These results show that culture of embryos from the cleavage stage with insulin to day 6 

increases the epiblast cell number of blastocysts, a property which is conserved through the 

outgrowth stage and results in an increased capacity to give rise to ESCs which can be serially 

passaged without losing their pluripotency or self renewal. As such, culture of embryos with 

insulin may represent a potentially useful strategy to exploit the opportunity created by the 

donation of human embryos at the cleavage stage for hESC derivation. 
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