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Abstract

Various igneous bodies have intruded into the Palmer area throughout the Delamerian Orogeny.

The earliest, the Rathgen Gneiss, intruded either before or during Dl which gave it the

prominent foliation. Dl was also responsible for crenulations in migmatite veins throughout the

area. These crenulated migmatite veins are in areas folded by D2 mesoscale folds. Some

pegmatite veins are also folded by the D2 folds. The Palmer Granite intruded during D2 as is

seen by shearing in a semi-crystalline state and a tectonic foliation that has been folded. The

ballooning of the granite during emplacement deforms the surrounding sediments and the pre-

granite folds hence their axis lie parallel to the contact of the granite. The effect of the granite

intruding during the deformation has lead to the axis of the D2 folds forming after the granite to

have a degree of randomness about their axis. Migmatite grade was reached again after the

intrusion of the granite causing melt veins to develop that disrupt the foliation. D3 formed a

regional syncline of the area combined with some small scale folding within the granite,

however a foliation did not form.

The emplacement of the granite and other igneous bodies throughout the area has been

controlled by using the bedding plane of the Kanmantoo.

The geochemical trends throughout the Palmer granite is formed by two different groups

fractionally crystallising zircon, amphibole, and biotite. This results in a decrease of normally

incompatible elements. The two groups form by one group from a homogeneous source and the r
other a heterogeneous source. The xenoliths crystallised from a mafic magma. The amphibolites

form two groups according to their differentiation and genetic relationship. They both form by

/ / . fractional crystallisation howeverJUand Pb are decreasing cannot be explained byjhis^ Another 6")

• c •*- possible mechanism is liquid un-mixing. \&>±\ woV" \^o-A W^N-

ir; To tie all of the groups together a model of a mafic pluton that crystallises the xenoliths as a

chilled margin. The mafic magma evolves some of the Palmer Granite whilst turbulently

convecting hence homogenising the magma. A magma recharge forms the more evolved mafic j

and this forms more Palmer Granite which convects in a laminar fashion forming

heterogeneities. Part of the mafics evolve enough to be caught up in the Palmer Granite and as

it does not crystallise zircons all the fractional crystallisation of the Palmer Granite must have

occurred in the mafte>piofon.
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