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ABSTRACT

CO, diffusion across membranes is one of the rate limiting steps during photosynthesis,
therefore understanding the process of CO, permeation across membranes is important. The
question of whether CO, transport across membranes can be facilitated by aquaporins is very
controversial. Previous research where aquaporins were heterologously expressed in either
Xenopus oocytes or yeast protoplasts showed that some plasma membrane intrinsic proteins
(PIPs) or animal aquaporins could facilitate CO, transport. However, others have
demonstrated using molecular simulation approaches and biophysical calculations that the
unstirred layer poses the major rate limiting step for CO, diffusion across membranes, and
that it is unlikely that CO, permeates via the water pathway in aquaporins, because this

pathway exhibits a greater energy barrier compared to that for the lipid bilayer.

If water and CO, share the same pathway through aquaporins or if the presence and activity of
aquaporins somehow affects CO, permeation, there should be a correlation between water
permeability and CO, permeability. Therefore, by employing the stopped-flow technique and
using pea plasma membrane vesicles isolated from pea leaves, this thesis explored the links
between CO, permeability and water permeability. Plasma membrane vesicles from pea
plants that were grown in different conditions showed considerable variability in water
permeability. The very high and variable (between preparations) water permeability (0.06 to
0.18 m s™) plus the low activation energy (10.8 KJ mol™) of water transport indicated
aquaporins dominated water flow, yet there was no significant correlation between water
permeability and CO, permeability (1.49 x 102 cm s™). The activation energy for CO,
permeation was 37 KJ/mol which is about double that for CO, diffusion in water. Also the
aquaporin inhibitor silver sulfadiazine resulted in a large inhibition of water permeability but

this did not affect CO, permeability. Similar results were obtained for plasma membrane
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vesicles isolated from Arabidopsis leaves though the water permeability was lower. In
performing these measurements care was taken to exclude artifacts caused by the
concentration of carbonic anhydrase (CA) and its temperature dependence, since vesicular

entrapped CA was required to measure CO, permeability via changes in vesicular pH.

Because there are not many aquaporins that have been identified in pea, some Arabidopsis
aquaporins that have been suggested to be involved in CO; transport were expressed in
Xenopus oocytes for further investigation. Water transport via these aquaporins was first
studied. It was demonstrated that PIP2s were functional water channels when expressed alone,
while PIP1s were not. However when PIP1 and PIP2 aquaporins were co-expressed in
Xenopus oocytes a greater than additive effect on water permeation was observed for some
combinations. This suggested that AtPIP1;2 and AtPIP2;1, and AtPIP1;5 and AtPIP2;1
interact. A previously identified natural mutation in the pore region of VvPIP2;5 from
grapevine (G100W), which prevented water flow, was used to probe AtPIP2;1 and its
interaction with AtPIP1;2. This showed that the interaction still occurred despite the lower

water permeation of the combined pair when expressed in Xenopus oocytes.

Originally, the CO, permeabilities of the Arabidopsis aquaporins of interest were intended to
be tested using the external pH micro-electrode technique which was first employed to test
CO, transport across Xenopus oocyte plasma membrane. However, one of the criteria for
using this technique is that the expression of the aquaporins should not induce any ion
conductance, which would potentially alter external pH either directly or indirectly.
Therefore, electrophysiology experiments were conducted to test whether the expressed
aquaporins induced any ionic currents. It was found that AtPIP2;1 indeed induced ionic

currents selective to anions including HCO3; when expressed in Xenopus oocytes. It was
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demonstrated that AtPIP2;1 homotetramer was likely to function as an ion channel since
when co-expressed with its interacting partner (AtPIP1;2) this abolished the anion
conductance. Furthermore the G100W mutation also prevented anion conductance of the
AtPIP2;1 indicating that the pathway may be via the water pore. Expression of AtPIP2;1 in
Saccharomyces cerevisiae was undertaken to test a potential anion sensitivity induced by the
expression of AtPIP2;1. The expression of AtPIP2;1 induced increased water permeability of
the yeast spheroplast as it does in Xenopus oocytes, and gave a low growth phenotype on all

media tested, however this could not be linked to increased anion transport.

This thesis has demonstrated that measurements of CO, permeability are extremely difficult
and likely to be limited by factors not always controlled for in previous experiments.
Furthermore it has been demonstrated that some plant PIP aquaporins may function as anion
channels and that this could complicate the interpretation of CO, permeation particularly

when the HCO3™ anion can permeate as was demonstrated for AtPIP2;1.
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