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Executive summary

The primary focus of this experimental evaluation 
project is to answer the key question: Is it possible 
to provide accurate and reliable seasonal streamflow 
forecasts using the dynamic hydrologic modelling 
approach? To address this issue, this experimental 
project evaluated the performance of the dynamic 
modelling approach for key catchments in the 
Murray–Darling Basin, where statistical seasonal 
streamflow forecasts are currently available.

Eight catchments across the southern Murray–
Darling basin were examined: (Upper Murrumbidgee) 
Cotter River at Gingera, Murrumbidgee River 
above Tantangara Reservoir, Queanbeyan River at 
Tinderry, and Goobarragandra River at Lacmalac; 
(Upper Murray) River Murray at Biggara, and Mitta 
Mitta River at Hinnomunjie; and (Upper Goulburn) 
Dohertys and Taggerty.

Three conceptual rainfall-runoff models were 
evaluated: Sacramento, SIMHYD and SMAR. These 
models were calibrated for 1976–1996 using an 
objective function that is a combination of the Mean 
Squared Error (MSE) and the bias in total volume. 
With the observed rainfall data, Sacramento and 
SIMHYD showed good performance for most 
catchments, but late winter and early spring runoff 
was under predicted in two catchments, mainly due to 
the absence of snowmelt components in the models.

Forecasting in simulation mode was performed for 
1985–2005 with a warm-up period of 1980–1984. 
Rainfall forecasts from the following two sources were 
used in the simulations: (a) downscaled POAMA 1.5 
rainfall ensemble (ten members and their mean), and 
(b) historical rainfall ensemble, which is the past ten-
year observed rainfall data (ten members and their 
mean). Forecast skills were assessed using three skill 
scores: RMSE (Root Mean-Squared Error), RMSEP 
(Root Mean-Squared Error in Probability) and CRPS 
(Continuous Ranked Probability Score). NSE (Nash 
Sutcliffe Efficiency) was also calculated with respect 
to forecast medians.

POAMA 1.5 rainfall forecasts were downscaled to 
the catchment scale using a modified version (Shao 
& Li 2011a) of the analogue method (Timbal, Li & 
Fernandez 2009). The relationship between POAMA 
rainfall and AWAP observed rainfall was weak even 
at monthly aggregated levels. Particularly, rainfall 
during wet months was frequently underestimated, 
which considerably reduced the variation range of 
POAMA rainfall when compared to that of observed 
data. The serious underestimation of rainfall during 
wet seasons was a major source of streamflow 
forecast errors from the rainfall-runoff models.

Two different parameterisation schemes were 
compared. The general parameterisation scheme 
optimised one set of SIMHYD parameter values for 
the entire calibration period, whereas the conditional 
parameterisation scheme selected 12 optimised 
sets of SIMHYD parameter values, one set for each 
month. Since there were marginal differences in 
skill scores between the two schemes, the general 
parameterisation scheme was recommended due to 
its more parsimonious model structure.
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Streamflow forecasts driven by downscaled POAMA 
rainfall forecasts were compared with those driven 
by historical rainfall data. Compared to the historical 
rainfall data, POAMA rainfall forecasts produced 
emphatic streamflows, which were systematically 
under predicted during wet seasons. In spite of the 
bias, continued improvements in rainfall forecasts 
from POAMA and related developments into the 
future are anticipated to potentially improve seasonal 
streamflow forecast skills.

ARMA-based posterior bias correction was applied 
on forecast errors to reduce the systematic bias in 
streamflow forecasts driven by downscaled POAMA 
rainfall. The bias correction improved both monthly 
and three-monthly streamflow forecasts significantly. 
Bias corrected streamflow forecasts were found to be 
as accurate and reliable as those from the BJP model. 
Particularly, during dry seasons, the bias corrected 
forecasts outperformed BJP in most catchments. 
The results suggest a very strong case for the use 
of an ARMA-based bias correction procedure in 
dynamic seasonal streamflow forecasting and imply 
the possibility that the current seasonal streamflow 
forecast service can be upgraded as more robust by 
blending forecasts from the statistical and dynamic 
approaches into one forecast product.

Monthly streamflow forecasts from the dynamic 
modelling approach were found relatively more 
accurate and reliable compared to three-monthly 
streamflow forecasts. Considering the value of 
monthly streamflow forecasts to the Bureau’s 
stakeholders particularly those working on water 
supply operations, the possibility for a new monthly 
streamflow forecast service deserves more attention.

As an additional deliverable, a modelling system 
called the Dynamic Modelling System (DMS) was 
developed, and its architecture is currently under 
transition to an operational system. 

As a rigorous method for predictive uncertainty 
estimation, BATEA was applied to target catchments. 
Using the Bayesian-based Markov Chain Monte 
Carlo (MCMC) method, BATEA provided more 
realistic estimates of predictive uncertainty as well as 
diagnostic evidence for each error source including 
model structural deficiency and rating curve errors. 
The results indicated that the technology has a 
potential to improve not only seasonal streamflow 
forecast service but also many other services of the 
Bureau in terms of predictive uncertainty estimation.

In spite of the successful application of dynamic 
modelling approach in this project, for the national 
rollout of seasonal streamflow forecast service, further 
improvements are required. In particular, research 
efforts are required to improve (a) the accuracy of 
POAMA rainfall forecasts, (2) rainfall-runoff model 
performance for dry catchments with intermittent 
streams, and (3) model performance for catchments 
with low persistence in their streamflow data.
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1.	 Purpose and motivation

A seasonal climate prediction service has been 
operating in the Bureau of Meteorology (the 
Bureau) since 1989 but its primary focus has been 
on rainfall and temperature rather than water 
availability. Nevertheless, these monthly updated 
predictions were highly sought in recent years 
by Ministers, industry and other government 
agencies concerned with the possibility of droughts 
continuing (e.g.  Murray–Darling Basin Authority 
2009). A seasonal water availability prediction 
service has been needed in Australia for many 
years (e.g. Ruiz, Cordery & Sharma 2007) and the 
Australian Government’s recent investment in water 
information will help address this need (Plummer et 
al. 2009). Reliable seasonal predictions of streamflows 
are highly valuable and will have uses for providing 
water allocation outlooks, informing water markets, 
planning and managing water use and managing 
drought (Chiew, Zhou & McMahon 2003). 

The opportunity for the Bureau to expand its 
seasonal prediction service is a result of its new 
responsibilities, which largely came about because of 
the impacts of the prolonged drought. In early 2007, 
the Australian Government announced Water for the 
Future, a $12.9  billion water investment program. 
This included $450  million for the Improving Water 
Information Program administered by the Bureau 
and backed by the Commonwealth Water Act 
2007 and key stakeholders. A series of stakeholder 
workshops across the water sector in Australia 
were led by the Extended Hydrological Prediction 
(EHP) Section of the Water Forecasting Branch in 
2009. These workshops, which were organised in 
2009 against the background of prolonged drought 
and record low water availability, established a clear 
need for the Bureau to develop a seasonal streamflow 
forecasting  service. 

Seasonal forecasts of water availability can be made 
using dynamical, statistical or hybrid modelling 
approaches. The statistical approach is based upon 
direct relationships derived from observed data and 
derived predictor indices. Many climate indicators 
based on atmospheric pressure and sea surface 
temperature (SST) anomalies have been linked to 
future seasonal rainfalls. Such relationships were 
exploited to predict streamflow several months 
or seasons ahead (e.g. Chiew, Zhou & McMahon 
2003; Day 1985; Hammer, Nicholls & Mitchell 2000; 
Moore, Jones & Black 1989; Plummer et al. 2009). In 
Australia, statistical prediction methods for water 
availability are more advanced in terms of their 
stage of development. The Queensland Department 
of Primary Industries and Fisheries developed the 
Rainman decision support system, which provides 
the probability of flow, based on phases of both 
the Southern Oscillation Index (SOI) and SSTs. The 
forecasts are considered skilful out to only one season 
due to the limited number of predictors (Clewett et 
al. 2003). 
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The Bureau launched a new Seasonal Streamflow 
Forecasting (SSF) service in December 2010. The 
service delivers three-month ahead probabilistic 
forecasts of total streamflow volumes at a site or total 
inflows into major water supply storages (www.bom.
gov.au/water/ssf). Forecasts for this service are being 
derived from a statistical modelling approach called 
the Bayesian Joint Probability model (BJP; Wang & 
Robertson 2011; Wang, Robertson & Chiew 2009), 
which was recently developed within the auspices of 
the Water Information Research and Development 
Alliance Program (WIRADA) with CSIRO. The 
Bureau operationalised BJP for the SSF service (Peaty 
& Seasonal Streamflow Forecasting Team 2009) by 
developing a new modelling system called WAFARi 
(Water Availability Forecasts of Australian Rivers; 
Shin et al. 2011). The BJP approach transforms a set 
of streamflows and their predictors into a multivariate 
normal distribution and infers the distribution of 
model parameters using a Bayesian formulation, 
which is implemented through a Markov Chain 
Monte Carlo (MCMC) sampling method. Currently, 
the service updates streamflow forecasts every 
month for 21  key water supply catchments in the 
Murray–Darling Basin, with the objective of helping 
water suppliers and users make better decisions on 
available water resources.

The main focus of this experimental project is to 
answer the key question: Is it possible to provide 
accurate and reliable seasonal streamflow forecasts 
using the dynamic hydrologic modelling approach? To 
address this issue, this experimental project is focused 
on a rigorous evaluation of the performance of the 
dynamic modelling approach for key catchments in 
the Murray–Darling Basin where statistical seasonal 
streamflow forecasts are currently available (October 
2009 – April 2011). This report describes detailed 
outcomes from the experimental evaluation project. 
The report is organised as follows: project overview 
and linkages are listed in section 2; target catchments 
and climate and hydrology data used in this evaluation 
are discussed in section 3; section 4 describes the 
hydrologic models and the modelling approach; the 
experimental modelling system developed in this 
project is discussed in section 5; modelling results 
and evaluation of the seasonal forecasting capability 
is detailed in section 6; uncertainty analysis results 
from the work on rigorous treatment of predictive 
uncertainty in the context of seasonal streamflow 
forecasting are summarised in section 7; major 
outputs and key deliverables from this work are 
discussed in section 8 and recommendations on 
research-to-operation issues, further research and 
implementation issues are detailed in section 9.
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2.	 Project overview and linkages

The project team at the Bureau leveraged 
support through the following collaborations and 
key initiatives:

•	 research support from CSIRO on hydrologic 
modelling and seasonal rainfall downscaling 
under WIRADA Project 4.2 ‘Water Forecasting and 
Prediction – Seasonal and Long-term Forecasting’

•	 research support from CAWCR on provision of the 
seasonal climate forecasts derived from POAMA 
1.5 as well as support on the technology for 
rainfall downscaling, which was improved further 
through the WIRADA initiative

•	 research support from the University of Newcastle 
(UoN) and the University of Adelaide (UoA) through 
the ‘BATEA Stage 1 Project’ on advanced Bayesian 
approaches to catchment hydrologic modelling 
and rigorous treatment of predictive uncertainty

•	 support from eWater CRC (www.toolkit.net.au) 
on provision of the catchment hydrologic models 
used in the experimental Dynamic Modelling 
System (DMS) developed in this project

•	 support from the National Climate Centre, Climate 
Information Services Branch of the Bureau 
and CSIRO for observed climate data (AWAP 
[Australian Water Availability Project] gridded 
rainfall and potential evapotranspiration) and 
Water Data Branch and a number of key agencies 
including the Murray–Darling Basin Authority 
(MDBA) and ACTEW Cooperation Ltd, for 
provision of the streamflow data.

An overview of the project structure is illustrated 
in Figure 1 (see following sections for detailed 
description and findings). 

1.	 First, historical modelling is performed on the 
target catchments to establish a retrospective 
water balance through the use of lumped rainfall-
runoff models. Each model was driven by observed 
climate data from AWAP and calibrated against 
observed daily streamflow data. For each model, 
five sets of optimal parameter values (i.e. five 
hydrologic model ensembles) were chosen and 
used to produce simulated streamflow. Hereafter, 
streamflow simulated with observed climatology 
is referred to as ‘reference flows’. 

2.	 The rainfall forecast ensembles (ten members) 
from the Bureau’s global climate model POAMA 
1.5 (Alves et al. 2003) are then downscaled through 
an improvisation for bias correction by Shao and 
Li (2009; 2010; 2011a; 2011b) and Shao et al. 2009. 
The analogue downscaling method of Shao and 
Li is a modified version of the original method 
of Timbal and McAvaney (2001) and Timbal, Li 
and Fernandez (2009). Statistical downscaling 
models (SDMs) are mostly based on the view 
that the regional climate is conditioned by two 
factors: (a) the large scale climatic state and (b) 
local physiographic features. A SDM based on 
an analogue approach was developed within the 
Australian Bureau of Meteorology and applied 
to ten regions covering the entire Australian 
continent. This method searches a past date with 
the most similar weather pattern as the target date 
in future and use the predictand, here rainfall, of 
the past date as the forecast of the target date.

3.	 Forecasting process outlined above in simulation 
mode leads to 55 streamflow ensemble time 
series at daily time steps (five hydrologic 
models  X  11  downscaled rainfall ensembles 
comprising ten POAMA ensembles and the 
ensemble mean), which is then aggregated 
to monthly and three-monthly time steps for 
verification of the streamflow forecasts using a 
range of forecast verification skill scores. 
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4.	 The difference (or the bias) between observed 
streamflow and the forecast streamflow results 
from inaccuracies and collective uncertainties in 
input rainfall and output runoff data, hydrologic 
model structure and the use of rainfall forecasts. 
However, the difference (bias) between the 
reference streamflow and the forecast streamflow 
is a direct result of replacing observed rainfall 
with rainfall forecasts. The biased streamflow 
is corrected through the use of a multiplicative 
ARMA model (Box & Jenkins 1976; Hyndman 2011; 
Tuteja & Cunnane 1999) and improvements thereof 
in streamflow forecasts are quantified again for 
forecast verification. 

5.	 Further, full treatment of predictive uncertainty is 
handled through the use of Bayesian Total Error 
Analysis (BATEA) technology. Note that a separate 
detailed report on the BATEA Stage 1 project 
was prepared by the UoN and UoA and only 
main findings from the BATEA Stage 1 project 
and implications for future work are included in 
this report. 

It is expected that the forecasts from dynamic and the 
statistical approaches can be blended into a hybrid 
forecast, once both systems have demonstrated a 
satisfactory level of accuracy and reliability. The exact 
approach for combining these systems will require 
further investigation, which is outside the scope of 
this experimental evaluation project. However, the 
evaluation results reported here will provide valuable 
information for these decisions.

AWAP rain, flow & 
PET 

Calibrate hydrologic 
model ensembles (5) 

Reference flow & 
water balance 

POAMA rainfall 
ensembles (10) 

Hindcasting 
(11X5=55 ensembles) 

Rainfall downscaling 
model (Analogue 

with bias correction) 

Downscaled POAMA 
rainfall ensembles 

and mean (11) 

Aggregated 1-month 
and 3-month 
reference flow 

Bias correction and 
error updating 

(ARMA; 55 
ensembles) 

Aggregated 1-month 
and 3-month 
hindcast flow 

(biased)  

Aggregated 1-month 
and 3-month 

hindcast flow (bias 
corrected) 

Graphical outputs, 
skill scores & 

evaluation 

Figure 1: An overview of the project structure
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3.	 Experimental catchments and data

3.1	 Selection criteria for the experimental 
catchments

The target catchments were selected by the 
following criteria:

•	 sites must be common to those included in the 
current Seasonal Streamflow Forecasting service 
where forecasts are available from the BJP 
modelling approach

•	 sites must not have unnatural flows (e.g. 
downstream of a gated storage)

•	 sites must be at locations strategically important 
for water supply (e.g. inflows into a major water 
supply reservoir)

•	 data must be concurrent across all sites at some 
point in time

•	 at least 30-year streamflow data are available

•	 catchment climatology and hydrology must be 
well understood.

On the basis of the criteria, eight target catchments 
were selected across the Upper Murrumbidgee, 
Upper Murray and Upper Goulburn valleys in the 
Murray–Darling Basin in south-eastern Australia for 
this evaluation project (Figure 2; Table 1).
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Figure 2: Locations of the study catchments
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3.2	 Catchments

3.2.1	 The Upper Murrumbidgee catchment

The Murrumbidgee catchment is bounded by Cooma 
in the east, Balranald in the west, Temora to the north 
and Henty to the south. The catchment covers an 
area of about 84,000 km2. The Murrumbidgee River is 
the main stream running through the Murrumbidgee 
catchment. The Upper Murrumbidgee catchment 
(UMC) is bounded to the south and east by the 
Great Dividing Range, and it forms the south-
eastern edge of the Murray–Darling Basin (MDB). 
It extends from headwaters of the Murrumbidgee 
River above Tantangara Dam in Kosciuszko National 
Park, to Burrinjuck Dam – a total of 14,060 km2. The 
UMC is the source of water for communities living 
in Cooma, Queanbeyan, Canberra and Yass regions, 
as well as major downstream communities. The 
main tributaries include the Cotter, Queanbeyan, 
Goobragandra, Numeralla, Bredbo, Molonglo, Yass 
and Goodradigbee rivers. Significant sections of 
these rivers are deeply incised, while there are other 
areas with relatively narrow and flat floodplains. 

The UMC is a major water supply catchment of the 
MDB. Most of the usable groundwater occurs in 
the fractured rock aquifers, which cover a large 
proportion of the UMC. Limited groundwater 
availability has meant a heavy reliance on surface 
water in the catchment, with increasing demand 
from all sectors (www.murrumbidgee.cma.nsw.
gov.au). Groundwater resources have not been 
assessed very well and in areas where groundwater 
is accessible, this usually leads to groundwater use 
without consideration being given to local or regional 
impacts. More than 50% of the UMC is comprised of 
sedimentary duplex soils, located in semi-arable to 
non-arable soil landscapes. About 30% of the UMC 
has granite soil landscapes and about 5–10% are 
basalt landscapes. High rainfall in the UMC, together 
with granite and sedimentary duplex soil landscapes, 
and relatively unaltered land use across large upland 
areas of the UMC substantially influence the prevailing 
hydrologic processes; i.e. high runoff coefficient, 
short flow paths and response times of the underlying 
groundwater flow systems and high incidence of the 
saturated excess surface runoff conditions through 
duplex and granitic soil landscapes.

Table 1: Locations and characteristics of the study catchments

Station 
ID

Station Name Location Area Rainfall 
(1975–
2006)

Runoff  
(1975–
2006)

Runoff 
Coeff.

Lat. Long. (km2) (mm/yr) (mm/yr) (unitless)

Upper Murrumbidgee (Upstream of Burrinjuck Dam)

410730 Cotter River at Gingera 35.59 148.82 148 1,116 276 0.25

410535 Murrumbidgee River at above 
Tantangara Reservoir

35.79 148.66 216 1,273* 683 0.54*

410734 Queanbeyan River at Tinderry 35.62 149.35 490 799 124 0.16

410057 Goobarragandra River at Lacmalac 35.32 148.35 673 1,155 384 0.33

Upper Murray

401012 Murray River at Biggara 36.32 148.05 1,165 1,103 377 0.34

401203 Mitta Mitta River at Hinnomunjie 36.94 147.61 1,533 1,260 258 0.20

Goulburn

405219 Goulburn at Dohertys  
(u/s of Lake Eildon)

37.33 146.13 694 1,181 436 0.37

405209 Goulburn at Taggerty  
(d/s of Lake Eildon)

37.32 145.72 619 1,272 449 0.35

* �The rainfall average derived from AWAP grids is expected to be underestimated because of the sparse rainfall gauges and 
alpine terrain of the catchment.
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3.2.2	 The Upper Murray catchment

The Upper Murray River Basin forms the catchment 
of Hume Reservoir and covers an area of 15,280 km2 
in New South Wales and Victoria (Goulburn-Murray 
Water: www.g‑mwater.com.au). The River Murray 
forms the north and east sides of the Victorian part 
of the Basin. The Victorian portion of the Upper 
Murray River Basin covers an area of 10,150  km2. 
It is subdivided into two components – the Mitta 
Mitta River catchment and northern section of the 
basin which drains into the Victorian bank of the 
River Murray. Flows are regulated by Hume and 
Dartmouth reservoirs, owned by Goulburn-Murray 
Water (G‑MW) and operated by Murray–Darling 
Basin Authority under the Murray–Darling Basin 
Agreement. The Upper Murray River Basin gains 
approximately 600 GL per year from inter-basin 
transfers via the Snowy Mountains Hydroelectric 
Scheme to the New South Wales section of the Basin.

All major valleys which lie in the north have been 
cleared for agriculture, although approximately 80% 
of the Upper Murray Basin still remains forested. The 
principal forms of land use are water conservation, 
forestry, grazing and agriculture. Water use accounts 
for only a very small fraction of the highly regulated 
resources originating in the Basin. Those resources 
are committed to water supply requirements 
throughout the length of the River Murray.

The main source of water is the rain although some 
precipitation falls as snow above 750  m to 800  m. 
The land above 1,050 m comprises only 23% of the 
catchment area and yet produces about 43% of the 
total yield. Along the Mitta Mitta River, mean annual 
flow can triple from Hinnomunjie in the south to 
the north. Reasonably highest flows in October are 
attributable to the spring snowmelt (Figure 3). In 
the Upper Murray Basin, the shallow aquifer system 
consists predominately of outcropping Palaeozoic-
aged sedimentary rocks intruded in places by granites 
which are surrounded by associated metamorphic 
rocks. Older volcanic basalts cover a small area in 
the south of the Basin. Many of the streams have 
significant alluvial deposits along the streamlines. The 
bulk of the groundwater resource is fresh although 
a small region containing groundwater of marginal 
quality is located in the southeast corner of the Basin. 
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Figure 3: Long-term average of monthly water budget of Hinnomunjie and Tantangara Reservoir to show the impact 
of snowmelt. The averages were calculated from data between 1978 and 2008



11Experimental catchments and data

3.2.3	 The Goulburn catchment

The Goulburn River Basin covers 16,192 km2 in 
central Victoria and extends from the Great Dividing 
Range near Woods Point, to the River Murray in the 
northwest near Echuca. The southern boundary of the 
Goulburn catchment runs along the Hume Range and 
the Great Dividing Range, and then turns northward 
to Mt Buller at 1,804 m in the southeast (Goulburn-
Murray Water: www.g-mwater.com.au). Lake Eildon 
lies in the southeast of the Basin and collects flows 
from the Upper Goulburn, and a number of creeks. 
Streamflow along the Goulburn River has been 
modified by two major features, Lake Eildon and the 
Goulburn Weir. 

The three months of greatest flow are July to 
September, accounting for 52% of the annual flow, 
and the three months of least flow are January to 
March, accounting for 5% (Figure 4). Operation 
of the Eildon Reservoir has reduced the July to 
September flows passing Eildon to 33% of the annual 
total, allowing an increase of the January to March 
flows of 23% of the annual total. The shallow aquifer 
systems of the Goulburn River Basin occur in three 
main hydrogeological conditions. The Shepparton 
Formation aquifer which lies throughout the northern 
sections of the Basin and is composed of shoestring 
sands, amongst silt and clay containing brackish 
groundwater; the remaining central and southern 
portion of the Basin comprises outcropping basement 
rocks overlain, in the valleys within the highlands, by 
Quaternary alluvial sand and gravel. Groundwater in 
these two units is generally of good quality.

Agriculture in the Basin is diverse, ranging from 
hardwood timber production in the southeast to 
dairying and fruit production in the north. The Lake 
Eildon environs produce sheep for wool, and beef 
and dairy cattle. Further along the Goulburn Valley, 
sheep and cropping are important in dryland and 
irrigated areas. 
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Figure 4: Monthly streamflow of the study catchments
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3.3	 Observation data

Daily rainfall, areal potential evapotranspiration 
and streamflow data from 1975 to 2006 were used 
in this study for calibration and validation of the 
rainfall-runoff models (Figure 5). Catchment average 
rainfall data were derived from AWAP (Australian 
Water Availability Project) grid data with about 5 km 
spatial resolution (Raupach et al. 2009; Raupach et al. 
2011). Monthly rainfalls of the catchments between 
1975 and 2006 are shown in Figure 6. Tinderry 
received noticeably lower rainfall compared to other 
catchments, because of local orographic effect.

Monthly potential evapotranspiration (PET) data 
of each catchment were derived from the AWAP 
modelling results using Priestley Taylor’s method 
(Raupach et al. 2009). Monthly PET data between 
1975 and 2005 are shown in Figure 7. 

Daily streamflow data at the outlet station of each 
catchment were acquired from external agencies, 
including Murray–Darling Basin Authority, 
ActewAGL, Melbourne Water and Goulburn-Murray 
Water. Monthly runoff data between 1975 and 2005 
are shown in Figure 4. Note that streamflow data 
for most gauging stations will be available from the 
Australian Water Resources Information System 
(AWRIS) in the future.
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Figure 5: Annual potential evaporation rates, rainfall and runoff of the study catchments
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Figure 6: Monthly rainfall of the study catchments
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Figure 7: Monthly potential evaporation rates of the study catchments
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As noted previously, snowmelt exerts a significant 
influence particularly in early spring, in determining 
the magnitude and time of seasonal streamflow 
for some catchments (Schreider et al. 1997). Long-
term average of monthly rainfall and runoff for the 
Hinnomunjie and Tantangara are shown in Figure 
3. Hinnomunjie has an upper area on the border of 
Mt. Bogong, where elevation is up to 1,940 m above 
sea level. Snowmelt from the area contributes to the 
delayed augment of streamflow in early spring. For 
Tantangara Reservoir, the impact of snowmelt on the 
catchment water budget is more striking. The long-
term average of early spring runoff exceeds that of 
rainfall derived from the AWAP dataset. It seems 
obvious that in the Hinnomunjie and Tantangara 
catchments, a large proportion of the total 
streamflow in early spring comes from snowmelt in 
the catchments.

Mean annual rainfall in the target catchments for 
1975–2006 vary in the range 799 to 1,273  mm/yr 
whereas mean annual runoff varies in the range 124 to 
683 mm/yr (Table 1). The runoff coefficients of target 
catchments clearly indicate that most catchments 
are high yielding catchments. The highest rainfall of 
1,273 mm/yr and the highest runoff coefficient of 0.54 
correspond to the Tantangara catchment. It is possible 
that the catchment rainfall may have been somewhat 
underestimated due mainly to gridding procedures 
in the AWAP rainfall over steep alpine terrains. Tuteja 
et al. (2007) found similar inconsistencies in the 
steep mountainous catchments of the nearby Snowy 
River. Among the target catchments, Tinderry has 
the lowest rainfall of 799 mm/yr and also the lowest 
runoff coefficient of about 0.16.

3.4	 Downscaled POAMA rainfall

POAMA (Predictive Ocean Atmosphere Model for 
Australia: poama.bom.gov.au; Alves et al. 2003) was 
developed by the Bureau as a state-of-the-art seasonal 
to interannual forecast system based on a coupled 
ocean/atmosphere model and ocean/atmosphere/
land observation assimilation systems. POAMA 
demonstrated skills for predicting the variations 
in Australian rainfall associated with tropical sea 
surface temperature at lead times to at least one 
season. The first version (POAMA-1) was developed 
jointly between the Bureau, the former division of 
CSIRO Marine Research and the Managing Climate 
Variability (MCV) program and became operational 
in October 2002. The main focus for POAMA-1 was 
the prediction of SST anomalies associated with the 
El Niño/Southern Oscillation. 

A newer version POAMA1.5 was implemented in 
the Bureau in June 2007, with real-time predictions 
produced soon after. POAMA-1.5 uses the same 
coupled model as in POAMA-1 (with some 
enhancements) and contains a new atmospheric/land 
initialisation system, developed as part of the SEACI 
(South Eastern Australian Climate Initiative) project. 
POAMA-1 and 1.5 are both T47 spectral resolution 
which is approximately 2.5° x 2.5° or 270 km x 270 km 
(see Figure 8 for grid resolution of the POAMA and 
observed AWAP climatology). The ability of POAMA 
1.5 to predict large scale drivers of Australian climate 
and Australian rainfall (directly) was analysed 
in several studies, mostly as part of the SEACI 
project (e.g. Hendon & Alves 2009). POAMA-1.5 
demonstrated reasonable skill in large scale regional 
climate variables; however, the predictions of rainfall 
tend to be too emphatic, i.e. more confident than 
reality, suggesting that the ensemble spread is not 
large enough.
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For the rainfall downscaling, we used POAMA 1.5 
hindcast dataset (forecast data in simulation mode), 
which provides nine-month forecasts. Forecast 
datasets are available at daily time steps on the 
first day of the month out to the next nine months. 
Analogue downscaling method (Charles et al. 2010; 
Timbal, Li & Fernandez 2009; Timbal & McAvaney 
2001) was applied to derive catchment scale rainfall 
from regional scale POAMA outputs. The skill of the 
SDMs was evaluated by comparing reconstructed and 
observed series using a range of metrics: the first two 
moments of the series, and the ability to reproduce 
day-to-day variability, interannual variability, and 
long-term trends.
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Figure 8: POAMA grid points and AWAP grid points
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The predictors used for downscaling are defined 
as  follows:

•	 Mean Sea Level Pressure (MSLP in hPa)

•	 surface minimum and maximum temperature  
(Tmin and Tmax in ºC)

•	 total rainfall (PRCP in mm)

•	 specific humidity (Q in g/Kg)

•	 relative humidity (R in %)

•	 temperature(T in ºC)

•	 zonal and meridional wind components (U and V 
in m.s–1).

Timbal, Li and Fernandez (2009) divided the Australian 
continent into ten regions: Tasmania (TAS), Southwest 
of Western Australia (SWA), Nullarbor Plain (NUL), 
the Southwest of Eastern Australia (SEA), the 
Southern part of the Murray–Darling Basin (SMD), 
the Southeast Coast (SEC), the Mid-East Coast (MEC), 
Queensland (QLD), the Northern Monsoon Region 
(NMR) and the Northwest of Western Australia 
(NWA). Optimal combinations of predictors for each 
season and for each of the ten regions were identified 
in Timbal, Li and Fernandez (2009).

Typically, the direct rainfall output from a GCM 
(Global Climate Model) is too emphatic and seriously 
biased. Therefore, it is important to adjust the GCM 
climatology at regional scale using downscaling for 
reliable results. Shao and Li (2010; 2011a) assessed 
the current practice in bias correction of GCM 
outputs and developed a new bias correction method 
and applied it to the analogue method of Timbal, 
Li and Fernandez (2009). The performance was 
evaluated by testing the downscaling results using an 
analogue method, with and without bias correction 
for POAMA. The bias correction on predictors was 
slightly modified for better accuracy and distribution 
matching (Shao and Li 2011a). Monthly downscaled 
POAMA rainfall against observation data for the 
Gingera and Biggara catchments are compared in 
Figure 9 and Figure 10. 

The relationship between POAMA rainfall and 
AWAP observed rainfall turned out to be weak 
even for the monthly scale. Particularly, rainfall 
during wet months was often underestimated, 
which considerably reduced the variation range of 
POAMA rainfall compared to that of observed data. 
The serious underestimation of rainfall during wet 
seasons became one major source for bias in forecast 
streamflow outcomes from the rainfall-runoff models 
(e.g. see Figure 10).
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Figure 9: Monthly AWAP rainfall data and POAMA rainfall forecast for Gingera and Biggara
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(a) Gingera

(b) Biggara

Observed
Reference
Average of hindcasts (before bias-correction)
Average of hindcasts (after bias-correction)

Observed rainfall
Downscaled POAMA rainfall

Observed rainfall
Downscaled POAMA rainfall

Observed
Reference
Average of hindcasts (before bias-correction)
Average of hindcasts (after bias-correction)

Figure 10: Hyetographs of observed monthly rainfall and downscaled POAMA rainfall and hydrographs of observed 
and hindcast monthly streamflow for Gingera and Biggara. The hindcast streamflows are monthly ones updated on the 
first day of each month
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4.	 Methods

4.1	 Rainfall-runoff models

The history of hydrologic modelling ranges from 
the Rational Method of Mulvany (1850) to lumped 
rainfall-runoff models developed since the 1960s 
[e.g. Stanford Watershed Model (Crawford & Linsley 
1966); Sacramento (Burnash 1985); SMAR (Kachroo 
& Liang 1992); SIMHYD (Chiew, Zhou & McMahon 
2003)]. An integrated, process-based hydrologic 
modelling approach is, in general, appropriate to 
investigate the intricate, nonlinear relationships 
between the land surface, the unsaturated zone, 
the saturated zone and the river discharge under 
changing non-stationary conditions, though the 
large number of parameters complicates using such 
an approach. In more recent times, distributed/semi-
distributed physically-meaningful models have been 
developed [e.g. TOPMODEL (Beven & Kirkby 1979), 
DHSVM (Wigmosta, Vail & Lettenmaier 1994); TOPOG 
(Vertessy & Elsenbeer 1999); TOPKAPI (Liu & Todini 
2002); CLASS (Tuteja et al. 2004); REW (Reggiani & 
Schellekens 2006); Grid-to-Grid (Moore et al. 2006)]. 

We believe the single biggest unknown in this 
study is our ability to forecast one-month and 
three-month ahead rainfall and that the use of 
more sophisticated semi-distributed or distributed 
hydrologic models would further complicate the 
study. Therefore, we decided to use the following 
well known and established lumped rainfall-runoff 
models in this evaluation: Sacramento, SIMHYD and 
SMAR (Podger 2004: www.toolkit.net.au/rrl). They 
are simple but have stood the test of time since the 
first conceptual rainfall-runoff model was developed 
in the 1960s (Chiew et al. 2008; Crawford & Linsley 
1966). These models have been applied for both rural 
and urban water supply catchments. They have been 
widely used in Australia by governmental agencies 
and river basin authorities in water resources 
assessments, catchment water balance studies, water 
sustainable yields projects and water forecasting 
operations. All three models use the daily rainfall and 
pan or potential evapotranspiration data as inputs to 
simulate daily streamflows. 

4.1.1	 SIMHYD

SIMHYD (Chiew, Peel & Western 2002) is a 
conceptual rainfall-runoff model that simulates daily 
streamflow from daily rainfall and areal potential 
evapotranspiration data. SIMHYD is a simplified 
version of the HYDROLOG model that was developed 
in 1972 (Porter 1972; Porter & McMahon 1975) and 
the more recent MODHYDROLOG model (Chiew 
& McMahon 1994). SIMHYD has seven parameters 
which are required to be calibrated (Figure 11). 

The model estimates daily streamflow from three 
sources: infiltration excess runoff, interflow (and 
saturation excess runoff) and baseflow. Daily rainfall 
first fills the interception store, part of which is lost 
through evaporation. The excess rainfall is then 
subjected to an infiltration function that determines 
the infiltration capacity. The excess rainfall that 
exceeds the infiltration capacity becomes infiltration 
excess runoff.

Moisture that infiltrates is subjected to a soil moisture 
function that diverts the water to the stream as 
interflow, to groundwater store as recharge or to 
remain in the soil moisture store. Interflow is first 
estimated as a linear function of the soil wetness. 
The equation used to simulate interflow therefore 
attempts to mimic both the interflow and saturation 
excess runoff processes using the soil wetness to 
reflect parts of the catchment that are saturated 
from which saturation excess runoff can occur. 
Groundwater recharge is then estimated, also as a 
linear function of the soil wetness. The remaining 
moisture flows into the soil moisture store.

Evaporation from the soil moisture is estimated 
as a linear function of the soil wetness, but cannot 
exceed the atmospheric controlled rate of areal 
evapotranspiration. The soil moisture store has a 
finite capacity, part of which percolates into the 
groundwater store. Baseflow from the groundwater 
store is simulated as a linear recession from the store. 
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Figure 11: Schematic diagram of SIMHYD model structure (source: Chiew, Peel & Western 2002)
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4.1.2	 Sacramento

The Sacramento model is a conceptual rainfall-runoff 
model used to generate daily streamflow from rainfall 
and evaporation data (Burnash 1985; Burnash et al. 
1973: Figure 12).

The model uses soil moisture accounting to simulate 
the water balance within the catchment. Soil 
moisture storage is increased by rainfall and reduced 
by evaporation and by outflow from the storage. 
The size and relative wetness of the storage then 
determines the amount of rainfall absorbed, actual 
evapotranspiration loss, and the amount of water 
moving vertically or laterally out of the store. The 
surface runoff is transformed from excess rainfall 
through an empirical unit hydrograph. This runoff 
is then added with lateral water movements from 
the soil moisture stores to estimate streamflow. The 
Sacramento model uses a total of 22 parameters to 
simulate water balance. 

Of these: five parameters define size of the soil 
moisture stores (Lzfpm, Lzfsm, Lztwm, Uzfwm and 
Uztwm), three parameters calculate the rate of lateral 
outflows (Lzpk, Lzsk and Uzk), three parameters 
calculate the percolation water from the upper to the 
lower soil moisture stores (Pfree, Rexp and Zperc), 
two parameters calculate direct runoff (Adimp and 
Pctim), four parameters calculate losses in the system 
(sarva, side, Ssout and Rserv) and five parameters 
(UH1, UH2, UH3, UH4, UH4 and UH5) simulate 
streamflow routing through channels.

The Sacramento model represents the moisture 
distribution within hypothetical zones of a soil 
column. The model attempts to maintain percolation 
characteristics to simulate streamflow contributions 
from a basin. The components of the Sacramento 
model are tension water, free water, surface flow, 
lateral drainage, evapotranspiration (ET) and vertical 
drainage (percolation).

Figure: 12 Schematic diagram of Sacramento model structure (source: Podger 2004)
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4.1.3	 SMAR

The SMAR soil moisture and accounting model is 
a lumped conceptual rainfall-runoff water balance 
model with soil moisture as a central theme (Kachroo 
1992; O’Connell, Nash & Farrell 1970; Tuteja & 
Cunnane 1999: Figure 13).

The model provides daily estimates of surface runoff, 
groundwater discharge, evapotranspiration and 
leakage from the soil profile for the catchment as a 
whole. The surface runoff component comprises 
overland flow, saturation excess runoff and saturated 
throughflow from perched groundwater conditions 
with a quick response time.

The SMAR model consists of two components in 
sequence, namely, a water balance component and 
a routing component. The model utilises time series 
of rainfall and pan evaporation data to simulate 
streamflow at the catchment outlet. The model is 
calibrated against observed daily streamflow. 

The water balance component divides the soil 
column into horizontal layers, which contain a 
prescribed amount of water (usually 25 mm) at 
their field capacities. Evaporation from soil layers 
is treated in a way that reduces the soil moisture 
storage in an exponential manner from a given 
potential evapotranspiration demand. The routing 
component transforms the surface runoff generated 
from the water balance component to the catchment 
outlet by a gamma function model form (Nash 1960), 
a parametric solution of the differential routing 
equation in a single input, single output system. The 
generated groundwater runoff is routed through a 
single linear reservoir and provides the groundwater 
contribution to the stream at the catchment outlet. The 
SMAR model contains six water balance parameters 
(C,  Z, H, Y, T and G) and three routing parameters 
(Kg, n and nK).
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Figure 13: Schematic diagram of SMAR model structure (source: Tuteja & Cunnane 1999)
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4.2	 Modelling approach

Hydrologic modelling in retrospective mode 
was performed to satisfy three primary practical 
requirements: model accuracy (acceptable prediction 
skills), model consistency (level of accuracy persists 
through different samples of data) and model 
versatility (accurate and consistent predictions when 
subject to diverse applications involving model 
evaluation criteria not directly based on the objective 
function used to calibrate the model). A split sample 
test was adopted for model calibration and validation 
in retrospective mode. The calibrated and validated 
hydrological models were then evaluated in forecast 
simulation mode by using rainfall forcing derived 
either from downscaled POAMA or, alternatively, 
from historical rainfall ensembles, which are past 
rainfall records in same seasons.

4.2.1	 Model calibration

The first step for the evaluation was to obtain 
calibrated parameter values for the three rainfall-
runoff models. The models were calibrated using the 
following methodology:

•	 the hydrologic models were calibrated for 1976–
1996 with 1975 as a warm-up period and validated 
for 1998–2008 with 1997 as a warm-up period

•	 as initial seeds, 100 parameter sets were randomly 
selected from a uniform distribution within the 
default bound of each parameter

•	 from the 100 randomly sampled initial parameter 
sets, optimal parameter values were searched 
using the Rosenbrock method (Rosenbrock 1960).

Among various objective functions available to 
evaluate model performance (Krause, Boyle & Bäse 
2005; Podger 2004), we chose the objective function 
specified in equation 1. This objective function is a 
combination of the Mean Squared Error (MSE) and 
the error in volumetric ratio between the difference 
in total volumes of the observed and estimated 
discharge hydrographs to that of the observed 
hydrograph (i.e. the index of volumetric fit). The 
equation turned out to give balanced weights to both 
high flow and low flow by combining bias penalty 
with mean square errors.

		
(1)

where:

 = daily observed discharge (mm)

 = daily simulated discharge (mm)

 = average daily observed discharge (mm)

 = average daily simulated discharge (mm)

 = total length of data in days

To assess the effects of monthly or seasonal variation 
of the climate on streamflow, two different calibration 
schemes were tested:

1.	 General parameterisation scheme to find one 
optimal parameter set for the entire period.

2.	 Conditional parameterisation scheme to find 
12 optimal parameter sets, each of which 
corresponds to individual months (Luo et al. 2011 
under review; Wang, Zheng & Luo 2010; Wang 
et al. 2011a; Wang et al. 2011b). For instance, one 
optimal parameter set for January streamflow 
simulation, one for February and so on. In this 
case, the value of objective function was optimised 
for streamflow outcome for each month. Note that 
each of the 12 model representations was allowed 
to run continuously in parallel even though each 
individual model was optimised for a specific 
target month wherein data for other months 
was  ignored.

Five parameter sets selected by the general 
parameterisation scheme for Gingera and Biggara 
catchments are shown in Table 2, Table 3, Table 4, 
Table 5, Table 6 and Table 7, for three rainfall-runoff 
models respectively.
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Table 2: Top five calibrated parameter sets of SIMHYD for Gingera

Parameter name Parameter range 1 2 3 4 5

Min Max

baseParameter, K (-) 0 1 0.108 0.111 0.110 0.112 0.112

imperviousThreshold (mm) 0 5 0.676 1.127 5.000 4.838 4.921

maximumInfiltrationLoss, COEFF (-) 0 400 117.536 335.972 309.236 329.982 271.149

infiltrationLossExponent, SQ (-) 0 10 0.253 1.312 0.127 1.195 0.561

interflowCoefficient, SUB (-) 0 1 0.000 0.000 0.000 0.000 0.000

perviousFraction (-) 0 1 0.993 0.996 0.994 0.996 0.997

interceptionStoreCapacity, INSC (mm) 0 5 0.007 0.000 0.000 0.000 0.000

rechargeCoefficient, CRAK (-) 0 1 0.525 0.533 0.536 0.536 0.537

soilMoistureStoreCapacity, SMSC (mm) 1 500 450.464 450.396 451.079 448.256 447.528

Table 3: Top five calibrated parameter sets of SIMHYD for Biggara

Parameter name Parameter range 1 2 3 4 5

Min Max

baseParameter, K (-) 0 1 0.062 0.071 0.066 0.070 0.071

imperviousThreshold (mm) 0 5 0.000 0.869 4.268 4.495 2.143

maximumInfiltrationLoss, COEFF (-) 0 400 134.101 144.469 95.744 98.633 164.574

infiltrationLossExponent, SQ (-) 0 10 1.090 1.127 0.597 0.619 1.384

interflowCoefficient, SUB (-) 0 1 0.068 0.034 0.079 0.044 0.054

perviousFraction (-) 0 1 0.996 0.984 1.000 0.985 0.992

interceptionStoreCapacity, INSC (mm) 0 5 0.651 0.210 0.567 0.311 0.109

rechargeCoefficient, CRAK (-) 0 1 0.842 0.735 0.895 0.826 0.762

soilMoistureStoreCapacity, SMSC (mm) 1 500 296.189 292.369 335.981 324.969 318.574
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Table 4: Top five calibrated parameter sets of Sacramento for Gingera

Parameter name Parameter range 1 2 3 4 5

Min Max

Adimp (-) 0.000 1.000 0.000 0.000 0.000 0.000 0.000

Lzfpm (mm) 0.000 50.000 37.696 45.360 49.433 3.691 50.000

Lzfsm (mm) 0.000 50.000 18.897 6.283 49.548 49.948 4.909

Lzpk (1/day) 0.000 1.000 0.034 0.037 0.009 0.404 0.036

Lzsk (1/day) 0.000 1.000 0.016 0.031 0.031 0.028 0.028

Lztwm (mm) 0.000 400.000 393.233 382.738 326.958 365.454 397.519

Pctim (-) 0.000 1.000 0.017 0.012 0.003 0.017 0.013

Pfree (-) 0.000 1.000 0.938 1.000 0.987 0.779 1.000

Rexp (-) 0.000 3.000 0.853 0.914 1.522 0.565 1.020

Rserv (-) 0.000 1.000 0.040 0.003 0.332 0.000 0.000

Sarva (-) 0.000 1.000 0.000 0.000 0.000 0.000 0.000

Side (-) 0.000 1.000 0.035 0.170 0.315 0.171 0.300

Ssout (m3/s/km2) 0.000 1.000 0.000 0.000 0.003 0.000 0.000

UH1 (-) 0.000 1.000 0.900 0.900 0.900 0.900 0.900

UH2 (-) 0.000 1.000 0.100 0.100 0.100 0.100 0.100

UH3 (-) 0.000 1.000 0.000 0.000 0.000 0.000 0.000

UH4 (-) 0.000 1.000 0.000 0.000 0.000 0.000 0.000

UH5 (-) 0.000 1.000 0.000 0.000 0.000 0.000 0.000

Uzfwm (mm) 0.000 80.000 79.976 77.600 78.784 76.346 80.000

Uzk (1/day) 0.000 1.000 0.074 0.071 0.103 0.049 0.061

Uztwm (mm) 0.000 100.000 71.328 47.846 48.415 38.022 39.880

Zperc (-) 0.000 80.000 65.739 46.795 69.818 22.384 30.697
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Table 5: Top five calibrated parameter sets of Sacramento for Biggara

Parameter name Parameter range 1 2 3 4 5

Min Max

Adimp (-) 0.000 1.000 0.016 0.023 0.005 0.049 0.001

Lzfpm (mm) 0.000 50.000 41.517 44.952 26.389 50.000 26.370

Lzfsm (mm) 0.000 50.000 48.674 47.324 31.462 41.587 50.000

Lzpk (1/day) 0.000 1.000 0.004 0.011 0.006 0.013 0.011

Lzsk (1/day) 0.000 1.000 0.035 0.035 0.065 0.035 0.037

Lztwm (mm) 0.000 400.000 303.086 275.270 357.419 249.225 286.366

Pctim (-) 0.000 1.000 0.026 0.026 0.034 0.022 0.042

Pfree (-) 0.000 1.000 1.000 1.000 1.000 1.000 1.000

Rexp (-) 0.000 3.000 1.186 1.559 1.420 2.178 1.824

Rserv (-) 0.000 1.000 0.057 0.000 0.002 0.007 0.000

sarva (-) 0.000 1.000 0.000 0.000 0.000 0.000 0.000

Side (-) 0.000 1.000 0.000 0.030 0.000 0.069 0.000

Ssout (m3/s/km2) 0.000 1.000 0.000 0.000 0.000 0.000 0.018

UH1 (-) 0.000 1.000 0.900 0.900 0.900 0.900 0.900

UH2 (-) 0.000 1.000 0.100 0.100 0.100 0.100 0.100

UH3 (-) 0.000 1.000 0.000 0.000 0.000 0.000 0.000

UH4 (-) 0.000 1.000 0.000 0.000 0.000 0.000 0.000

UH5 (-) 0.000 1.000 0.000 0.000 0.000 0.000 0.000

Uzfwm (mm) 0.000 80.000 63.951 59.106 61.748 78.879 62.197

Uzk (1/day) 0.000 1.000 0.060 0.069 0.052 0.052 0.059

Uztwm (mm) 0.000 100.000 7.522 17.473 6.142 18.613 23.841

Zperc (-) 0.000 80.000 59.913 63.040 79.478 80.000 66.325

Table 6: Top five calibrated parameter sets of SMAR for Gingera

Parameter name Parameter range 1 2 3 4 5

Min Max

Evaporation Coeff - C (-) 0 1 1 1 1 1 1

Groundwater runoff coeff - G (-) 0 1 1 1 1 1 1

Direct runoff area index - H (-) 0 1 0.22 0.22 0.22 0.22 0.22

Groundwater parameter - Kg (-) 0.01 200 178.06 178.05 178.11 178.02 178

Parameter n of Nash model - n (-) 1 10 1 1 1 1 1

Parameter - nk (-) 1 10 2.9 2.9 2.9 2.9 2.9

Potential evaporation factor - T (-) 1 1 1 1 1 1 1

Soil infiltration capacity - Y (mms/T.S) 100 100 100 100 100 100 100

Total soil moisture capacity - Z (mms) 0 125 125 125 125 125 125
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Table 7: Top five calibrated parameter sets of SMAR for Biggara

Parameter name Parameter range 1 2 3 4 5

Min Max

Evaporation Coeff - C (-) 0 1 0.47 0.47 0.47 0.47 0.47

Groundwater runoff coeff - G (-) 0 1 1 1 1 1 1

Direct runoff area index - H (-) 0 1 0.15 0.15 0.15 0.16 0.15

Groundwater parameter - Kg (-) 0.01 200 69.33 69.24 69.8 69.84 69.55

Parameter n of Nash model - n (-) 1 10 1 1 1 1 1

Parameter - nk (-) 1 10 1.27 1.28 1.3 1.35 1.27

Potential evaporation factor - T (-) 1 1 1 1 1 1 1

Soil infiltration capacity - Y (mms/T.S) 100 100 100 100 100 100 100

Total soil moisture capacity - Z (mms) 0 125 125 125 125 125 125

4.2.2	 Forecast

Forecasting in simulation mode or hindcasting is 
the most important component for evaluating any 
forecasting approach. It involves retrospective 
forecasting using past predictand information to re-
forecast (or hindcast) known events so as to evaluate 
a forecasting strategy. By comparing the streamflow 
forecast in simulation mode with observed data, we 
can evaluate the likely forecast quality in the actual 
forecast mode. 

Forecasting in simulation mode was performed 
for 1985–2005 with a warm-up period of 1980–1984 
(Figure 14). Although downscaled POAMA rainfall 
forecasts (hindcasts) are available for 1980–2006, we 
chose 1985–2005 as the forecast period to select the 
same record length as that of the historical rainfall 
ensemble approach. The hydrologic models were 
calibrated for 1976–1996 with 1975 as a warm-up 
period and validated for 1998–2008 with 1997 as a 
warm-up period. Therefore, forecasting is performed 

using data for the period already used for hydrologic 
model calibration. While acknowledging that the 
overlap between calibration and forecasting period 
should be avoided, we are somewhat constrained 
due to common period of forecast data possible 
between downscaled POAMA 1.5 (1980–2006) 
and historical rainfall ensemble (1985–2005). 
Nevertheless, we believe that the presence of a 
number of wet and extremely dry periods in the 
calibration and validation periods respectively, 
resulted in hydrologic model representations that 
can be confidently used in forecasting. This limitation 
would be overcome in the next phase of this work 
prior to operationalisation when POAMA 2.4a–c 
datasets for 1960–2006 would be used for forecasting 
in simulation mode. POAMA 2.4a–c implementation 
is based upon better assimilation of ocean and 
atmospheric conditions relative to POAMA 1.5 even 
though resolution of the new model is same. These 
forecast datasets from POAMA 2.4 were not available 
during this evaluation project.
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As rainfall input, data from the following two sources 
were used in simulations:

1.	 downscaled POAMA rainfall ensemble (ten 
members and their mean)

2.	 historical rainfall ensemble (Wang et al. 2011), 
which is the past ten-year observed rainfall data 
(ten members and their mean).

PET data from AWAP for the respective period were 
used because the interannual variation and the effects 
of PET on total streamflow outcome are negligible 
compared to those from rainfall input. Parameter sets 
from both parameterisation schemes were used to 
set up the hydrologic models. In addition, two types 
of streamflow forecasts with different temporal scale 
were generated:

•	 seasonal (three-monthly) streamflow forecasts 
updated every first day of the month

•	 monthly streamflow forecasts updated every 
fortnight i.e. first and 16th day of the month.

Figure 14: Schematic diagram to show the forecast scheme in simulation mode
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The following forecast procedure was used in 
simulation mode (Figure 14):

•	 For each forecast update, initialise a rainfall-runoff 
model with the past five-year daily rainfall and PET 
data. Through model re-initialisation driven by 
observed data, the internal storages of the model 
were re-calculated at each time step to represent 
the antecedent soil moisture and groundwater 
conditions properly.

•	 Use downscaled POAMA rainfall ensemble or 
historical rainfall ensemble as input to the model 
and simulate three-month ahead daily streamflow 
forecast. Historical rainfall ensemble is the 
collection of the past rainfall records observed in 
the same seasons.

•	 Aggregate daily streamflow forecasts to seasonal 
(three-month) and monthly streamflow forecasts.

For each hydrologic model, with five different 
parameter sets and 11 different rainfall ensemble 
members (i.e. ten downscaled POAMA ensembles 
and ensemble mean as the 11th member), we obtained 
a total of 55 streamflow forecast ensemble members 
at each time step.

4.2.3	 Streamflow bias correction

Bias correction is a procedure to correct the tendency 
for the simulated runoff to be systematically larger 
or smaller than the observed runoff. This bias could 
be caused by model input errors (observed rainfall 
and potential evapotranspiration), model structural 
deficiency and poorly calibrated model parameters, 
problems with the numerical implementations, 
runoff measurement errors and, more importantly, 
inaccurate rainfall forecasts (see section 7 on BATEA 
for full treatment of predictive uncertainty) (Kavetski, 
Kuczera & Franks 2006a; Kavetski, Kuczera & Franks 
2006b; Kuczera et al. 2010a; Kuczera et al. 2010b).

Regardless of the cause, when a bias is present it will 
lower the performance in forecast simulation as well 
as in the real-time forecast modes. From a process 
perspective, it is desirable to maximise forecast skills 
before any posterior bias correction is applied directly 
on streamflow forecasts. However, in most practical 
hydrologic and weather forecasting problems, this 
is rarely the case and the need for a bias correction 
procedure is often there, albeit to a different degree 
depending on the type of problem.

Assuming that correcting the underlying cause of 
this bias was intractable, a bias correction process 
was tested using the Autoregressive Moving Average 
(ARMA: Box & Jenkins 1976; Hyndman 2011) model. 
An ARMA model described by equations 2 and 3 
is a linear filter model that converts a sequence of 
uncorrelated (usually normal) random variables 

 (or the white noise) to a sequence of correlated 
variables (e.g. streamflow bias time series).

 			
			 
(2)

			 
		  (3)

where: 

 order of the autoregressive AR 
component

 order of the moving average MA 
component

 = streamflow bias time series (observed flow 
minus median runoff from the 55 member ensemble 
of the forecast runoff

 standard normal variate N (0, )

 residual variance i.e. remaining variance after 
bias correction

 backward shift operator,

,
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A common difficulty in implementation of the ARMA 
model is that the order of the autoregressive and 
moving average components is usually considered 
subjective and somewhat difficult to apply. There 
have been several attempts to automate ARMA 
modelling over the last 25 years. Hannan and 
Rissanen (1982) proposed a method to identify 
the order of an ARMA model for a stationary time 
series by fitting a long autoregressive model to the 
data, and then the likelihood of potential models was 
computed via a series of standard regressions. Gómez 
(1998) extended the Hannan–Rissanen identification 
method to include multiplicative seasonal ARMA 
model identification. Gómez and Maravall (1997) 
implemented this automatic identification procedure 
in the software TRAMO and SEATS. Other examples 
of automatic methods include the use of filtering 
methods and certain heuristic rules (Goodrich 2000; 
Liu 1989; Makridakis & Hibon 2000; Ord & Lowe 1996; 
Reilly 2000). 

We used the automatic time series forecasting 
method of Hyndman and Khandakar (2008). The 
ARMA model is calibrated according to the Akaike 
Information Criterion AIC (p,q) which is dependent 
on the maximum likelihood function L and order of 
the autoregressive and moving average components 
of the ARMA model:

				  
	 (4)

The likelihood function is defined by the mean 
squared error (MSE) or  from equation 2. 
There are several constraints on the fitted models 
to avoid the problems with convergence or near  
unit-roots:

•	 The values of p and q are not allowed to exceed 
specified upper bounds (with default values of 5 in 
each case). 

•	 A model is rejected if it is ‘close’ to non-invertible 
(when roots of  lie outside the unit circle) 
or non-stationary (when roots of  lie 
outside the unit circle). 

•	 If either of the characteristic equation  or 
 have a root smaller than 1.001 in absolute 

value, the model is rejected.

•	 If there are any errors arising in the non-linear 
optimisation routine used for estimation, the 
model is rejected. The rationale used here is that 
any model that is difficult to fit is probably not a 
good model for the data. 

With the constraints, the algorithm guarantees to 
return a valid model because the model space is 
finite and at least one of the starting models will be 
accepted; i.e. the model without any autoregressive 
and moving average parameters. 

To remove the autocorrelation structure remaining in 
the residuals of the forecast streamflow, the following 
ARMA-based bias correction was applied on 
streamflow outcome (see Appendix A for the details).

1.	 Calculate the median runoff from the 55 member 
ensemble of a single forecast runoff outcome.

2.	 Calculate the residual between the median and 
observed runoff.

3.	 Standardise the residual time series for each 
forecast update period using the respective mean 
and standard deviation.

4.	 Determine and calibrate the best order of an ARMA 
model using the standardised residual time series.

5.	 Apply the calibrated ARMA model to simulate 
new standardised residuals.

6.	 De-standardise the simulated residuals and 
estimate bias correction required in the (biased) 
median forecast runoff.

7.	 Apply the simulated residuals to the median runoff 
and each of the runoff ensemble members from 
step 1. Note that through this step, bias correction 
in the biased median forecast runoff is applied to 
the entire biased forecast distribution. 

8.	 Store this ensemble of bias corrected runoff.
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The methodology was implemented as a DMS Utility 
Tool (Laugesen 2010) using the R  programming 
language (R Development Core Team 2011) and the 
Forecast package (robjhyndman.com/software/
forecast). The bias corrected procedure was 
implemented using biased forecast distributions for 
1985–2005 (21 years) in the following manner:

•	 Split sampling scheme 1: Calibrate an ARMA model 
with data of 1985–1998 (14 years) and correct the 
bias of streamflow outcome of 2000–2005 (six years) 
to validate the ARMA model. Means and standard 
deviations for 1985–1998 were used for 2000–2005 
in steps 3 and 6 above.

•	 Split sampling scheme 2: Calibrate an ARMA model 
with data of 1992–2005 (14 years) and correct the 
bias of streamflow outcome of 1985–1991 (seven 
years) to validate the ARMA model. Means and 
standard deviations for 1992–2005 were used for 
1985–1991 in steps 3 and 6 above.

•	 Combined calibration scheme: If outcomes from 
the two split sample tests above lead to comparable 
model performance in the respective validation 
period, then re-calibrate the ARMA model for the 
period 1985–2005 (21 years) to obtain bias corrected 
forecast distribution for evaluation using the skill 
scores discussed in section 4.3. 

Note that this last step was done to include enough 
samples for statistically meaningful estimates of 
forecast verification. Since the split samples include 
periods of distinctly different hydrometeorological 
conditions, the results are expected to provide 
conservative estimates about the likely improvement 
we can have with the bias correction. Because of 
splitting, we could not have enough samples for 
skill scores and reliability calculation. Therefore, 
we report only NSE values of the split sample test 
results. As the final results of forecast verification, 
we evaluate skill scores using four indices and assess 
reliability of the bias corrected probabilistic forecasts 
using the predictive QQ plots, which are explained in 
the following section.

4.3	 Forecast verification

4.3.1	 Skill scores

Forecast skill is defined as ‘the relative accuracy of a 
set of forecasts, with respect to some set of standard 
control or reference forecasts.’ (Wilks 1995, p. 237) 
In many cases, the distribution or its average of past 
predictand data were used as reference forecasts. In 
this study, we chose past observed streamflow data 
as reference forecasts.

Forecast skill is often quantified by a skill score. 
The generic form of skill score is:

	 (5)

where: 

 is the score of streamflow forecasts

 is the score of reference forecasts

 is the score of perfect forecasts

The lower bound of the skill score varies depending 
on a selected score, but the upper bound of the skill 
score is 100 (%) for any score. It is noteworthy that 
the actual value of a skill score can be different even 
for the same data, depending on reference forecasts 
selected for the calculation.

This study used three skill scores: RMSE, RMSEP 
and CRPS. For all three scores, the score of perfect 
forecasts  is zero. These skill scores were 
derived using the same code that is currently 
being used in the operational statistical seasonal 
forecasting system (www.bom.gov.au/water/ssf). 
When  calculating these skill scores for a time step, 
runoff value observed at the time step was not included 
to avoid any artificial increase of skills scores.
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The skill score of RMSE (Root Mean-Squared Error) 
is the distance between the median of streamflow 
forecasts and corresponding observations. It is 
calculated by:

Page 44: 
[column 1] 
 
 

 



n

i
kikifcast QQmedian

n
RMSE

1

2
,, )ˆ(

1

 



n

i
kikiref QQmedian

n
RMSE

1

2
,, )

~
(

1

    



n

i
kikifcast QFQmedianF

n
RMSEP

1

2
,,

~
)ˆ(

~1

    



n

i
kikiref QFQmedianF

n
RMSEP

1

2
,,

~
)

~
(

~1

[column 2] 
 

     




 



 

n

i
kkikikifcast QdQQHQF

n
CRPS

1

2
,,,

ˆˆˆˆ1

     




 



 

n

i
kkikikiref QdQQHQF

n
CRPS

1

2
,,,

~~~~1

 
Page 99: 

 11ˆ  et pQq

 ensembles55ˆmedianQqt 

 
Page 100: 
Number 5: 

ttt yxq &,  

 
Number 10: 
 
    t

j
jt

i
i ByB   11  

,	 (6)

		
		
,	 (7)

 
where:

 is the number of years of the forecast period in 
simulation mode (e.g. equals 21 years for 1985–2005)

 is the update time step (e.g. 12 monthly updates of 
three-monthly flow in a year)

 is the streamflow forecast in year  and update 
time step 

 is the reference forecasts (observed streamflow)

 is the observation at the th update

Note that to calculate an RMSE skill score for the th 
update, n different cumulative distribution functions 
were developed, but the streamflow value observed 
in a given year  was left out when estimating 

 for the th update in year .

The RMSE calculates errors directly in the 
measurement space. The square power in the 
equations makes the error term in RMSE sensitive 
to a few large errors relative to many small ones, 
and therefore it can potentially lead to conservative 
forecasts.

RMSEP (Root Mean-Squared Error of Prediction) 
is the expected value of the distance between the 
median of streamflow forecasts and corresponding 
observations in probability space (Wang & 
Robertson 2011). 

It is calculated by:
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,	 (8)
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where: 

 is the cumulative distribution function of  
reference forecasts

Note that the terms on the right hand side of equations 
8 and 9 are in probability domain while the analogous 
terms in equations 6 and 7 are in the original flow 
domain. Therefore, the influence of large errors in 
the original flow domain has a smaller impact on 
RMSEP relative to RMSE. In the case of RMSEP, more 
frequent events have more influence on the errors, 
which reduces the impact of outliers in measurement 
space. However, for periods with a narrow range 
of streamflow volumes, such as low flow regimes, a 
slight error in measurement space can be amplified 
to an extremely large error in probability space. In 
such a case, RMSEP can respond sensitively to even 
marginal errors in streamflow volumes.

CRPS (Continuous Rank Probability Score) is the area 
between the forecast distribution and a step function 

 of the observation. It is calculated by:
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,(10)

							     
	
,(11)

where: 

 and  are the cumulative distribution functions 
of the reference (observed) and forecast streamflow 
respectively

					     (11)

Note that for a deterministic forecast, the CRPS is 
reduced to MAE (Mean Absolute Error) and, like 
RMSE, it is also sensitive to large errors.

Since each skill score emphasises different aspect of 
forecast accuracy, it is desirable to inspect all the skill 
score results when comparing modelling results. In 
addition to the three skill scores, we also included 
Nash–Sutcliffe Efficiency (NSE) (Nash & Sutcliffe 
1970) because the efficiency measure has been widely 
adopted in rainfall-runoff modelling. We calculated 
NSE for the median of streamflow forecasts.
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4.3.2	 Reliability

Assessment of the reliability of streamflow forecast 
requires a diagnostic approach that compares a 
time-varying forecast distribution at all times to a 
time series of observations. This is a more stringent 
test than alternative validation methods based on 
deterministic approaches currently used in hydrology, 
which simply compare time series of observations 
and ‘optimal’ simulations or the standard goodness-
of-fit assessments like the Nash–Sutcliffe statistic that 
cannot check if the forecast distribution is consistent 
with the observed data. 

The forecast distribution is conditioned on 
the assumptions made during the inference. 
Consequently, unsupported assumptions may lead 
to inadequate forecast distributions. Therefore, the 
estimated forecast distributions must be scrutinised 
(‘validated’) to assess reliability of the forecasts (Thyer 
et al. 2009). Reliability is the agreement between 
the distribution of forecasts and the distribution of 
observations. The reliability diagram was used as a 
visual summarised measure of forecast reliability. 
In this study, we use the predictive QQ plot, also 
known as the Probability Integral Transform (PIT) 
plot, adapted from the verification tools used 
for probabilistic forecasts of hydrological and 
meteorological variables (Dawid 1984; De Gooijer & 
Zerom 2000; Gneiting, Balabdaoui & Raftery 2007; 
Laio & Tamea 2007; Thyer et al. 2009). The diagram 
plots the frequency distribution of observations 
against that of forecasts. The proximity of the plotted 
curve to the diagonal line in the plot indicates the 
level of reliability of the forecasts. 

For probabilistic forecasts, instead of forecast 
or observed values, the following PIT values 
were  plotted:

	 (12)

where:

 is the PIT for the observation  (Figure 15)

Using the PIT estimates, the predictive QQ plot is 
constructed as follows (Thyer et al. 2009): Let  
be the CDF (cumulative distribution function) of the 
forecast distribution in a given year  and update 
time step  and  is the corresponding observed 
runoff. If the hypotheses in the calibration framework 
are consistent with the data, the observed value  
should be consistent with the distribution .  

Hence, under the assumption that the observation 
 is a realisation from the forecast distribution, 

the PIT value  is a realisation from a uniform 
distribution on [0,1]. The predictive QQ plot compares 
the empirical CDF of the sample of PIT values  
( ) with the CDF of a uniform 
distribution to assess whether the hypotheses are 
consistent with the observations. 

The predictive QQ plot can be interpreted as 
follows (Figure 16): (1) If all points fall on the 1:1 
line, the forecast distribution agrees perfectly with 
the observations. (2) If an observed PIT value is 1.0 
or 0.0, the corresponding observed data lie outside 
the forecast range, implying that the predictive 
uncertainty is significantly underestimated. (3) If the 
observed PIT values cluster around the midrange 
(i.e. a low slope around theoretical quartile 0.4–0.6), 
the predictive uncertainty is overestimated. (4) If 
the observed PIT values cluster around the tails (i.e. 
a high slope around theoretical quartile 0.4–0.6), 
the predictive uncertainty is underestimated. (5) If 
the observed PIT values at the theoretical median 
are higher/lower than the theoretical quartiles, the 
modelled predictions systematically under predict/
over predict the observed data. 

The predictive QQ plot provides a simple and 
informative summary of the performance of 
probabilistic forecasts. It does not involve any 
additional assumption beyond those used during 
the calibration and it is a direct test of reliability of 
the forecasts.
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Figure 15: An example of PIT calculation for observed streamflow for the forecast update step k

P
IT

 (P
ro

ba
bi

lit
y 

In
te

gr
al

 T
ra

ns
fo

rm
)

Theoretical quantile of uniform variate 
Figure 16: An example of predictive QQ plots to show the PITs against a uniform distribution of observed data (source: 
Thyer et al. 2009)
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5.	 Modelling system

The Dynamic Modelling System (DMS) was developed 
as a system for generating streamflow predictions 
using conceptual rainfall-runoff models. This 
system allows users to perform model calibration, 
validation and forecasting; using a workflow based 
approach (Figure 17). The DMS makes it possible for 
these functions to be performed in ensemble mode 
over many combinations of models, input forcings, 
optimisers, objective functions and accumulation 
methods for the catchments described section 3 to 
generate all the outputs (and substantially more) 
discussed in section 6.

The DMS is an implementation of the recommended 
solution plan outlined in the Pilot Seasonal Dynamic 
Modelling System Specifications and Proposed 
Solution document (Laugesen, Shin & Tuteja 
2009). This captured the requirements to meet the 
deliverables of the Experimental Dynamic Seasonal 
Streamflow Forecasting project (DM). Structurally, it 
is a system of interacting software components, which 
accept input, process it and generate output. This 
output is then used as input for another component or 
treated as final output and interpreted by end-users. 
The structure diagram, illustrated in Figure 17, shows 
the three main components; Dynamic Modelling 
Controller (DMC), a large number of utility tools (UT) 
and a Workflow Manager (WFM).

Each component of the DMS was designed to 
leverage technologies which suited its purpose, 
constraints and requirements. These were:

•	 DMC – C# .NET, eWater TIME (www.toolkit.net.au) 

•	 UT – Python, R and various libraries 

•	 WFM – Python, JSON.

The DMC uses an object-oriented approach to 
implement the model-view-controller, delegate, 
bridge and adapter patterns. Each UT uses a 
structured programming approach with significant 
commonality between most of the UT. The WFM 
implements a finite-state machine using object-
oriented and structured approaches. All components 
write log files for debugging purposes, have help 
documents available at the command-line and are 
documented in the Dynamic Modelling System 
Manual (Laugesen 2010).

During the experimental phase, the DMS was 
primarily operated through a workflow driven 
process. Hydrologists created high level workflow 
input files which describe the tasks to perform, where 
the required input data were located and where the 
output data should be stored. These workflow input 
files were then processed by the WFM which ran 
each task in sequence by launching the requested 
component through a system-call: either the DMC 
or a specific UT. Each workflow ran over many 
combinations of catchment, model, optimiser, 
objective function, accumulation method, etc. and 
so were quite complex in some cases. Adopting a 
workflow-based approach significantly improved 
the repeatability of complex processes, removed 
a large amount of human error and this enhanced 
confidence, accountability and the ability to audit 
result sets. Figure 18 illustrates a typical workflow 
driven process.
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In addition to driving the DMS through workflows, 
all individual components could be operated as 
stand-alone software applications in their own 
right. Being able to run the DMC or individual UT 
as stand-alone applications resulted in a significant 
boost in development parallelisation, component 
level testing, component re-use and workflow 
trouble shooting. It came at the cost of slightly lower 
performance when running in workflow mode, 
due to the overhead of system context switching 
and slower data transfer between components, but 
this was more than made up for by the increase in 
concurrency and automation. This dual method of 
operating the DMS was a consequence of adopting 
a simple architecture relying on common command-
line interfaces to all components and a common text 
file format for transfer and storage of all inputs and 

outputs. Unfortunately, the use of file-based data 
persistence resulted in a large and complex directory 
tree of datasets that made data management difficult 
in some cases, but this was offset by the benefits of 
readily accessible results through standard tools and 
an increased ease of collaboration with our partners 
from WIRADA, University of Newcastle and the 
University of Adelaide.

The current implementation of the DMS met the 
needs for the experimental phase of work for 
this evaluation project; but it may require further 
improvement on some components to use DMS as a 
modelling system for an operational service. In the 
next phase of this work, these operationalisation 
issues will be investigated in light of the new or 
different requirements for an operational system and 
the lessons learnt from this experimental system.

Figure 17: Overview structure of dynamic modelling system (DMS)
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Figure 18: An example of workflow in DMS
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Modelling methods discussed in section 4 were 
implemented on the target experimental catchments 
under the following simulation conditions to evaluate 
streamflow simulation and forecasting capabilities:

•	 historical modelling products and retrospective 
water balance from three rainfall-runoff models in 
ensemble mode

•	 streamflow forecasts using hydrologic models 
derived from general parameterisation 
scheme versus conditional parameterisation 
calibration scheme

•	 streamflow forecasts derived from historical 
rainfall ensembles versus those from downscaled 
POAMA rainfall ensembles

•	 posterior ARMA-based bias correction of the 
streamflow forecasts

•	 comparison of streamflow forecasts derived from 
the dynamic modelling approach versus those 
from the statistical BJP approach

•	 monthly streamflow forecast versus seasonal 
(three-monthly) streamflow forecasts derived from 
the dynamic approach.

6.1	 Comparison of rainfall-runoff models

Performance of the hydrologic model ensembles 
using observed rainfall data and the suitability of each 
model for rainfall-runoff prediction is summarised in 
Table 8 and Figure 19. Monthly streamflow simulated 
from SIMHYD and Sacramento had NSE averages 
higher than 75% both for calibration and validation 
periods in most catchments. The range of NSE 
values from the SIMHYD model for the calibration 
and validation periods across all catchments vary in 
the range 0.52–0.92 and 0.61–0.91 respectively. The 
respective values from Sacramento vary in the range 
0.71–0.95 and 0.66–0.94. Compared to the SIMHYD 
and Sacramento models, SMAR showed inferior 
performance for all the catchments (Figure 19). 

6.	 Results, discussion and evaluation

Table 8: Nash–Sutcliffe efficiency of historical modelling driven by observed rainfall for target catchments

Comparison of NSE (monthly data basis) for eight target catchments

Nash–Sutcliffe Efficiency (Optimized on the basis of mean square error and volume 
constraint: Cal. 1976–96 & Ver. 1998–2008)

Catchment Sacramento Simhyd

Calibration Verification Calibration Verification

Gingera 0.772–0.784 0.708–0.732 0.823–0.826 0.802–0.805

Tantangara 0.772–0.832 0.770–0.824 0.804–0.804 0.811–0.812

Tinderry 0.776–0.801 -2.199 to -0.863 0.754–0.758  -1.429 to -1.190

Hinnomunjie 0.707–0.732 0.655–0.737 0.5235–0.5236 0.6085–0.6088

Biggara 0.830–0.849 0.844–0.850 0.821–0.823 0.835–0.836

Dohertys 0.943–0.947 0.872–0.886 0.943–0.943 0.913–0.914

Taggerty 0.935–0.940 0.913–0.938 0.922–0.924 0.867–0.872

Lacmalac 0.903–0.915 0.880–0.893 0.866–0.868 0.805–0.807

Overall range 0.71–0.95 0.66–0.94 0.52–0.92 0.61–0.91
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Figure 19: Averages of Nash–Sutcliffe efficiency of seasonal streamflow outcome from rainfall-runoff models in the 
calibration period and validation period
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For Hinnomunjie, all three models failed to reproduce 
its monthly streamflow patterns. For Tinderry, none 
of the models were able to reproduce streamflow 
patterns observed in the validation period, even 
though the models were calibrated to simulate 
streamflow patterns quite accurately during the 
calibration period.

Figure 20 shows the top 20 monthly streamflow 
ensemble members of the Biggara catchment. 
Sacramento produced streamflow ensemble 
members, each of which had a distinct pattern. 
However, all 20 streamflow members from SIMHYD 
had almost the same pattern. Therefore, the use of the 
Sacramento model in ensemble mode is advantageous 
whereas the use of the hydrologic model ensembles 
in the case of SIMHYD is somewhat redundant.

As mentioned before, snowmelt is a significant 
component in the water budget of the Hinnomunjie 
and Tantangara catchments. Noting that none of the 
models includes accounting for snowmelt processes, 
late winter and early spring runoff in these catchments 
is often under predicted. 

In the case of the Tinderry catchment, all the models 
generate too much runoff during the dry validation 
period (1998–2008), because their structures were 
tuned to produce streamflow patterns during a 
relatively wetter calibration period (1976–1996). Then, 
why was the bias so serious only in Tinderry? Note 
that Tinderry is only one intermittent catchment 
amongst the target catchments. The catchment has 
the least mean annual rainfall of 799 mm/yr and the 
least runoff coefficient of 0.16 amongst the target 
catchments (Table 1); all other catchments have 
perennial stream channels with mean annual rainfall 
in excess of 1,100  mm/yr and runoff coefficients 
greater than 0.2. For a relatively dry catchment, 
the representation of nonlinear dynamics in the 
catchment hydrologic processes, including the 
interaction between groundwater and stream 
channel, is critical for determining the streamflow 
pattern, particularly during a drought. However, it is 
somewhat difficult to accurately simulate catchment 
hydrologic processes using models containing only 
simple approximations of surface and groundwater 
hydrologic processes, particularly during prolonged 
dry periods.

Considering the simple structures of models for 
groundwater flow, it is not surprising that any model 
could not satisfactorily reproduce streamflow patterns 
of the dry catchment during droughts. Methodologies 
required for incorporation of groundwater losses 
and well level data in the conceptual rainfall-runoff 
models applied to ephemeral catchments such as 
those illustrated by Moore and Bell (2002) using the 
PDM model may need to be considered in the future.

In spite of apparently high NSE values, a closer look 
at model outcomes reveals a serious limitation of 
SIMHYD. As an example the high runoff yielding 
Gingera catchment, which contains steep hill slopes 
and thin soil cover, is known to produce considerable 
overland flow and shallow sub-surface flow through 
the soil (i.e. saturation excess surface runoff). In our 
simulation, however, SIMHYD generated 98.7% 
of total streamflow as groundwater flow in the 
catchment (Figure 21). In other words, SIMHYD 
reproduced the spiky daily pattern of total streamflow 
with over-estimated groundwater flux. The quick 
response of groundwater flux does not conform 
well to current understanding of the groundwater 
flow systems in these catchments. Similar model 
behaviour was also found in other experimental 
catchments. Further, strong interactions between 
parameters for the groundwater storage caused the 
20 optimal parameter sets to produce almost identical 
streamflow patterns from the model. Note that a 
more rigorous evaluation of the SIMHYD model 
on experimental catchments with BATEA using 
the Markov Chain Monte Carlo (MCMC) approach 
confirmed these findings (see section 7).

In summary, historical modelling results highlight 
the structural deficiency problems of the 
conceptual rainfall-runoff models, particularly 
the groundwater component in SIMHYD model, 
and the implementation error of the SMAR model 
in the rainfall-runoff model library. In the case of 
catchments impacted by snowmelt in late winter 
and early spring, streamflow simulation capability 
was sub-optimal due to the absence of the snowmelt 
component in the adopted hydrologic models. 
Among the three models, Sacramento was selected 
as the best one that can produce uncertainty bounds 
of streamflow forecasts with acceptable accuracy for 
perennial catchments.
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Figure 20: Monthly hydrographs of rainfall-runoff models for Biggara
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Figure 21: Yearly water balance as generated from SIMHYD for Gingera

Year

6.2	 General parameterisation versus 
conditional parameterisation

Skill scores of SIMHYD models calibrated using the 
general parameterisation scheme and the conditional 
parameterisation schemes are compared in Figure 22 
and Figure 23. In both cases, simulations using the 
SIMHYD model were done with historical rainfall 
ensembles (section 4.2.2: past ten years of observed 
rainfall data) and potential evapotranspiration as 
inputs (Wang, Zheng & Luo 2010).

As explained in section 4.2.1, the general 
parameterisation scheme optimised one set of  
SIMHYD parameter values to the entire calibration 
period. In contrast, under the conditional 
parameterisation scheme, we have 12 sets of 
parameter values, each of which was the optimal 
parameter set for each month. As an example, 
the parameter set for January was obtained by 
optimising the objective function for January data 
over the calibration period. It is pointed out that each 
of the calibrated models was run continuously even 
though the model was optimised for a single month. 

As shown in Figure 22, the conditional 
parameterisation scheme improved the 
accuracy of JFM forecasts (January to March) 
for many catchments, compared to the general 
parameterisation scheme. Particularly, Dohertys 
witnessed noticeable increase in all four accuracy 
indices in the first quarter. In March, RMSE increased 
from −9.4% to 35.3%, RMSEP from −16.4% to 24.4%, 
CRPS from −38.1% to 27.0% and NSE from −67.4% 
to 41.5% for the catchments.

For other quarters, however, most catchments 
experienced only marginal, if any, improvement 
in forecast accuracy, even though the conditional 
parameterisation scheme allowed more freedom 
in adjusting parameter values. For some cases, the 
monthly-varying parameter values even produced worse 
forecast accuracy. For instance, we found the decrease of 
RMSEP from 16.4% to 7.7% and from 8.9% to −8.0% in 
November and December respectively for Lacmalac.

In conclusion, it is questionable that the conditional 
parameterisation scheme is an effective solution for 
improving forecast accuracy enough to warrant the 
use of an augmented model by introducing time-
varying parameter sets.
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Figure 22: Skill scores, NSE and reliability of general parameterisation and conditional parameterisation.  
The forecasts were generated using SIMHYD with historical rainfall ensemble
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6.3	 Historical rainfall ensemble versus 
downscaled POAMA rainfall ensemble

Skill scores of forecasts from SIMHYD model 
using historical rainfall ensembles and downscaled 
POAMA ensembles are compared in Figure 24 
and Figure 25. The SIMHYD model calibrated by 
the general parameterisation scheme was used for 
these simulations.

One recognisable feature in the right side panels 
was very low scores of the accuracy indices in ASON 
(August to November) for most catchments. For many 
periods, skills from downscaled POAMA ensembles 
declined further when compared to those from 
historical rainfall ensembles. For instance, Dohertys 
had 20.3% RMSE, 30.0% RMSEP, 26.6% CRPS and 
26.0% NSE with historical rainfall ensemble for its 
November forecast, but those skill scores dropped 
sharply to 2.5%, –2.9%, –5.1% and –11.5% respectively 
with downscaled POAMA rainfall ensembles. 

As shown in Figure 26, when we used historical 
rainfall ensembles, we obtained widely spread 
forecasts, but we could not see any noticeable bias 
between the medians of forecasts and observations in 
November. However, when we replaced the rainfall 
input with downscaled POAMA rainfall ensembles, 
in most years we had seriously underestimated 
forecasts compared to observations. For several 
years, observed streamflow went even beyond the 
90th percentile of its corresponding forecasts. With 
downscaled POAMA rainfall ensembles, we often 
had systematically underestimated streamflow 
magnitudes particularly for high flow regimes 
(Figure 10).

As explained before, POAMA often underestimated 
rainfall magnitudes during wet seasons (Figure 9). 
Since most catchments of our study had high flow 
during ASON (see Figure 4), the underestimated 
rainfall forecasts resulted in lower streamflow 
forecasts than observation and the catchments 
experienced poor streamflow forecast skills during 
the season.

On the basis of these results, we can say that 
POAMA, at least version 1.5, does not demonstrate 
enough accuracy to use the GCM outcome, instead 
of a simple historical rainfall ensemble for seasonal 
streamflow forecast at the catchment scale. Some of 
the limitation may be alleviated by the improvement 
of downscaling methods, however fundamentally 
further improvements in the accuracy of POAMA 
rainfall forecasts are required.

While recognising that further improvements in 
POAMA rainfall forecasts are required in future, two 
important considerations are worth noting. First, 
rainfall forecasts and forecasts from POAMA 2.4a–c 
are now available, which we understand have better 
ocean and atmosphere assimilation techniques, 
and 30 ensembles members as opposed to ten from 
POAMA1.5 (Harry Hendon; pers. comm.). Second, 
skill scores used to quantify accuracy of streamflow 
forecasts rely on the difference between the median 
of the forecasts and streamflow observations (see 
equations 4 to 11). Even though downscaled POAMA 
rainfall and, accordingly, streamflow forecasts 
under prediction had poor skills, these forecasts do 
get the timing of highs and lows right (Figure 10). 
Therefore, bias in streamflow forecasts is systematic 
and it is possible to capture this through a posterior 
streamflow bias correction procedure. 
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Figure 24: Skill scores, NSE and reliability of seasonal streamflow forecasts driven by historical rainfall ensemble 
and downscaled POAMA rainfall ensemble.The forecasts were generated using SIMHYD calibrated by general 
parameterisation scheme with historical rainfall ensemble
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6.4	 Posterior streamflow bias correction

Monthly rainfall and runoff dynamics of Gingera 
and Biggara catchments for 1995–2005 are shown 
in Figure 10. The hyetographs contain time series 
of observed and the mean of downscaled POAMA 
rainfall ensemble and the hydrographs contain 
observed streamflow (blue line), reference streamflow 
(observed rainfall simulated with Sacramento: green 
line), average of the forecast before bias correction 
(median of the 55 ensembles: red line) and average 
of the forecast after bias correction (bias corrected 
median of the 55 ensembles: purple line). The 
difference between the observed and reference flow 
is the bias in streamflow as a result of inaccuracies 
in inputs (rainfall), model structural error 
comprising uncertainties in derived parameters and 
numerical procedures, and the outputs (streamflow 
observations). However, the difference between 
reference streamflow and average of the forecast 
before bias correction is the bias resulting from 
replacing the observed rainfall with the downscaled 
POAMA rainfall ensembles. 

In general, the forecast flow before bias correction 
underestimates the observed flow with much larger 
differences due mainly to rainfall under prediction. 
Note that the timing of the high and low forecast 
flows is aligned well and that a systematic pattern in 
the difference is discernible. A similar pattern was 
also found in other catchments. The bias correction 
procedure described in section 4.2.3 using the ARMA 
model was applied to total bias; i.e. the difference 
between observed streamflow (blue line) and the 
median of 55 forecast ensembles.

The ARMA model was calibrated using two split 
sampling approaches. In split sampling scheme 1, 
the model was calibrated to 1985–1998 (14 years) 
and validated against 2000–2005 (six years). In split 
sampling scheme 2, the respective calibration and 
validation periods were 1992–2005 (14 years) and 1985–
1991 (seven years). Following the two split sampling 
approaches, the model was finally calibrated to the 
complete forecast dataset for 1985–2005, referred to 
as the combined calibration scheme.

Results from implementation of the ARMA model 
on target catchments at monthly time steps are 
summarised in Table 9, Table 10 and Table 11. In 
the first split sampling scheme (Table 9), ARMA 
correction increases the range of NSE from 0.41–
0.75 to 0.59–0.85 for the calibration period and from 
0.36–0.78 to 0.49–0.85 for the validation period, for 
all catchments except Tinderry. We could see similar 
improvement for other schemes.
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Table 9: ARMA model parameter and NSE values of split sampling scheme 1 for monthly flow updated fortnightly

Split sampling scheme 1: Calibration (1985–1998), Validation (2000–2005)

Catchment ARMA 
Model

(p,q) AR1 AR2 MA1 MA2 NSE_pc NSE_c NSE_pv NSE_v

Biggara A (1,2) -0.84 1.33 0.36 0.62 0.81 0.60 0.64

B (0,1) 0.21 0.57 0.73 0.66 0.77

Dohertys A (1,0) 0.33 0.69 0.81 0.77 0.81

B (1,1) 0.77 -0.59 0.70 0.75 0.67 0.70

Gingera A (0,1) 0.36 0.41 0.60 0.36 0.49

B (0,1) 0.22 0.42 0.59 0.46 0.64

Hinnomunjie A (1,1) 0.16 -0.18 0.54 0.80 0.45 0.69

B (2,2) 0.87 -0.78 -1.03 0.78 0.48 0.73 0.45 0.71

Lacmalac A (1,0) 0.35 0.56 0.64 0.63 0.68

B (1,1) 0.82 -0.61 0.60 0.73 0.69 0.75

Taggerty A (1,1) 0.79 -0.60 0.75 0.85 0.78 0.85

B (2,0) 0.17 0.14 0.75 0.82 0.77 0.78

Tantangara A (0,1) 0.33 0.51 0.69 0.45 0.69

B (0,1) 0.16 0.55 0.72 0.60 0.77

Tinderry A (0,1) 0.23 0.18 0.39 -1.05 -5.07

B (1,1) 0.85 -0.69 0.25 0.47 -0.89 -2.30

A and B represent ARMA bias correction models implemented on the 1st and 16th day of each month respectively. NSC_pc: NSE 
over the calibration period prior to bias correction; NSC_c: NSE over the calibration period after bias correction; NSC_pv: NSE 
over the validation period prior to bias correction; NSC_v: NSE over the validation period after bias correction; (p,q): order of the 
ARMA model.

Table 10: ARMA model parameter and NSE values of split sampling scheme 2 for monthly flow updated fortnightly

Split sampling scheme 2: Calibration (1992–2005), Validation (1985–1990)

Catchment ARMA 
Model

ARMA AR1 AR2 AR3 MA1 MA2 MA3 NSE_
pc

NSE_c NSE_
pv

NSE_v

Biggara A (1,0) 0.42 0.59 0.82 0.62 0.66

B (2,1) 1.08 -0.19 -0.79 0.57 0.76 0.65 0.69

Dohertys A (1,0) 0.41 0.70 0.83 0.73 0.75

B (1,1) 0.80 -0.59 0.70 0.74 0.69 0.65

Gingera A (1,0) 0.33 0.41 0.64 0.36 0.38

B (1,1) 0.82 -0.68 0.44 0.64 0.37 0.48

Hinnomunjie A (0,1) 0.16 0.54 0.80 0.45 0.64

B (0,0) 0.48 0.72 0.50 0.65

Lacmalac A (2,1) 1.13 -0.20 -0.79 0.59 0.73 0.51 0.46

B (3,3) 0.63 0.38 -0.18 -0.34 -0.50 0.29 0.64 0.75 0.57 0.59

Taggerty A (2,0) 0.22 0.26 0.76 0.87 0.73 0.76

B (1,2) 0.60 -0.47 0.24 0.76 0.81 0.75 0.79

Tantangara A (1,0) 0.35 0.51 0.77 0.45 0.50

B (2,2) 1.83 -0.84 -1.72 0.72 0.59 0.76 0.51 0.64

Tinderry A (1,2) 0.98 -1.06 0.11 -0.25 -0.03 0.26 0.22

B (0,0) 0.07 0.19 0.26 0.24

A and B represent ARMA bias correction models implemented on the 1st and 16th day of each month respectively. NSC_pc: NSE 
over the calibration period prior to bias correction; NSC_c: NSE over the calibration period after bias correction; NSC_pv: NSE 
over the validation period prior to bias correction; NSC_v: NSE over the validation period after bias correction; (p,q): order of the 
ARMA model.
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Table 11: ARMA model parameter and NSE values of the combined calibration scheme for monthly flow  
updated fortnightly

Combined calibration scheme: Calibration (1985–2005), Validation (–)

Catchment ARMA 
Model

ARMA AR1 AR2 MA1 MA2 NSE_pc NSE_c NSE_pv NSE_v

Biggara A (0,1) 0.38 0.62 0.79

B (1,0) 0.22 0.60 0.75

Dohertys A (1,0) 0.30 0.71 0.82

B (1,1) 0.78 -0.62 0.70 0.74

Gingera A (1,2) 0.97 -0.65 -0.25 0.43 0.61

B (1,2) 0.96 -0.74 -0.16 0.45 0.63

Hinnomunjie A (1,1) -0.84 0.99 0.52 0.78

B (0,0) 0.48 0.72

Lacmalac A (1,2) 0.90 -0.62 -0.13 0.59 0.67

B (1,1) 0.87 -0.69 0.63 0.74

Taggerty A (1,2) 0.63 -0.52 0.15 0.76 0.85

B (1,2) 0.56 -0.43 0.12 0.76 0.82

Tantangara A (0,1) 0.24 0.51 0.71

B (0,1) 0.12 0.57 0.74

Tinderry A (1,2) 0.98 -0.75 -0.18 0.22 0.44

B (1,1) 0.91 -0.76 0.29 0.48

A and B represent ARMA bias correction models implemented on the 1st and 16th day of each month respectively. NSC_pc: NSE 
over the calibration period prior to bias correction; NSC_c: NSE over the calibration period after bias correction; NSC_pv: NSE 
over the validation period prior to bias correction; NSC_v: NSE over the validation period after bias correction ; (p,q): order of 
the ARMA model. 

Similarly, significant improvements were also 
achieved at three-monthly time steps (Table 12, Table 
13 and Table 14). In the same first split sampling 
scheme (Table 12), pre-ARMA bias correction, NSE 
values over the calibration and validation periods vary 
in the range 0.12 to 0.72 and –0.04 to 0.65 respectively. 
The only exception is Tinderry where NSE values for 
the calibration and validation periods were –0.19 and 
–1.81 respectively, indicating poor forecasts relative 
to those from reference climatology. NSE values of 
post-ARMA bias correction over the calibration 
and validation periods vary in the range 0.34 to 0.85 
and 0.27 to 0.9 respectively, indicating significant 
improvement in streamflow forecasts. 
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Table 12: ARMA model parameter and NSE values of split sampling scheme 1 for three-monthly flow  
updated monthly

Split sampling scheme 1: Calibration (1985–1998), Validation (2000–2005)

Catchment Model (p,q) AR1 AR2 MA1 MA2 NSE_pc NSE_c NSE_pv NSE_v

Biggara A (0,1) 0.39 0.59 0.82 0.42 0.61

B (1,0) 0.23 0.51 0.66 0.32 0.74

C (0,0) 0.43 0.65 0.50 0.82

Dohertys A (0,0) 0.72 0.82 0.51 0.57

B (0,0) 0.67 0.76 0.64 0.85

C (0,1) 0.21 0.59 0.75 0.65 0.86

Gingera A (0,0) 0.38 0.57 0.14 0.29

B (0,1) 0.23 0.18 0.39 -0.04 0.27

C (0,0) 0.12 0.34 0.07 0.47

Hinnomunjie A (0,0) 0.48 0.77 0.36 0.67

B (0,0) 0.59 0.77 0.27 0.73

C (0,0) 0.43 0.76 0.34 0.85

Lacmalac A (1,0) 0.25 0.62 0.80 0.54 0.71

B (1,0) 0.26 0.36 0.44 0.37 0.50

C (0,1) 0.34 0.41 0.58 0.58 0.78

Taggerty A (1,0) 0.26 0.70 0.85 0.55 0.69

B (1,0) 0.25 0.66 0.79 0.53 0.81

C (0,1) 0.35 0.57 0.76 0.64 0.78

Tantangara A (0,0) 0.58 0.79 0.43 0.76

B (1,0) 0.21 0.41 0.61 0.21 0.66

C (1,1) -0.54 0.85 0.40 0.72 0.43 0.90

Tinderry A (1,0) 0.46 0.04 0.45 -1.73 -5.52

B (0,1) 0.33 -0.03 0.30 -0.65 -10.05

C (1,0) 0.25 -0.19 0.14 -1.81 -12.27

A, B and C represent ARMA bias correction models implemented on the 1st day of the following months: Model A: Jan, Apr, Jul 
and Oct, Model B: Feb, May, Aug, Nov; and Model C: Mar, Jun, Sep and Dec. NSC_pc: NSE over the calibration period prior to 
bias correction; NSC_c: NSE over the calibration period after bias correction; NSC_pv: NSE over the validation period prior to 
bias correction; NSC_v: NSE over the validation period after bias correction; (p,q): order of the ARMA model.
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Table 13: ARMA model parameter and NSE values of split sampling scheme 2 for three-monthly flow  
updated monthly

Split sampling scheme 2: Calibration (1992–2005), Validation (1985–1990)

Catchment Model (p,q) AR1 AR2 MA1 MA2 NSE_pc NSE_c NSE_pv NSE_v

Biggara A (0,1) 0.45 0.51 0.72 0.64 0.82

B (1,0) 0.28 0.40 0.69 0.62 0.58

C (1,0) 0.33 0.42 0.67 0.53 0.72

Dohertys A (1,0) 0.26 0.63 0.70 0.81 0.88

B (0,0) 0.66 0.78 0.74 0.78

C (1,0) 0.40 0.60 0.77 0.68 0.76

Gingera A (1,0) 0.22 0.30 0.50 0.41 0.50

B (1,1) 0.16 0.31 0.28 0.60 0.01 -0.38

C (1,0) 0.21 0.13 0.40 0.12 0.22

Hinnomunjie A (0,1) 0.39 0.48 0.68 0.39 0.68

B (0,0) 0.49 0.81 0.56 0.57

C (1,0) 0.36 0.43 0.81 0.31 0.67

Lacmalac A (1,0) 0.38 0.55 0.72 0.66 0.81

B (2,0) 0.16 0.28 0.38 0.49 0.31 0.20

C (1,0) 0.34 0.48 0.58 0.37 0.42

Taggerty A (1,0) 0.43 0.64 0.79 0.77 0.87

B (0,1) 0.51 0.65 0.81 0.64 0.49

C (0,1) 0.48 0.58 0.79 0.60 0.64

Tantangara A (1,0) 0.30 0.51 0.74 0.60 0.84

B (1,1) 0.79 -0.63 0.35 0.68 0.43 0.39

C (1,0) 0.28 0.43 0.74 0.37 0.58

Tinderry A (1,0) 0.31 0.11 0.25 -0.03 0.18

B (0,0) 0.21 0.25 -0.04 -0.02

C (1,1) -0.81 0.99 -0.50 -0.33 -0.28 -0.25

A, B and C represent ARMA bias correction models implemented on the 1st day of the following months: Model A: Jan, Apr, Jul 
and Oct, Model B: Feb, May, Aug, Nov; and Model C: Mar, Jun, Sep and Dec. NSC_pc: NSE over the calibration period prior to 
bias correction; NSC_c: NSE over the calibration period after bias correction; NSC_pv: NSE over the validation period prior to 
bias correction; NSC_v: NSE over the validation period after bias correction; (p,q): order of the ARMA model.
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Table 14: ARMA model parameter and NSE values of the combined calibration scheme for three-monthly flow 
updated monthly

Combined calibration scheme: Calibration (1985–2005), Validation (–)

Catchment Model (p,q) AR1 AR2 MA1 MA2 NSE_pc NSE_c NSE_pv NSE_v

Biggara A (0,1) 0.36 0.56 0.77

B (1,0) 0.22 0.47 0.69

C (0,1) 0.19 0.46 0.69

Dohertys A (0,0) 0.69 0.78

B (0,0) 0.67 0.78

C (2,2) 0.18 0.65 0.15 -0.76 0.62 0.80

Gingera A (1,1) 0.92 -0.80 0.39 0.60

B (1,0) 0.22 0.20 0.43

C (1,1) -0.60 0.96 0.16 0.51

Hinnomunjie A (0,0) 0.46 0.74

B (0,0) 0.51 0.77

C (1,0) 0.21 0.41 0.79

Lacmalac A (1,1) 0.81 -0.56 0.62 0.79

B (1,0) 0.24 0.40 0.51

C (1,1) -0.52 0.90 0.47 0.70

Taggerty A (1,0) 0.30 0.69 0.82

B (1,0) 0.26 0.65 0.79

C (0,1) 0.31 0.60 0.77

Tantangara A (1,0) 0.20 0.55 0.79

B (1,0) 0.16 0.37 0.65

C (1,1) -0.55 0.87 0.42 0.77

Tinderry A (1,1) 0.84 -0.50 0.14 0.50

B (0,1) 0.27 0.08 0.30

C (1,1) 0.86 -0.67 -0.07 0.18

A, B and C represent ARMA bias correction models implemented on the 1st day of the following months: Model A: Jan, Apr, Jul 
and Oct, Model B: Feb, May, Aug, Nov; and Model C: Mar, Jun, Sep and Dec. NSC_pc: NSE over the calibration period prior to 
bias correction; NSC_c: NSE over the calibration period after bias correction; NSC_pv: NSE over the validation period prior to 
bias correction; NSC_v: NSE over the validation period after bias correction ; (p,q): order of the ARMA model. 

Forecasting results for the split sampling scheme 1 
pre- and post-ARMA bias correction are shown as 
scatter plots in Figure 27 and Figure 28 respectively. 
Significant improvements in streamflow forecasts 
through the bias correction procedure are 
noticeable here. Note that observed streamflow 
over the validation period (2000–2005) is about 
50–70% of the range over the calibration period 
(1985–1998) indicating a very dry validation period. 
This difference has significant impact on the mean 
and standard deviation of the monthly (and three-
monthly) streamflow bias over the two periods.  

It is pointed out that during standardisation and de-
standardisation of the streamflow bias time series 
(steps 3 and 6, section 4.2.3), mean and standard 
deviations over the calibration period alone were 
used for the validation period also. Noting that since 
the model validation period was very dry, the model 
was therefore tested on a more extreme situation 
than is likely in the operational service, whereas the 
ARMA model would be calibrated to all observed 
data prior to performing streamflow bias correction 
in the forecast mode.
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Figure 27: Observed and median monthly streamflow forecasts prior to bias correction for the calibration and validation 
periods. Note that the calibration (1985–1998) and validation (2000–2005) periods refer to split sampling scheme used 
for implementing the ARMA mode
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Figure 28: Observed and bias corrected median monthly streamflow forecasts for the calibration and validation 
periods. Note that the calibration (1985–1998) and validation (2000–2005) periods refer to split sampling scheme used 
for implementing the ARMA model
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Results from the second split sampling approach 
indicated similar significant improvements at 
monthly as well as at three-monthly time steps (Table 
10 and Table 13). Here the model is calibrated to 
relatively dry conditions (1990–2005) and validated on 
moderate to wet conditions (1985–1990). 

After validating the model over two split sampling 
schemes, the ARMA model was calibrated using 
the combined calibration scheme to the complete 
forecast period 1985 to 2005 on all target catchments. 
The ACF and PACF of the monthly streamflow bias  
(  = observed minus median forecast pre-ARMA 
bias correction), standardised streamflow bias ( )  

and the residual series (  = remaining residuals or the 
white noise post-ARMA bias correction) for the Gingera 
and Biggara catchments are shown in Figure 29 and 
Figure 30 respectively. The ACF and PACF of the monthly 
streamflow bias ( ) and standardised streamflow bias  
( ) are indicative of the persistence captured by the 
ARMA model. However, as shown in PACF (one month lag) 
there is no significant persistence left in the residuals ( )  
from the ARMA model following implementation of the 
bias correction procedure.

Figure 29: Autocorrelation function of residuals of Gingera before and after ARMA-based bias correction
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Figure 30: Autocorrelation function of residuals of Biggara before and after ARMA-based bias correction
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Skill scores of three-monthly streamflow forecasts 
pre- and post-ARMA-based bias correction procedure 
for all catchments are summarised in Figure 31. The 
comparison shows marked noticeable improvement 
in skill scores of the forecasts post-ARMA-based bias 
correction. Reliability diagrams (predictive QQ plots 
of PIT plots) for each month for Biggara and Gingera 
catchments (Figure 32 and Figure 33) demonstrate that 
the bias correction produced quite reliable streamflow 
forecast distributions compared to observed data. It is 
worth pointing out that the bias correction procedure 
was implemented on time series of the median 
monthly or three-monthly biased streamflow forecasts 
i.e. median of the 55 streamflow ensembles at every 
time step of the forecast period. The correction at 
each time step was then imposed on each member of 
the set of 55 ensembles along with the random term 

 (equation 11, Appendix A). Therefore, the entire 
forecast distribution at each time step was corrected 
for bias in streamflow forecast. We believe that it 
is for this reason that the bias corrected streamflow 
forecasts are accurate and reliable. 

Note that the automated ARMA model calibration 
scheme of Hyndman and Khandakar (2008) adopted 
in this study guarantees that the fitted models are 
stationary and invertible, i.e. roots of the equation 

 and  or zeroes of the polynomial 
 and  lie outside the unit circle (see section 

4.2.3). This issue is particularly important for the 
Bureau because the seasonal streamflow forecasting 
service will require a high level of automation across 
many sites nationally into the future.

It can be concluded that there is a very strong case for 
the use of an ARMA-based bias correction procedure 
in dynamic seasonal streamflow forecasting and that 
a catchment specific ARMA model fitted across all 
update time steps will offer significant improvements 
in the streamflow forecasts. Note that two separate 
ARMA models are required for fortnightly updates 
of monthly flow and three separate ARMA models 
are required for monthly updates of three-monthly 
flow forecasts to avoid data overlap, i.e. more frequent 
updates at sub-monthly time steps makes model form 
less parsimonious. We can also calibrate the ARMA 
model with recent data, which will make our bias 
correction more adaptive to recently observed climate 
condition. The adaptive application of ARMA model 
for bias correction will be explored in future work.
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Figure 31: Skill scores, NSE and reliability of seasonal streamflow forecasts before and after ARMA-based bias correction. 
The forecasts were generated using Sacramento calibrated with downscaled POAMA rainfall ensemble
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Figure 32: Predictive QQ plot of PITs from seasonal streamflow forecasts for Biggara

Figure 33: Predictive QQ plot of PITs from seasonal streamflow forecasts for Gingera
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6.5	 Dynamic versus BJP

In this subsection, we compare results from the 
dynamic modelling approach with those from the BJP, 
which is the statistical modelling approach currently 
used for the operational Seasonal Streamflow 
Forecasting (SSF) products. Skill scores of three-
monthly streamflow forecasts from the Sacramento 
model simulated with downscaled POAMA rainfall 
with those derived from the operational statistical 
BJP model of Wang and Robertson (2011) are 
compared in Figure 34 and Figure 35. Figure 34 
compares forecasts from Sacramento before ARMA 
bias correction while Figure 35 shows comparison 
after bias correction. It is pointed out that skill scores 
for the Tantangara Reservoir from BJP forecasts are 
missing because the SSF service is currently not 
delivered for the catchment. 

Prior to the bias correction, BJP produced much 
better forecasts than the dynamic model (Figure 34). 
Interestingly, BJP showed lower skill scores during 
dry seasons while Sacramento produced the lowest 
scores during wet seasons in most catchments. 
Typically, the five months of least streamflow in these 
catchments are January to May, accounting for about 
5–8% of the total mean annual streamflow (Figure 4). 
Further, mean monthly rainfall is relatively low during 
December to March and potential evapotranspiration 
demand is high during September to March (Figure 
5 and Figure 6). At the dry end, downscaled POAMA 
rainfall forecasts are evenly spread across the 1:1 
line (Figure 9). Noting that internal storages in the 
model are re-initialised with observed climatology 
at the time of forecast update (section 4.2.2) and 
that these storages will be generally low during dry 
periods, runoff contributions would typically occur 
through the groundwater flux term which, in such 
catchments, behaves like a damped exponential 
distribution. This is captured well in the dynamic 
modelling approach because of the longer memory 
of the groundwater response function than that in the 
statistical approach where memory is often captured 
through past streamflow over one to four months. 
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Figure 34: Skill scores, NSE and reliability of seasonal streamflow forecasts from Sacramento and BJP
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Figure 35: Skill scores, NSE and reliability of seasonal streamflow forecasts from Sacramento and BJP. The Sacramento 
was calibrated by the general parameterisation scheme. Its forecasts were generated with downscaled POAMA rainfall 
ensemble and then bias-corrected using ARMA method
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The BJP approach transforms a set of streamflows 
and their predictors (past streamflows and climate 
indices) into a multivariate normal distribution and 
infers the distribution of model parameters of a linear 
regression model using a Bayesian formulation, 
which is implemented through a Markov Chain Monte 
Carlo (MCMC) sampling method. Further, a separate 
model is calibrated directly in the ‘forecast simulation 
mode’ to observed three-month streamflow for 
each monthly update time step through a cross-
validation procedure (i.e. leave one year out method). 
This approach is different to the dynamic approach 
where a single hydrologic model is calibrated to 
historical data in retrospective mode and ‘not’ in 
the forecast mode. Note that inclusion of the bias 
correction procedure in the dynamic approach 
where bias in streamflow forecast distribution is 
calibrated to observed streamflow in conjunction 
with the hydrologic model and downscaled POAMA 
rainfall forecasts, is analogous to the BJP approach 
in that forecast distributions from both approaches 
are now calibrated to observed data. Therefore, it is 
logical to compare accuracy and reliability of the bias 
corrected streamflow forecasts against those from 
BJP rather than those prior to bias correction. Given 
that the dynamic approach makes use of a single 
hydrologic model and three ARMA models (one each 
for January–April–July–October, February–May–
August–November and March–June–September–
December to avoid data overlap of three-monthly 
flow at monthly update time steps), the overall 
model structure is more parsimonious than the 12 
BJP models with each model corresponding to each 
monthly update time step. 

Once the biases in the Sacramento streamflow 
outcome were removed using the ARMA model, the 
dynamic model turned out to produce highly skilled 
forecasts that are comparable or better than those 
from the BJP model (Figure 35). Even though the 
comparison draws different results depending on sites 
and months, overall, the dynamic approach tends to 
outperform BJP during January–July. However, BJP 
forecasts are more skilful during August–December, 
particularly for Gingera and Tinderry while skills 
are comparable in other catchments. Since the two 
modelling approaches seem to complement each 
other, we believe that streamflow forecasts blended 
from a combination of statistical and dynamic 
approaches in future work are likely to provide better 
streamflow forecasts. This issue will be a major topic 
for future WIRADA research in seasonal streamflow 
forecasting; using the Bayesian model averaging 
procedure for improved rainfall forecasting would 
be a good starting point for this research.

It is interesting to note the differences in skill 
scores for a given forecast distribution across all 
catchments. Results from the dynamic approach 
show that both RMSE and NSE, which measure 
accuracy in the flow domain, have high skill scores 
across all catchments relative to RMSEP and CRPS, 
which measure accuracy in the probability domain. 
Note that RMSE and NSE quantify skills directly in 
the measurement space (i.e. flow domain) and are 
potentially sensitive to few large errors. In contrast, 
RMSEP and CRPS quantify skills in the probability 
domain and these skill scores impose less penalty to 
inaccurate high streamflow forecasts. However, in 
the case of narrow streamflow distributions, e.g. the 
January–May period in most catchments (see Figure 
4), small errors around median flows can be amplified 
greatly in the probability domain even though errors 
might be very small in the flow domain. Since these 
skill scores measure different aspects of forecast 
accuracy, it is therefore desirable to consider all skill 
scores in assessing forecast accuracy.
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We believe that although downscaled POAMA 
rainfall and accordingly streamflow forecasts under 
predict observed streamflow resulting in poor skill 
scores prior to bias correction, these forecasts do 
get the timing of highs and lows right (Figure 10). 
Therefore, bias in streamflow forecasts is systematic 
and it is possible to capture this through a posterior 
streamflow bias correction procedure well. Since 
median of the streamflow forecasts is corrected well 
through the ARMA-based bias correction procedure, 
substantial improvements in the skill scores is a 
logical outcome as they largely quantify accuracy 
of streamflow forecasts based on the difference 
between the median of the forecasts and streamflow 
observations (see equations 4 to 11). 

Reliability of bias corrected streamflow forecasts 
from the dynamic approach is assessed through 
predictive quantile-quantile (QQ) plots or the PIT 
plots (Figure 32 and Figure 33). These reliability 
diagrams for Biggara and Gingera show that ‘three-
monthly’ streamflow forecasts have quite reliable 
distributions within the 95% confidence intervals for 
all months. A similar level of reliability was found in 
other catchments too. We also compare box plots 
of streamflow forecasts from the dynamic approach 
against those from the BJP (Figure 36 and Figure 
37). These box-whisker plots show that variance of 
forecast distributions from the dynamic approach 
are comparable to those from the BJP and a visual 
comparison indicates that inter-quartile range is 
marginally lower than the range from BJP. Prior to 
bias correction, the dynamic model produced too 
emphatic forecasts due mainly to emphatic forecasts 
from POAMA1.5, which resulted in lower reliability. 
However, after the bias correction, streamflow 
outcomes from dynamic models were upgraded as 
both accurate and reliable forecasts.
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Figure 36: Seasonal streamflow forecasts from Sacramento with bias correction and BJP for Gingera
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Considering the current scheme where Sacramento 
generated 55 samples of streamflow forecasts for 
each update (Figure 1) while BJP generated 5,000 
samples, any statistics from such a small number of 
samples are relatively less certain than those derived 
from the BJP. Therefore, additional effort is required 
to obtain samples from a dynamic model. This will be 
achieved by: (a) enhancing the number of hydrologic 
model ensembles through the use of MCMC-based 
parameter samples using BATEA with predictive 
uncertainty (section 7), and (b) the use of 30 member 
ensemble rainfall forecasts from POAMA2.4a–c which 
are currently available from CAWCR. We believe that 
these two steps will help to generate more stable and 
potentially better estimates for both the accuracy and 
reliability of the dynamic modelling approach. 

Figure 38 shows the hit/miss ratios of two percentile 
ranges of streamflow forecasts. Hit/miss ratios 
indicate how many times observed data lie within 
the inter-quartile range over the observed record 
length. For most catchments, the dynamic modelling 
approach provides slightly higher hit ratios than BJP 
in terms of both 25%–75% and 10%–90% ranges.
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Figure 37: Seasonal streamflow forecasts from Sacramento with bias correction and BJP for Biggara
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It is noteworthy that the skill scores in the figures 
are not strictly comparable with each other between 
the two modelling approaches. First, the skill scores 
of the dynamic modelling approach were calculated 
using the past observed data directly, while those of 
BJP were calculated using a statistically re-sampled 
distribution derived from the past observed data 
(Wang, Robertson & Chiew 2009). Even though the 
re-sampled distribution has a very similar pattern to 
the distribution of the observed data, the re-sampled 
distribution can reduce the impact of extreme values 
in observed data, which can increase skill score 
values, particularly ones on the probabilistic domain, 
even if slightly altered. Second, the model calibration 
and validation procedures adopted to generate the 
skill scores were different between the two modelling 
approaches. 

For a more strict comparison, it is required for both 
methods to follow a single well-defined forecast 
verification procedure, which is planned as future 
work. Third, the skill scores of the dynamic modelling 
approach were calculated from 55 forecast ensemble 
members, while BJP generated 5,000 ensemble 
members. Therefore, as the ensemble member 
number of the dynamic modelling approach increases 
in future, it is possible that the estimate of model 
accuracy can be altered. Despite all the limitations, it 
is believed that the figures still provide valid results 
to compare the two modelling approaches.

We believe that the dynamic and statistical approaches 
are complementary to each other, and that blending 
outcomes from the two approaches can be a potential 
solution to improve both accuracy and reliability of 
the Bureau’s SSF service significantly in the future.

Figure 38: Hit and miss ratios of seasonal streamflow forecasts from Sacramento and BJP
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(a) 10%–90% range

(b) 25%–75% range
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Figure 38: Hit and miss ratios of seasonal streamflow forecasts from Sacramento and BJP

6.6	 Monthly versus seasonal forecast

So far, we have discussed seasonal (three-monthly) 
streamflow forecasts with an intention of finding 
additional value from the dynamic approach for the 
existing seasonal streamflow forecasting service. 
In our deliberations with stakeholders, the need to 
explore the possibility of a new monthly streamflow 
forecasting service updated at sub-monthly time steps 
was highlighted. In response to the need, we have 
also explored evaluation of the monthly streamflow 
forecasts updated at fortnightly time steps. 

Noting that skills in POAMA forecasts are relatively 
high at one-month lead time in comparison to 
three-month lead time, the evaluation of monthly 
streamflow forecasts is an attractive option. Skill 
scores and NSE of monthly and seasonal (three-
monthly) streamflow forecasts are compared in 
Figure 39. During February–March–April, the 
accuracy of monthly streamflow forecasts were not 
as good as that of seasonal streamflow forecasts, 
but during August–September–October–November 
monthly streamflow forecasts showed noticeable 
improvement in accuracy than the seasonal forecasts 
in most catchments. Monthly forecasts also showed 
slightly higher hit ratios than seasonal forecasts 
(Figure 40).
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Figure 39: Skill scores, NSE and reliability of monthly and three-monthly streamflow forecasts. The forecasts were 
generated using Sacramento calibrated by the general parameterisation scheme with downscaled POAMA rainfall 
ensemble and then bias-corrected using ARMA method
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Figure 40: Hit and miss ratios of monthly and three-monthly streamflow forecasts for 10–90% and 25–75% ranges

(a) 10%–90% range

(b) 25%–75% range
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The main reasons for improved monthly streamflow 
forecasts are: (a) higher skills of POAMA at one-
month lead time in comparison to three-month lead 
time during wet season, (b) stronger persistence in 
monthly streamflow data than seasonal streamflow 
data, and (c) relatively smaller drift in the hydrologic 
models, i.e. dynamic internal representation of the 
hydrologic model during the forecast period. In 
relative terms, we believe that enhanced forecast 
accuracy at monthly time steps is derived from 
persistence in streamflow data and, to a lesser degree, 
from more accurate rainfall forecasts. In addition, 
the stronger persistence enables the ARMA-based 
bias correction to more effectively remove biases in 
streamflow forecasts.

Predictive QQ plots or the PIT plots for Biggara 
(Figure 41) and Gingera (Figure 42) show that 
‘monthly’ streamflow forecasts are as reliable as 
seasonal forecasts. A similar level of reliability was 
found in other catchments too. 

The skill scores and reliability diagrams indicate 
that the dynamic approach can deliver accurate 
and reliable forecasts for monthly streamflow as 
well as seasonal streamflow. Considering the value 
of monthly streamflow forecasts to the Bureau’s 
stakeholders, particularly those working on water 
supply operations, the possibility for the new service 
deserves more attention in the future. Further, we 
believe that continued development of POAMA, 
along with improved hydrologic modelling through 
BATEA, will enhance accuracy and reliability of the 
dynamic seasonal streamflow forecasts.
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Figure 41: Predictive QQ plot of PITs from monthly streamflow forecasts for Biggara
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Figure 42: Predictive QQ plot of PITs from monthly streamflow forecasts for Gingera
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7.	 �Predictive uncertainty in seasonal forecasting 
and hydrologic modelling using BATEA

7.1	 BATEA software

The BATEA software implements the methods 
of the Bayesian Total Error Analysis calibration 
and prediction framework. During Stage 1 of the 
Bureau project, several major upgrades were carried 
out, including:

1.	 BATEA was linked to the Bureau’s TIME-
compliant rainfall-runoff models, SIMHYD and 
SACRAMENTO. In addition, the French model, 
GR4J was made available to the Bureau. It is 
noted that the numerical implementation used 
in SIMHYD to solve the water balance of the 
conceptual stores may not be robust, which results 
in artefacts and poor performance. These are 
related to the way water balance fluxes, especially 
those containing thresholds, are evaluated and 
propagated in time. It is beyond the scope of this 
project to address these issues, which appear 
common in the current generation of conceptual 
hydrological models [e.g. see reviews in Moore 
and Clarke (1981) and Kavetski and Clark (2010)]. 
Given that these numerical artefacts have the 
potential to degrade predictive performance and 
parameter estimation, it is recommended that 
the Bureau consider further investigations in the 
future to remove/reduce these numerical artefacts. 
Assistance with this can be provided if necessary 
by the BATEA team, subject to separate discussions 
and agreements.

The Bureau has a keen interest in rigorous treatment 
of predictive uncertainty in hydrologic modelling, 
particularly in the context of seasonal forecasting. 
One such state-of-the-art technology available for 
estimation of predictive uncertainty is called the 
‘Bayesian Total Error Analysis (BATEA)’ framework. 
The BATEA technology was developed by researchers 
from the University of Newcastle, Australia, and 
the University of Adelaide, Australia. The science 
underpinning BATEA has been extensively reviewed 
and published in leading hydrology and water 
resources journals (for further details see Kavetski, 
Kuczera & Franks 2006a; Kavetski, Kuczera & Franks 
2006b; Kuczera et al. 2010a; Kuczera et al. 2010b; 
Renard et al. 2010; Thyer et al. 2009). It explicitly 
formulates the statistical models of errors in the 
observed input/output data and the model structure 
and exploits modern Bayesian techniques to process 
this information into probabilistic parameter 
estimates and model predictions. BATEA overcomes 
the known limitations of traditional methods such as 
Kalman filters and other such alternatives. 

This section summarises major outcomes from 
the BATEA pilot project between the University of 
Newcastle (UoN), the University of Adelaide (UoA) 
and the Australian Bureau of Meteorology (the 
Bureau). A more detailed technical report on the 
BATEA project is currently under preparation by 
the research team. The summary is divided into two 
sections. The first section reports on the development 
of the BATEA software which is, ultimately, the 
principal deliverable to the Bureau. The second 
section describes the application of the evolving 
BATEA software to the selected Bureau’s target 
experimental catchments. 
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2.	 A number of core calibration capabilities were 
completed and tested:

a.	 BATEA offers a range of options for specifying 
error models describing input, output and 
model uncertainty. These error models define 
the objective functions used in the calibration. 
Operational level options include error 
models allowing for heteroscedasticity in the 
residual errors (the ‘WLS’ option). In general, a 
heteroscedastic error model refers to an error 
model that has a non-constant variance. For 
example, the simplest form is where the error 
variance increases linearly with the runoff. 
More advanced research level options already 
implemented include the use of general 
Bayesian hierarchical approaches to describe 
uncertainty in inputs (e.g. using rainfall 
error multipliers) and cater for time-varying 
stochastic rainfall-runoff model parameters. 
BATEA uses a combination of ‘transformation’ 
and ‘probability’ libraries to define the 
error models. Of importance here is that all 
libraries are scalable: new distributions and 
transformations can be added to this library as 
the need arises. With suitable training, this can 
be carried out by BATEA software users.

b.	 The standard least squares (SLS) objective 
function used in the Bureau’s Dynamic 
Modelling Systems (DMS) corresponds 
to a particular error model in BATEA (the 
‘SLS’ option). Therefore, BATEA supports, 
as a special case, the objective function 
used for optimisation in the current version 
of DMS. However, BATEA provides more 
comprehensive tools for its analysis (e.g. 
optimisation, MCMC sampling, etc.).

c.	 BATEA estimates parameter and predictive 
uncertainty in a statistically rigorous way, 
using Markov Chain Monte Carlo (MCMC) 
methods. It is noted that the multi-start 
optimisation approach used in DMS 
does not, in general, produce statistically 
rigorous estimates of parameter uncertainty. 
The DMS-derived parameter uncertainty 
estimates represent a measure of the lack of 
convergence of the optimisation algorithm 
and can fail for fairly simple test problems. In 
contrast, MCMC methods analyse the shape 
of the objective function using sampling 
techniques based on formal statistical theory 
and produce statistically rigorous estimates of 
parameter uncertainty. 

d.	 Several visualisation options are available 
within BATEA, including real-time 
visualisation of model response to changes in 
inputs and parameters. This can be used when 
drilling down and diagnosing problems in 
model performance. The visualisation can be 
turned off when carrying out batch runs from 
the command-line environment.

3.	 A major effort was invested in developing 
a comprehensive suite of post-processing 
diagnostics, named BAD (Bayesian Diagnostics). 
It is implemented using the R programming 
language. Its routines interrogate BATEA output 
files to produce a range of graphical outputs 
that report validation performance, evaluate the 
assumptions of the error models and visualise 
parameter uncertainty and the streamflow 
predictive uncertainty. These diagnostics have 
been partially automated within the BATEA 
software package as part of this Bureau project. In 
the future, further improvements, including more 
informative diagnostics, will be made available to 
the Bureau.

4.	 BATEA was developed to run in console mode 
using scripts to manage workflow. This will 
provide a pathway for workflow automation in the 
Bureau’s systems (e.g. DMS). The scripts allow for 
commands and arguments. The script dictionary 
is  scalable, i.e. adding new commands and 
arguments can be undertaken if/when necessary.

5.	 All outputs written to ASCII files that can be post-
processed by the Bureau. Again, this simplifies the 
workflow automation within the Bureau’s systems.
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Figure 43: Comparison of simulated runoff for BATEA and DMS calibrations of SIMHYD model to Gingera catchment 
using standard least squares objective function

The main findings are listed below:

1.	 BATEA produces essentially the same results 
as DMS when the standard least squares (SLS) 
objective function is specified. This confirms that 
the software hook-up is operational (Figure 43).

2.	 The MCMC analysis of the parameter posterior 
distributions produced useful insights about the 
uncertainty in parameters (Figure 44):

7.2	 Application to the Bureau’s 
experimental catchments

BATEA was applied to five catchments: Gingera, 
Tinderry, Biggara, Dohertys and Lacmalac using 
the SIMHYD, SACRAMENTO and GR4J models. In 
addition, an extensive analysis of rainfall sampling 
and runoff errors was conducted.

a.	 For the SIMHYD model, insensitive 
parameters were identified which arise 
when the rainfall data do not force a process 
within the model. This is a particularly 
important issue when using the model in a 
predictive or forecast mode. For example, in 
some calibrations, the SIMHYD parameters 
associated with quickflow were insensitive 
because no quickflow was produced during 
the calibration. If the model was used with 
higher rainfall that activates the quickflow 
process, the prediction of quickflow is subject 
to potentially very large errors.

b.	 The MCMC analysis identifies highly 
correlated parameters, which are symptomatic 
of a poorly posed model (in particular, 
with non-identifiable parameters and 
model components).
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c.	 The MCMC analysis provides a statistically 
rigorous assessment of parameter uncertainty, 
providing more meaningful estimates of 
parameter uncertainty than the multi-start 
optimisation strategy in DMS. The latter 
is actually characterising the difficulty of a 
particular algorithm in converging to a global 
optimum rather than providing a statistically 
rigorous parameter uncertainty. The MCMC 
approach overcomes these weaknesses of 
the multi-start model calibration approach 
used in DMS, and thus provides more reliable 

 
 

Note wide 
parameter 
distributions 
indicate 
insensitive 
parameters 

Note highly 
correlated 
parameters 
indicate a poorly 
posed model 
with non-
identifiable 
components 

Figure 44: Parameter distributions for SIMHYD model calibrated to Gingera catchment using SLS. Plots on the diagonal 
provide the marginal parameter distributions. Off-diagonal plots provide the joint parameter distributions for each 
parameter pair (darker blue represents higher probability density)

parameter estimates to be used in the Bureau’s 
predictive applications. It should be noted that 
in most cases when using the SLS objective 
function, the parametric uncertainty is not 
the major contributor to the total predictive 
uncertainty. However, in case (a) preceding, 
parameters that were insensitive in calibration 
can become sensitive in validation, potentially 
generating very poor predictive performance. 
To an extent, this can be diagnosed using 
the MCMC analysis provided as part of the 
BATEA software.
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3.	 Because a limited number of rain gauges are 
available, the error in catchment averaged daily 
rainfall can be quite considerable. A study of such 
errors was conducted using radar data to estimate 
the probability distribution of sampling errors in 
daily rainfall, conditioned on the magnitude of the 
daily rainfall. The results qualitatively agree with 
our analysis of a densely-gauged rainfall network 
in an experimental catchment in New Zealand 
and with some previous published findings 
(Figure 45). This provides additional confidence in 
these results.

Figure 45: Multiplicative rainfall errors (f) estimated from radar data plotted as function of observed rainfall for Gingera, 
Lacmalac and Tinderry. The multiplicative rainfall error is defined as the ratio of the true areal rainfall over the observed 
rainfall. The red curves represent +/– the standard deviation of f which is estimated conditional on the observed rainfall

 
 

 

 

 

Note the similar trend that the 
standard deviation of the rainfall 
error multipliers converges to a 
constant as observed rainfall 
increases. For Gingera, the 
standard deviation is higher 
because the number of rain 
gauges is lower than Tinderry 
and Lacmalac 

0 10 20 30 40 50 60

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Gingera

Observed rainfall [mm]

R
ai

nf
al

l m
ul

tip
lie

r

0 10 20 30 40

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Tinderry

Observed rainfall [mm]

R
ai

nf
al

l m
ul

tip
lie

r

0 20 40 60

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Lacmalac

Observed rainfall [mm]

R
ai

nf
al

l m
ul

tip
lie

r



83Predictive uncertainty in seasonal forecasting and hydrologic modelling using BATEA

4.	 Analysis of runoff rating curve errors identified 
heteroscedastic error models where the 
standard deviation of the errors grows with 
the magnitude of runoff (see example in 
Figure 46). For the Bureau catchments, the 
standard deviation increased in the range  
3–8% of the observed runoff. This is lower than 
the typically assumed 10% standard error and 
suggests the Bureau catchments are well gauged. 
A new characterisation of runoff error based 
on systematic errors in rating curve parameters 
was developed (Thyer et al. 2011). It will be 
incorporated into a future release of the BATEA 
software subsequent to this project.

 Figure 46: Runoff errors for Gingera catchment based on rating curve analysis. Dots represent the observed errors, 
based on difference between runoff gaugings and rating curve, while the blue dotted line represents the 95% probability 
limits of the fitted heteroscedastic runoff error model
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5.	 The two strategic objectives for using the BATEA 
approach to calibration and prediction are to:

i.	 Provide statistically reliable estimates of the 
predictive uncertainty. From the Bureau’s 
perspective, this is important because 
predictions with reliable probability limits are 
needed for credible operational forecasting. 

ii.	 Decomposing the sources of the predictive 
uncertainty. If the contributions of the different 
sources of predictive uncertainty are known, 
this enables strategic investments to be made 
to reduce the predictive uncertainty. 

Progress towards these objectives is as follows:

a.	 In general, the use of heteroscedastic residual 
error model (‘weighted least squares’: WLS) 
in model calibration improves the reliability 
of the predictive uncertainty, relative to the 
SLS error model used in DMS. The degree 
of the improvement varies depending on 
catchment and hydrological model. Indeed, 
detailed analysis of high and flow streamflow 
ranges reveals some remaining deficiencies 
for low and high flows. This is likely due to 
the simple functional form (linear) used in the 
heteroscedastic residual error model. Further 
refinement and more reliable predictive 
uncertainty appear possible with the 
development of alternative functional forms 
(e.g. nonlinear) of the heteroscedastic residual 
error model and by accounting for runoff 
and rainfall error characteristics. This was 
only partially carried out in this project and is 
recommended for future testing and research.

b.	 Previous research found that decomposing the 
uncertainty leads to significant improvement 
in the reliability of the predictive uncertainty 
(Renard et al. 2011). Technologically, this 
requires the specification of statistically reliable 
error models for the rainfall and runoff data. As 
part of this project, data analysis was carried 
out to estimate such models (see points 3 and 
4 above). Investigations with incorporating 
runoff errors revealed similar predictive 
uncertainty to WLS. However, supplying the 
runoff error model can provide a lower bound 
on predictive errors and hence constitute an 
additional check of the model calibration. 
Although, for well gauged catchments the 
differences between the two versions of WLS 
can be minor, incorporating runoff error is a key 
step towards a decomposition of the sources 
of uncertainty. Investigations with using 
radar data to obtain independent estimates 
of catchment average rainfall error and using 
these estimates as precise priors for the rainfall 
errors, suggested that more research is needed 
for consistent improvements to be obtained 
within the context of large-scale automated 
analysis (whereas in previous published 
applications, it was possible to dedicate more 
resources to understand and model specific 
catchments and additional fieldwork data and 
insights were available). A major suspected 
reason is the omission of appropriate treatment 
of structural errors, which represents a major 
research issue in hydrological modelling. 
Though a number of potential strategies have 
been proposed in published work (including 
by the BATEA team), there is still significant 
research required before a suitable strategy 
can be recommended for operational use. 
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7.3	 Summary and recommendation from 
the BATEA project

1.	 The BATEA software provides a range of 
parameter calibration and uncertainty analysis 
that are of considerable utility to the Bureau’s 
hydrological modelling systems. These include 
MCMC parameter uncertainty estimation which 
can be used to diagnose model deficiencies, and 
a range of options for predictive uncertainty 
estimation. These comprise approaches that 
characterise the total predictive uncertainty, such 
as SLS and WLS and approaches which have the 
potential to decompose the sources of uncertainty. 
Implementing a technology that provides a wide 
range of options, including approaches that can 
be operationalised in the short-term, as well 
as research level approaches with significant 
potential in the longer term, is of clear benefit for 
the Bureau’s forecasting systems.

2.	 From the range of options considered, the 
Weighted Least Squares (WLS) inference scheme 
appears best suited for operational use. It allows 
for variations in the total predictive error variance 
as a function of the streamflow and produces quite 
reliable predictions. It is also recommended to 
include runoff errors into the WLS scheme, as this 
is a key step towards the reliable decomposition of 
the sources of uncertainty. The appealing features 
of this approach are (i) its computational speed and 
(ii) methodological simplicity – in terms of both the 
underlying theory and the software settings. This 
means it is well suited as a first stage in the training 
of the use BATEA software for Bureau staff.

3.	 A full hierarchical treatment of input errors, 
and model structural errors, remains a research 
level endeavour. While the results are clearly 
encouraging in terms of improving the reliability 
of the predictive distribution of streamflow, and 
supporting the decomposition of predictive 
uncertainty into its contributing sources, it is 
a computationally more complex strategy and 
requires computational acceleration before it can 
be more routinely applied. It also necessitates the 
formulation of reliable error models describing 
uncertainties in the input data and appropriate 
treatment of structural errors. This can already be 
pursued for certain catchments, e.g. where dense 
gauges or radar coverage is available. However, it is 
not an automated procedure and further research 
and training is required to develop a strategy that 
can be applied in an operational framework across 
multiple catchments.

4.	 The BATEA software is compatible with TIME 
models. The current interfaces between BATEA and 
the TIME models are ‘hard-coded’ and are specific 
to SIMHYD and Sacramento. It is recommended 
that a more general interface be developed that 
allows choosing the time model to be connected to 
at runtime. This option is more scalable in terms of 
encompassing any future TIME model.
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5.	 The GR4J model, available as a built-in option 
within the model library provided with the 
BATEA software, clearly outperforms SIMHYD 
for the Bureau catchments, and is generally 
competitive with Sacramento despite having only 
four calibrated parameters (as opposed to 20+ in 
Sacramento). Note that GR4J has been tested on 
thousands of catchments worldwide, and has 
shown good performance. Based on the result, it 
is planned to include GR4J as one of operational 
rainfall-runoff models for the SSF service.

6.	 It is envisaged that Stage 2 of the BATEA project 
will include training of Bureau staff and technical 
support to operationalise BATEA with WLS settings 
and runoff errors along with the MCMC analysis 
in a national rollout of the dynamic approach in 
the future. In addition, discussions were held 
regarding an ARC Linkage project which would 
allow tackling the research issues associated with 
the operational application of the ‘full’ BATEA 
including a hierarchical representation of input 
errors, model structural errors, recursive updating 
and other promising developments. These issues 
are crucial for the Bureau and will likely assist with 
enhancing reliability of the ‘dynamic’ seasonal 
streamflow forecasts.

7.	 Projects are developing between the BATEA team 
and industry partners such as CSIRO and DPI 
(Victoria). There is some synergy in these projects 
that can be exploited in terms of method and 
software development. Adoption of the BATEA 
software will provide the Bureau with a gateway 
to improved calibration and prediction algorithms, 
as the BATEA software engines undergo further 
developments. Importantly, at all times a range 
of options of different degrees of computational 
complexity and cost are available (of which WLS 
inference including runoff error characterisation 
and MCMC analysis is the currently recommended 
option for broader scale adoption).
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A thorough evaluation of the monthly and three-
monthly streamflow forecasting capability using 
the dynamic approach on eight target water supply 
catchments in the southern Murray–Darling Basin 
was completed by the Bureau and its research 
partners. As far as we are aware, this is the first 
comprehensive study in Australia that integrates  
the use of leading technologies through the 
application of POAMA1.5 rainfall forecasts, improved 
methods of seasonal downscaling and fairly well 
advanced techniques of hydrologic modelling and 
predictive uncertainty.

Three conceptual rainfall-runoff models used in this 
evaluation are: Sacramento, SIMHYD and SMAR. 
These models were calibrated and validated using a 
split sampling approach in ensemble mode. Except 
Tinderry and Hinnomunjie, these models showed 
good performance for both calibration (1976–1996) 
and validation (1998–2008) periods. The NSE from 
SIMHYD varied in the range 0.52 to 0.92 and 0.61 to 
0.91 respectively, and that of Sacramento varied in 
the range 0.71 to 0.95 and 0.66 to 0.94.

Snowmelt is a significant component in the water 
budget of Hinnomunjie and Tantangara catchments. 
None of the models used includes accounting for 
snowmelt processes and therefore late winter and 
early spring runoff in these catchments was often 
under predicted. Hinnomunjie witnessed poor 
performance with all three models compared to 
other perennial catchments. For Tinderry, none of the 
models were able to reproduce streamflow patterns 
observed in the validation period, even though the 
models were calibrated to simulate streamflow 
patterns quite accurately during the calibration 
period. This is because Tinderry yielded extremely 
low streamflow during the recent drought, which 
coincided with the validation period used in the study.

Forecasting in simulation mode was performed for 
1985–2005 with a warm-up period of 1980–1984. 
Rainfall forecasts from two sources were used 
in simulations: (a) downscaled POAMA rainfall 
ensemble (ten-member members and their mean), 
and (b) historical rainfall ensemble, which is the 
past ten-year observed rainfall data (ten-member 
members and their mean). Forecast skills were 
assessed using three skill scores: RMSE, RMSEP and 
CRPS. NSE was also estimated for forecast medians.

POAMA 1.5 rainfall forecast simulation datasets 
were downscaled using the improved analogue 
downscaling method to derive catchment scale 
rainfall from regional scale POAMA outputs. The 
relationship between POAMA rainfall and AWAP 
observed rainfall turned out to be weak even at 
monthly aggregated levels. Rainfall during wet 
months was frequently underestimated, which 
considerably reduced the variation range of 
POAMA rainfall compared to observed data. The 
underestimation of rainfall during wet seasons was a 
major source of bias in forecast streamflow outcomes 
from the rainfall-runoff models.

Comparison between the general parameterisation 
scheme (single parameter set) and the conditional 
parameterisation scheme (monthly varying 
parameter sets) using SIMHYD showed marginal 
differences in skill scores between the two schemes. 
Because of its more parsimonious hydrologic model 
representation, one single parameter set from the 
general parameterisation scheme was used in the 
subsequent evaluation.

Simulated streamflow forecast distributions from 
the historical rainfall ensembles and SIMHYD model 
were widely spread. However, when rainfall forcing 
was replaced with downscaled POAMA rainfall 
ensembles, in most years streamflow forecasts were 
underestimated. Even though downscaled POAMA 
rainfall and, accordingly, streamflow forecasts under 
predict observed streamflow resulting in poor skill 
scores, these forecasts do get the timing of highs and 
lows correct. Therefore, bias in streamflow forecasts 
is systematic and it is possible to capture this through 
a posterior streamflow bias correction procedure.

8.	 Conclusion
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Posterior streamflow bias correction was 
implemented through the ARMA model on biased 
streamflow forecasts from the Sacramento model 
driven with downscaled POAMA 1.5 rainfall. Results 
from implementation of the ARMA model on target 
catchments at monthly and three-monthly timescales 
showed significant improvement in accuracy and 
reliability of the forecasts. The result suggests a 
strong case for the use of an ARMA-based bias 
correction procedure in dynamic seasonal streamflow 
forecasting and that a catchment specific ARMA 
model fitted across all update time steps will offer 
significant improvements in the streamflow forecasts. 

Bias-corrected Sacramento streamflow forecasts 
driven through downscaled POAMA showed 
forecast skills comparable or better than those 
from the statistical BJP model. During January–
July, three-monthly streamflow forecasts from the 
dynamic approach seem to outperform those from 
the BJP. However, BJP forecasts are more skilful 
during August–December, particularly for Gingera 
and Tinderry, while skills are comparable in other 
catchments. Therefore, we believe that blended 
streamflow forecasts derived from a combination of 
statistical and dynamic approaches in future work 
are likely to provide better streamflow forecasts. 

We compared monthly and three-monthly streamflow 
forecasting capability from the dynamic approach 
and found the dynamic modelling approach can 
deliver monthly streamflow forecasts as accurate and 
reliable as three-monthly streamflow forecasts. 

As an additional deliverable, a modelling system 
called the Dynamic Modelling System (DMS) was 
developed, and its architecture is currently under 
transition to an operational system. 

As a rigorous method for predictive uncertainty 
estimation, BATEA was applied to target catchments. 
Using the Bayesian-based Markov Chain Monte 
Carlo (MCMC) method, BATEA provided more 
realistic estimates of predictive uncertainty as well as 
diagnostic evidence for each error source including 
model structural deficiency and rating curve errors. 
The results indicated that the technology has a 
potential to improve not only seasonal streamflow 
forecast service but also many other services of the 
Bureau in terms of predictive uncertainty estimation.

Another key outcome of the BATEA strand of the 
project is that further research could be conducted 
on approaches that decompose the distinct sources 
of uncertainty affecting the forecasting system. The 
ability to decompose the sources of uncertainty 
not only leads to more reliable predictions, but 
also provides strategic guidance on how to reduce 
predictive uncertainty. It is better suited for taking 
advantage of improvements in various components 
of the flow forecasting system, when compared to 
approaches that focus only on characterising the 
aggregate uncertainty.
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9.	 �Recommendation for operational service 
and further research

The Experimental evaluation of the Dynamic 
Seasonal Streamflow Forecasting approach has now 
been completed successfully. On the basis of detailed 
findings from the work reported in sections 6 to 8 
of this report, we recommend the following future 
directions for major enhancements to the current 
Seasonal Streamflow Forecasting (SSF) service:

1.	 A national rollout of the SSF service across 
Australia beyond the current 21 target water supply 
catchments within the Murray–Darling  Basin.

2.	 The current ARMA-based bias correction turned 
out an effective solution to improve both  the 
accuracy and reliability of streamflow forecasts 
from conceptual rainfall-runoff models. Further 
research and evaluation will likely be required 
for those catchments where the posterior bias 
correction strategy does not produce accurate and 
reliable forecasts. 

3.	 Identification of high quality streamflow reference 
stations suitable for the enhanced SSF service. We 
note that this work has already been agreed to in 
principle by the Bureau and that further activity 
planning is well advanced.

4.	 Further develop the communications and 
adoption strategy for major enhancements to the 
current service including a two-stage stakeholder 
engagement approach to decide on target locations 
for the national rollout.

5.	 Develop and implement the methodology 
to provide blended three-month lead time 
seasonal streamflow forecasts derived from 
both the statistical and the dynamic approaches. 
The methodology could be developed by the 
WIRADA research team and implemented by the 
Bureau staff.

6.	 A new national one-month lead time streamflow 
forecasting service based on products derived from 
the dynamic approach in addition to the proposed 
blended three-monthly streamflow forecasts. Note 
that the work has shown the possibility of accurate 
and reliable monthly forecasts. Further, there is 
a demand for a monthly streamflow forecasting 
service updated at frequent sub-monthly time 
intervals from operational water management 
agencies (e.g. MDBA) and the proposed service 
will help address this demand. 
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7.	 Further develop and operationalise the experimental 
Dynamic Modelling System (DMS) for use in the 
national rollout of the service, including additional 
development and linkages with the BATEA system 
for handling predictive uncertainty.

8.	 Use of model structures that include the capability 
to model snowmelt processes, particularly in high 
runoff generation areas in the southern Alpine 
region of the Murray–Darling basin. Use of the 
Snow17 model of the US National Weather Service 
is a possible option.

9.	 Further targeted research by WIRADA and 
CAWCR research teams for seeking more 
accurate and reliable rainfall forecasts. This could 
be achieved through a number of activities such 
as the inclusion of seasonal climate forecasts 
from multiple GCMs and further improvements 
in POAMA rainfall forecasts and its downscaling 
methods. There was also recent progress in 
applying BJP for the post-processing of POAMA 
rainfall forecasts.

10.	The Weighted Least Squares (WLS) scheme 
implemented by the BATEA technology is 
recommended for evaluating the predictive 
uncertainty in an operational context. The 
advantage of using BATEA technology is that 
it provides not only ability to undertake model 
diagnosis of dynamic model calibration, but that 
it provides support for a wide range of options 
for predictive uncertainty analysis, including 
operational level, and research level techniques 
(see following recommendation). As such, it 
serves as an umbrella for a wide range of methods 
and the selection of methods from the available 
options is a decision for the Bureau in consultation 
with the BATEA team.

11.	Further research is recommended on the 
hierarchical representation of input and model 
structural errors. This has strategic long-term 
benefits over a range of forecast lead times, both 
in terms of improving the statistical reliability of 
the dynamic seasonal streamflow forecasts, and 
reducing the uncertainty in forecasts through a 
better assimilation of the information content in 
the data.
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Appendix A 

Specifications for ARMA modelling 
to be used for error updating in 
forecasting work Experimental Dynamic 
Seasonal Forecasting.

Version 1 – Prepared by Narendra Kumar Tuteja 
and Sri Srikanthan (2 December 2010)

Version 2 – Prepared following comments 
from Sri Srikanthan and George Kuczera  
(8 December 2010)

Forecasting work in simulation mode used downscaled 
POAMA rainfall (11 members comprising ten 
POAMA ensembles and an ensemble mean) and five 
hydrological model ensembles each corresponding 
to Sacramento and SIMHYD models for the period  
1980–2006. The two products that explored using 
the dynamic seasonal streamflow forecasting 
approach are: 

•	 Monthly streamflow forecasts updated fortnightly 
( )

•	 Three-monthly streamflow forecasts updated monthly  
( ).

If successful, these forecast products in simulation 
mode will be converted into products in  
forecast mode. 

The four skill scores used to assess performance of 
the forecast streamflows are: SSRMSE, SSRMSEP, 
CPRS and seasonal NSE (with respect to respective 
median historical reference streamflows for both 
monthly and three-monthly forecast products). 
Further, reliability plots are developed for assessing 
skills of the forecast probability distribution (also 
referred to as PIT plots or QQ plots). Note that a 
common Forecast Verification tool (FCVF) was used 
to assess skills of the forecasts from dynamic and 
statistical systems. 

Streamflow forecasts simulated from the best 
hydrologic model ensemble and the ensemble mean 
rainfall include bias in streamflow resulting from 
the following sources: inaccuracy in climate forcing 
(POAMA rainfall, downscaling and evaporative 
demand), inaccuracy in streamflow measurements 
and structural inadequacy in hydrologic model 
and parameter uncertainties. Since streamflow is 
a damped response, we expect persistence in the 
streamflow bias time series. ARMA (p,q) model needs 
to be fitted to the following monthly  and three-
monthly forecast streamflow time series  to 
obtain bias corrected streamflow forecasts: 

•	 forecast streamflow time series corresponding to 
ensemble mean rainfall and the best hydrologic 
model, say 
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•	 forecast streamflow time series corresponding to 
the median of the 55 hydrologic model ensembles, 
say 
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.

Note that to avoid data overlap for error updating, 
two separate ARMA models are required for monthly 
forecasts updated fortnightly and three separate 
ARMA models are required for three-monthly 
forecasts updated monthly.
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The following notation is used in describing the 
ARMA (p,q) model fitting:

 order of autoregressive AR component of the 
ARMA model (eq 1)

 order of moving average MA component of the 
ARMA model (eq 2)

 forecast streamflow time series (monthly or 
3-monthly time series corresponding to  
or  (eq 3)

 forecast streamflow bias time series 
(monthly or three-monthly time series corresponding 
to  or  (eq 4)

 periodic mean flow of the respective

streamflow bias time series  (  for  
T = Jan-1,Jan-16,Feb-1,Feb-16,…..Dec-16 or  
for T = Jan-1,Feb-1,…..Dec-1) (eq 5)

 periodic standard deviation of

the respective streamflow bias time series  (  
or ; ideally these need to be calculated from 
Fourier Transforms but for now we will use those 
obtained from raw data) (eq 6)

 standardised streamflow bias time

 series N (0,1) (eq 7)

Form of the ARMA (p,q) model:

 (eq 8)

 (eq 9)

Where,  order of the AR component, 
 order of the MA component,  

standard normal variate N (0, ),  residual 
variance i.e. remaining variance after bias correction, 

 backward shift operator,  and 

Steps involved in fitting the ARMA model are 
described below:

1.	 Calculate streamflow bias time series  from eq4

2.	 Calculate periodic mean of streamflow bias time 
series  from eq5

3.	 Calculate periodic standard deviation time series 
 from eq6

4.	 Calculate standardised streamflow bias time series 
 from eq7

5.	 Calculate statistics of the complete forecast time 
series: mean, standard deviation, skewness 
(normality) and ACF of the 
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6.	 Develop ACF of the standardised streamflow bias 
time series  up to two years lag (48 for monthly 
time series updated fortnightly and 24 for three-
monthly time series updated monthly)

7.	 Develop PACF (Partial Autocorrelation Function) 
of the standardised streamflow bias time series  
up to order k = 10

8.	 Calibrate the following ARMA (p,q) models (0,1), 
(0,2), (1,0), (2,0), (3,0), 4,0), (1,1), (2,1), (3,1), 4,1), (1,2), 
(2,2), (3,2) and (4,2) using Akaike Information Criteria 
(AIC) as the objective function (Box & Jenkins 1976; 
Hyndman 2011). Using mean squared error MSE, 
estimate standard deviation of the residual error

	 (eq 10) 

9.	 Identify and adopt a suitable model form amongst 
the candidate models based on outcomes of the 
calibrated models in step 8.

10.	 Simulate streamflow bias  from the 
adopted ARMA (p,q) model using (note that 

 is the standard normal variate N (0, )
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11.	 Simulate  (eq 12)

12.	 Simulate updated forecast streamflow 
 (eq13)

13.	 Do forecasting for the period 1980–2006 (see table 
below)

14.	 Calculate skill scores SSRMSE and NSE_seasonal 
using .
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Table 15 Example of the forecasting process for an ARMA (1,1) model

Date

1985-01-01

1985-02-01

1985-03-01

…….

…….

2005-12-01
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Acronyms

ACF Autocorrelation function

ARMA Autoregressive moving-average

AWAP Australia Water Availability Project

AWRIS Australian Water Resources Information System

BATEA Bayesian total error analysis 

BJP Bayesian joint probability

CAWCR Centre for Australian Weather and Climate Research

CRPS Continuous ranked probability score

CSIRO Commonwealth Scientific and Industrial Research Organisation

CWIPIT Climate and Water Information Program Information Technology

DMS Dynamic Modelling System

DPI Department of Primary Industries

EHP Extended hydrological prediction

GCM Global Climate Model

MCMC Markov Chain Monte Carlo

MDBA Murray–Darling Basin Authority

MSE Mean square error

NSE Nash Sutcliffe efficiency

PACF Partial autocorrelation function

PET Potential evapotranspiration

PIT Probability integral transform

POAMA Predictive Ocean Atmosphere Model for Australia

QQ Quantile–Quantile

RMSE Root mean–squared errors

RMSEP Root mean-squared errors in probability

SDM Statistical Downscaling Model

SEACI South Eastern Australian Climate Initiative 

SOI Southern Oscillation Index

SSF Seasonal streamflow forecast

SST Sea surface temperature

SEWPaC Department of Sustainability, Environment, Water, Population and Communities 

SLS Standard least square 

UMC Upper Murray Catchment

WAFARi Water Availability Forecast of Australian Rivers

WLS Weighted least square

WIRADA Water Information Research and Development Alliance
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