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Abstract 

 

 

Multiobjective optimization is becoming an increasingly important approach 

for both the design and operation of water distribution systems (WDSs). 

Given the multiobjective nature of these problems, multiobjective 

optimization is expected to provide decision makers with increased insight 

into the tradeoffs between competing objectives and alternative solutions of 

WDSs, which might benefit the water industry, society and environment. Due 

to the advances in computing technology and the development of fast 

multiobjective sorting algorithms, research activities into the application of 

multiobjective algorithms to WDS design and operation have increased 

significantly in the past decade. Minimization of economic cost and 

maximization of network reliability are the two most commonly considered 

objectives in WDS optimization. In addition, some environment related 

issues, such as energy conservation, have been incorporated into the 

optimization of WDSs. However, the leading environmental concern – 

Greenhouse gas (GHG) emissions – has not yet been addressed directly in the 

field of WDS optimization. Consequently, this research incorporates GHG 

emission minimization as an objective directly into the optimal design of 

WDSs, together with the economic objective of minimizing cost and the 

hydraulic reliability objective of maximizing surplus power factor via a 

multiobjective approach.  

 

The major research contributions are presented in six journal publications. 

These publications describe the motivation and methodology to incorporate 

GHG emission minimization as an objective of WDS optimization; explore 

the tradeoffs between the traditional objective of minimizing life cycle cost 

and the environmental objective of minimizing life cycle GHG emissions; 

investigate the sensitivity of these tradeoffs to a number of factors, including
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the discount rate, electricity tariffs and emission factors used in the objective 

function evaluation process, the price of carbon under a potential emissions 

trading scheme and the use of fixed-speed or variable-speed pumps; and 

finally examine the impact of the inclusion of the hydraulic reliability 

objective of maximizing surplus power factor on WDS optimization account 

for economic cost and GHG emissions.   

 

In addition, two technical issues have also been solved in order to achieve the 

overall research aim. First, an optimization based generic pump power 

estimation method has been developed in this research to efficiently estimate 

the size and pump power of the pumps required for different network 

configurations, thus variable-speed pumps can be incorporated into the 

optimal design of WDSs. Secondly, a new hydraulic reliability measure based 

on the concept of surplus power factor has been incorporated into the optimal 

design of WDSs. The advantage of this hydraulic measure over currently used 

hydraulic reliability measures is that it can be used for WDSs involving the 

delivery of water into storage facilities, where other measures have failed.   

 

The overall contribution of this research is the incorporation of GHG emission 

consideration into the design optimization of WDSs together with the 

traditional economic and reliability objectives via a multiobjective approach. 

It is anticipated that this research will lead to a new paradigm for the 

optimization of WDSs in the real world. 

 

 

 

 

 



 

vii 
 

 

 

 

Statement of Originality 

 

 

I, Wenyan Wu, hereby declare that this work contains no material which has 

been accepted for the award of any other degree or diploma in any university 

or other tertiary institution to Wenyan Wu and, to the best of my knowledge 

and belief, contains no material previously published or written by another 

person, except where due reference has been made in the text. 

 

I give consent to this copy of my thesis when deposited in the University 

Library, being made available for loan and photocopying, subject to the 

provisions of the Copyright Act 1968. 

 

The author acknowledges that copyright of published works contained within 

this thesis resides with the copyright holder(s) of those works. 

 

I also give permission for the digital version of my thesis being made 

available on the web, via the University’s digital research repository, the 

Library catalogue, the  Australian Digital Thesis Program (ADTP) and also 

through web search engines, unless permission has been granted by the 

University to restrict access for a period of time. 

 

 

 

Signed: ………………………………………………Date: ………………….. 

 

 



 

 

 
 
 

 



 

ix 
 

 

 

 

Acknowledgments 

 

 

Above all, I would like to thank my supervisors, Professor Angus Simpson 

and Professor Holger Maier, for their invaluable guidance, support and 

encouragement throughout the course of my PhD research. Without their 

enthusiasm and dedication, this thesis would not be possible. 

 

I would like to thank all the staff of the School of Civil, Environmental and 

Mining Engineering for their support and help over the years of my PhD study. 

I am most grateful to Dr. Stephen Carr for his computing support. I would 

also like to show my gratitude to Professor Graeme Dandy who allowed me to 

spend time to complete my thesis while working for him as a Research 

Associate. In addition, I would like to acknowledge eResearch SA for the 

super-computing facilities provided for this research. 

 

Many thanks go to my fellow postgraduate students within the School for 

sharing their research experience with me. I would never forget the help with 

program development I received from Dr. Robert May and Dr. Michael 

Leonard in the early stages of my PhD. I am also fortunate to have Dr. Aaron 

Zecchin as my “neighbor” in the office. The enjoyable discussions with Dr. 

Aaron Zecchin are an unforgettable part of my PhD study. 

 

Thanks also go to Mr. Peter Horne for accomplishing the tedious task of 

proofreading the draft of this thesis.  

 

Finally, I would like to thank my parents, Mr. Jianguo Wu and Ms. Li Cui, for 

providing me the opportunity to study in Australia and supporting me 

emotionally and financially during my PhD research. I am truly indebted to 

my husband, Tung, for his support, patience, encouragement and most



Acknowledgments 

x 
 

importantly for sharing the joy and frustration over the course of my research. 

Last but not least, I also owe a lot to my son, Tian, who brought me joy and 

hope during a very difficult time of my life. 

 
 
 



 

xi 
 

 

 

 

Table of Contents 

 

 

Abstract ............................................................................................................ v 

Statement of Originality ............................................................................... vii 

Acknowledgments ........................................................................................... ix 

Table of Contents ........................................................................................... xi 

Journal Publications ................................................................................... xvii 

List of Figures ............................................................................................... xix 

List of Tables ............................................................................................... xxiii 

List of Abbreviations ................................................................................... xxv 

 

 

Chapter 1 Introduction ................................................................................... 1 

1.1 Research background .............................................................................. 1 

1.2 Research aims .......................................................................................... 5 

1.3 Organization of thesis .............................................................................. 8 

 

Chapter 2 Water Distribution System Optimization ................................. 11 

2.1 Water distribution systems .................................................................... 11 

2.2 WDS optimization problems ................................................................. 11 

2.2.1 Problem formulation ...................................................................... 11 

2.2.2 Multiobjective optimization problem overview ............................. 15 

2.2.3 WDS optimization objectives ......................................................... 17 

2.3 WDS optimization methods .................................................................. 21 

2.3.1 Early methods ................................................................................. 21 

2.3.2 Mathematical programming methods ............................................. 22 

2.3.3 Evolutionary algorithms ................................................................. 23 

2.3.4 Summary of WDS optimization methods ...................................... 25



Table of Contents 

xii 
 

 

Chapter 3 Multiobjective genetic algorithms ............................................. 27 

3.1 Overview of genetic algorithms ............................................................ 27 

3.1.1 String encoding and decoding ........................................................ 29 

3.1.2 Population initialization ................................................................. 30 

3.1.3 Objective function evaluation ........................................................ 31 

3.1.4 Selection ......................................................................................... 31 

3.1.5 Crossover (mating) ........................................................................ 32 

3.1.6 Mutation ......................................................................................... 33 

3.1.7 Stopping criteria ............................................................................. 34 

3.2 Multiobjective genetic algorithms ........................................................ 35 

3.2.1 Moving from single-objective to multiobjective GAs ................... 35 

3.2.2 Development of multiobjective genetic algorithms ....................... 35 

3.2.3 NSGA-II ......................................................................................... 37 

3.3 WSMGA ............................................................................................... 39 

 

Chapter 4 Synopsis of Publications ............................................................. 41 

 

Chapter 5 Accounting for Greenhouse Gas Emissions in Multiobjective 

Genetic Algorithm Optimization of Water Distribution Systems 

(Publication 1) ........................................................................................... 51 

5.1 Introduction ........................................................................................... 57 

5.2 Methods ................................................................................................ 59 

5.2.1 Multiobjective optimization ........................................................... 59 

5.2.2 Present value analysis .................................................................... 61 

5.2.3 Social discounting .......................................................................... 62 

5.3 Problem formulation ............................................................................. 64 

5.3.1 Minimization of total cost of WDSs .............................................. 65 

5.3.2 Minimization of GHG emissions of WDSs ................................... 67 

5.4 Case study ............................................................................................. 70 

5.4.1 Case study description ................................................................... 70 

5.4.2 Optimization results from discount scenario 1 (GHGs always 

discounted at zero rate) ....................................................................... 72 

5.4.3 Optimization results from discount scenario 2 (costs and GHGs 

discounted at the same rate) ............................................................... 80



Table of Contents 

xiii 
 

5.5 Summary and conclusions ..................................................................... 83 

5.6 Acknowledgments ................................................................................. 85 

 

Chapter 6 Single-Objective versus Multi-Objective Optimization of 

Water Distribution Systems Accounting for Greenhouse Gas 

Emissions by Carbon Pricing (Publication 2) ........................................ 87 

6.1 Introduction ........................................................................................... 93 

6.2 Methods ................................................................................................. 95 

6.2.1 Objective function evaluation ........................................................ 95 

6.2.2 Optimization approach ................................................................... 99 

6.2.3 Carbon pricing .............................................................................. 100 

6.2.4 Present value analysis ................................................................... 101 

6.3 Case studies ......................................................................................... 103 

6.3.1 Case study 1 ................................................................................. 103 

6.3.2 Case study 2 ................................................................................. 112 

6.3.3 Discussion .................................................................................... 119 

6.4 Summary and conclusions ................................................................... 121 

6.5 Acknowledgements ............................................................................. 123 

 

Chapter 7 Incorporation of variable-speed pumping in multiobjective 

genetic algorithm optimization of the design of water transmission 

systems (Publication 3) ........................................................................... 125 

7.1 Introduction ......................................................................................... 131 

7.2 Methodology for incorporating VSPs in conceptual design or planning 

of WTSs ................................................................................................. 133 

7.2.1 Problem formulation .................................................................... 133 

7.2.2 Proposed pump power estimation method ................................... 139 

7.2.3 Solution evaluation process within a genetic algorithm framework

 ........................................................................................................... 142 

7.3 Case study ........................................................................................... 145 

7.3.1 Example network .......................................................................... 145 

7.3.2 Case study objective function evaluation and assumptions ......... 145 

7.3.3 Case study solution evaluation ..................................................... 149 

7.4 Optimization results and discussion .................................................... 150 



Table of Contents 

xiv 
 

7.5 Conclusions ......................................................................................... 156 

7.6 Acknowledgements ............................................................................. 157 

 

Chapter 8 Sensitivity of optimal tradeoffs between cost and greenhouse 

gas emissions for water distribution systems to electricity tariff and 

generation (Publication 4) ..................................................................... 159 

8.1 Introduction ......................................................................................... 165 

8.2 Problem formulation ........................................................................... 166 

8.2.1 Case study description ................................................................. 166 

8.2.2 Objective function evaluation ...................................................... 166 

8.3 Factors considered in sensitivity analysis ........................................... 167 

8.3.1 Electricity tariffs .......................................................................... 168 

8.3.2 Electricity generation ................................................................... 168 

8.3.3 Optimization scenarios and combinations of factors considered . 170 

8.4 Multiobjective GA optimization ......................................................... 170 

8.5 Sensitivity analysis results .................................................................. 172 

8.5.1 Impact of electricity tariff ............................................................ 172 

8.5.2 Impact of electricity generation ................................................... 176 

8.5.3 Discussion .................................................................................... 176 

8.6 Summary and conclusions .................................................................. 177 

8.7 Acknowledgements ............................................................................. 178 

 

Chapter 9 Surplus power factor as a resilience measure for assessing 

hydraulic reliability in water transmission system optimization 

(Publication 5) ......................................................................................... 179 

9.1 Introduction ......................................................................................... 185 

9.2 Surplus power factor (s) ...................................................................... 186 

9.3 Case studies ......................................................................................... 189 

9.4 Validation results for the first three water distribution system case 

studies ................................................................................................... 189 

9.5 Application results for the three-tank water transmission system ...... 194 

9.6 Conclusions ......................................................................................... 198 

9.7 Acknowledgments .............................................................................. 199 

 



Table of Contents 

xv 
 

Chapter 10 Multiobjective Optimization of Water Distribution System 

Design Accounting for Economic Cost, Greenhouse Gas Emissions and 

Hydraulic Reliability (Publication 6) .................................................... 201 

10.1 Introduction ....................................................................................... 207 

10.2 Multiobjective WDS optimization problem formulation .................. 210 

10.3 Objective function evaluation ........................................................... 212 

10.3.1 Evaluation of total life cycle cost ............................................... 212 

10.3.2 Evaluation of total life cycle GHG emissions ............................ 213 

10.3.3 Evaluation of hydraulic reliability .............................................. 214 

10.4 Case study ......................................................................................... 216 

10.4.1 Network description ................................................................... 216 

10.4.2 Optimization parameters ............................................................ 219 

10.4.3 Optimization results and discussion ........................................... 220 

10.5 Conclusions ....................................................................................... 230 

10.6 Acknowledgements ........................................................................... 232 

 

Chapter 11 Conclusions .............................................................................. 233 

11.1 Research contributions ...................................................................... 234 

11.2 Publications ....................................................................................... 238 

11.3 Research limitations .......................................................................... 241 

11.4 Recommendations for future work .................................................... 243 

 

References .................................................................................................... 247 

 

Appendix A Sample Code ........................................................................... 269 

 

Appendix B WSMGA Test Results ............................................................ 275 

 

 

 

 



 

 



 

xvii 
 

 

 

 

Journal Publications 

 

 

1. Wu, W., Simpson, A. R., and Maier, H. R. (2010). "Accounting for 

Greenhouse Gas Emissions in Multiobjective Genetic Algorithm 

Optimization of Water Distribution Systems." Journal of Water 

Resources Planning and Management, 136(2), 146-155. 

 

2. Wu, W., Maier, H. R., and Simpson, A. R. (2010). "Single-Objective 

versus Multi-Objective Optimization of Water Distribution Systems 

Accounting for Greenhouse Gas Emissions by Carbon Pricing." Journal 

of Water Resources Planning and Management, 136(5), 555-565. 

 

3. Wu, W., Simpson, A. R., and Maier, H. R. (2012) “Incorporation of 

Variable-speed Pumping in Multiobjective Genetic Algorithm 

Optimization of the Design of Water Transmission Systems.” Journal 

of Water Resources Planning and Management, (in press). 

 

4. Wu, W., Simpson, A. R. and Maier, H. R. (2012). “Sensitivity of 

Optimal Tradeoffs between Cost and Greenhouse Gas Emissions for 

Water Distribution Systems to Electricity Tariff and Generation.” 

Journal of Water Resources Planning and Management. 138(2), 182-

186. 

 

5. Wu, W., Maier, H. R. and Simpson, A. R. (2011) “Surplus Power 

Factor as a Resilience Measure for Assessing Hydraulic Reliability in 

Water Transmission System Optimization.” Journal of Water 

Resources Planning and Management. 137(6), 542-546. 

 

 



Journal Publications 

xviii 
 

6. Wu, W., Maier, H. R. and Simpson, A. R. (2012). “Multiobjective 

Optimization of Water Distribution System Design Accounting for 

Economic Cost, Greenhouse Gas Emissions and Hydraulic Reliability.” 

Water Resources Research. (submitted). 

 

 



 

xix 
 

 

 

 

List of Figures 

 

 

Figure 1.1 Ten research aims and their hierarchy ............................................. 7 

 
Figure 2.1 System boundaries of a water distribution system ......................... 12 

Figure 2.2 Objective space and Pareto-optimal front of a two-objective 

minimization problem ................................................................... 16 

 
Figure 3.1 Framework of a typical GA ........................................................... 28 

Figure 3.2 One–point crossover applied to two integer strings ....................... 32 

Figure 3.3 Bitwise mutation and adjacency mutation for integer strings ........ 34 

 
Figure 4.1 Contribution of the six journal publications presented in this thesis 

in relation to the ten research aims ................................................ 42 

 
Figure 5.1 Optimization process using multiobjective genetic algorithm 

NSGA-II ........................................................................................ 60 

Figure 5.2 Discount rates and their corresponding discount factors over 100 

years............................................................................................... 63 

Figure 5.3 Case study network configuration ................................................. 71 

Figure 5.4 Optimization results from discount scenario 1 (GHG emissions not 

discounted): (a) Optimal fronts obtained using discount rates of 

zero, 1.4%, 2% and the HMT time declining discount rate; (b) 

Optimal fronts obtained using discount rates of 4%, 6% and 8% . 75 

Figure 5.5 (a) Optimal solutions obtained using the discount rate of 1.4%; (b) 

optimal solutions obtained using the discount rate of 6% ............. 77 

Figure 5.6 Optimization results from Scenario 2 (both costs and GHGs 

discounted) .................................................................................... 81 



List of Figures 

xx 
 

 
Figure 5.7 (a) Composition of total costs; (b) Composition of total GHG 

emissions (Design 1 and Design 18 are the minimum cost and 

minimum GHG emission solutions obtained using a zero discount 

rate in discount scenario 2, respectively) ...................................... 82 

 
Figure 6.1 Objective function evaluation ....................................................... 97 

Figure 6.2 Diurnal water demand curve (Hydraulic Computer Programming 

Pty. Ltd, 1985) .............................................................................. 98 

Figure 6.3 Network configuration for case study 1 (tank 2 is the storage tank; 

the elevation at tank 2 refers to the initial tank water level) ....... 104 

Figure 6.4 Optimization results of case study 1 (the unfilled symbol represents 

the single-objective optimization solution obtained using the 

corresponding carbon price; and the network configurations 

corresponding to the design numbers are shown in Table 6.4) ... 109 

Figure 6.5 Carbon cost mapping of the optimal solution space of case study 1

..................................................................................................... 111 

Figure 6.6 Network configuration for case study 2 (tanks 7, 8 and 9 are 

storage tanks; the elevations at tanks 7, 8 and 9 refer to the initial 

tank water level) .......................................................................... 113 

Figure 6.7 Optimization results of case study 2 (the unfilled symbol represents 

the single-objective optimization solution obtained using the 

corresponding carbon price; and the network configurations 

corresponding to the design numbers are shown in Tables 6.6 and 

6.7) .............................................................................................. 115 

Figure 6.8 Carbon cost mapping of the optimal solution space of case study 2

..................................................................................................... 118 

 
Figure 7.1 Proposed multiobjective WTS design problem ........................... 135 

Figure 7.2 Proposed pump power estimation method within a hydraulic solver

..................................................................................................... 140 

Figure 7.3 Pump power and associated pumping energy estimation processes

..................................................................................................... 142 

Figure 7.4 Proposed solution evaluation process within a genetic algorithm

..................................................................................................... 144 



List of Figures 

xxi 
 

Figure 7.5 Case study network configuration [adapted from Wu et al. (2010a)]

 ..................................................................................................... 146 

Figure 7.6 Comparison of Pareto-optimal fronts obtained using variable-speed 

pumping (VSP) and fixed-speed pumping (FSP) (Networks 2 to 7 

are identical in pipe configuration for FSP and VSP systems) ... 151 

Figure 7.7 Breakdown of life cycle cost and GHG emissions of selected 

solutions with variable-speed pumping [plot (a)] and fixed-speed 

pumping [plot (b)] ....................................................................... 154 

 
Figure 8.1 Case study network configuration [adapted from Wu et al. (2010a)]

 ..................................................................................................... 167 

Figure 8.2 Three electricity tariff options considered over 100 years (e = 

electricity tariff change per annum) ............................................ 169 

Figure 8.3 Three emission factor options considered over 100 years (em = 

total emissions reduction over 100 years) ................................... 171 

Figure 8.4 Optimization results from the two scenarios (all optimal designs 

with same numbers in both plots have exactly the same pipe 

configurations)............................................................................. 173 

 
Figure 9.1 Flows, heads and head loss for a single pipe [adapted from Vaabel 

et al. (2006)] ................................................................................ 187 

Figure 9.2 Surplus power factor s  as a function of Qin/Qmax ........................ 188 

Figure 9.3 Pareto-optimal solutions of the first three case studies ................ 191 

Figure 9.4 Pareto-optimal solutions of the three-tank water transmission 

network ........................................................................................ 196 

 
Figure 10.1 Network configuration [adapted from Duan et al. (1988)] ........ 217 

Figure 10.2 Different views of the Pareto-optimal front ............................... 221 

Figure 10.3 Locations of selected solutions in the objective space .............. 223 

Figure 10.4 Carbon cost slope of selected low cost solutions ....................... 226 

 

 

 



 

 

 
 
 
 
 



 

xxiii 
 

 

 

 

List of Tables 

 

 

Table 5.1 Pipe lengths for the case study network .......................................... 71 

Table 5.2 Pump information for the case study network ................................ 73 

Table 5.3 Ductile iron cement mortar lined (DICL) pipe information for the 

case study network .......................................................................... 74 

Table 5.4 Network configurations and characteristics of solutions obtained in 

discount scenario 1 .......................................................................... 78 

Table 5.5. Different components of objective function values of solutions 

obtained in discount scenario 1 ....................................................... 79 

 
Table 6.1 Design conditions of case study 1 ................................................. 104 

Table 6.2 Pump information [adapted from: Thompson Kelly & Lewis (2001)]

 ....................................................................................................... 105 

Table 6.3 Ductile iron cement mortar lined (DICL) pipe information .......... 106 

Table 6.4 Pareto-optimal solutions found for case study 1 (Cost: i=8%; GHG 

i=0%) ............................................................................................. 108 

Table 6.5 Design conditions of case study 2 ................................................. 113 

Table 6.6 Selected optimal solutions found for case study 2 (Cost: i=8%; 

GHG i=0%) ................................................................................... 116 

Table 6.7 Costs and GHG emissions of selected optimal solutions for case 

study 2 (Cost: i=8%; GHG i=0%) ................................................. 117 

 
Table 7.1 Pipe information of selected Pareto-optimal solutions ................. 152 

Table 7.2 Costs and GHG emissions of selected solutions using variable- and 

fixed-speed pumps ........................................................................ 153 



List of Tables 

xxiv 
 

 
Table 8.1 Optimization scenarios and combinations of factors investigated as 

part of the sensitivity analysis ...................................................... 171 

Table 8.2 Pipe information of the six typical Pareto-optimal designs .......... 174 

Table 8.3 Breakdown of total cost and GHG emissions of the selected 

solutions obtained from the two optimization scenarios (e = 

electricity tariff increase per annum and em = emission factor 

change over 100 years) ................................................................. 175 

 

Table 9.1 Correlation between average s  factor and other three network 

resilience measures ( mI , rI  and rMI ) for the first three case studies

 ...................................................................................................... 192 

Table 9.2 Typical solutions for the first three case studies ........................... 193 

Table 9.3 Network configurations of four typical solutions of the three-tank 

water transmission system case study .......................................... 195 

Table 9.4 Flow distribution and s factors of four typical solutions of the three-

tank case study .............................................................................. 197 

 
Table 10.1 Nodal information ....................................................................... 217 

Table 10.2 Pipe lengths ................................................................................. 218 

Table 10.3 DICL pipe options ...................................................................... 219 

Table 10.4 Breakdown of life cycle costs of selected solutions ................... 224 

Table 10.5 Breakdown of life cycle GHG emissions and the minimum and 

minimum  factors of selected solutions ....................................... 224 

Table 10.6 Pipe diameters and objective function values of selected solutions

 ...................................................................................................... 225 

Table 10.7 The locations and conditions at which the minimum surplus power 

factor occurs in the selected network solutions ............................ 229 

 

 



 

xxv 
 

 

 

 

List of Abbreviations 

 

 

ABARE Australian Bureau of Agricultural and Resource Economics 

ACOA Ant Colony Optimization Algorithms 

CE Cross-Entropy  

CO2-e Carbon dioxide equivalent  

DICL Ductile iron cement mortar lined  

EA Evolutionary algorithm 

FCV Flow control valve 

FORM First Order Reliability Method  

FSP Fixed speed pump 

GA Genetic algorithm 

GHG Greenhouse gas 

HMT Her Majesty’s Treasury  

IPCC Intergovernmental Panel on Climate Change 

MOGA Multi-objective Genetic Algorithm [an algorithm 

developed by Fonseca and Fleming (1993)] 

NSGA Non-dominated Sorting Genetic Algorithm 

NYT New York tunnel 

PVA Present value analysis 

SA Simulated Annealing 

SFLA Shuffled Frog Leaping Algorithms 

SPEA Strength Pareto Evolution Algorithm  

VEGA Vector Evaluated Genetic Algorithm  

VFD Variable frequency drive  

VSP Variable speed pump 

WBGA Weight-based Genetic Algorithm  



List of Abbreviations 

xxvi 
 

 

WDS Water distribution system 

WSMGA Water System Multiobjective Genetic Algorithm 

WTS Water transmission system 

 

 

 



 

1 
 

 

 

 

Chapter 1 

 

Introduction 

 

 

1.1 Research background 
 

Water distribution systems (WDSs) are an essential part of urban 

infrastructure systems (UISs), as urban water consumers (domestic, 

commercial and industrial) rely on these systems to obtain clean water to 

perform basic activities (Filion et al., 2004). Due to the high cost associated 

with the construction and maintenance of WDSs, WDS optimization has been 

an important research sector within the field of civil and environmental 

engineering for over three decades (Simpson et al., 1994; Zecchin et al., 

2006). Recently, the need for WDS optimization has been emphasized, 

because: 1) much urban infrastructure, including WDSs, built by the late 

1960s has shown signs of ageing and deterioration (Sahely et al., 2005), thus 

significant reinvestment is required; 2) growing awareness of wastewater 

reuse and associated increase in treated water quality criteria has led to an 

increase in the costs of providing high quality drinking water to urban areas 

(Hiessl et al., 2001); and 3) the increase in both the extent and density of 

urban areas caused by urbanization also requires upgrading of existing urban 

WDSs, and planning and design of new systems. The increasing need for the 

optimal planning, design and evaluation of WDSs is the first motivation for 

this research. 

 

Climate change, especially global warming caused by human activities, 

presents serious global risks. Extreme weather conditions such as severe  
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droughts, floods and cyclones, exacerbated by global warming, are already 

affecting a large number of people around the world. In order to mitigate 

global warming, individuals, governments and industries need to be more 

energy efficient and reduce their greenhouse gas (GHG) emissions. Within the 

civil engineering domain, the minimization of GHG emissions has been 

identified as one important criterion for improving the sustainability of urban 

infrastructure and urban water systems (Sahely et al., 2005; Filion, 2008). In a 

number of studies in WDS research, GHG related issues, such as energy 

consumption, have already been addressed in both the optimization area 

(Sarbu and Borza, 1998; Baran et al., 2005; Lopez-Ibáñez et al., 2005; 

Ulanicki et al., 2007) and the planning and management area (Lundie et al., 

2004; Filion, 2008). It was not until 2006 that GHG emissions were evaluated 

for a WDS (Dandy et al., 2006). However, in the study by Dandy et al. (2006) 

GHG emission minimization was not integrated into the optimization of 

WDSs as a design criterion. Consequently, there is a need to include GHG 

emission minimization as an objective directly into the optimal design of 

WDSs, which is the second motivation for this research. 

 

The ultimate goal of incorporating GHG emissions into the optimal design of 

WDSs is to reduce these emissions from WDSs. However, in practice, there 

are many factors that have an impact on the selection of the final design of a 

WDS and thus the total amount of GHG emissions generated from the system. 

First of all, the discount rate used in present value analysis in the objective 

function evaluation process has a significant impact on the final value of 

objective function(s), and thus the final design of the system. Secondly, the 

introduction of an emissions trading scheme may lead to the pricing of carbon 

related emissions, which will have an impact on the formulation of the 

optimization of WDSs accounting for economic cost and GHG emissions. 

Thirdly, within the water industry, GHG emissions are mainly generated from 

system operation related to pumping (Kelly, 2007). As a result, the type of 

pump selected [e.g. fixed speed pumps (FSPs) or variable speed pumps 

(VSPs)] also has a significant impact on the total GHG emissions generated 

from a WDS. Fourthly, the electricity tariffs into the future will have a 

significantly impact on the operating cost, and thus the life cycle, of WDSs, 
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which in turn may alter the final system configuration selected. Finally, the 

methods used to generate electricity have a direct impact on the GHGs 

emitted from WDSs. As the proportion of renewable energy (i.e. wind, solar 

and hydroelectric energy) increases in the future, the GHG emissions from the 

operation of WDSs will be reduced. Consequently, the third motivation for 

this research is to explore the sensitivity of GHG emissions from a WDS to 

the factors listed above.  

 

The optimization of WDSs has always been a multiobjective problem 

involving economic, environmental and reliability considerations. While 

reference to multiobjective WDS optimization was first made in the literature 

in the late 1960s (Schaake and Lai, 1969), attention has mainly been given to 

the minimization of the economic cost of the networks alone (Woodburn et 

al., 1987; Lohani and Fontane, 1988; Su and Mays, 1988; Walski et al., 1988; 

Lansey et al., 1989; Simpson et al., 1994; Loganathan et al., 1995; 

Vairavamoorthy and Ali, 2000; Perelman and Ostfeld, 2005). Other 

considerations, such as system reliability, are often taken into account as 

optimization constraints, rather than objectives (Duan et al., 1990). It was not 

until late the 1990s that multiobjective optimization techniques were applied 

to WDS optimization to account for more than one objective (Halhal et al., 

1997; Ilich and Simonovic, 1998). 

 

During the past 10 years, as computing technologies and multiobjective 

optimization algorithms have become more efficient, research activities in the 

field of multiobjective optimization of WDSs have increased significantly. 

Many studies have been carried out to include objectives other than the 

traditional economic objective of minimizing cost into the optimization of 

WDSs via a multiobjective approach (Dandy and Hewitson, 2000; Wegley et 

al., 2000; Dandy and Engelhardt, 2006; Rao and Salomons, 2007; da Costa 

Bortoni et al., 2008; Wu et al., 2009). Among the current multiobjective WDS 

optimization studies, hydraulic reliability is one objective that has been 

considered most often due to its importance in ensuring the maintenance of 

services to end water users (Savic, 2002; Keedwell and Khu, 2004; Jourdan et 

al., 2005; Atiquzzaman et al., 2006; Jayaram and Srinivasan, 2008). However, 
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the leading environmental concern – GHG emission minimization – has not 

been addressed directly in the field of multiobjective WDS optimization. 

Consequently, the fourth motivation for this research is to incorporate 

multiple design objectives, including the minimization of life cycle cost and 

GHG emissions, and the maximization of hydraulic reliability, into the 

optimization of WDSs simultaneously via a multiobjective approach. 

 

There are a several issues that need to be addressed in order to carry out this 

research. First of all, in order to explore the impact of the use of a FSP or a 

VSP on multiobjective WDS optimization accounting for GHG emissions, the 

required pump size and associated pump power for each different network 

configuration evaluated in the optimization process need to be estimated. This 

requires the development of an approach to pump sizing and pump power 

estimation, which allows easy adjustment of pump power based on specific 

network configurations assessed in an optimization process, thereby enabling 

both FSPs and VSPs to be incorporated into the design optimization of WDSs.   

 

Secondly, the hydraulic reliability measures used in current literature often 

cannot be used for systems involving the pumping of water into reservoirs or 

storage tanks, which generate significant amount of GHG emissions. This is 

because the calculation of the hydraulic reliability measures employed in 

current literature relies on the difference between the required and minimum 

allowed pressure heads at the outlet of the system, which is zero for systems 

delivering water into storage facilities. Consequently, there is a need to find a 

suitable hydraulic reliability measure for such WDSs.  

 

The last issue is to select a suitable technique for solving the multiobjective 

WDS optimization problem proposed in this research. In the literature, many 

approaches have been used to optimize WDSs. These approaches include 

enumeration (Savic and Walters, 1997), mathematical programming 

techniques, such as linear programming (Shamir, 1974) and non-linear 

programming (Gupta et al., 1999), and evolutionary algorithms (EAs), such as 

genetic algorithms (GAs) (Simpson et al., 1994) and ant colony optimization 

(Zecchin et al., 2007). Enumeration becomes infeasible when applied to the 



1 Introduction 

5 
 

optimization of any realistic-sized WDS (Savic and Walters, 1997). 

Traditional mathematical programming techniques often converge to local 

optima when applied to complex non-linear optimization problems, such as 

WDS optimization (Calgari et al., 1999) and many of them are not suitable for 

solving multiobjective optimization problems (Coello Coello, 2005). In 

contrast, EAs have been found to be effective for WDS optimization problems 

(Simpson et al., 1994; Eusuff and Lansey, 2003; Zecchin et al., 2007). 

Particularly, multiobjective GAs have been used successfully in WDS 

optimization research (Savic, 2002; Farmani et al., 2005; Keedwell and Khu, 

2006; Jayaram and Srinivasan, 2008). Consequently, a multiobjective GA is 

used in this research to incorporate the economic, environmental and 

reliability objectives into the optimal design of WDSs.  

 

 

1.2 Research aims 
 

The overall aim of this study is to incorporate the minimization of the leading 

environmental concern - GHG emissions - as an objective into the optimal 

design of WDSs via a multiobjective approach, together with the traditional 

objectives of minimizing life cycle economic cost and maximizing hydraulic 

reliability of WDSs. Ultimately, it is hoped that this will lead to the 

consideration of environmental objectives and the adoption of a 

multiobjective framework for the design of WDSs in real world practice. In 

order to fulfill the overall aim of this research, ten research aims have been 

developed and listed below. How these ten research aims are related to each 

other is illustrated in Figure 1.1. 

 

Aim 1: To develop a framework for incorporating the environmental 

objective of the minimization of life cycle GHG emissions into the 

optimization of WDSs via a multiobjective approach. 

 

Aim 2: To investigate the tradeoffs between the economic objective of 

minimizing the life cycle cost and the environmental objective of minimizing 
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the life cycle GHG emissions of WDSs via a multiobjective optimization 

approach.  

 

Aim 3: To investigate the sensitivity of the tradeoffs between the economic 

objective of minimizing life cycle cost and the environmental objective of 

minimizing life cycle GHG emissions to the selection of the discount rate in 

the present value analysis for objective function evaluation.  

 

Aim 4: To investigate the potential impact of a carbon price under an 

emissions trading scheme on multiobjective optimization of WDSs accounting 

for both the economic and environmental objectives. 

 

Aim 5: To develop a generic pump power estimation method that can be used 

to efficiently estimate the size and pump power of the pumps (particularly 

VSPs) required for different network configurations evaluated in an 

optimization process.  

 

Aim 6: To investigate the potential impact of the type of pumps (i.e. fixed-

speed or variable-speed) selected on both the economic cost and GHG 

emissions of WDSs. 

 

Aim 7: To investigate the sensitivity of the tradeoffs between the economic 

objective of minimizing life cycle cost and the environmental objective of 

minimizing life cycle GHG emissions to electricity tariffs and generation. 

 

Aim 8: To find a suitable hydraulic reliability measure for WDSs involving 

pumping water into storage facilities, which are often the primary cause of 

GHG emissions.  
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Figure 1.1 Ten research aims and their hierarchy 

 

 

Aim 9: To investigate the tradeoffs between the objective of minimizing life 

cycle economic cost and the objective of maximizing hydraulic reliability of 

WDS optimization via a multiobjective approach. 

 

Aim 10: To investigate the impact of the inclusion of hydraulic reliability 

maximization as a design objective on multiobjective WDS optimization 

accounting for the economic objective of minimizing life cycle cost and 

environmental objective of minimizing GHG emissions and to explore the 

interaction of the three objectives in a three dimensional objective space.  

 

As can be seen from Figure 1.1, the first seven research aims are all concerned 

with the multiobjective optimization of WDSs accounting for the economic 

objective of minimizing life cycle cost and the environmental objective of 

minimizing life cycle GHG emissions. The first aim is to develop a 
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framework to evaluate the life cycle GHG emissions of WDSs and incorporate 

them into the optimization of WDSs via a multiobjective approach. The 

second aim is to investigate the tradeoffs between the economic and 

environmental objectives using a number of case studies; thus, questions such 

as how much GHG emission reduction can be achieved at what cost can be 

answered. Research aims 3, 4, 6 and 7 are to explore the impact of different 

factors on multiobjective WDS optimization accounting for economic cost 

and GHG emissions. These factors include the discount rate (Aim 3), the 

pricing of carbon related emissions under an emissions trading scheme (Aim 

4), the use of a FSP or a VSP (Aim 6) and the future electricity tariffs and 

generation methods (Aim 7). In order to achieve aim 6, a generic pump power 

estimation method that can be used to estimate the required size and pump 

power for each network configuration evaluated in an optimization process 

needs to be developed (Aim 5). The eighth aim is to find a suitable hydraulic 

reliability measure for WDSs involving pumping water into storage facilities, 

based on which the tradeoffs between the objective of minimizing life cycle 

economic cost and the objective of maximizing hydraulic reliability of WDSs 

can be explored (Aim 9). The final aim of this research (Aim 10) is to 

investigate the impact of the inclusion of hydraulic reliability maximization as 

a design objective on multiobjective WDS optimization accounting for the 

economic objective of minimizing life cycle cost and environmental objective 

of minimizing GHG emissions and to explore the interaction of the three 

objectives in a three dimensional objective space.   

 

 

1.3 Organization of thesis 
 

This thesis is presented as a collection of journal publications arising from the 

research undertaken and is divided into 11 chapters. Chapters 2 and 3 

provide comprehensive reviews of literature on the background of this 

research, including WDS optimization and the multiobjective genetic 

algorithms which are used in this research, while Chapter 4 provides a 

synopsis of the publications that form the main body of this thesis. The 
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synopsis provides a summary of each journal publication and illustrates their 

contributions to this research by describing how each publication is linked to 

the ten aims of this research listed in the previous section.  

 

The main body of this thesis consists of Chapters 5 to 10, which are formed 

by the six journal publications produced for this research. Chapters 5 to 8 are 

concerned with the tradeoffs between the economic objective of minimizing 

life cycle cost and the environmental objective of minimizing life cycle GHG 

emissions of WDSs. Chapter 5 presents the framework to incorporate the life 

cycle GHG emissions of WDSs into the optimization of WDS via a 

multiobjective approach (Aim 1). In Chapter 5, the tradeoffs between the 

economic and environmental objectives of WDSs and the sensitivity of the 

tradeoffs to the discount rate used in objective function evaluation are also 

investigated (Aims 2 and 3). Chapter 6 answers the question of whether or 

not a multiobjective approach of WDS optimization accounting for economic 

cost and GHG emissions becomes obsolete under an emissions trading 

scheme where GHG emissions will be priced (Aim 4). Chapter 7 explores the 

impact of the selection of fixed speed pumps (FSPs) or variable speed pumps 

(VSPs) on the multiobjective WDS optimization accounting for economic cost 

and GHG emissions and demonstrates that by switching from FSPs to VSPs in 

WDS design optimization, both life cycle cost and GHG emissions can be 

reduced (Aim 6). In order to achieve aim 6, a technical issue of incorporating 

variable speed pumping into the design optimization of WDSs is also solved 

in Chapter 7 (Aim 5). Chapter 8 explores the impact of electricity tariffs and 

generation on the tradeoffs between the economic and environmental 

objectives via a sensitivity study (Aim 7). Chapter 9 is concerned with 

research aims 8 and 9. It first introduces the concept of the surplus power 

factor developed by Vaabel et al (2006) as a hydraulic reliability measure for 

WDSs involving pumping water into storage facilities and demonstrates the 

applicability of this hydraulic reliability measure using a number of 

benchmark case studies (Aim 8). It then explores the tradeoffs between the 

economic cost and hydraulic reliability of WDSs represented using the surplus 

power factor (Aim 9). Chapter 10 investigates the impact of the inclusion of 

the hydraulic reliability objective on the tradeoffs between the economic 
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objective of minimizing life cycle cost and the environmental objective of 

minimizing GHG emissions (Aim 10). In this chapter, the interaction of the 

three WDS design objectives in a three dimensional objective space is also 

explored (Aim 10).  

 

The final chapter, Chapter 11, summarizes the major contributions of this 

research. In addition, the publications produced and the limitations and future 

directions of this research are also summarized.  
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Chapter 2 

 

Water Distribution System 

Optimization 

 

 

2.1 Water distribution systems 
 

Water distribution systems (WDSs) are part of urban infrastructure systems. 

The system boundaries of a WDS are illustrated in Figure 2.1. In general, 

WDSs consist of a collection of water storage facilities, such as reservoirs and 

tanks, and water distribution facilities, such as pumps, pipes, valves, etc. 

These network components need to be arranged in a complex way, such that 

sufficient water is first delivered to storage facilities through transmission 

mains and then to end water users with adequate pressure through distribution 

mains. Due to the large scale of WDSs and the complexity of the arrangement 

of their components, optimization techniques are often required to design 

WDSs.  

 

 

2.2 WDS optimization problems 
 

2.2.1 Problem formulation 
 

A WDS optimization problem can take many forms. Most WDS optimization 

problems generally fall into one of three categories: 1) the design of a new 
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Figure 2.1 System boundaries of a water distribution system 

 

 

system/subsystem, 2) the rehabilitation of an existing system, and 3) the 

optimal operation of a system. A new design problem typically involves 

selecting the diameter of pipes, when the locations of all pipes are given 

(Zecchin et al., 2005). Quite often, other system components, such as pumps, 

tanks and valves also need to be considered (Duan et al., 1990). A 

rehabilitation problem refers to improving the performance of an existing 

network by cleaning, replacing, duplicating or repairing network components, 

typically pipes (Halhal et al., 1997). A system operation problem typically 

refers to finding optimal operational strategies, such as suitable pump trigger 

levels or pump scheduling (McCormick and Powell, 2004; Lopez-Ibáñez et 

al., 2005).  

 

No matter which category it falls into, a WDS optimization problem can be 

defined as selecting the best combination of the values for decision variables 

in terms of certain objectives for the design, rehabilitation or operation of a 

WDS such that a number of constraints are satisfied. Thus, a WDS 

optimization problem can be expressed using the following equations: 

 

Minimize/maximize       )(xfOFi =             mi ,...,2,1=                            (2.1) 
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subject to 

 

0≥jGF                       pj ,...,2,1=                                                   (2.2) 

0=kHF                       qk ,...,2,1=                                                   (2.3) 

 

and 

 

ttt UBxLB ≤≤           nt ,...,2,1=                                                     (2.4) 

 

where OF = objective functions; x = decision variables; n = the number of 

decision variables; m = the number of objectives; GF = inequality constraint 

functions; p = the number of inequality constraints; HF = equality constraint 

functions; q = the number of equality constraints; tLB  and tUB  are the lower 

bound and upper bound of the t th decision variable, respectively. In this 

thesis, different combinations of the values of decision variables are also 

referred to as trial solutions or potential solutions. A decision variable is 

defined as a factor whose value is subject to change within a problem and will 

affect values of the objective functions and constraints. The combination of 

decision variables make up the solution to the problem being addressed.   

 

Decision variables of a WDS design optimization problem often involve the 

sizes of pipes, sizes and shapes of tanks, capacity and type of pumps, valves 

and their locations (Zecchin et al., 2006). Selecting the right pipe size is the 

most common application for WDS optimal design problems (Walski et al., 

1988; Varma et al., 1997; Abebe and Solomatine, 1998; Vairavamoorthy and 

Ali, 2000; Babayan et al., 2005). For a WDS rehabilitation problem, decision 

variables also involve pipes. Typically, decisions regarding which pipe to 

rehabilitate (Walski et al., 1987), what rehabilitation method to use (Simpson 

et al., 1994) and the optimal rehabilitation timeline need to be made. For 

WDS operation problems, decision variables may include selection of trigger 

levels in tanks and pump scheduling (Lopez-Ibáñez et al., 2005; Ulanicki et 

al., 2007). The decision variables of WDS optimization, such as pipe sizes and 
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on and off of pumps, often take discrete values, thus Equation 2.4 can be 

expressed as: 

 

{ }tlttt xxxx ,...,, 21∈                                                                             (2.5) 

 

where, { }tltt xxx ,...,, 21  are the l  discrete values of the t th decision variable. As 

a result, the search space of these WDS optimization problems is also discrete.  

 

The constraints of WDS optimization problems mainly include hydraulic 

constraints and available options of decision variables. Hydraulic constraints 

refer to the physical rules that a hydraulic system must obey, which include: 

1. Conservation of mass: The continuity of flow must be maintained at each 

node in the network; 

2. Conservation of energy: The total head loss around a loop must be zero 

and the total head loss around a path must equal the difference between 

the heads of the two end reservoirs.  

The available options of decision variables often involve commercially 

available diameters of pipes, and sizes and types of pumps. 

 

In addition to the general constraints discussed above, different case-specific 

constraints may apply to different optimization problems. Maximum 

allowable velocity in each pipe and minimum and maximum allowable 

pressures at demand nodes are common case-specific constraints for WDS 

optimization problems (Varma et al., 1997; Abebe and Solomatine, 1998; 

Samani and Mottaghi, 2006). In Pezeshk and Helweg’s (1996) study on WDS 

operation problems, minimum and maximum allowable pressure are set to 

trigger a pump. In Dandy and Hewitson’s (2000) research on water quality 

optimization, acceptable limits of chlorine levels need to be satisfied. Water 

quality was also used as a constraint in a study conducted by Broad et al. 

(2005).  

 

In addition, as can be seen from the equations above, the WDS optimization 

problem is essentially a multiobjective optimization problem. Seeking the 
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least cost network configuration has always been the focus of WDS 

optimization due to the high cost associated with the construction, 

maintenance and operation of these systems (Walski et al., 1987; Simpson et 

al., 1994; Boulos et al., 2001; Bounds et al., 2006). Network reliability is 

another traditional research focus for WDS optimization, as it is important to 

ensure the service provided by the system is maintained. In recent years, due 

to the increased awareness of sustainability, environmental and health related 

issues, such as energy consumption (Ulanicki et al., 2007), water quality 

(Dandy and Hewitson, 2000) and environmental impact (Herstein et al., 

2009b) have also been incorporated into WDS optimization. An overview of 

multiobjective optimization problems and a review of different objectives 

used in WDS optimization are presented in the following two subsections. 

 

2.2.2 Multiobjective optimization problem overview 
 

A multiobjective optimization problem uses the concept of domination 

introduced by Fonseca and Fleming (1993) to deal with the tradeoffs between 

or among conflicting objectives (Deb, 2002). A solution x  is said to dominate 

a solution y , if both of the following conditions are true: 

1. Solution x  is no worse than solution y  in all objectives;  

2. Solution x  is strictly better than solution y  in at least one objective. 

 

An example of the tradeoffs between two conflicting objectives of a 

minimization problem is shown in Figure 2.2. Each black dot in the figure 

represents a solution point in the objective space. It can be seen that Solution 

B is better than Solution A in terms of objective 1, but that they both have the 

same value for objective 2. As a result, Solution B is said to dominate 

Solution A. Comparing Solutions B and C, B is better in terms of objective 1 

but worse in terms of objective 2. Therefore, Solutions B and C are called 

non-dominated solutions. The solutions within the solid circles dominate all 

other solutions in the objective space. However, they are non-dominated 

solutions to each other. These non-dominated solutions are called Pareto- 
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optimal solutions. They form a front (the darker line), referred to as the 

Pareto-optimal front. 

 

If there is higher level information available for decision making, a biased 

search can be used to find desired solutions among the Pareto-optimal 

solutions. However, in most cases such information is not available. 

Therefore, the Pareto-optimal solutions are equally important. The ultimate 

goal of multiobjective optimization is to find all of these Pareto-optimal 

solutions. However, multiobjective optimization problems are complex and 

non-linear. Consequently, it is often impossible to find all Pareto-optimal 

solutions within the desired/available computational time using current 

technologies. Seen in this way, there are two goals in multiobjective 

optimization (Deb, 2002): 

1. To find a set of non-dominated solutions as close to the Pareto-optimal 

front as possible;  
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2. To find a set of non-dominated solutions as diverse within the optimality 

region as possible. 

The quality of a multiobjective algorithm can be judged by using these two 

goals. 

 

2.2.3 WDS optimization objectives 
 

In traditional WDS optimization practices, finding the least expensive 

network has always been the objective of WDS optimization due to the high 

cost associated with the construction of these systems (Zecchin et al., 2006). 

Many early WDS optimization studies are dedicated to this subject in the 

literature (Schaake and Lai, 1969; Alperovits and Shamir, 1977; Simpson et 

al., 1994; Abebe and Solomatine, 1998; Vairavamoorthy and Ali, 2000; 

Lopez-Giraldo and Saldarriaga, 2004; Babayan et al., 2005; Reca et al., 2008). 

WDSs, also have long service lives (e.g. 100 years or longer for water mains) 

(Park et al., 1998; Water Services Association of Australia, 2002) and 

therefore, the maintenance and operation costs of WDSs have also been 

considered in previous studies. In a network optimization problem described 

by Walski et al. (1987), the cost function includes the capital cost, network 

maintenance cost and energy cost. Minimizing operational cost is also a 

typical objective in WDS operational optimization problems (Boulos et al., 

2001; Bounds et al., 2006).  

 

Network reliability is also a traditional research focus for WDS optimization, 

as it is important to ensure the service of the system is maintained. Network 

reliability includes mechanical reliability and hydraulic reliability (Mays et 

al., 1989; Schneiter et al., 1996). Mechanical reliability refers to 1) network 

“connectability”, which is defined as the probability of a given demand node 

connected to a water source and 2) network “reachability”, which refers to the 

probability of all demand nodes in a network connected to a water source 

(Wagner et al., 1988). Hydraulic reliability addresses issues related to the 

probability of a WDS satisfying end water users or the probability of a 

network delivering sufficient flows at required pressures at each demand node 
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(Wagner et al., 1988; Schneiter et al., 1996). During early research, attention 

was mainly given to mechanical reliability and hydraulic reliability received 

less attention than it deserved (Wagner et al., 1988; Li et al., 1993). However, 

hydraulic reliability is the ultimate goal of WDS design, as it refers directly to 

the basic function of a WDS (Ostfeld et al., 2002).  

 

There are no universally accepted network reliability measures and many 

methods have been developed to measure the hydraulic reliability of WDSs 

(Mays, 1996; Todini, 2000). As early as 1985, Gessler and Walski (1985) 

used the excess pressure at the worst node in the system as a benefit measure 

in a pipe network optimization problem to ensure sufficient water with 

acceptable pressure is delivered to demand nodes. In 1993, Li et al. (1993) 

extended the network reliability analysis to include capacity reliability, which 

is defined as the probability that the carrying capacity of a network meets the 

demand. Schneiter et al. (1996) applied the concept of capacity reliability to a 

WDS optimal rehabilitation problem.  

 

The multiobjective optimization of WDSs accounting for network reliability 

was first investigated by Halhal et al. (1997). In their study, the authors 

minimized the network cost and maximized the total benefit (the sum of 

hydraulic benefit, physical integrity benefit, flexibility benefit and quality 

benefit) of the network. In the benefit function, the hydraulic benefit is 

defined as the improvement in the pressure deficiencies in the network. Since 

then, minimizing the head deficit at demand nodes has been used as a 

hydraulic capacity reliability measure in many multiobjective WDS 

optimization studies considering both cost and system reliability (Savic, 2002; 

Keedwell and Khu, 2004; Jourdan et al., 2005; Atiquzzaman et al., 2006). 

 

In 2000, Todini (2000) introduced the concept of resilience as one measure of 

network capacity reliability. In his study, Todini defined resilience as the 

capacity of the network to react and overcome failure or stress of the system. 

Network resilience can be measured using a resilience index ( Ir ), which is 

the quotient of the difference between the actual output power and the 

required output power and the difference between the total input power and 
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the required output power. The higher the resilience index, the more 

redundant energy a network will have to overcome stress conditions, thereby, 

the capacity reliability is increased. Based on the concept of resilience, Prasad 

and Park (2004) introduced a new resilience measure called network 

resilience. In calculating network resilience, the effects of both surplus power 

and reliable loops are considered. A loop is considered to be reliable if the 

pipes connected to each node in the loop are not very different in terms of 

diameter.  

 

Around the same time as Prasad and Park’s work, researchers started looking 

at the uncertainties involved in network reliability evaluation. Tolson et al. 

(2001) used the First Order Reliability Method (FORM) to estimate water 

distribution system reliability. Thereafter, Tolson et al. (2004) used a genetic 

algorithm coupled with FORM to obtain optimal tradeoffs between the cost 

and reliability of WDSs represented by the probability of failure. Kapelan et 

al. (2005) used a multiobjective approach to maximize the robustness of a 

WDS, which was represented as the possibility that pressure heads at all 

network nodes are simultaneously equal to or above the minimum required 

pressure. Recently, Jayaram and Srinivasan (2008) introduced a modified 

resilience index, which is developed based on the resilience index of Todini 

(2000). In calculating the modified resilience index, the authors replaced the 

denominator of the resilience index by the required power at the demand 

nodes. Thus, the modified resilience index can be used to compare the 

resilience of different networks (Jayaram and Srinivasan, 2008). 

 

Since 1987, when the concept of sustainability was brought to international 

attention through the Brutland Report (World Commission on Environmental 

and Development, 1987), there has been an increasing awareness of the 

environmental impacts from human activities, which has led to the 

incorporation of environmental objectives in WDS optimization. The 

minimization of energy consumption due to pumping-related WDS operation 

is the most commonly considered environmental objective for WDS 

optimization. Pumping is a major contributor to energy consumption within 

the water industry (Ghimire and Barkdoll, 2007; Kelly, 2007) and for most 
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countries, electricity is generated from non-renewable sources, such as fossil 

fuels. Thus, WDSs pose huge burdens on the environment through energy 

consumption. Many studies have been dedicated to the minimization of 

energy consumption/cost of WDSs. A review of earlier studies was carried out 

by Ormsbee and Lansey (1994). More recently, Pezeshk and Helweg (1996) 

developed an adaptive search algorithm for minimizing pumping cost by 

finding the best combination of pumps that are switched on. Other operation 

energy minimization studies include Nitivattananon et al. (1996), Ilich and 

Simonovic (1998), van Zyl et al. (2004) and Ulanicki et al. (2007).  

 

Material usage due to manufacturing network components, such as pipes, also 

has an impact on the environment. Firstly, it results in natural resource 

depletion. Secondly, the material production process also degrades the 

environment by generating pollutants and consuming energy generated by 

burning fossil fuels. Dandy et al. (2006) suggested that material usage can be 

used as one sustainability objective of WDS design. In their study, the total 

mass of pipes was suggested to be used in the objective function evaluation 

process, if the same material was used for all pipes; otherwise, the total energy 

used to manufacture the pipes, called embodied energy (Treloar, 1994), could 

be used instead. In subsequent research conducted by Dandy et al.(2008), the 

minimization of embodied energy of the pipes was incorporated into the 

optimization of WDSs as a sustainability objective, together with the 

traditional economic objective of minimizing the total cost of the network. In 

addition, water quality has been included in WDS optimization as part of the 

social cost objective (Dandy and Hewitson, 2000). More recently, Herstein et 

al. (2009b) proposed a multiobjective framework to incorporate 

environmental impact into the design of WDSs. The environmental impact of 

WDSs is represented using the environmental impact index, which is a single 

parameter that consists of measures of resource consumption, environmental 

discharges and environmental impacts (Herstein et al., 2009a).  
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2.3 WDS optimization methods 
 

2.3.1 Early methods 
 

WDS optimization problems are non-linear, constrained mathematical 

problems and are included in the class of complex combinatorial optimization 

problems commonly referred to as NP-hard (Parker R.D. and Edition 

published by Academic Press, 1988). Ideally, this type of problem can be 

solved by full enumeration, in which every possible combination of decision 

variables is simulated and evaluated. However, the search space of WDS 

optimization problems normally is extraordinarily large. For example, for a 

WDS design problem with ten decision variables and eight choices for each of 

these, there are 810 (1,073,741,824) potential solutions in the search space. 

Therefore, full enumeration is often infeasible for WDS optimization 

problems due to the enormous computational time required to simulate every 

single potential solution in the search space. 

 

Prior to the use of formal optimization methods, a simulation model based 

trial-and-error approach was often used for the design of WDSs (Savic and 

Walters, 1997). However, this method is highly variable and depends heavily 

on the experience of the designer. A selective enumeration method was 

proposed by Gessler (1985) in order to reduce the number of solutions that 

need to be simulated and evaluated in full enumeration. In the selective 

enumeration method, a heuristic approach was used to eliminate inferior 

solutions before they were simulated. However, such an approach requires a 

considerable computational time for large networks and it also results in the 

potential loss of the optimal solution in the pruned search space (Simpson et 

al., 1994). Therefore, advanced optimization techniques are required to obtain 

the desired solution(s) of WDS optimization problems within a feasible time.  
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2.3.2 Mathematical programming methods 
 

Many mathematical programming techniques have been developed to solve 

WDS optimization problems over the past four decades. In 1977, Alperovits 

and Shamir (1977) proposed a linear programming gradient method for the 

design of WDS systems. This method consists of two stages. In the first stage, 

the system is solved for a given flow distribution using linear programming. 

Then, a search is conducted in the flow variable space towards the direction of 

minimizing the objective function value (a minimization problem is assumed). 

Since then, the linear programming gradient method has been adapted and 

improved by many researchers (Solanki and Ghosh, 1983; Fujiwara et al., 

1987; Kessler and Shamir, 1989).  

 

A number of non-linear models were developed to account for the non-linear 

nature of WDS optimization problems. Lansey and Mays (1989) developed a 

non-linear programming technique called the generalized reduced gradient 

method for the optimization of WDSs. Toint and Tuyttens (1990) proposed a 

new quasi-Newton algorithm for WDS optimization and compared it to three 

other non-linear methods. For a comprehensive review of non-linear 

programming methods applied to WDS optimization problems up to 1994, 

readers are referred to Simpson et al. (1994). Varma et al (1997) suggested a 

successive quadratic programming method for WDS optimization, in which 

the gradient of the objective function value was obtained analytically. 

 

Dynamic programming was also used in WDS optimization. As early as in the 

1960s, Schaake and Lai (1969) used dynamic programming to search for the 

global optimum for a WDS design problem. Zessler and Shamir (1989) 

applied an iterative dynamic programming method called progressive 

optimality to a WDS optimal operation problem. Ertin et al. (2001) developed 

a framework for using dynamic programming for optimizing pump scheduling 

problems.  
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Most mathematical programming techniques have been used to solve single-

objective optimization problems. When dealing with multiobjective 

optimization problems, whose interest mainly lies in finding multiple Pareto-

optimal solutions, mathematical programming techniques have been shown to 

have  limitations (Deb, 2002; Coello Coello, 2005): 

1. For most traditional mathematical programming techniques, only one 

Pareto-optimal solution can be expected from one simulation run. 

2. For many mathematical programming techniques, the ability to find 

Pareto optimal solutions is a function of the shape of the Pareto-optimal 

front, as not all Pareto-optimal solutions can be found for non-convex 

multiobjective. 

3. All mathematical programming techniques require some a priori problem 

knowledge.  

4. Due to limitation no. 3, mathematical programming techniques are hard 

to adapt to changes to the optimization problem. 

 

In addition, most mathematical programming techniques require that the 

objective functions and constraints are differentiable. Therefore, it is not easy 

to apply such techniques to WDS optimization problems, whose search spaces 

are discrete. 

 

In contrast, stochastic optimization methods, such as evolutionary algorithms 

(EAs), can overcome the above limitations when dealing with multiobjective 

combinatorial optimization problems. EAs have been applied to WDS 

optimization problems with great success. A review of the application of EAs 

to WDS optimization problems is provided in the following section. 

 

2.3.3 Evolutionary algorithms 
 

Evolutionary algorithms (EAs) are stochastic search methods, which belong to 

a class of metaheuristics. Metaheuristics are a higher level of heuristics, in 

which the search is guided by problem-specific knowledge in the form of 

heuristics (Blum and Roli, 2003). Metaheuristics have been widely used in 
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WDS optimization problems. Apart from EAs, other metaheuristics that have 

been successfully applied to WDS optimization problems include Simulated 

Annealing (SA) (Cunha and Sousa, 1999), Ant Colony Optimization 

Algorithms (ACOA) (Maier et al., 2003; Zecchin et al., 2006), Shuffled Frog 

Leaping Algorithms (SFLA) (Eusuff and Lansey, 2003), Cross-Entropy (CE) 

(Perelman and Ostfeld, 2005) and Particle Swarm Optimization Algorithms 

(Bansal and Deep, 2009).  

 

EAs have significant advantages when applied to combinatorial optimization 

problems, such as WDS optimization: 1) they can deal with discrete decision 

variables directly; 2) they use objective function values directly instead of 

auxiliary information derived from objective functions; 3) they are global 

search methods, which can explore a extensive areas of the search space; 4) 

they deal with a population of solutions simultaneously, therefore, they can be 

applied to multiobjective optimization problems with little modification 

(Coello Coello, 2005). Due to these reasons, EAs are the most widely used 

metaheuristics in multiobjective WDS optimization.  

 

The multiobjective nature of WDS optimization problems was recognized in 

the 1960s (Schaake and Lai, 1969). While in the literature the application of 

multiobjective EAs to WDS optimization problems can only be traced back to 

the 1990s. In 1997, Halhal et al. (1997) used a structured messy GA to solve a 

multiobjective WDS optimization problem considering cost and benefit. In 

this research, the concepts of Pareto ranking (Goldberg, 1989) and fitness 

sharing (Goldberg and Richardson, 1987) were used, which introduced 

additional parameters in the optimization process. Later, the Multi-objective 

Genetic Algorithm (MOGA) developed by Fonseca and Fleming (1993) was 

employed by Savic (2002) and Dandy and Engelhardt (2006). More recently, 

Dandy et al. (2008) applied both the MOGA and the Non-dominated Sorting 

Genetic Algorithm (NSGA) developed by Srivinas and Deb (1994) to a two 

reservoir WDS. However, both MOGA and NSGA have been criticized for a 

number of drawbacks in multiobjective optimization, including high 

computational complexity of non-dominated sorting, lack of elitism and the 

need for additional parameters (Deb, 2002; Coello Coello, 2005). 
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In 1999, an elitist EA called Strength Pareto Evolution Algorithm (SPEA) was 

introduced (Zitzler and Thiele, 1999). This algorithm was improved later and 

named SPEA2 (Zitzler et al., 2002). SPEA2 was applied to a multiobjective 

pump scheduling problem and satisfactory results were obtained (Lopez-

Ibáñez et al., 2005). In 2002, Deb et al. (2002) introduced another 

multiobjective evolutionary algorithm called Non-dominated Sorting Genetic 

Algorithm-II (NSGA-II), which overcame many of the drawbacks associated 

with NSGA. Since its introduction, NSGA-II has been successfully applied to 

many multiobjective WDS optimization problems (Jourdan et al., 2005; 

Kapelan et al., 2005; Khu and Keedwell, 2005; Atiquzzaman et al., 2006; 

Keedwell and Khu, 2006; Herstein et al., 2009b). 

 

The performance of SPEA2 and NSGA-II has been compared in a number of 

studies. However, there is no conclusive finding on the relative performance 

of SPEA2 and NSGA-II. In a study conducted by Farmani et al. (2005), these 

two algorithms were compared based on the extent to which the 

multiobjective methods produced Pareto-optimal solutions and the diversity 

among the solutions for a number of WDS optimization problems. The 

authors found that both algorithms are able to identify the tradeoffs between 

conflicting objectives and SPEA2 performs slightly better than NSGA-II for a 

fixed number of generations. However, in a number of other studies (Zitzler et 

al., 2002; Hiroyasu et al., 2005), NSGA-II has been found to behave very 

similarly to SPEA2 and sometimes out-perform SPEA2 (Raisanen and 

Whitaker, 2005). 

 

2.3.4 Summary of WDS optimization methods 
 

Compared to traditional optimization techniques, EAs have significant 

advantages in solving multiobjective combinatorial optimization problems, 

such as WDS optimization problems. SPEA2 and NSGA-II are currently the 

most popular evolutionary algorithms applied to multiobjective WDS 

optimization in the literature and both algorithms are able to find near-optimal 
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solutions within the desired time. The performance of these two algorithms is 

very similar on some problems (Zitzler et al., 2002). However, as a GA, 

NSGA-II has a longer development history and has a wider application in 

multiobjective WDS optimization research. Therefore, a multiobjective GA 

called Water System Multiobjective Genetic Algorithm (WSMGA) has been 

developed based on NSGA-II in this research to solve the proposed 

multiobjective WDS optimization problem. In addition, an archive strategy 

used in SPEA2 is also adopted in WSMGA in order to improve the 

performance the algorithm. An overview of multiobjective GAs and the 

WSMGA is provided in the next chapter. 
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Chapter 3 

 

Multiobjective genetic algorithms 

 

 

3.1 Overview of genetic algorithms 
 

Genetic algorithms (GAs) are a global optimization method developed by 

John Holland and his students at the University of Michigan (Goldberg, 

1989). As the name suggests, the concept of GAs is inspired by the natural 

phenomenon of heredity, in which the principle of “survival of the fittest” is 

used to select more suitable trial solutions. In each generation of a GA, a 

population of alternative solutions, each represented by a vector of decision 

variables called a chromosome or string, is evaluated and selected based on 

the objectives of the optimization problem and varied (e.g. crossover and 

mutation) to create offspring. This process is repeated and it is expected that 

after some generations, the GA will produce offspring that are superior to 

their parent counterparts.  

 

The general framework of a GA is shown in Figure 3.1. A GA first requires a 

genetic representation of the solution domain (chromosomes or strings) and a 

mathematical representation of the objective domain (objective functions). An 

encoding scheme is required to link the genetic representation of each string 

in a GA to its corresponding physical solution in the real world, which enables 

the objective functions of the string to be evaluated. A GA relies on three 

genetic operators – selection, crossover (or mating) and mutation – to produce 

offspring. The objective function value is used directly in the selection 
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Figure 3.1 Framework of a typical GA 

 

 

process as an indicator of the quality of the string and to decide whether or not 

a string will participate in the mating process (crossover). Once a string is 

selected into the mating pool, it will be paired up with another selected string 

and parts of each string will be exchanged (or crossed over) to produce child 

solutions. Mutation of each individual offspring may then occur to introduce 

diversity and prevent premature convergence to local optima, which is defined 

as the best solution(s) in a small local region of the search space. By applying 

the three genetic operators repeatedly, GAs maintain good solutions in the 

current generation and explore the searching space for better solutions in the 

next generation. This searching process will stop when certain stopping 

criteria are met. The details of these optimization steps are presented in the 

following sections. 
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3.1.1 String encoding and decoding 
 

In traditional GAs, solutions are represented in binary as strings of 0s and 1s 

(Goldberg, 1989). The main advantage of this binary representation of strings 

is that it is strongly linked to the schema theory and building block 

hypothesis, which are the first attempts to explain how a GA finds the 

optimum by positing that near optimal solutions were forged from small, low-

order, fitter-than-average schemata (Deb, 2002).  

 

A number of difficulties arise when applying binary-coded GAs to real world 

problems. First of all, redundancy may occur when the number of choices for 

each decision variable is not a power of two, which increases the search space 

unnecessarily. Secondly, a binary-coded GA cannot achieve any arbitrary 

precision in the optimal solution in a continuous search space. The number of 

bits in a string must be chosen a priori based on the required precision of the 

solution. As the precision increases, so does the length of the string, which 

will increase the complexity of the problem presented to the GA (Deb, 2002). 

In addition, certain strings, such as 0111 and 1000, require the alteration of 

many bits to mutate to a nearby solution, which is highly unlikely. Thus, the 

GA is more likely to be trapped in a local optimum rather than converge to the 

global optimum (Deb, 2002). On the other hand, for some strings the 

alteration of only one bit can cause a significant change to the decision 

variable value, for example from 0000 to 1000. This can also overshadow the 

ability of GAs converging to global optima. 

 

In order to address the concerns about the binary coding scheme, other coding 

schemes, such as real numbers and integers, are also used. Strings coded in 

real numbers allow GAs to operate on decision variables having continuous 

values directly, which may improve the performance of GAs by exploiting the 

graduality of the objective functions (Herrera et al., 1998). However, different 

crossover and mutation operators are required for real-coded GAs (Herrera et 

al., 1998). An integer coding scheme can solve the redundancy problem of the 

binary coding scheme, which suits problems with a discrete search space, such 
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as WDS optimization problems. In addition, an integer string allocates only 

one bit to each decision variable. Therefore, crossover cannot occur within an 

integer decision variable, which may break up good solutions that have been 

identified, as it does to a binary-coded decision variable (Gibbs, 2008). 

However, due to the less disruptive nature of inter-coded strings, a higher 

mutation probability may be required in order to explore the search space 

more effectively (Gibbs, 2008).  

 

Apart from the real-coded strings, binary- and integer-coded strings 

themselves are rather meaningless outside the genetic operators. They need to 

be decoded in order to link the locations of the solutions they represent in the 

search space to the real world problem to which the GA is presented. 

Therefore, string decoding generally refers to the process of translating 

genetically represented strings back to their real world values on which the 

objective function evaluation is based. Both real number and integer coding 

schemes are used in the Water System Multiobjective Genetic Algorithm 

(WSMGA) developed for this research. 

 

3.1.2 Population initialization 
 

In a GA, a group of solutions called a population is optimized simultaneously 

in each generation. The parent populations before the first generation are 

normally generated randomly at the population initialization step. In this step, 

a uniform random number generator can be used to generate random numbers 

within the range of 0 and 1. By transferring this randomly generated number 

to the range of the decision variables (binary, real number or integer), the 

value of a decision variable is generated. The initial population is generated 

by repeating this process for each decision variable of a string and for each 

string in the population. 
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3.1.3 Objective function evaluation 
 

The formulation of objective functions in GAs is problem dependent. For 

example, if the problem is to minimize the cost of a pipe network, the 

objective function involves calculating the total cost of the pipe network by 

adding up the cost of each pipe. In a GA, the objective function always needs 

to be either maximized or minimized to suit the application mechanisms of the 

algorithm. Quite often, simulation models are required in the objective 

function evaluation process to assist the estimation of constraint violation and 

objective function values of each trial solution. For the case of WDS 

optimization, a hydraulic simulation model, which can mathematically imitate 

the behavior of a WDS, is required. In this research, a commonly used 

hydraulic simulation model called EPANET2 (Rossman, 2000) is used. In 

addition, in traditional GAs constraints are handled by using a penalty 

coefficient, which penalizes the solutions that violate constraints by increasing 

the objective function values for a minimization problem or decreasing the 

objective function values for a maximization problem (Goldberg, 1989). Thus, 

a constrained problem is transferred into an unconstrained problem.  

 

3.1.4 Selection 
 

The first genetic operator in a GA is the selection operator. The objective of 

selection is to increase the number of good solutions in the next generation. 

There are many selection methods, and all of them rely on the principle of 

“survival of the fittest”. Among these methods, tournament selection has been 

proven to have good growth and convergence properties (Deb, 2002) and is 

therefore used in the WSMGA. Before tournament selection, two copies of 

each string will be placed in the mating pool, from which the candidates for 

the tournaments are selected randomly. In each tournament selection, the 

string with better objective function value is selected, and the selection for 

each pair of strings is considered in turn. Therefore, after the selection 

process, the fittest string from the population has two copies in the 
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Figure 3.2 One–point crossover applied to two integer strings 

 

 

mating pool, while the string with the worst fitness is eliminated, and the 

population size is kept the same. 

 

3.1.5 Crossover (mating) 
 

The second genetic operator in a GA is the crossover operator (mating), which 

is the process for producing offspring strings from parent strings. Crossover 

combines solutions that have been identified previously for having desired 

characteristics and attempts to produce new solutions that will retain the 

desired characteristics from both parents. 

 

When applying the crossover operator, the population is divided into groups 

of two strings, and each pair of strings is considered in turn. The most 

common crossover operator is a simple crossover, where parts of the two 

parent strings are interchanged at one or multiple crossover points, either 

selected randomly or specified by the user (e.g. uniform crossover). The 

simple crossover operators were originally designed for binary-coded strings; 

however, they can be applied to integer-coded strings with no modifications. 

A simple one-point crossover operator for integer strings, which is used in the 

WSMGA, is illustrated in Figure 3.2. The crossover operator is applied to two 

six-bit parent strings A and B. The bits after a crossover point on strings A 
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and B are interchanged, thus two child strings C and D are generated. For 

real-coded string, different crossover operators, such as simulated binary 

crossover (Deb, 2002), are required. 

 

The probability of crossover is chosen by the user by specifying a crossover 

probability parameter cp , which often ranges from 0.5 to 1. After the 

crossovers have been performed, )%100( cp×  pairs of strings in the parent 

generation are replaced by their child strings and the population is updated. 

 

3.1.6 Mutation 
 

The third genetic operator in a GA is the mutation operator, the role of which 

is to introduce diversity to the search process to prevent premature 

convergence of GAs to local optima. For any GA, mutation can be applied 

simply by changing the value of the bit to which mutation is applied. There 

are two common mutation operators: bitwise mutation and adjacency 

mutation. Bitwise mutation can be used to restore lost good solutions and 

improve exploration of the search space (Herrera et al., 1998). Adjacency 

mutation can be used to finely tune solutions that have been identified (Gibbs, 

2008). 

 

Bitwise mutation and adjacency mutation for integer strings, which are both 

coded in the WSMGA, are illustrated in Figure 3.3. When bitwise mutation is 

applied to a bit (a decision variable in an integer solution string), an option for 

the decision variable represented by the bit is selected randomly. For the 

example in Figure 3.3, bitwise mutation is performed on the third bit of string 

A and number 8 is randomly selected between zero and the number of options 

for the decision variable. Thus, string C is generated. When adjacency 

mutation occurs, the value of a bit is only able to mutate to the two adjacent 

values of its current value, often with equal probability. For example, if the 

value of a bit is 7, when adjacency mutation occurs, the value of the bit has 

50% probability to mutate into 6 and 50% probability to mutate into 8. As the 

second example in Figure 3.3 shows, when adjacency mutation happens to
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Figure 3.3 Bitwise mutation and adjacency mutation for integer strings 

 

 

the last bit of string B, the value of that bit is mutated to 6, and thus string D is 

generated.  

 

Similarly to the crossover operator, the probability of mutation is also selected 

by the user by specifying a mutation probability parameter mp . After the 

mutation process, )%100( mp×  bits in the total mn×  (where, n is the number 

of decision variables and m is the population size) number of bits are mutated. 

 

3.1.7 Stopping criteria 
 

In a GA, stopping criteria are required to stop the optimization process. The 

most common stopping criterion is the number of generations that need to be 

evaluated. Other stopping criteria include the variance of objective function 

values within a generation being less than a specified value and the execution 

time.  
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3.2 Multiobjective genetic algorithms 
 

3.2.1 Moving from single-objective to multiobjective 

genetic algorithms 
 

In traditional optimization problems, there is only one fitness/objective 

function to be evaluated in the optimization process. Optimization algorithms 

will either maximize or minimize the objective function value. A single-

objective GA can be used to solve these problems. However, most 

optimization problems in the real world have multiple objectives that need to 

be satisfied. Therefore, a number of methods, such as the Weighted Sum 

Method, ε-Constraint Method, Weighted Metric Method, Benson’s Method, 

Value Function Method, Goal Programming Methods and Interactive Methods 

have been developed to assist single-objective GAs in solving multiobjective 

problems (Deb, 2002). All of these methods, however, deal with 

multiobjective optimization problems by using a single-objective approach, in 

which the multiple objectives are converted into one objective in some way. 

As a result, they have a number of significant drawbacks: 1) they are not able 

to search the true objective space and therefore, lose the tradeoff information 

among the objectives (Singh et al., 2003); 2) they are only able to find one 

optimal solution in each simulation run; 3) not all of these methods guarantee 

finding all optimal solution sets of non-convex optimization problems; and 4) 

most of these methods require explicit knowledge of the optimization problem 

(Deb, 2002). Therefore, a real multiobjective GA is required in order to solve 

real world optimization problems with multiple objectives, such as WDS 

optimization problems. 

 

3.2.2 Development of multiobjective genetic algorithms 
 

The first real multiobjective GA – Vector Evaluated Genetic Algorithm 

(VEGA) – was proposed by Schaffer (1985). VEGA is a simple extension of a 

single-objective GA for multiobjective optimization problems. In VEGA, an 
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objective vector is used in place of the objective function used in a single-

objective GA. Each element of the vector represents an objective function. 

The GA population is divided into equally sized subpopulations according to 

the number of objectives. For each subpopulation, only one element of the 

objective vector is evaluated. VEGA is implemented using a non-Pareto 

approach (Savic, 2002) in which each subpopulation is evaluated against one 

objective only. Thus, the solutions with one optimal objective are likely to be 

preferred (Deb, 2002).  

 

A few years after the development of VEGA, Hajela and Lin (1992) 

introduced a Weight-based Genetic Algorithm (WBGA). The WBGA is 

similar to the Weighted Sum Method in that the sum of the weighted objective 

function values is used to evaluate potential solutions. However, instead of 

using one weight vector as in the Weighted Sum Method, each individual in a 

generation is assigned a different weight vector. Thus, multiple optimal 

solutions can be found in a single simulation run. However, the WBGA has 

difficulties in dealing with mixed types of objective functions (both 

minimization and maximization) and finding non-convex Pareto-optimal 

solutions (Deb, 2002). 

 

In the same year that WBGA was introduced, Fonseca and Fleming (1993) 

proposed a multiobjective GA called the Multi-objective Genetic Algorithm 

(MOGA). In Fonseca and Fleming’s MOGA, the concept of non-domination 

was first introduced (Deb, 2002).  In addition, the concept of niching (Oei et 

al., 1991) was used to maintain the diversity of non-dominated solutions. 

However, as solutions in the same non-dominated front (except for the first 

front) are assigned the same rank, an unwanted bias may be introduced 

towards some solutions (Deb, 2002). Niching also introduces an extra sharing 

parameter, which needs to be defined a priori (Deb, 2002). 

 

In 1994, Srivinas and Deb (1994) introduced the Non-dominated Sorting 

Genetic Algorithm (NSGA), in which the non-domination concept was 

implemented directly. However, the non-dominated sorting algorithm used in 

the NSGA has a computational complexity of O(MN3), where M is the 



3 Multiobjective Genetic Algorithms 

37 
 

number of objective functions and N is the population size (Deb et al., 2002). 

This raises an efficiency problem, especially when a large population is used. 

A sharing function method (Goldberg and Richardson, 1987) was used in the 

NSGA to maintain the diversity of non-dominated solutions. Therefore, 

NSGA also requires a sharing parameter, as is the case for Fonseca and 

Fleming’s MOGA. It has also been found that NSGA is sensitive to the value 

of the sharing parameter (Srinivas and Deb, 1994).  

 

There are a number of concerns with most multiobjective GAs developed by 

the early 1990s. The first concern is the high computational complexity 

[O(MN3)] of the non-dominated sorting methods used in these multiobjective 

GAs, which exponentially increases computational time for large population 

sizes. The second concern is the lack of elitism. Elitism guarantees that a good 

solution found early on in the population will never be lost. Consequently, 

elitism makes sure the fitness of the population does not deteriorate, and it can 

also improve convergence and significantly speed up GAs (Deb et al., 2002). 

The third concern is that the need of a sharing parameter increases the number 

of parameters in a traditional multiobjective GA.  

 

In order to overcome the disadvantages of previous multiobjective GAs, a fast 

and elitist non-dominated sorting genetic algorithm – NSGA-II – was 

developed by Deb et al. (2000). The details of NSGA-II are presented below. 

 

3.2.3 NSGA-II 
 

In addition to the conventional steps of genetic algorithms, such as selection, 

crossover and mutation, NSGA-II has four special features, which address the 

concerns over traditional multiobjective GAs.  

 

First of all, a special book-keeping strategy is used in the non-dominated 

sorting process of NSGA-II. Instead of repeatedly ranking the dominated 

solutions in the population for each rank, every solution in the population is 

checked with a partially filled dominating population until the partially 
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dominating population grows to include all non-dominated solutions. In this 

approach, the maximum computation required for the non-dominated sorting 

of the entire population is of O(MN2) instead of O(MN3), which reduces 

computational complexity significantly. Secondly, instead of ranking the 

parent population only, as in traditional multiobjective GAs, a global 

population, which combines both the parent and child populations, is ranked 

in NSGA-II. This global population guarantees that good solutions in the 

parent population will not be lost due to crossover or mutation, thus elitism is 

introduced into the algorithm. Thirdly, a crowding distance comparison is 

used to compare solutions within the same rank to maintain the diversity of 

non-dominated solutions; hence, a sharing parameter is not required. 

 

Furthermore, the traditional constraint handling method used by most GAs is 

not very effective and requires specification of the value of an additional 

parameter (Vairavamoorthy and Ali, 2000). An efficient constraint handling 

method (Deb, 2000) based on tournament selection and referred to as 

constrained tournament selection (Deb, 2002) is used in NSGA-II. In this 

tournament selection, the feasibility and constraint violation of each solution 

are first checked against all constraints. A solution x is said to dominate a 

solution y, if any of the following is true (Deb, 2000): 

1. Solution x is feasible and solution y is infeasible; 

2. Solutions x and y are both feasible, but solution x has a smaller fitness 

function value (minimizing fitness function value is assumed);  

3. Solutions x and y are both infeasible, but solution x has a smaller 

constraint violation. 

In this way, a penalty coefficient is not required and feasible solutions always 

have priority over infeasible solutions. 
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3.3 WSMGA 
 

For the purpose of this research, a multiobjective GA called the Water System 

Multiobjective Genetic Algorithm (WSMGA) has been developed based on 

NSGA-II. The special book-keeping strategy based non-dominated sorting, 

the global population-based elitism preservation algorithm, the crowding 

distance-based diversity maintenance strategy and the constrained tournament 

selection used in NSGA-II are all adopted in WSMGA. In order to cater for 

discrete decision variables generally encountered in WDS optimization 

problems, the traditional binary coding scheme used in NSGA-II has been 

replaced by an integer coding scheme in WSMGA, while the option of using 

real number inputs in NSGA-II has been preserved. As a result, the crossover 

and mutation operators for the binary coding scheme used in NSGA-II are 

also revised to accommodate the integer coding scheme in WSMGA, as 

discussed previously. In order to avoid the loss of optimal solutions due to 

crossover and mutation, an archive strategy used in SPEA2 (Zitzler et al., 

2002) is also incorporated into the development of WSMGA to keep a record 

of all optimal solutions generated in the optimization process. In addition, the 

output function in WSMGA is specifically developed to record WDS network 

The WSMGA source code and example input files and UNIX scripts used in 

this research are attached in Appendix A. 

 

To validate its performance, WSMGA has been tested by benchmarking it 

against NSGA-II using a number of test functions used in Deb et al. (2002). In 

order to ensure a fair comparison, real number inputs were used for both 

algorithms. The test functions used and comparison results are summarized in 

Appendix B.  
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Chapter 4 

 

Synopsis of Publications 

 

 

 

This chapter discusses the contributions of the six journal publications 

presented in subsequent chapters of this thesis. The overall aim of this study is 

to incorporate the minimization of the leading environmental concern – 

greenhouse gas (GHG) emissions - as one objective into the optimal design of 

WDSs via a multiobjective approach, together with the traditional economic 

objective of minimizing life cycle cost and the reliability objective of 

maximizing the hydraulic reliability of WDSs. In order to do so, ten research 

aims, listed in Section 1.2, have been identified. Figure 4.1 illustrates the 

relevance of the six journal publications and their contents to the ten research 

aims of this research. 

 

The development of a framework to incorporate the life cycle GHG emissions 

into WDS optimization via a multiobjective approach (Aim 1) is included in 

Publication 1. Publication 1 also investigates the tradeoffs between the 

economic objective of minimizing the life cycle cost and the environmental 

objective of minimizing life cycle GHG emissions (Aim 2) and the sensitivity 

of these tradeoffs to the discount rate used in the objective function evaluation 

process (Aim 3). Publication 2 addresses the issue related to the introduction 

of an emissions trading scheme, which may undermine the incentive of using 

a multiobjective approach to account for GHG emissions of WDSs by 

providing an alternative single-objective approach (Aim 4). Publication 3 first 

solves a technical issue of incorporating both fixed speed pumps (FSPs) and 

variable speed pumps (VSPs) into the design optimization of WDSs by 
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presenting the development of a generic pump power estimation method (Aim 

5). It then explores the impact of the use of VSPs instead of FSPs on WDS 

optimization accounting for GHG emissions (Aim 6). The seventh research 

aim of exploring the impact of electricity tariffs and generation on WDS 

optimization accounting for GHG emissions is included in Publication 4. In 

publication 5, the suitability of a hydraulic reliability measure called surplus 

power factor (Vaabel et al., 2006) for WDSs involving pumping water into 

storage facilities is validated (Aim 8). Thereafter, the tradeoffs between the 

economic objective of minimizing life cycle cost and the objective of 

maximizing hydraulic reliability represented using the surplus power factor 

for WDS optimization are explored (Aim 9). The last publication (Publication 

6) investigates the impact of the inclusion of the hydraulic reliability objective 

on multiobjective WDS optimization accounting for the economic objective of 

minimizing life cycle cost and the environmental objective of minimizing 

GHG emissions and explores the interaction of the three objectives in a three 

dimensional space (Aim 10). The details of these six journal publications are 

presented in this chapter. 

 

Publication 1 describes the formulation of the multiobjective problem of 

WDS optimization accounting for the minimization of life cycle economic 

cost and the minimization of life cycle GHG emissions and explores the 

tradeoffs between the economic and environmental objectives (Aims 1 and 2). 

As WDSs are social infrastructure with a long life span (e.g. 100 years or 

longer), the costs (e.g. operating costs and emissions) of WDSs will occur 

over a long period of time. Present value analysis (PVA) is required in order 

to take into account the time preference of these costs, thereby enabling costs 

occurring at different times to be compared. A number of important issues 

involved in the selection of the discount rate for the economic and 

environmental objective evaluation are also included in Publication 1 (Aim 3). 

The first issue is the selection of the discount rate for evaluating the economic 

and environmental objectives. The selection of the value of the discount rate 

has a significant impact on the outcomes of PVA and thus the value of the 

objective functions. For example, a high positive discount rate (e.g. 8% or 

above) results in ongoing costs to diminish from around 50 years onwards; a 
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low positive discount rate close to zero (e.g. 1.4%) will only halve the impact 

of the costs occurring at the 50th year; and a zero discount rate suggests that 

the costs occurring at any time into the future are as important as the costs 

occurring at present. The impact of the discount rate used in PVA for 

objective function evaluation is investigated in the paper by using a range of 

discount rates used for social projects selected from literature. 

 

The second issue is whether or not ongoing environmental costs (e.g. GHG 

emissions due to energy consumption for system operation) should be 

discounted the same as ongoing economic costs. This is a controversial issue 

and there is no universally accepted resolution. In Publication 1, this issue is 

addressed by using two discount scenarios. In discount scenario 1, economic 

costs are discounted at various discount rates, while a zero discount rate is 

always used for the calculation of life cycle GHG emissions. In discount 

scenario 2, both economic cost and GHG emissions are discounted at the same 

rate. In addition, details of the Water System Multiobjective Genetic 

Algorithm (WSMGA), which is the multiobjective optimization program 

developed for this research, are included in Publication 1.  

 

The major contribution of Publication 1 is that the minimization of GHG 

emissions is incorporated into the optimization of WDSs via a multiobjective 

approach for the first time. The optimization results presented in the paper 

demonstrate that a reasonable and acceptable increase in the economic cost 

can often result in a substantial reduction in GHG emissions, which provides 

an avenue for reducing the carbon footprint of the water industry. The 

optimization results also show that a lower discount rate for evaluating the life 

cycle economic cost, such as the 1.4% recommended by Sir Nicolas Stern 

(2006), can remove some solutions with high GHG emissions (and low cost) 

from the Pareto-optimal front generated for discount scenario 1, which can 

potentially result in low emission WDS designs. Another contribution of 

Publication 1 is the development of the concept of carbon cost slope (see 

Figure 5.5), which is expressed as the increase in economic cost in terms of 

every unit reduction in GHG emissions, is also developed. This carbon slope 
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concept can be used to compare the effectiveness of reducing GHG emissions 

from selecting different Pareto-optimal solutions.  

 

Publication 2 addresses the major issue of using a multiobjective approach 

for WDS optimization accounting for GHG emissions under an emissions 

trading scheme, where carbon emissions are priced (Aim 4). When a monetary 

value (or carbon price) is assigned to GHG emissions upon the introduction of 

an emissions trading scheme with a cap and trade approach, the GHG 

emissions in tonnes can be converted into monetary terms, which enables a 

single-objective approach to be used. This raises the question of whether the 

introduction of carbon pricing under an emissions trading scheme will make 

use of a multiobjective optimization approach obsolete or whether such an 

approach can provide additional insights that are useful in a decision-making 

context. In the paper, this question is answered by comparing single- and 

multiobjective approaches for WDS optimization under a range of different 

carbon prices. 

 

With the aid of two case studies, Publication 2 demonstrates that a single-

objective optimization approach is easier to implement, requires less 

computational effort and results in a simpler decision-making process. 

However, a single-objective approach also leads to a loss of tradeoff 

information between the two competing objectives, the introduction of 

uncertainties involved in carbon pricing and a controversial, unpopular 

assumption - perfect substitutability, in which one dollar’s worth of damage 

caused by GHG emissions can be compensated for by a dollar’s worth of 

economic growth (Sterner and Persson, 2007). In contrast, the multiobjective 

approach provides decision makers with more detailed information by 

explicitly showing the tradeoffs between the two objectives. As the carbon 

price has no impact on the tradeoffs between the two objectives, the carbon 

pricing process can be removed from the objective function evaluation 

process and result in multiobjective solutions that express the tradeoffs 

between economic cost in dollars and GHG emission in tonnes. Based on 

these tradeoffs, a carbon cost mapping expressed in terms of the dollar cost of 

reducing one tonne of GHG emissions can be obtained. This carbon cost 



4 Synopsis of Publications 

46 
 

mapping can then be used to determine the single-objective optimal solution 

for a given market carbon price within the set of Pareto-optimal solutions 

obtained using the multiobjective approach without any additional 

optimization runs. Thus, apart from the tradeoff information, the optimization 

results obtained using the multiobjective approach provide decision makers 

with a clear indication of the relative effectiveness of the selected carbon price 

in reducing GHG emissions relative to other carbon prices. Publication 2 

concludes that a multiobjective approach considering the economic cost in 

dollars and GHG emissions in tonnes should be used for optimizing WDSs 

accounting for GHG emissions, even under an emissions trading scheme 

where GHG emissions can be traded based on a carbon price.  

 

As mentioned previously, GHG emissions are mainly generated from system 

operation related to pumping when electricity is sourced from fossil fuels 

within the water industry (Kelly, 2007). In traditional WDSs involving 

pumping, FSPs are commonly used due to their lower capital costs compared 

with those of VSPs. However, VSPs provide easier control over the system, 

which enables a better response to abnormal situations, such as fire and 

breakage. More importantly, pressure or flowrates can be maintained very 

close to minimum allowable levels by using VSPs. Thus, there is great 

potential for saving energy and hence for reducing GHG emissions from 

WDSs by switching from FSPs to VSPs (Aim 6). This potential is explored in 

Publication 3 in conjunction with multiobjective optimization.  

 

In previous research on WDS design optimization, only FSPs were used. This 

is not only because FSPs are commonly used in existing WDSs, but also 

because FSPs can be easily simulated in an optimization process by using a 

fixed pumping head or a pump curve (Duan et al., 1990; Filion, 2009; Wu et 

al., 2010b), whereas the dynamic features of VSPs make their simulation 

within optimization iterations a more difficult task. A major technical 

contribution of Publication 3 is the development of a pump power estimation 

method, which makes possible the incorporation of VSPs in an iterated 

optimization process (Aim 5). This method makes use of a flow control valve 

and can be implemented using a hydraulic solver, such as EPANET 
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(Rossman, 2000), through a false position based optimization approach. It is 

suited to fast and repeated estimation of operating energy consumption of a 

large number of network configurations, and the generic nature of this method 

ensures that different network configurations generated during the 

optimization process are compared fairly.  

 

Publication 3 demonstrates the application of the pump power estimation 

method with one case study. The optimization results of the case study show 

that the use of VSPs instead of FSPs in multiobjective WDS optimization 

accounting for both economic cost and GHG emission minimization can 

reduce both the economic cost and GHG emissions of optimal solutions. The 

effectiveness of replacing FSPs with VSPs in reducing operating costs and 

emissions is more significant for systems with smaller-diameter pipes due to 

their higher dynamic heads (friction losses) relative to static heads. As a 

result, the use of VSPs in multiobjective WDS optimization leads to optimal 

solutions that are both cheaper in terms of economic cost and GHG emissions. 

Based on the results presented in Publication 3, it can be concluded that 

switching from fixed-speed pumping to variable-speed pumping can be an 

effective method for reducing both cost and GHG emissions of WDSs when 

used in conjunction with multiobjective optimization. 

 

Currently, most water utilities and energy producers operate independently 

and water utilities have little control over electricity tariffs and generation. 

However, the water and energy industries are closely related: a large amount 

of water is needed for energy production and a large amount of energy is 

needed for treatment, transmission and distribution of water. In addition, 

electricity tariffs have a significant impact on the operating cost of WDSs. 

Emission factors, which depend on the mix of the sources of electricity in a 

region, such as combustion of fossil fuel or nuclear, solar and hydroelectric 

energy, directly dictate the ongoing operating emissions from WDSs in that 

region. Therefore, both electricity tariffs and emission factors have a 

significant impact on the results of multiobjective WDS optimization 

accounting for economic cost and GHG emissions. Publication 4 explores the 

water-energy nexus and its impact on the tradeoffs between the economic cost 
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and GHG emissions from WDSs by investigating the sensitivity of the 

tradeoffs to the above two key factors – the electricity tariffs and emission 

factors, in the objective function evaluation process (Aim 7).  

 

As part of the sensitivity analysis in Publication 4, realistic ranges and 

changing trends of electricity tariffs and emission factors are estimated based 

on data from Australia. Two different scenarios and five combinations of the 

two factors are considered in the sensitivity analysis. The results from the 

sensitivity analysis show that the electricity tariffs into the future have no 

impact on the total GHG emissions of a particular WDS; however, a higher 

electricity tariff into the future can remove some network solutions with high 

GHG emissions from the Pareto-optimal front. In contrast, the emission factor 

appears to have little impact on the network configurations of the Pareto-

optimal solutions; as expected, however, it has a significant impact on the 

total GHG emissions from WDSs.  

 

Publication 4 also demonstrates that selection of the design horizon has an 

impact on the results of multiobjective optimization of WDSs accounting for 

economic cost and GHG emission minimization. A shorter design horizon, 

such as 50 years or less, will reduce the future impact of WDSs, which will in 

turn favor networks with smaller capital costs but higher GHG emissions, 

when a low discount rate such as 1.4% is used. On the other hand, a longer 

design horizon (e.g. 100 years) makes accurate projection of electricity tariffs 

and emission factors into future difficult, and can introduce higher levels of 

uncertainties into the optimization process.  

 

Publication 5 first introduces the concept of the surplus power factor 

developed by Vaabel et al (2006) into multiobjective optimization of WDSs 

accounting for economic cost and reliability as a network reliability measure. 

The surplus power factor is a useful reliability measure, particularly for WDSs 

involving pumping water into reservoirs or tanks, which are often the primary 

cause of GHG emissions. For these WDSs traditional reliability measures 

often cannot be used, as the calculation of the traditional measures rely on the 

difference between the required and minimum allowed pressure heads at the 
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outlets of the systems. The suitability of the surplus power factor as a 

hydraulic reliability measure for WDSs is assessed by comparing it with a 

number of existing WDS hydraulic reliability measures (Aim 8), such as the 

minimum surplus head (Gessler and Walski, 1985), the resilience index 

(Todini, 2000) and the modified resilience index (Jayaram and Srinivasan, 

2008) for a number of benchmark case studies, including the two loop 

network studied by Abebe and Solomatine (1998), Todini (2000) and Prasad 

and Park (2004), the New York tunnel problem (Schaake and Lai, 1969) and 

the Hanoi problem (Zecchin et al., 2006). Thereafter, the applicability of the 

surplus power factor as a reliability measure for WDSs involving pumping is 

demonstrated using the three-tank water transmission system (WTS) case 

study investigated in Publication 2. Finally, Publication 5 explores the 

tradeoffs between the economic objective of minimizing the cost and the 

hydraulic reliability objective of maximizing the surplus power factor of 

WDSs via multiobjective optimization (Aim 9). 

 

The introduction of the surplus power factor developed by Vaabel et al (2006) 

as a hydraulic reliability measure for WDSs in Publication 5 makes the 

optimization of hydraulic reliability possible for WTSs, or WDSs including 

pumping water into storage facilities. The optimization results presented in 

Publication 5 also demonstrate that there are significant tradeoffs between the 

minimization of economic cost and the maximization of network hydraulic 

reliability represented by the surplus power factor of WDSs. Often, with a 

small increase in the total economic cost, the reliability level of the final 

selected network can be increased significantly.  

 

Publication 6 is the final publication in this thesis. It investigates the impact 

of the inclusion of the hydraulic reliability objective of maximizing surplus 

power factor on WDS optimization accounting for the economic objective of 

minimizing life cycle cost and the environmental objective of minimizing 

GHG emissions and explores the interaction of the three objectives in a three 

dimensional space (Aim 10). The optimization results presented in Publication 

6 show that the Pareto-optimal front resulting from optimizing the three 

objectives is largely dominated by the tradeoffs between the economic 
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objective and the hydraulic reliability objective. Consequently, the inclusion 

of the third hydraulic reliability objective introduces a large number of 

solutions into the Pareto-optimal front in addition to the optimal solutions 

expressing the tradeoffs between the economic objective of minimizing life 

cycle cost and the environmental objective of minimizing life cycle GHG 

emissions. These solutions are generally more expensive, but have 

significantly improved hydraulic reliability levels. More importantly, it has 

been found that by including the hydraulic reliability, the optimization can 

lead to network solutions that are more practically feasible to implement and 

with reasonable cost and reduced GHG emissions.  

 

The optimal design of WDSs has always been a multiobjective problem. 

However, the economic objective has often outweighed the other objectives in 

the field of WDS optimization research. Reliability considerations are more 

often than not incorporated into the optimization of WDSs as constraints, 

rather than design objectives. The leading environmental concern of GHG 

emissions was not considered at all until the realization of the urgency of 

reducing carbon footprints from every aspect of society, including the water 

industry. In addition, recent technological advances have made multiobjective 

optimization techniques, such as multiobjective genetic algorithms, available 

for WDS optimization. Now is the perfect time to make the optimal design of 

WDSs considering not only the traditional economic objective, but also the 

environmental objective of minimizing GHG emissions and the reliability 

objective of maximizing hydraulic reliability simultaneously, a reality. The 

following six chapters present the six journal publications included in this 

research.  
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Abstract 

 

 

Considerable research has been carried out on the optimization of water 

distribution systems (WDSs) over the last three decades. In previous research, 

attention has mainly focused on the minimization of cost, due to the high 

expenditure associated with the construction and maintenance of such 

systems. However, the impacts of WDSs on the environment usually have not 

been considered adequately. The recent increasing awareness of sustainability 

and climate change, especially global warming, has led to research where 

greenhouse gas (GHG) emissions are considered. In the study described in 

this paper a multiobjective genetic algorithm for WDS optimization has been 

used as an explorative tool to investigate the tradeoffs between the traditional 

economic objective of minimizing costs and an additional environmental 

objective of minimizing GHG emissions. The impacts of minimizing GHG 

emissions on the results of WDS optimization have been explored for a case 

study in this paper. The results indicate that the inclusion of GHG emission 

minimization as one of the objectives results in significant tradeoffs between 

the economic and environmental objectives. Furthermore, a sensitivity 

analysis has been conducted by using different discount rates in a present 

value analysis for computing both ongoing costs and GHG emissions. The 

results obtained show that the Pareto-optimal front is very sensitive to the 

discount rates used. As a result, the selection of discount rates has a 

significant impact on final decision making. 
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5.1 Introduction 
 

Water distribution systems (WDSs) are essential parts of urban infrastructure 

systems, as they deliver water from water sources to domestic, commercial, 

and industrial water users to maintain their daily activities. Due to the large 

scale and complexity of WDSs, optimization techniques are often used in the 

planning and design of such systems. Traditionally, the optimization of WDSs 

has focused on minimizing the cost of the system (Simpson et al., 1994). 

However, an increasing awareness of sustainability has led to consideration of 

other objectives.  

 

The concept of sustainable development was first brought to the attention of 

the international community through the Brundtland report Our Common 

Future in 1987. Since then, the concept of sustainability has been widely 

accepted. However, the main difficulty lies in transforming the principles of 

sustainability into operational models, for example, incorporating 

sustainability into the design and construction of urban infrastructure systems 

(Sahely et al., 2005). To tackle this challenge, a number of studies have 

developed methods of evaluating sustainability of urban infrastructure 

systems (Hiessl et al., 2001; Sahely et al., 2005; Sahely and Kennedy, 2007; 

Filion, 2008). In these studies, a number of environmental criteria, such as the 

minimization of energy usage, minimization of chemical usage, minimization 

of greenhouse gas (GHG) emissions and minimization of sludge disposal have 

been identified as key elements in improving the sustainability of urban 

infrastructure systems and urban water systems. 

 

While reference to multiobjective optimization has appeared in the literature 

since the late 1960s (Schaake and Lai, 1969), in engineering applications, 

sustainability related issues such as pumping energy cost (Ilich and 

Simonovic, 1998), social cost (Dandy and Hewitson, 2000), water quality 

(Dandy and Hewitson, 2000), and material usage (Dandy et al., 2006) have 

only been introduced into the optimization of WDSs over the past 10 years or 

so. In the study carried out by Dandy et al.(2006), the GHG emissions 
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resulting from pipe manufacturing were evaluated for two different designs of 

a WDS. To the writers’ knowledge, the Dandy et al. (2006)  study was the 

first time that GHG emissions have been evaluated for a WDS design problem 

in a published paper. 

 

The study described in this paper incorporates the environmental criterion of 

minimizing total GHG emissions into the optimization of WDSs as an 

objective, along with the conventional economic objective of minimizing the 

cost of the system. A multiobjective genetic algorithm has been used in this 

paper as an explorative tool to investigate the tradeoffs between the economic 

and environmental objectives. In the evaluation of the objective functions, 

both the capital costs and GHG emissions that occur due to initial 

manufacture and construction of the system and the operational costs and 

emissions during the design life of the system are taken into account. To 

properly assess the sustainability of a WDS, a comprehensive analysis of 

multiple environmental discharges (for example GHG emissions, air pollution 

and solid waste production, etc.) would need to be carried out. Care needs to 

be taken when reducing the number of environmental streams to be 

considered in the analysis (as is presented in this paper to demonstrate the 

multiobjective optimization methodology) that environmental problem 

shifting does not occur. 

 

To account for the time preference involved in objective function evaluation, 

an appropriate means of accounting for future costs and emissions has to be 

used. In economics, this is generally achieved by using present value analysis 

(PVA) or discounting (Tietenberg, 1997). For private projects, discount rates 

are often calculated based on market interest rates. As a result, a relatively 

highly decreased value is placed on the costs and benefits to future 

generations (Rambaud and Torrecillas, 2005). However, when dealing with 

social projects, such as WDSs, which have a long design life, or whose 

environmental effects due to GHG production, for example, will potentially 

be spread out over hundreds of years, careful consideration needs to be given 

to selecting an appropriate discount rate. As the selection of appropriate 

discount rates for social projects remains a controversial issue, a set of 
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different discount rates selected from literature has been employed in this 

paper for evaluation of the objective functions. Optimization results obtained 

using different discount rates are compared to explore the sensitivity of WDS 

optimization outcomes to different discount rates. 

 

The remainder of the paper is organized as follows. In the next section, the 

methods used in this study, including multiobjective optimization, PVA, and 

social discounting are introduced. Thereafter, the formulation of the problem 

is presented. The tradeoffs between the economic and environmental 

objectives are then explored for a case study. The impact that different 

discount rates have on WDS optimization results is also investigated. Finally, 

the conclusions are presented. 

 

 

5.2 Methods 
 

5.2.1 Multiobjective optimization 
 

To optimize WDSs accounting for both the economic and environmental 

objectives, a multiobjective approach is required. A multiobjective approach 

can be implemented by using a number of different algorithms. Among these 

algorithms, genetic algorithms have been shown to be effective in solving 

WDS optimization problems in a study conducted by Simpson et al. 

(1994)(1994). Since then, genetic algorithms and later multiobjective genetic 

algorithms have been used successfully in solving WDS optimization 

problems (Savic, 2002; Farmani et al., 2005; Keedwell and Khu, 2006; 

Jayaram and Srinivasan, 2008).  

 

In this study, a multiobjective genetic algorithm called water system 

multiobjective genetic algorithm (WSMGA) was developed based on one of 

the “state-of-the-art” multiobjective genetic algorithms, NSGA-II (Deb et al., 

2002). The optimization procedure using NSGA-II is summarized in Figure
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Figure 5.1 Optimization process using multiobjective genetic algorithm 

NSGA-II 

 

 

5.1. In addition to the conventional steps of genetic algorithms, such as 

selection, crossover, and mutation, NSGA-II has four special features (shown 

in bold in Figure 5.1), which distinguish it from traditional multiobjective 

genetic algorithms. First of all, before applying the ranking operation, a global 

population is generated by combining both the parent and child generations, 

thus elitism is ensured. Second, a special book-keeping strategy is used in the 

non-dominated sorting process, which reduces computational complexity. In 

addition, a crowding distance comparison is used for solutions with the same 

rank; hence a sharing parameter is not required. Furthermore, an efficient 

constraint handling method referred to as constrained tournament method 

(Deb, 2002) is used. In this type of tournament selection, the need for a 

penalty coefficient is removed and feasible solutions are always given priority 

over infeasible solutions. WSMGA has adopted these four features. In 

addition, in WSMGA the traditional binary coding scheme in NSGA-II has 

been modified to handle integer values, which caters for discrete decision 
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variables generally encountered in WDS optimization problems; while the 

option of using real number inputs in NSGA-II has been preserved. To 

validate its performance, WSMGA was tested by benchmarking it against 

NSGA-II using a number of the test functions in Deb et al. (Deb, 2002), for 

which real number inputs were used. 

 

In the multiobjective optimization analysis formulation proposed in this paper 

a number of assumptions are made and parameter values are assumed. 

Consequently, in real design situations, the sensitivity of the optimal solutions 

to these parameters should be tested by varying the uncertain parameters and 

carrying out further optimization runs. The designer must then make a 

judgment from a range of results as to which design is most appropriate. 

 

5.2.2 Present value analysis 
 

PVA is essential in any economic or financial analysis. With an appropriate 

discount rate, PVA translates values from the future to the present, enabling 

effects occurring at different times to be compared (Kaen, 1995). The present 

value (PV) of a future payment can be calculated using the following 

equation: 

 

 

where C  is the payment at a given future time; t  is the number of time 

periods; and i  is the discount rate. Therefore, 
tPV  is the PV of a future 

payment at the end of the t th time period. In this equation, ti)1(1 + is the 

discount factor that represents the extent of the reduction that occurs when a 

future payment to be received at time t is translated into its PV. The selection 

of the value of discount rate i  is important, as it has significant impact on the 

results of PVA. When dealing with private projects, the discount rate is 

usually based on the marginal productivity of capital (Dasgupta et al., 1999) . 

However, in the case of dealing with social/public projects, discount rates 

tt
i

C
PV

)1( +
=  (5.1) 
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based on social cost-benefit analysis/social discounting are recommended 

(Rambaud and Torrecillas, 2005). 

 

5.2.3 Social discounting 
 

Selection of discount rates, especially for social projects, is a very complex 

issue. Rambaud and Torrecillas (2005)  suggested that the selection of 

discount rates for social projects may be divided into three categories: a zero 

discount rate, constant discount rates, and time declining discount rates. 

 

A zero discount rate has been proposed by a number of writers. Azar and 

Sterner (1996) suggested that the rate of pure time preference should be zero, 

and therefore, a zero discount rate should be used if the economic growth 

declines when the world economy reaches a certain level. Dasgupta et al. 

(1999)  pointed out that if the production activity of humans contributed to too 

much of the accumulation of “public bad,” such as GHG emissions, the 

discount rate could be zero, or even negative. Constant discount rates ranging 

from 2 to 10% are most commonly used by current government agencies and 

organizations (Rambaud and Torrecillas, 2005). In addition, in a recent report 

prepared by Sir Nicholas Stern for the British Government in 2006, the writer 

proposed a 1.4% discount rate for a 100-year time horizon in relation to GHG 

abatement strategies. This 1.4% discount rate is computed based on the 

feasibility and costs of stabilizing GHG concentrations in the atmosphere 

within a desired range (to less than 550 parts per million) to avoid catastrophic 

climate change. Time declining discount rates, such as hyperbolic discounting 

(Henderson and Langford, 1998) and gamma discounting (Weitzman, 2001), 

have also been proposed. However, these discount rates are not widely used in 

practice. To the writers’ knowledge, the U.K. government is the first  
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Figure 5.2 Discount rates and their corresponding discount factors over 100 

years 

 

 

government that has adopted a time declining discount rate. In The Green 

Book (Her Majesty's Treasury, 2003), a long term discount rate is suggested 

to be 3.5% for periods within 0-30 years, declining to 1.0% at year 300 and 

held constant thereafter. This time declining discount rate is referred to as the 

Her Majesty’s Treasury (HMT) discount rate in this paper. 

 

In this study, a number of constant discount rates and the HMT time declining 

discount rate are used in computing the objective function values of WDS 

optimization to investigate the sensitivity of the optimization results to 

discount rates. The discount factors calculated from these selected discount 

rates for up to 100 years are plotted in Figure 5.2. It can be seen that the 

discount factor computed using a zero discount rate is 1.0 for any time period. 

This is because a zero discount rate places equal weight on the costs and 

benefits at present and those in the future. As the discount rate increases, the 

corresponding discount factor over time declines more quickly. A 1.4% 

discount rate leads to a discount factor of 0.5 at the 50th year, whereas an 8% 

discount rate results in near zero discount factors from year 60 onward. The 

discounting effect of the HMT time declining rate is between the effects of the 

discount rates of 2 and 4%, but closer to the 4% value. 
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The selection of discount rates (either a positive discount rate or a zero 

discount rate) for global warming mitigation is also a complex and 

controversial issue. Very often, a zero discount rate (or no discounting) is 

used for GHG impact evaluation. For example, the Intergovernmental Panel 

on Climate Change (IPCC) has adopted a zero discount rate with a 100-year 

time horizon for the calculation of GHG emission impacts in its Second 

Assessment Report [as reported by Fearnside (2002)]. However, if in the 

future more advanced technology is able to significantly reduce the cost of 

GHG abatement or carbon sequestration, the discount rate used for GHG 

impact evaluation could be positive as suggested in Fearnside et al. (2000). As 

a result, two discount scenarios are considered in this paper. In the first 

discount scenario, costs are discounted at various discount rates while a zero 

discount rate is always used for the calculation of GHG emissions as 

suggested by IPCC. In the second discount scenario, both costs and GHG 

emissions are discounted at the same rate. 

 

 

5.3 Problem formulation 
 

The WDS optimization problem investigated in this study is a multiobjective 

optimization problem that accounts for two objectives: the minimization of 

total cost and the minimization of GHG emissions. The evaluation of each of 

these two objectives is presented in the next two subsections, respectively. In 

this study, only pipe sizing, pump selection, and tank location selection are 

considered as decision variables to demonstrate the proposed multiobjective 

optimization for incorporating consideration of GHGs. For a real WDS design 

problem, many other issues including valve settings and system operation 

would also need to be taken into account. The equality constraints, which are 

hydraulic constraints in this study, are accounted for by using the hydraulic 

simulation model EPANET2. The inequality constraints (for example, 

minimum allowable pressures at demand nodes), which are design constraints, 

are handled by using constrained tournament method within the genetic 

algorithm formulation (Deb, 2000). 
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5.3.1 Minimization of total cost of WDSs 
 

The total cost of a WDS considered in this study consists of capital costs, 

pump replacement or refurbishment costs, and operating costs, given by 

 

 

where, CC , PRC  and OC  are capital costs, pump replacement costs and 

operating costs, respectively. The capital cost results from the purchase and 

installation of network components (pipes and pumps) and construction of 

pump stations. This cost occurs at the beginning of a project. As the service 

life of a WDS is much longer than the service life of pumps, pumps need to be 

replaced periodically to ensure the performance of the system is maintained. 

The operating cost is mainly due to electricity consumption during system 

operation due to pumping. Both pump replacement costs and operating costs 

occur during the service life of the system, therefore, the calculation of these 

two costs requires PVA. 

 

Capital Cost 

The capital cost is given as 

 

 

where, npipe  is the number of pipes; npump  is the number of pumps; PiC  is 

the pipe cost, that is a function of pipe diameters (for purchase and 

installation); and SC  is the pump station cost (including the initial purchase 

of the pumps), which is computed according to the rated power of the 

corresponding pumps. 

 

Minimize OCPRCCCf ++=1  (5.2) 
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Pump Replacement Cost 

In this study, a pump service life of 20 years and a system design life of 100 

years have been assumed. Therefore, pumps will be replaced or refurbished 

four times during the design life of the system, and the pump replacement cost 

is the sum of the PV of the pump costs, as given below 

 

 

where, PuC  is the pump cost, which is calculated according to the rated 

power of the corresponding pump. 

 

Operating Cost 

The operating cost is given as 

 

 

where, AOC  is the annual operating cost. In Equation 5.5  

 

 

where, ET  is the electricity tariff in dollars per kWh (Australian dollars have 

been used in this study); AEC  is the annual electricity consumption in kWh 

from the pumping system operation, which can be expressed by the following 

equation: 

 

 

where, P  is the power of the pump; HR  is the annual pumping hours; γ  is 

the specific weight of water; Q  is the flow; H  is the pumping head; pumpη  is 

the pump efficiency; and motorη  is the motor efficiency. 
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In the case study for this paper, the computation of the annual operating cost 

is taken as the annual operating electricity consumption multiplied by the 

assumed average electricity tariff. In practice, electricity tariffs may vary 

considerably across regions and with time. In this study, an electricity tariff of 

$0.143 per kilowatt-hour (kWh) has been assumed. This cost is an 

approximate average electricity cost of peak and off-peak electricity. A motor 

efficiency of 95% for each pump has been assumed in the computation of the 

annual energy consumption. In practice, the demand varies with time and 

therefore, an extended period simulation should be used to compute a more 

accurate estimate of the annual electricity consumption over the years. This 

will more correctly account for seasonal demand variation, the correct split 

between peak and off-peak pumping, the fluctuation in tank levels, and 

variation of pump operating point during the day. A more accurate estimate of 

the annual operating cost would then be obtained. In this study, a single 

design flow and a constant demand are used to demonstrate the proposed 

multiobjective methodology. Therefore, the system is designed for an 

assumed peak demand for the beginning of the design period, which is then 

assumed to not change over the design life of the project. 

 

5.3.2 Minimization of GHG emissions of WDSs 
 

The total GHG emissions considered in this study consist of capital and 

operating emissions, given by 

 

 

where, CGHG  (as defined in Equation 5.9) and OGHG  (as defined in 

Equation 5.10) are the capital and operating GHG emissions, respectively. 

Capital emissions are due to the manufacture and installation of network 

components, such as pipes, pumps, valves and tanks. In this study, only pipes 

are considered as the source of capital emissions. These emissions occur at the 

beginning of a project. Similarly to the operating costs, operating emissions 

Minimize OGHGCGHGf +=2  (5.8) 
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are due to electricity consumption related to the operation of the system over 

time. Therefore, the calculation of operating emissions also requires PVA. 

 

Capital GHG Emissions 

The capital emissions can be calculated using the following equation: 

 

 

where, EF  is the emission factor; and EE  is the embodied energy of pipes. 

Embodied energy is all of the energy required to manufacture a specific 

product (Treloar, 1994). Once the embodied energy of pipes is determined, 

the emission factor is used to convert the energy into actual GHG emissions in 

kilogram (kg). 

 

In practice, the embodied energy values and emission factors may also vary 

across regions and with time, depending on the material excavation and 

extraction methods used and the makeup of electricity energy sources (for 

example, thermal, nuclear, wind, hydroelectricity, etc.). In this study, a 

specific value of the embodied energy for ductile iron cement mortar lined 

(DICL) pipes of 40.2 MJ/kg is used. This value was estimated by Ambrose et 

al. (2002) based on a combination of published data and actual factory 

manufacturing data. It should be noted that the values of embodied energy in 

megajoule/kilogram (MJ/kg) need to be interpreted carefully, as different 

types of pipes have different wall thicknesses and different densities, and 

therefore need different amounts of material per meter length of pipe to 

manufacture (Ambrose et al., 2002). Thus, before the embodied energy value 

in MJ/kg can be used in piping system energy analysis, it needs to be 

translated into units of megajoule/meter (MJ/m) length by multiplying it by 

the unit mass [in kilogram/ meter (kg/m)] of the pipes. A constant emission 

factor of 1.042-kg carbon dioxide equivalent (CO2-e) per kilowatt-hour (kWh) 

has been used in this paper. This value is a full fuel cycle emission factor for 

end electricity users in South Australia (Australian Greenhouse Office, 2006). 

Clearly, this value is an estimate and any analysis should include a sensitivity 
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of the results to a lower or higher value and also the possibility that this value 

will change with time as a different mix of electricity energy sources evolves 

into the future due to responses by Governments to global warming. 

 

Operating GHG Emissions 

The operating emissions are given as 

 

 

where, AOGHG  are the annual operating GHG emissions, which can be 

calculated by 

 

 

where, EF  is the emission factor; and AEC  is the annual electricity 

consumption in kWh.  

 

In this study, the design of WDSs is formulated as a multiobjective 

optimization problem, in which both the costs and GHG emissions from 

WDSs are minimized. The outcome of the optimization is a set of non-

dominated optimal solutions that apply for the assumptions made for the data 

used in the study. In a real design setting, it would be important to assess the 

sensitivity and robustness of the set of non-dominated solutions along the 

optimal front to changes in data assumptions. Two of the more important data 

assumptions that should be tested during the sensitivity analysis include the 

embodied energy factor and emission factor. However, such an analysis is 

beyond the scope of this paper. 

 

 

)(AOGHGPVOGHG =  (5.10) 

AECEFAOGHG ×=  (5.11) 
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5.4 Case study 
 

5.4.1 Case study description 
 

For the case study, water needs to be delivered from a water source with an 

elevation of EL.0.0 to a small town with an elevation of around EL.110 m 

(Figure 5.3) via two possible tanks. The network consists of a transmission 

network and a distribution network. The transmission network consists of a 

fixed speed main pump, a rising main, a fixed speed booster pump, a 

transmission main, and a storage tank. The distribution network consists of a 

distribution main, a four-pipe network and four nodes. There are two possible 

tank locations and only one location will be selected. Location one (Node 10) 

is on the top of a hill (EL.190 m) and location two (Node 11) is on the side of 

the hill (EL.140 m). Location one is higher, which requires more energy to 

pump water into the tank; however, it is closer to the town and the higher 

elevation gives it an advantage in distributing water into the downstream 

network where smaller pipes should be required. Location two is lower in 

elevation, but is further away from the town (Table 5.1). The system needs to 

be able to deliver at least 80 L/s water at three demand nodes (Nodes 6–8) in 

the town during the peak hour (thus a total demand of 240 L/s from the tank). 

Therefore, the transmission network needs to be able to deliver at least 120 

L/s of water to the tank on the peak day (a peak hour factor of 2 has been 

assumed) (Water Services Association of Australia, 2002). The pressure heads 

at the demand nodes need to be higher than 20 m to provide adequate pressure 

to residents to perform daily activities. A simplified network has been studied 

here to demonstrate the framework for considering the tradeoffs between costs 

and GHG emissions. For more realistic applications, other complexities 

involved in water distribution designs, such as staging and additional demand 

loading cases (e.g., fire demand loading cases and reliability breakage loading 

cases), could also be considered. However, it would be straightforward to add 

these considerations into the simulation runs carried out during the  
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Figure 5.3 Case study network configuration 

 

 

 

 

Table 5.1 Pipe lengths for the case study network 

 

 

 

 

 

 

 

 

Pipe Length (m) 

1 10,000 
2 10,000 
3 10,000 
4 10,000 
5 13,000 
6 2,000 
7 3,000 
8 2,000 
9 3,000 
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multiobjective optimization analysis. This is one of the advantages of using 

genetic algorithm analysis, where simulation is an independent component of 

the optimization process, enabling changes in the system to be accommodated 

easily. 

 

In this case study, the available options for the decision variables include 30 

pump curves for 16 different fixed speed pumps selected using Thompson 

Kelly and Lewis’ pump selection computer program EPSILON and 16 ductile 

iron cement mortar lined (DICL) pipes of different diameters. Details of the 

pumps and pipes are given in Tables 5.2 and 5.3, respectively. The WSMGA 

described previously is used to optimize the system for both discount 

scenarios. Keedwell and Khu (2006) pointed out that the starting position in 

the search space is important for genetic algorithms to find desired solutions 

in multiobjective optimization. Consequently, 100 random seeds (i.e., random 

starting positions) have been used in this paper to ensure near-globally 

optimum solutions are found. 

 

The optimization results obtained from Discount Scenarios 1 and 2 are 

presented in the next two subsections, respectively. The results presented are 

the best values obtained from the 100 runs with different random starting 

positions. There were some variations in the optimal fronts obtained when 

different random seeds were used, but as the objective of this paper is to 

explore the optimal tradeoffs between economic and environmental 

objectives, the best results from each of these runs have been combined into a 

single front. The fact that the algorithm converged to different fronts is likely 

to be due to the size and complexity of the discrete search space and 

highlights the increased level of complexity when multiobjective optimization 

problems are considered. 
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Table 5.2 Pump information for the case study network 

*BEP: Best efficiency point  

 

No. Pump type 
Speed 
(rpm) 

Impeller 
dia. 

(mm) 

BEP* 
(%) 

Q at 
BEP 
(L/s) 

H at 
BEP 
(m) 

Rated 
Power 
(kW) 

Station 
cost (103$) 

Pump 
cost (103$) 

1A 8*17A_ECS-2s 1475 410 83 126 107 159 990 644 

1B 8*17A_ECS-2s 1475 432 83 130 120 183 1,086 723 

2A 8*17B-3s 1475 393 82 112 118 158 988 643 

2B 8*17B-3s 1475 445 84 130 154 233 1,263 875 

3A 8*17B_ECS-2s 1475 445 84 130 104 158 985 640 

4A 8HN124A 2950 293 79 175 95.9 209 1,181 803 

4B 8HN124A 2950 318 81 189 119 272 1,384 985 

5A 6LG13/A 2900 311 80 109 117 155 975 633 

5B 6LG13/A 2900 321 81 113 125 171 1,039 684 

6A 430DMH-4s 1480 275 84 157 94.6 173 1,047 690 

6B 430DMH-4s 1480 312 85 180 121 251 1,320 926 

7A 430DMH-5s 1480 251 84 142 99.2 164 1,011 662 

7B 430DMH-5s 1480 312 85 180 151 313 1,502 1,097 

8A 430DML-5s 1480 290 82 131 101 159 989 644 

8B 430DML-5s 1480 313 82 140 118 197 1,138 767 

9A 430DML-6s 1480 272 81 123 107 158 988 643 

9B 430DML-6s 1480 313 82 140 142 238 1,277 888 

10A 460CDKH-4s 1480 280 81 183 93.5 206 1,169 793 

10B 460CDKH-4s 1480 336 83 220 134 348 1,593 1,187 

11A 460DKL-3s 1480 334 85 182 87 182 1,081 719 

12A 460DKL-4s 1480 295 84 162 90.7 171 1,038 683 

12B 460DKL-4s 1480 336 85 185 116 247 1,306 914 

13A 510DML-3s 1480 332 80 220 83.4 226 1,238 853 

13B 510DML-3s 1480 369 81 240 104 301 1,469 1,065 

14A 510DMH-6s 980 339 83 197 88.3 204 1,164 788 

14B 510DMH-6s 980 368 83 215 103 261 1,350 954 

15A 200*300-630 1480 537 81 192 97.1 224 1,233 849 

15B 200*300-630 1480 635 83 230 135 367 1,641 1,235 

16A 250*300-500B 1480 553 84 273 93.9 298 1,461 1,057 

16B 250*300-500B 1480 562 84 275 97.3 311 1,496 1,091 
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Table 5.3 Ductile iron cement mortar lined (DICL) pipe information for the 

case study network 

 

 

5.4.2 Optimization results from discount scenario 1 

(GHGs always discounted at zero rate) 
 

All of the Pareto-optimal fronts obtained from the first discount scenario using 

different discount rates for costs [zero, 1.4%, 2%, 4%, 6%, 8%, and declining 

(HMT)] are plotted in Figure 5.4. In this discount scenario, both high tank 

solutions and low tank solutions (contained in the ovals in Figure 5.4) are 

found on the optimal front, no matter which discount rate is used. In general, 

high tank solutions have lower cost but have higher GHG emissions compared 

to low tank solutions. It is evident from the figure that the discount rate used 

has a significant impact on the optimal front. As the discount rate for costs 

increases, the optimal fronts switch toward the left on the graphs in Figure 5.4. 

This is because when a high discount rate is used, the future costs (including 

operating costs and pump replacement costs) are heavily discounted, which 

results in lower total costs. 

 

However, compared to the total costs of the optimal solutions, the total GHG 

emissions generated from the networks, especially low tank networks, are less 

sensitive to the discount rate used for calculating ongoing costs. GHG 

emissions generated from all low tank solutions are within a similar range 

(220–240 kt), as most of the constant discount rates for costs (from 0 to 6%) 

No. Dia. 
(mm) 

Unit 
Cost 
($/m) 

Unit 
Mass 

(kg/m) 

No. Dia. 
(mm) 

Unit 
Cost 
($/m) 

Unit 
Mass 

(kg/m) 

1 100 228 18 9 675 1,658 213 
2 150 307 30 10 700 1,739 223 
3 225 433 51 11 750 1,900 244 
4 300 568 74 12 800 1,950 266 
5 375 813 99 13 825 1,976 277 
6 450 1,033 126 14 900 2,012 310 
7 525 1,252 154 15 960 2,040 337 
8 600 1,415 183 16 1000 2,142 356 
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Figure 5.4 Optimization results from discount scenario 1 (GHG emissions not 

discounted): (a) Optimal fronts obtained using discount rates of zero, 1.4%, 

2% and the HMT time declining discount rate; (b) Optimal fronts obtained 

using discount rates of 4%, 6% and 8% 
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lead to the same set of low tank solutions on the optimal fronts. Whereas for 

high tank solutions, when the discount rate is increased to a certain level, in 

this case 6% and higher, networks with extremely high emissions [solutions 

contained in the circle in Figure 5.4(b)] are introduced into the optimal front 

due to their low costs. 

 

The optimization results obtained in this discount scenario also show that the 

inclusion of GHG emission minimization as one of the objectives results in 

significant tradeoffs between the economic and environmental objectives. The 

tradeoffs obtained using the discount rates of 1.4 and 6% are presented in 

Figures 5.5(a) and 5.5(b), respectively. These tradeoffs provide decision 

makers with an improved understanding of the objective space. When a 

discount rate of 1.4% is used, 19 solutions (four high tank solutions and 15 

low tank solutions) are found along the optimal front. When a discount rate of 

6% is used, 30 solutions (15 high tank solutions and 15 lower tank solutions) 

are found on the optimal front. The network configurations of a number of 

typical solutions for each discount rate are provided in Table 5.4. The last 

column of Table 5.4 shows the percentage of operating energy that is used to 

overcome friction losses in the corresponding networks. The costs and 

emissions from these solutions are summarized in Table 5.5.  

 

Table 5.5 and Figure 5.5(a) show that when a discount rate of 1.4% is used, 

from the lowest cost solution (Design A) to the second lowest cost solution 

(Design B), a $0.6 million increase in cost results in a 15-kt reduction in GHG 

emissions. This is equivalent to $40/t of GHGs in the form of CO2-e [Figure 

5.5(a)]. However, from Design B to Design C (the lowest emission high tank 

solution), the cost of reducing 1 t of GHGs is increased to $720/t CO2-e. The 

low tank solutions, such as Designs D (the lowest cost low tank solution) and 

E (the lowest emission low tank solution) generate fewer GHG emissions 

compared to the high tank solutions. However, these low tank solutions are 

much more expensive, which also lead to higher costs for reducing every 

tonne of GHG emissions. The tradeoffs between the two objectives can vary 

when different discount rates are used. When a discount rate of 6% is used, 

Table 5.5 and Figure 5.5(b) show that from the lowest cost solutions (Design
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Figure 5.5 (a) Optimal solutions obtained using the discount rate of 1.4%; (b) 

optimal solutions obtained using the discount rate of 6% 
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F) to the second lowest cost solutions (Design G), a $0.4 million increase in 

cost leads to a 53-kt decrease in GHG emissions, which equals to only $7.5/t 

of CO2-e [Figure 5.5(b)]. However, from Design G to Design H, the cost to 

reduce 1 t of GHGs is increased to $97/t of CO2-e. From Design H to the 

lowest cost high tank solution (Design I), the cost is further increased to 

$643/t of CO2-e.  

 

As the discount rate used has a significant impact on the tradeoffs between the 

two objectives, the use of different discount rates can lead to different final 

solutions. For example, Design B in Figure 5.5(a) and Design G in Figure 

5.5(b) provide reasonable tradeoffs between total cost and GHG emissions, as 

they correspond to the break points in the objective space where the marginal 

returns are diminishing. Tables 5.4 and 5.5 show that they are different 

solutions. The capital cost of Design G is $4.2 million lower compared to 

Design B due to the smaller pipes selected for the upstream network. 

However, the annual operating cost and emissions of Design B are much 

lower, which lead to 35 kt less GHGs generated over 100 years compared 

with Design G. 

 

 5.4.3 Optimization results from discount scenario 2 

(costs and GHGs discounted at the same rate) 
 

The optimal fronts obtained from Discount Scenario 2 are plotted in Figure 

5.6. Similar results have been found for this discount scenario as for Discount 

Scenario 1 in that the inclusion of GHG emission minimization as one 

objective results in significant tradeoffs between the two objectives. Figure 

5.6 shows that in all of the optimal fronts found using different discount rates, 

the total costs increase as the GHG emissions decrease, as expected. 

 

The discount rate used also has a significant impact on the optimization 

results obtained in this discount scenario. Apart from the impact of the 

discount rates described in the preceding section, the impact of discount rates 

in this scenario manifests itself in two other ways. First of all, as the discount
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Figure 5.6 Optimization results from Scenario 2 (both costs and GHGs 

discounted) 

 

 

rate used increases, the number of solutions on the optimal front decreases. 

When a zero discount rate is used for both costs and GHGs, there are 18 

solutions on the optimal front. They include the lowest cost solution, the 

lowest emission solution, and 16 solutions in between. However, when the 

discount rate is increased to 8%, only two extreme solutions remain on the 

front. This is because a high discount rate discounts both the future cost and 

emissions heavily in this discount scenario. As a result, the capital 

components dominate both objective function values and the tradeoffs 

between the two objectives are reduced. 

 

Second, the discount rate used has an impact on the tank location that is 

selected. When a zero discount rate is used, both high and low tank solutions 

are found on the optimal front. However, once both the future costs and 

emissions are discounted, the low tank solutions disappear from the optimal 

front. This can be explained by comparing the components of objective 

function values of high and low tank solutions. Figure 5.7 shows the different 

components of the objective function values of the optimal solutions obtained  
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Figure 5.7 (a) Composition of total costs; (b) Composition of total GHG 

emissions (Design 1 and Design 18 are the minimum cost and minimum GHG 

emission solutions obtained using a zero discount rate in discount scenario 2, 

respectively) 
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by using a zero discount rate. Solution 1 is the lowest cost solution and 

Solution 18 is the highest cost solution. Solutions 1-3 are high tank solutions 

and the rest are low tank solutions. It is evident that capital costs make the 

biggest contribution to the total costs. High tank solutions have a lower total 

cost, mainly due to their lower capital costs. In contrast, operating emissions 

make the biggest contribution to the total emissions. As a result, lower tank 

solutions have lower total emissions due to their lower operating emissions. 

 

It is important to note that the use of a high discount rate in Discount Scenario 

2 is extremely beneficial to the high tank location. In general, the use of 

higher discount rates increases the impact that capital costs and capital 

emissions have on the total costs and total GHG emissions by reducing the 

weighting given to the future costs and emissions. Thus, the disadvantage of 

the high tank location of having higher operating costs and emissions is 

reduced by the use of higher discount rates. In addition, the high tank location 

has an advantage over the low tank location in that Pipe 3 is 3 km shorter than 

Pipe 5 and hence will lead to a lower capital cost. Also, the higher elevation 

allows the high tank to reduce the capital cost by reducing the pipe sizes in the 

downstream distribution network. Therefore, the high tank location is more 

likely to be selected when higher discount rates are used. 

 

 

5.5 Summary and conclusions 
 

In this paper, a multiobjective approach has been used for optimizing the 

design of WDSs. In addition to the traditional economic objective 

(minimization of total life cycle cost), an environmental objective 

(minimization of GHG emissions) has been taken into account. The results for 

the case study show that the inclusion of GHG emission minimization as one 

objective results in significant tradeoffs in the form of a Pareto-optimal front 

between the economic and environmental objectives. Often, an increase in 

cost that is deemed reasonable and acceptable can result in a substantial 

reduction in GHG emissions. The case study shows that the cost to reduce 
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GHG emissions can be as low as $7.5/t of CO2-e. In addition, a significant 

advantage of multiobjective optimization over single-objective optimization is 

that the multiobjective optimization results can be presented as a Pareto-

optimal front. On the Pareto-optimal front, the points of diminishing marginal 

returns are clearly evident, where a large increase in cost only produces a 

relatively small decrease in GHGs. The Pareto-optimal front significantly 

improves the designer’s understanding of the search space and shows which 

design gives the biggest “bang for the buck” in reducing GHGs. 

 

In this study, time preference has been taken into account by using PVA in the 

objective function evaluation process. As there is controversy as to which 

discount rate should be used in PVA for mitigating climate change, various 

discount rates were used to explore the impact that discount rates have on the 

optimization results. The optimization results show that different discount 

rates result in different tradeoffs and thus, different final designs of WDSs. In 

Discount Scenario 1 (GHG emissions not discounted), both high tank 

solutions and low tank solutions are selected. A higher discount rate can lead 

to solutions with smaller pipes in the upstream network due to increased 

impact of capital cost on the total cost. In the second discount scenario (both 

costs and emissions discounted), higher discount rates are more likely to result 

in solutions with the high tank location. This is because higher discount rates 

reduce the impact the system has on the future, in this case the pump 

replacement costs, operating costs, and operating emissions, in the PV 

calculations. Consequently, solutions with lower capital cost and higher 

operating emissions, in this case the solutions with the higher tank location, 

are more likely to be selected. 

 

In conclusion, this study has investigated the multiobjective tradeoffs between 

the cost and GHG emissions from WDSs and has explored the sensitivity of 

the multiobjective optimization results to the discount rates used. In this study, 

a simply hypothetical case study has been used. Based on the tradeoffs 

obtained from the simple network, the framework to evaluate GHG emissions 

from WDSs, which have been developed in this paper, can now be tested on 

larger and more realistic WDSs. In addition, since the results in this paper are 
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based on a number of assumptions, a sensitivity study incorporating the 

uncertainties of the parameters, such as emission factors and embodied energy 

factors, into the optimization could be a future research direction. 

Optimization is used in this paper as an explorative tool to investigate new 

innovative solutions to a problem with increased complexity due to the 

consideration of GHG emissions. Engineering judgment is still necessary in 

making the decision about which network is finally selected. 
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Abstract 

 

 

Previous research has demonstrated that there are significant tradeoffs 

between the competing objectives of minimizing costs and Greenhouse Gas 

(GHG) emissions for water distribution system (WDS) optimization. 

However, upon introduction of an emissions trading scheme, GHG emissions 

are likely to be priced at a particular level. Thus, a monetary value can be 

assigned to GHG emissions, enabling a single-objective optimization 

approach to be used. This raises the question of whether the introduction of 

carbon pricing under an emissions trading scheme will make the use of a 

multi-objective optimization approach obsolete or whether such an approach 

can provide additional insights that are useful in a decision-making context. In 

this paper, the above questions are explored via two case studies. The 

optimization results obtained for the two case studies using both single-

objective and multi-objective approaches are analyzed. The analyses show 

that the single-objective approach results in a loss of tradeoff information 

between the two objectives. In contrast, the multi-objective approach provides 

decision makers with more insight into the tradeoffs between the two 

objectives. As a result, a multi-objective approach is recommended for the 

optimization of WDSs accounting for GHG emissions when considering 

carbon pricing. 
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6.1 Introduction 
 

Climate change, especially global warming caused by human activities, 

presents serious global risks. Mitigating global warming by reducing 

greenhouse gas (GHG) emissions is a unique challenge facing our generation. 

In order to tackle this challenge, many measures, including emissions/carbon 

trading schemes, are being introduced. An emissions trading scheme can be 

implemented in many ways, amongst which, a cap and trade approach is a 

popular method. Under a cap and trade scheme, emitters of GHGs need to 

acquire a permit for every tonne of GHG they emit. These permits can be 

bought and sold on a market. Some businesses may need to buy permits to 

cover the GHGs they emit; while others may be able to sell any excess 

permits they own, if they can reduce their emissions by employing advanced 

technology, for example. As a result, many industries, including the water 

industry, will be affected by the price of carbon and the amount of GHGs they 

emit. This leads to a need to incorporate GHG emission considerations into 

the optimal design and operation of water distribution systems (WDSs).  

 

GHG related issues, such as energy consumption, have been investigated in 

many studies in WDS research. In the area of optimization, Sarbu and Borza 

(1998) investigated various solutions to increasing the power efficiency of 

pumping systems. Baran et al. (2005), Lopez-Ibáñez et al. (2005) and Ulanicki 

et al. (2007) optimized the scheduling of pumps to reduce electricity costs. In 

the planning and management area, Lundie et al. (2004) developed a life cycle 

assessment approach for metropolitan water system planning, in which energy 

use and direct gaseous emissions are identified as two of the important 

environmental indicators of a sustainable metropolitan water systems. Filion 

et al. (2004) also employed a life cycle approach to quantify energy 

expenditures of pipes in a WDS. More recently, Filion (2008) explored the 

connections between the urban form and energy use of water distribution 

networks. In a study carried out by Dandy et al. (2006), GHG emissions 

resulting from pipe manufacturing were evaluated for a WDS. Following the 

Dandy study, Wu et al. (2010b) considered the impact of GHG emissions on 



6 Publication 2: SO versus MO Optimization of WDSs  

94 
 

the optimal design of WDSs explicitly, by incorporating the minimization of 

life cycle GHG emissions, together with the minimization of system costs, 

into the optimal design of WDSs via a multi-objective approach. It is now 

becoming increasingly common for carbon related emissions to be priced 

under an emissions trading scheme, yet the impact of carbon pricing on the 

optimal design and operation of WDSs has not been investigated thus far. 

 

The present study aims to consider the inclusion of carbon pricing into both 

single-objective and multi-objective optimization approaches for WDS 

optimization. Wu et al. (2010) demonstrated that there are significant 

tradeoffs between the competing objectives of minimizing costs and GHG 

emissions. However, upon introduction of an emissions trading scheme with a 

cap and trade approach, a monetary value (referred to as the carbon price in 

this paper) is usually assigned to GHG emissions. This monetary value of the 

carbon price can be determined by either evaluation methods, as done by the 

International Panel on Climate Change (IPCC), or a carbon market. The 

expression of GHG emissions in monetary terms enables a single-objective 

optimization approach to be used. This raises the question of whether the 

introduction of carbon pricing under a possible emissions trading scheme will 

make use of a multi-objective optimization approach obsolete or whether such 

an approach can provide additional insights that are useful in a decision-

making context. In this paper, two case studies were used to compare single 

and multi-objective approaches when considering both cost and carbon 

emission objectives. Based on the results obtained for the case studies, 

recommendations regarding the optimization of WDSs under a carbon pricing 

regime as determined by an emissions trading scheme are presented. 

 

The remainder of the paper is organized as follows. The methods used to 

solve the proposed WDS optimization problem, including evaluation of the 

objective functions, the optimization approach adopted, carbon pricing and 

present value analysis, are introduced in the next section. Next, the two case 

studies are introduced, to which both single-objective and multi-objective 

optimization approaches are applied. Thereafter, the optimization results 



6 Publication 2: SO versus MO Optimization of WDSs  

95 
 

obtained using the two approaches are presented and discussed. Finally, 

conclusions and recommendations are presented.  

 

 

6.2 Methods 
 

6.2.1 Objective function evaluation 
 

The WDS optimization problem investigated in this paper is a multi-objective 

optimization problem that accounts for two objectives: the minimization of 

system costs and the minimization of GHG emissions (via a price for carbon). 

When the single-objective optimization approach is used, the total cost, which 

is the sum of the system costs and the GHG costs expressed in terms of dollars 

for the cost of carbon related emissions, is minimized as the sole objective. In 

contrast, in the multi-objective approach, the system and GHG costs are 

minimized as two separate objectives.  

 

Figure 6.1 shows the objective function evaluation process. The system cost 

considered in this study is defined as the sum of the capital costs, operating 

costs for pumping and pump replacement/refurbishment costs at regular 

intervals during the service or design life of the system. The capital cost is 

incurred due to the purchase and installation of network components (pipes 

and pumps) and construction of pump stations. This cost occurs at the 

beginning of a project. As the design life of a WDS is much longer than the 

service life of pumps, then pumps and electrical control equipment need to be 

replaced or refurbished periodically to ensure the performance of the system is 

maintained. In the case studies in this paper, a 100-year pipe network service 

life and a 20-year pump service life are assumed. The operating cost is 

incurred mainly due to the system operation of pumping. The computation of 

the annual operating cost is taken as the annual energy consumption 

multiplied by an average electricity tariff. A motor efficiency of 95% is 

assumed for each pump. In practice, electricity tariffs may vary across regions 
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and with time. In this study, an electricity cost of 0.143 dollars per kWh is 

assumed, which is an approximate average electricity tariff taking into 

account peak and off-peak tariffs. As both pump replacement/refurbishment 

costs and operating electricity costs occur during the life of the system, 

calculation of these two costs requires present value analysis.  

 

In calculating the annual energy consumption, a 48-hour extended period 

simulation (EPS) has been used in the simulation model to account for the 

diurnal variation in demand, the fluctuation in tank water levels and the 

variation of the pump operating point during the day, to provide a realistic 

estimate of the operational behavior of the system. In the EPS, a diurnal 

demand curve presented in Figure 6.2 applied to the average flow during a 

year or the average-day flow (Water Services Association of Australia, 2002) 

is used to estimate the average energy consumption of the system due to 

pumping during the design period (100 years). In addition, an average flow on 

the peak day is used to design the distribution systems upstream of the 

balancing storage tanks, as suggested by Water Services Association of 

Australia (2002). The average flow on the peak day is computed by 

multiplying the average-day flow by the Peak Day Factor (PDF). In this 

paper, a PDF of 1.5 obtained from the Water Services Association of 

Australia (2002) is used. It should be noted that in designing distribution 

systems downstream of the balancing storage tanks, the average flow on the 

peak hour and fire loading cases would also be required to ensure an adequate 

design. In both case studies, an average pipe roughness value of ε=0.25mm 

was assumed for the first 50-year period and a value of ε=1.5mm for the 

second 50-year period in order to account for pipe aging.  

 

 



6 Publication 2: SO versus MO Optimization of WDSs  

97 
 

 

 

  

F
ig

u
re

 6
.1

 O
b

je
ct

iv
e 

fu
n

ct
io

n
 e

v
al

u
at

io
n

 

 

 

 

 

 

S
y
st

em
 c

o
st

 
G

H
G

 e
m

is
si

o
n
 c

o
st

 

C
ap

it
al

 c
o

st
 

O
p

er
at

in
g
 e

le
ct

ri
ci

ty
 

co
st

s 
&

 p
u

m
p

 

re
p

la
ce

m
en

t 
co

st
s 

C
ap

it
al

 e
m

is
si

o
n
s 

A
n

n
u
al

 o
p

er
at

in
g
 

el
ec

tr
ic

it
y
 c

o
st

s 
an

d
 

p
u

m
p

 c
o

st
s 

P
V

A
 

P
V

A
 

E
F

A
 

E
E

A
 

O
p

er
at

in
g
 e

m
is

si
o

n
s 

P
ip

e 
an

d
 p

u
m

p
 

st
at

io
n
 c

o
st

s 

A
n

n
u
al

 o
p

er
at

in
g
 e

m
is

si
o

n
s 

E
m

b
o

d
ie

d
 e

n
er

g
y
 

M
at

er
ia

l 
u
se

 

T
o

ta
l 

co
st

 =
 S

y
st

em
 c

o
st

 +
 G

H
G

 e
m

is
si

o
n
 c

o
st

 

C
O

2
-e

 p
ri

ce
 

N
o
te

: P
V

A
 =

 p
re

se
n

t 
v
al

u
e 

an
al

y
si

s;
 E

F
A

 =
 e

m
is

si
o
n

 f
ac

to
r 

an
al

y
si

s;
 E

E
A

 =
 e

m
b

o
d
ie

d
 e

n
er

g
y
 a

n
al

y
si

s 
 

A
n

n
u
al

 e
n
er

g
y
 c

o
n

su
m

p
ti

o
n
 

E
F

A
 



6 Publication 2: SO versus MO Optimization of WDSs  

98 
 

 

 

0.0

0.5

1.0

1.5

2.0

2.5

0 2 4 6 8 10 12 14 16 18 20 22

Time (hours)

M
u
lti
p
lie
r

 

Figure 6.2 Diurnal water demand curve (Hydraulic Computer Programming 

Pty. Ltd, 1985) 

 

 

GHG emission costs are obtained by multiplying the carbon price by the total 

GHG emissions of the system. The total GHG emissions considered in this 

study consist of capital emissions and operating emissions. Capital emissions 

are due to the manufacture and installation of network components, such as 

pipes, pumps, valves and tanks. In this study, pipes are the only source of 

capital emissions considered, as they represent the largest proportion of the 

impact (Filion et al., 2004). These emissions occur at the beginning of a 

project. Similarly to the operating cost, operating GHG emissions are due to 

electricity consumption related to the operation of the system over time in 

regions where it is assumed that fossil fuels are used for electricity generation. 

Operating emissions occur over time during the service life of the system. 

Therefore, the estimation of total operating emissions over the service life of 

the network also requires present value analysis.  

 

In addition, in evaluating the capital emission costs, embodied energy analysis 

(EEA) is first applied to translate the material use of the pipes into an estimate 
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of their embodied energy in MJ. Thereafter, emission factor analysis (EFA) is 

used to translate embodied energy use into a corresponding estimate of GHG 

emissions in kg of CO2-e (carbon dioxide equivalent). In practice, embodied 

energy values and emission factors may also vary across regions and with 

time, depending on the material excavation and extraction methods used and 

the makeup of electricity energy sources (for example, thermal, nuclear, wind, 

hydroelectric, etc.). In this study, a typical embodied energy of ductile iron 

cement mortar lined (DICL) pipes of 40.2 MJ/kg and a typical emission factor 

of 1.042 kg CO2-e per kWh are used. The embodied energy value of DICL 

pipes has been obtained from Ambrose et al. (2002), and the emission factor 

selected is a full fuel cycle emission factor for end electricity users in South 

Australia (Australian Greenhouse Office, 2006). While the embodied energy 

and emission factor values are realistic estimates, and adequate for the 

purpose of this paper, they are likely to change with time in actual 

applications due to changes in the way electricity is being generated as 

governments respond to the threat of climate change (e.g. an increase in wind 

power generation to replace production from coal-fired power stations). 

 

6.2.2 Optimization approach 
 

In this paper, a multi-objective genetic algorithm (GA) is used, as GAs have 

been shown to be effective for WDS optimization problems (Simpson et al., 

1994). GAs are a global optimization method that belong to the class of 

evolutionary algorithms (Goldberg, 1989). GAs differ from traditional 

optimization techniques in that the concept of GAs is inspired by natural 

phenomena of heredity. GAs use the “principle of survival of the fittest” to 

select more suitable trial solutions by dealing with a population of solutions 

simultaneously. Each solution is represented by a binary, integer or real 

valued string called a chromosome. By applying three genetic operators: 

selection, crossover and mutation to the chromosomes, GAs maintain good 

solutions in the current population of solutions and explore the search space 

for better solutions. The search process terminates when the stopping criteria 

are met. 
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Traditionally, GAs have generally been applied to optimization problems that 

have one objective. However, most problems in the real world have more than 

one objective that needs to be satisfied. Therefore, a number of multi-

objective genetic algorithms, including the Vector Evaluated Genetic 

Algorithm by Schaffer (1984), the Weight-Based Genetic Algorithm by 

Hajela and Lin (1993), the Multi-Objective Genetic Algorithm by Fonseca 

and Fleming (1993) and the Strength Pareto Evolutionary Algorithm by 

Zitzler and Thiele (1998) have been developed to solve real world multi-

objective problems (Deb, 2002). In this study, a multi-objective genetic 

algorithm called WSMGA (Water System Multi-objective Genetic Algorithm) 

has been used to solve both the single-objective and multi-objective problems 

presented in this paper. WSMGA is based on the state-of-the-art multi-

objective generic algorithm NSGA-II (Deb et al., 2002) and is described in 

more detail in Wu et al. (2010b). 

 

6.2.3 Carbon pricing 
 

Emissions trading is one of the most popular schemes for controlling GHG 

emissions. In most emissions trading schemes, a cap and trade approach is 

used. Under a cap and trade approach, emission permits are usually issued by 

the government. Businesses must have sufficient permits to cover the GHG 

emissions they produce each year. These permits can be sold or purchased in 

the marketplace (Prime Ministerial Task Group on Emissions Trading, 2007). 

Ideally, the carbon price is based on the social cost of carbon, which normally 

refers to the cost to mitigate climate change (reduce GHG emissions) or the 

marginal social damage from a tonne of emitted carbon (Guo et al., 2006). 

However, the actual carbon price is often determined by the market (Prime 

Ministerial Task Group on Emissions Trading, 2007). The average world 

market price of a tonne of GHGs in the form of CO2-e in 2005-06 was around 

$US20 - $US25 (Mitchell et al., 2007). In order to achieve long-term 

abatement, the carbon price is expected to rise over time (Prime Ministerial 

Task Group on Emissions Trading, 2007). In the literature, there are many 
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estimates of possible future carbon prices based on different scenarios. The 

Australian Bureau of Agricultural and Resource Economics (ABARE) 

estimates carbon prices to range from $A28 to $A46 per tonne of CO2-e for an 

international market and from $A15 to $A31 per tonne of CO2-e for an 

Australian abatement market in 2030 (Prime Ministerial Task Group on 

Emissions Trading, 2007). However, the actual social cost of carbon could be 

higher. Sterner and Persson (2007) suggest that a marginal social cost of 

carbon could reach over $US400 per tonne of C (carbon) by 2050, which is 

equivalent to about $US110 or $A120 per tonne of CO2-e. As a result, four 

carbon prices ranging from $A10 to $A120 per tonne of CO2-e ($A10, $A30, 

$A60 and $A120) have been used in this paper. It should be noted that actual 

market carbon prices will vary with time. However, the constant carbon prices 

adopted in this paper are sufficient to illustrate the impact different carbon 

prices are likely to have on the tradeoffs between cost and GHG emissions, as 

they cover the likely range of expected values.  

 

In order to focus on the comparison of the single- and multi-objective 

approaches for the WDS optimization problem proposed in this study and 

simplify the optimization framework, only the indirect GHG emissions from 

manufacturing of network components and operation of these systems are 

incorporated into the optimization process via a price of carbon. 

 

6.2.4 Present value analysis  
 

In economics, time preference is generally accounted for by using present 

value analysis (PVA) (Tietenberg, 1997). In practice, a discount rate equal to 

the cost of capital (around 6 to 8%) is usually used. However, in the planning 

of social projects, such as WDSs, PVA with a discount rate that represents the 

social cost is required to translate the costs from far in the future to the 

present, enabling effects occurring at different times to be compared. The 

selection of appropriate discount rates for projects with long term social 

and/or environmental impacts, which will potentially be spread out over 

hundreds of years, remains a controversial issue. For traditional project 
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planning, in which only economic costs are considered, the controversy 

mainly lies in selecting the correct discount rate. However, for a multi-

objective design, such as the situation described in this paper, the controversy 

is twofold. The first issue is selecting the correct discount rate and the second 

issue is whether or not the discount rate used for one design objective, such as 

economic costs, should also be used for the other design objective, such as 

GHG emissions.  

 

In terms of the first issue, constant discount rates ranging from 2% to 10% are 

generally used by government agencies and organizations (Rambaud and 

Torrecillas, 2005). Many water utilities adopt a rate close to the cost of capital 

(around 6% to 8%). Therefore, a discount rate of 8% has been selected in 

relation to system economic or monetary cost for illustration purposes in this 

paper. In terms of the second issue, some researchers suggest that the same 

discount rate should be used for carbon as for money (van Kooten et al., 

1997). However, others such as Fearnside (2002) argue that the discount rate 

used for GHGs should be different from that used for capital. In practice, a 

zero discount rate is often used for GHGs (Fearnside, 1995). For example, the 

IPCC has adopted a zero discount rate with a 100-year time horizon for the 

calculation of GHG emission impacts in its Second Assessment Report 

(Fearnside, 2002). Based on the IPCC recommendation, a zero discount rate 

has been assumed for calculating GHG emission costs in this paper. For a 

detailed treatment of the impact of discount rate on tradeoffs between cost and 

GHG emissions for WDSs, the reader is referred to Wu et al. (2010). 
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6.3 Case studies 
 

6.3.1 Case study 1 
 

Case study 1 description 

The network configuration for this system is shown in Figure 6.3 and the 

design conditions are summarized in Table 6.1. The aim of the design is to 

select the best combination of pump and pipe sizes that minimize both the 

system cost and GHG emissions of the network. In the optimization process, 

the following demand loading cases are used to select appropriate networks: 

1) The system of selected pipe sizes and pump must be able to deliver at 

least the average flow(s) on the peak day to the tank(s).  

2)  If the network can deliver the average flow on the peak day, an 

average-day flow based on a 48-hour extended period simulation (EPS) 

with the diurnal water demand curve shown in Figure 6.2 is used to 

estimate the average annual energy consumption due to pumping, 

enabling the average annual operating costs and emissions of the 

system to be computed. If the network is unable to deliver the average 

flow on the peak day, it is removed from further consideration. 

For both case studies, water needs to be pumped from a reservoir into storage 

tanks, which are assumed to be 5 m high. During the EPS, the lower and 

upper tank water trigger levels are assumed to be 2 and 4 meters, respectively. 

 

In this paper, seventeen different pump curves for 10 different fixed speed 

pumps (some pumps have two curves) and 26 ductile iron cement mortar lined 

(DICL) pipes of different diameters are considered as options in this case 

study. The pump curves were selected using Thompson Kelly & Lewis’ pump 

selection program EPSILON (2001). The initial pump station cost is taken as 

part of the capital cost and the pump cost has been used to compute pump 

replacement/refurbishment costs. The costs of the pumps and corresponding  

 



6 Publication 2: SO versus MO Optimization of WDSs  

104 
 

 

 

 

Figure 6.3 Network configuration for case study 1 (tank 2 is the storage tank; 

the elevation at tank 2 refers to the initial tank water level) 

 

 

 

Table 6.1 Design conditions of case study 1 

 

 

 

pump stations have been calculated according to the sizes of the pumps (Wu 

et al., 2008a). The mass per unit length of the pipes is calculated according to 

DICL pipe data obtained from Tyco Water. Details of the pumps and pipes are 

given in Tables 6.2 and 6.3, respectively. 

 

 

Annual demand 
(m3) 

Average peak-
day flow (L/s) 

Pipe length (m) Design life 
(years) 

2,522,880 120 1,500 100 
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Results from case study 1 

The search space for this case study has only 442 solutions. Therefore, instead 

of genetic algorithm optimization, full enumeration and non-dominated 

sorting of all enumerated solutions have been used to optimize this system. As 

a result, the optimization results are true Pareto-optimal solutions. A total of 

eight solutions were found along the Pareto-optimal front for this case study. 

These solutions are denoted as numbers 1 to 8 in order of increasing initial 

capital cost of the pipelines. The larger the number is, the larger the capital 

cost of the pipeline. The network configuration and characteristics of these 

eight solutions found on the Pareto-optimal fronts are summarized in Table 

6.4. The Pareto-optimal fronts and the single-objective optimal solutions 

obtained for each of the different carbon prices are plotted in Figure 6.4. The 

numbers next to the solution points in Figure 6.4 are the corresponding design 

numbers in Table 6.4. The single-objective optimal solutions are represented 

with an unfilled symbol. For example, in Figure 6.4(a), Design 2 is the second 

lowest system cost solution found when a carbon price of $10/tonne of CO2-e 

is used in the multi-objective optimization. The diameter of the pipe is 375 

mm as shown in Table 6.4. Design 2 is also the lowest total cost solution 

obtained using the single-objective approach with the same carbon price. The 

water level fluctuation in the tank and the variation of the flow over the 48-

hour EPS period for Designs 1 and 8 are also plotted in Figure 6.4.  

 

In the single-objective optimization, as expected, only the least total cost 

network is found for each carbon price considered, as shown by the unfilled 

symbol solutions in Figure 6.4. The single-objective optimal solution is 

dependent on the carbon price used and higher carbon prices tend to result in 

solutions with larger pipes, as expected. Figure 6.4 shows that carbon prices 

of $10, $30 and $60/tonne CO2-e lead to an optimal design with a pipe 

diameter of 375 mm [Design 2 in Figures 6.4(a), 6.4(b) and 6.4(c)], while the 

higher carbon price of $120 per tonne of CO2-e results in an optimal solution 

with a pipe of 450 mm in diameter [Design 3 in Figure 6.4(d)]. This is
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because the increase in carbon price increases the impact the GHG cost has on 

the total cost. Consequently, when a higher carbon price is used, a network 

with larger pipe size, which has less friction loss and generates fewer 

operating GHG emissions, is more likely to be selected. 

 

Figure 6.4 shows that in the multi-objective optimization, an ordered set of 

Pareto-optimal solutions is found for each carbon price considered. These 

Pareto-optimal solutions include the lowest system cost solution, the lowest 

GHG emission cost solution, and other non-dominated solutions in-between. 

These Pareto-optimal solutions show significant tradeoffs between the two 

objectives. When a carbon price of $10 per tonne of CO2-e is used [see Figure 

6.4(a)], from Design 1 (the lowest system cost solution) to Design 2, a 

$13,100 increase in system cost results in a $147,000 reduction in GHG 

emission cost. From Design 2 to Design 3, a $288,000 increase in system cost 

results in a $26,100 reduction in GHG cost. From Design 3 to Design 6, a 

$373,000 increase in system cost only results in a $14,000 reduction in GHG 

cost. These tradeoffs are highly carbon price dependent, as expected. For 

example, Figure 6.4(d) shows that when the carbon price is increased to 

$120/tonne of CO2-e, from Design 1 to Design 2, a $13,100 increase in 

system cost leads to a $1.77 million decrease in GHG costs, which is more 

than $1.6 million higher than the decrease in GHG costs when a carbon price 

of $10/tonne of CO2-e is used. It should be noted here that the optimization 

results also rely on the discount rate used. However, this is not the focus of 

this study and as mentioned previously, details of the impact of different 

discount rates on the tradeoffs between costs and GHG emissions are given in 

Wu et al. (2010). 

 

In addition, in the multi-objective optimization, it has been found that the 

carbon price used has no impact on the ordered set of optimal solutions that 

are spread out along the Pareto front. Figure 6.4 shows that the same ordered 

set of Pareto-optimal solutions is found no matter which carbon price is used. 

This is because the carbon price here only changes the scale of the second 

objective function values; however, it does not have any impact on the relative 

ranking of the Pareto-optimal solutions found for this case study. Therefore,
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Figure 6.5 Carbon cost mapping of the optimal solution space of case study 1 

 

 

the tradeoffs between the two objectives can also be represented by the dollar 

cost to reduce GHG emissions by one tonne, as shown in Figure 6.5. The 

tradeoffs represented by the dollar cost per tonne of GHGs are independent of 

the market carbon price used. For example, to move from Design 1 to Design 

2, a $13,100 increase in the system cost results in a 14.8 kilotonnes reduction 

in GHG emissions over the design life of the system, which can be calculated 

from the information provided in Table 6.4. Therefore, the cost to reduce one 

tonne of GHG emissions from Design 1 to Design 2 is equal to $0.89/tonne 

CO2-e, as shown in Figure 6.5. This cost is increased to $110/tonne CO2-e 

from Design 2 to Design 3, and $266/tonne CO2-e from Design 3 to Design 6. 

This presentation of the tradeoffs leads to a new way of identifying the single-

objective optimal solution by using a carbon cost mapping of the optimal 

solution space, as shown in Figure 6.5. 

 

In order to obtain this carbon cost mapping, a convex optimal front needs to 

be defined from within the Pareto-optimal front. A convex optimal front is the 

set of piece-wise linear lines connecting the non-dominated solution points, 
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for which the sequence of slopes is non-decreasing. By calculating the dollar 

cost to reduce one tonne of GHG emissions between two adjacent solutions on 

the convex optimal front, a carbon cost mapping of the optimal solution space 

can be obtained. With this carbon cost mapping, the single-objective 

optimization solution (or the lowest total cost solution) for a given market 

carbon price can be found easily without the need for any additional 

optimization runs. For example, for this case study, when the carbon price is 

between $0.89 and $110/tonne CO2-e (see Figure 6.5), Design 2 with a pipe 

size of 375 mm is the single-objective optimal solution [see Figures 6.4(a) to 

6.4(c)]; and when the carbon price is between $110 and $266/tonne CO2-e 

(again see Figure 6.5), Design 3 with a pipe size of 450 mm is the single-

objective optimal solution [see Figure 6.4(d)]. 

 

6.3.2 Case study 2 
 

Case study 2 description 

The network configuration of the second case study is shown in Figure 6.6. 

The network consists of a water source (reservoir 6), a pump, eight pipes and 

three tanks, each of which has an initial water level of 90 m. The aim of this 

case study is to minimize both system cost and GHG emissions of the 

network, while being able to deliver at least the average flow on the peak day 

to each tank. In the optimization process, the same demand loading cases as 

those used in the first case study are used to select appropriate networks for 

this case study. The design conditions are summarized in Table 6.5. The 

options for the pump are the same as those presented in Table 6.2. The sizes 

of the pipes can only be selected from the first 16 choices presented in Table 

6.3, as the larger pipes were identified as being too big and were therefore not 

considered in the optimization analysis.  
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Figure 6.6 Network configuration for case study 2 (tanks 7, 8 and 9 are 

storage tanks; the elevations at tanks 7, 8 and 9 refer to the initial tank water 

level)  

 

 

 

 

Table 6.5 Design conditions of case study 2 

 

 

 

Total annual 
demand (m3) 

Ave. peak-day Q 
for each tank 

(L/s) 

Pipe length (km) 

1 2 3 4 5 6 7 8 

2,522,880 40 1.0 1.2 0.5 1.0 0.5 1.0 0.5 1.5 
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Results from case study 2 

The WSMGA computer optimization program was used to optimize the 

second network. In the GA optimization process, a population size of 500, 

3000 generations, a crossover probability of 0.9 and a mutation probability of 

0.1 were used. These GA parameter values were selected using a series of 

sensitivity tests, in which the combination of the parameter values generated 

consistent Pareto-optimal fronts within a reasonable execution time. Keedwell 

and Khu (2006) pointed out that the starting position in the search space is 

important in order for multi-objective genetic algorithms to find desired 

solutions. Consequently, one hundred random seeds (i.e. random starting 

positions) have been used in this study to assess the consistency of the 

performance of WSMGA.  

 

The Pareto-optimal fronts and the single-objective optimal solutions for the 

second case study obtained using different carbon prices are plotted in Figure 

6.7. The single-objective optimal solutions are again represented with unfilled 

symbols. The network configurations of six typical convex solutions found in 

this case study are presented in Table 6.6. The pipeline cost, annual energy 

consumption and GHG emissions of these solutions are presented in Table 

6.7. These solutions are ranked from 1 to 6 according to the initial capital cost 

of the pipelines. The larger the number is, the larger the initial capital cost of 

the pipelines. The numbers next to the solution points in Figure 6.7 are the 

corresponding design numbers in Tables 6.6 and 6.7. 

 

In the single-objective optimization, the carbon price used has a significant 

impact on the results. As found in the first case study, higher carbon prices 

tend to result in solutions with larger pipes. For example, Figure 6.7 shows 

that a carbon price of $10/tonne CO2-e results in a single-objective optimal 

solution with pipe cost of $3.52 M (Design 2 in Table 6.7); while a carbon 

price of $30 or $60/CO2-e leads to a solution with pipe cost of $4.10 M 

(Design 3 in Table 6.7). When the carbon price is further increased to
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Figure 6.8 Carbon cost mapping of the optimal solution space of case study 2  

 

 

$120/tonne CO2-e, a network with a pipe cost of $4.15 M (Design 4 in Table 

6.7) is selected.  

 

Similarly to the first case study, an ordered set of optimal solutions is found 

for each carbon price used in the multi-objective optimization. These optimal 

solutions also show significant tradeoffs between the two objectives. Figure 

6.7(a) shows that when a carbon price of $10/tonne of CO2-e is used, from 

Design 1 (the lowest system cost solution) to Design 2 (the second lowest 

system cost solution), a $12,100 increase in system cost results in a $81,400 

decrease in GHG emission cost; from Design 2 to Design 3, a $266,000 

increase in system cost results in a $101,000 reduction in GHG emission cost; 

and from Design 3 to Design 4, a $44,400 increase in system cost only leads 

to $6,480 decrease in GHG costs. Similar results can also be found between 

Designs 4 and 5.These tradeoffs are also highly carbon price dependent. 

Figures 7(b), 7(c) and 7(d) show that when the carbon price increases, the 

reduction in GHG costs resulting from the same amount of savings in system 

cost increases accordingly, as would be expected.  
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As for the first case study, the carbon price used does not have an impact on 

the relative ranking of the multi-objective optimal solution sets. Therefore, the 

tradeoffs presented in terms of the dollar costs to reduce one tonne of CO2-e 

are again carbon price independent. As shown in Figure 6.8, the cost to reduce 

one tonne of GHGs is $1.5/tonne from Design 1 to Design 2, $26/tonne from 

Design 2 to Design 3, $68/tonne from Design 3 to Design 4 and $124/tonne 

from Design 4 to Design 5, no matter which carbon price is used. Thus, a 

carbon cost mapping of the optimal solutions space for this case study is 

obtained. When the carbon price is between $1.5 and $26/tonne CO2-e (see 

Figure 6.8), Design 2 is the single-objective optimal solution [see Figure 

6.7(a)]; when the carbon price is increased to $30 and $60/tonne CO2-e, which 

is between $26 and $68/tonne CO2-e, Design 3 is the single-objective optimal 

solution [see Figures 7(b) and 7(c)]; and when the carbon price is between $68 

and $124/tonne CO2-e (again see Figure 6.8), Design 4 is the single-objective 

optimal solution [see Figure 6.7(d)]. It should be noted here that the solutions 

between Designs 2 and 3 (see Figure 6.8) are not selected. This is because 

these solutions are not on the convex optimal front. For the same reason, the 

solutions between Designs 4 and 5 are not selected. 

 

6.3.3 Discussion 
 

The results from both case studies show that both single-objective and multi-

objective approaches have advantages and disadvantages. The single-objective 

approach is easier to implement and results in a simpler decision making 

process. In contrast, the multi-objective approach requires more 

computational effort, as well as domain knowledge and judgment, in order to 

make a decision. However, the single-objective approach also has significant 

drawbacks compared to the multi-objective approach.  

 

First of all, in the single-objective approach an implicit weighting is 

introduced into the objective function evaluation process when the two 

objectives are converted into one combined objective. Thus, this approach 
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results in a loss of information between the two conflicting objectives (i.e. 

information about the relative tradeoffs between objectives at various carbon 

prices is lost). Secondly, even though the tradeoffs between the two objectives 

do not necessarily need to be considered at the decision making stage when 

the single-objective approach is used, these tradeoffs still need to be dealt with 

at some stage, in this case, the carbon pricing stage. However, at the carbon 

pricing stage, consideration of the tradeoffs between the two objectives is 

implicit. Therefore, as mentioned above, information about the actual 

tradeoffs between the two objectives is lost. Thirdly, whether or not the 

carbon price (either determined by evaluation methods or by the carbon 

market) can present a fair resolution among all stakeholders is uncertain. Also, 

it is uncertain how accurately the carbon price can reflect the actual cost of 

carbon, especially if the carbon price is determined by the market only. These 

uncertainties can be passed to the WDS design process by using a single-

objective approach. Fourthly, the single-objective approach is based on the 

assumption of perfect substitutability, in which one dollar worth of damage 

caused by GHG emissions can be compensated by a dollar worth of economic 

growth (Sterner and Persson, 2007). However, perfect substitutability in 

mitigating global warming is not widely accepted. Many proponents of 

sustainability believe that the damage to future global environmental systems 

due to global warming cannot be compensated by higher material richness of 

future generations (Neumayer, 1999). Based on this belief, the environmental 

objective of minimizing GHG emissions should be optimized independently 

from system costs by employing a multi-objective optimization approach.  

 

Finally, the single-objective approach of incorporating GHG emission 

minimization into the optimization of WDSs corresponds to the weighted sum 

method of solving multi-objective optimization problems (Deb, 2002). 

Therefore, by repeating the single-objective optimization with different 

carbon prices, various multi-objective optimal solutions can be identified. 

However, it is often difficult to determine the appropriate weights for multi-

objective function values in the weighted sum method, which is equivalent to 

the carbon prices in the single-objective approach in this study, so that a 

satisfactory spread of multi-objective optimal solutions along the Pareto-
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optimal front is obtained (Das and Dennis, 1997; Deb, 2002). It has also been 

proven that not all multi-objective optimal solutions can be found by using the 

weighted sum method (Miettinen, 1999). 

 

Since the carbon price has no impact on the relative ranking of the multi-

objective optimal solutions, the multi-objective optimization formulation 

presented in this paper can be easily converted into a multi-objective 

optimization problem in which the system cost in dollars and GHG emissions 

in tonnes of CO2-e are minimized. The single-objective approach proposed in 

this paper is closely related to this multi-objective approach by using a carbon 

cost mapping of the optimal solution space, as shown in Figures 6.5 and 6.8. 

This carbon cost mapping of the optimal solution space obtained by using the 

multi-objective approach provides decision makers with a clear indication of 

the relative effectiveness of their selected carbon price in reducing GHG 

emissions relative to other carbon prices.  

 

 

6.4 Summary and conclusions 
 

In this paper, the issue of how to optimize water distribution systems (WDSs) 

under an emissions trading scheme with a cap and trade approach is 

investigated by considering carbon pricing. There exist two ways to 

incorporate the minimization of GHG emissions into the optimization of 

WDSs based on a price of carbon: either a single-objective approach or a 

multi-objective approach. In the single-objective approach, the total cost, 

which is the sum of the system cost and the costs from GHG emissions based 

on a price of carbon, is optimized as the sole objective. In the multi-objective 

approach, the conventional objective of minimizing system cost and the 

second objective of minimizing GHG emissions via a price of carbon are 

optimized independently. Two case studies have been used to investigate the 

relationship between the two approaches. For each case study, two demand 

loading cases based on the peak day and average day with a 48-hour extended 

period simulation, and two different pipe roughness values over time were 
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used to estimate the average energy consumption of the system due to 

pumping. In addition, four future possible carbon prices ranging from $10 to 

$120 per tonne of CO2-e have been used to investigate the impact of market 

carbon prices on the optimization results.  

 

The optimization results show that the single-objective approach is easier to 

implement; however, it results in a loss of tradeoff information between the 

two conflicting objectives. In addition, the assumption of perfect 

substitutability, which is used to compute the one combined objective, is not 

widely accepted. In contrast, the multi-objective approach requires more 

computational effort and domain knowledge; however, it provides decision 

makers with more detailed information by showing the tradeoffs between the 

conflicting objectives considered explicitly. In addition, as the carbon price 

used has no impact on the tradeoffs between non-dominated solutions, the 

carbon pricing process can be removed from the objective function evaluation 

process when a multi-objective approach is used. Thus, the resulting multi-

objective solutions express the tradeoffs between system cost in dollars and 

GHG emissions in tonnes. Based on these tradeoffs, a carbon cost mapping 

(the dollar cost of reducing one tonne of GHGs between two solutions) of the 

optimal solution space can be obtained. Based on this carbon cost mapping, 

the single-objective optimal solution for a given market carbon price can be 

determined within the set of Pareto-optimal solutions without the need for 

additional optimization. In this way, the multi-objective approach provides 

decision makers with a clear indication of the relative effectiveness of their 

selected carbon price in reducing GHG emissions relative to other carbon 

prices.  

 

In conclusion, considering the comparison of the single-objective and multi-

objective approaches, a multi-objective approach considering system cost in 

dollars and GHG emissions in tonnes is recommended for the optimization of 

WDSs accounting for GHG emissions, even under an emissions trading 

scheme with a cap and trade approach where the GHG emissions can be 

traded based on a carbon price. 
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Abstract 

 

Global warming caused by human activities presents serious global risks. 

Individuals, governments and industries need to be more energy efficient and 

contribute to the mitigation of global warming by reducing their greenhouse 

gas (GHG) emissions. In previous research, GHG emission reduction has been 

identified as one important criterion in improving the sustainability of urban 

infrastructure and urban water systems. Within the water industry, 

opportunities exist for reducing GHG emissions by improving pumping 

efficiency via the use of variable-speed pumps (VSPs). Previously, VSPs have 

been used in the optimization of the operation of existing water distribution 

systems (WDSs). However, in WDS design optimization problems, fixed-

speed pumps (FSPs) are commonly used. In this study, a pump power 

estimation method, developed using a false position method based 

optimization approach, is proposed to incorporate VSPs in the conceptual 

design or planning of water transmission systems (WTSs), using optimization. 

This pump power estimation method is implemented within the solution 

evaluation process via a multiobjective genetic algorithm approach. A case 

study is used to demonstrate the application of the pump power estimation 

method in estimating pump power and associated energy consumption of 

VSPs and FSPs in WTS optimization. In addition, comparisons are made 

between variable-speed pumping and fixed-speed pumping in multiobjective 

WTS optimization accounting for total cost and GHG emissions. The results 

show that the use of variable-speed pumping leads to significant savings in 

both total cost and GHG emissions from WTSs for the case study considered. 
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7.1 Introduction 
 

Global warming caused by increased concentration of greenhouse gases 

(GHGs) in the atmosphere is a significant threat facing our generation. 

Extreme weather conditions, such as severe droughts, floods and hurricanes, 

which are exacerbated by global warming, are already affecting a large 

number of people around the world. However, more GHGs are still being 

added into the atmosphere by human activities, such as burning fossil fuel for 

energy. Consequently, individuals, governments and industries need to be 

more energy efficient and contribute to the mitigation of global warming by 

reducing their GHG emissions.  

 

In a number of studies, the minimization of GHG emissions has been 

identified as one important criterion for improving the sustainability of urban 

infrastructure and urban water systems (Sahely et al., 2005; Filion, 2008). 

Within the water industry, GHG emissions are mainly generated from system 

operation related to pumping. In a study by Tarantini and Ferri (2001), the 

authors found that pumping had the highest environmental impact on the 

water and wastewater system of Bologna in Italy. In a similar finding, a 

survey conducted by the South Australian Water Corporation showed that 

major pumping accounts for 46% of GHG emissions from their activities 

across South Australia (Kelly, 2007). Consequently, opportunities exist within 

the water industry for GHG emission reduction by improving pumping 

efficiency. 

 

In order to reduce GHG emissions in the water industry, tradeoffs between 

GHG emission minimization and the traditional objective of economic cost 

minimization have been investigated via a multiobjective approach in 

previous studies (Wu et al., 2008a; Wu et al., 2010a; Wu et al., 2010b). The 

authors found that a moderate increase in capital investment can result in 

substantial reductions in GHG emissions from water distribution systems 

(WDSs). In these studies, a number of commercially available fixed-speed 

pumps (FSPs) were used as decision variables. FSPs have smaller capital 
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costs compared with variable-speed pumps (VSPs). However, VSPs have 

many advantages over FSPs in terms of performance. As Wood and Reddy 

(1995) pointed out, VSPs provide easier control over the system, which 

enables a better response to abnormal situations, such as fire and breakage. 

More importantly, pressures or flowrates can be maintained very close to 

minimum allowable levels by using VSPs, thus, there is great potential for 

saving energy and hence for reducing GHG emissions in new pumping 

systems (Lingireddy and Wood, 1998). Therefore, it is important to consider 

the incorporation of VSPs in WDS optimization when investigating total cost 

and GHG emissions from WDSs.  

 

VSPs have been incorporated in the optimization of the operation of existing 

WDSs in previous studies (Wegley et al., 2000; Rao and Salomons, 2007; da 

Costa Bortoni et al., 2008; Wu et al., 2009). However, for the optimal design 

of WDSs involving pumping, FSPs have often been used, despite the 

advantages of VSPs discussed above. One reason for this is that FSPs are 

commonly used in existing WDSs. In addition, FSPs can be easily simulated 

in an optimization process by using a fixed pumping head or a pump curve 

(Duan et al., 1990; Wu et al., 2010a; Wu et al., 2010b), whereas the dynamic 

features of VSPs make their simulation within optimization iterations a more 

difficult task.  

 

In previous studies, commercially available FSPs have been used as decision 

variables in WDS optimization (Wu et al., 2010a; Wu et al., 2010b). However, 

there is a significant drawback to this approach. This is because it is not 

practical to include all available pumps as decision variable options in the 

optimization process due to limited availability of pump information and the 

high computational effort required to include a large number of pump options 

in a multiobjective optimization process. When limited numbers of real pumps 

are used in the WDS optimization process, the optimization may favor 

network configurations that match the characteristics of the selected pumps. 

Therefore, a generic approach to pump sizing and pump power estimation, 

which allows easy adjustment of pump power based on specific network 

configurations, is more appropriate for WDS optimization (Hodgson and 
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Walters, 2002). This allows different network configurations generated as part 

of the WDS optimization process to be compared fairly without introducing 

distortions resulting from use of a specific pump.  

 

In order to be able to incorporate VSPs into the conceptual design or planning 

of WDSs using optimization and ensure different network configurations 

generated during the optimization process are compared fairly, a generic 

pump power estimation method is required. In this paper, such an approach is 

proposed for water transmission systems (WTSs), which are the portion of a 

WDS that delivers water from water sources into storage facilities, such as 

reservoirs and/or tanks. The proposed method does not directly deal with the 

simulation of a particular VSP or an existing WTS with VSPs. Instead, it 

automatically calculates the pump power, and thus the pump energy, required 

for a particular network configuration, subject to multiple flow constraints. 

This method is suited to fast and repeated estimation of operating energy 

consumption of a large number of network configurations, rather than to 

modeling of the full range of behavior of a particular VSP within an existing 

WTS. The method can also be used to incorporate FSPs into the conceptual 

design or planning of WTSs using optimization with appropriate assumptions, 

provided FSPs are treated as a special case of VSPs. 

 

 

7.2 Methodology for incorporating VSPs in 

conceptual design or planning of WTSs 
 

7.2.1 Problem formulation 
 

The WTS optimization problem considered in this study is illustrated in 

Figure 7.1. The two objectives considered include: 1) the minimization of the 

total economic cost of the system; and 2) the minimization of the total GHG 

emissions of the system. In order to calculate the total economic cost and total 
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GHG emissions of a WTS, a life cycle analysis and the proposed pump power 

estimation method are required.  

 

The constraints include equality constraints and inequality constraints, as 

shown in Figure 7.1. Equality constraints often refer to the physical laws (e.g. 

the continuity of flow and the conservation of energy) that apply to the 

network. In practice, these constraints do not need to be considered explicitly 

in an optimization process, as they are often satisfied automatically by using a 

hydraulic solver, such as EPANET (Rossman, 2000). The inequality 

constraints are often design constraints that a WTS needs to satisfy, for 

example, the minimum flowrates within the system. Some of the inequality 

constraints can be handled by using the proposed pump power estimation 

method, which is introduced later in this section.  

 

Estimation of total economic cost 

The total economic cost (TEC) of a particular network is defined as 

 

( ) ( ) ( ) ( )DMxECMSxMCORxOCxCCTEC ,,,
rrrr

+++=                              (7.1) 

 

where, CC , OC , MC , and EC  are capital cost, operating cost, maintenance 

cost and end-of-life cost, respectively; x
r

 represents the decision variables (e.g. 

pipe sizes, pipe material, etc.); OR  and MS  are the operational rules and 

maintenance strategies that will be used; DM  represents the 

disposal/recycling methods used at the end of the service life of the system. 

The capital cost results from the purchase and installation of network 

components (e.g. pipes, pumps, valves, tanks etc.), and construction of pump 

stations, storage facilities, etc. The maintenance and end-of-life costs are 

functions of the decision variables. Pumps also contribute to these two costs. 

In addition, the maintenance strategy selected and disposal/recycling methods 

used at the end of the service life of the system have a significant impact on 

the values of the maintenance and end-of-life costs. In this study, the pump 

refurbishment costs are not considered, as they contribute only a relatively 
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small amount to the total cost once they are converted into their present values 

(Wu et al., 2010b). It should also be noted that the end-of-life costs of WTSs 

are often not considered. This is mainly because these costs occur at the very 

end of the design period of the system, which is often 50 to 100 years for a 

WTS. Once the end-of-life costs are converted into their present values as part 

of present value analysis (PVA), the impact of these values on the total cost is 

usually negligible. In addition, the uncertainty associated with end-of-life 

costs is often the reason why they are omitted from the analysis. 

 

The operating cost is mainly due to the electricity consumption of system 

operation related to pumping, which can be calculated based on the annual 

energy consumption (AEC) as defined below: 

 

∑ ∑
= =

∆×
×

××
=∆×=

T

t

T

t motorpumpmotor

t
tt

tHtQ
t

t

tP
AEC

1 1 )()(

)()(

1000

1

)(

)(

ηη
γ

η
                           (7.2) 

 

where, t  is the time step [e.g. the time step in an extended period simulation 

(EPS)]; )(tP  is the pump power ( kW ); γ  is the specific weight of water 

( 3/ mN ); )(tQ  is the pump flow ( sm /3 ); )(tH  is the pump head ( m ); 

pumpt)(η  and motort)(η  are the pump efficiency and motor efficiency, 

respectively; T  is the number of time steps; and t∆  is the duration of each 

time step (hours). The annual operating cost can be taken as the AEC ( kWh ) 

multiplied by the projected average electricity tariff (ET) of the corresponding 

year (based on an electricity tariff forecasting model). As operating costs 

occur progressively during the whole design period, PVA needs to be used to 

convert the operating costs in each year to their present values, in order to 

allow costs occurring at different times to be compared.  

 

As part of the conceptual design or planning of WTSs, the simplest way to 

estimate the AEC for each potential solution network in the optimization 

process is to use the average flowrate during a year. However, the estimation 

of energy consumption can be improved by using a seasonal EPS, which takes 

into account the seasonal variation of demand. In both cases, an estimate of 
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pump power )(tP  is required and can be obtained using the proposed pump 

power estimation method. In addition, in order to account for changes in pipe 

roughness over the design period, a pipe aging model can be used. Ideally, 

such a model should take into account any maintenance strategies.  

 

Estimation of total GHG emissions 

The total GHG emissions (TGHG) of a particular network are defined as 

 

( ) ( ) ( ) ( )DMxEGHGMSxMGHGORxOGHGxCGHGTGHG ,,,
rrrr

+++=   (7.3) 

 

whereCGHG , OGHG , MGHG , and EGHG  are capital emissions, operating 

emissions, maintenance emissions and end-of-life emissions, respectively. 

These emissions are also functions of decision variables x
r

 (e.g. pipe size, 

pipe material, etc.). The capital emissions are mainly due to energy 

consumption that occurred during the fabrication stage (including material 

extraction, material production, product manufacturing, and product 

transportation and installation) of network components during the life cycle of 

the system (Filion et al., 2004), which can be estimated using embodied 

energy analysis (EEA) (Treloar, 1994). Emission factor analysis (EFA) can 

then be used to estimate the capital GHG emissions in the form of CO2-e 

(carbon dioxide equivalent) in kilograms (kg) based on the embodied energy 

values (The Department of Climate Change, 2008). In practice, embodied 

energy values and emission factors are likely to vary across regions and with 

time, depending on the material excavation and extraction methods used and 

the way electricity is generated (e.g. thermal, nuclear, wind, hydroelectricity, 

etc.). Ideally, a preliminary study should be carried out to determine the 

embodied energy of the specific types of network components considered and 

the emission factor values for the study region.  

 

Similar to the operating cost, operating emissions are predominantly caused 

by system operation related to pumping and therefore, can be calculated using 

AEC. Once the AEC for a particular future year is estimated using Eq. (7.2), 

the operating emissions of the year are obtained by multiplying the AEC and 
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the projected average emission factor of the corresponding year, which can be 

obtained by using an emission factor forecast model for the study region. The 

operating emissions due to pumping also occur progressively over the design 

period; therefore, PVA may be required to convert the operating emissions in 

each year to their present values.  

 

GHG emissions will also be generated during system maintenance and at the 

end of system service life, when network components are disposed of or 

recycled. These emissions are a function of the network components selected 

at the beginning of the project (that depends on the value of decision 

variables), the maintenance strategies adopted throughout the life of the 

project and the disposal methods and recycling options selected at the end-of-

life, but are often not considered. 

 

Impact of use of FSPs or VSPs on objective evaluation 

Whether FSPs or VSPs are used has an impact on the evaluation of the two 

objectives. Firstly, VSPs are generally more expensive than FSPs. However, 

the capital cost of VSPs can be offset by eliminating some network 

components, such as control valves, bypass lines and conventional starters, 

which are required by FSPs (Europump and Hydraulic Institute, 2004). 

Similarly to pipes, the capital emissions of pumps mainly depend on the 

material of the pump and where it is manufactured (Filion et al., 2004), which 

have a significant impact on the embodied energy of pumps, rather than 

whether FSPs or VSPs are used. Therefore, any differences between the 

capital GHG emissions of FSPs and VSPs are usually small. 

 

As VSPs have a variable frequency drive (VFD), which FSPs do not have, 

they can incur additional maintenance costs. However, these costs can 

generally be offset by the maintenance costs for the additional components 

required by FSPs, as mentioned previously. In addition, VSPs generally 

operate at lower speeds and have lower loads on the shaft, bearings and 

gaskets compared to FSPs, which result in lower failure frequency and can 

reduce maintenance costs significantly (Hovstadius, 2001). In addition, Wu et 

al. (2010b) showed that the lifecycle maintenance costs for FSPs are a small 
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percentage of the total cost. Therefore, the difference between the lifecycle 

maintenance costs of FSPs and VSPs is negligible in the evaluation of the 

total cost.  

 

The most significant impact of the selection of either FSPs or VSPs is on 

operating cost and emission estimation. As the speeds of VSPs can be 

adjusted to maintain flowrates at their minimum allowable levels, the average 

pump flowrates for VSPs are generally lower (Hovstadius, 2001). As a result, 

in order to deliver the required demand, VSPs are likely to operate for most of 

the time during a day. In contrast, FSPs can only operate at a single speed and 

their average pump flowrates are generally higher than those for VSPs. 

However, the time during which FSPs are operating is less than that of VSPs, 

provided they deliver the same quantity of water. The difference between the 

pump flowrates of FSPs and VSPs has a significant impact on their respective 

energy consumption (The U.S. Departement of Energy's Industrial 

Technologies Program and Hydraulic Institute, 2006). At higher pump flows, 

FSPs need to overcome higher friction losses, which are sometimes significant, 

especially for systems with small pipes. In addition, newer VSPs can also 

operate at high efficiency (Burt et al., 2006). As a result, the AEC and 

associated operating costs and GHG emissions of FSPs can be higher 

compared to those of VSPs. It should be noted that in regions where 

electricity tariffs are lower during off-peak periods, the operating cost of FSPs 

can be reduced by scheduling most of the pumping to occur during these 

periods; however, the GHG emissions associated with pumping cannot be 

reduced.  

 

7.2.2 Proposed pump power estimation method 
 

FCV based pump power estimation method 

For the purpose of calculating the required pumping power for the estimation 

of maximum pump capacity and AEC, a pump (either VSP or FSP) can be 

artificially represented by a control valve combined with an upstream 

reservoir with a high head within a hydraulic solver, as shown in Figure 7.2. 
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FCV

Reservoir

 

Figure 7.2 Proposed pump power estimation method within a hydraulic solver 

 

 

For WTSs, where system flow is of primary concern, it is proposed that a flow 

control valve (FCV) be used as the control valve, as this provides a simple 

control of system flow.  

 

When estimating pump power for a WTS, an appropriate setting of the FCV 

needs to be determined, such that the flows into the downstream storage tanks 

are maintained as close to the required flows as possible. Thus, the task of 

determining the most appropriate FCV setting for calculating pump power for 

a WTS is a constrained single-objective minimization problem, which is 

defined as: 

 

minimize            { }ra QQ −= min)(yg                                                        (7.4) 

 

subject to 

 

[ ]UL Q,Qy∈                                                                                                  (7.5) 

{ }
jq=aQ                        ntj ...,,2,1=∀                                                       (7.6) 

{ }rjr q=Q                        ntj ...,,2,1=∀                                                       (7.7) 

0≥− ra QQ                                                                                                   (7.8) 
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where, g  is the objective function of the single-objective minimization 

problem; y  is the desired optimum FCV setting; aQ  and rQ  are the vectors 

of actual and required flows into the storage tanks, respectively; LQ  is the 

lower bound of y , which is often taken as the minimum required flowrate of 

the system; UQ  is the upper bound of y , which is defined by the user; jq  and 

r

jq  are the actual and required flows into the storage tank j , respectively; and 

nt  is the number of storage tanks.  

 

By searching for a suitable FCV setting y  between LQ  and UQ , the 

differences between the actual flows the system delivers into the storage tanks 

and the corresponding required flows are minimized. The pump head 

associated with a particular flow distribution can then be obtained from the 

head of the downstream node of the FCV within a hydraulic solver. Thus, the 

pump power for the WTS can be calculated.  

 

Pumping energy estimation using the proposed pump power estimation 

method 

The process for estimating pumping energy using the false position method 

based pump power estimation method for a WTS is illustrated in Figure 7.3. 

First, the upper and lower bounds of the valve setting need to be defined (Step 

1). Then, the false position method, combined with a hydraulic solver, is used 

to find the FCV setting y  such that the objective defined in Eq. (7.4) is 

minimized and the design constraints are satisfied during time t  (Step 2). The 

pump head can be obtained as the head of the downstream node of the FCV 

within the hydraulic solver (Step 3). The actual pumping time can be 

calculated based on the demand during time t  (Step 4). Thus, the pumping 

energy consumption during time t  can be computed (Step 5).  

 

Both VSPs and FSPs are sized to meet the same design criteria of the system. 

As the speed of a VSP can be adjusted to match the required flowrates for a 

WTS, it is assumed that the valve setting is determined in a way that 

maintains the flows at just above their minimum allowable levels. However,
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Estimate pump power and associated pumping energy during time t.

 False
position
method
with

hydraulic
solver

2. Find FCV setting y [Eq.(7.5)] to minimize objective g(y)
[Eq.(7.4)] such that constraints during time t are satisfied.

3. Obtain pump head.

 Hydraulic
solver

Efficiencies

4. Estimate actual pumping time during time t .

5. Compute energy usage related to pumping during time t using
pump head, pump flow (FCV setting y ) and actual pumping time.

1. Select QL and QU for FCV.

 

Figure 7.3 Pump power and associated pumping energy estimation processes 

 

 

when FSPs are used, flowrates will exceed their minimum requirements. As a 

result, FSPs will operate for fewer hours compared to VSPs when the same 

volume of water is delivered in a WTS. 

 

The false position method (Burden and Faires, 2005) has been selected for the 

purpose of solving the constrained single-objective valve setting search 

problem because it is a bracketing method, which is guaranteed to converge. 

This is essential in an optimization process, as an estimate of pump power has 

to be made for each potential network solution at each iteration to ensure a 

fair comparison between different networks is made.  

 

7.2.3 Solution evaluation process within a genetic 

algorithm framework 
 

The proposed solution evaluation process, incorporating the pump power 

estimation method for WTSs, within a genetic algorithm framework is 

illustrated in Figure 7.4.  
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There are five steps in evaluating a network solution, which are marked from 

1 to 5 in the figure. The proposed pump power estimation method is employed 

in Steps 2 and 4 for estimating the maximum required pump capacity and 

annual energy consumption, respectively. In the first step, a threshold test is 

performed to determine whether or not the current solution network needs to 

be evaluated. A threshold value for the valve setting is first defined, often as 

the upper bound of the valve setting for estimating the maximum capacity of 

the pump. If the current solution can satisfy the design requirements when the 

valve setting is set at the threshold value, the solution is evaluated. Otherwise, 

the network is considered to be infeasible and removed from further 

consideration in order to reduce the size of the search space during the 

optimization process, thereby increasing computational efficiency and the 

chances of finding a globally optimal solution. 

 

Once a solution has passed the threshold test, the maximum pump power 

required is calculated based on the design criteria defined for the case study 

under consideration using the proposed pump power estimation method (Step 

2). For example, a WTS is often designed to meet the average flow on a peak-

day (referred to as peak-day flow in this paper) during the highest demand 

year of the design period. The pump related costs and emissions can be 

estimated based on the maximum pump power of the pump. Thus, the capital 

cost and emissions of the solution network can be calculated (Step 3).  

 

The fourth step is to calculate the annual energy consumption (AEC) and 

associated operating cost and emissions, and in turn, the total operating cost 

and operating GHG emissions of the system during its design life. In this step, 

the proposed pump power estimation method is used to estimate the pump 

power and pumping energy for each time step t . The AEC can be calculated 

by summing the actual pumping energy of each time step t . Once the AEC 

has been obtained, the operating cost and GHG emissions of the 

corresponding year can be calculated based on the electricity tariff and 

emission factor of that year and thus, the total cost and GHG emissions can be 

calculated (Step 5). 
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2. Estimate the maximum pump power for the solution network using the false position method.
(refer to Steps 1 to 3 in Figure 7.3).

1. Threshold test for the solution network.

4. Estimate energy consumption and associated operating cost and GHG.

 Accumulate total operating cost and operating GHG.

5. Compute total cost and total GHG over lifetime of system.

No

Yes

 Go to next genetic algorithm solution.

For each solution network in each genetic algorithm population, start the evaluation.

 3. Compute capital cost and capital GHG.

Compute annual energy consumption during year i.

Set PRV setting at HT and
run hydraulic simulation.

 Hydraulic
solver

Estimate pumping energy consumption during time step t  using the
false position method (refer to Figure 7.3).

For a WDN:

Set FCV setting at QT and
run hydraulic simulation.

For a WTN:

 Remove the solution
from future consideration.

Compute energy consumption related operating cost and GHG for year i.

Select threshold HT for PRV. Select threshold QT for FCV.

Are design
requirements met

for HT /QT ?

For year i ( i = [1,design period] ), start the evaluation.

No

Yes

Has the end
of simulation period
been reached?

Go to next time step.

No

Yes

Has the end
of design period
been reached?

Go to next year.

Figure 7.4 Proposed solution evaluation process within a genetic algorithm 
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7.3 Case study 
 

In this paper, a case study is used to demonstrate the application of the 

proposed pump power estimation method in multiobjective WTS optimization 

accounting for total economic cost and GHG emissions and investigate the 

impact of variable-speed pumping on the optimization results. The case study 

network and assumptions made in the objective and solution evaluation 

processes are presented in this section.  

 

7.3.1 Example network 
 

The network configuration of the case study used to illustrate the approach 

introduced in this paper is shown in Figure 7.5. For this case study, water 

needs to be delivered from a water source (reservoir 6) to three storage 

reservoirs (reservoirs 7, 8 and 9). The demands of the three storage reservoirs 

are assumed to be the same (i.e. one third of the total annual demand). This 

case study is a network conceptual design problem, in which pipe diameters 

are decision variables, and pumps are sized and pump power is calculated 

using the proposed pump power estimation method for each network 

configuration determined by the pipes. Sixteen ductile iron cement mortar 

lined (DICL) pipes with different diameters are used as choices. The details of 

the pipes can be found in Wu et al. (2010a).  

 

7.3.2 Case study objective function evaluation and 

assumptions  
 

For calculating the total economic cost for the case study, only capital and 

operating costs of the network are considered. The capital cost results from 

the purchase and installation of network components (pipes and pumps) and 

the construction of pump stations. The pipe costs can be computed from the 

pipe data provided in Wu et al. (2010a). The cost of pumps and pump stations 
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Figure 7.5 Case study network configuration [adapted from Wu et al. (2010a)] 

 

 

can be estimated using the maximum power capacity of the pump (Wu et al., 

2010a; Wu et al., 2010b), which is determined using the pump power 

estimation method based on the peak-day flow of the maximum demand 

during the design period. The peak-day flow is assumed to be 1.5 times the 

average-day flow based on the recommendation of the Water Services 

Association of Australia (2002) for populations over 10,000. In this study, the 

capital costs of VSPs include the costs of variable frequency drives (VFDs), 

which are taken as 10% of the pump cost (based on consultation with a 

number of experienced design engineers), and therefore are higher than the 

capital costs of FSPs. 

 

The calculation of operating cost requires a demand forecasting model, the 

estimation of the annual energy consumption (AEC) [defined in Eq. (7.2)] and 

an electricity tariff forecasting model over the design period. Demand is 

dependent on both the average water consumption per capita and population 

size. In general, demand will increase as population grows. However, this 

might not be the case if policies aimed at reducing per capita demand are 

successful (Australian Bureau of Statistics, 2006). In order to avoid the 

introduction of unnecessary uncertainties into the optimization process and 
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emphasize the comparison between FSPs and VSPs, a constant annual water 

demand of 2,522,880 m3/year, corresponding to a peak-day flow of 120 L/s 

and an average-day flow of 80 L/s, is used for the case study. Therefore, the 

case study network is relatively small, supplying around 20,000 people. In 

addition, a design period of 100 years is used in this paper, which is consistent 

with the recommendation for the design of water mains by the Water Services 

Association of Australia (2002). 

 

In estimating the AEC for FSPs, a flowrate determined using the proposed 

pump power estimation method based on the peak-day flow, is used. The 

exact value of this flowrate depends on the specific network configuration and 

will be just above the peak-day flow for which the FSPs are sized. This 

flowrate is considered to be able to provide a good estimate of the energy 

consumption associated with fixed-speed pumping for this case study. When 

VSPs are used, an EPS with four simulation periods is used to account for 

seasonal variations in demand during a year. During each of the four seasonal 

simulation periods, an average flowrate is used to estimate the energy 

consumption during that quarter of the year (values of 110L/s, 90L/s, 70L/s 

and 50L/s have been used to estimate the AEC for VSPs in this case study). 

As the same quantity of water is delivered, the actual annual pumping time for 

FSPs is less than that for VSPs. In addition, an average pipe roughness value 

of 0.25 mm over the entire design period (i.e. a pipe-aging model was not 

used) is used, as it has been found in a number of test runs that considering 

pipe aging by changing pipe roughness values over the design period does not 

have a significant impact on the results of WTS optimization accounting for 

cost and GHG emissions. 

 

The average electricity tariffs (prices) in the retail market in Australia are 

determined by both wholesale prices and contract market prices, which are 

difficult to predict into the future (Electricity Industry Supply Planning 

Council, 2005). Saddler et al. (2004) suggested that in 30 years time, fossil 

fuels will still be the main source of electricity in Australia and that the prices 

of electricity generated by all fossil fuels will be higher. As a result, electricity 

tariffs are assumed to average $0.14 per kWh (estimated by averaging on-peak 



7 Publication 3: Incorporation of VSP in MOGA optimization of WTSs 

148 
 

and off-peak values in South Australia) at the beginning of the design period 

and to increase at 3% per annum from the second and subsequent years of the 

design period.  

 

Motor efficiency and pump efficiency are also required to calculate the AEC, 

as shown in Eq. (7.2). In this study, an average motor efficiency of 95% and 

an average pump efficiency of 85% are assumed. VSPs also have variable 

frequency drives (VFDs). Burt et al. (2006) found that although the efficiency 

of VFDs depends on the type of VFD, VFD rotational speed and VFD load, 

for all of the VFDs tested, efficiency was higher than 97% at full loads, and 

for some types of VFDs, the efficiency was higher than 99%. The study 

indicated that even at lower loads, efficiencies did not fall below 95%. This 

finding is in agreement with the information cited by Rooks and Wallace 

(2003): for large pumps (greater than 100 horse power or 74.6 kW), the 

efficiency of VFDs is generally greater than 95% when the speed is higher 

than 75%. As a result, a VFD efficiency of 95% is used in this case study. 

Finally, in the PVA that converts the operating costs in each year to their 

present values, a discount rate of 8% is used, which is a value commonly used 

by many water utilities in Australia. 

 

In calculating total GHG emissions, only capital and operating GHG 

emissions of the network are considered, as mentioned previously. In this 

study, capital emissions are predominantly from pipe manufacture, as this 

represents the largest proportion of the impact (Filion et al., 2004). In 

calculating the embodied energy of the DICL pipes used in this study, a 

specific value of the embodied energy of 40.2 MJ/kg is used. This value was 

estimated by Ambrose et al. (2002) based on a combination of published and 

actual factory manufacturing data. In calculating capital emissions, an average 

emission factor of 0.98 kg CO2-e/kWh is used, which is the full-fuel-cycle 

emission factor value of South Australia in 2007 (The Department of Climate 

Change, 2008). 

 

The annual operating emissions are taken as the AEC  multiplied by the 

projected average emission factor of the corresponding year. In this study, an 
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average emission factor of 0.98 kg CO2-e/kWh is used for the first year of the 

design period. Thereafter, the emission factor is assumed to decrease linearly 

to 70% of the 2007 level at the end of the design period of 100 years due to 

Government policies of encouraging clean energy. This assumption is based 

on the Australian Government’s commitment to reduce GHG emissions by at 

least 5% below 2000 levels by 2020 (The Department of Climate Change, 

2010). It should be noted that there are many uncertainties involved in 

projecting emission factors, particularly for a long time period, such as 100 

years. The operating emissions due to pumping also occur over time during 

the design period, however, no discounting (that is a discount rate of zero 

percent) has been applied to the calculation of pumping GHG emissions based 

on the recommendation of the Intergovernmental Panel on Climate Change 

(IPCC) (Fearnside, 2002). 

 

7.3.3 Case study solution evaluation 
 

The FCV based pump power estimation method is used to estimate the 

maximum pump capacity and energy consumption for this case study. For 

Step 1 in Figure 7.4, a flow of 1.5 times the peak-day flow is used as the 

threshold flow. This value is also used as the upper bound uQ  [Eq. (7.5)] for 

maximum pump power estimation and energy consumption estimation. The 

lower bound lQ  [Eq. (7.5)] is set to a target flow, which depends on specific 

case study assumptions and what the pump power is estimated for. For this 

case study, for estimating the maximum pump capacity of both VSPs and 

FSPs the peak-day flow is used as the target flow. For estimating the AEC of 

VSPs, the seasonal average-day flow is used as the target flow; whereas for 

estimating the AEC of FSPs, the peak-day flow is used as the target flow. 

Consequently, the vector aQ  [Eq. (7.6)] contains the actual flows in pipes 3, 5, 

7 (see Figure 7.5) that a particular system (a pipe network with a particular 

FCV setting) delivers; while the vector rQ  [Eq. (7.7)] contains the required 

flows in the pipes, which is defined as one third of the target flow.  
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A tolerance of 0.5 L/s is used in the false position method based FCV setting 

search algorithm for this case study. Therefore, the FCV setting search 

optimization is considered to have converged if the objective function value 

g  [Eq. (7.4)] is less than 0.5 L/s. For the particular optimization problem 

presented in this paper, it takes around two to five iterations for the false 

position method to converge. In addition, a stochastic optimization algorithm, 

such as a genetic algorithm, cannot guarantee that the final solutions are 

Pareto-optimal. Therefore, for the genetic algorithm runs conducted in this 

study, a total of 100 random seeds (i.e., random starting positions) have been 

used to ensure near-globally optimum solutions are found. As a result, the 

optimal fronts presented in this paper are formed using the best values 

obtained from the 100 runs. 

 

 

7.4 Optimization results and discussion 
 

The Pareto-optimal fronts obtained from the optimization runs using VSPs 

and FSPs are plotted in Figure 7.6. Eight typical solutions from the Pareto-

optimal fronts are selected in this section to compare the optimization results 

obtained using VSPs and FSPs. These eight solutions are sorted according to 

the costs of the pipe networks and numbered consecutively from 1 to 8. 

Network 1 is the least-cost network and Network 8 is the highest-cost network. 

The pipe information for these eight networks is summarized in Table 7.1. 

The costs, GHG emissions and actual annual pumping hours of these 

networks with either variable- or fixed-speed pumping are presented in Table 

7.2. The breakdown of the total cost and GHG emissions of these solutions is 

plotted in Figure 7.7. 
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Figure 7.6 Comparison of Pareto-optimal fronts obtained using variable-speed 

pumping (VSP) and fixed-speed pumping (FSP) (Networks 2 to 7 are identical 

in pipe configuration for FSP and VSP systems) 

 

 

 

It can be seen from both Figure 7.6 and Table 7.2 that six out of the eight 

networks (Networks 2 to 7) are on both the Pareto-optimal fronts obtained 

using variable- and fixed-speed pumping. However, the total cost and GHG 

emissions of the networks obtained using variable-speed pumping are much 

lower than those obtained using fixed-speed pumping. For example, the total 

cost of Network 4 with variable-speed pumping is 20.65 million dollars in 

contrast to 21.07 million dollars when fixed-speed pumping is used. In 

addition, the use of variable-speed pumping leads to a 16.7 kilotonne (kt), or 

12.5%, saving in GHG emissions compared to the case when fixed-speed 

pumping is used.  
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(a) Breakdown of total cost and GHG emissions of selected solutions when variable 

speed pumps are used
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Figure 7.7 Breakdown of life cycle cost and GHG emissions of selected 

solutions with variable-speed pumping [plot (a)] and fixed-speed pumping 

[plot (b)] 
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Figure 7.6 also shows that both Pareto-optimal fronts obtained using FSPs and 

VSPs converge to a single GHG emission level of approximately 100 kt at the 

low emission end of the horizontal axis. This is because the solutions on the 

right hand side of the optimal front are solutions with large pipes and high 

capital costs. For these solutions, the friction losses in the pipes are so low 

that the operating energy consumption is mainly dependent on the static head 

(determined by the elevation difference between the water source and storage 

tanks). In other words, the effectiveness of replacing FSPs with VSPs in 

reducing operating costs and emissions by reducing friction losses within the 

system is more significant for smaller pipe diameter systems with higher 

dynamic heads (friction losses) relative to static heads. 

 

It is also observed that use of VSPs leads to smaller optimal networks that are 

both cheaper in terms of economic cost and GHG emissions. For example, the 

lowest-cost network on the far left end of the Pareto-optimal front obtained 

using variable-speed pumping (Network 1) has a pipe cost of 13.20 million 

dollars (see Table 7.1), while the lowest-cost network obtained using fixed-

speed pumping (Network 2) has a pipe cost of 13.58 million dollars. In 

previous research, it has been found that when FSPs are used, smaller 

networks often have higher GHG emissions compared to larger networks due 

to the higher friction losses in pipes with smaller diameters (Wu et al., 2010b). 

However, this is not the case when different types of pumps are used. For 

example, Network 1 with variable-speed pumping generates 32.0 kt less GHG 

emissions due to pumping compared with Network 2 with fixed-speed 

pumping, resulting from reduced annual energy consumption (Table 7.2 and 

Figure 7.7). In addition, the capital emissions of Network 1 are lower than 

those of Network 2 (Table 7.1 and Figure 7.7). As a result, Network 1 with 

variable-speed pumping generates 32.6 kt less GHG emissions compared to 

Network 2 with fixed-speed pumping. The reason for this is that the effect of 

increased friction loss on operating energy consumption due to reduced pipe 

diameters in smaller networks is less significant than the effect of increased 

friction losses due to increased flowrate (resulting from the use of FSPs).  
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For the same reason, the least-GHG emission solution obtained using 

variable-speed pumping (Network 7) emits 0.9 kt less GHG emissions than 

the least-emission solution obtained using fixed-speed pumping (Network 8), 

even though Network 8 uses pipes with larger diameters compared with 

Network 7. Similar results can be obtained from analyzing the breakdown of 

total costs, but the difference between the costs of the two least-cost solutions 

or the two least-emission solutions obtained using different types of pumps is 

not significant due to the effect of the 8% discount rate used in the PVA.  

 

In addition, the fact that the same solutions exist in the middle regions of both 

optimal fronts shows that the choice of using a FSP or VSP mainly alters the 

solutions at the two extreme ends of the optimal front. This demonstrates the 

advantage of the proposed generic pump power estimation method over the 

approach used in previous studies, where a number of commercially available 

FSPs have been used as decision variables (Wu et al., 2010a; Wu et al., 

2010b). Because the operating range of a specific pump may not suit every 

single potential network solution in the optimization process, some network 

configurations are favored by the use of certain pumps, which results in an 

unfair comparison in the optimization process. For example, a FSP which 

suits a sharp system curve (with small flow and high head) may not perform 

well when connected to a system with large pipes whose system curve is 

flatter (with lower total head due to lower friction losses). Thus, the selection 

process within the optimization may be biased towards smaller networks with 

high friction loss and large networks with less friction losses may be 

disadvantaged.  

 

 

7.5 Conclusions 
 

In this study, a generic pump power estimation method has been developed in 

order to incorporate variable-speed pumping into the conceptual design or 

planning of water transmission systems (WTSs) using optimization with 

multiple flow constraints, so that the costs and GHG emissions for a new 
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WTS associated with pumping can be minimized. This pump power 

estimation method makes use of a flow control valve (FCV) and can be 

implemented using a hydraulic solver, such as EPANET, through a false 

position method based single-objective optimization approach.  

 

In this study, a case study is used to demonstrate the application of the 

proposed pump power estimation method and investigate the impact of 

variable–speed pumping on the optimization of WTSs accounting for both 

total cost and GHG emissions. It has been found that the use of VSPs can 

reduce both the total cost and GHG emissions of the optimal solutions for a 

WTS. The effectiveness of replacing FSPs with VSPs in reducing operating 

costs and emissions is more significant for a smaller pipe diameter system 

with higher dynamic heads (friction losses) relative to static heads. As a result, 

compared with FSPs, use of VSPs leads to smaller network solutions which 

are both cheaper in terms of cost and GHG emissions. Therefore, switching 

from fixed-speed pumping to variable-speed pumping can be an effective 

method for reducing total cost and GHG emissions of WTSs when used in 

conjunction with multiobjective optimization. 

 

The proposed pump power estimation method employs a generic pump 

concept, which enables pump power to be adjusted easily according to the 

characteristics of each specific network configuration generated in the 

optimization process. This feature avoids possible distortions resulting from a 

specific pump curve being introduced into the optimization process, enabling 

a fair comparison between different network configurations to be achieved.  

 

 

7.6 Acknowledgements 
 

This research was supported by resources supplied by eResearch SA. 

 



 

 
 



 

159 
 

 

 

 

Chapter 8 

 

 

Sensitivity of optimal tradeoffs 

between cost and greenhouse gas 

emissions for water distribution 

systems to electricity tariff and 

generation 

 

Publication 4 

 

 

Wu, W., Simpson, A. R. and Maier, H. R. 

 

School of Civil, Environmental and Mining Engineering 

The University of Adelaide, Adelaide, SA 5005 Australia 

 

Journal of Water Resources Planning and Management, 138(2), 182-186. 

 

 



 

 



 

161 
 

Statement of Authorship 

 

Wu, W., Simpson, A. R. and Maier, H. R. (2012). “Sensitivity of optimal 

tradeoffs between cost and greenhouse gas emissions for water 

distribution systems to electricity tariff and generation.” Journal of 

Water Resources Planning and Management. 138(2), 182-186. (With 

permission from ASCE) 

 

Although the manuscript has been reformatted in accordance University 

guidelines, and sections have been renumbered for inclusion within this thesis, 

the paper is otherwise presented herein as published.  

 

 

Wu, W. (Candidate) 

Development and implementation of methodology, design of experiments, 

interpretation and analysis of results, preparation of manuscript and acting as 

corresponding author. 

 

I hereby certify that the statement of contribution is accurate. 

 

Signed: ………………………………………………Date: ………………….. 

 

Simpson, A.R. 

Research supervision and manuscript evaluation. 

 

I hereby certify that the statement of contribution is accurate and I give 

permission for the inclusion of the paper in the thesis. 

 

Signed: ………………………………………………Date: ………………….. 

 

Maier, H.R. 

Research supervision and manuscript evaluation. 



 

162 
 

 

I hereby certify that the statement of contribution is accurate and I give 

permission for the inclusion of the paper in the thesis. 

 

Signed: ………………………………………………Date: ………………….. 

 



 

163 
 

 

 

 

 

 

Abstract 

 

 

Increased awareness of climate change has shifted the focus of water 

distribution system (WDS) optimization research from cost minimization only 

to the incorporation of energy or associated greenhouse gas (GHG) 

minimization. In this study, a sensitivity analysis is conducted to investigate 

the impact of electricity tariff and generation (emission factors) on the results 

of multiobjective WDS optimization accounting for both total economic cost 

(both capital and operating costs) and GHGs. A multiobjective genetic 

algorithm based optimization approach is used to conduct the analysis. The 

results show that electricity tariff has a significant impact on the total 

economic cost of WDSs and the selection of optimal solutions. In contrast, the 

changes of emission factor into the future have a significant impact on the 

total GHGs from WDSs. However, it does not alter the final solutions on the 

Pareto-optimal front. 
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8.1 Introduction 
 

Increased awareness of climate change has shifted the focus of water 

distribution system (WDS) optimization research from cost minimization only 

to the incorporation of energy minimization or associated greenhouse gas 

(GHG) minimization. The first study considering the direct impacts of WDSs 

on global warming was conducted by Dandy et al. (2006) , in which a single-

objective approach was used to minimize the material usage and associated 

GHG emissions from WDSs. Subsequent studies investigated the optimal 

tradeoffs between GHG emissions and life cycle economic costs of WDSs 

(Wu et al., 2008b) and the impact of discount rate on these tradeoffs by using 

a multiobjective optimization approach(Wu et al., 2010b). In the same year, 

Wu et al. (2010a) explored the impact of carbon pricing on the single- and 

multi-objective optimization of WDSs accounting for GHG emissions. In 

related work, Herstein et al. (2009a) included an environmental index as one 

of the objectives of a multiobjective WDS optimization problem, which is a 

single parameter consisting of measures of resource consumption, 

environmental discharges (including GHG emissions) and environmental 

impacts. In another study, Ghimire and Barkdoll (2010) found that reduction 

in water demand, main pump horsepower, and booster horsepower can lead to 

significant energy savings from operations of WDSs. 

 

While previous optimization studies have identified that there are significant 

tradeoffs between total costs and GHG emissions, they have not explored the 

sensitivity of these tradeoffs to such issues as electricity tariff and emissions 

associated with electricity generation. This is mainly because currently most 

water utilities and energy producers operate independently and water utilities 

have little control over electricity tariff and generation. However, the water 

and energy industries are closely related: a large amount of water is needed 

for energy production and a large amount of energy is needed for treatment, 

transmission and distribution of water. This paper explores the water - energy 

nexus and its impact on the tradeoffs between cost and GHG emissions from 

WDSs. As part of the sensitivity analyses conducted in this paper, realistic 
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ranges of the above two factors are considered based on data from Australia. 

In total, two different scenarios including five different combinations of the 

two factors are considered. 

 

 

8.2 Problem formulation 
 

8.2.1 Case study description 
 

A water transmission network (Figure 8.1) is used as the example network for 

this study. A similar network configuration has been investigated in previous 

studies that have considered optimal tradeoffs between cost and GHG 

emissions (Wu et al., 2010a). The required flows to the three storage 

reservoirs are assumed to be the same (i.e. one third of the total water 

demand). The water levels in the storage reservoirs are assumed fixed and 

under the control of local water utilities. It is also assumed that the storage 

reservoirs are appropriately sized to meet different loading cases, such as fire 

flow and emergencies. Pipe sizes are considered as decision variables and 

ductile iron cement mortar lined (DICL) pipes are used. Detailed information 

of the pipes and network can be found in Wu et al. (2010a).  

 

8.2.2 Objective function evaluation 
 

The problem considered in this paper is formulated as a multiobjective WDS 

design optimization problem, in which two objectives are used: the 

minimization of the total economic cost of the system and the minimization of 

the total GHGs emitted from the system. The formulation used in this study is 

similar to the one presented in Wu et al. (2010b). The difference is that 

instead of using real fixed-speed pumps as decision variables in the 

optimization process, as has been done in previous studies (Wu et al., 2010a; 

Wu et al., 2010b), the pump power estimation method developed in Wu et al. 

(2012b) is used to estimate the maximum pump capacity and the annual
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Figure 8.1 Case study network configuration [adapted from Wu et al. (2010a)] 

 

 

energy consumption ( AEC  ) in kWh for calculation of operating costs and 

emissions. For further details regarding the objective function evaluation 

process, refer to Wu et al. (2010b) and Wu et al. (2012b). 

 

 

8.3 Factors considered in sensitivity analysis 
 

In this study, three options for each of the two factors are considered based on 

uncertainties or possible government strategies into the future. The 

assumptions for the two factors are based on Australia, and presented in the 

following two subsections and are for illustration purposes only. However, the 

methodology presented here is generally applicable to other locations by using 

local conditions. At the end of this section, the two optimization scenarios 

considered in the sensitivity analysis are summarized. 
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8.3.1 Electricity tariffs  
 

The average electricity tariffs (prices) in the retail market in Australia are 

determined by both wholesale prices and contract market prices (Electricity 

Industry Supply Planning Council, 2005). The average electricity wholesale 

prices have been relatively constant since the introduction of the National 

Electricity Market in 1998, but have increased significantly after 2007 due to 

high demand and tight supply (Australian Bureau of Agricultural and 

Resource Economics, 2008). In contrast, the electricity prices in the contract 

market are difficult to predict. Saddler et al. (2004)  suggested that in 30 years 

time, brown and black coal will still be the main sources of electricity in 

Australia and that the prices of electricity generated by all fossil fuels will be 

significantly higher. Therefore, three future electricity tariff options are 

assumed in this study, as shown in Figure 8.2. For these options, electricity 

tariffs are assumed to average $0.14 per kWh at year one, which is estimated 

by averaging on-peak and off-peak values, and to increase at e=+1.5% per 

annum (pa) (option 1), e=+3% pa (option 2) and e=+4% pa (option 3), 

respectively. 

 

8.3.2 Electricity generation  
 

In this paper, the impact of electricity generation on GHG emissions is 

considered via the use of emission factors, which are the kilograms of CO2-e 

(carbon dioxide equivalent) emitted per kWh electricity purchased by end 

electricity users (The Department of Climate Change, 2008). The value of 

emission factors depends on the mix of the sources of electricity, such as 

combustion of fossil fuel, nuclear energy, solar energy or hydroelectric 

energy, and may change over time and across regions. In this paper an annual 

average value is used for the sensitivity analysis. This average value is 

considered to change over time resulting from changes in the mix of energy 

sources due to a government’s response to global warming, for example. The 

UN Intergovernmental Panel on Climate Change (IPCC) advises developed 
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Figure 8.2 Three electricity tariff options considered over 100 years (e = 

electricity tariff change per annum) 

 

 

countries to cut their carbon emissions by 25–40% of 1990 levels by 2020 to 

avoid catastrophic impacts due to climate change. The Federal Government of 

Australia has committed to carbon reduction by reducing carbon emissions by 

at least 5% of 2000 levels by 2020 (The Department of Climate Change, 

2010). A linear interpolation of this target will result in over 25% reduction of 

carbon emissions of 2007 levels in 100 years. However, it is difficult to 

project long term emission factor values. Consequently, three hypothetical 

options are used in this study based on previous full fuel cycle emission factor 

values for South Australia (The Department of Climate Change, 2008) and 

assumptions made in relation to Government policies. 

 

According to The Department of Climate Change (2008), the emission factor 

of electricity in South Australia has been decreasing since 2000. However, 

according to the Australian Bureau of Agricultural and Resource Economics 

(2008), the generation of electricity in Australia will not be able to transfer 

into renewable sources quickly within the next 30 years. Consequently, coal, 

gas and oil are likely to remain the major sources of electricity in Australia. 
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Therefore, the first option is assumed to be a constant emission factor equal to 

the 2007 value, which is 0.98 kg CO2-e per kWh (The Department of Climate 

Change, 2008). This option is mainly used as a baseline option for comparison 

purposes. The second option is based on the assumption that the Australian 

Government is able to reduce GHG emissions by at least 5% below 2000 

levels by 2020 (The Department of Climate Change, 2010); as a result, the 

emission factor will reduce by em=-30% (to 70% of 2007 levels) by the year 

2106 (100 years from 2007). The third option is based on the assumption that 

the Australian Government is committed to reinforcing tough GHG reduction 

policies and therefore, the emissions from electricity production will be 

reduced by em=-60% (to 40% of 2007 levels) in a 100 year period. For both 

options 2 and 3, a linear reduction is assumed, as shown in Figure 8.3.  

 

8.3.3 Optimization scenarios and combinations of 

factors considered 
 

In order to test the sensitivity of the optimization results to the two factors 

described above, two optimization scenarios, each dedicated to one of the 

factors, are considered. In each of the two optimization scenarios, one factor is 

varied and the remaining factor is set at the moderate value of the three 

options considered [e.g. option 2 for electricity tariff (e=+3% pa) and 

emission factor (em=-30% by year 100)]. This leads to a total of five 

combinations of the two factors, which are shown in Table 8.1. 

 

 

8.4 Multiobjective GA optimization 
 

In this study, a multiobjective genetic algorithm called WSMGA (Water 

System Multiobjective Genetic Algorithm) (Wu et al., 2010b) is used to solve 

the multiobjective WDS optimization problem. In WSMGA, an integer coding 

scheme is used to account for the discrete decision variables (pipe sizes), the 

EPANET2 hydraulic solver is used to simulate network behavior, and a pump  
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Figure 8.3 Three emission factor options considered over 100 years (em = 

total emissions reduction over 100 years) 

 

 

 

 

Table 8.1 Optimization scenarios and combinations of factors investigated as 

part of the sensitivity analysis 

Optimization 
scenario 

Factor 
combination 

Electricity tariff 
option (e value) 

Emission factor 
option (em value) 

Electricity tariff (e) 
A 1 (+1.5%) 2 (-30%) 
B 2 (+3.0%) 2 (-30%) 
C 3 (+4.0%) 2 (-30%) 

Emission factor (em) 
D 2 (+3.0%) 1 (+0%) 

B 2 (+3.0%) 2 (-30%) 

E 2 (+3.0%) 3 (-60%) 
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power estimation method developed by Wu et al. (2012b) is used to estimate 

the maximum pump capacity and energy consumption for each solution 

network. For details of the solution evaluation process incorporating the pump 

power estimation method, refer to Wu et al. (2012b). Details of the GA 

parameters settings are given in Wu et al. (2010a, b). 

 

 

8.5 Sensitivity analysis results 
 

The results from the multiobjective GA runs for each of the combination of 

factors investigated (see Table 8.1) are plotted in Figure 8.4. Each plot in 

Figure 8.4 shows the optimization results from one optimization scenario 

(each including three factor combinations) (see Table 8.1). The network 

configurations of four typical optimal designs from the Pareto-optimal fronts 

presented in Figure 8.4 are summarized in Table 8.2. The selected designs are 

sorted according to total pipeline cost, which is a function of the sizes of the 

pipes selected: the higher the design number, the more expensive the pipeline. 

The numbers next to the solution points in Figure 8.4 correspond to the design 

numbers in Table 8.2. In addition, the breakdown of the total cost and 

emissions of these solutions is summarized in Table 8.3. Detailed results from 

the sensitivity analysis are presented in the following two subsections. 

 

8.5.1 Impact of electricity tariff 
 

The electricity tariff used has an impact on the total cost of the network. Table 

8.3 shows that a more rapidly increasing electricity tariff (e.g. e = +4.0%) into 

the future will increase operating costs considerably, which in turn increases 

total costs as shown in Figure 8.4(a). In addition, electricity tariff may also 

alter the solutions on the optimal front. Figure 8.4(a) shows that a higher 

electricity cost into the future removes some networks with higher GHG 

emissions from the optimal front. Design 1 is one such example. However, the 

three different electricity tariff options considered lead to networks with 
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similar configurations and GHG emissions within a similar range (105 to 120 

kilotonnes). In addition, for the same network configuration, the electricity 

tariff option selected has no impact on the total GHG emissions of the 

network, as shown in Table 8.3. 

 

8.5.2 Impact of electricity generation 
 

The emission factor appears to have little impact on the configuration of the 

selected optimal networks, as similar solutions within the same cost range are 

obtained using the different emission factor options [Figure 8.4(b)]. In 

addition, the emission factor used has no impact on total network cost. Table 

8.3 shows that the same pipe configuration has the same pipe cost, pump 

station cost and operating cost, irrespective of which emission factor option is 

used.  

 

In contrast, the emission factor has a significant impact on the total GHG 

emissions from the system over the design period. It can be seen from Figure 

8.4(b) and Table 8.3 that a gradual reduction in the emission factor to 40% of 

the year zero level in year 100 (em = -60%) could reduce the total GHG 

emissions from WDSs by more than 23%. This is because the gradual 60% 

decrease in emission factor in 100 years reduces the operating emissions by 

around 30%, as shown in Table 8.3. The 30% gradual reduction in emission 

factors (em = -30%) over 100 years can reduce the total GHG emissions of the 

system by 14% and reduce the operating emissions of the system by almost 

18%.  

 

8.5.3 Discussion 
 

The results obtained indicate that changes in electricity tariffs into the future 

can change the composition of the total cost significantly, which also alters 

the tradeoffs between the two objectives and results in different final optimal 

solutions. In contrast, as the reduction in emission factors into the future 
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occurs more gently, the primary impact is to scale down the total emissions of 

the optimal solutions. In addition, the selection of the design life may also 

have an impact on the optimization results. A shorter design horizon, such as 

50 years or shorter, will reduce future impact of WDSs (represented by 

operating costs and emissions). This may reduce the tradeoffs between the 

two objectives, which will favor networks with smaller capital costs but 

higher GHG emissions. However, a long design horizon, such as 100 years, 

makes accurate projection of electricity tariffs and emission factors into the 

future difficult due to high levels of uncertainties. 

 

It should be noted that the case study considered is a water transmission 

network, which are relatively simple compared with water distribution 

networks, which often have hundreds of pipes. However, it is likely that the 

impact of electricity tariffs and emission factors on the objective function 

evaluation process and final optimization results obtained for the case study 

considered in this paper can be generalized to WDS. In addition, the approach 

presented in this study is general and can be applied to both water 

transmission networks and water distribution networks with varying 

complexity. 

 

 

8.6 Summary and conclusions 
 

In this paper, the sensitivity of the optimal tradeoffs between cost and GHG 

emissions to electricity tariff and generation are assessed for a case study 

water transmission network. As part of the sensitivity analysis, two 

optimization scenarios, including five combinations of the two factors 

investigated, were considered.  

 

The optimization results show that electricity tariffs have a significant impact 

on the total cost of WDSs, but little impact on the total GHG emissions from a 

particular network. However, higher electricity tariffs into the future can 

remove networks with higher emissions from the Pareto-optimal front, which 
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potentially leads to a final WDS with lower GHG emissions. This indicates 

that GHG emissions from WDSs can be further reduced by managing the 

water and energy industries jointly. In contrast, emission factors have no 

direct impact on the total cost of WDSs. However, emission factors into the 

future have a significant impact on the total GHG emissions that will be 

generated by the system. A 60% gradual reduction of emission factor during a 

100 year period can reduce the operating GHG emissions of the system by 

30% and the total emissions by over 23%. 
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Abstract 

 

 

The hydraulic reliability of a water distribution system (WDS) can be 

improved by increasing the resilience to failure conditions. In previous 

research, numerous measures have been developed to quantify network 

resilience which has been consequently linked to the hydraulic reliability of 

WDSs. Often, the difference between the output pressure head and the 

minimum required pressure head is required in the calculation of these 

network resilience measures. Difficulties arise when these measures are 

applied to water transmission systems (WTSs). The reason for this is that in a 

WTS, water is often pumped into a storage tank or reservoir, in which case the 

difference between the output pressure head and the minimum required 

pressure head is always zero. In order to overcome this shortcoming, it is 

suggested that the surplus power factor can be used as a network resilience 

measure, as calculation of this measure does not require the pressure value at 

the outlet of a WDS. In the research presented here, three case studies are used 

to assess the suitability of the surplus power factor as a network resilience 

measure for WDSs. A fourth case study is used to demonstrate the application 

of surplus power factor as a network resilience measure for WTSs, to which 

the other measures cannot be applied. The results show that the surplus power 

factor can be used as a network resilience measure to incorporate hydraulic 

reliability considerations into the optimization of WDSs and particularly 

WTSs. 
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9.1 Introduction 
 

Hydraulic reliability is an important performance measure of water 

distribution systems (WDSs), as it refers directly to their basic function 

(Ostfeld et al., 2002). It is therefore often considered as the ultimate goal of 

WDS design (Li et al., 1993). However, there is no universally accepted 

approach for assessing the reliability of WDSs (Mays, 1996). A common way 

of characterizing the hydraulic reliability of WDSs is by measuring “how far” 

a system is from failure. The greater the excess capacity of a system in 

relation to a specified hydraulic failure condition, the more resilient the 

system is to hydraulic failures, thereby improving the hydraulic reliability of 

the system. It should be noted that this definition of hydraulic reliability is 

different from measures of reliability that refer to the probability of non-

failure of WDSs (Tolson et al., 2004) and does not take account of mechanical 

failures, such as pipe breakage or the absence of alternative supply paths. 

 

In previous research, a number of resilience-based hydraulic reliability 

measures have been developed for WDSs. As early as 1985, Gessler and 

Walski (1985) used the excess pressure at the worst node in the system as a 

benefit measure in a pipe network optimization problem to ensure sufficient 

water with acceptable pressure is delivered to demand nodes. Todini in 2000 

developed a hydraulic reliability measure called the resilience index, which 

directly measures the ability of a network to overcome failure conditions. 

Other similar hydraulic reliability measures include the network resilience 

measure developed by Prasad and Park (2004); a robustness measure, as used 

in Kapelan et al. (2005) and Babayan et al. (2007); and the modified resilience 

index developed by Jayaram and Srinivasan (2008).  

 

Difficulties arise when applying the above measures to water transmission 

systems (WTSs). This is because these measures have one thing in common – 

their calculation relies on the difference between the required and minimum 

allowed pressure heads at the outlet of the system, which are often zero in 

WTSs, as in such systems water is usually delivered into tanks or reservoirs. 
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Thus, for WTSs, the values of the above measures are always zero. As a result, 

explicit consideration of hydraulic reliability as a design objective of WTSs 

remains a challenge. 

 

In 2006, Vaabel et al. (2006) introduced the surplus power factor ( s ), which 

is based on the concepts of hydraulic power and energy transmission of flow 

in a pipe. The surplus power factor can be used to measure the network 

resilience of a hydraulic system subject to failure conditions simultaneously 

on the basis of both pressure and flow (Vaabel et al., 2006). More importantly, 

calculation of the surplus power factor does not require the value of the 

pressure head at the outlet of the system. Therefore, the surplus power factor 

is an ideal candidate for the calculation of the network resilience of WTSs.  

 

In this research, the surplus power factor developed by Vaabel et al. (2006) is 

validated against three existing network resilience measures using three 

benchmark case studies. Then, a three-tank system is used to demonstrate the 

application of the surplus power factor as a network resilience measure for 

WTSs, to which the other measures cannot be applied, as discussed above.  

 

 

9.2 Surplus power factor (s) 
 

The surplus power factor ( s ) was introduced by Vaabel et al. (2006) to 

evaluate the hydraulic power capacity of WDSs on the basis of both flow 

within pipes and pressure head at the inlets of pipes. In this research, the 

surplus power factor is also called the s  factor for the sake of convenience.  

 

For the system shown in Figure 9.1, inQ  and outQ  are the inflow and outflow 

of the pipe, respectively; inH  and outH  are the heads at the inlet and outlet of 

the pipe, respectively; h  is the head loss within the pipe; and q  is the flow 

within the pipe. The hydraulic power at the outlet of the pipe ( outP ) can be 

calculated using the following equation (Vaabel et al., 2006): 
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Figure 9.1 Flows, heads and head loss for a single pipe [adapted from Vaabel 

et al. (2006)] 

 

 

 

 

where, γ  is the specific weight of water; c is the pipe resistance coefficient 

(that depends on the form of the head loss equation used); and a  is the flow 

exponent. The maximum hydraulic power at the outlet of the pipe maxP
 can be 

expressed using the following equation (Vaabel et al., 2006): 

 

 

Thus, the surplus power factor ( s ) is defined as: 

 

 

or: 

 

( )1+−= a

ininniout cQHQP γ  (9.1) 

a

a

in

a
a

H

c

a
P

1

1max
1

+









+

=
γ

 (9.2) 

max

1
P

P
s out−=  (9.3) 

maxmax
1

1
1

1
1

Q

Q

Q

Q

aa

a
s in

a

a

in













+
−

+
−=  (9.4) 



9 Publication 5: s factor for assessing hydraulic reliability of WTSs 

188 
 

 

 

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2

Qin/Qmax

s

 

Figure 9.2 Surplus power factor s  as a function of Qin/Qmax 

 

 

where, maxQ  is the flow that gives the maximum hydraulic power at the outlet 

of the pipe. The surplus power factor can be used as a measure of the network 

resilience of a hydraulic system. The range of the s  factor is from zero to 1, 

as plotted in Figure 9.2. When s is equal to zero, outP  equals maxP  and the 

hydraulic system works at its maximum capacity. Under this condition, any 

leakage can result in failure of the system in terms of meeting the needs of end 

water users, such as delivering enough water with sufficient pressure. As the 

value of the s  factor increases, the resilience of the system to failure 

conditions increases. However, as long as the system delivers water to end 

users, the value of s cannot reach 1, as when maxQQin  reaches 3 , the 

friction loss within the pipe will be equal to inH  and there will be no flow in 

the pipe. It should also be noted that in Figure 9.2, a given value of the 

s factor corresponds to two different values of maxQQin . While this is 

theoretically correct, when inQ  is greater than maxQ , very high input power 

values are required to achieve a certain s  factor value, which results in 

extremely low efficiency within the system. Therefore, the condition of inQ  
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being greater than maxQ  is not practical and can therefore be ignored for the 

purpose of estimating the network resilience of WDSs. 

 

 

9.3 Case studies 
 

A total of four case studies are investigated in this research. The first three 

case studies are used to assess the suitability of the surplus power factor as a 

network resilience measure. The last case study is used to demonstrate the 

application of the surplus power factor as a network resilience measure for a 

water transmission system (WTS), for which other network resilience 

measures cannot be used.  

 

The first case study is a two-loop network, which was introduced in Abebe 

and Solomatine (1998), and then studied by Todini (2000) and Prasad and 

Park (2004). The details of this network can be found in Prasad and Park 

(2004). The second case study is the New York Tunnel (NYT) problem, 

which has been studied extensively by many researchers. Details of this 

problem can be found in Zecchin et al. (2006). The third case study is the 

Hanoi problem, which is also a WDS benchmark case study that has been 

considered by numerous authors. Details of this case study can also be found 

in Zecchin et al. (2006). The fourth case study is a three-tank WTS consisting 

of a water source, a pump, eight pipes and three storage tanks. Water needs to 

be delivered into the three tanks via a looped network. Details of this case 

study can be found in Wu et al. (2010a). 

 

 

9.4 Validation results for the first three water 

distribution system case studies 
 

In order to compare the utility of the surplus power factor as a measure of 

network resilience, The average s  factor ( aves ) is compared with three 



9 Publication 5: s factor for assessing hydraulic reliability of WTSs 

190 
 

commonly used network resilience measures, including the minimum surplus 

head mI  (Gessler and Walski, 1985), the resilience index rI  (Todini, 2000) 

and the modified resilience index rMI  (Jayaram and Srinivasan, 2008) for the 

first three case studies introduced previously. Definitions of the three 

resilience measures are provided below: 

 

1. Minimum surplus head (Im): The minimum surplus head mI  is defined as 

the surplus pressure head at the worst node. This measure was used as a 

hydraulic benefit indicator in Gessler and Walski (1985), and then as a 

hydraulic reliability measure in Prasad and Park (2004).  

2. Resilience index (Ir): The resilience index ( rI ) developed by Todini 

(2000) is defined as the quotient of the difference between the actual 

output power and the required output power and the difference between 

the total input power and the required output power. 

3. Modified resilience index (MIr): The modified resilience index ( rMI ) 

developed by Jayaram and Srinivasan (2008) is defined as the amount of 

surplus power available at the demand nodes as a percentage of the total 

minimum required power.  

 

The actual configurations of the networks used for the comparison study are 

generated using a multiobjective optimization approach, in which the cost of 

the network is minimized and the network resilience represented by aves  is 

maximized. The optimal fronts representing the tradeoffs between cost and 

aves for the three case studies are plotted in Figure 9.3. The values of the other 

three hydraulic reliability measures of these optimal solutions are also 

calculated. The number of optimal solutions investigated for each case study 

and the correlation between aves and the other three measures ( mI , rI  and 

rMI ) are summarized in Table 9.1. Values of the cost and network resilience 

measures of four typical solutions for each case study are summarized in 

Table 9.2. The numbers and square symbols in Figure 9.3 show the locations 

of these typical solutions on the corresponding Pareto-optimal front. 
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Table 9.1 Correlation between average s  factor and other three network 

resilience measures ( mI , rI  and rMI ) for the first three case studies 

 

 

 

It can be seen from Figure 9.3 that there are significant tradeoffs between the 

cost of the network and the network resilience level represented by aves  for all 

three case studies. Often, a small increase in cost can result in significant 

increase in network resilience. Both Tables 9.1 and 9.2 show that aves  is 

highly correlated with the other three network resilience measures. The 

correlation coefficients between aves  and rI , and between aves  and rMI  are 

0.97 for the two-loop and Hanoi networks. The correlation between aves  and 

mI  is slightly lower. This is because aves , rI  and rMI  are all calculated based 

on the performance of the whole network, whereas, values of mI  are mainly 

affected by a number of critical nodes (one node for the two-loop network, 

one node for the Hanoi network and three nodes for the NYT problem). In 

addition, the correlation between aves  and the other three measures for the 

NYT problem are slightly lower. Again, the reason for this is that the mI , rI  

and rMI  values for the NYT problem are controlled by three critical nodes. 

Network Number of solutions 
Correlation 

aves  and mI  aves  and rI  aves  and rMI  

Two-loop 186 0.94 0.97 0.97 

NYT 737 0.75 0.82 0.82 

Hanoi 962 0.93 0.97 0.97 
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In contrast, the available input power and internal resistance of the pipes have 

the biggest impact on the calculation of aves . It is clear from the results 

presented above that although aves  focuses on a different aspect of network 

resilience compared with the other three network resilience measures 

investigated, aves  is highly correlated with these measures and can be used as 

an indicator of the network resilience of a WDS. 

 

 

9.5 Application results for the three-tank water 

transmission system 
 

The solutions for the three-tank WTS (Wu et al., 2010a) are also generated 

using a multiobjective approach, in which the life cycle cost is minimized and 

aves  is maximized. The life cycle cost is formulated as the sum of capital cost, 

pump refurbishment cost and operating cost. A design life of 100 years and a 

discount rate of 8% are used to calculate the pump refurbishment and 

operating costs. The life cycle cost evaluation process can be found in Wu et 

al. (2010a).  

 

The Pareto-optimal front formed by 507 optimal solutions is presented in 

Figure 9.4. It should be noted that for this case study, the values of mI , rI  and 

rMI  are always zero, regardless the configuration of the solution network, as 

water is delivered into tanks. Four typical solutions, which are marked using 

the unfilled square symbol and as solutions 1 to 4 in Figure 9.4, are selected 

for demonstration purposes. The network configurations of these four 

solutions are summarized in Table 9.3, and the flow distributions and aves  

values of these four solutions are summarized in Table 9.4. 
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Figure 9.4 Pareto-optimal solutions of the three-tank water transmission 

network 

 

 

It can be seen from Figure 9.4 that there are significant tradeoffs between life 

cycle cost and network resilience, as given by aves , for the three-tank WTS. 

Table 9.3 shows that as the pipe cost increases, the pump size decreases. This 

is because larger pipes result in smaller friction losses, which in turn reduces 

the power required to pump the required flow. The network resilience of this 

system is dependent on both pumping capacity and pipe sizes. As for this 

particular case study the pumps are sized according to the pipelines, pipe size 

dominates network resilience and thus the hydraulic reliability of the system. 

Solution 1 has the lowest pipe cost of $12.26 million. Table 9.4 shows that the 

aves  values of solution 1 are also the lowest, indicating a low level of network 

resilience. As the pipe sizes increase (moving from solution 1 to solution 4), 

the aves  values increase accordingly, indicating an overall increase in network 

resilience level. However, the minimum s  factors ( mins ) of solutions 2 and 3 

are still low, despite the increase in aves  values. This is caused by the low aves  

values of pipe 1 of solution 2 and pipe 2 of solution 3. In contrast, solution 4 
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has a more evenly distributed surplus power, which is also represented by the 

significantly reduced difference between the average and minimum s  factors. 

Compared to solutions 1 to 3, the average and minimum s  factors of solution 

4 are significantly higher. However, the life cycle cost of solution 4 is two 

times higher than that of solution 3 and the pipe cost of solution 4 is 

quadrupled compared to that of solution 1. 

 

 

9.6 Conclusions 
 

In this research, the suitability of using the surplus power factor ( s ) as a 

measure of the network resilience of WDSs has been assessed. Similar to the 

majority of existing network resilience measures, such as the minimum 

surplus head ( mI ), the resilience index ( rI ), and the modified resilience index 

( rMI ), the surplus power factor does not consider mechanical failures of 

WDSs, such as pipe breakage or the absence of alternative supply paths. In 

contrast, it is predominately used to quantify the excess capacity of a system 

in relation to a specified hydraulic failure condition. However, the surplus 

power factor has one significant advantage over existing network resilience 

measures. As the calculation of the surplus power factor does not require the 

value of the output pressure head of a network, it can be used to evaluate the 

network resilience of water transmission systems (WTSs); whereas most 

existing surplus power based WDS hydraulic reliability measures cannot be 

applied to such systems.  

 

In this research, the utility of the average surplus power factor ( aves ) as a 

network resilience measure was first tested by comparing it with three existing 

measures [the minimum surplus head ( mI ), resilience index ( rI ), and 

modified resilience index ( rMI )] for three WDS case studies. Then, a three-

tank transmission system was used to illustrate the application of the surplus 

power factor as a network resilience measure for a WTS. It was found that 

there exist significant tradeoffs between the cost and network resilience 
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represented by the surplus power factor and the surplus power factor is highly 

correlated with the three existing network resilience measures for all three 

case studies considered. In addition, use of the surplus power factor as a 

network resilience measure was demonstrated for a WTS. Consequently, the 

surplus power factor can potentially be used as a network resilience measure 

to incorporate hydraulic reliability considerations into the optimization of 

WDSs and particularly WTSs. 
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Abstract 

 

The optimization of water distribution systems (WDSs) is a complex problem 

that usually has multiple hydraulic constraints and design objectives. As a 

result, optimization techniques, such as multiobjective genetic algorithms, 

have been used to optimize WDSs. Apart from the traditional objective of 

minimization of the economic cost of the system, maximization of network 

hydraulic reliability levels and minimization of environmental impact, such as 

total life cycle greenhouse gas (GHG) emissions are two additional major 

design objectives of WDSs. In previous research, these two objectives have 

been incorporated into bi-objective WDS optimization individually, together 

with the traditional economic objective of minimizing the total life cycle cost 

of the system. However, these two additional objectives of hydraulic 

reliability maximization and GHG emission minimization have not been 

considered at the same time. This research extends previous research by 

incorporating economic, reliability and environmental objectives 

simultaneously into the optimization of WDSs via a multiobjective approach. 

The interaction of these three objectives in a three dimensional search space 

and the impact of the inclusion of the objective of hydraulic reliability 

maximization on the tradeoffs between the economic and environmental 

objectives are investigated via a case study. It is found that the inclusion of the 

third objective of maximizing hydraulic reliability in multiobjective WDS 

optimization introduces more practical and feasible solutions with reasonable 

cost, reduced GHG emissions and significantly improved reliability levels. 

The outcomes of this research provide useful insights into the optimization 

problem in order to assist the final decision making process. 
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10.1 Introduction 
 

The optimization of water distribution systems (WDSs) is a complex problem 

that usually has multiple hydraulic constraints and performance criteria, which 

often result in a large number of possible solutions. In the past, optimization 

techniques, such as genetic algorithms have been used to solve WDS 

optimization problems (Simpson et al., 1994). WDS optimization problems 

are further complicated in that multiple design objectives need to be 

considered. Apart from the traditional objective of minimization of the 

economic cost of the system, maximization of network reliability levels and 

minimization of environmental impact, such as greenhouse gas (GHG) 

emissions are two additional major design objectives of WDSs, which have 

been incorporated (separately) in previous research.  

 

 In some of the earliest work on the reliability of WDSs, Gessler and Walski 

(1985) used the excess pressure at the worst node in the system as a measure 

of benefit in a pipe network optimization problem to ensure sufficient water 

with acceptable pressure is delivered to demand nodes. Li et al. (1993) 

extended network reliability analysis to include a portion of hydraulic 

reliability – the capacity reliability. This is defined as the probability that the 

carrying capacity of a network meets the demand. Schneiter et al. (1996) 

applied the concept of capacity reliability to a WDS optimal rehabilitation 

problem.  

 

Multiobjective optimization of WDSs accounting for network reliability was 

first investigated by Halhal et al. (1997), in which the network cost and the 

total benefit (including the improvement in the pressure deficiencies in the 

network) were maximized. Since then, minimizing the head deficit at demand 

nodes has been used as a hydraulic capacity reliability measure in a number of 

multiobjective WDS optimization studies that considered both cost and 

system reliability (Savic, 2002; Keedwell and Khu, 2004; Jourdan et al., 2005; 

Atiquzzaman et al., 2006). In 2000, Todini (2000) introduced a resilience 

index approach that was incorporated together with minimization of cost into 
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multiobjective WDS optimization via a heuristic approach. Based on the 

resilience index, Prasad and Park (2004) introduced a network resilience 

measure and applied it to multiobjective genetic algorithm optimization of 

WDSs. Around the same time, Tolson et al. (2004) used a genetic algorithm 

coupled with the First Order Reliability Method (FORM) to obtain optimal 

tradeoffs between cost and reliability of WDSs represented by the probability 

of failure. Kapelan et al. (2005) applied a multiobjective approach to 

maximize the robustness of a WDS, which was represented as the possibility 

that pressure heads at all network nodes are simultaneously equal to or above 

the minimum required pressure. More recently, Jayaram and Srinivasan 

(2008) modified the resilience index introduced by Todini (2000) and applied 

it to the optimal design and rehabilitation of WDSs via a multiobjective 

genetic algorithm approach. 

 

The inclusion of objectives related to environmental factors in WDS 

optimization initially focused on the minimization of the energy consumption 

of the system. Ghimire and Barkdoll (2007) reported that seven percent of the 

world’s energy was used to pump and treat water for urban water users in 

2000 and this electricity consumption was expected to rise due to ever 

increasing population and demand. For most countries, electricity is currently 

generated from non-renewable sources, such as fossil fuels. Thus, WDSs 

involving pumping pose a burden on the environment through energy 

consumption. Many studies have been considered to minimize energy 

consumption/cost of WDSs. A review of earlier studies was carried out by 

Ormsbee and Lansey (1994). Other WDS operation energy minimization 

studies include those by Pezeshk and Helweg (1996), Nitivattananon et al. 

(1996), Ilich and Simonovic (1998), van Zyl et al. (2004) and Ulanicki et al. 

(2007).  

 

Direct environmental impacts of WDSs were not considered in the literature 

until 2006, when Dandy et al. (2006) used a single-objective approach to 

minimize the material usage, embodied energy and GHG emissions associated 

with the manufacture of PVC pipes. Since then, the focus of WDS 

optimization has switched to the incorporation of GHG emissions associated 
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with energy consumption. Wu et al. (2008b) first introduced GHG emission 

minimization as one objective into the multiobjective optimal design of 

WDSs. Dandy et al. (2008) used a multiobjective approach to optimize the 

cost and embodied energy when two different pipe materials were considered. 

In another study, Herstein et al. (2009b) included an environmental index as 

one of the objectives of a multiobjective WDS optimization problem, which is 

a single parameter consisting of measures of resource consumption, 

environmental discharges (including GHG emissions) and environmental 

impacts. In a subsequent study, Wu et al. (2010b) explored the tradeoffs 

between the traditional objective of minimizing life cycle economic cost and 

the environmental objective of minimizing life cycle GHG emissions in WDS 

design. They also investigated the impact of discount rates on these tradeoffs. 

In a related study, Wu et al. (2010a) investigated the impact of carbon pricing 

on the single-objective and multiobjective optimization of WDSs accounting 

for GHG emissions. 

 

As can be seen from previous research, economic cost, hydraulic reliability 

and environmental impact, especially in terms of GHG emissions are 

important design criteria for WDSs. In the past, these three criteria have only 

been considered in a pairwise fashion: either minimization of economic cost 

and maximization of network hydraulic reliability or minimization of 

economic cost and minimization of GHG emissions. The integration of these 

three objectives into the optimization of WDSs is the focus of the research 

presented here, which extends previous research on multiobjective 

optimization of WDSs accounting for economic cost and GHG emissions by 

introducing hydraulic reliability maximization as a third objective to form a 

three-objective optimization problem. The impact of the incorporation of the 

hydraulic reliability objective on the tradeoffs between the economic objective 

of minimizing cost and the environmental objective of minimizing GHG 

emissions and the interaction of the three objectives in a three dimensional 

space are investigated via a WDS case study from the literature. A 

multiobjective genetic algorithm called water system multiobjective genetic 

algorithm (WSMGA), which was developed by Wu et al. (2010b) based on 

the state-of-the-art multiobjective genetic algorithm NSGA-II (Deb et al., 
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2000), is used in this study to search for the Pareto-optimal solutions based on 

these three objectives. 

 

In the remainder of this paper, the formulation of the proposed three-objective 

optimization problem is introduced. Then, the case study and associated 

assumptions are presented. Thereafter, the optimization results for the 

tradeoffs among the economic, environmental and hydraulic reliability 

objectives are analyzed for the case study. Conclusions are presented at the 

end. 

 

 

10.2 Multiobjective WDS optimization problem 

formulation 
 

The WDS optimization problem presented in this paper is formulated as a 

multiobjective design problem, in which the best combination of the values 

for decision variables need to be determined in terms of certain objectives 

such that a number of constraints are satisfied. Thus, the WDS optimisation 

problem investigated in this paper can be expressed using the following 

equations: 

 

minimise/maximise       )(xfOFi =        mi ,...,2,1=                                 (10.1) 

 

subject to 

 

0≥jGF                         pj ,...,2,1=                                                           (10.2) 

0=kHF                         qk ,...,2,1=                                                           (10.3) 

 

and 

 

ttt UBxLB ≤≤
  

            nt ,...,2,1=                                                           (10.4) 
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where OF = objective functions; x  = vector of decision variables; n = the 

number of decision variables; m = the number of objectives; GF = inequality 

constraint functions; p = the number of inequality constraints; HF = equality 

constraint functions; q = the number of equality constraints; tLB  and tUB  are 

the lower bound and upper bound of the t th decision variable, respectively.  

 

In this paper, the decision variables of the WDS optimisation problem 

considered include pipe sizes, which often take discrete values, thus Eq. (10.4) 

can be expressed as: 

 

{ }tlttt xxxx ,...,, 21∈                                                                                     (10.5) 

 

where, { }tltt xxx ,...,, 21  are the l  discrete values of the t th decision variable.  

 

The constraints of the WDS optimisation problems considered in this paper 

mainly include hydraulic constraints, available options of decision variables 

and case study specific constraints. Hydraulic constraints refer to the physical 

rules that a hydraulic system must obey, which include: 

1. conservation of mass: The continuity of flow must be maintained at each 

node in the network; 

2. conservation of energy: The total head loss around a loop must be zero 

and the total head loss along a path must equal the difference between the 

water elevations at the two end reservoirs.  

The available options of decision variables include available diameters of 

pipes. The case study specific constraints include minimum allowable 

pressures at demand nodes. 

 

In this study, three objectives for the design of WDSs are considered, which 

include: 1) minimization of the total life cycle cost of the system; 2) 

minimization of the total life cycle GHG emissions from the system; 3) 

maximization of the hydraulic reliability of the system. The evaluation of the 

three objective functions (separately) have been presented in previous studies 



10 Publication 6: MO of WDSs Accounting for Cost, GHGs and Reliability 

212 
 

(Wu et al., 2010a; Wu et al., 2010b; Wu et al., 2011), but are summarized in 

the following section for the sake of completeness. 

 

 

10.3 Objective function evaluation 
 

10.3.1 Evaluation of total life cycle cost 
 

The total life cycle cost of a WDS considered in this paper includes capital 

costs, operating costs  and maintenance costs (Wu et al., 2010b). The capital 

cost consists of pump station cost, initial pump cost and pipe cost. Pump 

station cost and initial pump cost can be estimated based on the size of the 

pump, which is usually determined based on the network configuration and 

the peak-day demand (Wu et al., 2010b). Pipe cost is a function of pipe 

diameter and corresponding pipe length. Operating costs mainly result from 

the electricity consumption of system operation related to pumping during the 

design life of the system. In this study, a design life of 100 years is assumed 

for pipes, which is consistent with the suggestion by the Water Services 

Association of Australia (2002). Maintenance costs considered in this study 

are mainly due to the maintenance of pumps, which are assumed to be 

refurbished every 20 years or four times during the design life of the system 

(Wu et al., 2010b). The calculation of both operating cost and pump 

refurbishment cost require present value analysis. In this study, a discount rate 

of 8% is used, which has been used in previous related studies (Wu et al., 

2010a; Wu et al., 2010b; Wu et al., 2012a; Wu et al., 2012b). 

 

The annual electricity consumption ( AEC ) due to pumping can be calculated 

using the following equation: 
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where, t  is the time step [e.g. the time step in an extended period simulation 

(EPS)]; )(tP  is the pump power ( kW ); γ  is the specific weight of water 

( 3mN ); )(tQ  is the pump flow ( sm3 ); )(tH  is the pump head ( m ); 

pumpt)(η  and motort)(η  are the pump efficiency and motor efficiency, 

respectively; T  is the number of time steps; and t∆  is the duration of each 

time step (hours). In this study, a pump efficiency of 85% and a motor 

efficiency of 95%, which were used in previous similar studies (Wu et al., 

2010a; Wu et al., 2012b), have been assumed in the computation of the AEC  

for each pump. The annual operating cost can be calculated by multiplying the 

AEC  (in kWh) by the average electricity tariff (in $/kWh) of the 

corresponding year. In this paper, a base electricity tariff of $0.14/kWh is used 

for the first year of the design period. From the second year of the design 

period and onwards, the electricity tariff is assumed to increase at 3% per 

annum. The annual demand is assumed to be constant throughout the design 

life. A detailed discussion on the assumed electricity tariffs can be found in 

Wu et al. (2012a). 

 

10.3.2 Evaluation of total life cycle GHG emissions 
 

In this study, the total life cycle GHG emissions of a WDS are due to energy 

consumption related to the fabrication and use stages of the life cycle of a 

WDS (Wu et al., 2010b). The GHG emissions related to the energy 

consumption of the fabrication stage of a WDS are referred to as capital 

emissions. Only emissions from pipe manufacture are considered here as they 

represent the largest proportion of the impact (Filion et al., 2004). In order to 

calculate the energy consumption during the fabrication stage of a WDS, 

embodied energy analysis (EEA) is first used to convert the mass of pipes to 

their equivalent embodied energy. In this study, an embodied energy factor for 

ductile iron cement-mortar lined (DICL) pipes of 40.2 MJ/kg is used. This 

value was estimated by Ambrose et al. (2002) based on a combination of 

published data and actual factory manufacturing data.  
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Once the embodied energy consumption of a WDS is determined, emission 

factor analysis (EFA) is used to convert energy in MJ into GHGs in kg of 

CO2-e (carbon dioxide equivalent). In practice, emission factor values may 

vary across regions and with time, depending on the makeup of electricity 

energy sources (for example, thermal, nuclear, wind, hydroelectricity, etc.). In 

this study, a base average emission factor of 0.98 kg CO2-e/kWh is used for 

the first year of the design period, which was the full-fuel-cycle emission 

factor value of South Australia in 2007 (The Department of Climate Change, 

2008). Thereafter, the emission factor is assumed to decrease linearly to 70% 

of the 2007 level at the end of the design period of 100 years due to 

Government policy of encouraging a move to cleaner energy in the form of 

renewable energy sources. The base emission factor is used to calculate 

capital emissions. A detailed discussion of the assumed GHG emission factors 

can be found in Wu et al. (2012a). 

 

GHG emissions due to system operation of pumping are assumed to account 

for the majority of the emissions from the use stage of a WDS. The annual 

operating emissions are taken as the AEC  [defined in Eq. (10.1)] multiplied 

by the average emission factor of the corresponding year. The operating 

emissions due to pumping also occur over time within the design period, 

however, no discounting (that is a discount rate of zero percent) is applied to 

the calculation of pumping GHG emissions based on the recommendation of 

the Intergovernmental Panel on Climate Change (IPCC) (Fearnside, 2002).  

 

10.3.3 Evaluation of hydraulic reliability 
 

Difficulties arise when applying the hydraulic reliability measures currently 

used in literature to a WDS involving the delivery of water into storage 

facilities. This is because the calculation of these measures requires the 

difference between the required and minimum allowed pressure heads at the 

outlet of a system. In a system where water is delivered into tanks or 

reservoirs, this difference between pressures is always zero; thus, the values of 

the above reliability measures are always zero. In 2006, Vaabel et al. (2006) 
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introduced the concept of the surplus power factor ( s ), which can be used to 

measure the resilience of a network subject to failure conditions, and thus the 

hydraulic reliability of the network, on the basis of both pressure and flow. As 

the calculation of the surplus power factor does not require the value of the 

pressure head at the outlet of the system, it can be used to measure the 

resilience, and thus the  hydraulic reliability of a WDS involving delivery into 

storage facilities (Wu et al., 2011). As a result, the minimum surplus power 

factor in a network is used as the hydraulic reliability measure in the three-

objective WDS optimization formulation proposed in this study.  

 

The surplus power factor ( s ) developed by Vaabel et al. (2006) can be 

calculated using the following equation:  
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where a  is the flow exponent, inQ  is the flow in the pipe and maxQ  is the flow 

that leads to the maximum value of output power, which can be calculated 

using the following equation: 
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where, c  is the resistance coefficient of the pipe and inH  is the head at the 

inlet of the pipe. For a detailed derivation of the s  factor, please refer to 

Vaabel et al. (2006). 

 

The value of s  characterizes the hydraulic reliability of a WDS (Vaabel et al., 

2006). The range of the s  factor is from zero to 1. When  is equal to zero, 

the hydraulic system works at its maximum capacity. Under this condition, 

any leakage can result in hydraulic failure of the system in terms of meeting 

the needs of end water users, such as delivering enough water with sufficient 
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pressure. As the value of the s  factor increases, the resilience of the system to 

failure conditions increases, and so does the hydraulic reliability of the 

system. However, as long as the system delivers water to end users, the value 

of  cannot reach 1, as under such conditions the friction loss within the pipe 

will be equal to inH  and there will be no flow in the pipe. For a detailed 

discussion of the application of the  factor for estimating the hydraulic 

reliability of WDSs, refer to Wu et al. (2011).  

 

 

10.4 Case study  
 

10.4.1 Network description 
 

A WDS investigated by Duan et al. (1990) has been adopted and modified in 

this study to determine the impact of the incorporation of the hydraulic 

reliability objective on the tradeoffs between the economic objective of 

minimizing cost and the environmental objective of minimizing GHG 

emissions, as well as the interaction of the three objectives in three 

dimensional space. In the original study by Duan et al. (1990) six reliability 

parameters were included in the single–objective design process as 

constraints. In contrast, in this study, these reliability constraints are replaced 

by the hydraulic reliability objective of maximizing the minimum surplus 

power factor in the network. This is possible because the surplus power factor 

can be used to measure the hydraulic reliability of a piping system delivering 

water into reservoirs or storage tanks, as explained previously.  

 

The network configuration of the case study is shown in Figure 10.1. The 

network consists of one pump, one storage tank, 36 pipes and 16 demand 

nodes. The 24 hour extended period simulation (EPS) with defined demands 

for every six hours (i.e. 12am to 6am, 6am to 12pm, 12pm to 6pm and 6pm to 

12am) used in the original study is also used in this study. In the first EPS 

time step, the pump needs to both supply the required demand and fill the tank 
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Figure 10.1 Network configuration [adapted from Duan et al. (1988)] 

 

 

Table 10.1 Nodal information 

Node 
Demand for 

12am to 
6am (L/s) 

Demand for 
6am to 

12pm (L/s) 

Demand for 
12pm to 

6pm (L/s) 

Demand for 
6pm to 

12am (L/s) 

Elevation 
(m) 

1 30.0 36.0 33.0 45.0 6.1 
2 12.0 14.4 13.2 18.0 15.2 
3 12.0 14.4 13.2 18.0 15.2 
4 12.0 14.4 13.2 18.0 15.2 
5 30.0 36.0 33.0 45.0 15.2 
6 30.0 36.0 33.0 45.0 15.2 
7 30.0 36.0 33.0 45.0 15.2 
8 60.0 72.0 66.0 90.1 15.2 
9 30.0 36.0 33.0 45.0 15.2 

10 30.0 36.0 33.0 45.0 15.2 
11 12.0 14.4 13.2 18.0 24.4 
12 12.0 14.4 13.2 18.0 24.4 
13 12.0 14.4 13.2 18.0 24.4 
14 12.0 14.4 13.2 18.0 24.4 
15 47.9 57.5 52.7 71.9 24.4 
16 12.0 14.4 13.2 18.0 24.4 
17 0 0 0 0 15.2 
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Table 10.2 Pipe lengths 

Pipe No. Length (m) Pipe No. Length (m) 

1 15 19 2743 
2 3 20 1829 
3 3658 21 1829 
4 3658* 22 1829 
5 3658 23 1829 
6 2743 24 1829 
7 1829 25 1829 
8 2438 26 1829 
9 1829 27 1829 

10 1829 28 1829 
11 1829 29 1829 
12 1829 30 1829 
13 1829 31 1829 
14 1829 32 1829 
15 1829 33 1829 
16 1829 34 3658 
17 1829 35 3658 
18 1829 36 15 

*There is a discrepancy between the length of pipe 4 in the journal paper 
by Duan et al. (1990) (i.e. 1,200 feet) and that in the thesis by Duan 
(1988) (i.e. 12,000 feet). After examining the layout of the network, the 
authors chose the longer pipe length for pipe 4 presented in the thesis by 
Duan (1988), as it is more reasonable from a practical point of view. 

 

 

completely; in the second EPS time step, demand is supplied by both the 

pump and tank; in the third EPS time step, the pump delivers the required 

demand and partially fills the tank that is drained during the previous time 

step; while in the last time step of the EPS, demand again is supplied by both 

the pump and the tank. For details of the EPS, please refer to Duan et al. 

(1990). The demands, node elevations and pipe lengths in US customary units 

in the original paper have been converted into SI units in this paper and are 

summarized in Tables 10.1 and 10.2, respectively. The minimum head 

requirements at the demand nodes are 28.1 m (or 40 psi). The sizes of the 

pumps are determined based on the network configurations evaluated in the 

optimization process (Wu et al., 2010b). Sixteen ductile iron cement mortar 

lined (DICL) pipes of different diameters are used as decision variable 
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Table 10.3 DICL pipe options 

Option No Diameter (mm) Unit cost ($/m) Unit mass (kg/m) 

1 100 228 17.7 
2 150 307 30.0 
3 225 433 50.9 
4 300 568 74.1 
5 375 813 99.1 
6 450 1033 125.6 
7 525 1252 153.6 
8 600 1415 182.8 
9 675 1658 213.1 

10 700 1739 223.5 
11 750 1900 244.5 
12 800 1950 265.9 
13 825 1976 276.8 
14 900 2012 310.1 
15 960 2040 337.3 
16 1000 2142 355.7 

 

 

options. The available sizes of the pipes, and their corresponding unit costs 

and unit masses are summarized in Table 10.3. The Darcy-Weisbach head loss 

formulation is used. In order to account for pipe aging, four roughness values 

(0.0015, 0.1, 0.5, 1.0 mm) are used, each of which is assumed to represent the 

average roughness of pipes of every consecutive 25 years of the design period. 

 

10.4.2 Optimization parameters 
 

In this study, the EPANET2 hydraulic model (Rossman, 2000) is used within 

the WSMGA optimization program for the purpose of constraint and objective 

function evaluation. For the case study, 100 separate multiobjective genetic 

algorithm optimization runs with different random seeds have been conducted 

to ensure (near) Pareto-optimal solutions are found. Consequently, the 

resulting optimal front for each case study is formed from the best solutions 

found in the 100 optimization runs. A population size of 500, a maximum 

number of generations of 3000, a probability of crossover of 0.9 and a 



10 Publication 6: MO of WDSs Accounting for Cost, GHGs and Reliability 

220 
 

probability of mutation of 0.03 were used. The population size and generation 

number were selected based on the results of a number of test runs. The 

crossover probability was selected based on previous experience with 

optimization using genetic algorithms. The mutation probability was selected 

based on both test runs and the following rule of thumb: the probability of 

mutation is approximately equal to one over the length of the chromosome 

(the number of bits representing one individual). With the above genetic 

algorithm parameters, each multiobjective genetic algorithm run for the case 

study requires 14 CPU hours (2.66 GHz Intel Clovertown quad core 

processors), which result in a total of 1,400 CPU hours to conduct the 100 

runs.  

 

10.4.3 Optimization results and discussion 
 

A total of 1,768 Pareto-optimal solutions were found in terms of the three 

objectives as part of the 100 optimization runs for the case study. In order to 

identify these solutions, they are ordered numerically from D1 (i.e. Design 1) 

to D1768 (i.e. Design 1768) based on their economic costs. In other words, 

Solution D1 is the lowest cost solution in terms of economic cost and Solution 

D1768 is the most expensive. The total life cycle cost of the solutions ranges 

from 44.2 million dollars for Solution D1 to 94.0 million dollars for Solution 

D1768; while the total GHG emissions of these solutions range from 309 kilo 

tonne (kt) for Solution D285 to 388 kt for Solution D1768; and the minimum 

s  factor ranges from near zero for Solution D1 to 0.83 for Solution D1768. 

These Pareto-optimal solutions are plotted in Figure 10.2. The first plot in 

Figure 10.2 shows the three dimensional (3D) view of the Pareto-optimal 

front. Plots (b), (c) and (d) in Figure 10.2 show the optimal front from three 

different orientations: GHG emissions versus cost, minimum s  factor versus 

cost and minimum s  factor versus GHG emissions.  

 

The Pareto-optimal front representing the tradeoffs among the total cost, GHG 

emissions and minimum s  factor is close to a curve in the three-objective 

space, rather than a surface. This indicates that for the majority of the 
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Figure 10.2 Different views of the Pareto-optimal front 

 

 

objective space, the overall tradeoffs between the three objectives are 

dominated by the tradeoffs between two objectives only. This can be 

confirmed by the tradeoffs between each pair of the three objectives. Among 

the 1,768 Pareto-optimal solutions considering tradeoffs between all three 

objectives, there are only 44 solutions that are optimal if only the economic 

objective of minimizing cost and the environmental objective of minimizing 

GHG emissions are considered; and only 347 solutions are optimal if only the 

environmental objective of minimizing GHG emissions the hydraulic 

reliability objective of maximizing the minimum s factor are considered. In 

contrast, all of the 1,768 solutions are optimal when only the economic and 

hydraulic reliability objectives are considered. This demonstrates that the 

overall tradeoffs among the three objectives are dominated by the tradeoffs 
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between the economic and hydraulic reliability objectives in the majority of 

the objective space, as shown in Figure 10.2(c). The tradeoffs between the 

total life cycle cost and life cycle GHG emissions only exists in the low cost 

region, as shown in Figure 10.2(b); while in the higher cost region (i.e. 

economic cost higher than 46 million dollars), GHG emissions increase as the 

cost increases [Figure 10.2(b)], which results in the “V” shaped front from the 

economic-environmental-objective orientation of the Pareto-optimal front. 

The reason these high cost and high GHG solutions exist on the Pareto-

optimal front is due to their high hydraulic reliability levels, represented by 

their high minimum s  factor values.  

 

In order to investigate the impact of the interaction of the three objectives on 

the physical configuration of the network, six representative solutions from 

different regions of the Pareto-optimal front are selected and analyzed. These 

solutions include the minimum cost solution (D1), which also has the lowest 

minimum  factor value, the minimum GHG emission solution (D285), the 

highest minimum  factor solution (D1768), which also has the highest cost 

and GHG emissions, and three other solutions (D33, D858 and D1265) 

representing different tradeoffs among the three objectives. The locations of 

these solutions in the objective space are shown in Figure 10.3. The 

breakdown of the life cycle cost, life cycle GHG emissions and minimum  

factor values of these solutions are summarized in Tables 10.4 and 10.5, 

respectively. The network configurations of these solutions are summarized in 

Table 10.6. 

 

In a traditional single-objective WDS optimization accounting for the 

minimization of the economic cost only, Solution D1 (see Figure 10.3) is the 

only optimal solution that will be found. Solution D1 has a total life cycle cost 

of 44.2 million dollars (Table 10.4). However, it will emit in total 335 kt of 

GHGs over the design life of the system and has a minimum  factor value of 

almost zero, as shown in Table 10.5. The fact that a near-zero  factor exists 

in the network is very undesirable, as it indicates that during at least one time 

step there is at least one pipe working at its maximum hydraulic capacity and  
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Figure 10.3 Locations of selected solutions in the objective space 
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Table 10.4 Breakdown of life cycle costs of selected solutions  

Solution 
Total 

cost ($M) 
Pump station 

cost ($M) 
Pipe 

cost ($M) 
Pump refurbishment 

cost ($M) 
Operating 
cost ($M) 

D1 44.2 2.2 31.9 0.5 9.6 

D33 44.5 2.1 32.7 0.5 9.2 

D285 45.9 1.9 34.9 0.4 8.7 

D858 48.8 1.9 37.8 0.4 8.7 

D1265 55.7 1.9 44.7 0.4 8.7 

D1768 94.0 1.9 83.1 0.4 8.6 

 

 

 

 

Table 10.5 Breakdown of life cycle GHG emissions and the minimum and 

minimum  factors of selected solutions 

Solution 
Total 

GHG (kt) 
Pipe 

GHG (kt) 
Operating 
GHG (kt) 

Minimum 

 factor 

D1 335 39 295 0.0002 

D33 322 42 280 0.03 

D285 309 47 262 0.05 

D858 314 52 262 0.42 

D1265 324 61 262 0.60 

D1768 388 130 258 0.83 
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Table 10.6 Pipe diameters and objective function values of selected solutions 

Pipe 
Solutions 

D1 D33 D285 D858 D1265 D1768 

1 675 600 450 375 375 450 

2 900 600 960 700 1000 675 

3 100* 900 100* 300 450 1000 

4 300 100* 300 375 450 1000 

5 675 100* 1000 960 1000 1000 

6 100 300 100 100 100 1000 

7 300 600 225 225 100 800 

8 100 100 100 100 100 225 

9 300 300 100 100 300 375 

10 100 100 225 300 300 750 

11 100 300 100 100 100 675 

12 100 100 225 300 375 300 

13 100 100 100 100 100 225 

14 300 300 450 525 600 700 

15 300 300 225 225 300 525 

16 225 100 100 100 150 700 

17 100 100 100 100 225 1000 

18 225 225 225 225 225 960 

19 150 150 150 225 300 300 

20 150 100 150 100 225 100 

21 100 100 100 100 150 300 

22 100 100 100 100 100 150 

23 100 225 100 100 150 300 

24 100 100 100 100 100 375 

25 100 450 100 100 100 300 

26 600 225 900 960 825 600 

27 450 100 450 450 525 600 

28 225 100 225 225 300 525 

29 100 225 100 100 100 300 

30 100 100 100 100 100 525 

31 300 300 300 300 375 150 

32 225 225 225 225 300 375 

33 225 100 225 225 225 300 

34 100 100 100 100 100 150 

35 100 100 100 100 100 100 

36 675 600 675 375 300 450 

Total Cost ($M) 44.2 44.5 45.9 48.8 55.7 94 

Total GHG (kt) 335 322 309 314 324 388 

Min.  0.0002 0.03 0.05 0.42 0.60 0.83 

*Undesirable considering network reliability and real-world design practice. 
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Figure 10.4 Carbon cost slope of selected low cost solutions 

 

 

any leak could results in the failure of the system in terms of delivering 

sufficient water at required pressure to end water users. When GHG emission 

minimization is incorporated into the optimization of the system, another 43 

solutions, apart from Solution D1, are Pareto-optimal. These 44 solutions 

represent the optimal tradeoffs between the minimization of the total life cycle 

cost and the minimization of the total life cycle GHG emissions [as presented 

in previous studies (Wu et al., 2010a; Wu et al., 2010b)] – an increase in the 

total cost and resultant reduction in the GHG emissions. These solutions 

provide decision makers with alternative design options, when considering the 

tradeoffs between the economic and environmental objective. Among these 44 

solutions, Solution D285 generates the least GHG emissions of 309 kt, which 

is 13 kt less than those for Solution D1. However, Solution D285 is 1.7 

million dollars more expensive compared with Solution D1. On the other 

hand, Solution D33 is the solution where the reduction in GHG emissions per 

unit of cost increase is maximized. The carbon cost of selecting Solution D33 

instead of Solution D1 is $22/tonne of CO2-e based on the carbon cost slope 

concept introduced by Wu et al. (2010a), as shown in Figure 10.4. This carbon 

cost is lower than the Australian introductory carbon tax of 23 $/tonne of 
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CO2-e commencing from the 1st July 2012. In other words, Solution D33 

represents the point where marginal returns are diminishing on the Pareto-

optimal front obtained from optimizing the system accounting for the 

economic and environmental objectives at the currently proposed price of 

carbon. Consequently, Solution D33, which has a total cost of 44.5 million 

dollars and total GHG emissions of 322 kt (see Tables 10.4 and 10.5), is the 

best compromise solution when considering the optimal tradeoffs between the 

economic and environmental objectives. Both Solution D33 (  =0.03) and 

Solution D285 ( =0.05) have slightly improved hydraulic reliability levels 

compared with Solution D1 (see Table 10.5). However, the configurations of 

these three networks are not desirable from a practical point of view, as all of 

these networks have the minimum diameter (i.e. 100 mm) selected for at least 

one of the major pipes (i.e. pipes 3, 4 and 5, which are 3,658 m long) of the 

system (see Table 10.6). This is mainly because the economic objective of 

minimizing cost drives the search into low cost regions in the search space by 

trying to convert a looped network into a treed network, which is more cost 

effective. 

 

When the third hydraulic reliability objective is incorporated into the design 

optimization, together with the economic and environmental objectives, 

another 1,724 solutions with higher hydraulic reliability levels are introduced 

to the Pareto-optimal front, which results in the “V” shaped view shown in 

Figures 10.2(b) and 10.3(a) as mentioned previously. These solutions 

generally have larger pipe diameters compared to the 44 optimal solutions 

considering the tradeoffs between the economic and environmental objectives, 

which results in both higher cost and GHG emissions. These solutions include 

the highest minimum  factor solution D1768, whose minimum  factor is 

0.83 (see Table 10.5). This hydraulic reliability level is significantly higher 

than that of the solutions in the low cost regions (e.g. Solutions D1, D33 and 

D285). However, the cost of Solution D1768 is more than double that of the 

solutions in the low cost region and also generates extremely high GHG 

emissions, particularly due to the large capital GHG emissions contributed by 

the pipes (i.e. 388 kt in Table 10.5). Both the high cost and high GHG 
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emissions of Solution D1768 make it an undesirable design to implement in 

practice.  

 

Among these high hydraulic reliability solutions, networks representing 

reasonable tradeoffs between reliability and economic cost, and reliability and 

GHG emissions exist. For example, Solution D858 is 4.6 million dollars (i.e. 

10%) more expensive than solution D1; however, it generates 21 kt (i.e. 6.3%) 

less GHG emissions and significantly improves the hydraulic reliability of the 

system by raising the minimum  factor value in the system from near zero to 

0.42 (see Table 10.5). Similarly, solution D1265 is 11.5 million dollars (i.e. 

26%) more expensive than solution D1 (see Table 10.4); but reduces GHG 

emissions by 11 kt (i.e. 3.3%) and increases the minimum  factor value in the 

network to 0.60 (see Table 10.5). More importantly, the network 

configurations of both Solution D858 and Solution D1265 are more desirable 

form a practical point of view, with reasonable diameters selected for the 

major pipes (i.e. pipes 1, 2, 3, 4, 5 and 36), as can be seen from Table 10.6. 

This is an important finding, as it suggests that by including the hydraulic 

reliability, the optimization can lead to network solutions that are not only 

more reliable, but also more practically feasible and with reasonable cost and 

reduced GHG emissions.  

 

In order to gain insight into the impact of the inclusion of the hydraulic 

reliability objective of maximizing the minimum  factor on multiobjective 

WDS design optimization, the conditions under which the minimum  factor 

value occurs in the selected networks are summarized in Table 10.7. As can 

be seen, for the majority of cases, the minimum  factor occurs at one of the 

major pipes in the network (e.g. pipes 3, 4 and 5), and this is almost certain if 

the major pipe also has the minimum diameter of 100 mm. This is due to the 

high head loss in these pipes. As shown in Table 10.7, the minimum  factor 

value often occurs in the pipe where the maximum head loss occurs. This 

indicates that by including the maximization of the minimum  factor in the 

network as a third objective in the optimization, the optimization algorithm 

explores higher reliability regions by increasing the diameters of the pipes  
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where high head losses occur, which in a sense produces a counter effect to 

the motivation of searching for low cost regions driven by the economic 

objective of minimizing cost. This effect increases pipe costs and GHG 

emissions, but reduces operating costs and emissions in the low cost region. 

However, the operating costs and emissions cannot be reduced to zero due to 

the static head of the system against which the pumps need to work. 

Therefore, after the balance between the increase in the capital component of 

the cost or GHG emission and the operating component of the cost or 

emissions is reached, a further increase in the minimum  factor value in the 

network will result in significant increases in both economic cost and GHG 

emissions.  

 

In contrast, as can be seen in Table 10.7, the flow within the pipe and the 

pressure head at the outlet of the pipe can vary and are independent from the 

value of the  factor. This is because the  factor measures the hydraulic 

reliability of a WDS on the basis of both pressure and flow simultaneously, 

rather than separately (Vaabel et al., 2006). Therefore, there is no obvious 

direct relationship between the  factor and the output pressure head or 

between the  factor and the flow independently. In addition, all of the 

minimum  factor values occurred in the first or the last time step of the EPS. 

This is because in these two time steps, the system is under more hydraulic 

pressure - in time step one, demand is only delivered by the pump and the 

pump needs to fill the tank to capacity at the same time; while demand is 

highest in time step four.  

 

 

10.5 Conclusions 
 

The study presented in this paper extends previous research on multiobjective 

WDS optimization accounting for economic cost and GHG emissions by 

incorporating the third hydraulic reliability objective of maximizing the 

minimum surplus power factor ( ) into the optimization process. A case study 

water distribution system (WDS) with one pump, one tank, 36 pipes and 16 
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demand nodes from the literature has been modified and used as a case study 

to explore the interaction of the objectives in a three dimensional space and to 

investigate the impact of the inclusion of the third hydraulic reliability 

objective on the tradeoffs between the economic and environmental 

objectives.  

 

The optimization results show that the tradeoffs between the economic, 

environmental and reliability objectives manifest themselves as a three 

dimensional curve, and are largely dominated by the tradeoffs between the 

economic objective of minimizing life cycle cost and the hydraulic reliability 

objective. Consequently, the inclusion of the third hydraulic reliability 

objective introduced a large number of solutions into the Pareto-optimal front 

in addition to the optimal solutions expressing the tradeoffs between the 

economic objective of minimizing life cycle cost and the environmental 

objective of minimizing life cycle GHG emissions. These solutions often have 

higher economic cost and GHG emissions compared with the optimal 

solutions considering tradeoffs between the economic and environmental 

objectives. However, the reliability levels of these solutions are improved 

significantly compared to the optimal solutions considering the economic and 

environmental objectives only. In addition, it has been found that the optimal 

solutions considering the tradeoffs between the cost and GHG emission only 

are often undesirable from a practical point of view, as they often include the 

minimum diameter for one of the major pipes of the network in order to 

reduce the economic cost by trying to convert a looped network into a treed 

network. However, the inclusion of the third hydraulic reliability objective 

creates a counter effect to this drive created by the economic objective and 

leads to solutions that are more practically desirable and with reasonable cost 

and reduced GHG emissions. 

 

In conclusion, the incorporation of the third hydraulic reliability objective of 

maximizing the minimum  factor of the system into multiobjective WDS 

optimization accounting for economic cost and GHG emission minimization 

presents valuable additional information for the final decision making process 

by providing more alternative solutions. These solutions are not only more 
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reliable, but also reasonably priced and often with reduced GHG emissions. 

More importantly, many alternative solutions resulting from the inclusion of 

the third hydraulic reliability objective are more feasible for practical 

implementation. 
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Chapter 11 

 

Conclusions  

 

 

 

Multiobjective optimization is becoming an increasingly important approach 

for both the design and operation of water distribution systems (WDSs). 

Given the multiobjective nature of these problems, multiobjective 

optimization is expected to provide decision makers with increased insight 

into the tradeoffs between competing objectives and alternative solutions of 

WDSs which may benefit the water industry, society and environment. Due to 

the advances in computing technology and the development of fast 

multiobjective sorting algorithms, research activities in the application of 

multiobjective algorithms to WDS design and operation have increased 

significantly in the past decade. More environmental related issues, such as 

energy conservation, have been incorporated into the optimization of WDSs. 

However, the leading environmental concern – Greenhouse gas (GHG) 

emissions – has not been addressed directly in the field of WDS optimization. 

Consequently, in the research presented in this thesis, GHG emission 

minimization has been incorporated directly into the optimal design of WDSs 

via a multiobjective approach, together with the economic objective of 

minimizing cost and the reliability objective of maximizing hydraulic 

reliability of a network.  
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11.1 Research contributions 
 

The overall contribution of this research is the incorporation of GHG emission 

minimization into the optimal design of WDSs via a multiobjective approach, 

together with the traditional economic and reliability objectives. Ultimately, it 

is hoped that this will lead to the consideration of environmental objectives 

and the adoption of a multiobjective framework for the design of WDSs in the 

real world. The details of specific contributions of this research are as follows: 

 

1. The first contribution of this research is the development of a framework 

for evaluating the life cycle GHG emissions of WDSs and to incorporate 

them into the optimization of WDS design via a multiobjective approach. 

This is the first time that GHG emissions have been directly considered in 

WDS optimization as a design objective via a multiobjective approach. It 

is hoped that this research will open the gate to a new paradigm for the 

design and operation of WDSs.  

 

2. The second contribution of this research is that it provides insight into the 

tradeoffs between the economic objective of minimizing life cycle cost 

and the environmental objective of minimizing life cycle GHG emissions 

of WDS designs. By using multiobjective optimization, a set of optimal 

solutions, rather than one optimal solution, is obtained. Each of these 

optimal solutions is unique in that each of them provides different 

tradeoffs or preference between the two objectives. For example, in some 

instances, a small additional economic investment at the beginning of the 

project can result in a reduction in both economic cost and GHG 

emissions from a WDS in the long run. These tradeoffs can be 

represented using the carbon cost slope (see Figure 5.5) developed in this 

research, which is expressed as the increase in economic cost in terms of 

every unit reduction in GHG emissions. The development of this carbon 

slope concept is an important contribution of this research and it can be 

used to compare the effectiveness of reducing GHG emissions from 

selecting different Pareto-optimal solutions. Insights such as these 
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improve designers’ understanding of the design search space and the 

alternative solutions provide decision makers with an avenue for 

influencing Government policy in relation to the reduction of GHG 

emissions into practice.  

 

3. This research investigates the impact of a potential emissions trading 

scheme, where carbon related emissions are priced, on the way GHG 

emissions are incorporated into the optimization of WDSs. Once a 

monetary carbon price is determined by either evaluation methods or a 

carbon market, the environmental objective function value, which is 

generally expressed in tonnes of GHG emissions, can be converted into 

dollars, which enables a single-objective approach to be used. This raises 

the question of whether the introduction of carbon pricing under an 

emissions trading scheme will make the use of a multiobjective approach 

for WDS optimization obsolete or whether such an approach can provide 

additional insight that is useful in a decision-making context. This 

question is explored by comparing single-objective and multiobjective 

approaches for WDS optimization accounting for GHG emissions. The 

comparison results clearly demonstrate that even though the single-

objective approach is easier to implement and can lead to a simpler 

decision-making process, the multiobjective approach is far superior than 

the single-objective approach in that: 1) it provides decision makers more 

insight into the WDS optimization problem by showing the tradeoffs 

between competing objectives explicitly; 2) a carbon cost mapping of the 

objective space can be obtained, which can be used to determine the 

single-objective optimal solution for any given carbon price; and 3) the 

multiobjective approach provides decision makers with a clear indication 

of the effectiveness of a specific carbon price in reducing GHG emissions 

relative to other carbon prices.  

 

4. The sensitivity of the tradeoffs between the economic and environmental 

objectives of WDS optimization to discount rate, electricity tariffs and 

emission factors used in the objective function evaluation process is also 

investigated in this research. The sensitivity analysis results show that the 
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discount rate and electricity tariffs have little impact on the life cycle 

GHG emissions of WDSs. However, a lower discount rate and higher 

electricity tariffs into the future can remove some higher GHG emission 

solutions from the Pareto-optimal front obtained using multiobjective 

optimization, which potentially leads to a WDS design with lower GHG 

emissions. The emission factors have a significant impact on the life 

cycle GHG emissions of WDSs. As a result, switching from combustion 

of fossil fuels to renewable energy sources, such as solar, wind or 

hydroelectric energy, is an effective method of reducing GHG emission 

from WDSs. Based on the results of this research, decision makers are 

able to gain access to insight in relation to how Government policies 

could help to mitigate global warming by reducing GHG emissions from 

the water industry. 

 

5. Another major contribution of this research is the development of a pump 

power estimation method which enables the incorporation of variable 

speed pumps (VSPs) in the optimization of the design of WDSs. VSPs 

have been used in the optimization of the operation of existing WDSs in 

the literature. However, due to the dynamic natures of VSPs, direct 

consideration of VSPs in the optimization of the design of WDSs remains 

a challenge and consequently fixed speed pumps (FSPs) are often used. 

This research addresses this problem by introducing an optimization 

based pump power estimation method, which can be used to quickly and 

repeatedly estimate the pumping energy consumption of a large number 

of network configurations within an optimization process. This research 

demonstrates that switching from FSPs to VSPs for new WDSs is another 

effective way of reducing GHG emissions from WDSs.  

 

6. Hydraulic reliability is an important aspect for the design of WDSs. 

Therefore, a number of studies have been dedicated to incorporating 

hydraulic reliability considerations into the optimization of WDSs. 

However, the hydraulic reliability measures commonly used cannot be 

used for WDSs involving pumping water into reservoirs or storage tanks, 

which are often the primary cause of GHG emissions. Consequently, one 
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part of this research has involved finding a suitable hydraulic reliability 

measure for such WDSs and assessing the applicability of this measure as 

an indicator of the hydraulic reliability of WDSs. The results of this 

research enable the investigation of tradeoffs between economic and 

hydraulic reliability objectives for WDSs involving pumping water into 

storage facilities.  

 

7. In this research, the environmental objective of minimizing the life cycle 

GHG emissions is incorporated into the optimization of WDSs together 

with the economic objective of minimizing life cycle cost and the 

hydraulic reliability objective of maximizing the minimum surplus power 

factor of a network via a multiobjective approach for the first time. The 

tradeoffs among the three competing objectives manifest themselves as a 

three dimensional curve, and are largely dominated by the tradeoffs 

between the economic and hydraulic reliability objectives. Consequently, 

the inclusion of the third hydraulic reliability objective introduced a large 

number of solutions into the Pareto-optimal front in addition to the 

optimal solutions expressing the tradeoffs between the economic and 

environmental objectives. These alternative solutions are generally more 

expensive, but with significantly improved hydraulic reliability levels. 

More importantly, it has been found that the inclusion of the hydraulic 

reliability objective of maximizing surplus power factor can direct the 

optimization algorithm to search for solution networks that are more 

feasible to implement in practice, but still have reasonable cost and 

reduced GHG emissions. 

 

8. A significant amount of this research has been dedicated to the 

development of a multiobjective genetic algorithm called the water 

system multiobjective genetic algorithm (WSMGA), which is used 

throughout the course of this research. WSMGA is developed based on 

the state-of-art multiobjective genetic algorithm NSGA-II (non-

dominated sorting genetic algorithm II). The original binary coding 

scheme in NSGA-II has been replaced by an integer coding scheme, 

which caters for the discrete decision variables generally encountered in 



11 Conclusions 

238 
 

WDS optimization problems An archive strategy used in the Strength 

Pareto Evolutionary Algorithm 2 (SPEA2) (Zitzler et al., 2002) is also 

incorporated into the development of WSMGA in order to improve its 

performance. In addition, an extra function has been developed for 

WSMGA to implement the optimization based pump power estimation 

method proposed in Chapter 7. 

 

 

11.2 Publications 
 

Apart from the six journal articles which form the main body of this thesis, 

nine conference papers have also resulted from this research. A list of all of 

the publications arising from this research is presented below. 

 

Journal articles: 

 

1. Wu, W., Simpson, A. R., and Maier, H. R. (2010). "Accounting for 

Greenhouse Gas Emissions in Multiobjective Genetic Algorithm 

Optimization of Water Distribution Systems." Journal of Water Resources 

Planning and Management, 136(2), 146-155. 

 

2. Wu, W., Maier, H. R., and Simpson, A. R. (2010). "Single-Objective 

versus Multi-Objective Optimization of Water Distribution Systems 

Accounting for Greenhouse Gas Emissions by Carbon Pricing." Journal of 

Water Resources Planning and Management, 136(5), 555-565. 

 

3. Wu, W., Simpson, A. R., and Maier, H. R. (2012) “Incorporation of 

Variable-speed Pumping in Multiobjective Genetic Algorithm 

Optimization of the Design of Water Transmission Systems.” Journal of 

Water Resources Planning and Management, (in press). 

 

4. Wu, W., Maier, H. R. and Simpson, A. R. (2012). “Sensitivity of Optimal 

Tradeoffs between Cost and Greenhouse Gas Emissions for Water 



11 Conclusions 

239 
 

Distribution Systems to Electricity Tariff and Generation.” Journal of 

Water Resources Planning and Management. 138(2), 182-186. 

 

5. Wu, W., Maier, H. R. and Simpson, A. R. (2011) “Surplus Power Factor as 

a Resilience Measure for Assessing Hydraulic Reliability in Water 

Transmission System Optimization.” Journal of Water Resources 

Planning and Management. 137(6), 542-546. 

 

6. Wu, W., Maier, H. R. and Simpson, A. R. (2012). “Multiobjective 

Optimization of Water Distribution System Design Accounting for 

Economic Cost, Greenhouse Gas Emissions and Hydraulic Reliability.” 

Water Resources Research. (submitted). 

 

Conference articles: 

 

1. Wu, W., Maier, H. R., and Simpson, A. R. (2008). "Genetic Algorithm 

Optimization of Water Distribution Systems Accounting for Greenhouse 

Gas Emissions." 9th National Conference on Hydraulics in Water 

Engineering, Engineers Australia, Darwin Convention Centre, Australia. 

 

2. Wu, W., Simpson, A. R., and Maier, H. R. (2008). "Multi-objective 

Genetic Algorithm Optimization of Water Distribution Systems 

Accounting for Sustainability." Water Down Under 2008: Incorporating 

31st Hydrology and Water Resources Symposium and the 4th 

International Conference on Water Resources and Environment Research 

(ICWRER), Adelaide, Australia. 

 

3. Wu, W., Simpson, A. R., and Maier, H. R. (2008). "Water Distribution 

System Optimization Accounting for a Range of Future Possible Carbon 

Prices." 10th Annual Symposium on Water Distribution Systems Analysis, 

American Society of Civil Engineers, Kruger National Park, South Africa. 

 

4. Wu, W., Maier, H. R., and Simpson, A. R. (2009). "Multi-objective 

Water Distribution System Optimization Accounting for Carbon 
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Emissions under Different Electricity Tariffs." Ozwater '09, Melbourne, 

Australia. 

 

5. Wu, W., Simpson, A. R., and Maier, H. R. (2009). "Accounting for 

Carbon: Selecting the Right Discount Rate for Multi-objective 

Optimization of Water Distribution System." SA Branch Regional 

Conference & Operators Forum, Australian Water Association, Adelaide, 

Australia. 

 

6. Wu, W., Simpson, A. R., and Maier, H. R. (2009). "Trade-off Analysis 

between Cost and Reliability of Water Distribution Systems Using 

Genetic Algorithms." Computing and Control in the Water Industry 2009 

'Integrating Water Systems', London, U.K. 

 

7. Wu, W., Simpson, A. R., and Maier, H. R. (2010). "Reducing Carbon 

Footprint from Water Distribution Systems by Using a Lower Discount 

Rate." Practical Responses to Climate Change National Conference 2010, 

Engineers Australia, Melbourne, Australia. 

 

8. Wu, W., Simpson, A. R., and Maier, H. R. (2010). "Accounting for 

Carbon: Selecting the Appropriate Discount Rate for Multi-objective 

Optimization of Water Distribution Systems." Ozwater'10, Australia 

Water Association, Brisbane, Australia. 

 

9. Wu, W., Simpson, A. R., and Maier, H. R. (2011). "Reducing Greenhouse 

Gas Emissions from Water Distribution Systems using Multi-objective 

Optimization and Variable Speed Pumping." OZWater'11, Australian 

Water Association, Adelaide. 

 

The third conference paper listed above won the Second Best Paper Award at 

the 10th International Water Distribution Systems Analysis (WDSA) 

Conference, American Society of Civil Engineers, in South Africa, 17-20 

August, 2008. 
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11.3 Research limitations 
 

The limitations of this research are discussed below: 

 

1. The estimates of life cycle cost and GHG emissions in this research are 

dependent on the data available. Due to limited data, capital emissions 

from the manufacture of network components other than pipes, such as 

pumps, valves and storage tanks, could not be included. In addition, the 

emission factors used in this research are for South Australia only. 

However, many network components are manufactured in developing 

countries, where the emission factors are higher than in South Australia. 

As a result, the proportion of capital GHG emissions in the life cycle 

GHG emissions may be higher than those indicated in this research. 

Despite the limitation of the available data, the methodology presented in 

this research can be applied to WDS optimization in any region or 

country where the required data are available. 

 

2. Estimation of operating energy consumption of WDSs due to pumping is 

an important step in the evaluation of the economic and environmental 

objective functions of the multiobjective WDS optimization framework 

proposed in this research. The pumping energy consumption of a WDS is 

best estimated using extended period simulation (EPS). However, it is 

very difficult to incorporate EPS over a long design period (e.g. 100 

years) with specific operational rules for each of the tens of thousands of 

network configurations that need to be evaluated in a design optimization 

process. As a result, in Chapter 6, a 48-hour EPS and generic rules are 

used for pumping energy estimation. However, EPS with generic 

operational rules can introduce bias and uncertainties into the 

optimization process, as the generic rules may suit some network 

configurations better than others. Consequently, whether or not to use 

EPS and/or how to incorporate EPS into the design optimization of WDSs 

with a long design life (e.g. 100 years) remains a question. 
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3. The pump power estimation method proposed in Chapter 7 requires 

repeated calculation of flows and heads in one time step in an EPS, which 

cannot be done in the EPANET2 hydraulic solver used in this research. 

As a result, whenever the pump power estimation method is used in this 

research, a simplified EPS with a number of steady states, each 

representing a time step, is used. Consequently, implementing the pump 

power estimation method proposed in this research with real EPS 

including interactions between pumps and tanks remains an area of 

further research. 

 

4. Finding global best Pareto-optimal solutions has always been the focus in 

multiobjective optimization. However, in practice, not all optimal 

solutions can be implemented with the desired precision for various 

reasons. One major reason for this is that the globally optimal solution is 

sensitive to variable perturbations in its vicinity (Deb and Gupta, 2005). 

Therefore, robustness is an important consideration in multiobjective 

optimization. The sensitivity study conducted in Chapter 8 is the first step 

towards addressing the robustness issue in the multiobjective 

optimization of WDSs. However, this issue needs to be explored further 

in future research. 

 

5. The majority of the case studies used in this research are hypothetical 

networks, and are relatively small in scale compared to real world WDSs. 

It is anticipated that the methodologies developed in this research based 

on these hypothetical case studies can be easily applied to real world case 

studies. However, the applicability of the framework to real world 

systems remains untested.  

 

6. The WSMGA software developed in this research is a typical research 

program and users need to know the C programming language in which it 

is written in order to use it. This limits the potential users of the program, 

and a user interface which enables users to input data and automatically 

generate outputs (e.g. Pareto-optimal fronts) would significantly increase 

the usefulness of the software. 
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11.4 Recommendations for future work 
 

A number of the limitations of the current research presented in the previous 

section also represent opportunities for future research, including: 

 

1. Multiobjective WDS optimization accounting for GHG emissions relies 

on a large amount of data, such as embodied energy of network work 

components and emission factors, for GHG emission estimation. Data 

collection and estimation for evaluating GHG emissions has been done 

for some regions and in some disciplines (Treloar, 1994; The Department 

of Climate Change, 2008). Such work should continue to assist GHG 

emission evaluation in every field, including WDS optimization. 

 

2. There is no doubt that the inclusion of accurate EPS with realistic 

operational rules will improve the estimation of pumping energy 

consumption of WDSs. Future work should consider the development of 

a dynamic EPS that changes over time based on future demand. A 

methodology is also needed to take into account the uncertainties and bias 

that can be introduced by the inclusion of EPS in the optimal design of 

WDSs, particularly for systems with a long design life, such as 100 years.  

 

3. The pump power estimation method proposed in this research can be used 

to incorporate both FSPs and VSPs into the design optimization of 

WDSs. However, as mentioned in the previous section, the method 

cannot be implemented with EPS when EPANET2 is used as the 

hydraulic solver. Future research should consider the use of an alternative 

hydraulic solver, which can repeatedly calculate the flows and heads of 

the network at each time step of an EPS. This would enable the inclusion 

of VSPs together with EPS in the optimal design of WDSs using 

optimization. 

 

4. There is a need to incorporate robustness considerations into the 

multiobjective optimization of WDSs. This would enable the sensitivity 

of the optimal solutions to the perturbation of variables and parameters to 
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be taken into account. This will improve the precision of the 

implementation of the design in the real world and potentially eliminate 

or reduce the number of costly redesigns. 

 

5. Future research should consider the application of the multiobjective 

WDS optimization framework developed in this research to real world 

WDSs.  

 

6. The WSMGA is developed purely for research purposes and is not very 

user friendly. Further work should consider improving the program by 

including a user-friendly interface. In addition, during the course of this 

research, a number new algorithms claiming to perform better than 

NSGA-II, such as the non-dominated ranking genetic algorithms or 

NRGA (Jadaan et al., 2008), have been developed for multiobjective 

optimization. The performance of the program can be improved by 

incorporating the key features of these newly introduced algorithms. 

 

Other opportunities for further research include: 

 

7. This research focuses on the optimal design of new WDSs accounting for 

economic cost, GHG emissions and hydraulic reliability. The framework 

developed in this research can easily be revised to account for economic 

cost, GHG emissions and the hydraulic reliability of existing WDSs. 

Thus, optimizing operational strategies of existing WDSs accounting for 

multiple objectives, including GHG emission minimization, remains a 

research opportunity. 

 

8. The parameter setting of a genetic algorithm (GA) has a significant 

impact on its performance. When a GA is calibrated correctly, its 

performance will be maximized for a given problem formulation (Gibbs, 

2008). The WSMGA parameters used in this research are determined 

based on a number of trial studies and the author’s experience with GAs. 

However, a systematic study is required to develop a methodology to 

determine the most suitable multiobjective GA or WSMGA parameter 
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settings for a given WDS optimization problem. This will improve the 

confidence in the Pareto-optimal solutions obtained using the algorithm. 
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Appendix A1: Sample evaluatepop function code in C 

 

Appendix A2: Sample WSMGA input file “input.in” 

 

Appendix A3: Sample UNIX system script “job” 

 

Appendix A4: Sample UNIX system script “runjobs” 
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Appendix A1: Sample code for the evaluatepop function in C 

 

The sample code for the evaluationpop function is contained in the compact 

disc attached to this thesis.  

 

 

 



Appendix A Sample code 

271 
 

Appendix A2: Sample WSMGA input file “input.in 
 
3000     // number of generations 
500     // number of population 
2     // number of objective functions 
3     // number of constraints 
1.0     // possibility of crossover 
0.1     // possibility of mutation 
8     // number of integer DVs* 
1     // the input options are the same 
16     // number of options for each DV 
100 228 17.70  0 0 // 1st options for DV: dia., cost, mass 
150 307 30.02  0 0 // 2nd options for DV 
225 433 50.91  0 0 // 3rd options for DV 
300 568 74.07  0 0 // 4th options for DV 
375 813 99.07  0 0 // 5th options for DV 
450 1033 125.64  0 0 // 6th options for DV 
525 1252 153.60  0 0 // 7th options for DV 
600 1415 182.79  0 0 // 8th options for DV 
675 1658 213.12  0 0 // 9th options for DV 
700 1739 223.46  0 0 // 10th options for DV 
750 1900 244.49  0 0 // 11th options for DV 
800 1950 265.94  0 0 // 12th options for DV 
825 1976 276.82  0 0 // 13th options for DV 
900 2012 310.06  0 0 // 14th options for DV 
960 2040 337.26  0 0 // 15th options for DV 
1000 2142 355.69  0 0 // 16th options for DV 
0     // number of real DVs 
 
*DV=decision variables 
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Appendix A3: Sample UNIX system script “job” 
 
#!/bin/tcsh 
 
set exe = executable.exe 
set inF = input.in 
set seed = $1 
set subF = $exe-$seed.submit 
 
echo '#\!/bin/tcsh' > $subF 
echo '#PBS -V' >> $subF 
echo "#PBS -N $exe-$seed" >> $subF 
echo '#PBS -j oe' >> $subF 
echo '#PBS -m ae' >> $subF 
echo '#PBS -M wwu@civeng.adelaide.edu.au' >> $subF 
echo '#PBS -q hydra' >> $subF 
echo '#PBS -l nodes=1,walltime=336:00:00' >> $subF 
 
echo 'cd $PBS_O_WORKDIR' >> $subF 
echo 'set localJobDir = /tmp/$PBS_JOBID' >> $subF 
echo 'set outF = $PBS_O_WORKDIR/'"$exe""_$seed.out" >> $subF 
echo 'cp $PBS_O_WORKDIR/* $localJobDir' >> $subF 
echo 'cd $localJobDir' >> $subF 
echo "./$exe $seed < $inF" >> $subF 
echo 'mv plot.out $outF' >> $subF 
 
qsub $subF 
 
 



Appendix A Sample code 

273 
 

Appendix A4: Sample UNIX system script “runjobs” 
 
#!/bin/tcsh 
 
set seeds = (0.111 0.123) 
 
foreach s ($seeds) 
   job $s 
end 
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WSMGA Test Results 

 

 

 

Appendix B1: Summary of test functions (all objective functions need to be 

minimized) 

 

Appendix B2: WSMGA test results against NSGA-II 
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Appendix B1: Summary of test functions (all objective functions need to be 

minimized) 
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Appendix B2: WSMGA test results against NSGA-II 
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Figure B2-1 Non-dominated solutions obtained on POL (real number coding 
scheme) 
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Figure B2-2 Non-dominated solutions obtained on ZDT2 (real number coding 
scheme) 
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Figure B2-3 Non-dominated solutions obtained on TNK (real number coding 
scheme) 
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