Neurophysiology and Electrophysiology of Human and Murine Dental Pulp Stem Cells

Kylie Ellis

BSc, BPsych(Hons)

Discipline of Physiology

School of Medical Sciences

The University of Adelaide

February 2014

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

Declaration

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Manuscript accepted for publication 10 February 2014:

Neuronal differentiation of murine dental pulp stem cells in vitro. Stem Cell Research & Therapy, 2014

Kylie Ellis

Date

Acknowledgements

The development and preparation of this thesis has been an extremely challenging yet highly rewarding journey. I have no doubt it would not exist were it not for the intellectual and emotional support of many people around me, some of whom I would now like to take the opportunity to thank.

Firstly to my supervisors David O'Carroll, Simon Koblar and Martin Lewis who helped me tackle an unknown world between academic disciplines with scientific eyes. Thanks also to Keiichi Torimitsu for the opportunity to work in Japan.

To my lab mates across the years, thank you for the laughs, the games and the beers. It's been great to have good friends amongst my colleagues and to count on you for your time, help and extra reagents when need be. I would particularly like to thank my friend and colleague Elizabeth Harford-Wright for keeping me sane throughout the final stages of this journey. Your record timing thesis feedback was invaluable, but insignificant compared to your general support.

My family has always been my biggest cheer squad. Thank you all for believing in me with unwavering support and understanding. I'm proud that you are all now well versed in neurophysiology terms. You must have been listening!

Finally, to my partner JR, you have kept me grounded with a sense of perspective throughout many dire days. Thanks for being wonderfully supportive and reminding me of what everyday life is about when that information was pushed out of my brain to make way for other, stem cell-related things.

Abbreviations

α-MEM	Alpha-Modified Eagles Medium
Ba ²⁺	Barium
BDNF	Brain-Derived Neurotrophic Factor
BMSC	Bone Marrow Stromal Cell
Ca ²⁺	Calcium
ChABC	Chondroitinase ABC
ChAT	Choline Acetyltransferase
CI-	Chlorine
СМ	Conditioned Medium
CNS	Central Nervous System
CO ₂	Carbon Dioxide
CSPG	Chondroitin Sulfate Proteoglycan
Cx43	Connexin 43
DAPI	4',6-diamidino-2-phenylindole
DIV	Days in vitro
DMEM	Dulbecco's Modified Eagles Medium
DPSC	Dental Pulp Stem Cell
ECM	Extracellular Matrix
ECoG	Electrocorticography
EEG	Electroencephalography
EM	Electron Microscopy
ER	Epigenetic Reprogramming
ESC	Embryonic Stem Cell
FBS	Fetal Bovine Serum
FES	Functional Electronic Stimulation
FGF	Fibroblast Growth Factor
GAD65/67	Glutamic Acid Decarboxylase 65/67
GAG	Glycosaminoglycan
GFAP	Glial Fibrillary Acidic Protein
H_2O_2	Hydrogen Peroxide
HAS	Hyaluronin Synthase

hDPSC	Human Dental Pulp Stem Cell
hFF	Human Foreskin Fibroblasts
IBMX	3-Isobutyl-1-methylxanthine
IHC	Immunohistochemistry
Interferon-y	IFN-γ
ITO	Indium Tin Oxide
K⁺	Potassium
MAG	Myelin Associated Glycoprotein
MCS	Multi Channel Systems
mDPSC	Murine Dental Pulp Stem Cell
MEA	Microelectrode Array
MMP	Matrix Metalloproteinase
MT	Middle Temporal Area
Na⁺	Sodium
NeuN	Neuronal Nuclei
ND	Neuronal Differentiation
NDS	Normal Donkey Serum
NFM	Neurofilament-Medium Chain
NGF	Nerve Growth Factor
NM	Neuronal Maturation
NPC	Neural Progenitor Cell
NSC	Neural Stem Cell
NSPC	Neural Stem/Progenitor Cell
NT-3	Neurotrophin 3
NTT	Nippon Telephone and Telecommunications
Omgp	Oligodendrocyte Myelin Glycoprotein
PBS	Phosphate Buffered Solution
PEI	Poly(ethyleneimine)
PFA	Paraformaldehyde
PLL	Poly-I-lysine
PLO	Poly-I-ornithine
PNN	Perineuronal Net
SD	Standard Deviation
SEM	Standard Error of Noise

SHED	Stem Cells from Human Exfoliated Deciduous Teeth
SiO2	Silicon Oxide
XT-1	Xylotransferase-1
ТВІ	Traumatic Brain Injury
TEM	Transmission Electron Microscopy
ТН	Tyrosine Hydroxylase
TiN	Titanium Nitride
Tn-R	Tenascin-R
ТРА	Phorbol 12-myristate 13-acetate
TTX	Tetrodotoxin
V1	Visual Area 1 (visual cortex)
V4	Visual Area 4
V5	Visual Area 5
vGlut2	Vesicular Glutamate Transporter 2
WFA	Wisteria Floribunda Agglutinin

Table of Contents

Declaration	ii
Acknowledgements	iii
Abbreviations	iv
Table of Contents	vii
List of Figures	xii
List of Tables	xiv
Abstract	xv
Chapter 1: Introduction	1
Introduction	2
1.1 The brain-machine interface	2
1.1.1 Visual prosthesis	4
1.1.2 The motor system	10
1.2 Functional limitations of the brain machine interface	13
1.2.1 Material modifications of the brain machine interface to improve biocompatibility	14
1.3 Neuroplasticity	17
1.3.1 The ECM in the healthy adult CNS	18
1.3.2 The perineuronal net (PNN) in the mature CNS	20
1.3.3 The ECM response to injury	23
1.3.4 Manipulation of ECM and PNN inhibition to promote plasticity and regeneration	24
1.4 Modifying the ECM to enhance brain machine interface biocompatibility	33
1.4.1 Approaches to improve the brain machine interface	34
1.4.3 Dental pulp stem cells (DPSC) to modify the brain machine interface	35
1.5 Conclusion and aims	37

Cha	pter 2: Materials and Methods	40
2.	.1 Animal Ethics	.41
2.	.2 Cell culture experimental procedures	.41

2.2.1 Cell isolation and culture	41
2.2.2 Cell counts	44
2.2.3 DPSC neuronal differentiation	44
2.3 Perineuronal net experimental procedure	45
2.3.1 DPSC-Cortical cell co-culture	45
2.3.2 PNN cell counts	46
2.3.3 ImageJ software analysis	47
2.3.4 Perineuronal net data analysis	48
2.4 In vitro immunohistochemistry	48
2.4.1 Antibodies	50
2.5 Transmission electron microscopy (TEM)	50
2.6 Electrophysiology	51
2.6.1 Whole cell patch clamp analysis	51
2.6.2 Neurobiotin and Lucifer yellow injection	51
2.6.3 Microelectrode Arrays	52
2.7 Statistical Analysis	55

Chapter 3: Characterisation of a novel microelectrode array design	56
Statement of Authorship	57
Chapter 3 Context Statement:	58
3.1 Introduction	59
3.2 Methods	60
3.2.1 NTT MEA design	60
3.2.2 MultiChannel Systems MEAs	61
3.2.3 MEA preparation	61
3.2.4 Murine cortical cultures	61
3.2.5 MEA electrophysiological recording	62
3.2.6 Offline analysis of electrical activity	62
3.2.7 Statistical analyses	62
3.3 Results	63
3.3.1 NTT-MEA biocompatibility	63
3.3.2 Cortical electrophysiology	64
3.3.4 Spike rate and amplitude	68
3.3.5 Effect of TTX on MEA activity	71
3.4 Discussion	73

Chapter 4: Characterisation of human-derived dental pulp stem cell neural differentiation		
on microelectrode arrays	77	
Statement of Authorship	78	
Chapter 2 Context Statement:	79	
4.1 Introduction	80	
4.2 Materials and Methods	82	
4.2.1 The microelectrode array	82	
4.2.2 MEA and coverslip preparation	82	
4.2.3 Human dental pulp stem cell isolation and neuronal differentiation	83	
4.2.4 MEA electrical stimulation	83	
4.2.5 Whole cell patch clamp recordings	84	
4.2.6 Lucifer yellow dye spread	84	
4.2.7 Offline software analysis	84	
4.3 Results	86	
4.3.1 hDPSC neuronal differentiation	86	
4.3.2 Intracellular electrophysiology and network properties of differentiated hDPSC	87	
4.3.2 MEA-hDPSC biocompatibility	89	
4.3.3 Electrophysiology of long term DPSC differentiation on MEAs	94	
4.3.4 Stimulation of differentiated hDPSC cultures	103	
4.4 Discussion	107	

Chapter 5: Neurogenic potential of dental pulp stem cells isolated from murine incisors111 Statement of Authorship 112 Chapter 5 Context Statement: 114 Abstract 115 5.1 Introduction 116 5.2 Materials and Methods 118 Ethics Statement. 118 mDPSC isolation and culture 118 Immunohistochemistry 119 Intracellular Electrophysiology 119 Transmission electron microscopy (TEM) 120 Microelectrode arrays 121 5.3 Results 122 Undifferentiated DPSC from murine incisors

Characterisation of mDPSC following neural induction	123
Neural network properties of differentiated mDPSC	129
Differentiated mDPSC express L-type voltage gated Ca ²⁺ channels	131
Networks of neuronal-like differentiated mDPSC do not demonstrate action potentials	133
5.4 Discussion	136
Acknowledgements	138
Supplementary methods (S1)	139
Reference List	140

Chapter 6: Dental pulp stem cells downregulate the perineuronal net in vitro	143
Statement of Authorship	144
Chapter 6 Context Statement:	145
6.1 Introduction	146
6.2 Methods	149
6.2.1 Murine cortical cultures	149
6.2.2 Dental pulp stem cell isolation and culture	149
6.2.3 PNN development assay	149
6.2.4 DPSC dose assay	150
6.2.5 Conditioned media assay	150
6.2.6 Duration assay	150
6.2.7 Immunohistochemistry	150
6.2.8 Cell counts	151
6.2.9 ImageJ software analysis	151
6.2.10 Statistical analysis	151
6.3 Results	152
6.3.1 Characterisation of PNN cellular development in vitro	152
6.3.2 DPSC treatment downregulates PNN expression in a dose-dependent manner	154
6.3.3 hDPSC downregulation of PNN expression is consistent for multiple donors	161
6.3.4 Effects of DPSC conditioned medium on cortical PNN expression	165
6.3.5 hDPSC downregulate PNN expression in a time-dependent manner	167
6.4 Discussion	168

Chapter 7: Discussion	171
7.1 Neuronal differentiation of DPSC in vitro	172
7.1.1 Advantages of murine-derived DPSC	172

7.1.2 Disparate characteristics of DPSC from different species	173
7.2 DPSC may induce neuroplasticity – downregulation of PNN	174
7.3 The therapeutic potential of DPSC at the BMI and beyond	176
7.4 The advantage of dental pulp stem cells for neural therapeutics	178
7.5 Future directions	179
7.6 Conclusion	180
Reference List	

List of Figures

Figure 1.1: Diagram of a cortical visual prosthesis	6
Figure 1.2: A comparison of surface and penetrating electrodes	9
Figure 1.3: Potential sites for prosthesis localisation.	12
Figure 1.4: Schematic diagram of lectican CSPG structure	19
Figure 1.5: Schematic diagram of the perineuronal net structure.	21
Figure 1.6: Inhibitory components following CNS damage and potential therapeutic intervent	ions.
	25
Figure 2.1: Diagram of tooth composition.	42
Figure 2.2: Bright field images of undifferentiated DPSC	43
Figure 2.3: Timeline of DPSC neuronal differentiation	45
Figure 2.4: Diagram of conditioned media experimental setup	46
Figure 2.5: Diagram of linear sweeps across a coverslip to measure rates of PNN expression	47
Figure 2.6: Measurement of PNN area and signal intensity	48
Figure 2.7: The electrode region of the MCS MEA.	52
Figure 3.1: Diagram of the NTT MEA design	60
Figure 3.2: Biocompatibility and cortical cell migration on NTT MEAs.	63
Figure 3.3: Filtering NTT MEA trace data	65
Figure 3.4: Cortical electrical activity detected from three classes of MEAs.	66
Figure 3.5: Baseline noise of MEAs.	67
Figure 3.6: Baseline noise of NTT MEA electrodes of different diameters	68
Figure 3.7: Spike rate and amplitude of detected events.	69
Figure 3.8: Noise pattern synchrony across NTT MEA electrodes.	70
Figure 3.9: Effect of TTX on spike rate and amplitude	72
Figure 4.1: The electrode region of the MCS MEA	82

Figure 4.2: DPSC differentiation in culture	86
Figure 4.3: Electrophysiology and network properties of differentiated DPSC	88
Figure 4.4: Biocompatibility of PEI and laminin on a MEA for DPSC culture	89
Figure 4.5: Biocompatibility of MEAs coated with poly-d-lysine and laminin	90
Figure 4.6: Biocompatibility of poly-I-ornithine and Iaminin on MEAs for DPSC culture	91
Figure 4.7: Biocompatibility of two MEA types coated with laminin	92
Figure 4.8: Differentiation of DPSC on an MEA.	93
Figure 4.9: Long term differentiation of DPSC on an MEA	95
Figure 4.10: Electrophysiology of differentiated DPSC.	97
Figure 4.11: Effect of TTX on DPSC electrophysiology.	99
Figure 4.12: The average voltage of electrode traces from MEAs decreases with cultured hDS	SPC. 101
Figure 4.13: Biocompatibility of DPSC on inverted coverslip	.102
Figure 4.14: Stimulation-induced activity within differentiated DPSC cultures	.104
Figure 4.15: A comparison of stimulation-induced events from differentiated DPSC cultures	.106
Figure 5.1: Timeline, phenotype and survival of differentiating mDPSC.	.125
Figure 5.2: Differentiated mDPSC express neuronal and glial markers	.127
Figure 5.3: Differentiated mDPSC produce central and peripheral nervous sytem markers	.128
Figure 5.4: Network connectivity of differentiated mDPSC.	.130
Figure 5.5: Differentiated mDPSC express voltage-gated Ca ²⁺ currents	.132
Figure 5.6: Extracellular electrophysiology of differentiated mDPSC	.135
Figure 6.1: PNN development in cortical cultures.	.152
Figure 6.2: Range and distribution of neuronal PNN expression area per cell	.153
Figure 6.3: DPSC treatment downregulated PNN expression in a dose-dependent manner	.155
Figure 6.4: Distributions of PNN area per cell following human and murine DPSC treatment	.157
Figure 6.5: Cumulative histograms of PNN area per cell distributions	.159

Figure 6.6: DPSC treatment using two other donors downregulated PNN expression161
Figure 6.7: H3 and H4 DPSC treatment results in divergent PNN expression in comparison to hFF
Figure 6.8: H3 and H4 DPSC treatment increases the proportion of neurons with small PNN areas
Figure 6.9: hDPSC conditioned medium downregulated PNN expression
Figure 6.10: PNN downregulation increased with longer hDPSC treatment

List of Tables

Table 2.1: List of antibodies	50
Table 6.1: DPSC treatment effects on the proportion of neurons with sma	ll, medium and large
PNN areas	160
Table 6.2: H3 and H4 donor DPSC treatment significantly downregulates PN	IN expression165

Abstract

The cortical brain-machine interface has the potential to improve the quality of life for millions of patients with sensory or motor loss, however a range of limitations currently exist that restrict their long term clinical application. Primary amongst these is the low biocompatibility between electrodes and brain tissue. Injury to the central nervous system (CNS) causes a recruitment of inflammatory factors that lead to the long term upregulation of the perineuronal net (PNN) and the development of a glial scar that restrict recovery by forming an inhibitory peri-injury region. We propose that a biological layer of dental pulp stem cells (DPSC) will render the interface more compatible with cortical tissue to allow more efficient signal transduction and promote long-term success. I have approached this interface challenge *in vitro* to determine how DPSC may actively improve the local environment to achieve long-term biocompatibility.

Microelectrode arrays (MEAs) approximate the brain-machine interface *in vitro*. In Chapter 3 I designed and fabricated a novel MEA with design features specific to our research goals. Initial characterisation of these MEAs in comparison with commercial MEAs demonstrated high biocompatibility with cortical cultures, however electrodes had high impedance leading to a low signal-to-noise ratio that ultimately rendered the MEAs unable to detect extracellular electrical activity from the cultured cortical neurons. Future modifications including the addition of electrode polymers on these MEAs will render them more appropriate for *in vitro* use. This directed us to utilise commercial MEAs for subsequent use within the studies of this thesis.

In Chapter 4, human-derived DPSC (hDPSC) were seeded onto commercial MEAs to determine their long-term biocompatibility throughout neuronal differentiation and to assess the development of electrical activity within the developing cultures. DPSC had intrinsically low biocompatibility with MEAs, however long term culture was achieved. Stimulation-induced events were detected in long-term cultures yet no spontaneous activity was measured.

A novel source of DPSC derived from murine incisors (mDPSC) were also characterised for their neuronal potential *in vitro* in Chapter 5. mDPSC developed a neuronal morphology and high expression of neuronal and glial markers identified through immunohistochemical analysis. Differentiated mDPSC networks supported electrophysiology reminiscent of early embryonic development with high expression of L-type voltage-gated Ca²⁺ channels, gap junction proteins and gamma frequency oscillatory activity following neural induction. The ability of mDPSC to

differentiate into neural-like cells supports their future use in a murine model of autologous cell transplantation.

The impact of DPSC on the endogenous inhibition of the brain was also investigated in Chapter 6. It was hypothesised that co-culturing DPSC with dissociated cortical neurons would downregulate the expression of the restrictive PNN around neurons. It was demonstrated that hDPSC co-culture reduced the proportion of neurons that expressed PNN in a time and dose-dependent manner. Moreover, hDPSC conditioned medium also decreased the proportion of PNN-expressing neurons, suggesting that paracrine factors released by the cells may be responsible for this effect.

In conclusion, the present studies have identified a novel ability for DPSC to reduce cortical PNN expression that could improve the long-term efficacy of a brain-machine interface. However, biocompatibility of DPSC with *in vitro* MEAs is low and requires modification to achieve a successful interaction at the interface. Moreover, the neuronal potential of DPSC isolated from murine incisors has been demonstrated for the first time. The multifaceted characteristics of DPSC may present a viable approach to cell-based therapeutics for a range of CNS disorders.