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Abstract 18 

Introduction Formation of arbuscular mycorrhizas can enhance plant uptake of 19 

immobile nutrients such as zinc and phosphorus. Enhancement of Zn uptake by 20 

arbuscular mycorrhizal (AM) fungi on Zn-deficient soils has been studied previously, 21 

however, the quantity of Zn that is contributed by the AM pathway of uptake to the 22 

plant has not previously been reported for soil of any Zn status. 23 

Methods We grew a mycorrhiza-defective mutant tomato (Solanum lycopersicum L.) 24 

genotype (rmc) and its mycorrhizal wild-type progenitor (76R) in pots containing a 25 

hyphal compartment (HC) accessible only by the external hyphae of AM fungi, and 26 

containing the radioisotope 
65

Zn. This was repeated at three soil Zn concentrations, 27 

ranging from low to high. We estimated the amount of Zn delivered via both the AM 28 

and direct (root) pathways. 29 

Results Up to 24% of Zn in the shoots of the AM plants was delivered via the AM 30 

pathway at the lowest soil Zn treatment. This decreased significantly, to 8%, as soil 31 

Zn concentration increased. No 
65

Zn was detected in the tissues of the non-32 

mycorrhizal genotype. 33 

Conclusions The relative contribution to shoot Zn by the AM pathway of uptake was 34 

highest when soil Zn was low, and decreased with increasing soil Zn concentration. 35 



Introduction 36 

It is estimated that 50% of the world’s important cereal growing soils are considered 37 

low in plant-available Zn (Cakmak 2002; Graham and Welch 1997) and, thus, plant 38 

Zn deficiency is common and widespread (Hacisalihoglu and Kochian 2003). In turn, 39 

this can have important implications for human nutrition; indeed 30% of the world’s 40 

population is affected by Zn deficiency (Alloway 2008). On the other hand, Zn can 41 

also be present in soils at levels toxic to plants (Jung and Thornton 1996). Therefore, 42 

there is need for a fundamental understanding of the factors that regulate plant Zn 43 

acquisition. 44 

 45 

Most terrestrial plants form arbuscular mycorrhizas, and these associations between 46 

plant roots and a specialised group of soil fungi enhance the capacity of plants to 47 

acquire nutrients (Smith and Read 2008). The role of mycorrhizas in uptake of soil Zn 48 

is dependent on the concentration of Zn in the soil (Chen et al. 2003; Watts-Williams 49 

et al. 2013). It is well established that under low Zn conditions, plants that form 50 

mycorrhizas often have higher Zn concentrations and contents compared to non-51 

mycorrhizal plants (Cavagnaro 2008). Interestingly, it has also been reported that 52 

where soil Zn concentrations are toxic to plants, the formation of mycorrhizas can 53 

‘protect’ plants against excess Zn uptake compared to non-mycorrhizal plants 54 

growing in the same soil (Chen et al. 2003; Christie et al. 2004; Watts-Williams et al. 55 

2013). Thus, mycorrhizas have an important role to play in modulating plant Zn 56 

acquisition under a wide range of soil Zn concentrations. 57 

 58 

There are two pathways of soil-derived uptake for most mineral nutrients (including 59 

Zn and P), in AM plants: directly via the root epidermis (direct pathway of uptake; 60 



DPU), and via the mycorrhizal pathway of uptake (MPU). Radioisotopes of Zn (e.g. 61 

65
Zn) have been used in previous studies to trace AM uptake (discussed below), but 62 

none have quantified the proportion or amount of Zn taken up by the MPU. Kothari et 63 

al. (1991) presented an estimate of 16-25% for the minimum contribution of Zn by the 64 

external hyphae of AM fungi, although they did not use radioisotope tracing or 65 

dilution. Additionally, a number of studies have demonstrated the ability of the 66 

external hyphae to translocate 
65

Zn from soil and agar media, but presented results in 67 

units that quantify the relative activity (e.g. in counts per minute) of 
65

Zn in different 68 

treatments, rather than the proportion of a plant’s Zn delivered via the MPU (Bürkert 69 

and Robson 1994; Mehravaran et al. 2000). Jansa et al. (2003) quantified MPU Zn 70 

contribution by the proportion of added 
65

Zn that was transported to the plants, and 71 

found that it was much higher than the estimates from other studies. However, the 72 

quantity of Zn that is delivered via the MPU and DPU (i.e., in µg of Zn), remains to 73 

be reported. 74 

 75 

There are numerous studies examining how much P is delivered through the MPU, 76 

compared to the DPU, using radioisotopes of phosphorus (P) (Grønlund et al. 2013; 77 

Jakobsen et al. 1992; Joner and Jakobsen 1994; Pearson and Jakobsen 1993; Poulsen 78 

et al. 2005; Schweiger and Jakobsen 1999; Smith et al. 2004; Thingstrup et al. 2000). 79 

It has been demonstrated that between 20 and 100% of a plant’s P can be delivered 80 

via the MPU, depending on plant and AM fungi species (Smith et al. 2004). While the 81 

relative importance of the two pathways (i.e., proportion of nutrients entering via the 82 

pathways) has been well established for P, it has not been elucidated for other 83 

nutrients, including Zn; however, it is of high priority (Cavagnaro 2014). That is, we 84 



do not know how much Zn enters the plant via the AM pathway, be it at low, 85 

adequate, or toxic soil Zn concentrations.  86 

 87 

On the basis of these previous results, we designed this study with two specific aims: 88 

i) To quantify the amount of Zn taken up via the MPU using a radioisotope 89 

of Zn; and 90 

ii) To investigate whether the contribution to Zn uptake via the MPU changes 91 

with soil Zn concentration. 92 

 93 

We hypothesised that a significant proportion of plant Zn will be delivered via the 94 

MPU at low concentrations of Zn in soil, but that this may decrease as soil Zn 95 

concentration is increased, and direct uptake increases. 96 

 97 

Materials and Methods 98 

Soil and plant preparation 99 

Plastic pots were filled with 1.4 kg of a 90:10 (w/w) sand/soil mixture that included 100 

140 g of Rhizophagus irregularis AM fungal inoculum. The soil/sand mix was 101 

comprised of washed sand and soil collected from the Mallala region of South 102 

Australia, used in prior studies (see Cavagnaro et al. 2001 for details). The soil/sand 103 

mixture was autoclaved and sieved to <2 mm prior to use. The soil was amended with 104 

one of three ZnSO4.7H2O additions, at the rates of 2, 20, and 50 mg Zn kg soil
-1

, 105 

referred to as “Low Zn”, “Medium Zn” and “High Zn”, hereafter (Table 1). 106 

Supplemental P was also added to the soil in all treatments at a rate of 25 mg 107 

anhydrous CaHPO4 kg soil
-1

, in order to stimulate plant growth without inhibiting AM 108 

colonisation (Cavagnaro et al. 2010). Following supplemental P addition, total P 109 



concentration (see below for details) of the soil was 27.8 ± 1.2 mg P kg
-1

 soil, and 110 

resin-extractable P concentration was 2.0 ± 0.09 mg P kg
-1

 soil. 111 

 112 

To quantify the contribution of the MPU to shoot Zn, hyphal compartments (HCs) 113 

containing radioisotope labelled soil were added to the pots, modified from Jakobsen 114 

et al. (1992) (see Fig. 1) as follows. The HCs were capped at one end with nylon mesh 115 

having a 25 μm pore diameter and filled with 40 g of soil which had been labelled 116 

with 684 ± 18 kBq of 
65

Zn (Perkin-Elmer, U.S.A.), followed by 10 g of unlabelled 117 

soil. One HC was placed in each pot of corresponding soil Zn addition treatment, with 118 

the nylon mesh side facing inwards. Soil from “extra” HCs, that were kept in pots 119 

containing moist soil for the duration of the experiment without plants growing, were 120 

analysed for Zn concentration and 
65

Zn activity. Total Zn concentration was measured 121 

on oven-dried (105 C for 48 hours) soil samples that were digested with aqua regia, 122 

according to Zarcinas et al. (1996). Dried soil from “extra” HCs was also subsampled 123 

for determination of plant-available (DTPA-extractable) Zn (Lindsay and Norvell 124 

1978) and plant-available (resin-extractable) P (McLaughlin et al. 1994). 125 

Measurement of Zn and P concentrations, and 
65

Zn activity, in the digests and extracts 126 

was performed by inductively-coupled plasma atomic emission spectrophotometry 127 

(ICP-AES, Spectroflame Modula, Spectro, Germany) and -spectroscopy (1480 128 

Wizard TM3, Wallac, Germany) respectively. These data were used in the 129 

calculation of Zn uptake via the MPU (see below). 130 

 131 

Seeds of the reduced mycorrhiza colonisation tomato (Solanum lycopersicum L.) 132 

mutant genotype (rmc, hereafter) and its mycorrhizal progenitor (76R, hereafter) were 133 

surface-sterilised and pre-germinated on moist filter paper for 5 days (following 134 



Cavagnaro et al. 2010). The rmc genotype has been previously established as an 135 

appropriate non-mycorrhizal control when compared to its wild-type 76R (Barker et 136 

al. 1998; Watts-Williams and Cavagnaro 2014). Four pre-germinated seeds were 137 

planted into each pot and, after one week, were thinned to one seedling per pot. 138 

Treatments were replicated five times. Plants were grown in a controlled environment 139 

glasshouse at The University of Adelaide, Waite campus, during February-April, 140 

2014. Over this period, mean minimum temperature in the glasshouse was 19.3 ± 141 

0.27C, and mean maximum temperature was 24.9 ± 0.27C. Mean light level during 142 

the day was 369 μmol photons m
-2

 s
-1

. Plants were watered twice weekly with 143 

deionised (DI) water, and once weekly with 1/10 strength modified Long Ashton 144 

solution (P and Zn omitted, following Watts-Williams et al. 2014) to 10% soil weight. 145 

The pots were arranged on the glasshouse bench in a randomised complete block 146 

design and were re-randomised at each watering event. Four weeks after planting, 147 

each plant received 10 mg P and 10 mg N, following the appearance of P-deficiency 148 

and N-deficiency symptoms in the shoots. 149 

 150 

Harvesting and sample analysis 151 

All plants were destructively harvested 53 days after planting, as follows. Shoots were 152 

separated from roots and weighed. Roots were washed free of loose soil, weighed, and 153 

subsampled for determination of AM colonisation. All remaining biomass was oven 154 

dried at 55 °C before being weighed. Dried shoot and root biomass was subsampled 155 

and then digested with concentrated nitric acid, according to Zarcinas et al. (1987). 156 

Plant digests were analysed for total P and Zn concentrations by ICP-AES, 157 

Spectroflame Modula, Spectro, Germany) and for 
65

Zn activity by -spectroscopy 158 

(1480 Wizard TM3, Wallac, Germany). 159 



 160 

Calculations and data analysis 161 

Specific activities in soil and plant tissue were calculated using the following 162 

equations (as established for P, modified from Smith et al. 2004): 163 

Eqn 1a: 164 

Shoot specific activity =  
Zn65  activity (kBq) g−1 shoot dry weight

Zn (μg) g−1 shoot dry weight
 

 165 

Eqn 1b: 166 

Soil specific activity =  
Zn65  activity (kBq) g−1 dry soil

Zn (μg) g−1 dry soil
 

 167 

We calculated mycorrhiza-mediated contribution to shoot Zn (% and μg Zn) using the 168 

SA values determined using the DTPA-extraction solution. However, as the DTPA-169 

extraction method overestimates plant-available zinc, we have presented contribution 170 

to shoot Zn by mycorrhizas as a range between the values calculated from the DTPA 171 

data and the ‘corrected’ DTPA (for explanation, see Discussion). 172 

 173 

The relative proportional AM contribution to shoot Zn uptake (%) was calculated as: 174 

Eqn 2: 175 

Percent contribution to shoot Zn (%)

=  
Eqn 1a

Eqn 1b
 ×  

Total soil weight

Zn65  labelled soil weight
×  100 

 176 

Mycorrhizal contribution to shoot Zn uptake (mg Zn) was calculated as: 177 

Eqn 3: 178 



Mycorrhizal contribution to shoot Zn (μg Zn)

=  
Shoot Zn content (μg)  ×  Eqn (2)

100
 

 179 

In the interests of not over-estimating plant Zn uptake via the MPU, we calculated 180 

MPU contribution to shoots and not roots. This was because the activity of 
65

Zn and 181 

non-radioactive Zn originating from the HC may be bound in external fungal 182 

structures that cannot be separated from 
65

Zn activity or Zn content in the dry root 183 

biomass. Thus, shoot 
65

Zn activity and Zn content data are a more reliable indicator of 184 

Zn uptake via the MPU. 185 

 186 

All response variables were analysed by two-way ANOVA with Genotype and Zn 187 

addition treatment as factors in the analyses, with the exception of AM colonisation 188 

of roots and AM contribution to shoot Zn, which were analysed by one-way ANOVA 189 

in the 76R genotype only, with Zn addition treatment as the factor. Where significant 190 

differences were found, comparisons were made using Tukey’s honestly significant 191 

difference (HSD). We did not include rmc data in the statistical analysis of AM 192 

colonisation or AM contribution to shoot Zn because rmc roots were not colonised 193 

and had no 
65

Zn activity (discussed below). All statistical analyses were performed 194 

using JMP (Version 10.0.0, SAS Institute Inc., Cary, NC). 195 

 196 

Results 197 

Mycorrhizal colonisation 198 

Roots of the rmc genotype were not colonised by AM fungi. In contrast, the roots of 199 

the 76R genotype were well colonised by AM fungi (Table 2). Mean AM colonisation 200 

in the 76R genotype was 37.8  2.4% root length colonised across all Zn addition 201 



treatments, and there were no significant differences among the Zn addition 202 

treatments (Table 3). 203 

 204 

Plant biomass 205 

For shoot dry weight (SDW; Table 2), and total dry weight (TDW), there was a 206 

significant main effect of Genotype, with rmc plants having a significantly higher 207 

SDW and TDW than 76R plants (TDW was 2.24 and 2.04 g, respectively), 208 

irrespective of Zn addition treatment (Table 3). For root dry weight (RDW) there was 209 

a significant main effect of Zn addition treatment, with the RDW significantly higher 210 

at High Zn than at both Medium Zn, and Low Zn, irrespective of Genotype. 211 

 212 

Plant Zn and P nutrition  213 

The interaction between Genotype and Zn addition treatment was not significant for 214 

shoot or root Zn content (Table 3). However, both shoot and root Zn contents 215 

increased with increasing soil Zn addition, with the differences being significant 216 

between Low and Medium Zn, and between Medium and High Zn, irrespective of 217 

Genotype (Fig. 2a,b). The same pattern was observed in shoot and root Zn 218 

concentration data (Table 2), except that there was a significant main effect of 219 

Genotype on root Zn concentration (Table 3), whereby the AM genotype had 220 

significantly higher root Zn concentration than the non-mycorrhizal genotype, pooling 221 

Zn addition treatment.  222 

 223 

Shoot and root P contents did not change in response to soil Zn addition (Fig. 3a,b), 224 

and there was no significant interaction between Genotype and Zn addition treatment. 225 

However, in the roots only, there was a significant main effect of Genotype, whereby 226 



the 76R genotype had significantly higher root P content than the rmc genotype, 227 

irrespective of Zn addition treatment. 228 

 229 

Mycorrhizal contribution to plant Zn (% and µg Zn) 230 

The activity of 
65

Zn in the rmc plants was minimal and was not significantly greater 231 

(P>0.05, student’s t-test) than background activity (data not shown), confirming that 232 

there was no ‘leakage’ of 
65

Zn out of the HC. By contrast, the activity in the 76R 233 

plants was significantly (P<0.05, student’s t-test) one to two orders of magnitude 234 

greater than background activity. This indicates that the HC method was effective in 235 

excluding roots, and that external hyphae of AM fungi were able to colonise the HC 236 

and acquire and deliver Zn to the plants. For this reason, and the absence of AM 237 

colonisation in the rmc genotype, we excluded the data for rmc from the following 238 

analyses. 239 

 240 

Up to 24.2% of the Zn entering the shoots of the 76R genotype was delivered via the 241 

MPU in the Low Zn treatment (Fig. 4a). Further, mycorrhizal contribution to shoot Zn 242 

was relatively constant, while direct pathway Zn uptake increased dramatically as soil 243 

Zn addition increased. Taken together, the relative contribution via the MPU 244 

decreased significantly with increasing soil Zn concentration. Specifically, the relative 245 

contribution by mycorrhizas to shoot Zn (%) in the 76R genotype was significantly 246 

lower at High Zn than at Low or Medium Zn. The greatest contribution by 247 

mycorrhizas to shoot Zn was 21.7 µg, in the Medium Zn treatment, however the MPU 248 

contribution to shoot Zn (in µg Zn) was not significantly different among Zn addition 249 

treatments (Fig. 4a). Values of DPU in the shoots of AM plants increased with 250 

increasing Zn concentration in terms of both proportion and amount of Zn (Fig. 4a-b). 251 



 252 

Discussion 253 

The aims of this study were to: 1) quantify the contribution by AM fungi to shoot Zn 254 

uptake in the 76R tomato genotype, and 2) investigate whether contribution by AM 255 

fungi to total shoot Zn uptake changes with increasing soil Zn concentration. We 256 

found that at low soil Zn, the relative contribution by the AM fungus to shoot Zn was 257 

up to 24%, and this decreased significantly with increasing soil Zn concentration, as 258 

uptake via the direct uptake pathway increased.  259 

 260 

Mycorrhizal colonisation and plant biomass 261 

As expected, the roots of the rmc plants were not colonised by AM fungi, and levels 262 

of colonisation in the 76R genotype were comparable with previous studies in the 263 

same, and a different, soil (Watts-Williams and Cavagnaro 2012; Watts-Williams et al. 264 

2013). However, there was no effect of Zn fertilisation on mycorrhizal colonisation in 265 

this study, which has been previously demonstrated in a study that used the same soil 266 

(Cavagnaro et al. 2010). 267 

 268 

As in previous studies using these genotypes, there was a small growth depression in 269 

the AM plants (Cavagnaro et al. 2008; Watts-Williams et al. 2013). This could be 270 

attributed to a carbon drain on the AM plants as a result of the fungal colonisation 271 

(Johnson et al. 1997), but this result is not important with respect to the calculations 272 

for the MPU for Zn in the present experiment.  273 

 274 

Contribution by AM fungal uptake at low Zn 275 

The DTPA-extraction process can over-estimate the plant-available fraction of soil Zn 276 

as it extracts not only part of the plant-available pool but also significant amounts of 277 



the Zn pools unavailable to plants (Sinaj et al. 2004). According to Sinaj et al. (2004), 278 

DTPA extracts twice the amount of soil Zn than is actually plant-available, across a 279 

wide range of soils. However, Tiller et al. (1972) showed that soil Zn extraction with 280 

EDTA (a chelating agent similar to DTPA) is able to equilibrate with the same form 281 

of Zn taken up by plants from soils. Thus, we have presented contribution to shoot Zn 282 

via the MPU as a range between the values calculated from the DTPA data and the 283 

DTPA values ‘corrected’ according to Sinaj et al. (2004). 284 

 285 

We found that a substantial proportion of shoot Zn entered via the MPU. The size of 286 

the contribution of the MPU to plant Zn uptake has not previously been quantified. In 287 

this study, we found that the maximum contribution to shoot Zn via the MPU was 288 

24%, in the lowest soil Zn addition treatment. However, colonisation by AM fungi did 289 

not significantly increase uptake of Zn by plants (Zn content) relative to the non-290 

mycorrhizal genotype at Low Zn, as has been found in other studies (Watts-Williams 291 

et al. 2013). These results suggest that the activity of the mycorrhizal pathway of Zn 292 

uptake can be masked by tissue Zn content values in AM- and non-mycorrhizal plants 293 

unless the MPU and DPU are estimated separately, as in this study. That is, while the 294 

MPU appeared inactive when we simply compared shoot Zn content of the 295 

mycorrhizal and non-mycorrhizal genotypes, it actually delivered up to 24% of the 296 

mycorrhizal plant’s shoot Zn. 297 

 298 

Values of MPU contribution are no doubt influenced by many factors, including: 299 

plant species, soil type and chemistry, AM fungal isolate and inoculum potential, size 300 

of the HC, days grown, and soil nutrient (particularly Zn and P) availability. 301 

Furthermore, the calculations of soil specific activity are highly dependent on the 302 



method of determination of soil Zn concentration and 
65

Zn availability. However, the 303 

values presented here serve as a point of reference for future experiments of this 304 

nature that use other plant, soil and AM fungus combinations. 305 

 306 

In this study there was a positive mycorrhizal P response, independent of soil Zn 307 

concentration (as indicated by Fig. 3). This is in line with other studies using these 308 

genotypes using this (Cavagnaro et al. 2010), and other (Watts-Williams et al. 2014), 309 

soils. Beyond this, we cannot speculate on the activity of the DPU and MPU for P 310 

here, as we did not separate the two pathways. Jansa et al. (2003) separated the DPU 311 

and MPU for P and Zn simultaneously and found that a much higher proportion of the 312 

added 
33

P was transported to the plant than the added 
65

Zn (12.1% and 4.3%, 313 

respectively), which supports our hypothesis. However, we have built on this work by 314 

quantifying the relative contribution and amount of Zn taken up via the DPU and 315 

MPU. In addition, interactions between P and Zn uptake by AM fungi have been 316 

demonstrated in other studies without separating the pathways of uptake, using these 317 

genotypes (Watts-Williams and Cavagnaro 2014; Watts-Williams et al. 2013) and 318 

other plant species (Lambert et al. 1979; Liu et al. 2000). Thus, we conclude that the 319 

interplay between the DPU and MPU of Zn and P is highly complex and would 320 

benefit from further research where the uptake pathways for both nutrients are 321 

separated.  322 

 323 

Contribution by AM over a range of soil Zn concentrations 324 

While shoot and root Zn uptake (i.e., content per plant) increased in accordance with 325 

increasing soil Zn addition in both genotypes, the relative contribution of shoot Zn 326 

(%) via the MPU in the AM genotype decreased at High Zn (Fig. 4). As the amounts 327 



(µg Zn) taken up by the MPU did not decrease, the increased total uptake was due to 328 

the large increase in direct uptake by the roots. At low soil Zn supply, Zn is a 329 

diffusionally limited nutrient for plant uptake (Wilkinson et al. 1968), thus 330 

colonisation by AM fungi is most advantageous to plants when the soil is Zn-limiting 331 

(Cavagnaro 2008). However, in this study, as soil Zn supply increased, the diffusional 332 

limitation likely disappeared, allowing the roots to take up soil Zn freely via the direct 333 

pathway, thus explaining the observed increase in DPU activity. Previously, it has 334 

been suggested that AM colonisation can reduce plant Zn uptake when Zn is present 335 

in toxic levels, as illustrated by negative AM Zn responses (i.e., tissue Zn content less 336 

in AM plants than non-mycorrhizal plants) (Watts-Williams et al. 2013), reduced 337 

tissue Zn concentration (Cavagnaro et al. 2010; Li and Christie 2001; Lingua et al. 338 

2008; Zhu et al. 2001), and reduced translocation of Zn to shoots and increased 339 

biomass (due to increased P uptake) (Chen et al. 2003) compared to the non-340 

mycorrhizal state. In the present study, we did not observe reduced Zn content or 341 

increased biomass in the AM genotype at High Zn, but the relative proportion of Zn 342 

delivered by the MPU, and transferred to the shoots of the AM genotype, was 343 

significantly reduced at High Zn. The soil Zn additions chosen for this experiment 344 

were intended to represent ‘low’ and ‘high’ soil Zn concentrations, rather than 345 

‘deficient’ and ‘toxic’ concentrations. However, future experiments in this area would 346 

benefit from using applications of soil Zn that are deficient and toxic to plants. 347 

 348 

Conclusions and implications 349 

We have shown that the MPU is considerably active in terms of Zn uptake at low soil 350 

Zn supply. This could have important implications for crops growing on Zn depleted 351 

soils. We also demonstrated that the relative contribution by the MPU decreased 352 



substantially, as contribution by the DPU increased, as soil Zn supply increased. 353 

Furthermore, comparison of plant Zn content between mycorrhizal and non-354 

mycorrhizal plants, or calculation of mycorrhizal Zn responses (MZnR), cannot tell us 355 

about the activity of, and interplay between, the MPU and DPU. Separation of the two 356 

pathways is required for this.  357 

 358 

Future directions 359 

Subsequent studies that utilise 
65

Zn to trace mycorrhizal uptake of Zn in plants will be 360 

useful, especially in conjunction with studies on P uptake (using 
33

P or 
32

P) via the 361 

MPU and DPU. Furthermore, studies that focus on the expression of Zn transporter 362 

genes will complement such physiological work. Specifically, identification of, and 363 

investigation into, the expression of Zn transporter genes for both the MPU and DPU 364 

in many plant species will be highly informative, as has been done for P. Stable- or 365 

radio-isotopes have also been used to investigate mycorrhiza-mediated uptake of other 366 

nutrients, including nitrogen (Johansen et al. 1992; 1993), sulphur (Rhodes and 367 

Gerdemann 1978a; b) and calcium (Rhodes and Gerdemann 1978c); however, the 368 

MPU contribution has not been quantified. Studies that quantify the MPU and DPU 369 

uptake of these, and other, nutrients will be important in the ongoing study of 370 

mycorrhizas and plant nutrition. 371 
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Table 1. Zinc concentration, 
65

Zn concentration and specific activity of soils, 

according to three methods of Zn quantification (see Calculations section in Methods 

for explanation of ‘corrected’ values) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
Low Zn Medium Zn High Zn 

DTPA-

extractable Zn 

Zn conc. (µg g-1) 1.0 9.0 22.4 
65Zn conc. (kBq g-1) 6.9 8.2 9.5 

Specific activity (kBq µg-1) 6.98 0.91 0.42 

Corrected DTPA-

extractable Zn 

Zn conc. (µg g-1) 0.49 4.51 11.20 
65Zn conc. (kBq g-1) 6.9 8.2 9.5 

Specific activity (kBq µg-1) 13.97 1.83 0.85 

Total Zn 

Zn conc. (µg g-1) 7.5 20.5 49.8 
65Zn conc. (kBq g-1) 17.7 15.1 18.5 

Specific activity (kBq µg-1) 2.35 0.74 0.37 



Table 2. Mycorrhizal colonisation of the mycorrhizal 76R tomato (Solanum 

lycopersicum) genotype, shoot dry weight (SDW), root dry weight (RDW), total dry 

weight (TDW), and shoot and root Zn concentrations (g g
-1

) of the 76R and rmc 

genotypes. n=5. 

 

   

Mycorrhizal 

colonisation (%) 
SDW (g) RDW (g) TDW (g) 

Shoot Zn 

conc. (µg 

g-1) 

Root Zn 

conc. (µg 

g-1) 

76R 

Low Zn 
mean 42.6 1.39 0.66 2.05 38.3 30.2 

s.e. 2.7 0.04 0.03 0.07 2.1 1.8 

Medium Zn 
mean 30.4 1.30 0.71 2.01 74.3 94.4 

s.e. 2.6 0.04 0.05 0.05 2.2 3.7 

High Zn 
mean 40.4 1.29 0.78 2.07 125.4 206.8 

s.e. 5.0 0.09 0.05 0.13 6.6 10.5 

rmc 

Low Zn 
mean 

 
1.46 0.79 2.25 31.8 20.9 

s.e. 
 

0.07 0.03 0.08 1.4 1.6 

Medium Zn 
mean 

 
1.51 0.66 2.17 70.2 72.0 

s.e. 
 

0.02 0.03 0.04 6.1 3.3 

High Zn 
mean 

 
1.49 0.82 2.31 119.2 186.7 

s.e. 
 

0.02 0.04 0.05 2.4 10.2 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 3. ANOVA summary table for all response variables. 

 
Zn G Zn*G 

Mycorrhizal colonisation ns - - 

DTPA Zn AM contribution (%) * - - 

DTPA Zn AM contribution (g Zn) ns - - 

Shoot dry weight (SDW) ns ** ns 

Root dry weight (RDW) * ns ns 

Total dry weight (TDW) ns ** ns 

Shoot P content ns ns ns 

Root P content ns ** ns 

Shoot Zn content *** ns ns 

Root Zn content *** ns ns 

Shoot Zn concentration *** ns ns 

Root Zn concentration *** ** ns 

 

Factors in the analysis were Zn (Zn addition treatment) and G (Genotype). Both the 

main effects and interaction term are indicated where relevant. *P≤0.05; **P≤0.01; 

***P≤0.0001. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 

 

 

 

 

 

 

 

 

 

 

 



  

Figure 2 
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Figure 3 
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Figure 4 
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Figure 1. Diagram of experimental set up (not to scale). The hyphal compartment was 

labelled with 65Zn and capped with nylon mesh that allowed AM fungal external hyphae to 

enter, while excluding roots (see Methods for further detail).  

 

Figure 2. Shoot (a) and root (b) zinc (Zn) content (µg plant-1) in the mycorrhizal 76R (grey 

bars) and non-mycorrhizal rmc (white bars) tomato (Solanum lycopersicum) genotypes, at 

three soil Zn addition treatments. Values are mean ± standard error, n=5. Means followed by 

the same letter were not significantly different at the P≤0.05 level (Tukey’s HSD), see Table 

Appendix 3 for details of ANOVA results. 

 

Figure 3. Shoot (a) and root (b) phosphorus (P) content (mg plant-1) in the mycorrhizal 76R 

(grey bars) and non-mycorrhizal rmc (white bars) tomato (Solanum lycopersicum) genotypes, 

at three soil Zn addition treatments. Values are mean ± standard error, n=5.  

 

Figure 4. Contribution to shoot zinc (Zn) via the mycorrhizal pathway of uptake in g Zn (a) 

and per cent (%, b) in the mycorrhizal tomato (Solanum lycopersicum) genotype (76R), at 

three soil Zn addition treatments. The segments of each bar indicate AM Zn uptake according 

to (black) the corrected values of soil specific activity, (black + grey) the raw values of soil 

specific activity and (white) the remaining Zn (i.e., uptake via the DPU). This serves to 

indicate the range of potential values for % shoot Zn delivered via the mycorrhizal pathway 

of uptake. Values are mean ± standard error, n=5. Means followed by the same letter were not 

significantly different at the P≤0.05 level (student’s t-test), see Table Appendix 3 for details 

of ANOVA results. 

 


