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Abstract

A novel integrative pipeline is presented for discovery of potential cancer-susceptibility regions (PCSRs) by calculating the
number of altered genes at each chromosomal region, using expression microarray datasets of different human cancers
(HCs). Our novel approach comprises primarily predicting PCSRs followed by identification of key genes in these regions to
obtain potential regions harboring new cancer-associated variants. In addition to finding new cancer causal variants,
another advantage in prediction of such risk regions is simultaneous study of different types of genomic variants in line with
focusing on specific chromosomal regions. Using this pipeline we extracted numbers of regions with highly altered
expression levels in cancer condition. Regulatory networks were also constructed for different types of cancers following the
identification of altered mMRNA and microRNAs. Interestingly, results showed that GAPDH, LIFR, ZEB2, mir-21, mir-30a, mir-
141 and mir-200c, all located at PCSRs, are common altered factors in constructed networks. We found a number of clusters
of altered mRNAs and miRNAs on predicted PCSRs (e.g.12p13.31) and their common regulators including KLF4 and SOX10.
Large scale prediction of risk regions based on transcriptome data can open a window in comprehensive study of cancer
risk factors and the other human diseases.
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Introduction various physical distances from the gene they influence [17]. In
addition, the employed linear modeling framework in GWAS
often considers only one SNP at a time and ignores the effects of
the other genotyped SNPs [5]. Therefore, the progression can be
arduous from statistical association obtained through GWAS to
inferred causality and functional consequences for cancer. Another
challenge in large-scale genomics investigations is that some of
these variants including microsatellites have been less studied
compared to the other types (SNP and CNV). In addition, many of
these studies are focused on one type of genomic variations in
cancer; consequently, the impacts of other involved factors are
neglected.

Alteration in mRNAs and miRNAs expression and the
important role of a large number of these molecules have been
studied in the initiation, progression and metastasis of many types
of cancers [1,2,3]_ENREF_1. Changes in DNA methylation and
transcription factor (TF) regulation, genomic copy number
variation (CNV) [4], single nucleotide polymorphism (SNP) [5]
and microsatellite alternation [6] as well as other chromosomal
aberrations are characterized as major mechanisms of expression
alternation in different human cancers (HCs).

Different methods including genome wide association studies
(GWAS) have identified a large number of associated variants for
different cancers [7,8,9]. For example, common variants on region
19p13 were found to be associated with ovarian cancer [10],
CNVs at 6ql13 and five risk loci at 21q21.3, 5p13.1, 21q22.3,
22q13.32 and 10g26.11 were directly linked to pancreatic cancer
[4,11]. In addition, new risk loci at 10g25.2, 6q22.2 and 6p21.32
were associated with lung cancer [12], and several risk loci at
9q31.2, 19q13.4 and 8q24 were shown to be associated with
prostate cancer [13,14,13].

However, challenges in GWAS are finding causal variants and
functional effects as well as interrelation of these variants in cancer.
While previous genetic studies of cancer have predicted a large
number of cancer-associated variants [8,9,10,15,16], identifying

The common procedure employed in previous studies is
detection of causal variants and searching for functional effects
of these variants such as association of variants with expression
quantitative trait loci (€QTLs) [17]. However, there is also a
reverse strategy comprises prediction of potential cancer-risk
regions shared across different types of cancers based on
transcriptome expression data and then searching for causal
variants. Identification of these regions assists in discovery of new
variants as well as simultaneous study of different factors affecting
gene expression by limiting assessments to specific chromosomal
region. Here, we developed a pipeline which was comprised of
PCSRs prediction using calculating the transcript-expression
changes under cancer for each chromosomal region. We also

causal variants is major obstacle, because the known causal genetic
variants are mostly located within non-coding regions or located at
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extracted common altered mRNAs and microRNAs using
microarray and expressed sequence tags (ESTs) data following
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by network analysis to achieve more insights about the predicted
PCSRs. Using this pipeline, we predicted potential risk regions
interacting with cluster of targets (NRNAs, miRNAs and/or TT%s)
unravelling potential-candidates for further genome association
studies.

Results

Gene expression data of several types of cancers were
reanalyzed and the results were combined to predict common
cancer-risk regions. Another aim of this study was to obtain insight
into interrelation between PCSRs and altered mRNAs, miRNAs
and their common regulators. An overview of the workflow is
shown in Figure 1.

Results of transcript expression analyses for each cancer dataset
including breast, colorectal, endometrial, gastric, liver, lung,
ovarian, pancreatic, prostate, testicular, bladder, intestine neuro-
endocrine, cervical and renal cancers as well as glioblastoma are
presented in Table S1. These extracted genes and miRNAs were
then used for further analysis as outlined below.

Differential gene expression analys

Extract list of differentia

genes

Counting the chromosoma

the altered genes

Prediction of potential ris

based on the region frequencies

Figure 1. Analyzing workflow of prediction of potential risk
regions. It comprises expression data analysis of different human
cancers including breast, colorectal, endometrial, gastric, liver, lung,
ovarian, pancreatic, prostate, testicular, bladder, intestine neuroendo-
crine, cervical and renal cancers as well as glioblastoma. This primary
analysis followed by extraction of altered genes, count the chromo-
somal regions of altered genes and prediction of risk regions based on
region frequency.

doi:10.1371/journal.pone.0096320.g001
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Prediction of Potential Cancer-Risk Regions

Prediction of Potential Cancer-Susceptibility Regions
Using Microarray Datasets of Different Cancers

The percentage of region participation was calculated for each
chromosome (chr) from microarray data (with 2-fold changes
threshold) of 11 HCs. Details of procedure are described in
materials and methods. For each chromosome, five regions
covering the highest frequency of altered genes were recorded as
potential PCSRs (Table 1). Results showed that among these
PCSRs, two regions contain the highest number of over-expressed
genes; chrlp31.2 (27.27%) and chrl13ql13.2 (20.45%) (Table 1,
Columns 3 to 7). While in the case of down-expressed genes, the
highest percentage was recorded for regions located at chrl3ql3
(15.53%) and 4q34.2 (15.15%).

To test the reliability of the predicted PCSRs, the percentage of
region participation in cancer was calculated with different
threshold, where the frequencies of the first 200 probesets with
highest fold changes were identified for each region (Table S2).
While, a large number of these regions including 1q31.3,
2p25.2,3925.2, 12p13.31 and 22q12.1 shared in both thresholds
(Table 1 and Table S2), some regions were recorded as a PCSR
for only one of these thresholds. For example 1p32.2 and 2q22.3
were identified for the 2-fold changes threshold, whereas, 1p22.3
and 2p12 were recorded for the highest fold changes (Table 1 and
Table S2).

Percentage of chromosome participation was also calculated for
11 HGs, to identify which chromosome(s) is more involved in
transcript expression changes (Table S3). Results showed that chr4
is harboring the highest number of genes altered in cancer
(excluding prostate and gastric cancers) (Table S3). In contrast,
chrY has the lowest number of genes expressed in cancer. A
summary of chromosomal participation of 11 HCs shows
significant differences as indicated by General Chi-squared test.
Four top chromosomes harboring the most down-expressed genes
were chrs 4, 5, 13 and X, whereas in the case of over-expressed
genes the highest numbers of alteration were recorded for chrs 1,
7, 8 and 12 (Figure S1).

Altered MRNAs Shared across Different Types of Cancers

Differentially expressed mRNAs with the highest fold changes in
at least 6 HCs were selected as the common altered mRNAs
(Table 2 and Table 3). These common altered mRNAs were
classified into three different expression groups. Class I showed
over-expression in majority of cancer types such as tubulin alpha
Ib (TUBAIB) and glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) (Table 2), class II represented down-expression in most
of HCs such as aspartoacylase (ASPA) and chemokine (C-X-C
motif) ligand 12 (CXCL12) (Table 2), while the rests (Class III)
showed a mixed expression patterns in different types of cancers
such as protein kinase (cAMP-dependent, catalytic) inhibitor beta
(PKIB) (Table 3).

Interestingly, a number of common altered mRNAs are located
on the predicted PCSRs (Column 3 of Table 2 and Table 3). For
example, GAPDH at 12pl13.31(as a predicted PCSR) showed
over-expression in all of HCs (Table2). CKS2 (chr9q22.2),
CEP55(chr10g23.33), UHRF1 (chr19p13.3), RRM2 (chr2p25.1),
AURKA (chr20q13.2), FLJ39632 (chrl4qll.2), FAMS83D
(chr20q11.23), NEK2 (chr1q32.3) and MAD2L (chr4q27) were
all located on PCSRs and showed over-expression in the 9, 8, 10,
9,8,9,9, 8 and 9 types of cancers, respectively (Table 2 and
Table 3). In contrast, DCN (chr12q21.33), LIFR (chr5pl3.1),
ABCAS8 (chr17q24.2), C7 (chr5p13.1) and ZEB2 (chr2q22.3) on
predicted PCSRs were down-expressed in 9, 7, 8, 8 and 8 cancers,
respectively (Table 2 and Table 3). The rest of altered genes on
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PCSRs exhibited both down and over-expression patterns
(Table 3).

Altered MiRNAs Shared across Different Cancers

Several types of miRNAs (such as miR-93, mir-182, mir-196b
and mir-1274b) exhibited over-expression in majority of cancers
(Table 3). A number of miRNAs (such as miR-30a and mir-30c-2)
were down-expressed in various HCs, whereas, many other
miRNAs exhibited a mixed pattern of expression (Table 4).

The chromosomal locations were determined for common
altered miRNAs. Interestingly, miRNAs located on the same
region showed co-expression in some cancers, such as a cluster at
19q13.41 (including mir-99b and -125a). This cluster (19q13.41)
was down-expressed in cervical, prostate and renal cancers. In
contrast, the same cluster was over-expressed in bladder cancer.
Another co-expressed cluster was observed at 12p13.31 (mir-
14land mir-200c), which showed over-expression in ovarian,
prostate and bladder cancers, and conversely, it were down-
expressed in renal cancer (Table 4). The rest of co-expressed
clusters were listed for regions at 6q13 (including mir-30a and mir-
30c-2), Xp11.23 (including mir-362, mir-500, mir-501, mir-502
and mir-532), 14q32.2 (including mir-134, mir-379 and mir-382),
14q32.31 (including mir-127, mir-432 and mir-770), 9q22.32
(including let-7d, mir-23b and mir-27b) and 7q22.1 (including mir-
93 and mir-106b) (Table 3). Five out of nine miRNA co-expressed
clusters listed above are located at predicted PCSRs including
6q13, 12p13.31, 14q32.2, 19q13.41 and Xq26.2 (Table 4).

Interaction within and between Common Altered MRNAs
and MiRNAs Revealed by Network Analysis

Four separate networks were constructed including a network
for common altered mRNAs (with 409 entities and 1288 relations)
(Figure S2), a network for common altered mRNAs located on the
different predicted PCSRs (with 383 entities and 1121 relations)
(Figure S3), a network of common altered miRNAs (with 322
entities and 1041 relations) (Figure S4) and a network for common
altered miRNAs located on the different PCSRs (with123 entities
and 409 relations) (Figure S5). In addition, a combined network
was constructed by integration of altered mRNAs and miRNAs
data, which has 667 entities and 2482 relations (Figure S6).
Various type of transcription factors, protein kinases, small
molecules, mRNAs and miRNAs serve as either validated or
putative regulators in these networks. Additional details of each
network including number of imported genes and biological
processes presented in Table S4.

We identified networks with similar biological processes, such as
cellular process, biological regulation, metabolic process, multi-
cellular organismal process, developmental process and response
to stimulus (Table S4 Column 5). These shared processes imply
existence of common genes and miRNAs across different
constructed networks as listed in Table S5. For example, Zinc
finger E-box binding homeobox 2 (ZEB2), DEAD (Asp-Glu-Ala-
Asp) box helicase 5 (DDX5) and leukemia inhibitory factor
receptor alpha (LIFR) were shared between both constructed
networks of common altered mRNAs and miRNAs (Table S5).
Among common altered miRNAs, mir-21, mir-30a, mir-141 and
mir-200c were shared across all of the four constructed networks
(Table S5).

The most frequent subnetwork observed in these networks was
centered on DDX5 (Figure 2). This subnetwork comprises 5
entities including DDX5, mir-20b, mir-21, mir-141 and mir-182.
DDX5 is negatively regulated by mir-20b and mir-141, while
DDX5 itself regulates mir-21 and mir-182. Down-expression of
DDX5 was observed in 7 types of HCs, while, mir-20b, mir-21,
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mir-141 and mir-182 over-expressed in 3, 5, 3 and 4 HCs,
respectively (Table 3 and Table 4). It suggests the negative
interrelation between DDX)5 and these four miRNAs.

Another subnetwork was constructed based on mir-141, mir-
200c, and GAPDH, which all located on predicted PCSRs at
12p13.31 (Figure 3). This network comprises of 17 entities and 29
relations (Figure 3). Thirteen downstream targets were observed
for mir-141, mir-200c, and GAPDH. For example, mir-141 and,
mir-200c, which were over-expressed in 3 HCs (shown as purple in
the Figure 3), have miRNA effects on ZEB2 (with down-expression
in 7 HGs). Interestingly, these altered RNAs including mir-141,
mir-200c and GAPDH (at 12p13.31) and also ZEB2 (at 2q22.3)
are all located at predicted PCSRs. In the case of upstream nodes,
TP53 and MYC were observed as upstream regulators of mir-200c
and GAPDH (Figure 3). TP53 is common positive regulator for
both mir-200c and GAPDH, but MYC is only regulating GPADH
(Figure 3).

Promoter Analysis of Altered MRNAs and MiRNAs across
Different Cancers

Promoters of over-expressed and down-expressed mRNAs and
miRNAs were individually analyzed across different cancers. A list
of common transcription factors for each set of down-expressed
and over-expressed mRINAs are provided in the Tables S6 and S7,
respectively. Among 18 common predicted TFs for over-expressed
mRNAs, Kruppel-Like Factor 4 (KLF4) located at PCSRs was
found to be down-expressed in 7 types of cancers (Table S6).
While, from total 13 common regulators predicted for down-
expressed mRINAs, 6 regulators are located on PCSRs. Among
these 6 regulators RAR-related orphan receptor A (RORA) was
down-expressed in 8 types of cancers (Except that Glioblastoma
with over-expression and no significant expression in prostate and
gastric cancers) (Table S7).

Common regulators were also predicted for cluster of altered
miRNAs on the same region (Table S8). For example, GATA2,
GATAS3, ETS1, MZF1_1-4, SOX10, YY1, ZNF354C and SPI1
were predicted for miRNAs located on cluster at Xp11.23 (Table
S8). In total, 22 common regulators were predicted for different
clusters of miRNAs which eight of them are located at PCSRs
including YY1, SPIB, SOXI10, NFIC, NR4A2, FOXDI,
NFATC2 and HOXA5 (Table S9). Interestingly, GATA2 was
predicted for both down-expressed mRNAs and altered miRNAs.

Discussion

An effective pipeline was developed to predict PCSRs using
microarray datasets of different cancer studies. Two different
thresholds were applied to predict PCSRs including probsets with
at least 2-fold changes and first 200 probsets with the highest fold
changes. Most of the predicted PCSRs on each chromosome were
similar in both applied thresholds, which confirm the reliability of
these PCSRs.

In addition to this confirmation, based on literature review we
found the presence of several important cancer-associated variants
on our predicted PCSRs. These variants have been reported
previously for pancreatic [4,11] (6q13, 21q21.3, 5pl13.1, 21q22.3
and 22q13.32), lung [12] (6p21.32), prostate [13,14,15] (9q31.2,
19q13.4, 8q24 and 17q21-q22), ovarian [10] (19p13), breast [18]
(8924, 12p13 and 20q13) and colorectal cancer [19] (11q23, 8q24
and 18g21). Our findings in agreement with these studies
identified region 8q24 as a risk region in variety of HCs
[8,14,19,20,21], which shows involvement of some of risk regions
in several types of cancers rather than a specific cancer. Moreover,
some of the predicted PCSRs in this study were reported in other
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types of human diseases including herpes simplex virus type 1 [22]
(21q), polycystic ovary syndrome [23] (9q33.3), Type 1 diabetes
and Rheumatoid arthritis [24] (both located on 18pll). This
similarity might indicate the efficiency of our approach in
prediction the risk regions associated with different human diseases
besides cancer.

PCSR

We also found that eight chromosomes harbor the most altered
genes in different types of cancer including chromosomes 1, 4, 5, 7,
8, 12, 13 and X. Interestingly, chromosomes 1, 4 and 13 were also
recorded as the chromosomes with the highest percentage of
predicted PCSRs, which suggests the important role of these
chromosomes in cancer biology. Based on these results and those
previously reported on chromosomes abnormality [7,25,26,27], it
can be concluded that our pipeline is able to predict risk regions as
well as risk chromosomes in a variety of diseases including cancer.
This pipeline can also be applied to the fast growing (but still
limited number of) RNA-seq datasets in future studies.

Network analysis indicates that DDX5, LIFR, ZEB2, mir-21,
mir-27b, mir-30a, mir-141, mir-182 and mir-200c were shared
across different constructed networks, indicting their crucial role in
cancer biology and progression, which has been reported
previously [28,29,30]. For example, the potential clinical utility
of DDX5 and its associated miRNAs (mir-21 and mir-182) are
suggested as therapeutic target in breast cancer [29,31]. In
addition, clinical application of different miRNAs in cancer such
as let-7, mir-21and mir-122 are discussed in recent study of Nana-
Sinkam and Croce [28].

Because miRNAs do not function in isolation [28], we analyzed
the cluster of miRNAs on same regions to understand the relative
contribution of multiple miRNAs rather than individual miRNA.
Co-expression of different miRNA implies the presence of
common transcription regulators and/or common causal variants
for these regions. It is also previously reported that common
modules on the promoters can cause co-expression of the genes
[32].

We found that different common regulators for altered mRNAs
and miRNAs including, KLF4 (at 9q31.2) and RORA (15q22.2)
were on the predicted PCSRs. These two TFs mediate a set of cell-
cycle genes and exhibits both oncogenic and tumor suppressive
functions [33,34]. Interestingly, down-expression of mir-30c-2 (at
6q13) as well as over-expression of GATAS3 was observed across
different types of HCs in this study, which confirm regulation of
mir-30c-2 through GATA3. Bockhorn and collogues recently
demonstrated that mir-30c is transcriptionally regulated with
GATAS3 [35].

Presence of another level of interrelation between cancer-risk
regions was suggested, where mRNAs and their common
regulators at different PCSRs interact with each other as well as
their targets. The subnetwork centered on DDX5 with total 5
nodes and 4 relations (Figure 2) and the subnetwork of GAPDH,
miR-141 and mir-200c confirm such interactions (Figure 3). In
these subnetworks, different RNAs are located on PCSRs
including GAPDH, ZEB2, mir-20b, mir-21, mir-141 and mir-
200c supporting the important effects of these RNAs and their
regions in cancer.

Subnetwork centered on DDX5 is shared across networks
constructed for altered mRNAs and miRNAs in different cancers.
RNA helicase DDX5 (also known as p68) is involved in RNA
metabolism and serves as a transcriptional co-regulator and has
been reported as regulator of mir-182 in breast cancer [29].
Significant association has been also reported between DDX)
rs1991401 (OP=7.90x10—5) and malignant peripheral nerve
sheath tumor [36]. Our results showed that up regulation of mir-
20b and mir-141 down regulates DDX5.
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Potential Cancer-Susceptibility Region.
Symbols: 1, over-expression; |, down-expression; v, risk region.
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Table 4. Cont.
hsa-mir-422a
hsa-mir-1274b

MicroRNA
hsa-mir-132
hsa-mir-205
hsa-mir-375
hsa-mir-361
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Figure 2. Subnetwork center on DDX5 derived from network of common altered variants in different cancers. Network is including
mir-21, mir-182, -mir20b and mir-141. Network was constructed using pathway studio 9 software. Network was assembled based on bioinformatics
and literature, combined with biological interpretation of the microarray data and enriched Gene Ontology functional groups. Red: over-regulated

entities in most of cancers. Blue: down-regulated entities in most of cancers. Lrepresents negative-regulated.

doi:10.1371/journal.pone.0096320.g002

Second subnetwork (Figure 3) contained GAPDH, mir-141 and
mir-200c that are located at 12p13.31 as predicted PCSRs.
Amplification of 12p13 region was observed in breast cancer [37],
T cell lymphomas and lymphocytic leukemia [38,39], causing
over-expression of GAPDH, mir-141 and -200c. Upstream
regulators can involve in up-regulation of these RNAs and a
positive effect has been reported for TP53 located on the upstream
region of GAPDH [40]. In addition, Yoshihara et al [41] reported
some sporadic ovarian cancer-unique CNVs at 12pl13.31. In
general, these reports in combination with our i sifico findings
indicate the crucial role of 12p13.31 in HCs.

differentiation

Interestingly, some other common RNAs between cancers in
this report, are observed in prior studies of tumors and other
diseases [16,42]. For example, presence of synonymous SNP
(rs12948217) affecting the exonic splicing enhancers site nearby
ASPA has been reported for neurodegenerative disease [43]. Loss
of regions including 14q32.2 (location of mir-127, mir-432 and
mir-770) and 14q32.31 (mir-134, mir-379, and mir-382) were
reported in previous studies of renal cancer and osteosarcoma
[16,44]. In our study, mirRNAs located at 14q32.2 and 14q32.31
showed down-expression in several cancers, implying down-
expression of miRNAs following chromosome loss in these regions.

o Protein
{ > Functional Class

Cellular Process

- Disease

Transcription Factor

| g ¢ |

= Binding
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MYC —p Expression
4 = ProtModification

apoptosis

Figure 3. Network of common altered variants in different cancers including mir-200c, mir-141, and GAPDH at 12p13.3. Network was
constructed using pathway studio 9 software. Shortest path algorithm was applied to construct network. Network was assembled based on
bioinformatics and literature, combined with biological interpretation of the microarray data and enriched Gene Ontology functional groups. Purple:
over-regulated entities in most of cancers Blue: down-regulated entities in most of cancers. O-vertex represent TFs, @represents positive-regulated,
and Lrepresents negative-regulated.

doi:10.1371/journal.pone.0096320.g003
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In conclusion, predicted PCSRs in the current study opens new
avenue in further genome association studies for finding different
types of cancer-causal variants. Since multiple variations accu-
mulated in a gene or a cluster of genes may all contribute to the
phenotype, studying different types of variations or regulatory
mechanisms over a gene, cluster of genes or specific region might
be a wuseful tool for improving association detection. The
identified common altered RNAs at PCSRs in our constructed
networks have great potential to be used for finding associated
SNPs, CNVs and/or SSRs near these genes. In addition, these
results suggest the potential of novel regulator-based (rather than
gene-based) cancer therapy in order to restore the disrupted
cluster of mRNAs and/or miRNAs. In general, our pipeline can
be effectively used to predict cancer-risk regions and cancer-risk
chromosomes.

Methods

Expression Data Analysis

Raw CEL expression data for different HCs were obtained from
Gene Expression Omnibus (GEO) database (Table S10). The
RMA (Robust Multichip Average) algorithm was first applied to
the microarray raw data to obtain normalized data using
Expression Console software (Affymetrix, CA, USA). Data were
then analyzed using FlexArray software (http://genomequebec.
mcgill.ca/FlexArray/). Differential gene expression pattern for
each experiment (cancer vs. normal) was evaluated using empirical
Bayes test (a moderated t test) (p<<0.05). Genes exhibiting at least
2-fold changes in gene expression and 1.5 fold changes in miRNA
expression were selected for further analysis. Also, 1.2-fold change
was considered to trace common altered mRNAs and miRNAs in
different cancers.

The digital differential display (DDD) tool (http://www.ncbi.
nlm.nih.gov/UniGene/ ddd.cgil) was used to screen the cancer-
related genes in different HCs. EST libraries selected for DDD
comparisons of different tissues (cancer vs. normal) are listed in
Table S11. Pools A and B were assigned for normal and cancerous
libraries in each cancer, respectively. The output provided a
numerical value in each pool denoting the fraction of sequences
within the pool that mapped to the UniGene cluster. Statistically
significant hits (Fisher’s exact test) showing >10-fold differences
were compiled, and a preliminary database was created. Fold
differences were calculated by using the ratio of pool B/pool A,
according to previously described method [45].

Among probsets with highest fold changes, common altered
mRNAs and miRNAs (at least in 6 out of 11 HCs) were extracted
using DDD  tools together with microarray datasets. These
common altered RNAs afterward used for network constructions.

Detecting of Shared-Cancer Susceptibility Regions

The numbers of differentially expressed genes were counted for
each region (as frequency of the region) using an in-house
developed python script (The python script is available in Script
S1). The frequency of region involved in expression was calculated
for probsets with at least 2-symmetrical fold changes (Table S12)
and 200 first probsets with the highest fold changes (Table S13).
Next for each region, percentage of region participation in
differentially expressed probsets in all 11 types of HCs was
calculated using following equations:

Region participation for over — expressed probsets(%o) =

(FOR /(FTP x n)) x 100
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Where FOR is the frequency of region for over-expressed probsets
(summation of 11 HCs), n 1s the number of cancers (here is 11) and
FTP is frequency of region for total probsets (Table S14 and S15).

Region participation for down — expressed probsets(%) =

(FDR/(FTP x n)) x 100

Where FDR is the frequency of region for down-expressed
probsets (summation of 11 HCs), n is the number of cancers (here
is 11) and FTP is the frequency of region for total probsets (Table
S14 and S15). Finally, five regions with the highest ratio were
selected as potential cancer-risk regions for each chromosome.

In addition, percentage of chromosome participation in
differentially expressed probsets in total 11 HCs was calculated
using following equations:

Chromosome participation for over — expressed probsets(%)=

(FOC/(FCTP x n)) x 100

Where FOC is the frequency of chromosome for over-expressed
probsets (summation of 11 HCs), n is the number of cancers (here is
11) and FCTP is the frequency of chromosome for total probsets
(Table S16).

Chromosome participation for down — expressed probsets(%)=

(FDC/(FCTP x n)) x 100

Where FDC is the frequency of chromosome for down-expressed
(summation of 11 HCs), n i1s number of cancers (here 1s 11) and
FCTP is the frequency of chromosome for total probsets (Table
S16). Moreover, the percentages of chromosome participation for
each cancer (Table S17) were calculated using fraction of
chromosome frequency for altered probsets to chromosome
frequency for total probsets (Table S17). The differences of
chromosomes were investigated based on general chi square test.

Construction of Networks on Common Altered MRNAs
and MiRNAs

Pathway Studio 9 software (Ariadne Genomics, Rockville, MD)
was used to construct different networks. Pathway Studio uses the
RESNET Mammal database, which is a comprehensive pathway
and molecular interaction database [46]. This database includes
new aliases for human genes, miRNAs and entries from other
mammals. The shortest path algorithm was used to construct four
different networks based on altered mRNAs and miRNAs [47].
Five networks were constructed based on common altered RNAs,
including network of commonly altered mRNAs, network of
commonly altered mRNAs on PCSRs, network of commonly
altered miRNAs, network of commonly altered miRNAs on
PCSRs and integrative network of common altered mRNAs and
miRNAs. The biological process of each network was identified
using the DAVID (http://david.abcc.nciferf.gov/tools.jsp) suite of
bioinformatics tools. DAVID bioinformatics resources consists of
an integrated biological knowledgebase and analytic tools aimed at
systematically extracting biological meaning from large gene/
protein lists [48].

Promoter Analysis of Altered RNAs

Promoter analysis was conducted for co-expressed mRNAs
across different cancers using pscan[49]. Transcription factors
(TFs) were predicted in the promoter regions (—1 kb to 0) of
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mRNAs using Jaspar database (TFs with P-value<0.1 were
selected). In the case of miRNAs, common regulators were
predicted for altered miRNAs at same region using Jaspar web
tool (http://jaspar.genereg.net/). TFs were predicted in the
putative promoter regions (—3 kb to +1 kb) of microRNAs with
at least 99% relative profile score threshold. Expression of
predicted TFs was determined using transcript-microarray ex-
pression data of 11 different cancers including breast, colorectal,
endometrial, gastric, liver, lung, ovarian, pancreatic, prostate,
testicular, bladder, intestine neuroendocrine, cervical and renal
cancers as well as glioblastoma.
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