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Abstract

A new nematode species, Bursaphelenchus sycophilus n. sp. is described. The species was found in syconia of a fig species,
Ficus variegata during a field survey of fig-associated nematodes in Japan. Because it has a well-developed stylet and
pharyngeal glands, the species is considered an obligate plant parasite, and is easily distinguished from all other fungal-
feeding species in the genus based upon these characters. Although B. sycophilus n. sp. shares an important typological
character, male spicule possessing a strongly recurved condylus, with the ‘‘B. eremus group’’ and the ‘‘B. leoni group’’ of the
genus, it was inferred to be monophyletic with the ‘‘B. fungivorus group’’. The uniquely shaped stylet and well-developed
pharyngeal glands is reminiscent of the fig-floret parasitic but paraphyletic assemblage of ‘‘Schistonchus’’. Thus, these
morphological characters appear to be an extreme example of convergent evolution in the nematode family,
Aphelenchoididae, inside figs. Other characters shared by the new species and its close relatives, i.e., lack of ventral P1
male genital papilla, female vulval flap, and papilla-shaped P4 genital papillae in males, corroborate the molecular
phylogenetic inference. The unique biological character of obligate plant parasitism and highly derived appearance of the
ingestive organs of Bursaphelenchus sycophilus n. sp. expands our knowledge of the potential morphological, physiological
and developmental plasticity of the genus Bursaphelenchus.
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Introduction

The fig syconium provides a unique and interesting habitat for

microbes and microscopic invertebrates. Trees of the genus Ficus

L. are pollinated by highly specialized fig wasps (Agaonidae). This

fascinating relationship has become a model system for studying

cospeciation and host switching [1–6]. In this relationship, female

wasps carrying pollen enter the young fig through a small hole

(ostiole) at the apex of the fig, pollinating it and laying eggs in

individual female florets within the fig syconium. After pollina-

tion, the syconium develops and the ostiole swells shut during

subsequent seed development. Fig wasp larvae feed within

infested female florets (seed galls) and develop into winged

female and wingless male adults. Males emerge first from their

respective seed galls and bore holes into the seed galls housing

females for mating access. They then bore exit holes through the

syconial wall to allow female wasps carrying the pollen to exit

[7,8]. Thus, the fig syconium is often considered a closed

environmental niche.

However, regardless of this apparently closed system, many

different groups of phoretic and parasitic invertebrates, e.g.,

nematodes [9–12] and mites [11,13], have been reported from

figs and fig wasps. Further, the nematode genus Parasitodiplogaster

Poinar, which parasitizes the fig wasps, has been examined as a

model system of species radiation and the evolution of

pathogenicity [10]. Nevertheless, because of the apparent

ubiquity of such associations and the large number of

Ficus species that occur worldwide (.700 species), the

diversity of fig-associated nematodes (and mites) is far from

being fully understood, and further intense surveys of diversity

are needed.

During a field survey of fig and fig wasp-associated nematodes

in Japan, a species of Bursaphelenchus was isolated from F. variegata

Blume. Although two lethal plant pathogens are known [14],

members of the genus Bursaphelenchus Fuchs is generally regarded

as beetle (Coleoptera) or bee (Hymenoptera)-phoretic fungal

feeders, and even the plant-parasitic species retain many of the

morphological (functional) characters of fungal feeding in their

ingestive organs [15]. However, the newly-discovered species

appears to be morphologically adapted to being a plant parasite.

The nematode is described herein as B. sycophilus n. sp., and its

molecular phylogenetic status and morphological and biological

characters are described and discussed.
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Materials and Methods

Nematode isolation
No specific permissions were required for these locations/

activities. Field studies did not involve endangered or protected

species. The detailed location information is provided in Fig. 1 and

supplemental information (Table S1).

A field survey of fig-associated nematodes was conducted during

May to June, 2013 at the Ishigaki and Iriomote Islands, Okinawa,

Japan. Various stages of fig syconia, i.e., unpollinated (young) and

pollinated and developing (mature) ones, were collected from F.

variegata, F. septica Burm. F. and F. bengtensis Merrill, and dissected

on site using a portable dissecting microscope. The figs were

pealed to remove the outer layers containing latex, and cut into

small pieces in sterilized distilled water using a sterilized knife.

Emerging nematodes were hand-picked with sterilized stainless

needles for further analyses. They were heat-killed and fixed in

TAF fixative (triethanolamine 2%, formalin 8%) for morpholog-

ical specimens, or directly fixed in DESS [16] for further

morphological and molecular profiling, and all materials were

brought back to the laboratory. In addition to the materials

collected on site, some syconia were brought back to the

laboratory as back-up for additional sampling.

Morphological observation
The TAF-fixed materials were examined under a dissecting

microscope and separated into morphotypes. Each morphotype

was processed using a glycerin–ethanol series with the modified

Seinhorst’s method [17], and mounted in glycerin according to the

methods of Maeseneer and d’Herde [18]. The mounted specimens

were designated as types, and used for morphometrics and

morphological observations, micrographs and measurements. The

male tail ventral view was observed using the glycerin-processed

specimens with the methods provided in Kanzaki [19]. The

morphological drawings and measurements (morphometrics) were

conducted with the aid of a drawing tube connected to a Nikon

Eclipse 80i (Nikon, Tokyo) facilitated with DIC optics. The

micrographs were taken and edited with a digital camera system,

DS-Ri1 (Nikon, Tokyo) and a computer program, Photoshop

Elements v. 3 (Adobe, CA), respectively.

Molecular profiles and phylogeny
For molecular analysis, DESS-fixed materials were washed and

rehydrated in the sterilized distilled water, and observed using high

magnification light microscopy to determine morphotypes. These

observed specimens of B. sycophilus n. sp. were then transferred

individually to 30 ml of nematode digestion buffer [20,21] and

Figure 1. Outline map of collection localities for the samples examined in this study. For each locality and sampled fig species are
suggested by abbreviations (b: Ficus bengtensis; s: F. septica; v: F. variegata).are listed. The GPS of the sites, sampled species and isolated nematode
species (morphotype or genotype) \are summarized in Table S1.
doi:10.1371/journal.pone.0099241.g001
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digested at 60uC for 20 min., and the crude DNA solution was

used for the PCR template. DNA base sequences of partial

ribosomal DNA (ca 1.7-kb near-full-length small subunit [SSU]

and 0.7-kb D2/D3 expansion segment of large subunit [D2/D3

LSU]) were determined for B. sycophilus n. sp. following the

methods of Kanzaki and Futai [22] and Ye et al. [23].

The molecular phylogenetic status of B. sycophilus n. sp. was

determined based upon SSU and D2/D3 LSU ribosomal RNA

gene sequences using Bayesian, Maximum Likelihood (ML) and

Maximum parsimony (MP) analyses. The SSU was compared with

a wide-range aphelenchids and other infraorder species, and D2/

D3 LSU, which is more suitable for lower level phylogenetic

comparisons, was compared with those of closely related species.

The species (operational taxonomic units: OTUs) compared with

B. sycophilus n. sp. were determined according to the results of a

BLAST homology search (http://blast.ncbi.nlm.nih.gov/Blast.cgi)

and the OTUs used in the previous studies on aphelenchid

phylogeny [24–27]. The species names and sequence accession

numbers used in the present study were summarized in Table S2.

Several tylenchid and panagrolaimid nematodes were used as

outgroup species according to the previous studies [24–26]. The

compared sequences were aligned using MAFFT [28], and the

base substitution model was determined as GTR+I+G using

MODELTEST version 3.7 [29] under the AIC model selection

criterion. The Akaike-supported model, log likelihood (lnL),

Akaike information criterion values, proportion of invariable sites,

gamma distribution shape parameters, and substitution rates were

used in the analyses. Bayesian analysis was performed using

MrBayes 3.2 [30]; four chains were run for 46106 generations.

Markov chains were sampled at intervals of 100 generations [31].

Two independent runs were performed, and after confirming the

convergence of runs and discarding the first 26106 generations as

‘burn in’, the remaining topologies were used to generate a 50%

majority-rule consensus tree. The PhyML 3.0 online version [32]

was employed for the ML analysis. The analysis parameters

obtained from the model selection procedure were adopted for the

analysis, otherwise the default settings were used. The unweighted

MP analysis was performed using PHYLIP 3.69 [33] with default

settings. The tree topologies obtained from ML and MP analyses

were evaluated with 1000 bootstrap pseudoreplications. The

Table 1. Morphometric values for Bursaphelenchus sycophilus n. sp.

Male Female

Holotype Paratypes Paratypes

n - 19 20

L 844 840672 (738–964) 820679 (666–933)

a 54.7 49.765.2 (39.0–59.3) 39.364.1 (32.6–45.2)

b 11.8 11.665.2 (9.7–13.0) 11.261.1 (9.0–13.0)

c 20.0 19.261.7 (15.7–22.7) 16.461.1 (14.5–18.7)

c9 2.9 2.960.3 (2.6–3.5) 4.860.7 (3.2–6.0)

T or V 67.2 67.465.1 (57.6–78.1) 79.261.2 (75.8–81.2)

M 51.9 52.462.5 (49.1–60.4) 53.261.6 (50–56.7)

Lip diam. 7.5 7.060.5 (6.0–7.5) 7.260.4 (6.5–8.0)

Lip height 3.5 3.760.4 (3.0–4.5) 3.760.4 (3.0–4.5)

Stylet conus length 13.9 14.261.0 (12.4–15.4) 15.560.9 (13.9–17.4)

Total stylet length 26.9 27.261.7 (23.9–29.4) 29.261.4 (26.7–32.8)

Median bulb length 16.4 17.061.5 (14.4–21.4) 17.661.5 (15.4–20.4)

Median bulb diam. 10.4 10.661.1 (9.5–13.4) 11.161.2 (9.5–13.4)

Median bulb length/diam. 1.57 1.6160.2 (1.26–1.87) 1.5960.1 (1.38–1.86)

Excretory pore from anterior end 86 8766.0 (93–97) 8565.7 (73–96)

Excretory pore from the base of median bulb 16.4 16.365.3 (14.4–21.4) 13.865.6 (3.0–21.9)

Nerve ring 87 8863.4 (83–96) 8763.8 (81–95)

Hemizonid from anterior end 97 10065.6 (92–114) 9764.3 (88–104)

Hemizonid from the base of median bulb 27.4 30.165.4 (23.9–41.8) 26.764.6 (17.9–35.3)

Gonad length (length from cloacal or vulval opening to anterior tip of
gonad)

568 564648 (494–659) 329646 (198–389)

Cloacal/anal body diam. 14.4 15.061.4 (12.9–18.9) 10.661.5 (7.5–13.4)

Tail length 42 4462.2 (40–49) 5064.3 (43–57)

Spicule length (chord from anterior end of condylus to distal end) 15.6 16.060.8 (14.4–17.4) -

Spicule length (curve from capitulum depression to distal end) 14.7 14.860.8 (12.9–15.9) -

Post-uterine sac length - - 4766.8 (34–60)

Post-uterine sac length per vulva-anus distance in % - - 39.364.7 (29.9–48.2)

All measurements are in mm in the form, average 6 sd (range). The abbreviations for morphometric values are as follows. L: body length; a: body length/maximum body
diameter; b: body length/length from anterior end to pharynx-intestine junction (ingestive organ length); c: body length/tail length; c9: tail length/cloacal or anal body
diameter; T: testis length/body length in %; V: vulval position from anterior end in %; M: conus length to total stylet length in %.
doi:10.1371/journal.pone.0099241.t001
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results obtained from Bayesian, ML and MP analyses were then

compared to evaluate the phylogenetic position of the new species.

Culturing attempt
Attempts were made to culture the nematode using the grey

mold Botrytis cinerea Pers., a standard feeding resource fungus for

mycophagous nematodes, and alfalfa callus (Medicago sativa L.), a

standard feeding resource for plant-parasitic nematodes. The

nematodes were extracted from the additionally-collected samples

of F. variegata syconia, washed several times with sterilized distilled

water, and transferred to fungal lawns on 2.0% malt extract agar

(Difco malt extract: 2.0%; Agarose 2.0%) or alfalfa callus donated

by Dr. T. Mizukubo (NARO Agricultural Research Center).

The transferred nematodes were kept at 23uC for a month, and

were examined under a dissecting microscope every 5–10 days.

Culturing attempts were replicated five times for both B. cinerea

and alfalfa callus.

Nomenclatural acts
The electronic edition of this article conforms to the require-

ments of the amended International Code of Zoological Nomen-

clature, and hence the new names contained herein are available

under that Code from the electronic edition of this article. This

published work and the nomenclatural acts it contains have been

registered in ZooBank, the online registration system for the

ICZN. The ZooBank LSIDs (Life Science Identifiers) can be

resolved and the associated information viewed through any

standard web browser by appending the LSID to the prefix

‘‘http://zoobank.org/’’. The LSID for this publication is:

urn:lsid:zoobank.org:pub:325625B8-D150-4836-B1A8-FCE3-

C8AC311C. The electronic edition of this work was published

in a journal with an ISSN, and has been archived and is

available from the following digital repositories: PubMed

Central, LOCKSS.

Results

Bursaphelenchus sycophilus Kanzaki, Tanaka, Giblin-Davis &

Davies n. sp. urn:lsid:zoobank.org:act:6109FB02-E6FA-4570-

8959-F918341319A9

Type materials. The holotype male, nine paratype males

and 10 paratype females were deposited in the United States

Department of Agriculture Nematode Collection (USDANC),

Beltsville, Maryland, USA, and 10 paratype males and 10

paratype females were deposited in the Forest Pathology

Laboratory Collection, FFPRI, Tsukuba, Japan.

Description
Morphometric values are summarized in Table 1. Morpholog-

ical illustrations and photographs are shown in Figs. 2–4.

Adults. Intermediate in body size, 738–964 mm and 666–

933 mm in length for males and females, respectively. Body

cylindrical, slender, weakly ventrally arcuate when killed by heat

treatment. Male tail strongly recurved ventrally. Cuticle thin,

finely annulated with a lateral field with four incisures. Lip region

distinctly offset from body, separated from other body parts by a

clear constriction, sub-rectangular or rounded, ca twice as broad

as high in lateral view. A cuticular plate present at the anterior

end. The edge of plate a little off-set, and appears like two

cuticular projections in lateral view. Stylet very well-developed,

separated into two parts: a conus occupying approximately 50% of

the total stylet length and a shaft with a conspicuous and large

basal swelling, but not forming a clear basal knob. Procorpus

cylindrical, ca 1.5 metacorpal lengths ( = ca 1 stylet length) long,

Figure 2. Bursaphelenchus sycophilus n. sp. A: Adult female; B: Adult
male.
doi:10.1371/journal.pone.0099241.g002
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connected to a well-developed muscular oval-shaped metacorpus

(median bulb) occupying ca 90% of the body diameter. Dorsal

pharyngeal gland orifice opening into the lumen of the metacorpus

midway between the anterior end of the metacorpal valve and the

anterior end of the metacorpus. Metacorpal valve conspicuous, ca

1/5 of the metacorpal length, located at the centre or a little

posterior to the centre of the metacorpus. Pharyngo-intestinal

junction immediately posterior to the posterior end of the

Figure 3. Bursaphelenchus sycophilus n. sp. A: Anterior region in left lateral view; B: Close-up of stylet (co: conus; sh: shaft; bs: basal swelling); C:
Close-up of head region (pl: lip plate; gu: stylet guiding); D: Body surface pattern; E: Female reproductive system in right lateral view (ov: ovary; od:
oviduct; sp: spermatheca or receptaculum seminis; cr: crustaformeria; ut: uterus; v/v: vagina and vulva; pus: post-uterine sac); F: Female vulval region in
ventral view; G: Female anus and rectum in ventral view; H: Female tail in right lateral view; I: Male tail in right lateral view; J: Male tail tip (bursal flap)
in ventral view; K: Male spicule in right lateral view.
doi:10.1371/journal.pone.0099241.g003
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metacorpus. Pharyngeal glands well-developed. Dorsal pharyngeal

gland ca 5–6 metacorpal lengths long, overlapping the intestine

dorsally, ca 50% of the corresponding body diameter at the

broadest part. Nerve ring surrounding pharyngeal glands and

intestine ca 1 metacorpal length posterior to pharyngo-intestinal

junction. Excretory pore visible, located near level of the nerve

ring, i.e., varying between the posterior end of the metacorpus to

ca 2 metacorpal lengths posterior to the metacorpus. Hemizonid

ca 2 metacorpal lengths posterior to the metacorpus.

Male. Gonad single, outstretched in most individuals. Poste-

rior 1/5 of gonad forms vas deferens, containing several well-

developed sperm. Posterior end of vas deferens and intestine fused to

form a narrow cloacal tube around the spicule. Sperm amoeboid,

spermatocytes arranged in multiple (3–5) rows for anterior 1/5 of

testis length, two rows for next 1/5, single row for middle part,

with the well-developed sperm packed as 2–5 rows in the posterior

part of testis. Tail region strongly arcuate ventrally, terminus claw-

like in lateral view. Spicules paired, separate, mitten-shaped, stout,

i.e., the length (chord from anterior end of condylus to cucullus) is

ca 3 times the length of the widest part of the calomus–lamina

complex: condylus short, rounded with anterior tip strongly

recurved dorsally. Rostrum triangular, with pointed tip. Capitu-

lum with clear depression immediately anterior to the anterior

base of the rostrum. Lamina with two clear lines connecting the

dorsal root of the condylus to the blunt tip, smoothly ventrally

arcuate. Calomus–lamina complex widest at the posterior end of

rostrum and calomus smoothly tapered along with lamina to distal

tip. A cuticular limb present between calomus and lamina,

extending from the middle of calomus to near the root of condylus.

Connection between rostrum and calomus indistinctive, i.e.,

rostrum and calomus are connected with smooth curvature.

Cucullus absent. Six (three pairs) genital papillae present: all are

papilla-shaped, i.e., not gland-like (glandular papillae). First pair

(P2) subventrally located, adcloacal, i.e., at level of cloacal opening

(CO). Second pair (P3) subventral ca 1/2 tail length posterior to

CO. Third pair (P4) located ventrally ca 1/2 cloacal body

diameter posterior to P3. Bursal flap present, covers the distal part

from the level of P3, having oval shape with three projections at

the posterior end. The middle projection longer and narrower

than the others, appears as hair-like extension in the lateral view.

Female. Reproductive tract composed of ovary, oviduct,

spermatheca, crustaformeria, uterus, vagina + vulva and post-

uterine sac (branch). Ovary single, anteriorly outstretched, anterior

end reflexed once in some individuals. Ovary constructed of flat,

plate-like cells. Oocytes present in multiple (2–5) rows in anterior

1/2–4/5 of ovary with a couple of well-developed oocytes in a

single row at the posterior end. Oviduct tube-like, constructed of

large oval-shaped cells, connecting ovary and crustaformeria,

sometimes occupied by well-developed oocytes. Spermatheca

(receptaculum seminis) constructed of rounded cells, present as a

branched overlapping of oviduct, i.e., branching out from anterior

end of crustaformeria, slightly irregular oval shape, sometimes

filled with well-developed sperm. Crustaformeria not conspicuous,

formed of rather large, rounded cells. Uterus short with thick wall,

sometimes containing a developing egg and several sperm. A sac-

like expansion present on both sides of the uterus, which could be

a part of the uterus. Dorsal uterine wall thickened at the uterus/

vagina/post-uterine sac junction and a three-celled structure,

where each cell has a cuticular (appears like fractal dots in LM

observation) pronged structure, present at both right and left sides

of the wall, but the structure is rather vague in fixed and mounted

materials. Vagina slightly inclined anteriorly. Vulval opening

lacking flap apparatus, both anterior and posterior vulval lips

slightly expanded, and forming a dome-shaped slit in ventral view.

Figure 4. Bursaphelenchus sycophilus n. sp. A: Anterior region in right lateral view (ep: excretory pore encircled at the corresponding level of the
body; h: hemizonid); B: Right lateral view of male tail; C–E: Right lateral view of male tail in different focal plane (co: cloacal opening; P2–P4: genital
papillae); F: left lateral view of female vulval region (v: vulva); G: Left lateral view of female tail (a: anus).
doi:10.1371/journal.pone.0099241.g004
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Post-uterine sac conspicuous, filled with well-developed sperm in

many individuals. Rectum present, seemingly functional, ca 1 anal

body diameter (ABD) long, intestine–rectum junction constricted

by sphincter muscle. Anus a small dome-shaped slit in ventral

view; posterior anal lip slightly expanded in lateral view. Tail

smoothly tapering to distal part, ca 3–6 ABD long. Tail tip region

short, conical, with a hair-like projection.

Diagnosis. Besides the generic characters, B. sycophilus n. sp.

is characterized by its unusually well-developed stylet, i.e., thick,

long and possessing well-developed conus occupying ca 50% of

total length and clearly developed basal swelling which forms a

diamond-shape in lateral view, well-developed pharyngeal glands,

three pairs of papilla-form male genital papillae and male spicule

with strongly dorsally recurved condylus. The biological characters

of inhabiting a fig syconium of F. variegata and being a plant

parasite could also be considered diagnostic.

Relationship. Based on the male spicule morphology, i.e.,

the initial typological character of the genus [34], B. sycophilus n. sp.

is similar to members of the ‘‘B. eremus group’’ (B. eremus (Rühm), B.

scolyti Massey, B. yongensis Gu, Braasch, Burgermeister, Brand-

stetter & Zhang, B. clavicauda Kanzaki, Maehara & Masuya, B.

uncispicularis Zhuo, Li, Li, Yu & Liao) and the ‘‘B. leoni group’’ (B.

eidmanni (Rühm), B. leoni Baujard, B. silvestris (Lieutier & Laumond)

and B. borealis Korentchenko) sensu Braasch et al. [34] and B.

maxbassiensis (Massey). The new species and these species share the

strongly dorsally arcuate condylus of the male spicule [35–44].

Within these 10 species, B. maxbassiensis is most similar to the new

species, i.e., these two species share the extremely well-developed

stylet [38,41,42]. However, the new species is distinguished from

B. maxbassiensis by its lip morphology, with cuticular plate vs

umbrella-like horizontal expansion, pharyngeal glands well-devel-

oped and extended vs. relatively short, position of excretory pore,

posterior vs. anterior to median bulb, male bursal flap possessing

three projections vs. rounded distal end, male spicule, the dorsal

curvature in condylus is stronger in B. sycophilus n. sp., female post-

uterine-branch occupying ca half of vulva-anus distance vs.

occupying 2/3 or more of vulva-anus distance, female vulval

structure, without any flap apparatus vs. slightly elongated anterior

lip forming short flap and female tail, smoothly tapered with short

conical distal end vs. smoothly tapered to distal end [38,41,42].

Molecular phylogeny. Because the tree topology and

phylogenetic status of B. sycophilus n. sp. were consistent among

analyses, only Bayesian trees are shown (Figs. 5, 6). In contrast to

morphological similarity, B. sycophilus n. sp. phylogenetically

belongs to clade II of the genus, and is close to B. willibaldi

Schönfeld, Braasch & Burgermeister, B. braaschae Gu & Wang, B.

tadamiensis Kanzaki, Taki, Masuya & Okabe, B. kiyoharai Kanzaki,

Maehara, Aikawa, Masuya & Giblin-Davis, B. thailandae Braasch &

Braasch-Bidasak and B. parathailandae Gu, Wang & Chen (Figs. 5,

6). These five species belong to the ‘‘B. fungivorus group’’ sensu

Braasch et al. [34], and the group is characterized by the male

spicule morphology possessing clear dorsal and ventral limbs

Braasch et al. [34]. However, the new species is readily

distinguished from members of the ‘‘B. fungivorus group’’ species

based on the well-developed stylet and pharyngeal glands and

male spicule morphology possessing a dorsally recurved condylus

vs. a small condylus without dorsal curvature [34,45–50].

Type host and locality. The type materials were obtained

on June 6, 2013 from a syconium from a Ficus variegata tree planted

on the Ishigaki Island, Okinawa, Japan (GPS: 24.419120N,

124.189470E, 59 m a.s.l).

Biological characters. The culturing attempts using B.

cinerea and alfalfa callus were not successful. Bursaphelenchus

sycophilus n. sp. showed no feeding behaviour on B. cinerea hyphae

or on alfalfa callus parenchymal cells, and died out within one

month of inoculation. Thus, the feeding preference (host range) of

the nematode appears to be narrow, possibly specific to fig

syconium tissue. Because a host-specific fig wasp species, Ceratosolen

appendiculatus (Mayr), was the only insect found with the syconium

from which type materials were obtained, the wasp is hypothesized

to be the carrier (or host) insect of the nematode.

Etymology. The species was named after its characteristic

habitat, the fig syconia.

Discussion

The morphological characters and molecular phylogenetic

status of B. sycophilus n. sp. are contradictory to each other, i.e.,

the new species shares a characteristic recurved condylus with

members of the ‘‘B. eremus group’’, ‘‘B. leoni group’’ and B.

maxbassiensis, but is molecular phylogenetically close to members of

the ‘‘B. fungivorus group’’ (Figs. 5, 6). Therefore, the recurved

condylus found in the ‘‘B. eremus group’’, the ‘‘B. leoni group’’ and

the new species is considered as an analogous or convergent

morphological character, i.e., the condylus morphology of the new

species is a species-specific apomorphy.

Comparing the spicule and male tail morphology among

members of the ‘‘B. eremus group’’, the ‘‘B. fungivorus group’’ and

B. sycophilus n. sp., three characters appear shared between the ‘‘B.

fungivorus group’’ and B. sycophilus n. sp., i.e., the lack of a ventral

single papilla anterior to cloacal opening (P1), lack of a cucullus on

the spicule and possession of a ventral limb of the spicule (Fig. 7).

The secondary loss of the P1 papilla is considered as an

apomorphic character of some members of the ‘‘B. fungivorus

group’’ [48,49], and the presence of the ventral limb of the spicules

is considered a shared character with members of the ‘‘B. fungivorus

group’’ (Fig. 7). In addition to male tail morphology, B. sycophilus n.

sp. and its close relatives are distinguished from the B. eremus group

by the lack of a flap apparatus on the female vulva vs. possessing a

short vulval flap (referred to as a side flap [51]) and the number of

lateral lines being four vs. three [34,52]. Thus, the presence of a

ventral limb in the male spicule, papilla-shaped P4 papillae of

males, lack of a ventral P1 papilla, and the lack of a female vulval

flap are the synapomorphic characters shared by B. sycophilus n. sp.

and its close relatives, i.e., the characters are congruent with the

inferred molecular phylogenetic relationships.

The lip and stylet morphology of the new species is very unusual

within the genus, and is similar to B. maxbassiensis, which was

originally described as Omemeea maxbassiensis Massey because of its

unusual lip and stylet morphology [41]. The large basal knobs are

often found in the plant-parasitic tylenchids [53], and the

extremely well-developed basal swellings of the stylet of the new

species may be the result of convergent evolution of traits adaptive

for plant parasitism in a fig sycone. Because the molecular

phylogenetic status of B. maxbassiensis has not been established, we

cannot determine whether their similarity is due to sharing a

recent common ancestor or not. Bursaphelenchus maxbassiensis was

isolated from the galleries of a bark beetle species, Hylesinus

californicus (Swaine), infesting green ash, Fraxinus pennsylvanica

Marsh. from North Dakota [41]. Hylesinus californicus sometimes

bores into living trees [41], i.e., providing the nematode species

with opportunities to encounter live plant tissue. Thus B.

maxbassiensis may also have the ability to feed on live tree tissue.

Re-isolation of B. maxbassiensis and detailed molecular and

morphological comparison are necessary to examine the origin

of plant parasitism of B. sycophilus n. sp.

The inferred molecular phylogenetic relationships and mor-

phological characters are not congruent to each other in the
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Figure 5. Molecular phylogenetic relationship among aphelenchid nematodes. The 10001st Bayesian tree inferred from near-full-length
SSU under GTR+I+G model (lnL = 34563.4258; freqA = 0.2468; freqC = 0.1869; freqG = 0.2517; freqT = 0.3145; R(a) = 1.203; R(b) = 2.9772; R(c) = 1.1044;
R(d) = 0.8365; R(e) = 4.1891; R(f) = 1; Pinva = 0.1959; Shape = 0.582). Posterior probability values exceeding 50% are given on appropriate clades. The
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subfamily Parasitaphelenchinae, which contains Bursaphelenchus,

Parasitaphelenchus Fuchs, Sheraphelenchus Nickle and Ruehmaphelenchus

Goodey [15]. Because of the morphological and biological

diversity of Bursaphelenchus, the other three genera are included in

the genus as subclades [24,25,54]. Therefore, a taxonomic revision

is needed where all genera should be lumped together using their

only common character, arrangement of the male genital papillae

[15], or alternatively they should be separated into many small

genera. If the new species and B. maxbassiensis shared a common

ancestor, then the resurrection of the genus Omemeea Massey may

be justified, if the genus (subfamily) is split into many small genera.

In the present study, culturing attempts using B. cinerea and

alfalfa callus as food were not successful. The feeding resource

preferences of several different nematodes, including Bursaphe-

lenchus spp., have been previously studied, and in many cases,

several different species of plant callus and ascomycete fungi,

including B. cinerea were considered to be suitable food for

aphelenchid nematodes [38,55,56]. Thus, although more replica-

tions using multiple species of fungi may be necessary, B. sycophylus

n. sp. does not appear to feed on fungus, and the species is

hypothesized to be an obligate plant parasite.

The obligate plant parasite, B. cocophilus can be cultured using

fresh palm tissue [14,57–59], although more detailed culturing

attempts, e.g., using several different plant callus in including

alfalfa, has not been conducted. A similar methodology, e.g., fig

callus and/or fresh tissue of Ficus variegata may be available for the

culture of B. sycophilus n. sp.

Several obligate and facultative plant parasites (pathogens) are

known in the genus Bursaphelenchus, and they are phylogenetically

distant from each other (Fig. 7), e.g., B. xylophilus (Steiner &

Buhrer), the pathogen of pine wilt disease [60], B. cocophilus Cobb,

the pathogen of red ring disease [57–59] and B. sexdentati Rühm,

which has moderate to strong pathogenicity to pine trees [61].

This pattern of multiple lineages of plant parasitism may suggest

the physiological plasticity of Bursaphelenchus nematodes in their

feeding abilities, e.g., digestive enzymes. However, the morphol-

ogy of the ingestive/digestive organs in these plant-parasites,

including the obligate plant-parasite, B. cocophilus [62], are basically

identical to that of other mycophagous Bursaphelenchus species [63–

67]. The highly derived morphology of B. sycophilus n. sp. may

represent the potential for morphological and developmental

plasticity in the genus Bursaphelenchus.

Although B. sycophilus n. sp. clearly belongs to the genus

Bursaphelenchus, its biological and morphological characters are

similar to those of Schistonchus spp. The genus Schistonchus Cobb is

known as to parasitize fig syconia, and are phoretically/

parasitically associated with fig wasps [68]. Morphologically, the

stylet of Schistonchus spp. is very similar to that of B. sycophilus, i.e., it

has a long conus and distinct basal swellings. Interestingly, the

genus is clearly paraphyletic [69–71] (Fig. 5). The similar

morphology and life cycle of these fig-associated nematodes

appears to have emerged from fungal feeding aphelenchoidid

nematodes at least four times, inclusive of B. sycophilus n. sp. (Fig. 5).

Some biological characters of B. sycophilus n. sp. have not been

clarified so far, e.g., insect interaction (parasitic or phoretic, and

which developmental stage of nematode is carried by insect),

detailed host range and distribution range. However, because the

genotypes of B. sycophilus n. sp. isolated from several different

locations on the Ishigaki and Iriomote Islands were identical, it is

considered to be commonly distributed on these two islands. The

distribution of F. variegata is widespread, from Ishigaki Island,

Japan through South Eastern Asia to Northern Australia.

However, regardless of multiple surveys of F. variegata in Northern

Australia, B. sycophilus n. sp. has not been isolated from the area

[69]. Therefore, the species is rare or absent from the region. To

determine the distribution range of B. sycophilus, more surveys in

South Eastern Asia and Northern Australia are needed.

In the present study, three species of figs were examined for

their nematode association. The new species was isolated only

from F. variegata, and was not found from the other two species, F.

septica and F. bengtensis. Thus, F. variegata is considered as the

specific fig host of B. sycophilus n. sp.

Center et al. [72] examined parasitized syconium tissue and

suggested that each Schistonchus species has potential tissue

specificity, which could lead to partitioning of the microhabitat

inside the syconium. In the present study, detailed histological

analysis was not conducted. Because B. sycophilus n. sp. often shares

the same syconium with a currently undescribed Schistonchus

species (Table S1), similar niche partitioning may be present

contingent upon competition and other evolutionary pressure.

blanch lengths for subfamily Parasitaphelenchinae which includes new species were expanded to show the topology clearly. The phylogenetic
groups within the family Aphelenchoididae and within the subfamily Parasitaphelenchinae following Kanzaki et al. (2013) were indicated with thick
arrows and bars, respectively. Parsimonious explanation on male genital papillae characters were indicated with thin arrows. The biological character,
fig-association was indicated by stars.
doi:10.1371/journal.pone.0099241.g005

Figure 6. Molecular phylogenetic relationship among Bursaphelenchus nematodes belonging to ‘B. fungivorus group’. The 10001st
Bayesian tree inferred from D2/D3 LSU under GTR+I+G model (lnL = 4855.5322; freqA = 0.1828; freqC = 0.1894; freqG = 0.3464; freqT = 0.2813;
R(a) = 0.7168; R(b) = 2.1523; R(c) = 0.925; R(d) = 0.2398; R(e) = 4.6466; R(f) = 1; Pinvar = 0.322; Shape = ). Posterior probability values exceeding 50% are
given on appropriate clades.
doi:10.1371/journal.pone.0099241.g006
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Detailed analyses are necessary to clarify the biological interaction

between B. sycophilus n. sp. and fig tissues, and B. sycophilus n. sp.

and other fig-associated nematodes.

Because fig syconia represent an exclusive habitat relative to

nematode immigration, i.e., only fig wasps and parasitic wasps

enter the young figs, the history of multiple aphelenchoidid lineage

introductions into different Ficus lineages is unclear. The simplest

explanation might be through fig wasp host switching and lineage

sorting for recent mixing. However, the convergence in feeding

morphology between B. sycophilus n. sp. and the two or three

different paraphyletic Schistonchus lineages suggest other possible

scenarios, such as rogue introductions of fungal feeding nematodes

by other fig-associating insects or other unknown aspects

concerning fig biology. For example, the new species is close to

the species associated with ambrosia beetles (B. kiyoharai) [48] and

stag beetles (B. tadamiensis) [49], and some ambrosia beetles invade

the petiole of living trees in tropical region [73,74]. Given the

relatively short branch length (genetic distance) between B.

sycophilus n. sp. and its related Bursaphelenchus spp., the new species

seems to have adapted to this closed environment relatively

rapidly. More detailed analyses, e.g., comparative genomic

analyses using the new species and its close relatives, may yield

interesting information concerning the genes involved in switching

feeding habitats and the development of plant parasitism.

Figure 7. Comparison of male tail character among Bursaphelenchus sycophilus n. sp. ‘B. eremus group’ and ‘B. fungivorus group’. A:
Male tail of B. clavicauda (B. fungivorus group) in right lateral view; B: Male tail of B. sycophilus n. sp. in right lateral view; C: Male tail of B. tadamiensis
(‘‘B. fungivorus group’’) in right lateral view; D: Spicule of B. clavicauda in right lateral view; E: Spicule of B. sycophilus n. sp. in right lateral view; F:
Spicule of B. tadamiensis in right lateral view. Convergent character (condylus) is suggested in black arrowhead and homologous characters (lack of
P1 papilla, papilla-formed P4 papillae, presence of ventral limb and lack of cucullus) are suggested with white arrowhead.
doi:10.1371/journal.pone.0099241.g007
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