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Abstract 

Cis regulatory elements (CREs), located within promoter regions, play a significant role in the 

blueprint for transcriptional regulation of genes. There is a growing interest to study the 

combinatorial nature of CREs including presence or absence of CREs, the number of 

occurrences of each CRE, as well as of their order and location relative to their target genes. 

Comparative promoter analysis has been shown to be a reliable strategy to test the significance 

of each component of promoter architecture. However, it remains unclear what level of 

difference in the number of occurrences of each CRE is of statistical significance in order to 

explain different expression patterns of two genes. In this study, we present a novel statistical 

approach for pairwise comparison of promoters of Arabidopsis genes in the context of number of 

occurrences of each CRE within the promoters. First, using the sample of 1000 Arabidopsis 

promoters, the results of the goodness of fit test and non-parametric analysis revealed that the 

number of occurrences of CREs in a promoter sequence is Poisson distributed. As a promoter 

sequence contained functional and non-functional CREs, we addressed the issue of the statistical 

distribution of functional CREs by analyzing the ChIP-seq datasets. The results showed that the 

number of occurrences of functional CREs over the genomic regions was determined as being 

Poisson distributed. In accordance with the obtained distribution of CREs occurrences, we 

suggested the Audic and Claverie (AC) test to compare two promoters based on the number of 

occurrences for the CREs. Superiority of the AC test over Chi-square (2 × 2) and Fisher’s exact 

tests was also shown, as the AC test was able to detect a higher number of significant CREs. The 

two case studies on the Arabidopsis genes were performed in order to biologically verify the 

pairwise test for promoter comparison. Consequently, a number of CREs with significantly 

different occurrences was identified between the promoters. The results of the pairwise 

comparative analysis together with the expression data for the studied genes revealed the 

biological significance of the identified CREs. 

 

Keywords: CREs occurrence; Motif enrichment, Transcriptional regulation 
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1. Introduction 

  The orchestrated spatial and temporal regulation of gene expression is a complex process that 

occurs at different checkpoints in the cell. Cis regulatory elements (CREs) are known as an 

important segment of the blueprint of transcriptional regulation (Qiu, 2003; Wittkopp and Kalay, 

2011; Zheng et al., 2003). The interaction of transcription factors with CREs, located within 

promoter regions, leads to modulate transcription of target genes. Indeed, promoters contain 

functional DNA sequences which receive and integrate signals from multiple transcription 

factors by their modular and combinatorial nature (Vedel and Scotti, 2011; Werner, 2001). 

  Identification of CREs and their organization modules has opened a new vista in understanding 

gene expression and regulation (Deihimi et al., 2012; Hosseinpour et al., 2013). Recently, we 

developed a new approach for gene discovery irrespective from gene coding (BLAST), based on 

identifying distinct organization and combination of CREs (in view of order and distance) on 

promoter regions and identification of the genes with similar promoter architecture within whole 

genome (Hosseinpour et al., 2013). Recently, it has been demonstrated that CREs on the 

promoter regions of genes in wild wheat are more variable and frequent than the cultivated wheat 

which contributes in fast response and better understanding of environmental conditions for wild 

genotype (Babgohari et al., 2014). Due to the unique characteristic of transcription factors in 

binding to CREs on promoter regions of different genes, a small number of transcription factors 

are enough to regulate a considerable number of genes and play the central role in functional 

genomics (Mahdi et al., 2013; Mahdi et al., 2014). Interestingly, a small number of transcription 

factors and microRNAs, as the two main commanders of system biology, can regulate a genomic 

region involved in a particular phenomenon (hot spots) (Alisoltani et al., 2014). Currently, 

illustrating transcription factor based regulatory networks in different biological events is of 

great interest (Bakhtiarizadeh et al., 2014; Bakhtiarizadeh et al., 2013; Ebrahimie et al., 2014; 

Hosseinpour et al., 2012). 

  The growing availability of fully sequenced plant genomes and gene expression data together 

with substantial progress in bioinformatic tools have made it possible to computationally analyze 

the role of CREs in transcriptional regulation. A range of different computational models has 

been developed to identify over-represented CREs within promoter regions. One widely 

established model is to group genes based on their expression profiles and thereafter detect over-
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represented CREs within each group (Elemento et al., 2007; Sinha and Tompa, 2003). However, 

the same motif may be found in the promoters of genes which fall into different groups. Another 

common approach, referred as phylogenetic footprinting, relies on the assumption that CREs are 

likely to be conserved across promoters of orthologous genes (Brohée et al., 2011; Kellis et al., 

2003). The major disadvantages of phylogenetic footprinting are that species-specific regulatory 

elements will be missed and non-functional conserved motifs may be supposed as regulatory 

elements (Gao et al., 2013; Pennacchio and Rubin, 2001). In parallel with the computational 

methods, chromatin immunoprecipitation followed by sequencing (ChIP-seq) technology has 

experimentally enabled genome-wide discovery of cis-regulatory elements that act as 

transcription factor binding sites (Ladunga, 2010; Park, 2009). This high-throughput technology 

provides invaluable information to study CREs associated with gene regulation. For instance, 

ChIP-seq method has been reported for the identification of genome-wide targets of different 

transcription factors in Arabidopsis (Schiessl et al., 2014; Tao et al., 2012; Zhang et al., 2013). 

  The complex network of transcriptional regulation has led to the establishment of recent models 

that incorporate the combinatorial nature of CREs. These models take into account the presence 

or absence of CREs, the number of occurrences of each CRE, as well as of their order and 

location relative to their target genes (Mikkelsen and Thomashow, 2009; Pilpel et al., 2001; 

Segal and Widom, 2009; Zou et al., 2011). Comparative promoter analysis is a reliable strategy 

to test the significance of each component of promoter organization. Organizational similarities 

and differences of CREs among different promoters may contribute to the specific expression 

profiles of their corresponding genes. The evolutionary conservation of the relative order and 

location of CREs in promoters, referred to as a promoter module or framework, indicates their 

importance in gene regulation (Werner et al., 2003; Cohen et al., 2006). A number of studies 

have demonstrated the significant role of number of occurrences of each CRE within a promoter 

on the expression of target gene(Bussemaker et al., 2001; Foat et al., 2005; Mehrotra et al., 2011; 

Pilpel et al., 2001; Rushton et al., 2002). Although, it is still unclear what level of difference in 

the number of occurrences of each CRE between two promoters is of statistical significance to 

explain different expression patterns of two corresponding genes. 

  In this study, we present a novel statistical method for pairwise comparison of promoters of 

Arabidopsis genes in the context of number of occurrences of each CRE within the promoters. 
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This method is able to identify common or distinct CREs with significantly different number of 

occurrences between the two promoters. First, the statistical distribution of number of CREs 

within a given promoter is determined. We also exploit the ChIP-seq data of several experiments 

to determine the statistical distribution of number of occurrences of a given functional CRE 

across the target genomic regions identified by the corresponding regulatory protein. Then, a 

relevant pairwise test is employed to compare two promoters in terms of number of occurrences 

of their CREs. The contribution of the identified CREs on gene expression needs to be verified 

by studying the expression profiles of the corresponding genes. Using the proposed statistical 

approach, two case studies are performed. The first case study is to illustrate the ability of our 

approach in identifying significant CREs in comparison with the widely used approach which is 

analysis of promoters of groups of co-expressed genes to reveal over-represented CREs within 

each group. To do this, the promoters of the two groups of the co-expressed Arabidopsis genes 

differing in their responsiveness to light are analyzed. Then, Arabidopsis AtHAM1 and AtHAM2 

genes are selected from these two groups of genes to perform the pairwise comparison on their 

promoter regions to discover significantly different CREs. The second case study is to compare 

between the promoters of two Arabidopsis key regulatory genes, AtMYC2 and AtMYB2, which 

encode transcription factors involved in stress response and tolerance (Abe et al., 2003; Kazan 

and Manners, 2013). Thereafter, the result of pairwise comparative promoter analysis is 

combined with expression data of these genes in drought and heat stress conditions in order to 

explain the biological significance of the identified CREs.  



6 
 

2. Materials and methods 

  The workflow diagram which summarizes the various steps of the proposed method for the 

discovery of CREs with statistically significantly different number of occurrences between the 

two promoters is presented in Figure 1. 

 

2.1. Arabidopsis Promoter sequences; collection and sampling 

  As putative promoter sequences, 1500bp upstream of all Arabidopsis genes (including 5’UTR) 

were downloaded from Ensemble Plants (plants.ensembl.org). Since the number of promoters 

was a finite number of values (from 1 to n and n being the total number of promoter sequences) 

with an equal probability of observation (1/n), we considered the number of promoters as having 

a Discrete Uniform (D. Uniform) distribution according to the following: 

F (k; a, b) = ([k]-a+1)/(b-a+1) 

Where F is the D. Uniform cumulative distribution function(CDF), k is any subset of promoters, 

a=1 and b=total number of promoter sequences (n). With these parameters and by the use of 

EasyFit software version 5.5 (http://www.mathwave.com), we generated 1000 random numbers 

based on the Mersenne Twister algorithm. This random number generator algorithm has the 

potential to generate very high quality pseudorandom numbers which is of choice for most 

statistical simulations (L’Ecuyer, 2012; Xiang and Benkrid, 2009). Using 1000 randomly 

generated numbers, similarly 1000 promoter sequences were sampled for subsequent analyses. 

  To confirm the accordance of sampling method from a biological aspect, all Arabidopsis 

promoter sequences were classified into functional categories according to the Pageman 

ontology tool (http://mapman.mpimp-golm.mpg.de/), which supports the use of MapMan, 

KEGG, MIPS, and GO ontologies (Usadel et al., 2006).The classification was based on the 

accession numbers of the genes for which promoters had been collected. The statistical 

distribution of sequences among functional categories was determined using the EasyFit 

software. The same procedure was performed on the sampled sequences (i.e., the subset of 1,000 

promoter sequences). Finally, the consistency between the distribution of all and sampled 

sequences was checked by ranking all the fitted distributions for each instance. 

http://en.wikipedia.org/wiki/Cumulative_distribution_function
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2.2. Identification of CREs 

  An in-house database containing the previously identified plant CREs was built from a merge 

of motifs from the plantCARE (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/; 

(Lescot et al., 2002) database and motifs extracted from the literature. The forward and reverse 

strands of the promoter regions were searched for the input CREs by using an in-house 

developed Perl script. Only perfect matches to the motif were favored, i.e. the search did not 

have a scoring function. Additionally, only motifs with >4 IUPAC letters (www.iupac.org) were 

regarded. 

 

2.3. ChIP-seq data analysis 

  The data of nine two-sample ChIP-seq experiments were retrieved from EBI 

(http://www.ebi.ac.uk/) (Table 1). 

  We used Galaxy web tool (https://usegalaxy.org/) (Goecks et al., 2010) to upload and analyze 

the data of each experiment. After quality control of the data, the control and chiped samples 

were mapped separately to Arabidopsis TAIR10 genome by Bowtie package with default 

parameters. SAM tool on Galaxy was used to exclude unmapped read. MACS algorithm (Zhang 

et al., 2008) with customized parameters (tag size=26, bandwidth=300bp, p-value cutoff≤1.00e-

05 and mfold=20-32) was used to call peaks representing enriched binding sites, and afterward 

BED and FAST formatted files of the peaks were fetched from Galaxy. All the peaks were 

subjected to the Regulatory Sequence Analysis Tools (RSAT) Web server 

(http://rsat.ulb.ac.be/rsat/) (Thomas-Chollier et al., 2012)to discover statistically enriched CREs. 

 

2.4. Statistical analyses of CREs 

2.4.1. Goodness of fit test 

  The goodness of fit (GOF) test measures the compatibility of a random sample with a 

theoretical probability distribution function. In other words, these tests show how well the 

selected distribution fits the data(Quinn and Keough, 2002). There are three common GOF tests, 

namely Chi-square, Anderson-Darling (A-D) and Kolmogorov–Smirnov (K–S) (Grinstead and 

Snell, 1997; Quinn and Keough, 2002).  

http://www.ebi.ac.uk/
https://usegalaxy.org/
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  The K-S test is based on the empirical cumulative distribution function (ECDF) and when there 

is a large number of categories and the categories can be ordered in some way, the K-S test is 

preferred over the others (Quinn and Keough, 2002). The A-D procedure is a general test to 

compare the fit of an observed CDF to an expected CDF and achieves high statistical power for 

small samples (Saculinggan and Balase, 2013). The number of occurrences of each CRE in each 

promoter sequence is a finite number from 0 to n (0, 1, 2,…, n), whereby it is logical to assume 

that the distribution of CREs in a promoter is discrete. Based on this assumptions, the K–S and 

A-D tests were performed for seven main discrete distributions, namely Poisson, D.Uniform, 

Geometric, Logarithmic, Hyper-geometric, Binomial and Negative Binomial, using the EasyFit 

software with a significance level of α=0.05 in order to find the best fitted distribution for the 

number of occurrences of CREs in the promoters. 

2.4.2. Rank-based tests 

 

  Using the GOF test statistics, EasyFit software ranks the fitted distributions from 1 (with 

minimum statistics) to n (with maximum statistics). A lower rank means a better fitness. In this 

study, each discrete distribution was assigned as an independent group with the ranked data. For 

non-normal distributions, rank-based methods might be used to compare groups(Quinn and 

Keough, 2002; Rumsey, 2011). The Kruskal–Wallis test (sometimes described as a “non-

parametric ANOVA”), was performed for the statistical comparison of groups (discrete 

distributions) using the SAS software (version 9.0). This test is based on ranking the pooled data, 

determining the rank sums within each group and calculating the statistic that follows a chi-

square distribution (Quinn and Keough, 2002). The Mann-Whitney U test was also performed 

for post hoc comparisons. 

 

2.4.3. Comparative promoter analysis of CREs occurrences 

 

  Based on the distribution of number of CREs that was identified in the previous steps, an Audic 

and Claverie (AC) test was developed to carry out pairwise promoter comparisons. The AC test 

is a pairwise statistical test commonly used for the detection of differentially expressed genes 

(Audic and Claverie, 1997; Romualdi et al., 2001; Shamloo-Dashtpagerdi et al., 2013). Audic 
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and Claverie (1997) developed the following equation which involves the sampling size that is 

the total number of picked clones from a given cDNA library. This equation is used when one 

wishes to compare gene profiles that have been calculated from the random picking of different 

numbers of clones, N1 and N2. The mathematical problem is to establish probability for a given 

cDNA to be picked up x times when the sampling size is N1 and Y times when the sampling size 

is N2. This equation applies to the analysis of counts in experiments differing by the total number 

of clones (Audic and Claverie, 1997). In practice, the equation is used to analyze experiments 

performed on two different libraries using different sampling sizes. 

 

𝑃(𝑦|𝑥) = (
𝑁2

𝑁1
)

𝑦 (𝑥 +  𝑦)!

𝑥! 𝑦! (1 + 𝑁2 𝑁1⁄ )(𝑥+𝑦+1)
 

 

  We employed the AC test in accordance with our concept. The AC test gives the conditional 

probability of observing x number of a given CRE in promoter A, if the same CRE has been 

observed y times in promoter B. N1 and N2 are the total number of CREs in promoters A and B, 

respectively. The null hypothesis is that there is no difference in the number of specific CRE 

between promoters A and B. The frequently occurring common CREs, mainly TATA box, may 

largely affect the total number of CREs in each promoter and thereby may mask the importance 

of some other CREs. We applied the AC test on the two case studies. In each of the case studies, 

the AC test was performed with and without counting the TATA box motifs in order to test 

whether the deviation of sampling size caused by the most frequent motif had an impact on the 

results.   

  Pairwise comparisons of several CREs between two promoters were facilitated by using the AC 

test available at IDEG6 web tool (http://telethon.bio.unipd.it/bioinfo/IDEG6/) (Romualdi et al., 

2003). The false discovery rate (FDR q-value) method (Benjamini and Hochberg, 1995) was 

used to adjust p-values derived from the AC test for multiple testing. The q-values were 

computed using QVALUE software (Storey and Tibshirani, 2003). The statistically differential 

CREs between two promoters were identified using q-value ≤ 0.01. 

  We compared the AC test with the Chi-square (2 × 2) and Fisher’s exact tests (Bohm and Zech, 

2010; Quinn and Keough, 2002; Rumsey, 2011), in order to verify which of these tests is more 

sensitive and able to detect more significant CREs. 

http://telethon.bio.unipd.it/bioinfo/IDEG6/
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2.5. Case study 1: Comparative promoter analysis of Arabidopsis AtHAM1 and AtHAM2 genes 

  To verify the biological relevance of the proposed pairwise promoter comparison method, a 

promoter analysis was done using the data generated by (Ouyang et al., 2011). They performed a 

ChIP-seq experiment along with microarray analysis to identify direct targets of FHY3, a key 

component in phytochrome A signaling and the circadian clock (Li et al., 2011), in darkness (D) 

and far-red (FR) light conditions in the Arabidopsis genome. Comparison between the ChIP-seq 

and microarray data indicated that FHY3 quickly regulates the expression of 197 and 86 genes in 

D and FR, respectively (Ouyang et al., 2011). Here, we had the two groups of the co-expressed 

genes; the one included the up-regulated genes expressed in both D and FR conditions and the 

other group comprised the up-regulated genes expressed only in D condition. Based on the ChIP-

seq data, the genes with at least one FHY3 binding site at their promoters or 5’UTR regions were 

selected from each group. The putative promoter sequences containing 1500bp upstream 

(including 5’UTR) of the genes of each group were obtained from Ensemble Plants 

(http://plants.ensembl.org/index.html). Each of the promoter sequences was subjected to 

discovery of CREs using our in house database which was previously described. In order to 

discover the differentially enriched CREs between the two groups of genes, the group of genes 

expressed only in D condition was considered as the background and the significant enriched 

CREs (relative to the background sequences), which is expected to contain some light-responsive 

CREs, were identified using Fisher’s exact test with FDR-adjusted p-values (q-value ≤ 0.05). 

After that, one gene from each group was chosen to apply the pairwise methods for comparison 

of their promoters. The promoters of AtHAM1 and AtHAM2 genes belonging to the same 

transcription factor family but with different expressions in response to light were subjected to 

the pairwise comparison in order to identify the differentially significant CREs. Finally, we 

investigated the ability of the pairwise test, in comparison with the method of grouping of co-

expressed genes, to identify significant CREs associated with the expression profiles of the two 

examined genes. 
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2.6. Case study 2: Comparative promoter analysis of Arabidopsis AtMYC2 and AtMYB2 genes 

  The pairwise tests were also applied for a comparative promoter analysis of the Arabidopsis 

AtMYC2 and AtMYB2 genes. The microarray data for AtMYC2 and AtMYB2 genes under drought 

and heat stress conditions were obtained (Kilian et al., 2007) and collected using the “The Bio-

Array Resource for Plant Biology” (BAR) (http://bar.utoronto.ca). All the experimental 

conditions were similar in the two assays. The stress treatments were initiated 18 days after 

sowing. Plant samples were taken in two biological replicates with the same time points: 0 min, 

30 min, 1 h, 3 h, 6 h, 12 h and 24 h after the onset of stress treatment (Kilian et al., 2007). The 

co-expression profiles for the two genes in drought and heat stresses were depicted using 

Microsoft Excel 2013. Pearson correlation coefficient (α=0.05) was calculated for the expression 

profiles of AtMYC2 and AtMYB2 genes in each condition using SAS 9.0 software. 
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3. Results 

3.1. Statistical and biological validation of promoter sampling 

  The promoters from all Arabidopsis genes were obtained, resulting in the total number of 27415 

promoter sequences. Thereafter, 1,000 promoters were randomly sampled from the total number 

of promoters by using random numbers based on the Mersenne Twister algorithm in the EasyFit 

software. According to the CDF, the total and sampled promoters followed a D. Uniform 

distribution in accordance with each other, which thereby confirm the reliability of the sampling 

procedure (Figure 2). 

  The population of all Arabidopsis promoters (27415) and the subset of 1000 Arabidopsis 

promoters  were classified into functional categories based on the accession numbers of the 

relevant genes using the Pageman ontology tool (Usadel et al., 2006). Of the 27415 and 1000 

promoter sequences, 36.67 and37.69% fell into “Not assigned” and “Not assigned-unknown” 

categories, respectively. The remaining sequences of both sets of promoters shared 30 common 

categories with a relatively similar percentage of sequences assigned to each category (Figure 

3).In both all and sampled promoters, the categories namely Protein (21.65 vs 20.38%), RNA 

(16.71 vs 15.32%), Signaling (7.57 vs 7.58%), Stress (6.65 vs 7.74%) and Transport (5.86 vs 

7.1%) contained the highest percentage of the sequences. These results revealed that the sample 

of promoter sequences was biologically consistent with the population of all promoter sequences. 

Moreover, a goodness of fit (GOF) test was applied on the distribution of sequences among 

functional categories for each of all and sampled promoter sequences, to test if the same 

statistical distribution is fitted to both sets of promoters. The Kolmogorov–Smirnov GOF tested 

for seven main discrete distributions (Poisson, D. Uniform, Geometric, Logarithmic, Hyper-

geometric, Binomial and Negative Binomial; using the EasyFit software with α=0.05) showed 

that the logarithmic distribution was ranked first for both all and sampled promoters (Table 2). 

  This clearly indicated that the obtained sample of promoter sequences is an adequate 

representative of Arabidopsis promoters from a biological perspective. Since the sampling 

method was verified to be statistically and biologically sound, the sample population was judged 

to be sufficient to reflect the total population. 

 

3.2. CREs identification 
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  The CREs and their number of occurrences were found in each of the 1000 Arabidopsis 

promoters. CREs within 1500bp up-stream of 1000 random sampled Arabidopsis genes were 

identified. 35 different types of CREs, in average, were identified within each promoter. The 

average number of CREs was 108 within each promoter. The range of occurrences of CREs was 

1 to 58 in the promoters. 

  A summary of analysis of the ChIP-seqexperiments aimed at identifying motifs acting as 

transcription factor binding sites has been shown in table 3. Totally 114 functional CREs were 

found through analysis of the ChIP-seq datasets. The number of occurrences of each CREs 

across the Arabidopsis genome was determined in each experiment. 

 

3.3. Determining the best fitted statistical distribution for the CREs occurrences 

  In order to determine the relevant statistical distributions for CREs numbers within each 

promoter, the goodness of fit test was performed for seven main discrete distributions including 

Poisson, D. Uniform, geometric, logarithmic, hyper-geometric, binomial and negative binomial 

using EasyFit Software (α=0.05). For each promoter, the distributions fitted to CREs were 

ranked in which the most relevant distribution was ranked first. The GOF test was also 

performed to determine the statistical distribution of the occurrences of each functional CREs 

identified by each of the ChIP-seq experiment and then the fitted distributions were ranked based 

on GOF statistics. The ranking of the fitted distributions for both the datasets derived from the 

sampled promoters and the ChIP-seq experiments are shown in table 4. 

  The CREs had a Poisson distribution, as the best-fitted distribution, in 765 out of 1000 the 

promoters. The best-fitted distributions for the CREs of 174 and 55 promoters were D. Uniform 

and geometric, respectively. The results also showed that Poisson distribution was among the 

distributions fitted to CREs in all of the promoters. We found that the Poisson distribution was 

the best fitted distribution for the occurrences of 91% of the functional CREs (104 out of 114) 

across the genomic regions.  

  To reinforce the results of the GOF tests and to identify a statistically significant distribution of 

the CREs, the non-parametric ANOVA Kruskal–Wallis test was carried out on the ranks of the 

fitted distributions. In both the datasets derived from the 1000 promoters sample and the ChIP-
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seq experiments, the results of the Kruskal–Wallis test showed a strong statistical significant 

difference among the distributions (Table 5). Moreover, since the Poisson distribution was the 

relevant distribution fitted to the CREs in most of the promoters, we applied the Mann-Whitney 

U test for a pairwise comparison between this distribution and the remaining ones (i.e., Poisson 

versus D. Uniform, Poisson versus Geometric and so on) (Table 6). The Mann-Whitney U test 

revealed significant difference between the Poisson distribution and the other distributions for 

both the datasets. 

  As a result, the Poisson distribution is assumed to adequately represent the statistical 

distribution associated with CREs occurrences within a given Arabidopsis promoter and also 

with the occurrences of the functional CREs over the corresponding genomic regions. This 

finding led us to use a Poisson-based pairwise test (the Audic and Claverie test) to compare 

CREs between two promoters in terms of their number of occurrences. The ability of Audic and 

Claverie test to find significantly different CREs between the two promoters is presented in the 

form of two case studies. 

 

3.4. Case study 1: Comparative promoter analysis of AtHAM1 and AtHAM2 

  The 68 up-regulated genes in FR conditions and the 57 up-regulated genes in D conditions 

formed the two groups of the co-expressed genes subjected to promoter analysis in order to 

identify differentially enriched motifs. Based on our database of CREs, we found 60 distinct 

CREs which had more occurrences in the promoters of the group of FR co-expressed genes. Of 

those, irrespective of TATA box motif, four CREs including C2C2-DOF (DNA binding with One 

Finger) binding site, MYB binding site, MYB15 and I-box were statistically significantly 

enriched in the FR co-expressed genes relative to the other group of genes. Some of the 

significant CREs may be associated with the differential expression of the two groups of genes in 

response to light. DOF proteins are plant specific transcription factors involved in seed 

development as well as signaling and response to light and phytohormone (Mahdi et al., 2014). 

MYB binding sites are abundant in promoters of stress responsive genes, however there are some 

evidence that they work together with other proteins to confer light responsiveness (Babgohari et 

al., 2014). MYB15 is R2R3 type MYB transcription factor involved in cold regulation of number 

of genes (Mahdi et al., 2013). I-box is a CRE available at the light and circadian clock responsive 

plant promoters (Agarwal et al., 2006; Borello et al., 1993). It is noteworthy that the 
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differentially enriched CREs were not detected in some of the promoter sequences. Moreover, 

there were some CREs that were not identified as the differentially enriched CREs but they had 

significantly different abundance in promoters of two genes of interest, each of which assigned 

to its respective group. These disadvantages of promoter analysis of co-regulated groups led us 

to use the AC pairwise promoter comparison between two genes selected from the studied 

groups of the co-expressed genes. 

  Two members of GRAS transcription factor family, AtHAM1 and AtHAM2 were selected from 

the groups of FR and D up-regulated genes, respectively for further analysis. AtHAM1and 

AtHAM2 function in different processes such as meristem maintenance, shoot and root 

indeterminacy, shoot branching, chlorophyll biosynthesis and root growth (Engstrom, 2012; 

Engstrom et al., 2011; Schulze et al., 2010; Stuurman et al., 2002). However, the microarray data 

showed that their expression pattern is different in FR and D conditions(Ouyang et al., 2011). 

AtHAM1 up-regulated 1.6 fold in both FR and D conditions whereas AtHAM2 up-regulated 1.4 

fold only in D conditions(Ouyang et al., 2011). Only one of the differentially enriched CREs 

(MYB binding site), identified by promoter analysis of the two groups of the co-expressed genes, 

was present in the promoters of AtHAM1 and AtHAM2 genes and there was no copy of the other 

enriched CREs neither in AtHAM1 nor in AtHAM2 promoters. 

  Based on our database of CREs, the total number of CREs in the AtHAM1 and AtHAM2 

promoter sequences were 112 and 146, respectively, when TATA box motifs were accounted. By 

excluding TATA box motifs, the total number of CREs in the two promoters reduced to 76 

CREs. The AC pairwise promoter comparison was performed to clarify how the number of 

occurrences of CREs may contribute to the different expression patterns of these genes in 

response to light. This test was done under two circumstances, with and without counting the 

occurrences of TATA box in the promoters, in order to check whether the inclusion of the highly 

frequent motifs such as TATA box affects the results of AC test. The AC pairwise test detected a 

number of significantly differential CREs between AtHAM1 and AtHAM2 promoters. When the 

TATA box motifs were taken into account, the AC test identified nine CREs which had 

statistically different occurrences between the two promoters. The results revealed that the 

binding site of PEND protein, a DNA-binding protein in the inner envelope membrane of the 

developing chloroplast (Sato et al., 1998; Terasawa and Sato, 2005), the 5’UTR Py-rich element 

conferring high transcription levels (Nejad et al., 2013) and heat shock element (HSE) had higher 



16 
 

occurrences in the AtHAM1 promoter. Furthermore, the three significant CREs (BoxΙ, GT1 and 

G-Box) which were more abundant in the promoter of FR responsive gene (AtHAM1) are 

involved in light responsiveness. On the other hand, TATA box, Skn-1, CAAT-box had higher 

number of occurrences in the AtHAM2 promoter (Table 7). By excluding the TATA box motifs, 

the results slightly changed as TATA box and G-Box were no longer significant CREs, while the 

CREs called TC-rich repeat and AT-rich became significant and added to the same other 

significant CREs (Table 7). 

  The comparison between the AC, Chi-square (2 × 2) and Fisher’s exact tests, with and without 

the inclusion of TATA box motifs, showed that the AC test was superior to the other two tests, as 

it was able to detect a higher number of significant CREs with lower q-values (Table 7). 

 

3.5. Case study 2: Comparative promoter analysis of AtMYC2 and AtMYB2 genes 

  The pairwise tests were also used for a comparative analysis of the promoters of Arabidopsis 

AtMYC2 and AtMYB2 genes. The expression profiles of the two genes under drought and heat 

stress conditions were obtained (Figure 4) and a Pearson correlation coefficient was worked out 

between the expressions of the two genes in each conditions. 

  There was a positive correlation (0.7686; α = 0.05) between the expression levels of the two 

genes in the drought stress conditions and a negative correlation (-0.6332; α = 0.05) in the heat 

stress conditions. It can be inferred from the expression profiles (Figure 4) and the correlation 

coefficients that: (1) the expression levels of AtMYC2 was generally higher than AtMYB2 in both 

drought and heat stress conditions and (2) unlike the drought condition, the expression trends of 

the two genes were opposite to each other in the heat stress condition. In the early stages of heat 

stress, AtMYC2 expression decreased while the expression levels of AtMYB2increased. In the late 

stages of heat stress, AtMYC2 and AtMYB2 were expressed in an inverse manner. 

  We used the AC pairwise statistical method to compare the promoter sequences of AtMYC2 and 

AtMYB2 based on the number of occurrences for the CREs. There were 31 and 28 different types 

of CREs in AtMYC2 and AtMYB2 promoter sequences, respectively, of which 19 were common 

between the two genes. Regarding the number of occurrences of each CRE, the total number of 

CREs (including the TATA box) in the AtMYC2 and AtMYB2 promoter sequences were 181 and 
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167, respectively. By excluding the TATA box motifs, the total number of CREs reduced to 91 

and 78 in the promoters of AtMYC2 and AtMYB2, respectively. 

  According to the AC test, nine CREs were significantly different (q-value ≤ 0.01) between the 

two promoter sequences (Table 8). In this case study, there was no difference in the results 

obtained from two states of with and without inclusion of TATA box motifs. The five significant 

CREs involved in several biological processes namely ABRE, G-box, MBS, TA-rich region and 

unnamed-4 were more abundant in the promoter of AtMYC2 promoter. On the other hand, Box I, 

ERE, TATA box and CAAT-box CREs had higher number of occurrences in the AtMYB2 

promoter. In addition, a comparison between the AC test and Chi-square (2 × 2) and Fisher’s 

exact tests showed that the AC test was superior to the other two tests, as it was able to detect 

more significant CREs (Table 8). 

http://bioinformatics.psb.ugent.be/webtools/plantcare/cgi-bin/show_site_info.htpl?QWhere=ID_of_Site%20like%20%27PS~Box%20I%27&StartAt=0&NbRecs=10
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4. Discussion 

4.1. A pairwise statistical method for comparative promoter analysis 

  Comparative promoter analysis is a promising strategy for the detection of common and 

different CREs within promoters of the genes with similar or different expression profiles 

(Cohen et al., 2006; Conceição et al., 2010; Deihimi et al., 2013; Dieterich et al., 2005; Gao et 

al., 2013; Gómez-Porras et al., 2007; Maruyama et al., 2012; Moghadam et al., 2013; Ramezani 

et al., 2013; Zamani Babgohari et al., 2013). While there are several studies indicating that 

number of occurrences of CREs has a significant effect on the expression pattern of the target 

gene (Bussemaker et al., 2001; Foat et al., 2005; Mehrotra et al., 2011; Pilpel et al., 2001; 

Rushton et al., 2002), the lack of powerful and reliable statistical method to compare CREs 

occurrences between promoters is a major drawback in this area of computational biology. 

  The development of statistical inference requires assumptions about the probability distribution 

of a data set. Knowledge about the distribution of data is essential to select the appropriate 

statistical method (Bohm and Zech, 2010; Rumsey, 2011).Using the sample of 1000 Arabidopsis 

promoters, the results of the goodness of fit test and non-parametric analysis revealed that the 

number of occurrences of CREs in a promoter sequence is Poisson distributed. As a promoter 

sequence contained functional and non-functional CREs, we addressed the issue of the statistical 

distribution of functional CREs by analyzing the ChIP-seq datasets. The results showed that the 

number of occurrences of functional CREs over the genomic regions was determined as being 

Poisson distributed. Therefore, a Poisson-based pairwise test could be proposed to compare 

CREs within two promoters in terms of their number of occurrences. 

  The proposed test is based on the Audic and Claverie test. Audic and Claverie (1997) 

established a rigorous test for pairwise comparison of transcript profiles, based on Poisson 

distribution assumption. The pairwise promoter comparison aimed to identify the CREs which 

may contribute to the different expression profiles of two genes. The results obtained in this 

study indicated that the Audic and Claverie test is more powerful for identification of CREs with 

differential number of occurrences in comparison with the Chi-square and Fisher’s exact tests, 

because it was able to detect more significant differential CREs with lower q-values.  

  It should be noted that the ability of AC test to identify differentially significant CREs is 

affected by the size and property of known CREs within a promoter. The total number of CREs 
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in a promoter may largely be overestimated by the presence of highly frequent short CREs such 

as TATA box. In addition, some CREs exhibit positional preferences relative to the transcription 

start site (Hartmann et al., 2005). Although in our case studies the exclusion of TATA box 

motifs, as the most frequent one, did not make a significant change in the results of the AC tests, 

we suggest taking these issues into account in order to theoretically obtain more reliable and 

meaningful results from AC test.  

 

4.2. Biological verification of the significant CREs identified by the pairwise test 

 

4.2.1. Comparative analysis of AtHAM1 and AtHAM2 promoters 

  The expression of AtHAM1 and AtHAM2 increased in darkness, whereas only 

AtHAM1responded to light (Ouyang et al., 2011). This indicated that the expressions of these 

genes in response to light may be controlled by different regulatory elements. AtHAM1 and 

AtHAM2 had been identified as the direct targets of FHY3, a key component of phytochromeA 

signaling and the circadian clock (Ouyang et al, 2011). AtHAM1, but not AtHAM2, had shown 

cycling expression circadian conditions supposed to be associated with FHY3 binding site within 

its promoter (Li et al., 2011). The identification of FHY3 binding sites in the promoter of 

AtHAM2 implied that there may be some other CREs contributing to light responsiveness of 

AtHAM1. 

  The pairwise comparison test between the promoters of AtHAM1 and AtHAM2 detected the two 

light responsive CREs (GT-1 and Box-Ι) which were statistically over-represented in the 

AtHAM1 promoter, whilst these CREs were not highlighted by promoter analysis of the two 

groups of genes (containing AtHAM1 and AtHAM2) with the differential expression in response 

to light. On the other hand, most of the differentially enriched CREs between the two groups of 

the co-expressed genes were not present in the promoters of AtHAM1 and AtHAM2. It indicated 

the necessity of pairwise promoter comparison between two genes of interest for more accurate 

evaluation. GT-1 and Box-Ι motifs are essential for light-controlled transcriptional activity 

(López-Juez, 2007). The presence of different light responsive elements in the AtHAM1 promoter 

suggested that a combination of different cis-acting sequences, as light responsive units (LRUs), 

may be required to confer proper responsiveness to light (Jiao et al., 2007). GT-1 was present 

only in the AtHAM1 promoter. The GT-1 element is a binding site of GT-1 transcriptional 



20 
 

activator and is sufficient for light induction (Kaplan-Levy et al., 2012). Interestingly, it has been 

reported that the GT-1 element participates in phytochrome A signaling and circadian rhythm 

under light condition (Kaplan-Levy et al., 2012; Zhou, 1999). 

  The other identified light responsive element, BoxI, is the feature of photoperiod-responsive 

genes (Mongkolsiriwatana et al., 2009). Promoter analysis of photoperiod-responsive genes 

revealed that a combination of light responsive elements such as BoxI with CREs involved in 

other biological processes formed a coordinated gene regulation in response to light 

(Mongkolsiriwatana et al., 2009). 

  The 5’-UTR Py-rich stretch- element was another significant CREs which had more 

occurrences in the AtHAM1 promoter. This CRE has a fundamental role in high transcription 

levels of cell cycle genes (Nejad et al., 2013) and there is no report about its possible role in 

response to light. It may contribute to higher transcription level of AtHAM1 relative to AtHAM2 

in darkness.  

 

4.2.2. Comparative analysis of AtMYC2 and AtMYB2 promoters 

Response to drought  

  The method was applied to the promoter sequences for the Arabidopsis AtMYC2 and AtMYB2 

genes. A conserved ABA-responsive cis-regulating element named ABRE (ABA responsive 

element; PyACGTGGC) was found in the promoter regions of AtMYC2 and AtMYB2. This 

supports the previous reports that AtMYC2 and AtMYB2 proteins function as transcriptional 

activators of ABA-inducible genes under drought stress(Abe et al., 2003). Both genes may 

response to ABA via this element, which may cause coordinated increase in their expression 

levels; as evidenced by the positive correlation between the expression levels of these genes 

reported in this study. On the other hand, based on the result of the AC test, there were 

significantly more ABRE elements in the AtMYC2 promoter which resulted in a higher 

expression of AtMYC2 than AtMYB2 in the drought condition. In addition, among significant 

different CREs, there were three MYB Binding Site (MBS) elements in the promoter of 

AtMYC2, suggesting that the expression of AtMYB2 in drought condition and under control of 

ABA probably enhance the expression of AtMYC2. In fact, AtMYB2 may be a positive regulator 

of AtMYC2 expression. 
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Heat response 

  A number of significantly different CREs between the promoter sequences of the AtMYC2 and 

AtMYB2 genes were identified which may be associated with the differential expression profiles 

of these gens under heat stress. These CREs were jasmonic acid (JA) responsive elements (G-

box and TA-rich region) and Ethylene-Responsive Element (ERE). The first two CREs were 

solely present in the AtMYC2 promoter. In contrast, ERE motif was only present in the AtMYB2 

promoter. The G-box is a CRE found in a broad range of plant promoters, which is responsible 

for the light-response(Xu and Johnson, 2001; Yamaguchi-Shinozaki and Shinozaki, 2005). The 

TA-rich region is known, as an enhancer, to increase the expression of target gene (Cuming et 

al., 2007). As discussed by Xu and Timco (2004), both the G-box and TA-rich region are 

required for Methyl Jasmonate (MeJA)-responsiveness in Nicotiana tobacco. The ERE element 

is the binding site of a family of Ethylene Response-Element-Binding-Proteins (EREBPs) and is 

present in promoters of various ethylene inducible genes and mediates ethylene 

response(Benavente and Alonso, 2006; Rawat et al., 2005). 

  In agreement with the identified CREs in this study, Boter et al, (2004) demonstrated that in 

dicotyledonous plants, AtMYC2 possesses an important function in regulating the expression of 

different JA-dependent genes. AtMYC2is also reported as a transcription factor that functions in 

JA-ethylene defense responses; however, there is no evidence about the role(s) of AtMYB2 in JA 

response system. Interestingly, JA and ethylene (ET) hormones can either cooperate or act as 

antagonists in regulation of different stress responses(Benavente and Alonso, 2006; Clarke et al., 

2009). Response to ozone stress is an example of antagonistic interaction between JA and ET, 

where JA protects tissues from stress while ET enhances ozone-induced cell death (Tamaoki et 

al., 2003). 

  There are several signaling pathways involved in the plant response to heat stress. In addition, 

phytohormones, such as ABA, JA, ET and salicylic acid (SA), have been also implicated to play 

role(s) in heat stress signaling in different plants (Kotak et al., 2007). Clarke and colleagues 

(2009) demonstrated that JA acts in concert with SA to confer basal thermo tolerance in 

Arabidopsis. Moreover, there are some evidence that ethylene signaling pathways are involved in 

thermo-tolerance(Kotak et al., 2007). From the results of our expression and promoter analyses 

and previous knowledge about plant heat stress responses, it can be deduced that AtMYC2 and 
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AtMYB2 genes are a part of the antagonistic response to heat, as we delineated a negative 

correlation between AtMYC2 and AtMYB2 expression under heat stress. One can suppose that in 

the early stages of heat stress and following ethylene accumulation, the AtMYB2responses to the 

hormone through the ERE elements. Increase in expression of AtMYB2 can elevate the AtMYC2 

expression level via binding of AtMYB2 to MBSs within AtMYC2promoter in the later stress 

stages. Furthermore, accumulation of JA in response to heat stress results in further increase in 

AtMYC2 expression through G-box and TA-rich region within the promoter. Finally, antagonistic 

interaction between JA and ET and subsequent reduction in ET level alter AtMYB2 expression 

trend. 

5. Conclusion 

  Integrating comparative statistical based analysis of CREs with expression data can open a new 

vista in genome wide functional analysis. The probability distributions are very important to 

select data analysis method as the type of statistical analysis relies on the distribution of data set. 

By assigning the relevant distribution of CREs occurrences in promoter sequences as Poisson 

distribution, we established a powerful statistical approach for comparative promoter analysis in 

this study.  It seems that Audic and Claverie test is appropriate to apply for this issue, since it is 

based on Poisson distribution. 

  There was a meaningful relationship between the results of in silico promoter analysis and the 

expression data in both of the case studies. Interactions of regulatory proteins with variable 

numbers of specific CRE on different promoters may constitute an important part of gene 

regulation mechanisms. The results of this study provide the required information for further 

experimental research such as genetic manipulation of given promoters and dissection of 

signaling pathways in an eukaryotic organism leading to improve our knowledge about the 

molecular mechanisms involved in responses to internal and external stimuli. 
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Tables 

 

Table 1. Brief information of the ChIP-seq experiments used in this study. (E=Experiment) 

 E1 E2 E3 E4 E5 E6 E7 E8 E9 

EBI 

accession 

E-GEOD-

39215 

E-GEOD-

43637 

E-GEOD-

45213 

E-GEOD-

45938 

E-GEOD-

49282 

E-GEOD-

51120 

E-GEOD-

51770 

E-GEOD-

53099 

E-GEOD-

36361 

Chiped 

protein 
PIF3 ATAF1 SPL7 AGAMOUS PRR7 IBH1 ARF1 HBI1 PRR5 

Reference 
(Zhang et 

al., 2013) 

(Jensen et 

al., 2013) 

(Bernal et 

al., 2012) 

(Ó’Maoiléidigh 

et al., 2013) 
- 

(Zhiponova et 

al., 2014) 

(Oh et al., 

2014) 

(Fan et al., 

2014) 

(Nakamichi 

et al., 2012) 

 

 

Table 2. Results for K-S goodness of fit test applied to the functional categories of all and 

sampled promoters. K-S statistics and the rank of distributions are represented. The table shows 

the results for the four best fitted distributions. 

 D.Uniform Geometric Logarithmic Poisson 

 K-S 

Statistics 
Rank 

K-S 

Statistics 
Rank 

K-S 

Statistics 
Rank 

K-S 

Statistics 
Rank 

All Arabidopsis 

promoters 
0.368 3 0.356 2 0.319 1 0.765 4 

Sampled promoters 0.371 3 0.298 2 0.194 1 0.691 4 

 

Table 3. Summary of analysis of the ChIP-seq experiments used in this study (E=Experiment) 

 

 

 

 E1 E2 E3 E4 E5 E6 E7 E8 E9 

Number of peaks 3897 10605 2507 1699 3167 1828 2094 6122 6122 

Number of enriched CREs 15 15 9 12 8 15 12 13 15 

Range of CREs occurrence 1-27 1-42 1-54 1-33 1-12 1-10 1-17 1-12 1-12 
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Table 4. Ranking of the fitted distributions for both the datasets obtained from the sample of 

Arabidopsis promoters (P) and the ChIP-seq experiments (C). 

 

 

 

 

 

 

 

 

Table 5.Results of the Kruskal–Wallis test on the ranks of different distributions fitted to the 

number of occurrences of the CREs. 

 

 

Table 6. Results of the Mann-Whitney U test on the pairwise comparison of Poisson distribution 

with the remaining distributions including D. Uniform, Geometric, Negative Binomial and 

Binomial. P=the sample of 1000 Arabidopsis promoters, C=ChIP-seq experiment 

 D.Uniform Geometric Logarithmic Neg.Binomial Binomial 

 P C P C P C P C P C 

Poisson 
U score 2.487E5 7.5E4 1.191E5 6.2E4 1.191E5 5.4E4 37265.5 5.2E4 24621 5.01E4 

P-value 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

Statistical Distributions 

 Poisson D.Uniform Geometric Logarithmic Neg.Binomial Binomial 

 P C P C P C P C P C P C 

Rank 1 765 104 174 1 55 9 0 0 0 0 6 0 

Rank 2 119 2 780 11 68 76 15 6 9 7 9 11 

Rank 3 37 5 44 44 651 29 54 36 202 1 12 0 

Rank 4 72 1 2 21 226 0 661 65 39 2 0 7 

Rank 5 7 2 0 15 0 0 270 7 477 0 0 29 

No fit. 0 0 0 22 0 0 0 0 273 104 973 70 

Total 1000 114 1000 114 1000 114 1000 114 1000 114 1000 114 

 Promoter samples ChIP-seq experiments 

Distribution N Expected under HA Mean score N Expected under HA Mean score 

Poisson 1000 2377500 936.6 114 27873 79.5 

D.Uniform 1000 2377500 1374.5 92 22494 317.8 

Geometric 1000 2377500 2548.5 114 27773 191.5 

Logarithmic 1000 2377500 3653.3 114 27773 350 

Neg.Binomial 727 1728442.5 3773.3 10 2445 226.6 

Binomial 27 64192.5 1722.7 44 10785 386.8 

DF 5 5 

Chi square 3414.4571 320.7017 

p-value 0.0001 0.0001 
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Table 7. The list of the significant CREs between the promoters of AtHAM1 and AtHAM2 

identified by the AC pairwise test (q-value ≤ 0.01) performed in two states of with (q-values 

were shown in parentheses) and without TATA box motifs. ns=non-significant 

 

 

 

 

 

 

 

 

 

Cis element 

The occurrence of 

the CRE in the 

AtHAM1 promoter 

The occurrence of 

the CRE in the 

AtHAM2 promoter 

AC q-value 
Chi-square 

q-value 

Fishers exact 

q-value 
Function 

AAGAA-motif 8 1 0.001 (0.001) 0.001 (0.003) 0.001 (0.003) PEND binding site 

5UTRPy-rich stretch 8 2 0.002 (0.003) 0.004 (0.004) 0.003 (0.004) 
conferring high 

transcription levels 

CAAT-box 23 32 0.003 (0.005) 0.006 (0.035) 0.006 (0.035) common cis-acting 

element 

Skn-1_motif 0 4 0.004 (0.004) 0.003 (0.003) 0.004 (0.005) 
required for endosperm 

expression 

BoxI 3 1 0.005 (0.006) 0.017ns (0.01) 0.007 (0.01) 
involved in light 

responsiveness 

GT1-motif 2 0 0.007 (0.008) 0.007 (0.007) 0.008 (0.007) 
involved in light 

responsiveness 

HSE 2 0 0.008 (0.009) 0.01 (0.008) 0.008 (0.008) 
involved in heat stress 

responsiveness 

TC-rich repeat 1 3 0.009 0.018ns 0.018ns involved in defense and 

stress  responsiveness 

AT-rich repeat 0 2 0.01 0.01 0.011ns 

element for maximal 

elicitor-mediated 

activation 

(TATA-box) 36 70 (0.002) (0.001) (0.001) core promoter element 

(G-Box) 4 3 (0.01) (0.041ns) (0.023ns) 
involved in light 

responsiveness 



32 
 

Table 8. The list of the significant CREs between the promoters of AtMYC2 and AtMYB2 

identified by the AC pairwise test (q-value ≤ 0.01) performed in two states of with (q-values 

were shown in parentheses) and without TATA box motifs. ns= non-significant 

 

Cis element 

The occurrence of 

the CRE in the 

 AtMYC2 promoter 

The occurrence of 

the CRE in the 

 AtMYB2 promoter 

AC q-value 
Chi-square 

q-value 

Fishers exact 

q-value 
Function 

ABRE  
4 1 

0.009 (0.009) 0.012ns (0.012) 0.011 ns (0.011) 
involved in the abscisic 

acid responsiveness 

Box I  
0 3 

0.006 (0.006) 0.006 (0.006) 0.003 (0.003) 
involved in light 

responsiveness 

CAAT-box  
30 33 

0.002 (0.004) 0.008 (0.028ns) 0.007 (0.018ns) 
conferring high 

transcription levels 

ERE  
0 3 

0.007 (0.007) 0.006 (0.006) 0.003 (0.003) 
ethylene-responsive 

element 

G-Box 11 0 
0.001 (0.001) 0.001 (0.035ns) 0.001 (0.001) involved in light 

responsiveness 

MBS 3 0 
0.008 (0.008) 0.005 (0.005) 0.009 (0.009) 

MYB binding site 

involved in drought-

inducibility 

TA-rich region 4 0 
0.003 (0.003) 0.003 (0.003) 0.005 (0.005) enhancer 

TATA-box  
84 90 

0.002 (0.002) 0.009 (0.009) 0.006 (0.006) 
common cis-acting 

element 

Unnamed_4 8 3 
0.005 (0.005) 0.008 (0.008) 0.008 (0.008) - 

http://bioinformatics.psb.ugent.be/webtools/plantcare/cgi-bin/show_site_info.htpl?QWhere=ID_of_Site%20like%20%27AT~ABRE%27&StartAt=0&NbRecs=10
http://bioinformatics.psb.ugent.be/webtools/plantcare/cgi-bin/show_site_info.htpl?QWhere=ID_of_Site%20like%20%27PS~Box%20I%27&StartAt=0&NbRecs=10
http://bioinformatics.psb.ugent.be/webtools/plantcare/cgi-bin/show_site_info.htpl?QWhere=ID_of_Site%20like%20%27HV~CAAT-box%27&StartAt=0&NbRecs=10
http://bioinformatics.psb.ugent.be/webtools/plantcare/cgi-bin/show_site_info.htpl?QWhere=ID_of_Site%20like%20%27DC~ERE%27&StartAt=0&NbRecs=10
http://bioinformatics.psb.ugent.be/webtools/plantcare/cgi-bin/show_site_info.htpl?QWhere=ID_of_Site%20like%20%27LE~TATA-box%27&StartAt=0&NbRecs=10
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Figures  

 

Figure 1.The workflow diagram of the proposed method for identification of statistically 

differential CREs between two promoters. A: Determining the statistical distribution of number 

of CREs occurrences. B: Employing the pairwise test and verifying the biological significance of 

the identified CREs. 
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Figure 2.Cumulative distribution function (CDF) of the total and sampled promoter sequences. 

The red line shows the D. Uniform distribution of all promoters, and the black line shows the 

CDF line of the sampled promoters. 
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Figure 3.Comparative chart of functional categories of all and sampled Arabidopsis promoter 

IDs. 
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Figure 4.Expression profiles of AtMYC2 and AtMYB2genes in drought (A) and heat (B) stress, 

respectively. 

 

 

 


