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ABSTRACT
Carefully controlled gas exchange across the eggshell is essential
for the development of the avian embryo. Water vapour conductance
(GH2O) across the shell, typically measured as mass loss during
incubation, has been demonstrated to optimally ensure the healthy
development of the embryo while avoiding desiccation. Accordingly,
eggs exposed to sub-optimal gas exchange have reduced hatching
success. We tested the association between eggshell GH2O and
putative life-history correlates of adult birds, ecological nest
parameters and physical characteristics of the egg itself to
investigate how variation in GH2O has evolved to maintain optimal
water loss across a diverse set of nest environments. We measured
gas exchange through eggshell fragments in 151 British breeding
bird species and fitted phylogenetically controlled, general linear
models to test the relationship between GH2O and potential predictor
parameters of each species. Of our 17 life-history traits, only two
were retained in the final model: wet-incubating parent and nest
type. Eggs of species where the parent habitually returned to the
nest with wet plumage had significantly higher GH2O than those of
parents that returned to the nest with dry plumage. Eggs of species
nesting in ground burrows, cliffs and arboreal cups had significantly
higher GH2O than those of species nesting on the ground in open
nests or cups, in tree cavities and in shallow arboreal nests.
Phylogenetic signal (measured as Pagel’s λ) was intermediate in
magnitude, suggesting that differences observed in the GH2O are
dependent upon a combination of shared ancestry and species-
specific life history and ecological traits. Although these data are
correlational by nature, they are consistent with the hypothesis that
parents constrained to return to the nest with wet plumage will
increase the humidity of the nest environment, and the eggs of these
species have evolved a higher GH2O to overcome this constraint and
still achieve optimal water loss during incubation. We also suggest
that eggs laid in cup nests and burrows may require a higher GH2O

to overcome the increased humidity as a result from the confined
nest microclimate lacking air movements through the nest. Taken
together, these comparative data imply that species-specific levels
of gas exchange across avian eggshells are variable and evolve in
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response to ecological and physical variation resulting from parental
and nesting behaviours.
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INTRODUCTION
The striking diversity in shape, size and pigmentation of avian eggs
(Hauber, 2014) provides an ideal model system for studying the
causes and consequences of evolutionary diversity and adaptive
function. The avian eggshell is a complex, multifunctional bioceramic
(Fernandez et al., 1997). It actively shapes the developmental milieu
of the embryo by protecting it from mechanical damage, facilitating
gas exchange and providing calcium for bone growth (Ar et al., 1974;
Maurer et al., 2011). Gas exchange across the shell relies on the
diffusive properties of the eggshell and the environmental conditions
in which the egg is placed, and is vital for the development of the
embryo within the egg (Ar and Rahn, 1978; Ar and Rahn, 1980;
Vleck et al., 1983; Rahn and Paganelli, 1990). Gas exchange
contributes to the rate of water loss, estimated across the eggshell as
water vapour conductance (GH2O; mg day−1 Torr−1), which must be
mediated in such a way that desiccation does not endanger the
embryo, while sufficient water is lost for embryo growth and air cell
formation (Ar and Rahn, 1980; Barrott, 1937; Romijn and Roos,
1938).

As birds breed in almost all terrestrial environments, including
habitats with extreme levels of humidity, altitude and temperature
(Lomholt, 1976; Sotherland et al., 1980; Davis et al., 1984; Davis
and Ackerman, 1985; Arad et al., 1988; Carey et al., 1989; Carey et
al., 1990; Walsberg and Schmidt, 1992; Carey, 1994), the structure
of the eggshell is likely to play an important role in allowing bird
species to successfully expand into and inhabit a wide variety of
habitats. To fully understand the diversity of avian eggshell structure
requires an analysis of the evolutionary basis of the structural
adaptations for eggshells’ gas exchange in different environments
and nesting conditions, and across species with varying life histories
(e.g. Portugal et al., 2014). Because all nutrients for embryonic
development are deposited by the avian mother into the egg prior to
laying, suitable levels of gas exchange and parental modulation of
incubation temperatures constitute the only physical control of the
requirements for embryonic development in birds (Ar et al., 1974;
Hoyt et al., 1979; Paganelli, 1980; Visschedijk, 1980; Booth and
Seymour, 1987). Here we examine how broad-scale evolutionary
and ecological variation, species-specific breeding behaviour and
phylogenetic relatedness can explain variation in gas transfer across
the avian eggshell.

Quantifying patterns of interspecific variability in GH2O and the
associated egg-mass loss across phylogenetically diverse taxa is
essential to understand how flexibly birds have adapted to their
diverse breeding environments. Typically, studies of eggshell GH2O

have focused on closely related species and family groups of birds,
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in an attempt to elucidate the ultimate and proximate causes of
variation in the GH2O between related species (e.g. Vleck et al.,
1983). Although the potential effects of nest environment and nest
structure on GH2O have both been studied intensively, a focus on
closely related taxa, even in comparative studies, means that
potential confounds of shared phylogenetic affinities and life-history
traits, which may play parallel or contrasting roles in determining
the optimal GH2O, have not yet been identified (Cassey et al., 2010).
Therefore, we measured surface-specific GH2O in the eggs of a broad
taxonomic spectrum of 151 British breeding bird species spanning
several orders, using a repeatable and standardised methodology. We
tested ecological hypotheses on how modifications in the GH2O in
the eggs of different lineages vary with respect to differences in the
humidity and pressure of different nest environments. Based on
extensive previous literature, we tested several physical and life-
history variables that may explain variation in GH2O across species
(detailed in Table 1). These can broadly be grouped into three
categories: egg structure (predictions i and ii in Table 1), nest habitat
and type (predictions iii–v) and life-history traits of the adult birds
(predictions vi and vii).

RESULTS
Reliability of GH2O measurements
Mass loss between subsequent weighing sessions was highly
repeatable for each eggshell fragment (Pearson’s r=0.99, n=1281)
and contributed to less than 5% of the total variability in GH2O

between eggs. Nested ANOVA indicated that <50% of the
variability in GH2O among individual eggs was explained through
differences between the three eggshell regions: the blunt end (B),
equator (E) and pointed end (P). However, the analysis of these three
eggshell regions independently showed that individual egg (Egg ID)
contributed 53.8, 59.6 and 67.0% of the total variability in GH2O for
B, E and P, respectively.

To investigate further the contribution of individual variation in
eggshell collection and preparation to the variation in GH2O, we
analysed a subset of eggs that were donated to the Natural History
Museum, Tring, as a single source collection compiled by a single
collector. This subsequent analysis of the single largest collection of
eggs from one donor (62 species and 42% of the collection in total)
demonstrated that when analysed collectively, region (B, E and P),
i.e. within-egg variability, was responsible for the largest percentage
of variability (39.7%) in GH2O between eggs. In contrast, when the
regions were separated, Egg ID was only responsible for 16.5, 9.6
and 2.4% of the variability between eggshells for B, E and P,
respectively, with 77% of the variability in GH2O being explained by
phylogenetic effects owing to species differences, within the same

avian families. From these results, we inferred that our methods are
indeed sufficient to detect significant differences between species,
and that an average species value’ across all collections of GH2O is
both obtainable and highly repeatable (Fig. 1).

Differences in GH2O across eggshells
There was a significant and consistent difference in the GH2O

between the three eggshell regions (F2,1281=20.9, P<0.001). For the
majority of species (>80%), the B region, coinciding with the
eventual location of the air cell, had a significantly lower GH2O

compared with both E and P regions (F2,1281=25.76, P<0.001). Mean
values of GH2O for E and P were highly correlated (r=0.65, n=144,
P<0.001), and not significantly different from each other
(0.2559±0.08 and 0.2532±0.09 mg day−1 Torr−1 for E and P,
respectively, B=0.2245±0.07 mg day−1 Torr−1). Consequently, we
considered the B and E regions only in subsequent analyses (all data
are available in supplementary Tables S1 and S2).

Phylogenetic correlation
For all eggshell regions (i.e. whole eggshell or B and E regions
separately), Pagel’s λ values were intermediate between 0 and 1 and

Table 1. Putative predictions for a series of possible explanations for variation in water vapour conductance (GH2O) in the eggs of 151
British breeding birds
Hypothesis Assumption

(i) Eggshell thickness The water vapour travels for a shorter distance through the shell in thinner eggs.
(ii) Eggshell calcium content Calcium-poor species should produce shells of lower density and thus facilitate rapid gas transfer.
(iii) Altitude Enhanced diffusivity at low barometric pressure at higher altitudes increases water loss.
(iv) Nest structure (‘open’ ground versus ‘closed’ tree) The air movement experienced by open nests facilitates eggshell gas transfer in comparison to cup 

nests, where eggs are more frequently on top of each other, and the cup shape may cause
pockets of humidity.

(v) Nest placement (cavity versus open) Cavity nesters have a higher humidity than the surrounding environment, and water vapour transfer 
is slowed down.

(vi) Clutch size Evaporation from multiple eggs will create a nest atmosphere of greater humidity and reduced water 
vapour transfer.

(vii) Parental foraging style The wet incubating parent returning to the nest will increase the nest’s humidity, reducing water 
vapour transfer.
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Fig. 1. Mean (±s.e.m.) surface-specific water vapour conductance (GH2O)
for 62 British breeding bird species, sourced from a single museum
donor, compared with the GH2O for the same species measured in eggs
from multiple different donors. Analysis showed the values of GH2O to be
highly repeatable for a species, and that egg donor origin was not a
significant factor in the determination of average GH2O for a species. Values
of GH2O for the three segments are combined (blunt end, equator and pointed
end).
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significantly different from both (Table 2), suggesting that some
phylogenetic signal is retained in GH2O. A Pagel’s λ value of 0
indicates that values of the GH2O trait are independent of phylogeny,
while a Pagel’s λ value of 1 indicates that values of GH2O are
evolving according to Brownian motion on the given phylogeny
(e.g. Cassey et al., 2010). Intermediate values of Pagel’s λ imply that
traits have evolved according to a process in which the effect of
phylogeny is weaker than in the Brownian model. These patterns
were detected regardless of whether life-history traits were included
in the phylogenetic model (Table 2).

Of our 17 life-history and habitat variables, only two were
retained in the final model of GH2O variation across species. Using
mean GH2O values for the whole eggshell of each species, the model
that best explained the variation in GH2O (r2=0.17, F5,132=5.38,
P<0.001) retained only wet incubating parent (F1,132=6.08, P<0.001;
Fig. 2) and nest type (F5,132=4.99, P<0.001; Fig. 3) as significant
predictor variables. The relative contribution of the non-significant
variables included in the initial full model, which were removed, are
presented in supplementary material Table S3.

Species with wet incubating parents had a GH2O that was, on
average, 0.042 mg day−1 Torr−1 higher than those species where
parents do not return to the nest wet. The rate of diversification in
GH2O was approximately five times greater between species in which
parents incubate with wet plumage than it was between species in

which parents incubate with dry plumage [as represented by the
branch lengths in Fig. 2, relative rate estimate=4.72 (2.94–67.95%
CI), likelihood ratio test=39.93, d.f.=1, P<0.001]. Eggs of species
nesting in ground burrows, cliffs and arboreal cups had significantly
higher GH2O than those nesting on the ground in open nests or cups,
in tree cavities and in shallow arboreal nests (Fig. 3).

For GH2O of the B region only, nest type (F5,132=4.48, P<0.001) and
wet parent (F1,132=11.86, P<0.001) were the only significant predictor
variables retained in the model (r2=0.18, F5,132=5.96, P<0.001). 
For the E region only, nest type (F5,132=4.93, P<0.001) and 
average eggshell thickness (F1,132=7.22, P<0.001) were the 
only significant predictor variables retained (r2=0.17, F5,132=5.38,
P<0.001), with an increase in thickness (estimate ± s.e.m.=0.16±0.05)
resulting in an increase in GH2O.

DISCUSSION
Differences observed in the rate of water vapour conductance (GH2O)
across the avian eggshell covary with a combination of both shared
ancestry (phylogenetic relatedness) and several life-history and
ecological traits (Table 2). Species-specific behavioural and
environmental parameters can play an important role in influencing
GH2O (Deeming, 2002), and our study discovered that nest type and
whether the incubating parent returns to the nest wet were the only
statistically significant factors that predicted interspecific variability

Table 2. Estimates of phylogenetic signal (Pagel’s λ) for water vapour conductance (GH2O) for the blunt and equator regions of the
eggshell, and the whole eggshell 
Region Maximum likelihood Pagel’s λ 95% CI Maximum likelihood LR versus 0 LR versus 1

Blunt 0.65 0.60–0.70 136.07 28.98 72.92
Equator 0.65 0.63–0.67 134.81 31.18 47.43
Mean species 0.75 0.73–0.78 164.18 44.66 79.48

The 95% CI interval refers to the 95% sampling intervals across phylogenies. For all likelihood ratio (LR) statistics, the proportion of trees where λ significantly
differed from either 0 or 1 was 100%.

Fig. 2. Phylogenetic tree of the 151 species
of British breeding birds. Those species
which are classified ‘wet parents’ (habitually
return to the nest wet) are coloured blue. The
remaining species (coloured black) are ‘dry
parents’. The branch length are proportional to
the rate of diversification in GH2O, which was
~5.5 times greater in the wet incubating parents
group when compared with those species that
return to the nest dry.
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in GH2O of bird eggs in a large sample of representative British
species.

Whereas GH2O is vital for successful incubation, nest site choice
for the adult bird will likely involve a trade-off between a suitable
nest microclimate for optimum egg-water loss and minimising nest
predation risks, the latter being the most important predictor of
nesting success across birds (Ricklefs, 1969). The full effects on
embryonic development, hatching success, post-hatching growth
and overall fitness of sub-optimal egg-water loss are not understood.
However, it is clear that eggs and clutches incubated under
conditions that lead to sub-optimal water loss have reduced hatching
success (e.g. Buhr, 1995; Yildirim and Yetisir, 2004). Yet, the long-
term effects of water loss on fledgling success, when the eggs hatch,
remain unknown, especially because water loss is likely to covary
with fluctuations in incubation temperature, which in turn has
crucial fitness impacts on post-hatching development (Pérez et al.,
2008; DuRant et al., 2010).

Importantly, in our results clutch size and developmental mode
were not significant main predictor variables of gas transfer across
our relatively limited geographic sampling of British bird eggs (see
Carey, 1994; Deeming, 2002). We originally hypothesised (see
Table 1) that species with large clutch sizes would have higher GH2O

than those species with relatively smaller clutches, in response to the
increased humidity that a greater number of eggs present in the nest
might produce. However, behaviours of the incubating adult bird,
such as egg turning using the feet (Morgan et al., 2003; Skutch,
1976), beak (Haftorn, 1994; Handrich, 1989) and tremble-thrusting
(Vleck, 1981), may effectively mix the air and reduce the chance of
pockets of humidity developing over time, so that the eggs of
species with large clutches do not require an adaptation to their
GH2O.

Our study helps clarify to what extent the incubating parent
influences the GH2O in the developing egg. We have shown that both
the behaviour of the incubating adult (returning to the nest with wet
or dry plumage) and its choice of nest site can affect the rate of gas
exchange across the eggshell. Previously it was found that the adult
bird can contribute to the control of the nest microclimate, and as
much as 30–45% of moisture in the nest’s atmosphere is provided
by the incubating parent (e.g. Andersen and Steen, 1986). This
percentage would be even greater if the eggs and nest are in a
confined area such as a burrow, cavity or cupped nest. Our results

are consistent with previous studies that revealed significantly higher
GH2O in species that use underground burrow nests and cup nests
(Fig. 3) (Rahn et al., 1977; Ackerman and Platter-Reiger, 1979;
Carey, 1980; Rahn and Hammel, 1982). However, the result
reported here, namely that the GH2O of eggs found in ground-nesting
species and cavities was lower than these aforementioned groups, is
unexpected (see Deeming, 2002). In the considerably smaller
phylogenetic sample of bird species (seven members of the order
Pelecaniformes, and three members of the order Charadriiformes)
used by Vleck et al. (Vleck et al., 1983), ground-nesting birds
typically laid eggs with a high rate of GH2O, potentially to overcome
the lack of wind and air movements, which can result in a humid
nest microenvironment. Similarly, eggs of cavity-nesting birds
studied previously show comparable traits of increased GH2O.

Measuring the GH2O across the eggshell under standard conditions
reveals adaptations that facilitate optimal water loss during incubation
in very different nest environments. To achieve optimal water loss, the
GH2O is likely to be very similar between all species under typical nest
conditions. Only under standard laboratory conditions will these
differences in GH2O due to structural adaptations of the avian eggshell
become apparent. Measuring the GH2O under standard conditions,
however, may result in certain functional differences between the eggs
of particular species being missed. For example, the eggs of eared
grebes (Podiceps nigricollis) are covered in rotting vegetation when
the incubating parents make recesses, and frequently can be partially
submerged in water (Davis et al., 1984; Lomholt, 1984; Board, 1982;
Sotherland et al., 1984). The extreme changes in humidity and
temperature associated with this nest environment may mean that the
GH2O of grebe eggs is more flexible and responsive to changes in the
environment, and the eggs more resilient to desiccation and wetting,
thus being able to cope with wider temperatures and humidity ranges.
Therefore, it may be that under standard conditions, eggs of species
that are better adapted and equipped to cope with changes in
environmental factors (e.g. temperature and humidity) will not exhibit
these differences in physical properties.

It would be worthwhile for future studies to test the GH2O in eggs
of certain species under different temperatures and humidity ranges,
or specifically replicating particular nesting microhabitats, to
ascertain a thermal and external humidity tolerance zone of GH2O as
they are related to species-specific environmental factors and
behavioural patterns during incubation.

MATERIALS AND METHODS
Egg samples and preparation
Eggs of 151 British breeding bird species were obtained from the destructive
collection of the Natural History Museum, Tring (UK) (Cassey et al., 2010;
Cassey et al., 2012; Maurer et al., 2014; Portugal et al., 2010a; Portugal et
al., 2010b; Russell et al., 2010). Previously, we demonstrated that GH2O of
museum and fresh eggs of the same species does not differ significantly
(Portugal et al., 2010a). Eggshell parameters [length (mm), breadth (mm),
mass (g) and thickness (μm)] were measured directly on the sampled eggs.
Only species with an eggshell >30 mm in length and >0.075 mm thick were
included, as smaller shells were unsuitable for reliable GH2O measurements
(see Portugal et al., 2010a).

Three different regions of the eggshell were used for GH2O measurements:
the blunt end (B), equator (E) and pointed end (P). These fragments of the
eggshell (~225 mm2) were cut from the shell using a diamond-tipped dentist
drill (Milnes Bros., Surrey, UK). Prior to GH2O being measured, eggshell
thickness was recorded using a Mitutoyo Series 227–203 constant
measurement force micrometer (as described in Maurer et al., 2010; Maurer
et al., 2012).

Detailed information about eggshell preparation and measurements of the
GH2O can be found elsewhere (Portugal et al., 2010a; see also Booth and
Seymour, 1987; Maurer et al., 2011). Briefly, the eggshell fragments were
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Fig. 3. Mean (±s.e.m.) water vapour conductance (GH2O) for six nest
types and nest locations, measured in 151 species of British breeding
birds. Nest types/locations indicated with filled squares had significantly
higher GH2O values than those indicated with open squares.
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glued to the top of Eppendorf tubes (surface area of 24.4 mm2) that had been
previously filled with 200 μl of distilled water. The Eppendorf units were
placed into desiccators (Camlab, Over, Cambridgeshire, UK), which in turn
were housed in a constant-temperature thermocabinet (Camlab) at 30±1°C.
Temperature, humidity and pressure were monitored continuously via a
logtag analyser and an average was logged every 1 min (Loggershop,
Bournemouth, Dorset, UK). After 24 h, the Eppendorfs were weighed (g) to
four decimal places (Sartorius, Göttingen, Germany) before being returned
to the desiccators. The Eppendorf tubes and eggshell fragments were
weighed at the same time of day on three successive days to give two values
of 24 h GH2O. Any mass loss was assumed to be the result of water loss
(sensu Booth and Seymour, 1987). Calculation of GH2O was conducted as
previously described (Portugal et al., 2010a).

Life-history and ecological data of a representative avian
phylogenetic sample from Britain
Species were classified following Sibley and Monroe (Sibley and Monroe,
1990). Life-history and ecological data were gathered primarily from
Handbook of the Birds of the World Volumes 1–13 (Del Hoyo et al., 1992-
2010), and cross referenced with Birds of the Western Palearctic (Cramp et
al., 1977-1994). In addition, supplementary data were obtained from family-
and species-specific monographs, and field guides to nests (sources available
on request).

The following variables were recorded from the literature: adult body
mass (g), clutch size (modal number of eggs), incubation length (days),
shared incubation between two parents (no/yes), median breeding range
(degrees latitude), nest type [cup/non-cup (open)], nest concealed (no/yes),
ground nesting (no/yes), arboreal nesting (no/yes), cavity nesting (no/yes),
cliff nesting (no/yes), diet (calcium rich/herbivore), development mode
(precocial/altricial), migration (no/yes), whether the parental foraging style
meant that adults returned habitually to the nest with wet plumage (no/yes
wet incubating parent variable; see Results), and general breeding habitat
(open/closed) [see Cassey et al. (Cassey et al., 2010) for full description].
All variables in our data set could be assigned for all species.

Body mass of adult birds was taken as a mean for both sexes, primarily
from the Handbook of Avian Body Masses (Dunning, 2007). Breeding latitude
was compiled from data tabulated by Orme et al. (Orme et al., 2005; Orme et
al., 2006). Nest type was recorded as evidence of cup building versus open
shallow nests, based on the description in the literature. The open category
includes shallow nests (e.g. oystercatcher, Haematopus ostralegus), and
complete absence of nest [e.g. Eurasian stone curlew (Burhinus oedicnemus),
common guillemot (Uria aalge)]. Further detail was then added on whether
the nest was placed concealed in vegetation or camouflaged. This information
was based on the location of the nest, the nest structure and its components
(nest material). A nest in open view (0) was not considered hidden [e.g. osprey
(Pandion haliaetus), pied avocet (Recurvirostra avosetta), common coot
(Fulica atra)]; by contrast, a nest that is concealed in a crevice, in a burrow
or by foliage was considered hidden (Ar and Rahn, 1978). The migratory
nature of a species was determined from the illustrative maps in the Handbook
of the Birds of the World (Del Hoyo et al., 1992-2010), by establishing whether
the entire population underwent a full move from one region to another, and
as such, did not include locally dispersing species and partial migrants, which
were also scored as non-migratory. General breeding habitat was assigned
based on the descriptions of McNaught and Owens (McNaught and Owens,
2002), where habitats were broadly defined as closed (closed woodland, reed
beds, rank grass) or open (arid regions, grasslands, heathland, wooded
grasslands, open woodland, marsh).

The average degree of maculation of the eggshell was determined by three
observers from specimens studied at the Natural History Museum, Tring,
collection [see Cassey et al. (Cassey et al., 2010) for repeatability estimates].
For each species, the eggs were assessed for presence and coverage of
maculation using a three-point scoring system and points were averaged
between observers to obtain a maculation score. Maculation was recorded
as ‘0’ if the egg was immaculate, ‘1’ for maculation present but with a clear,
dominant background colour, and ‘2’ for widespread maculation that
covered the entirety of the egg (see also Brulez et al., 2014). The full species
matrix of life-history traits and eggshell parameters can be found in
supplementary material Tables S1 and S2.

Phylogenetic methods and analysis
We revised and updated a recent phylogenetic hypothesis of British birds
(Thomas, 2008). The phylogeny was based on sequence data from 12
protein-coding mitochondrial genes and included 151 British breeding bird
species. The published tree was extended by: (1) adding sequence data for
15 more species, (2) increasing the number of genes included where
available and, (3) replacing the data on Thomas’ (Thomas, 2008) three
surrogate species with recently published data on the focal species (little
bittern, Ixobrychus minutus; European bee-eater, Merops apiaster; and
European golden plover, Pluvialis apricaria). Each gene was aligned by eye
in SE-AL v. 2.0a11 (Rambaut, 2002). All sequence data were collected from
GenBank (Benson et al., 2007) using Geneious v. 4.8.5 (Drummond et al.,
2009), and sequence accessions and full alignments are available on request.

We used BEAST 1.5.4 for phylogenetic analyses using a codon-specific
GTR+Γ substitution model in which substitution rates, among-site rate
variation and state frequencies at third codon positions were unlinked
(GTR+CP112+Γ). We used a Yule prior on the branching process and an
uncorrelated relaxed clock in which rate variation among branches was
drawn from a log-normal distribution. We applied two topology constraints
to the phylogeny by defining the monophyly of the widely accepted Neoaves
and Galloanserae clades. Note that this is more liberal than the 11 constraints
used by Thomas (Thomas, 2008) and allows us to better account for the
uncertainty in topology in the deeper nodes of avian phylogeny. We
conducted two runs, one each for 40 and 50 million generations, sampling
trees every 10,000 generations. We assessed mixing within runs and
convergence between runs using Tracer v. 1.5.0 (Drummond and Rambaut,
2007) based on visual inspection of traces and effective sample sizes of tree
parameters (node ages of the two constrained nodes), posterior log-
likelihoods and substitution model parameters. Both runs converged rapidly
and we discarded 10% of generations from each run as burn-in. We
combined the post-burnin samples of the two runs to yield a posterior
distribution in which the majority of parameters had effective sample sizes
of >500 (and all >100). For use in subsequent phylogenetic analyses (see
below) we subsampled down to 1000 trees (drawn from the full posterior
distribution of >8000 trees) and pruned each tree to the 49 species in the
eggshell data set. We also extracted the maximum clade credibility tree from
the full tree distribution for use as a single ‘best’ representative tree.

We estimated Pagel’s λ (Pagel, 1997; Pagel, 1999; Shackleton et al.,
2000), using the R-library motmot (available from http://r-forge.r-
project.org/), as a measure of the strength of phylogenetic signal in the GH2O

variables. Pagel’s λ varies from 0 to 1, where 0 indicates no phylogenetic
signal in the data and 1 is consistent with a Brownian motion model of trait
evolution in which the phylogeny accurately reflects the covariances
between species for a given trait (for details, see Shackleton et al., 2000). To
assess the effects of phylogenetic error, we repeated the λ fitting procedure
with a distribution of 1000 phylogenetic hypotheses (see above).

We tested hypotheses on the correlates of GH2O using the R-library CAIC
(available from http://r-forge.r-project.org/) to fit phylogenetically controlled
general linear models. Specifically, we used the function pglmEstLambda
to fit Pagel’s λ simultaneously with each regression model in order to
appropriately correct for phylogenetic signal in the residuals. We first tested
the correlation between GH2O variables without any other covariates and
repeated this over 1000 phylogenies. We then fitted full regression models
including all relevant explanatory variables with GH2O as response variables.
From the full models we simplified the model by removal of each
statistically non-significant explanatory variable in turn (α=0.05). We also
added each removed variable back into the final reduced model one by one
to assess model robustness. The initial full model and model simplification
were conducted on the maximum clade credibility tree only. To assess the
robustness of parameter estimates and significance to phylogenetic
uncertainty, we subsequently ran the simplified model across all 1000
phylogenetic hypotheses.

For a single variable [parental feeding mode (wet/dry)], we tested the a
posteriori hypothesis that the rate of between species diversification in GH2O

would be higher among species with wet incubating parents than species
with dry incubating species because of constraints on GH2O imposed by dry
incubation. To test this hypothesis, we used the relative phenotypic rates test
proposed by Thomas et al. (Thomas et al., 2006) implemented in the R
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library ‘motmot’. This test compares a model in which the rate of
phenotypic diversification is constant lineages with a model in which rates
differ between lineages with wet incubating parents and lineages with dry
incubating parents. Ancestral states for incubation type were reconstructed
using the ‘ace’ function in the R library ‘ape’ (Paradis et al., 2004). Note that
results for the rates test were qualitatively unaffected by choice of ancestral
state reconstruction methods.

Statistical analysis
Pearson correlation coefficients (Pearson’s r) were calculated for the mass
loss between weighing sessions, across all fragments. Nested ANOVA (SAS
v9.2 Proc NESTED) was conducted to partition the percentage of variability
in GH2O that was directly attributable to egg section (within an egg),
individual egg (within a species) and individual species (within a family).
We analysed whether the differences in GH2O were associated with the
species identity, eggshell thickness and shell section using generalised linear
mixed models (SAS v9.2 Proc GLIMMIX; accounting for repeated
measures from replicate fragments within an egg as a random effect).
Preliminary tests confirmed that eggshell thickness and adult body mass
were highly correlated with each other, with >78% of the variation
explained. Therefore, in subsequent analyses, only eggshell thickness, and
not adult body mass, was included. No other measures were correlated at
levels >50%.
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