Biogeochemical expression of base metal mineralisation in the northwestern Flinders Ranges.

Thesis submitted in accordance with the requirements of the University of Adelaide for an Honours Degree in Environmental Geoscience.

Paige Courtney Honor October 2012

TITLE

Biogeochemical expression of base metal mineralisation in the northwestern Flinders Ranges.

RUNNING TITLE

Biogeochemical expression of base metal mineralisation.

ABSTRACT

The northwestern Flinders Ranges hosts a variety of Pb/Zn/Cu/Ag mineralised sites. It is, therefore, an ideal setting to investigate the plant biogeochemical expression of proximal base metal mineralisation in bedrock geochemistry. Twigs and leaves from *Eremophila freelingii* along with bedrock collected from traverses across four sites of known and background mineralisation have been analysed to show this expression in biogeochemistry as well as disparities in this expression throughout plant organs. Increased concentrations of Ni, As, Mo, and Cd in bedrock and to an extent in plant biogeochemistry are associated with the distribution of the commodity elements, Pb, Zn, Cu, and Ag. This corresponds with a decrease in the concentration of Na, Ca, Al, Fe, and Y in the vicinity of the mineralisation.

Plant biogeochemistry results are able to identify a discriminatory signature for different geological settings and display the effects of regolith – landform settings on the distribution of elemental concentrations in the landscape and also display different sized geochemical dispersion halos for each commodity element. Biogeochemistry analytical results have also shown that concentrations of most selected elements vary between leaf and twig organs from the same plant, with concentrations generally lower in twigs. An implication of this study is that *Eremophila freelingii* leaf biogeochemistry would be a suitable sampling medium for geochemical exploration for base metal mineralisation in areas of shallow transported cover. Its advantages over bedrock sampling are that once regolith-landform settings are accounted for, samples are reasonably representative of underlying geological substrate, light weight (assisting field transport) and have negligible long-term environmental impact to the sample site.

KEYWORDS

Biogeochemistry, Copper, Emu Bush, Eremophila freelingii, geochemistry, Lead, North Flinders Ranges, Silver, Zinc.

CONTENTS

ABSTRACT	1
LIST OF FIGURES AND TABLES	3
INTRODUCTION	4
PHYSICAL SETTING	7
Climate	7
Regional Vegetation and Land Use	7
Regional Geology and Geomorphology	8
OOLOO	9
GILEAD P BECK	10
BILLY SPRINGS	10
AVONDALE	11
METHODS	16
Survey Design	16
Sampling Media	16
Sampling Procedure	17
Storage and Preparation	17
Potential Contamination	
Statistical Methods	21
Geology and Regolith - Landform Mapping	21
RESULTS	22
Biogeochemical Results	35
COMMODITY	35
PATHFINDER	36
HOST/CONTROL/LANDSCAPE	37
OTHER	39
Whole Rock Geochemistry	40
COMMODITY	40
PATHFINDER	41
HOST/CONTROL//LANDSCAPE	42
OTHER	43
DISCUSSION	44
Plant Organs (Leaves vs. Twigs)	44
Biogeochemistry vs. Bedrock	45
Regolith - Landform Associations	46
Mineral Exploration Implications	47
CONCLUSIONS	49
ACKNOWLEDGMENTS	51
REFERENCES	52
ADDENDICES	(caparata fila)

LIST OF FIGURES AND TABLES

Figure 1: Location map showing the mineralised sites and stratigraphy of the
northwestern Flinders Ranges. Modified after (Brugger et al. 2003, Harkins et al.
2008)9
Figure 2: Regolith - Landform and Geology map of Ooloo12
Figure 3: Regolith-Landform and Geology maps of Gilead P Beck13
Figure 4: Regolith - Landform and Geology maps of Billy Springs14
Figure 5: Regolith - Landform and Geology maps of Avondale
Figure 6: Dendrogram of Eremophila freelingii leaf elemental analysis using Ward
Linkage
Linkage24
Figure 8: Dendrogram of bedrock elemental analysis using Wards Linkage25
Figure 9: Split probability plots of the selected element suite showing regolith-landform units
Figure 10: X-Y plots of bedrock geochemistry vs. leaf biogeochemistry for the selected element suite
Figure 11: X-Y plots of twig biogeochemistry vs. bedrock geochemistry for the selected suite of elements
Figure 12: X-Y plots of leaf biogeochemistry vs. twig biogeochemistry for the selected
suite of elements
Figure 13: Conceptual diagram of the geochemical dispersion footprint characterised in <i>Eremophila freelingii</i> leaf biogeochemistry
Table 1: Lower detection limits for bedrock geochemical analysis by ICP-MS
concentrations47