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Abstract 

Fracture and fracture network modelling is a multi-disciplinary research area. 

Although the literature in general is significant, many research challenges remain. 

The complex geometry and topology of realistic fracture networks largely 

determine the static and dynamic mechanical properties of rock. In applications to 

hot dry rock geothermal reservoirs it is not possible to observe or measure fractures 

directly on any scale and the only data available are indirect measurements, such 

as seismic activity generated by hydraulic fracture stimulation. The lack of direct 

data and the complexities of the fracture characteristics make fracture network 

prediction and modelling in these applications very difficult. The ultimate purpose 

of the fracture and fracture network models is to evaluate the response of the 

fracture system to stress regimes and fluid flow. As understanding of the effective 

factors in the geometrical modelling of fractures and consequently topological 

properties of fracture networks increases, more accurate and hence more reliable 

results can be achieved from associated analyses. For flow modelling in geothermal 

reservoirs, the critical component of a fracture model is the connectivity of the 

fractures as this determines the technical feasibility of heat production and is the 

single most significant factor in converting a heat resource to a reserve. The ability 

to model this component effectively and to understand the associated system is 

severely constrained by the lack of direct data. In simulations, the connectivity of a 

fracture network can be controlled to a limited extent by adjusting the fracture and 

fracture network parameters (e.g., locations, orientations) of the defining 

distribution functions. In practical applications connectivity is a response of the 

system not a variable. It is essential to pursue modelling methods that maximise 

the extraction of information from the available data so as to achieve the highest 

possible accuracy in the modelling. Although the evaluation of fracture connectivity 

is an active research area, widely reported in the literature, almost all connectivity 

measures are based on degraded representations of the fracture network i.e., 

lattice-based. The loss of fracture connectivity information caused by using discrete 

representations is significant even when very high resolutions (assuming they are 

feasible) are used. This is basically due to the fact that the aperture dimensions of 
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fractures are several magnitudes smaller than their lengths. If discretisation is 

necessary, then a better approach would be to retain all connectivity information 

between fractures, i.e. for connectivity information to remain invariant to the 

resolution of the discretisation. Such a method would provide more reliable 

evaluation of connectivity. This thesis covers the modelling of fracture networks, 

the characterisation (particularly connectivity) of fracture networks and 

applications. 
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