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Abstract 

Regular monitoring of the concentration of ionic nutrients such as Nitrate (N)
,
 

Phosphate (P) and Potassium (K) ions in soils is necessary for agricultural 

management. Optical fibre dip sensors provide sensing platforms that have the 

potential to be small and flexible that can reach the root zone. This thesis contains 

studies towards the development of novel optical fibre soil nutrient sensors using 

suspended core fibres (SCFs) and Photoinduced Electron Transfer (PET) based 

fluoroionophores. SCFs provide long interaction path length that potentially 

increase the sensitivity and lower the detection limit. Furthermore it requires only 

nanoliters for analysis. PET fluoroionophores using 4-amino-1,8-naphthalimide as 

the common fluorophore can be integrated within a SCF to become optical fibre 

sensors in two ways. The first approach is to pre-mix the fluoroionophore with the 

analyte to be sensed; the second approach is to immobilise the fluoroionophore on 

the internal surface of SCF. Chapter 2 and 5 of this thesis has demonstrated both 

potential operating scenarios are feasible for cation sensing. Furthermore, both 

cation and anion sensing are feasible using the first approach.  

Surface immobilisations of the fluoroionophores on the glass materials are critical 

for the development of the practical SCF sensors (second approach). In order to 

achieve this, it is first necessary to develop techniques for the characterisation of 

the functionalised surfaces. Chapter 3 and 4 of this thesis has demonstrated a 

versatile approach of using different glass model systems and surface analysis 

techniques such as X-ray photoelectron spectroscopy, Time of flight secondary 

ion mass spectrometry (ToF-SIMS), fluorescence imaging, spectroscopic 

ellipsometry, atomic force microscopy for measuring parameters such as the 

surface density of amine groups and sensor molecules, coating coverage, surface 

roughness and coating thickness that represent the surface chemistry of SCF. In 

addition, ToF-SIMS imaging is demonstrated to reveal that the lead ions 

distribution could be used as a marker of surface coverage of the coating. The 

application of using ToF-SIMS for relative coating thickness measurement on is 

also demonstrated in this thesis. 
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