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worldwide human populations infers their
biogeographical origins
Eran Elhaik1,2,*, Tatiana Tatarinova3,*, Dmitri Chebotarev4, Ignazio S. Piras5, Carla Maria Calò5,
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The search for a method that utilizes biological information to predict humans’ place of origin has

occupied scientists for millennia. Over the past four decades, scientists have employed genetic

data in an effort to achieve this goal but with limited success. While biogeographical algorithms

using next-generation sequencing data have achieved an accuracy of 700 km in Europe, they

were inaccurate elsewhere. Here we describe the Geographic Population Structure (GPS)

algorithm and demonstrate its accuracy with three data sets using 40,000–130,000 SNPs. GPS

placed 83% of worldwide individuals in their country of origin. Applied to over 200 Sardinians

villagers, GPS placed a quarter of them in their villages and most of the rest within 50 km of their

villages. GPS’s accuracy and power to infer the biogeography of worldwide individuals down to

their country or, in some cases, village, of origin, underscores the promise of admixture-based

methods for biogeography and has ramifications for genetic ancestry testing.
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Sanger Institute, Hinxton CB10 1SA, UK. 10 Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA. 11 Departamento
de Toxicologı́a, Cinvestav, San Pedro Zacatenco, CP 07360, Mexico. 12 Instituto de Genética y Biologı́a Molecular, University of San Martin de Porres, Lima,
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T
he ability to identify the geographic origin of an individual
using biological data, poses a formidable challenge in
anthropology and genetics because of its complexity and

potentially dangerous misinterpretations1. For instance, owing to
the intrinsic nature of biological variation, it is difficult to say
where one population stops and another starts by looking at the
spatial distribution of a trait (for example, hair colour2). Darwin
acknowledged this problem, stating that ‘it may be doubted
whether any character can be named which is distinctive of a race
and is constant’3. Yet, questions of biogeography and genetic
diversity such as ‘why we are what we are where we are?’ have
piqued human curiosity as far back as Herodotus of
Halicarnassus, who has been called ‘the first anthropologist’4.
However, only in the past decade have researchers begun
harnessing high-throughput genetic data to address them.

The work of Cavalli-Sforza and other investigators5–7

established a strong relationship between genetic and geo-
graphic distances in worldwide human populations, with major
deviations explicable by admixture or extreme isolation8. These
observations, stimulated the development of biogeographical
methods. Accurate measurements of biogeography began at the
cusp of the DNA sequencing era and have since been applied
extensively to study genetic diversity and anthropology9,10,
infer origin and ancestry11,12, map genes13, identify disease
susceptibility markers2 and correct for population stratification in
disease studies14.

Biogeographic applications currently employ principal compo-
nent (PC)-based methods such as PC analysis (PCA), which was
shown to be accurate within 700 km in Europe11, and the most
recent Spatial Ancestry Analysis (SPA)12 that explicitly models
allele frequencies. Yet, estimated by the percentage of individuals
correctly assigned to their country of origin, the accuracy of PCA
and SPA is relatively low for Europeans (40±5 and 45±5%,
respectively) and much lower for non-Europeans12. Such results
suggest limitations with these approaches for biogeographical
inference12,15,16, coupled with a possible limitation of commonly
used genotyping arrays in capturing fine substructure17,18. As
patterns of genetic diversity in human populations or admixture
are frequently described as genome-based estimates of several
ancestries that sum to 100% (refs 19–21), we speculated that an
admixture-based approach may yield better results.

To overcome the possible limitations of markers included on
commonly used microarrays, we used the GenoChip, a dedicated
genotyping array for population genetics17, which includes over
100,000 ancestral informative markers (AIMs). These autosomal
AIMs were collected from the literature and captured using tools
such as AimsFinder, which identifies the smallest number of
markers sufficient to differentiate a pair of populations that are
genetically distinct. AimsFinder was applied to private and public
data sets for multiple populations, many of which were not
studied before or searched for AIMs, and the recovered markers
were included in the GenoChip.

To overcome the methodological limitations, we developed an
admixture-based Geographic Population Structure (GPS) method
for predicting the biogeographical origin of worldwide individuals
from resident populations. We demonstrated the performances of
this method on three data sets and compared its results with those
of SPA12. GPS outperformed SPA in all analyses, demonstrating
the power of admixture-based tools to infer biogeography.

Results
GPS implementation. The GPS method consists of two steps. In
the first step, carried out once, we constructed a diverse panel of
worldwide populations and analysed them using an unsupervised
ADMIXTURE analysis. This analysis yielded allele frequencies for

K hypothetical populations whose genotypes can be simulated to
form putative ancestral populations. Next, from the data set of
worldwide population, we constructed a smaller data set of
reference populations that are both genetically diverse and have
resided in their current geographical region for at least few
centuries. These populations were next analysed in a supervised
ADMIXTURE analysis that calculated their admixture
proportions in relation to the putative ancestral populations
(Fig. 1).

Looking at the resulting graph, we found that all populations
exhibit a certain amount of admixture, with Puerto Ricans and
Bermudians exhibiting the highest diversity and Yoruba the least.
We further found distinct substructure among geographically
adjacent populations that decreased in similarity with distance,
suggesting that populations can be localized based on their
admixture patterns. To correlate the admixture patterns with
geography, we calculated two distance matrices between all
reference populations based on their mean admixture fractions
(GEN) and their mean geographic distances (GEO) from each
other. Using these distance matrices, we calculated the relation-
ship between GEN and GEO (Equation 1).

In the second step, GPS inferred the geographical coordinates
of a sample of unknown origin by performing a supervised
ADMIXTURE analysis for that sample with the putative ancestral
populations. It then calculated the Euclidean distance between the
sample’s admixture proportions and GEN. The shortest distance,
representing the test sample’s deviation from its nearest reference
population, was subsequently converted into geographical
distance using the inferred relationships (Equation 1). The final
position of the sample on the map was calculated by a linear
combination of vectors, with the origin at the geographic centre
of the best matching population weighted by the distances to
M nearest reference population and further scaled to fit on a
circle with a radius proportional to the geographical distance
obtained by Equation 1 (see Calculating the bio-origin of a test
sample in the Methods).

Biogeographical prediction for worldwide individuals. We
applied GPS to approximately 600 worldwide individuals
collected as part of the Genographic Project and the
1000 Genomes Project and genotyped on the GenoChip
(Supplementary Table 1). We included the highly heterogeneous
populations of Kuwait22, Puerto Rico and Bermuda23, as well as
communities from the same country, such as Peruvians from
Lima and indigenous highland Peruvians. We tested the accuracy
of GPS predictions using the leave-one-out procedure. The
resulting figure bears a notable resemblance to the world’s
geographic map (Fig. 2). Individuals from the same geographic
regions clustered together, and populations from different
countries were largely distinguished. Assignment accuracy was
determined for each individual based on whether the predicted
geographical coordinates were within the political boundaries of
the country and regional locations. GPS correctly assigned 83% of
the individuals to their country of origin, and, when applicable,
B66% of them to their regional locations (Fig. 3, Supplementary
Table 2), with high sensitivity (0.75) and specificity (0.99). These
results supported the known connection between admixture
patterns and geographic origins in worldwide populations5–8.

In terms of distances from the point of true origin, GPS placed
50% of the samples within 87 km from the origin with 80 and
90% of them within 645 and 1,015 km from the origin,
respectively. GPS further discerned geographically adjacent
populations known to exhibit high genetic similarity, such as
Greeks and Italians. The prediction accuracy was correlated
with both countries’ area (N¼ 600, r¼ 0.3, Student’s t-test
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P-value¼ 0.03) and admixture diversity (N¼ 600, r¼ � 0.34,
Student’s t-test P-value¼ 0.01).

Individuals belonging to recently mixed populations, such as
Kuwaitis and Bermudians, proved to be the most difficult to
correctly predict, because their mixing was temporally brief and
insufficient to generate a distinct regional admixture signature. As
a result, such individuals are more likely to be placed within their
original countries of origin, which is incorrect according to our
scoring matric. For example, Kuwaiti individuals whose ancestors
come from Saudi Arabia, Iran and other regions of the Arabian
Peninsula22 were predicted to come from these regions rather
than their current state.

To test GPS’s accuracy with individuals from populations that
were not included in the reference population set, we conducted
two analyses. We first repeated the previous analysis using the
leave-one-out procedure at the population level. As expected, GPS
accuracy decreased with 50% of worldwide individuals predicted
to be 450 km away from their true origin. The predicted distance
increased to 1,100 and 1,750 km for 80 and 90% of the
individuals, respectively (Fig. 4a). Because GPS best localizes
individuals surrounded by M genetically related populations,
populations from island nations (for example, Japan and United
Kingdom) or populations whose most related populations were
under-represented in our reference population data set (for
example, Peru and Russia) were most poorly predicted.
Consequently, the median distances to the true origin were much
smaller for individuals residing in Europe (250 km), Africa
(300 km) and Asia (450 km) due to their being more commonly
represented in the reference population data set compared with
Native Americans and Oceanians. These results represent the
upper limit of GPS’s accuracy when the specific population
of the test individual is absent from the reference population
data set.

Next, we analysed over 600 individuals from the Human
Genome Diversity Panel (HGDP) whose subpopulations and
populations reside in countries that are not covered by our

reference population data set (Supplementary Table 1). GPS’s
accuracy further decreased with 50% of worldwide individuals
predicted to be 1,250 km away from their true origin (Fig. 4b,
Supplementary Data 1). As before, geographically remote
populations were less accurately predicted with a higher error
for regions that were poorly represented in the reference
population data set. For example, the Brazilian Surui were
predicted to be located 4,800 km away from their true origin. This
was not surprising because the closest population in the reference
population data set resided in Central America. By contrast,
remote European populations that reside on islands or along
ocean shores and are not surrounded by other populations (for
example, Orcadians and French) were predicted to be B1,200 km
from their true origin, due to the higher density of nearby
populations in the reference population data set. The results were
also affected by populations with a history of recent migrations,
such as Bedouins, Druze24 and the Pakistani Hazara, the latter
being suspected of having some Mongolian ancestry25. Adding
the HGDP populations to our reference population data set
yielded similar results to those reported in Fig. 3. Overall, these
results illustrated the dependency of GPS on the density of the
reference population data set and indicated that accuracy
improves with the inclusion of additional populations residing
in geographically distant or isolated regions.

GPS applicability using a thinner marker set. PC-based appli-
cations have long aspired to provide accurate results down to the
level of an individual’s village. However, due to different factors
such as cohort effects26, these solutions have been mostly ad hoc.
In fact, PC solutions were shown to discern only populations of
selected cohorts, such as Italian villagers27 or Europeans11,12.
When individuals of various ancestries are included in the cohort,
the PCs are altered to the point where none of the individuals are
correctly predicted to their country of origin or continental
regions.
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Figure 1 | Admixture analysis of worldwide populations and subpopulations. Admixture analysis was performed for K¼ 9. For brevity,

subpopulations were collapsed. The x axis represents individuals from populations sorted according to their reported ancestries. Each individual is

represented by a vertical stacked column of colour-coded admixture proportions that reflects genetic contributions from putative ancestral populations.
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To test the precision of GPS’s predictions given finer regional
annotation, we assessed 243 Southeast Asians and Oceanians and
200 Sardinians from 10 villages (4–180 km apart) using subsets of
40,000 and 65,000 GenoChip markers, respectively. We first
tested whether admixture frequencies calculated over a smaller set
of GenoChip markers provided sufficient accuracy. For this
assessment, we carried out a series of admixture analyses in a
supervised mode for nine 1000 genomes worldwide populations
using smaller sets of markers (95,000, 65,000 and 40,000) and
compared the admixture proportions with those obtained using
the complete marker set (Fig. 5). We found small differences in
the admixture proportions that slowly increased for smaller
GenoChip marker sets. The largest observed difference (3%) for
the smallest number of markers used in our analyses (40,000) was
within the natural variation range of our populations and did not

affect the assignment accuracy. We were thus able to supplement
the reference population set with the newly tested populations.

Fine-scale biogeography down to home island. Next applied
to Southeast Asians and Oceanians (Supplementary Table 3,
Supplementary Fig. 1), GPS’s prediction accuracy was stringently
estimated as the individual assignment to the region occupied by
one’s population or subpopulation. The prediction accuracy for
Han Chinese (64%) and Japanese (88%) obtained here using
B40,000 markers was the same as that obtained in the complete
data set, as expected (Fig. 5).

GPS’s assignment accuracy for the remaining Southeast Asian
and Oceanian populations (87.5%) and subpopulations (77%)
(Fig. 6) was higher than that obtained for worldwide populations
(Fig. 3). These results reflect GPS’s greatest advantage compared
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Cape/Free State), IBS (Iberian from Spain & Portugal), PT (Pamiri from Tajikistan), TU (Tunisian), UK (British from United Kingdom), VA (Vanuatu),

KHV (Vietnam). Note: occasionally all samples of certain populations (for example, Vietnamese) were predicted to the same spot and thus appear as a

single sample.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms4513

4 NATURE COMMUNICATIONS | 5:3513 | DOI: 10.1038/ncomms4513 | www.nature.com/naturecommunications

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


with alternative methods. Unlike PCA and SPA whose accuracy
is lost with the addition of samples of various ancestries12,
GPS predictions increase in accuracy when provided a more
comprehensive reference set.

A few populations stand out in that they are not reliably
assigned to their region of origin (Fig. 6). Polynesians and Fijians
in particular are not well predicted and incur the highest
misclassification rates (47 and 40%, respectively) mainly to Nusa
Tenggara and the Moluccas Islands. These results are not
surprising given two main issues. First, Polynesian populations,
East Polynesian populations in particular, are not well repre-
sented in the large databases from which the GenoChip’s ancestry
informative markers were ascertained17, so a likely ascertainment
bias exists for Polynesia. The second issue relates to the complex
settlement history of the Oceania region. Interestingly, this aspect
of population history is clearly reflected in the results produced.

The component identified in the admixture analysis
(Supplementary Figure 1) as representing Oceania (pink) most
likely represents the early migrants into the region some 50,000
years ago. This component is dominant in populations from New

Guinea and Australia, which were joined together, making up the
ancient landmass of Sahul, until approximately 11,000 years ago
when they became separated due to rising sea levels. This Oceanic
signature is also seen in Island Southeast Asia, such as Nusa
Tenggara and the Moluccas, which indicates the likely pathway
taken to Sahul. The Remote Oceanic settlement, represented here
by Fiji and Polynesia, is much more recent and has been
associated with the Neolithic expansion of peoples out of East
Asia, through Island Southeast Asia and ultimately through Near
Oceania and the rest of the Pacific including Polynesia.

The first people to arrive in Remote Oceania (the region east of
the Solomon Islands) did so only about 3,000 years ago and are
associated with the expansion of the Lapita cultural complex as
far east as Fiji, Samoa and Tonga, on the edge of the Polynesian
Triangle. Mitochondrial DNA and Y chromosomal data from
Remote Oceanic populations, Polynesians in particular, indicate
mixed ancestry28. MtDNA suggests primarily Island Southeast
Asian ancestry for Remote Oceania, indicated by high frequencies
of mtDNA haplogroup B4a1a and descendent lineages, with some
Near Oceanic contributions (identified by haplotypes belonging
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to haplogroups P and Q). Y chromosome studies, however, show
a stronger Near Oceanic component in Polynesian ancestry, with
some Southeast Asian contribution29. Genome-wide studies are
consistent with this mixed ancestry for Polynesian, Remote
Oceanic and some Near Oceanic populations30. Our findings,
therefore, represent the heterogeneity of Remote Oceanian
populations due to their long history of expansions and
settlements, which is reflected by their complex population
structure (Supplementary Fig. 1) and GPS predictions (Fig. 6).

Fine-scale biogeography down to home village. The island of
Sardinia (24,090 km2) was first settled 14,000 years ago and
experienced a complex demographic history that includes low
effective sizes due to plagues and wars and scant matrimonial
movement, which accentuated stochastic effects. Interestingly,
Sardinians have been described both as a genetic isolate with
endogamy peaking in the central-southern and mountain areas
with little internal mobility31 and a heterogeneous population
when microareas or close single village are considered32–34.

Applied to Sardinian villagers (Supplementary Fig. 2), GPS
correctly placed a quarter of the Sardinians in their village, as well

as half within 15 km and 90% of individuals within 100 km of
their homes (Fig. 7, Supplementary Fig. 3). As expected from the
high percentages of matrilocal marriages35 and residence36,37

common to Sardinia, the locations of females were better
predicted than those of males, with 30% placed in their exact
village of origin compared with 10% of the males.

Our findings revealed the Sardinians to have a genetic
microheterogeneous structure affected both by altitude and
physical location. The prediction accuracy as the distance to the
village of origin (Supplementary Fig. 3) are detailed in
Supplementary Table 4. The correlations between altitude and
the distance from the village of origin are shown in
Supplementary Table 5. The average predicted distances from
the villages roughly corresponded to Sardinian subregions
(Fig. 7). Unsurprisingly, the more precise positioning refers to
individuals coming from Ogliastra (east Sardinia), since this area
is characterized both by high altitude, high endogamy and relative
cultural isolation, whereas populations from the western shores
are considered to be more admixed. We found a significantly
negative correlation between altitude and the predicted distance
to villages for males (N(coastal)¼ 96, r(coastal)¼ � 0.21,
Student’s t-test P-value(coastal)¼ 0.019; N(coastal)¼ 27,
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r(inland)¼ � 0.38, Student’s t-test P-value(inland)¼ 0.024). The
results for females were marginally significant for all villages
(N¼ 126, r¼ � 0.14, Student’s t-test P¼ 0.06) and inland villages
(N¼ 29, r¼ � 0.27, Student’s t-test P¼ 0.08), but not for coastal
villages (N¼ 97, r¼ � 0.1, Student’s t-test P¼ 0.14). These
results are expected from the high proportion of endogamy

(64.1% in plain, 82.8% in mountains) that are correlated with the
rise of altitude35. This correlation was particularly high in inland
compared with coastal villages. Our results not only fit with the
genetic and demographic characteristics of Sardinians but also
resolve conflicting findings due to the matrilocal matrimonial
structure36,38–40. Finally, because GPS carries a sample-
independent analysis, predictions for worldwide individuals
were largely identical to those previously reported (Fig. 3) in
both analyses.

Comparing the performances of GPS with SPA. The SPA tool
explicitly models the spatial distribution of each SNP by assigning
an allele frequency as a continuous function in geographic
space12. SPA can model the spatial structure over a sphere to
predict the spatial structure of worldwide populations and was
designed to operate in several modes. In one mode, when the
geographic origins of the individuals are known or when the
geographic origins of some individuals are known, they can be
used as training set. Using the later approach, Yang et al.12

trained the SPA model on 90% of the individuals to predict the
locations of the remaining 10%. SPA was reported to predict the
geographic origins of individuals of mixed ancestry, which cannot
be done with PCA12.

When analysing a Europeans-only data set, SPA was successful
in assigning close to 50% of the individuals to their correct
country of origin. However, when worldwide individuals were
analysed, SPA distorted the distances between continents and
failed to assign even a single individual to his home country
(Fig. 8a), with Melanesians being misclassified as Indians12 being
the most obvious example.

Ogliastra

Villagrande

Trexenta
Campidano

Senorbi San Basilio

Tertenia

Jerzu
BarisardoUlassai

San Gavino
Monreal

Carbonia

Sulcis

‘Sant’ Antioco 10 kilometers

Low-altitude villages (40–200 m)

High-altitude villages (400–900 m)

Figure 7 | The geographical location of the examined Sardinian

villages. The mean predicted distances (km) from the village of

origin are marked by bold (females) and plain (males) circles.

Figure 8 | A comparison of SPA and GPS prediction accuracy for continental regions. The mean longitude and latitude for each population were

calculated by averaging individual spatial assignments (N¼ 596). After assigning populations to continental regions, the mean and s.d. were

calculated based on the predicted coordinates for each region. Dashed lines mark s.d. (a) SPA prediction accuracy for continental regions obtained

from Yang et al.12 results (their supplementary Table 112). The mean coordinates are marked with a triangle (expected) and square (Predicted by SPA).

(b) Comparing the results for worldwide populations analysed here for SPA (square), GPS (circle) and for the real coordinates (triangle).
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We compared the accuracy of GPS with that of SPA by
providing SPA with favourable conditions to its operation. We
used the more rigorous application involving a training data set
and ran SPA in two steps, as described by Yang et al.12. First, we
provided SPA with the genotype file of worldwide populations (596
individuals, 127,361 SNPs) with their complete geographic
locations (Supplementary Table 2) without any missing data.
When executed, SPA produced the model file that would be later
used to predict the geographical locations. Next, we provided SPA
with the model file and the same genotype file. Because of the
absence of missing geographical coordinates, SPA was expected to
yield geographic coordinates that closely resemble those it received
in the first step. However, SPA failed to assign 98% of individuals
to their countries and placed most individuals in oceans or in the
wrong continental region (Fig. 8b). By comparison, GPS was used
in the leave-one-out individual mode, in which the geographic
coordinates of the populations in the reference population data set
were recalculated without the test individual. GPS accurately
assigned nearly all individuals to their continental regions,
countries and regional locations with a high degree of accuracy.

We tested SPA with four additional data sets and calculated the
assignment accuracy for each one. When providing SPA with the
combined data set of worldwide individuals and Southeast Asian
and Oceanian individuals (B40,000 SNPs) with their complete
geographical coordinates (Supplementary Table 3), we obtained a
similar assignment accuracy of 2% for the worldwide individuals,
although with different coordinates and an assignment accuracy
of 1.5% for the remaining individuals. When testing only
Southeast Asian and Oceanian individuals, the assignment
accuracy was 4.8%. Unfortunately, we were unable to estimate
the prediction accuracy for about 20% of these samples because
SPA’s results (e.g., Latitude¼ � 2, Longitude¼ 256) exceeded
those of a three-dimensional sphere. Finally, we calculated the
assignment accuracy for worldwide individual and Sardinian
individuals (B65,000 SNPs), again by providing complete
geographical data (Supplementary Table 4). SPA coordinates for
worldwide individuals varied from our previous analyses, being
accurate for three individuals (0.5%) but completely inaccurate
(0%) for Sardinians whether they were tested with the worldwide
individuals or separately.

We suspect that the inaccuracy of SPA predictions in the tested
mode of operation results from the predictions for test individuals
being affected by other individuals in the cohort. As such, it
suffers from the same limitations as PCA when analysing a
diverse cohort. Even if a single individual from a different
continent is included in the data set, SPA’s accuracy drops to 0%.
In other words, for SPA to correctly assign every other European
individual to his country, the individuals need to be a priori
confirmed as Europeans, which makes SPA impractical.

A comparison of the runtime and CPU timings was done on a
Linux machine (x86 64) with an Intel(R) Xeon(R) E5430
processor 2.66 GHz CPU and 8 GB memory. The SPA runtime
(wall time) was well over 3 h, compared with 6 min for GPS,
including the initial step of calculating admixture proportions
using ADMIXTURE.

Discussion
We present a solution to one of the most challenging problems of
biogeography: localizing individuals based on their genetic data.
Our solution consists of analysing populations genotyped over a
relatively small set of AIMs and applying an admixture-based
GPS method to predict their origin. We have shown that our
approach can predict the geographical origin of worldwide
individuals from single resident populations down to the level of
island and home village and is more accurate than SPA.

Some of the limitations of SPA and PCA for inferring ancestral
origin have been previously noted12,16. A major limitation of
these methods for biogeography is their specificity to relatively
homogeneous populations, such as Europeans, and their
susceptibility to biases caused by populations of different
ancestry, as is the case with real-life data. SPA’s assignment
accuracy ranged between 0 and 4.8% with predictions varying
over different runs for the same individuals. By averaging over all
data sets, we estimated SPA’s assignment accuracy to be 1.5%.
These results contradict those reported by Yang et al.12

for European populations, whose estimation is based on a
European-only data set. However, when worldwide populations
were used, the results of Yang et al.12 (Fig. 8a) are in agreement
with ours (Fig. 8b).

By contrast, GPS is a sample-independent method that relies
on a fixed set of reference populations to predict the individual’s
geographical origin irrespective of the tested cohort. We have
shown that GPS successfully localized 83% of worldwide
individuals to their country of origin and that its accuracy
increased with the addition of more localized and well-annotated
populations such as Southeast Asians, Oceanians and Sardinians.
The advantage of using reference populations becomes apparent
when analysing migratory populations that have relocated yet
maintained endogamy. Such populations present a formidable
concern to biogeographic methods that rely on the relationships
between geography and genetics5–8. In theory, SPA would yield
biased results if the immigrant population with its current
geographical location would be used for training or be included in
the test cohort with populations located nearby its modern-day
region. Unfortunately, the low accuracy of SPA prevents us from
demonstrating this effect, although it was noted for a similar
approach, PCA12,16.

GPS addresses this concern by using a reference population
set that excludes such populations and by adopting a sample-
independent approach. The success of this approach was
demonstrated with the Kuwaitis, who comprise an amalgam of
populations that were predicted to their former origin (Fig. 2).
We have further demonstrated the accuracy of our approach
when using only 40,000 markers, making GPS applicable to
genetic data genotyped on the most common microarrays.
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Overall, GPS’s accuracy, high sensitivity and specificity, along
with its memory efficiency and high speed, make it a powerful
tool for biogeography and related scientific fields.

Given these successes, GPS has other potential applications.
For example, in genealogical research, it could help adoptees find
their home region, while, in forensic research, it could improve
the assignment of ethnic (geographic) ancestry to DNA evidence.
Although common wisdom in genetics is that ‘more is better,’ we
demonstrate that only tens of thousands of AIMs are sufficient to
accurately infer biogeography down to the home village, provided
that the appropriate samples are available in the reference
population data set. We emphasize that GPS may not necessarily
yield the most recent region of residency for populations that
experienced recent admixture or have recently migrated and
maintained a certain degree of endogamy, but rather a historical
residency. Therefore, the region of origin can be intuitively
interpreted as where the last major admixture took place at the
population level since the establishment of the reference
populations in their provided geographical location.

We envision that, with time, biogeographical applications will
become enhanced for more worldwide communities due to the
addition of populations to the reference panel. Therefore, our
results should be considered a lower bound to the full potential of
GPS for biogeography. We hope that our study will promote new
thinking about how population size, genetic diversity and
environment have shaped human population structure.

Methods
Sample collection and genotyping. Genographic sample collection was
conducted according to the ethical protocol of The Genographic Project
(https://genographic.nationalgeographic.com/wp-content/uploads/2012/07/
Geno2.0_Ethical-Framework.pdf), with oversight provided by the University of
Pennsylvania and regional IRBs (specified in the original reports from which data
analyzed in this study were taken). IRBs were obtained for new collections in Italy,
UK, Denmark, Greece, Germany and Romania (sample and data collection were
undertaken with approval from the IRB, Comitè Ètic d’Investigació Clı́nica—
Institut Municipal d’Assistència Sanitària (CEIC-IMAS) in Barcelona (2006/2600/
I)); Peru (sample and data collection were undertaken with approval from the local
IRB at Universidad San Martin de Porres, Lima, Peru; Federal Wide Assurance
(FWA) for International Protection of Human Subject 0001532; US Health and
Human Services (HHS) International Review Board IRB0000325); Puerto Rico
(sample and data collection were undertaken with approval from the University of
Pennsylvania IRB #8 and the support of Liga Guakia Taina-Ke); Mexico (sample
and data collection were undertaken with approval from the University of Penn-
sylvania IRB #8, the Centro de Investigación y de Estudios Avanzados del Instituto
Politécnico Nacional (CINVESTAV-IPN), and the Comision Nacional para el
Desarrollo de los Pueblas Indigenas (CDI)); Egypt, Iran, Kuwait, Lebanon and
Tunisia (the sample and data collection protocol were originally approved by the
IRB committee of the Lebanese American University); North Eurasia (North
Eurasia sample and data collection were undertaken with approval from the Ethical
Committee of the Research Centre for Medical Genetics RAMS and the Academic
Council of the same Research Centre); India (the sample and data collection
protocol were originally approved by IRB of Madurai Kamaraj University,
Madurai, India). Approval for further sampling, studies and collaborations have
been obtained from IRB of Chettinad Academy of Research & Education,
Kelampakka, India. Thirteen of the 65 samples studied from Tamil Nadu have
already been investigated for NRY chromosomes41 (Supplementary Table S341)).
In South Africa, sample and data collection was undertaken with approval from the
Human Research Ethics Committee (University of the Witwatersrand, South
Africa, Protocol Number M120151) under the auspices of grants from the South
African Medical Research Council to HS. Data for three Italian samples were
undertaken with approval of the Ethics Committee for Clinical trials of the
University of Pisa (N. 3803). In Oceanian, the Nasioi samples were obtained from
the HGDP-CEPH repository, whereas the Papuan and Vanuatu samples were
previously published42,43. All participants provided written informed consent for
the use of their DNA in genetic studies. Samples were collected under the same
criteria requiring unrelated individuals with four grandparents from their
population affiliation and geographic region of origin (Supplementary Table 3).
We also genotyped nine populations from the 1000 Genomes Project, including
Mexican-Americans, African-Americans, Peruvians from Lima, Finns, Yoruba,
Luhya from Kenya, Han Chinese, Japanese and Kinh from Vietnam.

Overall, we sampled 615 unrelated individuals representing 98 worldwide
populations and subpopulations with B15 samples per population. Samples were
genotyped on the GenoChip array, an Illumina HD iSelect genotyping bead array

dedicated solely for genetic anthropology and lacking medically relevant markers.
The GenoChip includes nearly 150,000 highly informative Y-chromosomal,
mitochondrial, autosomal and X-chromosomal markers, of which only autosomal
markers (B130,000) were used.

We obtained the HGDP data set available at ftp://ftp.cephb.fr/hgdp supp10/44

and the geographical coordinates for each sample45. From the 828 samples
reported to include no outliers using the filtering procedure used by Patterson and
colleagues44, we excluded 201 samples for which no clear geographical origin was
described or that their populations were already included in our reference
population panel (Supplementary Data 1). Because of the size of China and the
high representation of Chinese populations in the HGDP data set, we excluded
only the Han Chinese.

Assessing data quality. Data quality was achieved by applying two criteria to the
SNP data. The first was low missingness rate (o5%), calculated as the average
number of null genotypes over all samples in a population. In addition, individuals
that exhibit distinct admixture proportions compared with samples of the same
populations were considered outliers and omitted. Overall, we omitted 2,423 SNPs
and seven Genographic samples from the analysis.

Generating putative ancestral populations. To infer the putative ancestral
populations, we applied ADMIXTURE46 in an unsupervised mode to the filtered
data set. This analysis uses a maximum likelihood approach to determine the
admixture proportions of the individuals in question assuming they emerged from
K hypothetical populations. We speculated that our method will be the most
accurate when populations have uniform admixture assignments. In choosing the
value of K that seemed to best satisfy this condition, we experimented with
different Ks ranging from 6 to 12. We identified a substructure at K¼ 10 in which
populations appeared homogeneous in their admixture composition. Higher values
of K yielded noise that appeared as ancestry shared by very few individuals within
the same populations. ADMIXTURE outputs the speculated allele frequencies of
each SNP for each hypothetical population.

Using these data, we simulated 15 samples for each hypothetical population and
plotted them in a PCA analysis with the Genographic populations. We observed
that two hypothetical populations were markedly close to one another, suggesting
they share the same ancestry and eliminated one of them to avoid redundancy. The
remaining nine populations were considered the putative ancestral populations and
were used in all further analyses.

Creating a reference population data set. To infer the geographical coordinates
(latitude and longitude) of an individual given his K admixture frequencies,
GPS requires a reference population set of N populations with both K admixture
frequencies and two geographical coordinates (longitude and latitude). We omitted
four populations for which we had no clear geographical data, were recently
admixed populations or had a recent migratory history and did not maintain strict
endogamy (African and Mexican-Americans, Brahmin Indians and Romanian
Gypsies), as they were reported to deviate from the established relationship
between genetic and geographic distances7 and cannot be expected to be predicted
to their present day origin correctly. The final data set consisted of 596 unrelated
individuals representing 94 worldwide populations and subpopulations with an
average of 17 individuals per population and at least two individuals per
subpopulation (Supplementary Table 3). These populations were considered
hereafter as reference populations, since their admixture frequencies were
calculated by applying ADMIXTURE in a supervised mode with the nine putative
ancestral populations (Fig. 1).

Although few populations included detailed annotation for subpopulations
within the parental populations (for example, Tuscany and Sardinian Italians),
such annotation was unavailable for most populations, even though they exhibited
fragmented subpopulation structure. This heterogeneity is expected given the
young age of some of the populations. For example, using an internal data set,
we were able to verify that the observed substructure among Germans was due to
individuals from both West and East Germany.

A combination of several criteria was employed to determine the number of
subpopulations present within the study populations. Let Na denote the number of
samples per population a; if Na was less than three, the population was left
unchanged. For other populations, we used k-means clustering routine in R. Let Xij

be the admixture proportion of individual i in component j. For each population,
we ran k-means clustering for kA[2,4], using Na� 9 matrix of admixture
proportions (Xij) as input. At each iteration, we calculated the ratio of the sum of
squares between groups and the total sum of squares. If this ratio was 40.9, then
we accepted the k-component model. Since k-means clustering cannot be
implemented for k¼ 1, to decide between two clusters or a possible single cluster,
we also calculated Kullback-Leibler distance (KLD) between the k¼ 2 and k¼ 1
models. If the KLD o0.1 and the ratio of the sum of squares between groups and
the total sum of squares for two-component model is above 0.9, then the k¼ 1
model was selected because, in such cases, there are no subgroups in the
population. Of the 216 subclusters detected, we excluded all the subclusters that
contained only one individual. Overall, we included 146 subpopulations in our
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reference population set and determined the Mean admixture coefficients for each
subpopulation.

Calculating the relationship between admixture and geography. GPS imple-
ments a genetic clustering approach that uses the relationship between admixture
and geography to predict geograpical locations. To correlate the admixture patterns
with geography, we calculated two distance matrices between all reference popu-
lations based on their mean admixture fractions (GEN) and their mean geographic
distances (GEO) from each other. Next, given a matrix GEN of nine admixture
coefficients for N populations and a matrix GEO with two geographical coordinates
of latitude and longitude for N populations, we calculated the Euclidean distances
between all the populations within the GEN and GEO data sets. For the GEN data

set, the distances were computed as DGENðX;YÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK

k¼1 Xk �Ykð Þ2
q

, where X

and Y denote individuals with known origins; Xk and Yk, k¼ 1,y, K represent
admixture proportions for the analysed individuals. For the GEN data set, the
genetic distances DGEO(X, Y) between two individuals with known latitude and

longitude were calculated using the Haversine formula47: DGEO X;Yð Þ ¼

2R arcsin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin dlat
2

� �2 þ cos lat1ð Þ cos lat2ð Þ sin dlon
2

� �2
q� �

, where R is the radius of

Earth (for simplicity assumed to be equal to 3,959 miles), dlat¼ lat2� lat1, and
dlon¼ lon2� lon1. The relationship between DGEO and DGEN was approximately
linear for distances below 5,000 miles (Fig. 9).

Using linear regression and filtering out geographic distances above 4,000 miles,
we determined intercept (b) and slope (a) for the relationship between genetic
(DGEN) and geographic distances (DGEO):

DGEO ¼ a�DGEN þ b: ð1Þ
The relationship between genetics and geography obtained using Equation 1 varied
across continents. Although this may be a true effect, it is more likely to be an
artefact due to low sample density for non-European populations. Because we
analyze geographically local population structure, we applied the intercept and
slope calculated for Europeans as b¼ 38.7 and a¼ 2,523 for non-European
populations for which sampling density was lower and thus local regression is less
reliable. This regression equation should be refined with the addition of new
population samples.

Calculating the biogeographical origin of a test sample. Given nine admixture
proportions for a sample of unknown geographic origin obtained using ADMIX-
TURE’s supervised approach with the nine putative ancestral populations, we
calculated the Euclidean distance between its admixture proportions and the N
reference populations (GEN). All reference populations were sorted in an
ascending order according to their genetic distance from the sample. The smallest
distance Dmin

GEN

� �
represented the sample’s deviation from the best matching

population. This distance in genetic space was converted into geographic distance
Dmin

GEO using Equation 1. The contribution of other reference populations m¼ 2yN
to the samples’ genetic make-up is represented using the weight wm ¼ Dmin

GEN
DGENðmÞ,

where DGENðmÞ is the distance to the mth reference population.
To refine the positioning of the sample, we used M closest reference populations

(default value is M¼ 10). Because GPS relies on the linear relationship between
genetic and geographic coordinates, which holds for populations that are less than
4,000 miles apart, the value of parameter M depends on the density of the reference
population data set. A data set with few populations that are geographically sparse
would require a smaller M. We determined the value of M empirically by
increasing the number of nearest populations (M) and observing changes of
geographic coordinates. We found that the addition of extra populations after M
reaches 10 does not significantly affect the prediction. The predicted position of the
sample on the map is computed using Equation 2 below which is a linear
combination of vectors with the origin at the geographic centre of the best
matching population (Positionbest), weighted by w and scaled to fit on the circle
with a radius Dmin

GEO ¼ a�Dmin
GEN þ b:

Positionpred ¼ Positionbest þ g
XM

m¼2
wmðPositionðmÞ� PositionbestÞ; ð2Þ

where Position(m) is the geographic center of the mth population, and g denotes
the scaling coefficient to ensure that predicted position fits on the circle with radius
Dmin

GEO , equals to

Dmin
GEOPM

m¼2 wm PositionðmÞ� Positionbestð Þ
�� �� : ð3Þ

Intuitively, the predicted position of a test sample can be thought of as being
determined by M nearest reference populations, each ‘pulling’ in its direction with
a strength proportional to its genetic distance from the test sample. The shorter the
genetic distance to the reference population, the smaller is the assumed genetic
difference and the higher is the pull. We thus ‘anchored’ the centre at the nearest
reference population and represented the influence of the remaining M-1 nearest
reference populations using a linear combination of two-dimensional vectors with
the length of each vector inversely proportional to the genetic distance between the
test sample and the reference populations. The direction of these vectors is

calculated using the difference between the coordinate of the best matching
reference population to those of all other M-1 nearest reference populations.
Therefore, GPS best predicts populations that are geographically surrounded by the
reference populations.

Estimating the accuracy of GPS. Different measures of assignment accuracy have
been proposed in published studies. For example, Novembre et al.11 estimated the
distance from the country of origins, whereas Yang et al.12 used a more stringent
criterion of defining success as assigning individuals to their country of origin. To
compare GPS’s accuracy to those of SPA12, we adopted the more stringent criteria
of Yang et al.12. Assignment accuracy for subpopulations was based on the political
and municipal boundaries of the regional locations.

To estimate GPS’s assignment accuracy, we utilized the ‘leave-one-out’
approach at the individual level. In brief, we excluded each reference individual
from the data set, recalculated the mean admixture proportions of its reference
population, predicted its biogeography, tested whether it is within the geographic
regions of the reported origin and then computed the mean accuracy per
population. More specifically, we assumed that our individual is the jth sample
from the ith population that consists of ni individuals. For all populations,
excluding the individual in question, the average admixture proportion and
geographical coordinates were calculated as:

�ym ¼
P

s ym;s

nm
; ð4Þ

where ym,s is the parameter vector for the sth individual from the mth population,
and nm is the size of the mth population. For the ith population the adjusted
average will be

�y� j
i ¼

P
l 6¼ j yi;l

ni� 1
ð5Þ

Last, we computed the best-matching population for each ‘left-out’ individual and
calculated the proportion of individuals that are mapped to the correct continental
region, country and, if applicable, regional locations for each population. In a
similar manner, we utilized the ‘leave-one-out’ approach at the population level.
That is, we excluded one population at a time from the reference population set,
predicting the biogeography of the samples of that population, calculating their
predicted distance from the true origin and computing the mean accuracy per
continental populations and all samples.

To calculate GPS accuracy for the HGDP samples, we followed the procedure
described in the above section and calculated the distances from the predicted to
the true origin of each individual. To evaluate the sensitivity and specificity per
population, we counted the number of samples of the population in the country of
interest predicted to their true country as true positives, the number of samples
from other countries assigned to the country of interest as false positives, the
number of samples from the country of interest assigned to other countries as false
negatives and finally the number of samples from other countries that were not
assigned to the country of interest as true negatives.

Applying GPS to Southeast Asia and Oceania populations. A data set of 243
individuals genotyped over 350,000 markers was obtained with permission from
Reich et al.48 Admixture proportions of individuals were calculated by applying
ADMIXTURE in a supervised mode with the nine putative ancestral populations
on the B40,000 autosomal markers that overlapped with the GenoChip markers
(Supplementary Figure 1).

The mean admixture proportions of these populations and their geographical
coordinates were added to our reference population data set. In addition, we
analysed 88 Han Chinese (CHB) and 87 Japanese (JPT) populations from this data
set, even though they were already included in the worldwide data set and
calculated their admixture in a similar manner. The admixture proportions of the
CHB and JPT were similar to those reported in Fig. 1.

Applying GPS to Sardinian populations. Genotype data of 290 Sardinian indi-
viduals from 28 villages genotyped on an Affymetrix array with nearly 700,000
markers was obtained with permission from Piras et al.40 Each individual had four
grandparents living in the same village. Genotype data were from four subregions:
Ogliastra, Trexenta, Sulcis and Campidano. In particular, Ogliastra is a
mountainous area characterized as a genetic isolate differentiated from the rest of
the island and constituted by different villages with high endogamy, low
immigration and high genetic differentiation. Conflicting results from studies that
have investigated the internal genetic structure of different macroareas38–40 suggest
that the internal heterogeneity among the macroareas is limited to particular areas.

After filtering out villages with insufficient data, ten villages with 249
individuals remained (Supplementary Table 4). We obtained admixture propor-
tions for the remaining individuals by applying ADMIXTURE in a supervised
mode with the nine putative ancestral populations on the B65,000 autosomal
markers that overlapped GenoChip’s markers (Supplementary Fig. 2). The mean
admixture frequencies of these ten Sardinian populations and their geographical
coordinates were added to our reference population data set.
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GPS availability. Data, GPS R code and GPS on-line calculator are available
on http://chcb.saban-chla.usc.edu/gps/. GPS code can be found in the
Supplementary Note. SPA’s code for Linux was obtained from the author’s website:
http://genetics.cs.ucla.edu/spa/binary/linux.zip.
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