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Age-related proteostasis and metabolic alterations
in Caspase-2-deficient mice

CH Wilson1, S Shalini1, A Filipovska2,3, TR Richman2, S Davies2, SD Martin4,5, SL McGee4,5, J Puccini1, A Nikolic1,
L Dorstyn1,6 and S Kumar*,1,6

Ageing is a complex biological process for which underlying biochemical changes are still largely unknown. We performed
comparative profiling of the cellular proteome and metabolome to understand the molecular basis of ageing in Caspase-2-deficient
(Casp2−/−) mice that are a model of premature ageing in the absence of overt disease. Age-related changes were determined in the
liver and serum of young (6–9 week) and aged (18–24 month) wild-type and Casp2−/− mice. We identified perturbed metabolic
pathways, decreased levels of ribosomal and respiratory complex proteins and altered mitochondrial function that contribute to
premature ageing in the Casp2−/− mice. We show that the metabolic profile changes in the young Casp2−/− mice resemble those
found in aged wild-type mice. Intriguingly, aged Casp2−/− mice were found to have reduced blood glucose and improved glucose
tolerance. These results demonstrate an important role for caspase-2 in regulating proteome and metabolome remodelling during
ageing.
Cell Death and Disease (2015) 6, e1615; doi:10.1038/cddis.2014.567; published online 22 January 2015

Ageing is a complex biological process involving the accumu-
lation of cellular damage and degeneration of repair systems
over time resulting in perturbed homeostasis, physiological
decline, age-related disease and death. Age-related dete-
rioration of metabolic, inflammatory, cardiovascular and
neurological systems contributes to the development of
pathologies, such as obesity, type II diabetes, Alzheimer’s,
Parkinsons and cancer.1 Unifying features of ageing and its
related pathologies include perturbed stress response path-
ways, increased oxidative stress induced damage and
disruption of metabolic and energy systems homeostasis.2

Although the mechanistic driving force behind age-related
metabolic reprogramming is still unknown, mitochondrial
dysfunction and de-regulated nutrient sensing are two
contributing features that have been proposed to be the
hallmarks of ageing.3 Furthermore, many of the evolutionary
conserved genes and pathways associated with longevity
have multifunctional roles in metabolism.4,5 Proteomic and
metabolite profiling are valuable methods to enable character-
ization of the system-wide molecular changes during ageing.
Caspase-2 (Casp2) is the most evolutionarily conserved

member of the caspase family of proteases, known for their
roles in apoptosis and inflammatory responses.6,7 Casp2 has
been shown to have both apoptotic and non-apoptotic
functions in stress response pathways, maintaining genomic
integrity, tumour suppression and ageing.6–11 In the presence

of oncogenic stress, Casp2 deficiency in mice results in
enhanced cellular transformation, genomic instability and
increased tumorigenesis.9,10,12 Casp2-deficient (Casp2−/−)
mice exhibit subtle phenotypic changes, including premature
ageing-related traits, impaired oxidative stress defence and
increased oxidative tissue damage.11,13 We previously found
the impaired antioxidant response to be partly due to
decreased expression of stress response transcription factors
FoxO1 and FoxO3a.11 However, the mechanism by which
Casp2 regulates these factors and its pathophysiological
role in ageing is still unknown. Furthermore, none of the known
defined substrates of Casp2 appear to contribute to its ageing
role.11

In apoptosis, Casp2 activation occurs in response to a wide-
range of stress-induced stimuli (reviewed in Kumar6) and
altered metabolic flux.14 Studies in Xenopus oocytes and
mammalian cells provide evidence that Casp2 is metabolically
regulated, acting as a sensor to changes in NADPH levels
resulting from altered flux through the pentose-phosphate
pathway (PPP).14,15 Casp2 has also been implicated in lipid
metabolism. Phenotypically, Casp2−/− mice have reduced
maximal body weight, reduced body fat content and signifi-
cantly reduced levels of subcutaneous adipose tissue11,13 and
are protected from diabetes-induced marrow adiposity.16 In
addition, rat Casp2 increases in response to high-fat diet,17,18

and human CASP2 is transcriptionally regulated by the sterol
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regulatory element binding proteins (SREBPs).19 Recently, it
was suggested that Casp2 can initiate lipid induced apoptosis
(lipoapoptosis) caused by saturated fatty acid-induced
lipotoxicity.20,21

Themechanism bywhich loss of Casp2 alters keymetabolic
pathways and regulates the oxidative stress response
and ageing is currently unknown. The premature ageing
phenotype in Casp2−/− mice, which occurs in the absence of
any concomitant age-related disease, provides us with a
unique model in which to carry out system-wide investigations
to enhance our understanding of Casp2 in metabolic disorders
and the biology of ageing.
Herewe used comparative proteomics andmetabolomics to

analyse ageing in wild-type (WT) and Casp2−/− mice. Given
the central role that the liver has in organismal metabolic
homeostasis and detoxification, we focussed on profiling the
proteome and metabolome in the liver and changes in serum
metabolites during ageing. Our data provide unique molecular
insight into the pathways underlying the changes that occur
during ageing such as decreased oxidative phosphorylation
(OXPHOS) and ribosomal proteins and the role of Casp2 in the
regulation of age-relatedmetabolic reprogramming, mitochon-
dria function and glucose tolerance.

Results

Global analysis of protein and metabolite changes in the
liver and serum during ageing. We performed omics
analysis of the liver and serum from young (6–9 week) and
aged (18–24 month), WT and Casp2−/− mice to understand
the molecular basis of ageing (Figure 1a). Liver proteomes
(n=4/group) were analysed in six 4-plex iTRAQ experiments
using a pooled internal standard in each run. Metabolomic
analyses of the livers (n= 7–8/group) and sera (n= 6/group)
were performed by untargeted GC-MS analysis of polar
metabolites, targeted GC-MS analyses of organic and fatty
acids and LC-MS quantitation of amine metabolites. Bio-
chemical analysis of liver functional enzymes in the sera
revealed no differences in their activities between WT and
Casp2−/− mice.
In total, 1510 proteins were identified with high confidence,

from two or more peptides, among the four groups by iTRAQ
analysis (Figure 1b). Most proteins (1254, 83%) were mutually
identified in each group, while 25 (1.7%) and 131 (8.7%)
proteins were uniquely identified in young and aged mice,
respectively (Figure 1b,Supplementary Table S1). No proteins
were unique to either genotype. There was no significant
difference in abundance of the proteins identified exclusively in
each age group between genotypes (Supplementary Tables S1
and S2).
Differentially abundant proteins of interest were identified as

being those with Po0.05 or those with a ratio ≥1.2 or ≤ 0.83
and Po0.1. During ageing of WT mice, the abundance of 549
(255 up and 294 down; 36%) proteins changed. In contrast,
abundance of only 201 proteins (108 up and 93 down; over
60% less proteins that are altered during ageing of WT mice)
were altered during ageing ofCasp2−/−mice (Figures 1c and d
and Supplementary Table S2). This suggests that normal age-
related changes in protein abundance are affected in Casp2−/−

mice. Further analysis revealed that the majority of these

proteins do undergo similar, but non-significant, changes
during ageing of Casp2−/− mice compared with WT
(Supplementary Table S2). Most proteins altered during
ageing of both genotypes (147, 73%) have similar changes
in abundance, thus likely occur independent of Casp2
(Figure 1d). Some of these changes are consistent with other
proteomics studies of the ageing liver such as increased
epoxide hydrolase 2, 3-ketoacyl-CoA thiolase and decreased
NADH dehydrogenase (ubiquinone) iron–sulfur protein 8
(NDUFS8).22–24 Some proteins that change with age in WT
but not in Casp2−/− mice include increases in a number of
glucose-metabolising enzymes, including fructose-1,6-
bisphophatase, triosephosphate isomerase and phosphogly-
cerate kinase 1 and decreases in a substantial number (440)
of 40S and 60S ribosomal proteins (Supplementary Table S2).
Interestingly, for 430 of the proteins not altered during

ageing of Casp2−/− mice, their abundance in young Casp2−/−

mice was found to be characteristic of those found in agedWT
(Supplementary Table S2), for example, increased abundance
of glucose-metabolising triosephosphate isomerase, amino-
acid-metabolising cystathionine beta-synthase and glycine
N-methyltransferase and decreased abundance of detoxification
enzymes UDP-glucuronosyltransferase 2B17, cytochrome
P450 (CYP) 2C54, CYP2C50, CYP2A12 and CYP2C40.
Within each age group, loss of Casp2 resulted in altered

abundance of approximately 5% of the total proteins with 89
and 81 proteins changing in young and aged Casp2−/−

compared with WT mice (Figures 1e and f and
Supplementary Figure S1A). Of these, only eight were
commonly altered between genotypes within each age group
(Figure 1f). This is likely due to the vast changes in protein
expression that occur during ageing and suggests that a small
subset of proteins are affected by loss of Casp2.
Age-related changes in protein expression contribute to

some of the significant differences observed in the expression
of proteins between aged Casp2−/− andWTmice, for example,
mitochondrial L-2 hydroxyglutarate dehydrogenase, mitochon-
drial sulphide:quinone oxidoreductase and calpastatin
(Supplementary Figure S1B and Supplementary Table S2).

Metabolomics analysis. Metabolomic analyses identified a
total of 110 (91 known) and 133 (113 known) metabolites in
the liver and serum, respectively, of young and aged WTand
Casp2−/− mice (Supplementary Table S3). Metabolites with a
significant (Po0.05) difference between groups or a trend in
altered levels (Po0.10) were selected as metabolites of
interest (Supplementary Table S3). In total, all comparisons
revealed differential abundance of 51 and 48 known
metabolites in the liver and serum, respectively (Figures 2a
and b, Supplementary Figure S2 and Supplementary Table
S3). Of these, 35/91 (38%) and 27/91 (30%) liver metabolites
and 38/113 (34%) and 19/113 (17%) serum metabolites were
altered in WT and Casp2−/−, respectively (Figures 2a and b,
and Supplementary Figure S2). In the serum, a 50%
reduction in the number of age-related changes in metabolite
abundance was observed in Casp2−/− mice relative to WT
mice, consistent with observations in the liver proteome
(Figure 2b).
Ageing was associated with decreased amino acid and

carbohydrate metabolites and altered energy and lipid
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metabolism in both Casp2−/− and WT mice (Figures 2a and b,
Supplementary Figure S2, and Supplementary Table S3).
Altered levels of several of these metabolites have been
previously associated with ageing, including alanine, serine,
methionine, lactate, glycerol-3 phosphate (G3P), glucose,
fructose-6-phosphate, citrate and some fatty acids.25–28

Most metabolites decreased in abundance during ageing, with
31/35 (89%) and 20/27 (74%) liver metabolites and 31/38 (82%)
and 16/19 (84%) serum metabolites changing in WT and
Casp2−/− mice respectively (Figures 2a and b, Supplementary
Figures S2C, D, G and H, and Supplementary Table S3). Most
metabolites that increased with age were fatty acids in WT
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serum of whichmanywere saturated fatty acids (Figure 2b and
Supplementary Figure S2G). Interestingly, in common with
aged WT mice, increased fatty acids were detected in the
serum of youngCasp2−/−mice, including saturated fatty acids
palmitic acid (C16:0), myristic acid (C14:0), stearic acid
(C18:0) and tridecanoic acid (C13:0) (Figure 2b and
Supplementary Figure S2F). Several other metabolites had
abundant levels in young Casp2−/− mice that were character-
istic of aged WT mice, including decreased urea, uracil,
pyroglutamate, serine, threonine, inositol-1-phosphate and
G3P in the liver (Figures 2a–d and Supplementary Figure S2).
G3P, an intermediate of glycolysis and lipid metabolism, was

significantly altered during ageing of both genotypes
(decreased in WT, increased in Casp2−/−) and in both young
and aged Casp2−/− mice relative to WT (Figure 2c,
Supplementary Figure S2 and Supplementary Table S3).
In serum, only two metabolites, glucose and mannose-6-

phosphate, were altered across all comparisons, including
lower abundance of bothmetabolites in youngCasp2−/− relative
toWT (Figure 2c,Supplementary Figure S2 and Supplementary
Table S3). This suggested that glucose homeostasis may be
altered in Casp2−/− mice. An age-associated decline in liver
glucose was also observed in WT and Casp2−/− mice but not
between genotypes (Supplementary Figures S2C and D).
Ageing resulted in the abundance of 17 metabolites being

significantly altered in both the liver and serum. In particular,
4-hydroxyproline was the metabolite most affected with age in
both genotypes and tissues being reduced more than 3-fold
(Po0.001) in the liver and 2-fold (Po0.0001) in the serum
(Supplementary Table S3). Interestingly, the fatty acid omega-3
(eicosapentaenoic acid, EPA; C20:5n3) increased in both the
liver and serum of WT and Casp2−/− mice during ageing,
while metabolites associated with energy homeostasis
(citrate, fumarate, succinate) and carbohydrate metabolism
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(glucose, gulonic acid, mannose-6-phosphate, trehalose)
decreased (Supplementary Figures S2C and D).
Liver metabolites most significantly (Po0.01 or Po0.001)

altered by the loss of Casp2 were urea, threonine, inositol-1-
phopshate and galactonate and serummetabolites were beta-
alanine, cysteine and the short-chain fatty acid, tridecanoic
acid (C13:0) (Supplementary Figure S2 and Supplementary
Table S3).
Total free fatty acids (FFAs) and lipids were also measured.

In the liver, the pattern of FFA levels were similar to G3Pwhere
FFA was significantly decreased with age in WT mice while it
was increased in Casp2−/− mice, and similar to aged WT, FFA
was significantly lowered in young Casp2−/− mice (Figure 2d).
No significant difference was observed in serum FFA. Total
triglycerides increased with age in the WT liver but not in the
serum (Figure 2d). Liver triglycerides did not change with age
in theCasp2−/− liver; however, a small but significant decrease
was observed in serum (Figure 2d).
Important for metabolic flux, pyridine nucleotides (NAD,

NADH, NAD, NADPH), were measured in the liver. An age-
related decline in the level of total pyridine nucleotides was
observed, with a significant reduction in the aged Casp2−/−

versusWT livers (Figure 2e). Interestingly, in young mice the
level of NADPH was significantly reduced in Casp2−/−

animals (Figure 2e). There were no significant differences

in NAD/NADH (nicotinamde-adenine dinucleotide) or NADP/
NADPH (nicotinamide-adenine dinucleotide phosphate)
ratios.

Biological function and expression pathway analyses of
ageing. Differentially abundant proteins were functionally
characterized by performing enrichment analysis of biological
processes and pathways using DAVID Bioinformatics
Resources 6.7 (http://david.abcc.ncifcrf.gov/). Ageing mostly
affected metabolic pathways, including increases in carbohy-
drate, amino acid and fatty acid metabolism and decreases in
electron transport, OXPHOS and protein biosynthesis
(Supplementary Figures S3A and B and Supplementary
Table S4). Biological processes enhanced in young Casp2−/−

compared with WT mice included amino-acid metabolism
while, in common with ageing, processes with reduced
expression of proteins were mostly associated with steroid
metabolism, electron transport and fatty acid metabolism
(Supplementary Figure S3C and Supplementary Table S4).
Interestingly, electron transport was the most increased
biological process in aged Casp2−/− versus WT mice
(Supplementary Figure S3D and Supplementary Table S4).
Pathway enrichment analysis revealed OXPHOS, ribo-

some, glycolysis/gluconeogenesis, drug (via CYPs) and fatty
acid metabolism to be some of the most significant (Benjamini

Glycerol-3-phosphate, liver

W
T-Y

ou
ng

W
T-A

ge
d

Cas
p2

–/
– You

ng

Cas
p2

–/
– Age

d

W
T-Y

ou
ng

W
T-A

ge
d

Cas
p2

–/
– You

ng

Cas
p2

–/
– Age

d

W
T-Y

ou
ng

W
T-A

ge
d

Cas
p2

–/
– You

ng

W
T-A

ge
d

Cas
p2

–/
– You

ng

Cas
p2

–/
– Age

d

0

50

100

150
***

*
*

Glucose, serum

W
T-Y

ou
ng

W
T-A

ge
d

Cas
p2

–/
– You

ng

Cas
p2

–/
– Age

d

W
T-Y

ou
ng

W
T-A

ge
d

Cas
p2

–/
– You

ng

Cas
p2

–/
– Age

d

Cas
p2

–/
– You

ng

Cas
p2

–/
– Age

d
0

5

10

15

20

25 *
p=0.097

p=0.079
p=0.071

Li
ve

rF
F

A
(n

m
ol

/m
gt

is
su

e)

0.0

0.2

0.4

0.6

0.8
**

**
**

**

Li
ve

r 
tr

ig
ly

ce
rid

es
(μ

m
ol

/m
gt

 is
su

e)

0

10

20

30

p=0.051
**

S
er

um
 F

F
A

μM

You
ng

 W
T

Age
d 

W
T

You
ng

 C
as

p2
–/

–

Age
d 

Cas
p2

–/
–

You
ng

 W
T

Age
d 

W
T

You
ng

 C
as

p2
–/

–

Age
d 

Cas
p2

–/
–

0

200

400

600

S
er

um
 tr

ig
ly

ce
rid

es
m

m
ol

/L

0.0

0.5

1.0

1.5

2.0

*

Mannose-6-phosphate, serum

W
T-Y

ou
ng

W
T-A

ge
d

Cas
p2

–/
– You

ng

Cas
p2

–/
– Age

d

0.00

0.02

0.04

0.06

0.08

*

*

*

p=0.055

Serine, liver

0

200

400

600
p = 0.052

*

Glycine, liver

0

1000

2000

3000

4000

p = 0.09

Threonine, liver

W
T-y

ou
ng

Cun
ga

sp
2
–/

– Age
d

0

100

200

300

400

500
*

**

T
ot

al
 li

ve
r 

N
A

D
+

N
A

D
H

(p
g/

m
g 

pr
ot

ei
n)

W
T-y

ou
ng

W
T-a

ge
d

Cas
p2

–/
– You

ng

Cas
p2

–/
– Age

d
0

5

10

15

20

25
**

**

**

T
ot

al
 li

ve
r 

N
A

D
P

 +
 N

A
D

P
H

(p
g/

m
g 

pr
ot

ei
n)

W
T-y

ou
ng

W
T-a

ge
d

Cas
p2

–/
– You

ng

Cas
p2

–/
– Age

d
0

1

2

3

4

5 **
*

**

**

Li
ve

r 
N

A
D

P
H

(p
g/

m
g 

pr
ot

ei
n)

W
T-y

ou
ng

Cas
p2

–/
– You

ng
0

1

2

3

4
*

W
T-Y

ou
ng

W
T-A

ge
d

μM
/L

P
m

ol
/m

g 
tis

su
e

A
rb

itr
ar

y 
un

it
 

Figure 2 Continued

Caspase-2 function in homeostasis
CH Wilson et al

5

Cell Death and Disease

http://david.abcc.ncifcrf.gov/


corrected Po0.05) biochemical pathways affected with age
(Supplementary Figures S3E and F and Supplementary Table
S5). Although pathways for Parkinson’s, Huntington’s and
Alzheimer’s disease were highly significant, this enrichment
was most likely due to the majority of proteins in these
pathways overlapping with the OXPHOS pathway. Glycolysis/
gluconeogenesis, pyruvate metabolism, valine, leucine and
isoleucine degradation increased during ageing of WT and
Casp2−/− mice, whereas OXPHOS and ribosome pathways
decreased (Figures 3a and b and Supplementary Table S5).
Fatty acid metabolism was significantly enriched in both
increased and decreased protein sets during ageing of both
genotypes as was drug metabolism in ageing WT only
(Figures 3a and b and Supplementary Table S5). Down-
regulation of pathways involved in fatty acid metabolism and
xenobiotic/drug metabolism by CYP during ageing are
consistent with previous findings.29

Some pathways of amino-acid metabolism were only
altered (mostly increased) during ageing of WT mice
(Figures 3a and b and Supplementary Table S5). In young
Casp2−/− mice, an increase in three of these pathways,
including selenocysteine, glycine, serine and threonine
metabolism and cysteine and methionine metabolism, was
observed (Figure 3c and Supplementary Table S5). In
addition, youngCasp2−/−mice exhibited significant decreases
in drug metabolism, retinol metabolism, metabolism of xeno-
biotics by CYP’s and linoleic acid metabolism pathways similar
to that observed during ageing of WT mice (Figure 3c).
Similar to protein analyses, metabolite set-enrichment was

carried out using Metaboanalyst 2.0 (http://www.metaboanalyst.
ca). Comparison of pathways enriched by metabolite sets in the
liver reveals overlap with proteomic pathways, including age-
related changes to the citric acid cycle andmitochondrial electron
transport chain and altered glycine, serine and threonine
metabolism in young Casp2−/− (Supplementary Figure S4).
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Age-related changes to the citric acid cycle are also reflected in
serum metabolomics data (Supplementary Figure S5).

Casp2 deficiency alters the levels of amino-acid- and
lipid-metabolising enzymes. The levels of G3P, NADPH,
FFA and amino acids glycine, serine and threonine were altered
during ageing of WT mice and as a result of Casp2 deficiency.
As G3P is a metabolite common to carbohydrate, amino acid
and lipid metabolism, it is likely that changes in these pathways
are interconnected. Immunoblotting was performed to validate
differences in enzymes from these pathways that were observed
by proteomics to be different in the Casp2−/− mice. Although
proteomic analyses indicated increased levels of the serine/
threonine-degrading enzyme (L-serine dehydratase/L-threonine
deaminase (SDS)) (ratio 1.27, P=0.06) in the livers of young
Casp2−/− mice, immunoblotting revealed a significant
increase of SDS with age in WT, and to a lesser degree in
the Casp2−/− mice (Figure 4a). Increased SDS activity has
been previously observed with age.30 The enzyme biofunc-
tional ATP-dependent dihydroxyacetone kinase/FAD-AMP
lyase (cyclizing) (DAK), an important mediator in the
production of the G3P precursor dihydroxyacetone phos-
phate (DHAP), was identified by proteomics to be significantly
decreased during ageing of WT (ratio 0.84, P=0.023) and in

young Casp2−/− versus WT mice (ratio 0.85, P= 0.043). This
was confirmed by immunoblotting (Figure 4a). Proteomics
and biochemical assays did not reveal any differences in
levels or activity of another primary G3P-metabolizing
enzyme, G3P dehydrogenase G3PDH (Figure 4b). The
decreased abundance of acetyl-CoA carboxylase 1 (ACC1)
protein, an important enzyme involved in de novo fatty acid
synthesis, in the young Casp2−/− liver (ratio 0.82, P=0.03)
was confirmed by immunoblotting (Figure 4a).

Relationship between low NADPH levels and the PPP in
Casp2−/− mice. NADPH is primarily produced through the
PPP. To investigate why NADPH levels may be decreased in
young Casp2−/−, we assessed the enzymatic activity of one
of the primary PPP enzymes generating NADPH, glucose-6-
phosphate dehydrogenase (G6PDH); however, there was no
significant difference between the groups (Figure 4c).
Altered glycogen metabolism and accumulation can lead to

increased reactive oxygen species (ROS) and alter flux through
the PPP.31 Proteomics revealed significant decrease in glycogen
phosphorylase (PYGL) in youngCasp2−/− versusWT(ratio 0.75,
P=0.048) and increases with age in Casp2−/− (ratio 1.42,
P=0.053). Glycogen synthase (GYS) decreasedwith age inWT
(ratio 0.082, P=0.085) and in young Casp2−/− versusWT (ratio
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0.76,P=0.029)mice. Immunoblotting confirmed a trend towards
decreased GYS protein in young Casp2−/− mice (Figure 4a).
Levels of PYGL and GYS normally change in opposite direction
to each other. The decreased abundance of both enzymes is
suggestive ofan adaptive response thatwould unlikely contribute
to altered flux of glycogen metabolites through the PPPand thus
the low NADPH levels observed in Casp2−/− mice.

Casp2 contributes to altered mitochondrial function
during ageing. Mitochondrial dysfunction often leads to
increased oxidative stress and contributes to ageing. As our
data showed a higher abundance of OXPHOS complex
proteins in aged Casp2−/− versus WT mice, we investigated
whether there was any difference in mitochondrial size, number
and function in vivo. Electron microscopy revealed a small but
significant decrease in mitochondrial density and size in
hepatocytes from young Casp2−/− versus WT mice (Figures
5a and b). A significant decrease in mtDNA copy number was
observed with age (Figure 5c), but this did not correlate with the
mitochondrial number. The abundance of the five OXPHOS
complexes resolved by BN-PAGE and detected by immuno-
blotting was not affected (Supplementary Figure S6A),
suggesting that proteomic differences may result in altered
OXPHOS polypeptide stoichiometry in aged Casp2−/− mice.
Measurements of the enzyme function of all five complexes
and citrate synthase revealed significantly decreased activity of
both citrate synthase and complex III in aged and young
Casp2−/− relative to the WT young mice (Figure 5d). This
suggests that complex III activity is specifically affected by loss
of Casp2 activity. In contrast, a significant increase in citrate
synthase activity was observed with age in Casp2−/− mice
(Figure 5d), which may be a compensatory response to the
decreased activity of complex III. In aged mice, activities of
complexes II and V increased in both genotypes, and the
activity of complex II was significantly higher in the aged
Casp2−/− versus WT mice (Figure 5d). Previously, we found
no difference in mitochondrial function upon loss of Casp2 in
primary MEFs,11 which was confirmed here by measurement
of the respiratory complex activities (Supplementary Figures
S6B and C). However, Casp2−/− MEFs trended (P= 0.08)
towards increased spare respiratory capacity.

Loss of Casp2 alters glucose homeostasis in aged
mice. To investigate whether glucose homeostasis was
altered by loss of Casp2 as indicated from the serum
metabolomics, aged mice were subjected to intraperitoneal
glucose tolerance testing (IPGTT). Blood glucose was
measured in fasted (6 h) aged WT and Casp2−/− mice at
baseline and 15, 30, 60 and 120min after intraperitoneal
injection of glucose. Interestingly, fasting blood glucose levels
(6.1±1.01mmol/l) and IPGTT were significantly reduced in
aged Casp2−/− mice (Figure 6). Increased fasting blood
glucose and impaired glucose tolerance are normally asso-
ciated with ageing, thus these results suggest that Casp2−/−

mice show resistance to age-induced glucose intolerance.

Discussion

Using comparative profiling, we investigated reprogramming
of metabolism and homeostasis during normal animal ageing

and the role of Casp2 in these processes. Ageing was
associated with upregulation of enzymes involved in carbohy-
drate and amino-acid metabolism, downregulation of numer-
ous mitochondrial and ribosomal proteins and altered
mitochondrial function. A number of age-related changes
were deregulated in Casp2−/− mice, suggesting the impor-
tance of Casp2 in maintaining metabolic and energy home-
ostasis with age. Furthermore, young Casp2−/− mice had
levels of some proteins and metabolites already characteristic
of those found in aged WT mice, including low NADPH and
altered mitochondria function. This suggests early onset of
energy impairment in Casp2−/− mice that likely contributes to
increased oxidative stress,11 reduced stress tolerance and
early onset ageing. Intriguingly, aged Casp2−/− mice had
reduced fasting blood glucose and improved glucose toler-
ance, suggesting that Casp2 is important for glucose
homeostasis.
Some age-related changes to the proteome and meta-

bolome occur in an attempt to improve longevity, perhaps by
conserving energy to assist with repair of molecular and
cellular damage. Impaired protein homeostasis (proteostasis)
is characteristic of ageing. Our finding of decreased ribosomal
proteins during ageing is indicative of altered proteostasis that
might reduce protein synthesis as was recently found in
Caenorhabditis elegans.32 Reduced protein translation is
associated with increased longevity and is likely a beneficial
change that occurs with ageing.32 The substantial reduction in
the number of ribosomal proteins that are downregulated
during ageing in Casp2−/− mice suggests that Casp2 has a
role in regulating proteostasis. Protein synthesis is an energy-
consuming process and failure to decrease protein translation
would likely result in increased stress in the Casp2−/− mice,
possibly contributing to the early-onset ageing.
Impaired glucose tolerance and increased fasting blood

glucose levels are associated with ageing. Our study shows a
decline in serum glucose with age in non-fasted mice,
consistent with another study.26 Serum glucose was further
reduced in both young and aged Casp2−/− versus WT mice.
Interestingly, fasting blood glucose was lower in agedCasp2−/−

mice, and glucose tolerance was improved. This may be
attributable to the previous observation of reduced FoxO1 and
FoxO3 transcription factors in aged Casp2−/− mice.11 FoxO
transcription factors are important mediators of insulin signal-
ling and have been shown to promote hepatic glucose
production.33 Furthermore, liver-specific FoxO1 and triple
FoxO1/3/4 knockouts have improved glucose tolerance and
reduced fasting and non-fasting blood glucose.34,35 Altered
mitochondria function has also been linked with reduced
hepatocyte glucose production.36 Increased levels of ROS in
glutathione peroxidase 1 knockoutmouse have been shown to
enhance insulin sensitivity and improve glucose tolerance.37

Thus increased ROS in aged Casp2−/− mice may also
contribute to improved glucose tolerance.
Our study has identified 4-hydroxyproline as a potential

biomarker of ageing, being the metabolite with greatest
change in abundance in both the liver and serum. Declines
in 4-hydroxyproline may be associated with increased
collagen degradation during ageing and/or decreases in
proline.38 Decreases in amino acids serine, alanine and
methionine in serum are consistent with mouse and human
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studies27,39,40 andmay also be potential biomarkers of ageing.
Increases in plasma FFAs, similar to our findings, have been
previously implicated as biomarkers of ageing.27,41 Specifi-
cally, decreases in serine and increases in essential fatty acid
eicosapentoate (EPA; 20:5n3) have been identified in the

human study of 6055 individuals to be part of a panel of 22
independent metabolites associated with age.39

Decreased citrate synthase and complex III activity in young
Casp2−/− mice suggests impaired mitochondrial function that
may lead to increased ROS contributing to premature ageing.
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Figure 5 Altered mitochondria and OXPHOS in the livers of Casp2−/− mice contributes to ageing. (a) Representative electron microscopic images of hepatocyte
mitochondria in the liver sections. Images representatives of 3–5 fields of view for each individual sample. (b) Hepatocyte mitochondria density (no. of mitochondria/μm2 of
cytosplasm) measured from images of 3–5 fields of view for each individual and mitochondria size measured from480 mitochondria across 3–5 fields of view for each individual
(n= 5/group). (c) Mitochondrial DNA (mtDNA) content as measured by qPCR. (d) Mitochondrial citrate synthase and OXPHOS complex enzyme activity in isolated mitochondria.
Values are means± S.D. *Po0.05; **Po0.01; ***Po0.001, ****Po0.0001 (n= 4–6/group). See Supplementary Figure S6
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This finding is supported by a recent study using hepatocytes
isolated from 12-month-old mice which suggests that loss of
Casp2 results in accelerated age-dependent changes to
mitochondrial ROS production, potentially through altered
complex III activity.42 Decreased activities of complexes III and
IV have been previously observed with ageing43–45 as has
decreased abundance of complex III protein subunits.23

Increased mitochondrial size, citrate synthase activity and
higher complex II activity in aged Casp2−/− mice are likely to
be a compensatory response to subtle energy changes in
young mice.
Decreased FFAs are likely the result of decreased ACC1

protein andmay be a direct reflection of triglyceridemetabolism.
In addition, it is likely that low NADPH levels in Casp2−/− mice
has a major role in the impaired antioxidant response and
decreased liver FFAs. As NADPHhas previously been reported
to negatively regulate Casp2 activity,14 we hypothesized that a
feedback loop could contribute to the reduced levels of NADPH
in young Casp2−/− mice but found no evidence to support this.
Alternatively, altered NADPH levels may be a direct result of
altered mitochondrial function.
G3P is a central metabolite of glucose and lipid metabolism,

and OXPHOS is likely interconnected with low NADPH, FFA
and liver triglycerides. As G3P is an intermediate of glycolysis,
decreased G3P may reflect a decrease in glycolytic activity.
Low levels of G3P in our study are likely the result of
decreased levels of DAKenzyme that is involved in generating
the G3P precursor DHAP.46 Alternatively, G3P can be
generated from glycerol following its release from triglycerides
during lipolysis; however, no differences in glycerol levelswere
detected in our metabolomics screen. Decreased G3P may
also result in lower OXPHOS activity. Conversion of G3P to
DHAP by mitochondrial G3PDH in the mitochondrial inner
membrane, results in recycling of FADH2 to FAD that is
necessary for driving the flow of electrons via Coenzyme Q to
Coenzyme QH2 for utilization by OXPHOS.47 G3P is also a
precursor for serine biosynthesis, and thus the low levels of
serine, and subsequently glycine, may be a consequence of
decreased G3P. Alternatively, serine is also generated from
glucose, and decreased levels may reflect a decrease in
glycolytic rate. Importantly, serine is also a gluconeogenic
metabolite, being converted to pyruvate bySDS.Also a precursor

of glycine biosynthesis, the essential amino-acid threonine was
one of the liver metabolites most significantly reduced in young
Casp2−/− versus WT and was decreased with WT ageing.
Expression levels of SDS protein have been shown to strongly
correlate with its level of enzymatic activity.30 We hypothesized
that increases in SDS protein (and assumed activity) may result
in increased degradation of serine and threonine resulting in
decreased abundance of these metabolites.
In conclusion, our data provide evidence that Casp2

regulates age-dependent homeostatic changes and stress
response pathways, including NADPH levels, OXPHOS and
ribosomal function. Intriguingly, Casp2 also modulates amino
acid, fatty acid and glucose metabolism and influences glucose
homeostasis. Consistent with altered mitochondrial function,
Casp2 appears to regulate the activity of complex III, whichmay
contribute to increased ROS production and oxidative stress
observed in Casp2−/− mice. This study provides a global
overview as to how the loss of Casp2 contributes to the major
physiological processes that contribute to altered metabolism,
mitochondria function and the early progression of ageing.

Materials and Methods
Animals, cell culture and sample collection. Male Casp2−/− mice on a
C57BL/6J background11 were used for experimental studies at 6–9 weeks and 18–
24 months of age. Primary MEFs were derived from embryos at embryonic day 13.5
as previously described.11 Ethics for approval for research using animals was
obtained from SA Pathology/Central northern Adelaide health Services Animal
Ethics Committee, in accordance with National Health and Medical Research
Council of Australia guidelines. Mice were housed in pathogen-free conditions with a
12-h light:dark cycle and fed ad libitum on standard chow. Harvested tissues and
serum were snap-frozen in liquid nitrogen (N2) and kept at − 80 °C until analysed.
See Supplementary Experimental Procedures for full methods.

Liver proteomic analysis. Proteins isolated from perfused liver tissue from
young and aged WT and Casp2−/− mice were analysed using 4-plex iTRAQ
labelling by the Australian Proteome Analysis Facility (APAF, Sydney, NSW,
Australia). See Supplementary Experimental Procedures for full methods.

Liver and serum metabolomics analysis. Metabolites of the liver and
serum from young and aged WT and Casp2−/− mice were extracted and analysed
by Metabolomics Australia (Melbourne, VIC, Australia). See Supplementary
Experimental Procedures for full methods.

Enrichment analysis of biological processes and pathways. See
Supplementary Experimental Procedures for full methods.
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Figure 6 Casp2−/− mice show resistance to age-induced glucose intolerance. IPGTT (left) and AUC (right) for aged WT and Casp2−/− mice. Values are means±S.D.
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Mitochondria content, size and DNA copy number. Liver tissue
samples were examined by transmission electron microscopy to determine the
density and size of mitochondria in hepatocytes and were analysed by qPCR to
determine the mitochondrial DNA copy number genes. See Supplementary
Experimental Procedures for full methods.

Mitochondrial OXPHOS complex and enzyme assays. Enzyme
assays for citrate synthase, complexes I, II, III, IV and V were carried out on isolated
mitochondria in 1-ml cuvette at 30 °C using a Perkin Elmer lambda 35 dual beam
spectrophotometer (Waltham, MA, USA). See Supplementary Experimental Procedures
for full methods.

Cellular bioenergetics by Seahorse bioanalysis. The cellular
bioenergetics profiling of WT and Casp2−/− MEFs was assessed using the
Seahorse X24 Flux Analyzer (Seahorse Bioscience, North Billerica, MA, USA).
See Supplementary Experimental Procedures for full methods.

Liver and serum biochemistry. See Supplementary Experimental
Procedures for full methods.

Immunoblotting. See Supplementary Experimental Procedures for full methods.

Intraperitoneal glucose tolerance test. Glucose tolerance tests were
performed on food-deprived (6 h) non-anesthetized mice. Glucose measures were
obtained from whole-tail vein blood using an automated glucometer at baseline and
at 15, 30, 60 and 120 min after intraperitoneal injection of 1 mg/kg glucose.

Statistical analysis and data visualization. Statistical analysis was
performed using the GraphPad Prism software (v 6.0, GraphPad Software Inc., La
Jolla, CA, USA) or within Microsoft Excel (Microsoft, Redmond, WA, USA). Data
are expressed as means±S.D. or means±S.E.M. For pair-wise comparisons of
metabolomics data, a two-tailed unpaired t-test with Welch’s correction was used.
Unless indicated otherwise, statistical analysis performed by the Students t-test or
t-test with Welch’s correction. Heat maps and Venn diagrams were generated using
the online software. See Supplementary Experimental Procedures for full methods.
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