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The study investigates the accuracy of analytical solutions to the fundamental anti-symmetric Lamb 

wave scattering at delamination in multilayered isotropic plates. The analytical models are based on 

the wave function expansion method and Born approximation within the framework of Mindlin plate 

theory. The study validates the accuracy of modeling the delamination as an inhomogeneity with 

reduced bending rigidity in predicting Lamb wave scattering induced by geometry change at the 

delaminated region. A good agreement is observed between the analytical solutions and results of 

experimentally verified three-dimensional explicit finite element simulations. The findings support 

the inhomogeneity assumption in Lamb wave scattering problems and show the feasibility of 

employing it in delamination characterization. 

Keywords: Lamb wave; scattering; delamination; Mindlin plate; wave function expansion; Born 

approximation; finite element; diffraction tomography. 

1.   Introduction 

The use of Lamb waves in non-destructive evaluation (NDE) has attracted considerable 

attention in the last decade
1-4

. A variety of research has been conducted in an effort to 

improve the understanding of Lamb wave propagation and scattering at defects
5-12

, and to 

develop innovative techniques for safety inspection of layered materials, such as adhesive 

and diffusion bonded isotropic plates
13-15 

and composite laminates
16,17

. Among the 

developed damage inspection techniques, Lamb wave diffraction tomography 

(LWDT)
18,19

 is proving attractive as it is not only able to determine the existence and 

location of defects, but can also provide quantitative information from the damage 

inspection, such as defect sizes and shapes. Recently a generic diffraction tomography 

framework was proposed for imaging damage in plates
20

. Numerical simulation and 

experimental data were used to demonstration the capability of the method. 

The further development of the LWDT not only requires a scattering model that can 

reasonably predict the Lamb wave scattering but also an understanding of Lamb wave 

propagation and scattering characteristics at defects, especially for delaminations in thin 

layered structures. Recently a number of published papers have reported on the use of 

Lamb wave in layered materials, such as thin layered isotropic plates
13-15

 and composite 



2     C.T. Ng 

 

laminates
16,17

. These layered materials have been widely employed in different 

engineering fields, such as aerospace, civil engineering, wind energy generation as well 

as land and water transport infrastructure. Lowe and Cawley
15 

examined the Lamb wave 

propagation phenomenon in adhesive and diffusion bonded isotropic plates through 

dispersion curves. Two models, a perfect bonded structure without an adhesive layer and 

a bonded structure with a thin adhesive layer, were compared in the study. It showed that 

the fundamental symmetric (S0) Lamb wave has increasing sensitivity to the presence of 

an adhesive layer in the bonded structures. In contrast, the fundamental anti-symmetric 

(A0) Lamb wave is not sensitive to the presence of the adhesive layer as A0 Lamb wave is 

characterized by bending of the plate, especially at low frequency. For composite 

materials, it has been discovered that the scattering characteristics of A0 Lamb waves at 

defects in quasi-isotropic composite laminates are quite different from those scattering at 

defects in isotropic plates
21

. 

Researchers have observed that the stacking sequence of composite laminates greatly 

influences the scattering characteristics. It has been demonstrated that the Lamb wave 

scattering directivity pattern at the defects is dominated by the fiber orientation of the 

outer layers of the laminate, and are quite different for composite laminates that have the 

same number of laminae but with different stacking sequences. A recent study
22

 

investigated the results of modeling the delamination in composite laminates as an 

inhomogeneity based on the Mindlin plate theory with equivalent isotropic elastic 

properties assumption. It showed that the Lamb wave scattering at the delaminations is 

not well predicted by the analytical solutions, especially the backward scattering 

amplitudes, due to the stacking sequence influence of composite laminates. Hence, the 

fundamental assumption that the inhomogeneity with reduced bending rigidity could be 

used to represent the delaminated region in Lamb wave scattering problems has not been 

fully validated. 

The current study therefore fills a gap by investigating the accuracy of modeling the 

delamination as the inhomogeneity in thin layered isotropic plates, allowing the stacking 

sequence influence to be ignored. Hence, the study evaluates the accuracy of using the 

inhomogeneity to model the scattered A0 Lamb waves as an effect only due to the 

geometry change at the delaminated region, in which the plate divided into two individual 

sub-waveguides. In addition, the current study demonstrates the potential of using 

analytical solutions to predict Lamb wave scattering at delaminations in layered metallic 

structures
13-15

 and suggests difficulties needed to be overcome for extending the LWDT, 

which has been developed based on the Born approximation within the framework of 

Mindlin plate theory, to delamination characterization. A three-dimensional (3D) explicit 

finite element (FE) model, which has been verified through a comprehensive 

experimental study
10

, is used as a benchmark to assess the accuracy of predicting the A0 

Lamb wave scattering at delaminated regions using wave function expansion (WFE) 

method and Born approximation within the framework of Mindlin plate theory. 
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2.   Analytical Solution for Wave Scattering from Inhomogeneity 

2.1.   Wave function expansion method 

Within the framework of Mindlin plate theory, the scattering of A0 Lamb waves by a 

cylindrical flexural inhomogeneity with radius  a  can be obtained using the WFE 

method
5
 and Born approximation

23
. It is assumed that the thin adhesive layer can be 

ignored for the A0 Lamb wave problems given the fact that it is not sensitive to the 

presence of the thin adhesive layer, especially at low frequency regime
15

. In polar 

coordinates the deflection potential of an incident wave at frequency w  can be expressed 

as
22
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the variables related to the waves scattered from and transmitted into the cylindrical 

inhomogeneity, respectively. 
  
H(×)  represents the n-th order Hankel function of the first 

kind. 
  
k

1
, 

  
k

2
 and 

  
k

3
 are the wavenumbers below the first cut-off frequency and they can 

be calculated as
5
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where  k = p / 12 .  E ,  G , n  and r  are the Young’s modulus, shear modulus, Poisson’s 

ratio, and density of the plate, respectively. The unknown expansion coefficients 
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where 
 
Q

r
 is shear forces. 

 
M

r
 and 

 
M

q
 are bending moments and the values depend on 

the plate bending rigidity 
  
D = EI / (1-n 2). The delamination can be modeled by 

changing  D  to the bending rigidity of the inhomogeneity   D
*  for  r £ a  and the detail of 

calculating   D
*  will be discussed in Section 2.3. Once the unknown expansion 

coefficients are determined, the scattered wave amplitudes of the A0 Lamb wave can then 

be calculated using Eqs. (2) – (4). 

 

2.2.   Born approximation 

Different to the WFE method described in Section 2.1, the Born approximation is 

applicable to irregularly shaped inhomogeneities, and hence, it has been commonly used 

in inverse scattering problems, such as diffraction tomography
19

 and the eigenfunction 

backpropagation method
24

. Using the Born approximation to the Mindlin plate theory and 

assuming a far-field condition, the scattered wave solutions can be approximated as
23
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d

l
 for   l =1,2,3,4 are nonzero within 

the region of inhomogeneity but vanish outside the region. The damaged plate properties 
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2.3.   Modeling delamination as a cylindrical inhomogeneity 

One of the commonly used modeling techniques is to model the delamination in thin 

layered isotropic plates as a base plate separated into two individual sub-plates at the 

delaminated region, especially for modeling the delamination using a FE method
25

. This 

delamination model is suitable for Lamb wave problems as the delamination creates a 

discontinuity along the base plate at the delaminated region, in which the waveguide is 

divided into the upper and lower sub-waveguides with reduced bending rigidity   D
*  as 

shown in Figure 1. 
 
h

u
 and 

 
h

l
 shown in Figure 1 are thickness of the upper and lower 

sub-waveguides. Using the WFE method and Born approximation highlighted in Sections 

2.1 and 2.2, the delamination can be modeled as an inhomogeneity with reduced bending 

rigidity   D
* . The individual bending rigidities of the upper and lower sub-waveguides are 

  
D
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u

3 /12(1-n 2)  and 
  
D
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l

3 /12(1-n 2) , and hence, the bending rigidity of 

the inhomogeneity can be calculated by 
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Fig. 1.  Schematic diagram of the cross section at the delamination for the analytical model 

 

2.4.   Three-dimensional explicit finite element simulation 

One of the objectives in the current study is to determine the accuracy of using an 

inhomogeneity to model A0 Lamb waves scattered in response only to the geometry 
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change at the delaminated region. Two 180×180×0.8 mm
3
 aluminum plates are assumed 

bonded together to form a 1.6 mm thick layered isotropic plate. It has been proved that 

the low frequency A0 Lamb wave is not sensitive to the presence of the thin adhesive 

layer in the bonded plate as low frequency A0 Lamb wave is characterized by bending of 

the plate
15

. Hence, the effect of the adhesive layer on the A0 Lamb wave can be safely 

ignored. The layered isotropic plate is modeled using a 3D explicit FE method in LS-

DYNA. The Young’s modulus, shear modulus, Poisson’s ratio and density of the 

aluminum are 68.9 GPa, 26 GPa, 0.33 and 2700 kg/m
3
, respectively. Eight-noded, 3D 

reduced-integration, solid brick elements with hourglass control and three degrees-of-

freedom at each node are used to model each layer of the isotropic plate, and hence, eight 

layers of solid brick elements are throughout the thickness of the plate. The excitation 

signal is a 140 kHz narrowband six-cycle sinusoidal tone burst pulse modulated by a 

Hanning window. The excitation location is at r = 90 mm and  q =180°. The wavelength 

of 140 kHz A0 Lamb wave is 8.78 mm. The in-plane dimension of the solid brick 

elements is around 0.4×0.4 mm
2
 and the thickness is 0.2 mm, which ensures that there are 

at least 20 nodes per wavelength. 

The circular delamination is modeled by duplicating the FE nodes along the interface 

of the debonding, to which the FE nodes are not connected. The delamination model 

splits the plate into two sub-waveguides of different displacement fields at the 

delaminated region.  

Two simulations, one is the intact plate and the other one is the identical plate but 

having a delamination, are carried out in the study. The scattered A0 Lamb waves are 

extracted by calculating the difference between the signals from the intact plate and the 

plate with the delamination. In this study only the out-of-plane displacement of 36 nodal 

points located at r = 40 mm, which ensures the evanescent waves can be ignored, and 

 0° £q £ 360° with 10° step increments are calculated in the simulations. It should be 

noted that the calculated displacements are normalized by the out-of-plane displacements 

of the outgoing excitation pulse at the center of the delamination position in the intact 

plate. After that a scattering directivity pattern (SDP)
10,21

 is calculated by determining the 

maximum absolute amplitude of the scattered wave in time domain. In this study, the FE 

simulation results are used as a benchmark and are compared with the results calculated 

by the WFE method and Born approximation. The same FE model was verified through 

comprehensive experimental studies
10

.  

 

3.   A0 Lamb Wave Scattering Characteristics 

The SDPs calculated by the WFE method, Born approximation and FE simulations are 

shown in Figure 2. They are indicated as solid lines, dashed lines and crosses, 

respectively. Delaminations with diameters 8.55 mm, 10.39 mm and 14.05 mm located at 

the mid-thickness of the plate are considered in Figure 2. The bending rigidity within the 

delaminated region is   D
* = 0.25D . The delamination diameter to wavelength ratios  R  

are 0.88, 1.08 and 1.45, respectively. 
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Figure 2 shows that there is very good agreement between the results of the WFE 

method and FE simulations in the forward scattering amplitudes. This shows that the 

WFE method is able to predict the A0 Lamb wave scattering at the delamination in 

directions  90° £q £ 270°. The Born approximation underestimates the amplitudes of the 

forward scattered waves, although it still predicts the forward scattering patterns. The 

discrepancy between the FE simulation and the Born approximation results is because the 

A0 Lamb wave scattering at the delamination is outside the assumption of the weak 

inhomogeneity. 
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Fig. 2.  Analytical (solid lines), approximated (dashed lines) and FE (crosses) results of SDP for delaminations 

located at mid-thickness of the layered isotropic plate 

 

For the backward scattering amplitudes, the discrepancy between the results of the 

Born approximation and FE simulations is even greater than for the forward scattering 

amplitudes. The Born approximation underestimates the backward scattering amplitudes, 

but is still able to provide a reasonable prediction of the backward scattering patterns. 

Comparing the results of the WFE method and FE simulations, a reasonable agreement is 

observed in the backward scattering amplitudes and the backward scattering pattern. 

However, there is a larger discrepancy for the results of   R =1.07 . 

Once the SDP of the WFE method, FE simulations and Born approximation have 

been studied, a comprehensive analysis is considered for a range of delamination 

diameter, in which is carried out by changing the delamination diameter while keeping 

the excitation frequency at 140 kHz. Figures 3a, 3b and 3c show the forward scattering 

amplitudes at  q = 0° ,  20°  and  40°  for a range of  R  values. Solid lines, dashed lines 

and circles indicate the results of the WFE method, Born approximation and FE 

simulations. Good agreement is observed between the results of the WFE method and FE 

simulations. The results of the backward scattering amplitudes at  q =180°,  200°  and 

 220°  are shown in Figures. 3d, 3e and 3f, respectively. The trends of the backward 

scattering amplitudes at these directions behave as a sine function ramping upward. 

Compared to the results of the orthotropic plate, shown in Figures 8 and 9 of paper
21

, the 

results of the WFE and FE simulations in Figure 3 show better agreement. This proves 

that the inhomogeneity with modeling the plate divided into two individual sub-

waveguides at the delaminated region is a suitable model to predict the Lamb wave 

scattering at delamination in thin layered isotropic plates. In the case of composite 

laminates, this also implies that the stacking sequence influence on the A0 lamb wave 
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have to be included in the analytical solutions for better prediction results. 

For the Born approximation, which is the fundamental framework in LWDT, there is 

a larger discrepancy between the results of the Born approximation and FE simulations in 

both forward and backward scattering directions. The discrepancy becomes obvious for 

increasing delamination diameter to wavelength ratio. The comprehensive analysis in 

Figure 3 shows that the Born approximation is still able to provide a reasonable 

prediction in both forward and backward scattering for the delamination diameter to 

wavelength ratio  R  smaller than 0.35. The finding is useful for delamination detection 

with a known targeted range of delamination size as the frequency of the incident wave 

can be selected to ensure the value of  R  having a reasonable prediction in scattering by 

the Born approximation. 
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Fig. 3.  Analytical (solid lines), approximated (dashed lines) and FE (circles) results of normalized forward 

( q = 0°, 20° and 40°) and backward ( q = 180°, 200° and 220°) scattered wave amplitudes as a function of  R  

for delaminations located at mid-thickness of the layered isotropic plate 

 

A thin layered isotropic plate made by aluminum plates with different thicknesses are 

also considered in this study. The thickness of the base and top aluminum plates are 1 mm 

and 0.6 mm, respectively. Hence, the delamination is assumed at 3/8 total thickness 

below the top surface of the layered isotropic plate. The results of the delamination with 

  R = 0.88, 1.07 and 1.45 are shown in Figure 4. It should be noted that the value of  R  is 

the same as those as shown in Figure 2. The only difference is that the delaminations are 

located at different through thickness location of the plate. It is expected that there is a 

mode conversion effect in the Lamb wave scattering. The reduced bending rigidity within 

the bonded region is   D
* = 0.3D. Comparing the FE simulation results in Figures 2 and 5, 

the forward scattering amplitudes have different magnitudes but still have similar forward 

scattering patterns. However, Figure 5 shows that the backward scattering amplitudes and 



On accuracy of analytical modeling of Lamb wave scattering at delaminations in multilayered isotropic plates  9 

 

patterns are quite different to those in Figure 2. 

Overall, there is still reasonable agreement between the results of the WFE method 

and FE simulations, especially for the forward scattering patterns. The backward 

scattering amplitudes and patterns are not well predicted by the WFE method or the Born 

approximation. The discrepancy in the forward and backward scattering is mainly due to 

the mode conversion effect and is not considered in the WFE method or the Born 

approximation. This shows that the mode conversion effect needs to be accounted for in 

the WFE method and the Born approximation to further improve the accuracy of the 

scattering prediction. 
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Fig. 4.  Analytical (solid lines), approximated (dashed lines) and FE (crosses) results of SDP for delaminations 

located at 3/8 total thickness below the top surface of the layered isotropic plate 

4.   Conclusions 

An investigation on the accuracy of modeling the delamination as an inhomogeneity 

to predict the A0 Lamb wave scattering characteristics has been studied by comparing the 

results of the WFE method, Born approximation and 3D explicit FE simulations. The 

study has validated the fundamental assumption that the delamination can be modeled as 

a waveguide divided into two sub-waveguides for the A0 Lamb wave problems.  

An experimentally verified 3D FE model has been used as a benchmark to assess the 

accuracy of the WFE method and Born approximation. The results have showed that the 

WFE method with reduced bending rigidity at inhomogeneity can well predict the 

scattering amplitudes of A0 Lamb waves at delaminations in thin layered isotropic plates, 

especially in the forward directions. For the backward scattering, although the 

inhomogeneity is not able to accurately predict the amplitudes, it still provides a well 

prediction of the backward scattering patterns, especially for the trend of the amplitudes 

when the diameter of the delaminated region increases. For Born approximation, the 

results are not as good as the results of the WFE method. However, the Born 

approximation is still able to provide a reasonable prediction for both forward and 

backward scattering for delamination diameter to wavelength ratio  R  smaller than 0.35. 

For a known targeted range of delamination size, this finding is useful for characterizing 

delamination in thin layered isotropic plates by LWDT, in which the Born approximation 

is the fundamental framework. 

Overall, the results have showed that the inhomogeneity is able to predict the A0 

Lamb wave scattering at delaminations and it is possible to employ it in damage 
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characterization. The study has showed that the mode conversion effect needs to be 

accounted for in the WFE method and Born approximation if the region of delamination 

is not located at mid-thickness of the plate and this is the next steps of this research. 

The results of the study have also suggested that an improvement of the analytical 

solution to accurately predict the Lamb wave scattering at delamination in composite 

laminates can be achieved if stacking sequence influence is included in the analytical 

solutions. There is a potential to extend the LWDT for characterizing delaminations in 

composite laminates. 
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