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Fault-Tolerant Sliding Mode Observer Synthesis of Markovian Jump
Systems Using Quantized Measurements

Peng Shi, Fellow, IEEE, Ming Liu, and Lixian Zhang, Senior Member, IEEE

This paper investigates the design problem of sliding mode
observer using quantized measurements for a class of Markovian
jump systems against actuator faults. Such a problem arises
in modern networked-based digital systems, where data has to
be transmitted and exchanged over a digital communication
channel. In this paper, a new descriptor sliding mode observer
approach using quantized signals is presented, in which a
discontinuous input is synthesized to reject actuator faults by an
off-line static compensation of quantization effects. It is revealed
that the lower bound on the density of a logarithmic quantizer is
1/3, under which the quantization effects could be compensated
completely by using the sliding mode observer approach. Based
on the proposed observer method, the asymptotical estimations
of sate vector and quantization errors can be obtained simul-
taneously. Finally, an example of linearized model of an F-404
aircraft engine system is included to show the effectiveness of the
presented observer design method.

Index Terms— Markovian jumping parameters, state estimation,
quantization, sliding mode observer, actuator fault.

I. INTRODUCTION

In modern practical industrial devices, system states are
generally physically full- or partially unavailable for direct
measurement and a full state feedback stabilization scheme
is almost impossible to be implemented. In such cases, state
estimation via observer is thus of a realistic significance,
which has been the subject of extensive research in signal
processing domain over the past several decades [12], [2].
Since external disturbances and unknown faults inevitably
causes performance degradation for observer synthesis in
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a variety of industrial processes, disturbances and/or fault-
tolerant observer design have thus received a great amount
of attention, and a number of design techniques have been
reported in literature [19], [23], [20], [21]. Among the existing
approaches, sliding mode observer (SMO) has been recognized
as one of the most effective approaches to reject disturbances
and faults to be an essential basis of a state estimation
task. The main characterization of an SMO scheme is that
a discontinuous input term is injected into the observer to
eliminate faults or disturbances which is synthesized based
on the sliding mode control theory. In recent years, SMO
has been applied to a wide variety of realistic engineering
systems including aircraft, underwater vehicles, spacecraft,
flexible space structures and power systems, etc [5], [16].

On another research front, the rapid advances of network
technologies has led to a series of successful applications
of the so-called networked-based control systems in complex
modern industry processes. However, certain limitations in-
duced by the insertion of network devices also arises inevitably
including communication delays, intermittent data package
losses and signal quantization. In this sense, quantized state
estimation has thus attracted considerable research interest as
a part of solution of network-based estimation problem, where
transmitted information suffers also from transmission delays
and packet dropouts. In addition, recently some results on
network-based SMO design have been also reported [13], [5],
[6].

Markovian jump system (MJS) is an appropriate modeling
candidate to describe dynamic systems with random abrupt
variation structure. A great number of realistic dynamical
systems can be modeled by MJSs, such as chemical processes,
communication networks, aerospace industry, and economics
systems, etc. Due to MJS’s great application potential in a
variety of engineering, a great amount of effort has been
devoted to address various control and filtering problems
of MIJS in the past decades [18], [8]. In particular, some
researchers have attempted to investigate the aforementioned
network-based control and sliding mode control problems for
MIJS, and some preliminary results have been obtained [17].

Although the applications of network-based control have
covered a wide range of variety of realistic industries, those
unexpected phenomenon such as random abrupt variation
structure of the plant and and components fault, may degrade
the control system performances in a network environment. It
is therefore essential to improve the application ability of SMO
theory and MJS model in a network setting to maintain the
robustness performances of networked-based control systems.
The main purpose of this paper is to make the first attempt to
investigate actuator fault rejection SMO design for MJS with
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network data transmission where signal quantization is taken
into account. The achieved combination of SMO, MJS and
network-based estimation techniques would clearly possesses
both theoretical significance and application potential.

It should be pointed out, however, that there is little work in
the literature to consider SMO design for stochastic jump sys-
tems with quantization and actuator faults. The main obstacles
are in the following two aspects: i) in a network environment,
the quantization error of output measurements can refer to a
class of additive output disturbances. As pointed out in [4],
linear Luenberger observer is not effective to deal with output
disturbances and cannot obtain satisfactory results. The reason
is that the outputs disturbances will be unavoidably amplified
if the observer gain matrices are with a high size [14]; and ii)
the piecewise discontinuity of quantized signals will aggravate
the difficulty on designing the sliding mode input term of
the observer, which is however a crucial role in the whole
synthesis procedure since the disturbances/fault rejection of
an SMO is totally dependent on the sliding mode input term.
As a result, a new observer approach is desirable to fully cope
with the aforementioned two difficulties and solve this open
research issue, which motivates the current investigation of
this paper.

This paper addresses the SMO synthesis problem for a class
of continuous-time MJS with quantized measurements and
unknown actuator faults. The design approach of this paper is
divided into the following several steps: first, the quantization
error of measurements is treated as output disturbance and
is taken into consideration as an auxiliary state vector of an
augmented descriptor system, where the output disturbance
(quantization error) is currently converted into an input dis-
turbance; second, a new SMO using quantized measurements
is presented to estimate the augmented state including both
the state vector of the original system and quantization error
vector. During this design, it is proved that, provided the lower
bound for the logarithmic quantizer density p is larger than
1/3, by utilizing p as a design parameter, the discontinuous
input term of the SMO can fully compensate the quantization
effects and eliminates the bounded unknown actuator faults
effectively. Subsequently, the asymptotic estimates of state
vectors of the original plant and output quantization error
can be obtained simultaneously. Finally, a simulation example
on F-404 aircraft engine system is used to demonstrate the
effectiveness of the proposed observer design scheme.

The contribution of the proposed observer approach mainly
lies in the following three folds: 1) in this design the out-
put disturbance (quantization error) is converted into input
disturbance, which is thus avoided to be amplified when the
observer gain is of a high size; 2) different from the traditional
observer approaches, in the designed observer a parameter
o related to quantizer density is injected into the sliding
mode input term, which makes the observer possesses the
ability to compensate the quantization effects and guarantee
the stability performance of the error dynamic; and 3) the
estimates of system states and quantization errors can be
obtained simultaneously via the developed observer approach.

Notations: Throughout the paper, ||, denotes the p—norm
of the vector z, ie., x|, = (1|7 + 2ol + - - + |za|P)7,

p=1,2,---. Given a symmetric matrix A, the notation A > 0
(< 0) denotes a positive definite matrix (negative definite,
respectively). I,, denotes an identity matrix with dimension n.
Given a matrix X € R™*", | X|, denotes the matrix p—norm,
that is, | X|, = sup,_ Xzl

lzlp >

p:1>27""

II. PROBLEM FORMULATION

Let {ry,t > 0} is a right-continuous Markov chain on
the probability space (2, F,P) taking values in a finite state

space S = {1,2,...,s}. The mode transition probabilities
IT = (m;j)sxs Of the Markov chain is given by

R . o FijA—FO(A) lfl?é],
pzj_Pr{TtJrA—.”rt_Z}_{ 1+7TiiA+0(A) if i = 7,

where A > 0 and lima_,g 0(A)/A = 0, 7;; is the transition
rate from ¢ to j and satisfies: m;; > 0,4 # j, and m; =
72]»7%71'7;]' <0forVi,jes.

Considering the following continuous-time Markovian jump
system defined in a fixed probability space (0, F,P)

Te(t) = A.(ry)x(t) + Be(rs)u(t) + Bea falt)
Ye(t) = Cezc(t) (D
Q(yc(t)) = Q(chc(t))

where z.(t) € R™ denotes the system state vector, u(t) € R™
denotes the control input vector, A.(r;) € R™ "™, B.(r:) €
R™ ™ B., € R"% and C, € RP*" are known real system
matrices. For each possible value i € S, A.(r) = A,
B.(r¢) = B, where A.; and B, are constant matrices,
q(-) € RP? is the quantization mapping defined as (8) below.
fa(t) € R® denotes the unknown actuator fault vector which
satisfies

[fa()]2 < 7a 2

where r, > 0 is a known constant.
Throughout this paper, the following assumptions are made
(Al) For each r, = i € S, A.; is Hurwitz, and the pair
(Ag, C.) is a detectable pair;
(A2) Any invariant zero of triple (Ag;, Beq,Ce) lies in the
left half plane, i.e., for every complex number A with
. Aci — A, Bea
non-negative real part, rank . 0 } =n+
rank(Bgg,).
(A3) rank(C.B.,) = rank(B.,) = a.
We utilize a coordinate transformation z(¢t) = Ty z.(¢) and
y(t) = Toy.(t) as in [15] for system (1), such that in the new
coordinate system (1) becomes the following form

[ @(t) [ A A z1(t)
| T2(t) } | Ao Az } { (1) } ]
| 2 ) + | fal®)
BQi O(nfa Xa

[ yl(t) _ [ a ax(n—a) ‘rl(t =

ya(t) L Op—a)xa Ca z2(t)

q(y1) q(z1(1)) ]

aly2) | | a(Caza(2))

with z1(f) € R?, x2(t) € R"%, y1(t) € R?, yo(t) € RP~,
Aqp; € R%4, Apy; € RX(=a) 0 Ay, € RMM—a)Xa, Ay, €
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R(n—a)x(n—a)’ By; € Raxm, By, € IR(VL—(J,)Xm7 B, € Raoxa,
C, € Re-o)x(n=a) and B, is nonsingular. For symbols
simplicity, we denote the vectors and matrices of system (3)
as follows

a(t) = [o7(t) 23], y(t) = [yi (1) y3 )],

o Ay Aro | Bu
A= [ Agri Az } » Bi= [ By; ] ’
C1 = [ I, Oax(nfa) ] ; Cy = [ O(pfa)xa Cy } )

Cl Bal :|
Cc = B, = . 4
|: 02 :| ’ |: O(nfa)xa ( )

Considering the quantized output measurement ¢(y2(t)), we
define the quantization error of which as

w(z,t) = q(y2(t)) — y2(t) = q(Caz2) — (Cy2) 5)
then ¢(y2(¢)) can be rewritten as
q(y2(t)) = y2(t) + w(z, ). (6)

Based on (3), (4) and (6), we obtain the following quantized
fault system

z(t) = A(r)z(t) + B(ry)u(t) + Bafa(t)
a(yi(t) = qza(1)) @)
q(y2(t)) = yalt) +w(w,t).

In this paper, the output measurements y(t) =

[y1(t) y2(t) ---yp(t)]T are quantized before transmitted
over networks with the following logarithmic form

ai(yi(t) =
n? if T < yi(t) < 5ot
and y;(t) > 0;
0 if y;(¢) = 0; ®)
i=1,2,...

where p; denotes the quantizer density of the ith quantizer
qi(+), and m(o) denotes the initial quantization values for the
ith quantizer ¢;(-), 6; = (1 —p;)/(1+ p;) is the quantizer
parameter. As seen in (8), the real valued signal y;(¢) has
been mapped into a piecewise constant signal ¢;(y;(t)) taking
values in a countable set.

W )
.—

)

t

t

Fig. 1. The updating instant of quantizer: a scalar case

Denote by tj, the updating time instant of the quantizer, and
let the set .7 £ {tg, ti, ta, t3,...} be a strictly increasing
sequence of updating times of the quantizer (8) in (tg, 00)
for some initial time t(. The quantization mapping ¢(-) in (8)

is indeed right-continuous everywhere, which occurs jumping
behavior at each updating time instant ¢, € .7 as shown in
Figure 1. For simplicity and with some abuse of notation, we
use ¢(t) to denote ¢;(t) only within this paragraph. Given t;, €
7, suppose q(tx) = q(t7) = n? and q(t;) = nl~" for
some j € {£1,£2, -}, the following formula (9) describes
the discontinuity of ¢(-) at the updating instant ¢

_ G-1) _ ()
M) 2 tm SO o o
tsty U=l t—ty  t—lk
= —OO,
_ G _ )
G ger) 2 tom QO 290y e Z
tstt Utk t—tt U=tk
- 0. 9)

The main objective of this paper is to develop an effective
observer approach with sliding mode techniques for system
(7) in the presences of sensor logarithmic quantization and
actuator faults. The key problem is how to cope with the
abrupt jumping behavior of quantized signals at each quantizer
updating time instant {;, and compensate the quantization
effects such that the discontinuous input term of the SMO
should still posses fault-rejection performance despite of signal
quantization. At the end of this section, the following defini-
tion is adopted from [22].

Definition 1. [22] The Markovian jump system (7) is said
to be stochastically stable if, for u(t) = 0, f,(t) = 0 and
every initial condition xo € R™ and ry € S, it follows that
E{fy llz@®)? | zo,r0} < oo

III. OBSERVER ANALYSIS AND DESIGN

In this section, we will present an effective method to deal
with the aforementioned design problem. We first perform
a system augmentation for the original plant (1) to yield
a descriptor system, where the output quantization error is
transmitted into the input disturbances and is also assembled
into the new state vector of the augmented system. Then a
new sliding mode observer is constructed for the descriptor
augmented system to generate asymptotic estimates for both
the original plant state and the quantization error. The remain-
ing part of this section is divided into two sub-sections: III-A
System Augmentation; and II-B  Descriptor discontinuous
Observer.
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A. System Augmentation

To begin with our design approach, we define the following
augmented variables and matrices

n é n +p —a,
[ 2(t) ) 0
() 2 | x(t) |, No2 { o) } ’
| w(x,t) p-a
— A Ia Oax(nia) Oax(pfa)
E = Otn—a)xa In—a On—a)x(p—a) | >
= Op-arxa  Op-a)x(n—a) Op—a
_ Alli A12i OaX(pfa)
Ai é A21i A22i O(nfa) x (pfa) ,
| Op—a)yxa  Op—a)x(n—a) —Ip_q
_ [ By Ba1
Bi £ BQ’L' s Ba = O(nfa)xa ,
O(P G)Xm O(p—a)xa
C_H = [ ~0) Oax(p-a) ]
Cy £ [ O(p a) Cy Ip—a ] ,
F2 é [ O(p a 4 O(P—G)X(p—a) }’
~ A C(1 oA él
¢ [ o Bt R (10)

and the following augmented descriptor system is constructed

Ei(t) = Az%’_(t) + Bzu(t) + Bafa(t)

+Now(z,t), t # t, (11
I(ty) = Z(tf), t=ty, theT,
q(y(t)) = Cz(t).

Remark 1. It is noticed that by a descriptor augmentation
strategy, the normal system (7) has been equivalently transmit-
ted into a descriptor hybrid system (11). The main advantage
of this handling is that in (11) the output disturbance w(x,t)
has been transmitted into an input one which facilitates the
subsequent design analysis, since output disturbance is indeed
more difficult to be dealt with than an input one. However,
this augmentation behavior also assembles w(x,t) into the
new state vector T(t), and w(x,t) is not defined at ty, since
G(y=2(t)) is undefined at t = ty. To overcome this difficulty, in
the following discussion, we will propose a new tricky observer
technique for the descriptor hybrid system (11), under which
the continuity of the resulting error system is ensured strictly
in the whole time domain including each quantizer updating
time ti. Based on this property, the stability analysis of the
corresponding error dynamic can be performed feasibly.

We introduce the following lemmas to provide some sig-
nificant properties for the descriptor augmented system (11),
which are useful for the subsequent analysis and design.

Lemma 1. [14] Define a new matrix Lp € R(tr—a)x(p—a)

as Lp = I Onx (p—a) , where L = diag(Lq,...,L,_,),
(p—a)x(p—a) TeMh
L; >0,i=1,2,...,p—a, then the matrix S = (E+LpC>) is

a nonsingular one which also satisfies the following property

CoS™'Lp =1y—a, (A —NoF2)S™'Lp=—Ny. (12)

If we select Lp as the aforementioned form, it can be
derived that

gz |: LIEQ Onx(ﬁo—a) :|7 Svfl — |: In Onz(ffa) :| (13)

—Cs
Lemma 2. If for each i € S, A; is Hurwitz, then (5’_1(/_1 —
NoFy), Cg) is a detectable pair.

Proof. For V o € RT it is derived that

_ _G-1(A. _ N.F
rank[ O'In S é’Az N()Fg)
2
_ S—1 U(E+EDC')_7(A17N0F2)
= rnk([ g J[ RS )
_ rank( O(E+LDC)5 (Al 7N0F2) :|>
L 2
[ In O'LD O'E—Ai—FN()FQ
= k —
(5 7))
= rank( oF — AC+N0F2 ])
L 2
ol, — Ai Onx(pfa)
= rank [0(p,a)xa —04} I, g

Op-ayxa Ca] = Tp—a

p—a—l—rank([ ol — Ai ])
[0(p*a)><a - 04]

In fact, if A; is a stable pair, then rank(cl, —

ol, — A )—n
O-axa —C] [)

Al) = n,

and further implies that rank

which means that rank[ ol =57 éA Nok2) = 7.
2

Therefore, (5’_1(&» — NoFy), C_‘g) is a detectable pair. The

proof is completed. O

B. Descriptor discontinuous observer

Motivated by the discussion of Section III-A, we construct
the following new form sliding mode observer

+Baus(t) (14)
z(t) = Zz(t)+ S 'Lpa(ya(t)),
where S is defined as in (12), 2(¢) = [2X(t), 2T ()" € R®

is the intermediate vector of the dynamic system (14) with
zp(t) € R™ and 2T (t) e R~ 2(t) £ [27(¢), oT(¥)]T € R"
with &(t) £ [xlT(t), #T(#)]T € R™ is the estimation of

Z(t). Lp and L,; € R™ (=) are the proportional gain and
derivative gain matrices, respectively, where Lp is designed

based on Lemma 1, and Em’ is to be designed later. As shown
in Lemma 2, if A; is Hurwitz, then (5’_1([11« — NoFy), C_‘g)
is detectable and it is feasible to find L,; such that A; —
NoFy — L,;Co is Hurwitz. us(t) € R® is the discontinuous
input designed as in (28) below to eliminate the effect of
actuator fault f,(t).

Remark 2. It is noticed that only q(y2(t)) being a part of the
quantized output measurements q(y(t)) has been injected into
the observer (14). Indeed, q(y1(t)) being the remaining part
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of q(y(t)) will be also adopted in observer (14) which is to
synthesize the discontinuous input us(t) as seen in (28) below.
That means, a full use of the total output q(y(t)) is required
in this design even though only q(y2(t)) emerges in observer
(14).

We define the following error variables

ety = (t)—=z(t), e (t)=2(t) -
e t) & &) —a(t), ezT(t) £ Az(t) - xz(t)
ez, t) 2 Q) —w(z,t), (15)
and it is obvious that the following relationship holds
e(t) = [e1() eu(e, )", el(t) =[el () &5 (1)  (16)

We should now analyze and establish the error dynamic from
plant (11) and observer (14).

Theorem 1. Considering the descriptor system (11) and
observer (14), and recalling t, € 7, k = 1,... denotes
the time sequences of quantizer’s updating, the following
proportions hold: (i) the error vector €(t) defined in (15) is
strictly continuous for t € [0, 00), and &(ty) does not grow
along each updating instant t;, € 7; (ii) when t € (tg, tr+1)
the error dynamic can be established by

ety = S°

1(141 — NQFQ C_' )6( )
+ By (us(t) — te

fa(t ))» € (tks trtr)-
Proof. (i) First, we prove that the error vector (t) is strictly

continuous for ¢ € [0, +00), and the value of which does not
increase abruptly along each ¢, € 7. It is derived from (12)

that S Lp = | Jnxt-o)
L, Ipza
dynamics (14) it is derived that

Onx(p—a)
o

p—a

a7

. Accordance with the observer

} 4 () (18)

which yields that () = 2,(t) and &(t) = 2, (t) + q(y2(¢))-
Therefore €,(t) = Z(t) — x(t) = z,(t) — x(t). It is easy to see
that €, (¢) is strictly continuous for ¢ € [0,+00), since both
2, (t) and xz(t) are continuous for ¢ € [0, +00). On the other
hand, we consider e, (z, t), recalling w(z, t) = q(y2(t))—ya2(t)
it is derived that

eu(z,t) = @t) —w(x,t) = 2,(t) + ya(t)
It can be seen intuitively that é,,(x, t) is strictly continuous for
t € [0,+00). We thus conclude that é(t) = [e,(t), é.(x,1)]
is strictly continuous for ¢ € [0,400), and &(t)|¢=s, is well
defined for k = 0,1, ...,00. Consequently, the value of é(t)
does not increase abruptly along each t; € 7.

(i) We now prove that for ¢ € (tx, tx+1), the error
dynamic can be derived as (17). Notice that ¢(y2(t)) = 0
for t € (tg, txt1), from observer (14), the following can be

derived
Sz(t) = S3(t) + Lpd(ya(t))
= (A; — NoFy — LiCo)Z(t) + Lpd(ya(t))
+Baus(t) + Biu(t) — (A; = NoF2)S ™' Lpys(t)

+Epi62S71EDy2(t) (20)

Recall that (/L — Nopg)g_lf/[) = —NO and 025_1ED =
I,—q, (20) becomes
Sz(t) = (A; — NoFy — LiCo)i(t) + Lpi(ya)(t)

+Baus(t) + Biu(t) + Noya(t) + Lpiy2(t)  (21)

On the other hand, by adding Lp(y2(t)) = 0 in both sides of

the plant (11), and noting that EZ(t)+ Lpq(y(t)) = Ex(t)+
LpCyz(t) = Sz(t), one can obtain
Su(t) = (Ai— LpCa)z ( ) + LpiCa2(t) + Ba fa(t)
+Now(w,t) + Biu(t) + Lod(ya(1)) - (22)

Recalling that L,;Cs
No(Caz(t) — Foz(t)),

Si(t) = (A —
B fa(t

z(t) = Lpyo(t) and Now(z,t) =
it is derived from (22)

LyiC)Z(t) + Lpg(y2(t))

Ny F
) + Biu(t) + Noya(t) + Lpiya(t) (23)

Subtracting (21) from (23), one can obtain

é(t) = S_I(Ai - N()FQ - I/pic_’g)é(t)
+S71-Ba(us(t) = fa(t), t€ (t, trt1) (24)
Notice that in error system (24) it is derived that S~' B, = B,,

and finally we obtain the error dynamic (17).
O

IV. SYNTHESIS OF ERROR DYNAMIC

As seen in the error dynamics (17) established in Section
I1I-B, the derivative observer gain Lp has been designed. In
this section, we are focused on designing the discontinuous
input u(¢) and observer gain Epi for observer (14) to stabilize
the error system (17). Since in the setting of this paper data
needs to be transmitted over a digital communication channel,
we have to use only quantized error estimation to implement
the synthesis work, while an ideal design without quantization
is impossible. The remaining part of this section is divided
into two subsections: Section IV-A Quantizer analysis and
design, considering the logarithmic quantizer (8) under inves-
tigation, we analyze and establish a relationship between the
quantization errors and the quantized values ¢(y(t)) refered to
quantizer density; and Section IV-B Error dynamic analysis, it
is proved that, based on the result of Section IV-A, the input
us(t) can be designed based on quantized error estimation
successfully to ensure the stochastic stability of error dynamic
am.
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A. Quantizer analysis and design

In this section, considering the output measurement y(t),
we devote to establish a relationship between the quantized
value ¢(y(t) and the corresponding quantization error. We
denote y(t) as y; for simplicity, and y; is quantized accordance
with the logarithmic scheme (8). We define the following
quantization error [3]

eq(t) = q(ye) —ye, qye) = (Ip + M)y, (25)

where A, = diag(A1(¢),...,Ap(t)) € [-A, A]is a unknown
time-varying matrix, and

A 2 diag(6y, ... ,6,) (26)

is defined for the norm bound of A;. Notice that e, (¢) in (25) is
different from w(z, t) defined in (5). Without loss of generality
we suppose that p; = ps--- = p, = p in quantizer (8) with
0 < p < 1 being a given one, which implies 6; = -+ =
d0p = dand 0 < 6 < 1. We provide the following Lemma
which establishes a relationship between e,(¢) and g(y;) in
view of quantization density p.

Lemma 3. Considering the logarithmic quantizer (8), if its
density satisfies p > %, then the quantization error e,(t) and
quantized value q(y:) satisfy the following relationship

1
ez < —la(ye)l2 <la(ye)l2, 27

where the parameter o = 1%5 satisfies o > 1.
The detail proof of Lemma 3 is omitted here for space
reason.

B. Error dynamic analysis

In this section, the design tasks of observer gain Em‘ and
the discontinuous input us(t) are carried out to ensure the
stochastic stability of error system (17). On basis of the result
of Section IV-A, the term u;(t) is constructed as the following
form

a+1 Qe
us(t> = - ((al)|P1iBa1|2 X ’Ya“v‘ o — 1)

x (P1iBa1)” ' sgn (q(e1)),

where « is introduced to adjust and compensate quantization
effects, v, > 0 is the norm upper bound of the actuator fault
fa(t) defined in (A4), and € > 0 is a small parameter which
is selected artificially.

We present the stability analysis result of the error dynamics
(17) under the quantized controller (28).

(28)

Theorem 2. Considering the sliding mode controller us(t)
(28) in error dynamics (17), if the density of the logarithmic
quantizer (8) satisfies p > 3, and for each i € S there
exist positive and definite matrices P;; € R**?, P, €
R tp=2a)x(ntp=20) P — diag{ Py;, Py;} and matricesY; €
R(+p=a)x(p=a) gych that the following matrices inequality
holds

PS5 (A; — NoFy) + (A; — NoFy)"5~ TP,

~YiCo = CTY" + 3 ;P <0 (29)

=1

then the error dynamics (17) is stochastically stable. Further-
more, the observer gain L,,; is designed as Ly; = SPi_lYi.

Proof. Considering the error dynamics (17) with the quantizer
updating instant t; being taken into account, we choose the

following Lyapunov function
Vit =1i) = e" () Pe(t), te(t, tirr),  (30)

for each i € S, where P; > 0 is as previously defined. Taking
the Weak infinitesimal operator along the state trajectories of
system (17) for ¢ € (tx, tg4+1), it can be calculated that

LV(ti) = &) [PiS—l(Ai — NoFy — LiCs)
+(A; — NoFy — L, Co)"S™ TP, +
> mjﬁ’j} e(t)
j=1
+2eT (t) P B, (us(t) — fa(t)). (31)

We now consider the term e’ (t)P; B, in (31). In fact, it can
been seen that

éT(t)piBa
— [0 ) L) x [ e
N——— O(ﬁfa)xa ‘ Py;
n+p—=2a
T
T T
X Bal O(n+p72a)><a :|
= &l (t)PyBa (32)

one can thus obtain
"' (t)PiBa(us(t) — fa(t)) = & (t)PriBax (us(t) — fa(t)) (33)

which can be rewritten as

& (1)PriBu (uslt) — 1u(1))

= l¢"(@(t) — ef (1)) PriBa1 (us(t) — fa(t))

= ¢ (e1(t)) PriBarus(t) — q" (e1(t)) PriBa1 fa(t)
—eg(t)Ph-Balus(t) + €§(t)P1iBa1fa(t) (34)

Given vectors z, y with appropriate dimension, using the
property |xTy| < |z|2|y|2, (34) can be enlarged as

ey (t)P1;Bay (Us(t) - fa(t))
q" (e1(t)) PriBarus(t) + |q(€1(t))|2 X |PriBa1 fa(t)|2
+|€q(t)|2 X ‘PliBalus(t”Q
+leq(t)|2 X |PriBai fa(t)]2

N

(35)

Notice that, if the quantizer density parameter satisfies p > %,
then from Lemma 3 the inequality (27) holds. By replacing
y¢ with &1(¢) in the inequality (27) one can obtain |e,(t)]2 <
L4(&1(t)), and thus the third and fourth terms in the right side
of inequality (35) follow that

leq(t)|2 X [PriBaius(t)]2 + |eq(t)]2 X [PriBaifa(t)l2
1
< —q(@®) x [|PuBarus ]z + |PuBar fu®)l] G6)
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On the other hand, we decompose ¢7'(€;(t))P;Baius(t) as

a—1

q"(e1(t))PriBaius(t) = q" (e1(t)) PriBaius(t)

(&%
1
+—q" (&1 (1)) PriBarus (£) 37)

then by substituting (36)-(37) into (35) we have
el (0)PriBar (us(t) — falt))

(@ (0) PriBarus (1)

(14 7)1 @)

+$qT(él (t)) PriBarus(t)

1
JFE\Q(él(t))\Q X | PriBaius(t)]2

For simplicity we denote the controller gain of (28) as
Qe

a—+1
B = ( )7a|P1iBa1|2 +—,
a—1 a—1

by substituting the controller (28) into (38), for the first and
second term in the right side of inequality of (38) we have

N

l2 X |P1iBai fa(t)]2

(38)

qu(él (t))PriBaius(t)

(%

+ (1 + ;) |qT(é1(t))|2 X |P1iBa1fa(t)|2
— _MqT(él(t))(PuBal)(PliBal)7

+(a+ 1)|q (€1(t))|2 X |PrsBa1 fa(t)|2
7@ <0‘+1|PM atl2Va + —
0 e,

(a+1)

' Bsgn(q(e1))

N

) @)k

(t)|2 % |PriBatl2Va

N

lg(e1(t))|2 X |P1iBail27a

e e

= —elg(e(®))]2

On the other hand, under controller (28) the third and fourth
terms in the right side of the inequality (38) follows

2 X |P1iBail2va — €lq(e1(t))l2
(39)

" (@ (1) PusBarts () + —la(ea (1) el P Bares (1)

< D@+ Zla@ o)l x lsen (a(@)l) - @0
Notice that |sgn (g(€1)) |2 = 1 and thus we have

~Lla@ @)z + laer @)l x e alen) =0, @D

which further implies

1 1
T( 1)PriBaius(t) + a|q(él)|2|P1iBalus(t)|2 =0. 42)
Substituting (39) and (42) into (38) yields

€1 (t)P1iBa1 (us(t) — fa(t)) < —elq(e1(t))]2 < 0. (43)

It follows from (43) and (31) that
2V(ti) < (O[PS THA ~ NoFy = LyCy)
+(/L — N()Fz — EpinQ)Tngpi

+i P e(t)

In the light of (29) with letting LpZ = SP 1Y;, it can be
derived that P;S™1(A; — NoFy — L;Ca) + (A; — NoFy —
L, C)TS™TPR, +Z ', mi; Pj < 0. Therefore, it follows from
(44) that £V (t,i) < 0 for V¥ é(t) # 0. Following a similar
line in the proof of Theorem 4 in Section 2.2 in [1], it can be
proved that E { [ [[€(t)||* | &,70} < oo, which means that
error system (17) is stochastlcally stable. This completes the
proof. O

(44)

We now summarize the design procedure of the proposed
robust observer strategy in this paper as follows.

Design procedure:

(1) Perform a coordinate transformation for system (1) to
obtain the standard form (3);

Select the derivative gain Lp according to Lemma 1
such that the matrix S = (E + LpC) is nonsingular;
solve the condition (29) to obtain the Lyapunov matrix
P; and thus obtain the observer gain L.

Select the logarithmic quantizer density as p > 1/3 such
that the design parameter o satisfies 2 < 1, design u,(t)
as the form of (28).

(ii)
(iii)

V. SIMULATION EXAMPLE

In this section, we will present a practical exam-
ple to demonstrate the effectiveness of the proposed ob-
server approach. We consider the nominal system matrix
A(ry) of (3) which is taken from the following linearized
model of an F-404 aircraft engine system in [7] A(t) =

—1.46 0
0.1643 + 0.5¢(t)  —0.4 + (t)
0

0.3107
certain model parameter. Let v (¢) be subject to a Markov
process r(t) with s = 2, and the transition rate be given as
m11 = —3, M2 = 3, a1 = 4, M2 = —4. The uncertainty (t)
is assumed to be —0.5 when r(t) = 1 and —2 when r(t) = 2,
respectively. Under this setting , we have

4| o= |

Other coefficient matrices of (3) are set as follows:

] with 1 (¢) being an un-

—1.4600 0
—0.0857 —0.9
0.3107 0

2.428
—0.3788
—2.23

—1.46 0
—0.8357 —2.4
0.3107 0

2.428
—0.3788
—2.23

0.15  0.12 0.15 0.2
By = 015 —15 |, By = | o011 -15 ,
0.2 —0.2 0.50 —0.5
05 1 1 0 o0
B, = o1 1 [, C=]0o 1 o
0o 0 0 o0 1.3

It is obvious that the system matrices satisfies the standard
form (3). It is assumed that the actuator faults f,(t) =

[FL () fL (1)) has the following forms:
0.1¢, 0<t<2,
Ja(t) = ¢ 0.2 2<t<3,
0.5sin(10t) + 0.2 cos(10¢) 3 <t <5
0.3 cos(5t), 0<t<,

fa2(t) = {

2sin(10t) +0.1 1<t<5

}
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and it is calculated that v, = 2.1. Furthermore, the control
. . T )

input is set as u(t) = [ —cos(t) —cos(t) | . In this case
the system dimensions are n = 3, p =3, a = 2 and n = 4.
According to the proposed design procedure, we select the
derivative gflin as Lp = [ 0 0 0 0.5 ]T, and it can be
calculated S is nonsingular. Solve the condition (29), The
observer gains L,,; is thus calculated as

Ly = [ —04211 00255 —0.3237 —0.3239 |,
Ly, = [ —0.3863 0.0441 —0.2909 —0.2998 |” .
We select the quantizer density p = [p1 p2 p3]? as p1 =
pa = p3 = 0.8, and it is calculated @ = 22~ = 8. Choose

1—

e = 1074, we design us(t) as us(t) = f((2.7p)>< |P1;Bail2 +
1.1429 x €) x (P1;Ba1) 'sgn(q(é1)). The simulation results
are provided in the following Figures 2-3. The trajectories of
state vector x(t) and its estimations are illustrated in Figure
2, and the comparisons between output measurements ¥(t)
and its quantized values are exhibited in Figures 3. It can be
seen that the tracking performance of system states x(¢) has
achieved ideal performances.

4 \le(t) . . 1
ol < estimation

0 1 2 3 4 5
0 T T T T

P

estimation

o 1 2 3 4 5
<X, (1)

& _—estimation

-1+ // =~ 7
- <\x?(t)

Time (Sec.)

Fig. 2. x(t) and its estimation
o | ‘ ‘ :
=y —— - ——an®) ]|
2r ; ]
I ~ i ]
' | ‘ ) ‘
0 1 2 S . ;
;A :
af w
jj‘—f_j, yo(t) a(y2(1)) ‘
28 1 2 3 2 S
: ‘ : : ‘
T [ w® ——aws®)]|
| ]
. ‘ ;
0 1 2 8 ! °
Time (Sec.)
Fig. 3. y(t) and its quantized value q(y(t))

VI. CONCLUSION

In this paper, the robust state observer design problem has
been investigated for a class of continuous-time MIJSs with
quantization and actuator faults. A descriptor augmentation
observer approach has been proposed to solve this design prob-
lem. A simulation of F-404 aircraft engine system has been
provided to illustrate the validness of the developed robust
observer approach. Our future work will consider extending
the proposed observer approach to nonlinear systems with

interval type-2 fuzzy model [11], [9], [10].
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