A comparison of porosity values inferred from magnetotelluric and bore-hole density data; case studies from two geothermal regions in South Australia

Thesis submitted in accordance with the requirements of the University of Adelaide for an Honours Degree in Geophysics.

Philippa Murray

October 2012

ABSTRACT

Porosity is one of the main determining factors of the prospectivity of geothermal regions and can be estimated in a number of ways from geophysical surveys. The objective of this work was to better understand the link between porosity, permeability and electrical resistivity through Archie's law. This was achieved by comparing porosity values derived from magnetotelluric (MT) data with those derived from density measurements taken in a petroleum borehole. Two case studies were used and are located in north-eastern South Australia. The outcomes of these studies will help to minimise exploration risk by proving the effectiveness of MT as a primary survey of geothermal regions. This study provides a stepping stone to understand the ways in which permeability can be determined from MT surveys in order to better quantify expected fluid flow rates in geothermal prospects.

KEYWORDS

Porosity, Geothermal, Magnetotellurics, Resistivity, Density, Archie's law, permeability.

Table of Contents

Introduction	7
Background Information	8
Methods	14
Observations and Results	18
Case Study 1: Moomba North	18
Case Study 2: Mungerannie	21
Discussion	27
Case Study 1: Moomba North	27
Case Study 2: Mungerannie	32
Permeability	34
Conclusions	39
Acknowledgments	39
References	39
Appendix A: additional information – part I	41
Appendix B: additional information – part II	

List of Figures

1.	MT survey and borehole locations	9
2.	Typical apparent resistivity and phase for the Mungerannie MT survey .	14
3.	Typical apparent resistivity and phase for the Moomba North MT survey	15
4.	Resistivity profile of the Moomba North MT survey	19
5.	1-D resistivity-depth profile of the Moomba North MT survey	20
6.	Porosity-depth profile of the Moomba 086 borehole data with moving	
	average filters	21
7.	Porosity vs depth for the Moomba North MT survey	22
8.	Resistivity profile of the Mungerannie MT survey	23
9.	Resistivity-depth profile of Mungerannie MT survey station 116	24
10.	Porosity vs depth for the Mungerannie MT survey	25
11.	Porosity-depth profile of the Mulkurra West 001 borehole data with mov-	
	ing average filters	26
12.	Moomba North porosity data with a linear regression	29
13.	The effect of changing variables in Archie's law on calculated porosity	
	values for the Moomba North Case study	31
14.	Mungerannie porosity data with a linear regression	36
15.	The effect of changing variables in Archie's law on calculated porosity values	37
16.	Permeability of Mungerannie estimated using MT data and an approxi-	
	mately exponential relationship between porosity and permeability	38
17.	permeability of Moomba North estimated using MT data and Archie's law	38
18.	Porosity-depth for the Moomba North MT Survey (depth 0-10000 m) $$	43
19.	Porosity-depth for the Mungerannie MT Survey (depth 0-10000 m)	43

List of Tables

1.	Summary of parameter value ranges for Archie's law (Equation 7)	18
2.	Values for Archie's law used in Equation 7 to produce the Moomba North	
	1-D porosity profile	22
3.	Values for Archie's law used in Equation 7 to produce the Mungerannie	
	1-D porosity profile	24
4.	Mean and standard deviation data for the magnetotelluric and borehole	
	surveys in the Moomba North case study	28
5.	Linear regression statistics for case study 1	30
6.	Mean and standard deviation data for the magnetotelluric and borehole	
	surveys in the Mungerannie case study	33
7.	Linear regression statistics for case study 1	33
8.	Locations of MT stations for the Mungerannie Survey	41
9.	Locations of MT stations for the Mommba North Survey	42