New constraints on Chewings-aged deformation and metamorphism of ca. ≥1750 Ma crust in the Reynolds Range, central Australia

Thesis submitted in accordance with the requirements of the University of Adelaide for an Honours Degree in Geology

Mathew Reid November 2012

TITLE

New constraints on Chewings-aged deformation and metamorphism of ca. \geq 1750 Ma crust in the Reynolds Range, central Australia

RUNNING TITLE

Mathew D. Reid

ABSTRACT

U-Pb monazite and zircon geochronology from Proterozoic high-temperature, lowpressure granulite facies rocks within the Reynolds Range of the Arunta complex in central Australia provide constraints on the timing of magmatism, fabric development and metamorphism. Monazite age data preserves a Meso-Proterozoic age population (c.1570-1550 Ma) while zircon age analyses preserve a Paleo-Proterozoicage population (c.1775-1755 Ma). The varying response of zircon and monazite to differing conditions allows for constraints on magmatism and metamorphism. Long lived Chewings age metamorphism is constrained by monazite grains analysed from the Napperby Gneiss, metapelite and leucosomes of the Woodforde River valley. Zircon analyses defines the ca. 1765 Ma population and is from the same rock types as the monazite samples, zircon morphologies are commonly euhedral and commonly oscillatory zoned with thin to larger dark overgrowths prominent in garnet bearing leucosomes. Overgrowths commonly record younger ages than the cores with a cryptic record of c.1630-1620 Ma evident in rare grains that could support evidence for extensional tectonism in the Aileron province. Two fabrics, S3 and S4, are commonly seen in outcrop in the Napperby gneiss and Reynolds Range group and they define an intersection lineation that plunges gently to moderately to the ESE.

The main penetrative fabric within the Reynolds Range (S3; this study) is dated to be Chewings age, with this age established from monazite in cordierite, sillimanite bearing metapelite. This study shows that zircon and monazite should be used in conjunction with each other in order to establish a solid interpretation of tectonothermal events.

KEYWORDS

Keywords: U-Pb monazite geochronology; U-Pb zircon geochronology; Reynolds Range; Proterozoic Australia;

TABLE OF CONTENTS

Title	1
Running title	1
Abstract	1
Keywords	1
1 LIST OF FIGURES AND TABLES	4
2 INTRODUCTION	5
3 GEOLOGICAL SETTING	7
3.1 Regional Geology	7
3.2 Geology of the Reynolds Range	11
3.3 Study Area	14
4. FIELD OBSERVATIONS	15
4.1 Woodforde River valley region	15
5 METHODS	21
5.1 Whole rock composition and pressure-temperature pseudosection	21
5.2 U-Pb LA-ICP-MS Geochronology	22
5.2.1 Zircon Analysis	22
5.2.2 Monazite Analysis	23
6 RESULTS	26
6.1 Geochronology	26
6.1.1 U-Pb Zircon LA–ICP–MS geochronology	26
6.1.1.a Sample NAP-3: Mylonite in Napperby Gneiss	26
6.1.1.b Sample NAP-4: Napperby Gneiss with S3 fabric	27
6.1.1.cSample NAP-13: Leucosome with retrogressed garnet	27
6.1.1.d Sample NAP-16: Garnet-bearing leucosome	28
6.1.1.e Sample 2012MR14: Granitic gneiss	29
6.1.1.f Sample 2012MR9: Sillimanite–cordierite–biotite metapelitic gneiss	31
6.1.1.g Sample NAP-11a: Sillimanite–cordierite–biotite metapelitic gneiss	31
6.1.2 U-Pb monazite LA–ICP–MS geochronology	35
6.1.2.a Sample NAP-4: Napperby Gneiss	35
6.1.2.b Sample NAP-13: Leucosome with retrogressed garnet	35
6.1.2.c Sample 2012MR6: Garnet-absent leucosome	35
6.1.2.d Sample 2012MR14: Granitic gneiss	36
6.1.2.e Sample NAP-11a: Sillimanite–cordierite–biotite metapelitic gneiss	37

6.1.2.f Sample 2012MR9: Sillimanite-cordierite-biotite metapelitic gneiss	38
6.1.2.g Sample 2012MR11: Sillimanite–cordierite–biotite metapelitic gneiss	38
6.2 Petrography	39
6.2.1 Pressure-temperature conditions	41
7 DISCUSSION	43
8 CONCLUSIONS	52
9 ACKNOWLEDGEMENTS	53
10 REFERENCES	54
Appendix A: U-Pb LA-ICPMS Zircon data	1
Appendix A: U-Pb LA-ICPMS MONAZITE data	12

1 LIST OF FIGURES AND TABLES

Figure 1: Map showing the context of the Reynolds- Anmatjira Yalyirimbi Ranges with the study area
marked in green. Adapted from Scrimgeour (2005) and Raimondo 2011
Figure 2: Photographs of the four types of leucosomes a) occur parallel to S_3 and S_4 , with large 2-15cm
garnet poikiloblasts; b) leucosomes that present k-feldspar rich depletion halos surrounding garnet and
run parallel to foliation; c) Finer grained that a and b that are isoclinally folded and pertain to D_2/S_2 fabric;
d) granitic melt that is garnet absent and has accumulated structurally on top of the Napperby gneiss and
has been unable to penetrate through the overlying calc-silicate
Figure 3: Calc-silicate rock that preserves spectacular structures; a) isoclinal folding of a composite
compositional and early tectonic layering; b) Domino boudins indicating a top to the north shear sense; c)
Interboudin dilation in the N—S orientation give micro evidence of extension; d) South vergent folds that
give top to the south shear sense
Figure 4 : Photographs of the Reynolds Range metapelite a) Rare S_0 graded bedding, fining upward
sequence indicate younging to the north; b) the preservation of three fabrics, S_2 layer S_0 parallel fabric
with a steeper S_{3} ; c) Layer parallel D_3 leucosomes that have biotite rich melanosomes
Figure 5: Sample location map within the Reynolds Yalyirimbi Range a) map of relevant units and
sample locations b) rough schematic cross section displaying rough structural interpretation and areas of
sample collection
Figure 6: Concordia and Probability density plots along with Cl images of U-Pb zircon geochronology on
the two metapelite samples
Figure 7: Calculated Th-U plots for all samples that had zircon analysis
Figure 8: Concordia plots and BSE images of U-Pb monazite analysis
Figure 9: Concordia plots and BSE images for U-Pb monazites from metapelitic samples
Figure 10: Photomicrographs of sample 2012MR9 a) Plain polarised light of fabric defining sillimanite
and biotite, with cordierite enclosing fine grained sillimanite. b) Cross polarised light at 1.5 magnification
showing granoblastic psammitic layer and S_3 fabric being defined by biotite and fine and coarse grained
sillimanite
Figure 11: Pressure-temperature pseudosection for sample 2012MR9. Note P-T Pseudosection was
calculated by A.Walsh. The modelling for this sample is preliminary and is aimed at providing a
generalised picture of the pressure and temperature conditions of this rock
Figure 12: A comparison of Th/U ratios from Collins and Williams (1995) and this study46

Table 1: Summary of the main tectonothermal events that have affected the Arunta Complex, with	
particular emphasis on the known impact on the Reynolds-Anmatjira Ranges1	10
Table 2: Summary of samplesanalysed for U-Pb zircon and/or monazite geochronology (all samples) and	d
metamorphic pressure-temperature (denoted by ^) work. The GPS coordinates are the UTM grid system	
zone 53K with the WGS84 datum. The structural domain/setting of each sample is also	
provided2	21
Table 3: Table of samples with their respective ages and interpretations. Samples NAP-3, NAP-4, NAP-	
11aare from south of Mt Airy. All other samples are from the Woodforde River valley	2