THE ROLE OF THE HEXOSAMINE BIOSYNTHESIS PATHWAY AND β-O-LINKED GLYCOSYLATION IN DETERMINING OOCYTE DEVELOPMENTAL COMPETENCE

Laura Alice Frank

School of Paediatrics and Reproductive Health Research Centre for Reproductive Health Discipline of Obstetrics and Gynaecology University of Adelaide, Adelaide Australia

Thesis submitted to The University of Adelaide in fulfillment of the requirements for admission to the degree of Doctor of Philosophy

February 2012

Abstract

Maternal diabetes and conditions such as obesity in which blood glucose levels are elevated are associated with reduced fertility and poor pregnancy outcomes. Many studies have examined the effects of hyperglycaemia on the early embryo and fetus; however, it is becoming increasingly evident that the peri-conceptual environment surrounding the oocyte has a significant impact on developmental competence and the long-term health of offspring.

In this thesis, I aimed to investigate the role of the hexosamine biosynthesis pathway (HBP) in oocyte developmental competence. The HBP is a glucose-metabolising pathway which can also be upregulated by glucosamine, a potent hyperglycaemic mimetic which enters the HBP downstream of the rate-limiting enzyme. The HBP produces uridine diphosphate-N-acetylglucosamine, which can be used for the β -O-linked glycosylation (O-GlcNAcylation) of proteins, regulating their function in a similar manner to phosphorylation.

Firstly I established the effect of hyper- and hypo-glycaemic conditions during in vitro maturation (IVM) of mouse cumulus-oocyte complexes (COCs) on a range of measures associated with oocyte developmental competence, including cumulus expansion, meiotic maturation, cleavage and blastocyst development rates. A low (1 mM) glucose concentration achieved optimal oocyte competence, and glucose supplementation during only the first hour of IVM was necessary and sufficient to support oocyte maturation and embryo development to the blastocyst stage. Glucosamine was able to substitute for glucose during this first hour.

In the absence of glucose throughout IVM, glucosamine was not able to increase developmental competence, and at higher concentrations (2.5 and 5 mM) had a detrimental effect on these outcomes. These experiments underscored the importance of the other glucose metabolic pathways, during COC maturation, and supported the concept that excess flux through the HBP has detrimental consequences.

Using Western blots and immunohistochemistry, it was shown that both glucosamine and high glucose levels induced an increase in total O-GlcNAcylation in COCs, which was reduced in the presence of an inhibitor of the β -O-linked glycosyltransferase enzyme. Several specific proteins were identified using mass spectrometry as potential targets of O-GlcNAcylation in COCs, including heat-shock protein 90 (HSP90, both α and β isoforms). While glucosamine treatment of COCs significantly decreased blastocyst development rate, inhibiting HSP90 with 17-allylamino-17-demethoxygeldanamycin during IVM in the presence of glucosamine recovered blastocyst rates to control levels. This effect was not due to an increase in overall HSP90 levels, since inhibiting HSP90 in control COCs did not affect blastocyst rate. These results suggest O-GlcNacylated HSP90 has an aberrant function in the COC.

This study is the first to examine in detail O-GlcNAcylation levels in the COC, and their correlation to oocyte developmental competence. HSP90 was identified as a potential target of O-GlcNAcylation in the COC, and subsequently shown to mediate oocyte developmental competence. This research is significant because of the increasing numbers of women wishing to become pregnant who have high blood glucose levels due to diabetes, obesity or poor diet. I have generated critically needed knowledge towards understanding how these lifestyle factors affect fertility and identifying possible avenues for new therapies.

Declaration

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

In addition, I certify that no part of this work will, in the future, be used in a submission for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree. I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Laura Alice Frank

2012

Dedication

I dedicate this thesis to my grandfather, Professor William Herdman Elliott.

Acknowledgements

I would first like to sincerely thank my supervisors Associate Professor Jeremy Thompson, Dr. Melanie Sutton-McDowall, Dr. Robert Gilchrist, Dr. Darryl Russell and Dr. Michelle Lane for giving me the opportunity to undertake this PhD. You have all shown me how to think and write scientifically. I would especially like to thank Jeremy, for being so available for guidance and feedback whenever I needed it, and for so much encouragement and patience throughout the past 3 and a half years. You allowed me to make my own decisions about the project, taught me how to deal with experimental problems and supported me the whole way. Mel, as a fellow member of Team Glucose it was valuable to have your advice and feedback along the way, not to mention infinite editing capacity! Thank you for being such a supportive supervisor and good friend. Rob and Darryl, thank you for your guidance with experimental design and techniques, and assistance with all my abstracts.

I would like to acknowledge the support of the National Health and Medical Research Council for grant funding for these studies, as well as the University of Adelaide and Jeremy Thompson for my postgraduate scholarship. Travel to conferences was assisted by support from the Research Centre for Reproductive Health and the Faculty of Health Sciences at the University of Adelaide, the Society for Reproductive Biology and the Society for Reproduction and Fertility.

Thank you to Deanne, Qian, Lesley, Ash, Dave and Karen for all your help in the lab and with troubleshooting, and for answering my many questions about experimental techniques. Dulama, Jacky, Georgia, Qian, Ryan and Nicole, thank you for your friendship and encouragement throughout the past few years, it has been a great experience sharing an office with you. Jun, thanks for being my fellow Team Awesome member, and being so willing to help me in the lab. Deanne, I couldn't have done this without visiting your office regularly; you are a very calming influence and always know what to do when I am stuck! Thanks to Annie for your constant encouragement and sense of humour, and Hannah for helping me through so much problem-solving, keeping me positive and being a great friend.

To all my friends who have put up with no contact for a while, thank you for your patience and I look forward to seeing you again! Last but not least I would like to thank all my family, especially my parents, grandparents and sister Hannie, for going through this PhD with me and being a constant support even when things were tough, and for helping me make the right decisions. I appreciate it all!

Publications arising from this thesis

 FRANK L. A., SUTTON-MCDOWALL M. L., RUSSELL D. L., WANG, X., FEIL, D., GILCHRIST R. B. & THOMPSON J. G. (2012) *Effect of varying glucose and glucosamine concentration* in vitro *on mouse oocyte maturation and developmental competence*. Reproduction, Fertility and Development (accepted, in press).

Abstracts arising from this thesis

- FRANK L. A., SUTTON-MCDOWALL M. L., RUSSELL D. L., GILCHRIST R. B. & THOMPSON J. G. (2012) Proteomic analysis of β-O-linked glycosylated proteins extracted from glucosamine-treated mouse cumulus-oocyte complexes reveals HSP90 glycosylation as a potential regulator of oocyte competence. Society for Reproduction and Fertility Conference 2012, Edinburgh, UK.
- FRANK L. A., SUTTON-MCDOWALL M. L., RUSSELL D. L., GILCHRIST R. B. & THOMPSON J. G. (2011) Proteomic analysis of β-O-linked glycosylated proteins extracted from glucosamine-treated mouse cumulus-oocyte complexes reveals HSP90 glycosylation as a potential regulator of oocyte competence. Society for Reproductive Biology Annual Scientific Meeting, Cairns, Australia.

Winner of Oozoa Award for oral presentation

- 3. FRANK L. A., SUTTON-MCDOWALL M. L., RUSSELL D. L., GILCHRIST R. B. & THOMPSON J. G. (2011) Proteomic analysis of β-O-linked glycosylated proteins extracted from glucosamine-treated mouse cumulus-oocyte complexes reveals HSP90 glycosylation as a potential regulator of oocyte competence. 44th Meeting of the Society for the Study of Reproduction, Portland, Oregon, United States of America.
- 4. FRANK L. A., SUTTON-MCDOWALL M. L., RUSSELL D. L., GILCHRIST R. B. & THOMPSON J. G. (2010) Mouse oocyte require hexosamine biosynthesis pathway substrates during the first hour of in vitro maturation for subsequent embryo development. Australian Society for Medical Research South Australian Annual Scientific Meeting, Adelaide, Australia.
- FRANK L. A., SUTTON-MCDOWALL M. L., RUSSELL D. L., LANE, M., GILCHRIST R. B. & THOMPSON J. G. (2009) The effect of altering glucose levels during collection and maturation of mouse oocytes on subsequent developmental competence. Faculty of Health Sciences Postgraduate Research Expo, the University of Adelaide, Adelaide, Australia.
- 6. FRANK L. A., SUTTON-MCDOWALL M. L., RUSSELL D. L., LANE, M., GILCHRIST R. B. & THOMPSON J. G. (2009) The effect of altering glucose levels during collection and maturation of mouse oocytes on subsequent developmental competence. Society for Reproductive Biology Annual Scientific Meeting, Adelaide, Australia.

Table of Contents

	Abstra	act		
	Decla	ration		IV
	Dedic	ation		V
	Ackno	wledge	ments	VI
	Public	ations a	rising from this thesis	VII
	Abstra	acts aris	ing from this thesis	VIII
	Table	of con	tents	IX
	List of	figures		XIII
	List of	tables		XV
	Abbre	viations		XVI
СНАРТ	ER 1	INV	E EFFECTS OF PRE-CONCEPTION HYPERGLYCAEMIA AND OLVEMENT OF THE HEXOSAMINE BIOSYNTHESIS PATHWA DIATING OOCYTE DEVELOPMENTAL COMPETENCE	Y IN
	1.1	INTRC	DUCTION	21
	1.2	FOLLI	CULOGENESIS AND OOCYTE MATURATION IN MAMMALS	22
	1.3	GLUC	DSE METABOLISM IN THE MATURING CUMULUS-OOCYTE COMPLEX	25
		1.3.1	Glycolysis and Energy Production in the COC	27
		1.3.2	The Pentose Phosphate Pathway	28
		1.3.3	The Polyol Pathway	28
		1.3.4	The Hexosamine Biosynthesis Pathway	29
	1.4	β-O-LI	NKED GLYCOSYLATION (O-GLCNACYLATION)	31
		1.4.1	Enzymes of β-O-linked Glycosylation	33
		1.4.2	β -O-linked Glycosylation and Phosphorylation	33
		1.4.3	Molecular Mechanism of O-GlcNAc Modulation of Proteins	34
		1.4.4	Currently Known Roles of β-O-linked Glycosylation	35
	1.5	DEVEI	OPMENTAL ORIGINS OF HEALTH AND DISEASE	39
	1.6	THE E	FFECTS OF HYPERGLYCAEMIA ON FEMALE REPRODUCTION	40
		1.6.1	Clinical Consequences of Hyperglycaemia on Female Reproduction	43

		1.6.2 Bi	ological Consequences of Hyperglycaemia on Female Reproduction	44
	1.7	CONCLU	SIONS	46
	1.8	НҮРОТН	ESES AND AIMS	47
		1.8.1 H	ypothesis 1	47
		1.8.2 H	ypothesis 2	47
CHAP.	TER 2	MATE	RIALS AND METHODS	48
	2.1	CHEMICA	ALS AND SOLUTIONS	49
	2.2	ANIMAL I	PROCEDURES	49
		2.2.1 M	ice	49
		2.2.2 O	varian Stimulation	49
	2.3	CUMULU	S-OOCYTE COMPLEX (COC) AND EMBRYO CULTURE	49
		2.3.1 C	OC Collection and Maturation	49
		2.3.2 Fe	ertilisation	50
		2.3.3 Er	mbryo Culture and Assessment	50
	2.4	ASSESSI	MENT OF CUMULUS EXPANSION INDEX (CEI)	50
	2.5	ASSESSI	MENT OF MEIOTIC MATURATION	53
	2.6	IMMUNO	FLUORESCENCE	55
	2.7	IMMUNO	PRECIPITATION	55
	2.8	WESTER	N BLOTTING	56
	2.9	STATIST	ICAL ANALYSES	56
CHAP	TER 3	COLLE	CTS OF HEXOSAMINE BIOSYNTHESIS PATHWAY SUBSTRATES DE ECTION AND IN VITRO MATURATION OF MOUSE COCS ON OC LOPMENTAL COMPETENCE	OCYTE
	3.1	INTRODU	JCTION	58
	3.2	METHOD	9S	60
		3.2.1 Ex	xperimental Design	60
	3.3	RESULTS	S	61
	3.4	DISCUSS	SION	75

CHAPTER 4		-LINKED GLYCOSYLATION IN MOUSE CUMULUS-OOCYTE (RING IN VITRO MATURATION	
4.1	INTRO	DUCTION	81
4.2	MATER	RIALS AND METHODS	82
	4.2.1	Immunoprecipitation	82
	4.2.2	Western Blotting	82
	4.2.3	Experimental Design	82
4.3	RESUL	LTS	84
4.4	DISCU	ISSION	94
CHAPTER 5		NTIFICATION OF B-O-LINKED GLYCOSYLATED PROTEINS IN M	
5.1	INTRO	DUCTION	98
5.2	METH	ODS	99
	5.2.1	Immunoprecipitation	99
	5.2.2	Western Blotting	99
	5.2.3	Silver Staining and Mass Spectrometry	99
	5.2.4	Experimental Design	100
5.3	RESUL	LTS	101
5.4	DISCU	ISSION	108
CHAPTER 6	DIS	CUSSION	113
CHAPTER 7	BIB	LIOGRAPHY	122
APPENDIX 1	ME	DIA, SOLUTIONS AND PROTOCOLS	149
8.1	COCC	COLLECTION AND MATURATION MEDIA	150
8.2	IMMUN	NOFLUORESCENCE	152
	8.2.1	Immunofluorescence Solutions	152
	8.2.2	Immunofluorescence Protocol	153
8.3	IMMUN	NOPRECIPITATION SOLUTIONS	153
8.4	WESTI	ERN BLOTTING	154
	8.4.1	Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS	
			•

	8.4.2	Western Blot Buffers	155
APPENDIX 2	TIM	ECT OF FETAL CALF SERUM, GLUCOSAMINE SUPPLEMENTA E IN COLLECTION ON MARKERS OF OOCYTE DEVELO MPETENCE	OPMENTAL
9.1	FETAL	CALF SERUM SUPPLEMENTATION IN MATURATION MEDIUM	
9.2	EFFEC	CT OF TIME IN COLLECTION ON EMBRYO DEVELOPMENT	
APPENDIX 3		DITIONAL WESTERN BLOTS, MASS SPECTROMETRY REPORT A	
10.1	CTD	110.6 WESTERN BLOTS	
	10.1.1	Buffers	
	10.1.2	Protocol	
	10.1.3	Competitive Inhibition of CTD110.6 for Western Blot	
	10.1.4 Matura	Densitometry Analysis of β -O-linked Glycosylation in COCs tion \pm Glucosamine and BADGP	
10.2	HEA	T-SHOCK PROTEIN 90 (HSP90) WESTERN BLOTS	
	10.2.1	Buffers	
	10.2.2	Staining Protocol for HSP90	
10.3	MAS	SS SPECTROMETRY REPORT FROM ADELAIDE PROTEOMICS	
10.4	PRE	LIMINARY WORK FOR 17AAG EXPERIMENTS	
	10.4.1	Dose-response of 17AAG	
	10.4.2	Toxicity Testing of 17AAG	

List of Figures

Figure 1.1	Folliculogenesis
Figure 1.2	Glucose metabolism in cumulus-oocyte complexes (COCs)
Figure 1.3	Fates of uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc)32
Figure 2.1	Categories for embryo development scoring on Day 551
Figure 2.2	Cumulus expansion scoring system according to Vanderhyden, Caron et al52
Figure 2.3	Meiotic maturation stages54
Figure 3.1	Cumulus expansion indices following glucose dose-response in IVM62
Figure 3.2	Meiotic maturation stage following glucose dose-response in IVM63
Figure 3.3	Cleavage and blastocyst development following glucose dose-response in IVM65
Figure 3.4	Meiotic maturation stage following IVM in various glucosamine concentrations67
Figure 3.5	Cleavage and blastocyst development following glucosamine dose-response in IVM68
Figure 3.6	Cumulus expansion indices following collection and in vitro maturation in various glucose concentrations
Figure 3.7	Meiotic maturation stage following collection and in vitro maturation in various glucose concentrations
Figure 3.8	Cleavage and blastocyst development following collection and in vitro maturation in various glucose concentrations
Figure 3.9	Cleavage and blastocyst development following collection and in vitro maturation in various glucose concentrations ± glucosamine supplementation74
Figure 4.1 A	Representative Western blot of O-GlcNAcylation in COCs throughout IVM \pm glucosamine and BADGP85
Figure 4.1 B	Densitometry analysis of Western blots of O-GlcNAcylation in COCs throughout IVM ± glucosamine and BADGP
Figure 4.2 A	Representative Western blot of O-GlcNAcylation in COCs after 6 h IVM ± glucosamine and BADGP
Figure 4.2 B	Densitometry analysis of Western blots of O-GlcNAcylation in COCs after 6 h IVM \pm glucosamine and BADGP
Figure 4.3 A	Representative Western blot of O-GlcNAcylation in COCs after 6 h IVM in various glucose concentrations
Figure 4.3 B	Densitometry analysis of Western blots for O-GlcNAcylation in COCs after 6 h IVM in varying glucose concentrations

Figure 4.4 A	Immunohistochemistry of O-GlcNAcylation in COCs after 6 h IVM ± glucosamine and BADGP
Figure 4.4 B	Controls for immunohistochemistry of O-GlcNAcylation in COCs after 6 h IVM ± glucosamine and BADGP
Figure 5.1	Levels of β -O-linked glycosylated HSP90 in COCs at 6 h IVM ± glucosamine and BADGP
Figure 5.2	Levels of total HSP90 in COCs at 6 h IVM \pm glucosamine and BADGP105
Figure 5.3	Blastocyst development following inhibition of HSP90 during in vitro maturation ± glucosamine
Figure 6.1	Hypothesis for the mechanism of glucosamine and 17AAG action in mouse COCs 120
Figure 9.1	Cumulus expansion indices following glucose supplementation during collection or in vitro maturation only
Figure 9.2	Meiotic maturation stage following glucose supplementation during collection or in vitro maturation only
Figure 9.3	Effect of time in collection and hexose substrates on embryo development
Figure 10.1	Competitive inhibition of CTD110.6 staining on COC samples
Figure 10.2	Densitometry analysis of Western blots of O-GlcNAcylation in COCs throughout IVM ± glucosamine and BADGP
Figure 10.3	Western blot of O-GlcNA cylation in COCs throughout IVM \pm glucosamine and BADGP 168
Figure 10.4	Cleavage and blastocyst development following inhibition of HSP90 during IVM ± glucosamine
Figure 10.5	Cleavage and blastocyst development following inhibition of HSP90 during IVM179

List of Tables

Table 1.1	Plasma, follicle, oviductal and uterine glucose concentrations in various species	.42
Table 5.1	β -O-linked glycosylated proteins identified in glucosamine-treated COCs	102
Table 8.1	Simple collection and maturation media used for all experiments	151

Abbreviations

17AAG	17-allylamino-17-demethoxygeldanamycin
ADP	adenosine diphosphate
ANOVA	analysis of variance
APS	ammonium persulphate
AR	aldose reductase
ATP	adenosine triphosphate
BADGP	benzyl-2-acetamido-2-deoxy-α-D-galactopyranoside
BMI	body mass index
BMP15	bone morphogenetic protein 15
BSA	bovine serum albumin
cAMP	cyclic AMP (adenosine monophosphate)
CEI	cumulus expansion index
COC	cumulus-oocyte complex
DAPI	4',6-diamidino-2-phenylindole
DMSO	dimethyl sulfoxide
DNA	deoxyribonucleic acid
DOHaD	Developmental Origins of Health and Disease
DON	6-diazo-5-oxo-L-norleucine
eCG	equine chorionic gonadotrophin
ECL	enhanced chemiluminescence
EDTA	ethylenediaminetetraacetic acid

ER	endoplasmic reticulum
ERK	extracellular signal-regulated kinase
FCS	fetal calf serum
FOX01a	forkhead box protein 01a
FSH	follicle-stimulating hormone
G6PDH	glucose-6-phosphate dehydrogenase
GDF9	growth differentiation factor 9
GFPT	glutamine:fructose-6-phosphate amidotransferase
GlcN	glucosamine
GlcNAc	N-acetylglucosamine
GnRH	gonadotrophin-releasing hormone
GRP	glucose-regulated protein
GV	germinal vesicle
GVBD	germinal vesicle breakdown
H ₂ O	water
HbA1c	glycosylated haemoglobin
HBP	hexosamine biosynthesis pathway
HSP90	heat-shock protein 90
ICM	inner cell mass
ICSI	intracytoplasmic sperm injection
IRS	insulin receptor substrate
IVF	in vitro fertilisation
IVM Frank	in vitro maturation

JNK	c-Jun N-terminal kinase
kg	kilogram
KILLER	tumor necrosis factor-related apoptosis-inducing ligand receptor
L	litre
LB	Laemmli buffer
LH	luteinising hormone
LSD	least-significant difference
mg	milligram
MII	metaphase II
mL	millilitre
mM	millimolar
mRNA	messenger RNA (ribonucleic acid)
NAD+/NADH	nicotinamide adenine dinucleotide
NADP+/NADPH	nicotinamide adenine dinucleotide phosphate
O-GlcNAc	β-O-linked N-acetylglucosamine
O-GlcNAcase	β-N-acetylglucosaminidase
O-GlcNAcylated	β-O-linked glycosylated
O-GlcNAcylation	β-O-linked glycosylation
OGT	O-linked β-N-acetylglucosaminyltransferase
PBS	phosphate buffered saline
PFK	phosphofructokinase
PI	propidium iodide
PI 3-K Frank	phosphoinositide 3-kinase

PPP	pentose phosphate pathway
PUGNAc	O-(2-acetamido-2-deoxy-D-glucopyranosylidene)amino-N-phenylcarbamate
PVDF	polyvinylidene
REDOX	reduction-oxidation
RIPA	radioimmunoprecipitation
RNA	ribonucleic acid
RT	room temperature
SDH	sorbitol dehydrogenase
SDS	sodium dodecyl sulphate
SDS-PAGE	sodium dodecyl sulphate polyacrylamide gel electrophoresis
SEM	standard error of the mean
SLC2Ax	solute carrier family 2 (facilitated glucose transporter), member x
SP1	specificity protein 1
SV40	simian vacuolating virus 40
TCA	tricarboxylic acid
Thr	threonine
TEMED	N,N,N',N'-tetramethylethylenediamine
TRAIL	tumor necrosis factor-related apoptosis-inducing ligand
TUNEL	terminal deoxynucleotidyl transferase dUTP nick end labelling
UDP-GIcNAc	uridine diphosphate-N-acetylglucosamine
UV	ultraviolet