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Abstract

Underground rock formations are always under sotness mostly due to overburden
pressure and tectonic stresses. When a borehdidléxl, the rock material surrounding the
hole must carry the load which was initially sugpdrby the excavated rock. Therefore, due
to the introduction of a borehole, the pre-existatigess state in the sub-surface rock mass is
redistributed and a new stress state is inducelervicinity of the borehole. This new stress
state around the borehole can be determined diregtineans oin situ measurements, or can

be estimated by applying numerical methods or ddsem solutions.

In this thesis borehole stability analysis is utaleen by means of the linear elasticity theory.
The introduction of a borehole into a block of rogkich behaves linearly elastic, leads to
stress concentration near the hole. If the roclenataround the borehole is strong enough to
sustain the induced stress concentration, the bteelill remain stable; otherwise rock

failure will occur at the borehole wall. Therefore,key aspect in stability evaluation of a

borehole is the assessment of rock response toamieeh loading.

For borehole stability evaluation in good qualityittte rock formations, which can be
considered as isotopic, homogeneous and lineaalstie] stresses around the borehole are
usually calculated using a closed form formulattanwn as the generalised Kirsch equations.
These equations are the three-dimensional verdigheooriginal form of the well known
Kirsch equations for calculating stresses arounttcalar hole in an isotropic, linearly elastic
and homogeneous material. These equations have voidety used in the petroleum and
mining industries over the past few decades. Howete® boundary conditions on which
these equations were based have been poorly egglanthe literature and therefore merit

further investigation.

In this thesis, in order to eliminate the ambigugiysociated with the boundary conditions
assumed for deriving the analytical model for stremalysis around the borehole, finite
element analysis (FEA) was carried out to createumerical counterpart of the current
analytical solution. It appeared that the assumedndary conditions for deriving the

analytical model, i.e. the generalised Kirsch eiguat are incompatible in the physical sense.
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A new set of boundary conditions in better comp&mith the physics of the problem was
introduced in order to modify the analytical mod&y, reducing the simplifying assumptions

made to facilitate the derivation of the closedif@olution.

Another key parameter in borehole stability evaarais the strength of the rock material at
the borehole wall. The rock strength is usuallyleated using a failure criterion which is a
mathematical formulation that specifies a set tfsst components at which failure occurs. A
number of different failure criteria have been adluced in the literature to describe brittle
rock failure among which the Coulomb and the Hoe&v criteria have been widely used in
industry; however, they both have limitations. Fstance, both the Coulomb and the Hoek-
Brown criteria identify the rock strength only iertns of maximum and minimum principal

stresses and do not account for the influenceeofritermediate principal stress on failure. On
the other hand, at the borehole wall where a géseess states{ > g, > 03) is encountered,

a failure criterion which neglects the influencetloé intermediate principal stress on failure

seems to be inadequate for rock strength estimatitre borehole proximity.

Although a number of three-dimensional failure esia have been proposed over the past
decades, none of them has been universally acceptadjor limitation in studying the three-

dimensional rock failure criteria is the lack okegdate true-triaxial experimental data that can
be used for validation of theoretical rock failunedels. A number of true-triaxial tests were
carried out at the University of Adelaide and tlesults, along with nine sets of published
true-triaxial experimental data, were utilised fmmparison and validation of five selected
failure criteria. These failure criteria have bedgwveloped especially for rock material and
include; the Hoek-Brown, the Pan-Hudson, the Zhahg; the Generalised Priest and the
Simplified Priest. A new three-dimensional failwr@erion was also developed by modifying

the simplified Priest criterion and was identified a three-dimensional model which best

describes the rock failure in three-dimensionasstrstate, compared to other selected criteria.

In this thesis, a case example is presented whereborehole instability is predicted by
comparing the induced major principal stress atibrehole wall to the predicted rock failure
stress. The major in situ principal stress arourel liorehole is calculated by means of the

FEA based on the assumption of a new set of boynctanditions. The rock failure stress

Xiii



under the three-dimensional stress state at thehbte wall is calculated by means of the

newly proposed three-dimensional failure criterion.
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CHAPTER 1 Introduction

1.1. Introduction

Borehole stability problems have been encounteceda$ long as wells have been drilled.
Several new challenges have appeared in recens,\yleawever, making the stability issue
more difficult to handle, and also more importamtsblve. For example, there has been an
increasing demand from the petroleum industry fareansophisticated well trajectories.
Highly deviated, multilateral and horizontal weblse attractive to the petroleum industry,
since a single production platform supporting ahsstirated well can drain a larger area,
reducing the number of platforms required to predaaiven field (Fjeer et al., 2008). Stable
drilling is however normally more difficult in deated than in vertical boreholes. Other
situations where borehole stability problems magXeected to occur are during infill drilling
in depleted reservoirs, when drilling in tectonigalctive areas, and in deep and geologically

complex surroundings (Zoback, 2007).

A borehole stability problem is an example of wtialiers refer to as a “tight hole” or “stuck
pipe” incident. There are many possible reasongifiiing rigs to become stuck, but in the
majority of field cases reported, the fundamen&dson is the mechanical collapse of the
borehole wall (Bol et al., 1994, Gazaniol et aB94). Moreover, the mechanical collapse of
the borehole wall is often combined with a lackdofvn-hole cleaning ability. Such stability
problems typically amount to 5%—-10% of drilling tosn exploration and production, in
terms of time lost and sometimes loss of equipmBEmse numbers imply a worldwide cost to

the petroleum industry of hundreds of millions ofldrs per year (Fjeer et al., 2008).

Underground formations are always under some stnasstly due to overburden pressure and
tectonic stresses. When a borehole is drilleddblk material surrounding the hole must carry
the load which was initially supported by the exatad rock. Therefore, the pre-existing stress
state in the sub-surface rock mass is redistribatedl a new stress state is induced in the
borehole proximity. This new stress state arouredkbrehole can be determined directly by
applying in situ measurements, numerical methoddased form solutions. The introduction

of a borehole into a block of rock which can besidared as linearly elastic, leads to stress

concentration near the hole. If the rock materiauad the borehole is strong enough to
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sustain the induced stress concentration the blaetith remain stable. On the other hand, if
the stresses around the borehole exceed the dtrefghe surrounding rock, failure will

eventually occur and a fractured zone will devedopund the hole. If the fractured zone is too
extensive either the design of the excavation nbesmodified or the excavation must be

supported appropriately.

A key aspect in the stability evaluation of a balehtherefore, is the assessment of the rock
response to mechanical loading. Ideally a techmeadel should account for all factors which
could affect stability, such as well pressure, terafure, time and mud chemistry; however,
such a model is currently unavailable. The focughefcurrent study will be on the effect of

rock response to mechanical loading on boreholsligya

For borehole stability evaluation in good qualityttte rock formations, which can be treated
as isotopic, homogeneous and linearly elastic,cadi®p analysis is suggested, which consists

of:
1. Calculating the stresses around the borehohgise linear elastic theory.

2. Assessing the strength of the rock materialosunding the borehole under the induced

stress state due to drilling the borehole.

Calculating stresses: When a borehole is drilled into an ideal rock kldsotropic, linearly
elastic and homogeneous) stresses around the b@r@@usually calculated using a closed
form formulation known as the generalised Kirscluapns. These equations are a three-
dimensional version of the original form of the $Gh equations (1898) for calculating
stresses around a circular hole in an isotropiedily elastic and homogeneous material. The
three-dimensional version of Kirsch equations carfdund in a report by Fairhurst (1968).
These equations have been widely used in the patrolnd mining industries over the past
few decades. However, the boundary conditions oitlwthese equations were based have

been poorly explained in the literature and theesfoerit further investigation.

Assessing rock strength: Another key parameter in borehole stability evadm is the
strength of the rock material at the borehole witle rock strength is usually formulated as a

failure criterion, which is a mathematical formidet that specifies a set of stress components

2
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at which failure occurs. A number of different eria have been introduced in the literature to
describe brittle rock failure, among which the Guuab, introduced in 1773, and the Hoek-
Brown (1980) criteria have been widely used in stdy however, each has some limitations.
For instance, both the Coulomb and the Hoek-Bromtar@ identify the rock strength only in
terms of maximum and minimum principal stressesamdot account for the influence of the
intermediate principal stress on failure. On thbeothand, at the borehole wall where a
general stress stater;(> 0, > ag3) is encountered, a failure criterion which neglette
influence of the intermediate principal stress aifufe seems to be inadequate to rock strength

estimation in the borehole proximity.

Nevertheless, currently in the petroleum indusegtimation of rock strength around the
borehole is mostly undertaken by applying either@oulomb criterion, or the Drucker-Prager
criterion (1952), which is a three-dimensional ded criterion and incorporates the influence
of the intermediate principal stress. However, fheicker-Prager criterion was initially
developed for soil. The results of true-triaxiatkdesting show that this criterion is unable to
accurately predict rock strength under a three-dsimnal stress state when compared with the
three-dimensional criteria which have been devealopespecially for rock material
(Colmenares and Zoback, 2002). It is desirableetbes, to use a three-dimensional failure

criterion specifically designed for rock materialgredict rock strength.

Although a number of three-dimensional rock failarigeria have been proposed over the past
few decades, none has been universally acceptechajar limitation for studying three-
dimensional rock failure criteria is inadequatestttiaxial test data on rock specimens and as
pointed out by Mogi (2007) the few published résubf true-triaxial tests have been
interpreted more as interesting curiosities, rathan serious challenges to the accepted Mohr-
type criteria. Therefore, three-dimensional rocitufa criteria require further investigation,

incorporating more comprehensive true-triaxial expentation.

After calculating the induced stresses around threhmle and predicting the failure stress
using an appropriate rock failure criterion, whimbst describes the rock behaviour -under a
three-dimensional stress state-, the possibilityhef failure of the rock at the borehole wall

can be estimated. It is worthwhile emphasising thahis study borehole stability analysis is
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undertaken by means of the linear elasticity thedherefore, strength evaluation of intact
brittle rock material, which can be assumed to betinuum, homogeneous, isotropic and
linearly elastic (CHILE), is of interest in thisusly. The portion of inelastic behaviour, in

stress-strain plots, before failure, is small intler rocks and an abrupt failure occurs shortly
after the elastic limit or the yield stress, is reached (Fig. 1.1). Therefore, since yield and
failure for brittle materials are approximately th@me, it is theoretically rational to compare
the value of the maximum induced stress at thehmbeewall estimated by means of linear
elasticity theory to the failure stress of thetlgitock material. It also merits mentioning that
in the case of ductile materials since the failstress is significantly greater than the elastic
limit, linear elastic analysis is a conservative dalo for predicting borehole failure.

Furthermore, failure progression as the accumulatb damage and non-linearly elastic

behaviour of rock is beyond the scope of this study

OA

OF | Failure

»
»
&

Figure 1.1 Failure (a) and yield (a,,) stresses for brittle materials

1.2. Aimsof the Study

Boundary conditions based on which stresses arthmdorehole were formulated, in the
generalised Kirsch equations, have been poorlyaaxgd in the existing literature and need to
be studied in further detail. It is important tan@mber that some simplifying assumptions
were made about the constitutive behaviour of to& material to rationalise the application
of the Kirsch equations for rock material. In othvards the rock material is assumed to be a

continuum, homogeneous, isotropic and linear elastaterial. Even for the linear elastic

4
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constitutive behaviour solving a general three-dishenal problem may be impossible.

Therefore, boundary conditions are defined, comsigehe physics of the problem, in a way

to facilitate the derivation of an analytical maddbwever, the boundary conditions assumed
in the current analytical model do not seem torbeampliance with the physics of the real

problem and need modifications.

On the other hand, since the rock material at tbeetimle wall is subjected to a three-
dimensional stress stategf > o,, > 0,,), a two-dimensional failure criterion such as the
Coulomb or the Hoek-Brown is inadequate for estingatrock strength in the borehole
proximity. Therefore, in order to predict the roékilure at the borehole wall, three-

dimensional rock failure criteria need to be givarther consideration.
Aims of this thesis are outlined as follows:

- Providing a clear explanation to eliminate the ayalty about the boundary conditions
assumed for deriving the current analytical moded, the generalised Kirsch

equations.

- Modification of the current analytical model by rodlucing a new set of boundary

conditions, which reflects the physics of the pesbimore realistically.

- Theoretically investigating a number of selectegéhdimensional rock failure criteria

through conceptual studies on failure theory.
- Development and introduction of a new three-dirrare rock failure criterion.

- Conducting true-triaxial experiments to validated asompare the existing and the

newly proposed rock failure criteria against thesttriaxial experimental data.

- Demonstration of the linkage between techniquab@fstress analysis in the borehole
proximity and the strength estimation of rock mialleadjacent to the borehole wall
through a case study, by predicting instabilityaofleviated borehole and calculating
the minimum and maximum allowable mud weight toebafdrilling the deviated
borehole.
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1.3. Research Method

In order to evaluate the stability of deep borebtcde stepwise analysis is adopted. This
stepwise analysis is depicted in the flow charfign 1.2 and the aims of this research in the

frame of this analysis are subsequently discussed.

Borehole Stability Evaluation

A I | B
) Estimation of the strength of rock

I I
! ! ! !

Elastic numerical Elastic analytical Statistical and Theoretical studies
analysis solution comparative studies and modifications
\ I
Comparlsocrj\',f.valtl.datlon and A 3D failure criterion is
Clarifi TO ' }cta;]mn d selected through comparison,
e identification and modification
boundary conditions

I |
!

Comparison between estimated stresses and C
predicted rock strength in the vicinity of the borehole
for evaluation of the borehole stability

!

Devising strategies for preventing the
borehole from failure
(Designing the drilling fluid)

Figure 1.2 Demonstration of different phases in the stepwise research
method adopted in this study

Step A Linear elastic stress analysis is carried oustorate the induced stresses around the
borehole by means of numerical and analytical mod@esults of the numerical and analytical

models are cross-evaluated to investigate the myyrabnditions assumed in formulating the
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generalised Kirsch equations as an elastic analysiclution. Finite element analysis is also
carried out to calculate the induced stresses drdli@ borehole based on newly proposed
boundary conditions, which more accurately repretenproblem in the physical sense. The
current analytical solution will then be modifiechded on the finite element analysis,

incorporating the proposed boundary conditions.

Step B Five failure criteria, especially developed forckomaterial, are selected and
theoretically studied based on the fundamentathefailure theory. A new three-dimensional
failure criterion is also developed by modifyingeteimplified Priest criterion. True-triaxial

tests are conducted and the results of the expetinadong with nine sets of published true-
triaxial test data are applied to validate and camaphe three-dimensional rock failure criteria
against the experimental data. As a result onertaitriterion from among the five selected
criteria is identified as the best three-dimensianadel for predicting the rock failure in

three-dimensional stress state.

Step C Following the stepwise analysis, the instabilifyaaleviated borehole is predicted in
a case study. For this purpose, the maximum in sieess induced around the borehole is
compared to the predicted failure stress of the& nmaterial surrounding the borehole to
predict the initiation of failure at the borehol@alyv In addition, to maintain safe drilling of an
inclined borehole and to prevent the rock mateatahe borehole wall from compressive and
tensile (hydro fracturing) failure, the minimum antaximum allowable mud weight are

determined

Examination of the influence of all factors affecii borehole stability, such as time,
temperature and mud chemistry, is beyond the sobpleis research. Furthermore, since the
focus of this research is on borehole stabilitygood quality brittle rock material or rock
masses, for which the elastic solution is stillidkgBrady and Brown, 1993), the failure is
assumed to take place when the elastic limit ished. The progression of failure due to the
accumulation of micro-cracks and also post failebaviour of rock are beyond the scope of

this thesis.
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1.4. Organisation of the Thesis

This thesis is made up of two main sections cangjsif six chapters overall, including this

introduction and the conclusion in Chapter 6. Thet fsection, presented in Chapter 3,
discusses elastic stress analysis around vertichtiaviated boreholes by means of analytical
and numerical approaches. The second section impté&ha discusses procedures for

determining the failure stress of rock in the thd@mensional stress state.

The elastic analytical solution for estimating sses around a borehole, which has been
drilled in an isotropic, homogeneous and linearlgsec rock was developed in 1962 by
Hiramatsu and Oka, and has been widely used irstngever since. The applications of the
existing elastic analytical solution, which is alswown as the generalised Kirsch equations,
are outlined in Cheaper 2. Moreover, the currectin@gues for evaluating the strength of rock
material in a three-dimensional stress state hagkyed over the past few decades. In Chapter

2 the evolution and shortcomings of each of thesthaus are discussed.

Finite element analysis was carried out to createumerical counterpart to the current
analytical solution for stress analysis around eebole, aiming to eliminate the ambiguity
associated with the boundary conditions assumedidaring the current analytical model.
The detailed procedure of the numerical analyststha results of the cross-evaluation of the
analytical and the numerical models are presemie@hapter 3. Furthermore, a new set of
boundary conditions with respect to the physicthefproblem is introduced in Chapter 3. The
number of simplifying assumptions is reduced aradirrent analytical model is modified to
bring it closer to reality. The analytical and nuical models are compared quantitatively in

Appendix B.

Current failure models, which have been especidglyeloped for predicting rock failure in a
three-dimensional stress state, are discussedtai de Chapter 4. A new three-dimensional
failure criterion is also proposed in Chapter 4,rgdifying the simplified Priest criterion

introduced by Priest (2005). In order to compard &alidate the three-dimensional rock
failure criteria, a number of true-triaxial tester® carried out at the University of Adelaide.

Furthermore, nine sets of published true-triaxést tdata are applied to evaluate the accuracy
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of the newly proposed rock failure criterion, inngomarison with other existing three-

dimensional failure models. True-triaxial data seded in this study are given in Appendix C.
In addition, an illustrative comparison betweere#hidimensional rock failure criteria and the
experimental data is given in Appendix D by plaitithe major principal stress versus the

intermediate principal stress at failure.

Chapter 5 presents a case study in which the bleré@isiability is predicted by comparing the
induced major principal stress at the borehole wallhe predicted rock failure stress. The
major in situ principal stress around the borehslealculated by means of finite element
analysis, based on the assumption of a new satwfdary conditions. The rock failure stress
under a three-dimensional stress state at the dlerehall is calculated by means of the
proposed three-dimensional rock failure criteridrhese techniques are also applied in
Chapter 5 to calculate the minimum and maximumvwalde mud weight for safely drilling a

deviated borehole. Chapter 6 presents conclusimthsecommendations for future studies.
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2.1. Introduction

Underground formations are inherently subjected stress field, mainly due to the weight of
the overburden geo-materials and tectonic actsuitizue to the introduction of a borehole to
the underground formations, the pre-existing stfiedd is redistributed which leads to stress
concentration at the borehole wall. The stabilifytree borehole depends upon whether the
formation surrounding the borehole fails or rematable under the new induced stress field.
The answer to this question is of paramount impagafor the stability evaluation of a

borehole.

Considering a borehole which has been drilled igoad quality rock mass, the following

information is required in order to evaluate tresbdity of the borehole:

- estimation or measurement of the pre-existingtun ftress field
- an accurate estimation of the induced in situ se® the borehole proximity

- an accurate estimation of the strength of the smkounding the borehole

2.2.In stu Stresses Prior to the Introduction of the Borehole

It is important to have an accurate estimation e pre-existing state of stress in the
subsurface formations before a borehole is driliette the stress boundary conditions for
modelling and estimating induced stresses arouaddtrehole are determined based on the
pristine state of the in situ stress field. In gahethe pre-existing stress state is a function of
depth; however, the manner in which the three ppaicstresses and their associated
directions vary with depth does not always followpeedictable pattern (Amadei and

Stephansson, 1997). These stresses will be infdery topography, tectonic forces,

constitutive behaviour of the rock material andlg local geological history.

At any given depth below the Earth’s surface thesst state can be described by three
components; a vertical componesy, due to the weight of the over lying rock at trepthZ,

equal toyZ, wherey is the average unit weight of the rock (e.g. in/i¥); and two horizontal

10
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components such ag, the major, and;, the minor horizontal stresses. A key assumption

here is that these stresses are principal strassasy shear stresses exist.

Many expressions for the variations of the magmtod the vertical and horizontal in situ
stresses with depth, at specific sites or for déifie regions of the world, have been introduced
in the literature. Examples of stress profiles at@ss variations are given by Brown and
Hoek (1978), Haimson and Lee (1980), Zoback anchgbl§1980), Zoback and Healy (1992),
Lim and Lee (1995) and Jaeger et al. (2007). Howeletailed investigation of models and
expressions for estimating stress variations aresstprofiles is beyond the scope of this

research.

It is important to note that, to date, no rigorowsthods are available for accurately predicting
the situ stresses. Furthermore, the process ofmastig in situ stresses should not be
considered as a substitute for their measurememia@®i and Stephansson, 1997). Various
techniques for rock stress measurement were compselely explained by Amadei and

Stephansson (1997) such as (a) hydraulic methmtisding: hydraulic fracturing (Fairhurst,

1964), sleeve fracturing (Stephansson, 1983), Hyirdest on Pre-existing Fracture (HTPF)
(Cornet, 1986); (b) relief methods including: sodaelief methods, borehole relief methods
and relief of large rock volumes; (c) jacking methp(d) strain recovery methods and (e)

borehole breakout methods.

It merits noting that stress in rock masses cafm@otmeasured directly and methods for
measuring in situ stresses basically consist afidisg the rock and analysing the response of
the rock associated with the disturbance. This yaislis often undertaken based on
assumptions about the constitutive behaviour df,radich relates the rock strains to applied
stresses. However, it is important to remember dog to the complex nature of rocks and
rock masses, constitutive modelling of rock behawvis not usually a straightforward matter.
As pointed out by Amadei and Stephansson (1997yowd to very good rock conditions,
where the rock is essentially linearly elastic, lbgeneous and continuous, and between well-
defined geological boundaries, rock stresses catetegmined with an error &10% — 20%

for their magnitude and an error $10% — 20% for their orientation. On the other hand, in

poor quality rocks, i.e. weathered, weak, soft hadvily fractured, the measurement of rock

11
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stresses is extremely difficult. In such casesstiecess rate of stress measurements is usually

low.

2.3. Stress Analysis around the Bor ehole

The stress distribution around a circular hole nnirfinite plate in one-dimensional tension
was published by Kirsch (1898). Kirsch equations aso be generalised to calculate stresses
around vertical and deviated boreholes with angotrfar-field stresses. The general form of
the Kirsch equations can be given by calculating itduced stresses around a deviated

borehole around which there exists a general sstass.

Figure 2.1 Coordinate system for a deviated borehole [after Fjeer et al. (2008)]

If in situ stresses in a formation are principaksses with respect to a defined Cartesian
coordinate system, as illustrated in Fig. 2.1,gbeeral stress state which is induced around an
inclined borehole can be given by transformingithsitu principal stress components into a
local Cartesian coordinate system. This local coaiteé system is defined by transforming the
global coordinate system in such a way thatAfaxis coincides with the axis of the inclined
borehole. A transform fronX(Y, Z) to (L, M, N) can be obtained in two operations; a rotation
a around theZ-axis and a rotatioff around theY-axis, in a manner that tf#axis coincides
with the N-axis, as shown in Fig. 2.1. Such rotations carumgertaken by calculating the
direction cosines between the axes inXh&, Z coordinates and the corresponding axds, in

M, N coordinates (Fig. 2.1) and by applying the follogvrelationship:

12
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L Ixe  Txm Ixn || X
M=l g W |l Y (2.3.1)
N Iz Izm v ]| Z

Where direction cosines;; in Eq.2.3.1, and consequently the rotation mafix are defined

as follows:
Ive  Ixm Txn cosacosf sinacosf -sinf
[R]= v  Iym Iyn |=| —sina cosa 0 (2.3.2)

R VR PN cosasinf  sinasinf  cospf

Accordingly, the general stress state can be egpdely a general stress tensor which results
from transforming the principal stress tensor fribra global coordinate systerX, (Y, Z) into

the local coordinate syster, (M, N) in the following manner:

Ow Oxy Oy Ox 0 0
ox 0y 0yl|=[Rl| 0 o, O[R] (2.3.3)
O Oz Op 0 0 a,

Where[R] is the rotation matrix, given by Eq.2.3.2, dit]” is the transpose of the rotation
matrix. Furthermore, componernts and o, in EQ.2.3.3, represent in situ maximum and
minimum horizontal stresses, respectively, andcthraponent, is the vertical stress due to

the weight of the over lying geo-materials.

It is important to note that the general stressdeim Eg. 2.3.3 represents the pristine stress
state, before the introduction of the borehole.ifdef) a cylindrical coordinate system by
measuring the anglé counter-clockwise from thke-axis and the radial distancefrom the
centre of the borehole, as illustrated in Fig. 2he, induced stresses around the borehole as a
result of redistribution of the virgin stress figlidie to the influence of the borehole, can be
given by the following stress tensor:

Oy Org Oy
[Uij]= O 0Ogg Og (28.4

O Og Oz
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For an unsupported borehole of radiisomponents of the stress tensor in Eq. 2.3.4isen
by a three-dimensional version of Kirsch equationkjch can also be referred to as the

generalised Kirsch equations as follows:

g, +0 2 g, — 0 4 2 4 2
Oy = X2 y{l_a_zJ-'- X2 y(1+38;1 _4a2 JCOSZH-FJXY{:H-?;%_% sin26

r r r r

o, +o 2\ og,-0 4 4
Ogg = X2 y{1+a_2J— X y(1+3a ]cosZH—axy{l+31Jsin29

r 2 rf rf

2 2
0,,=0,—2V (O'X - O'y) {?—2] cos260 -4y oy, ?—2 sin26

4,2
o, -0
argz(— X2 ysin20+axyc0520j(1—3ra—4+2ri2J

a2
Og; = (ayzcosﬁ—axzsine) 1+—
r

2
O,, = (ayzsinﬁ +0,, cosﬁ) {1— a—zl
r (2.3.5)

A detailed description of the derivation of Egs.2.8vas provided by Bradley (1979), who
referred to a report by Fairhurst (1968). Howewasrwas also reported by Peska and Zoback
(1995), the generalised Kirsch equations were fivktlished by Hiramatsu and Oka (1962). It
Is important to note that there exists a sign emothe expression of,o (Egs. 2.3.5) in
Bradley's paper, as was also reported by Fjeer .e{2808). This error can be observed
elsewhere in the literature, for instance in thstfedition of the “Petroleum Related Rock
Mechanics” (Fjeer et al., 1992), and several othenke: However, correct expressions of these
equations are given by Fairhurst (1968) and Hiramahd Oka (1968).

Egs. 2.3.5 are used in linear elastic analysisooétole stability for calculating the induced
stresses around an unsupported borehole, whictbées drilled into nonporous materials.

Due to the superposition principle, pore presstiiects may simply be added. The borehole

14
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influence is given by terms in~2andr~*, which vanishes rapidly with increasimg The
solutions depend also on the an@lé~ig. 2.1) indicating that the stresses vary witisipon
around the borehole. Generally the shear stressasoa-zero. Thusy,,., og9 andao,, are not
principal stresses for arbitrary orientations of ttorehole. At the borehole wall, Egs. 2.3.5

are reduced to:

o, =0

Ogg = (ax + ay)—z(ax - y)c0526—4axysin26?
0,,=0,-2V (o*x - Jy) cos20-4v o, sin260
O,9=0

Og, = 2(0),Z cosfd-o,,sin 6)

g,,=0 (2.3.6)

According to Jaeger et al. (2007) and Fjeer et28l08), Egs. 2.3.5 were derived based on the
assumption of plain strain normal to the borehols.aHowever, as explained by Fairhurst
(1968), the general stress problem was divided int separate problems; a plane strain
problem for calculating induced stresses aroundbibrehole by considering only far-field
normal and in-plane shear stresses and an ang-pdarain problem for estimating the
influence of far-field, out-of-plane shear streseaghe induced stresses around the borehole.
In the plane strain problem it is assumed thatetlesiists no displacement along the borehole
axis and all displacements or deformations occuplames perpendicular to the axis of the
borehole. On the other hand, in the anti-plar@rstiroblem the only deformation is assumed

to be a constant deformation along the borehole axi

Although the generalised Kirsch equations, giverEhyg. 2.3.5, have been presented in several
works in the literature, the boundary conditionsuased for deriving this analytical elastic
solution have been poorly explained. Thus, to elate the existing ambiguity about the

boundary conditions assumed for deriving the gdised Kirsch equations necessitates a
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detailed investigation of the simplifying assumpsomade in defining the associated
boundary conditions.

After calculating the components of the induce@ssirstate in the borehole proximity (Egs.
2.3.4), in order to evaluate the stability of thardhole, it is essential to develop accurate
knowledge of the strength of the rock material @umnding the borehole wall. If the rock
material at the borehole wall is strong enougloterate the induced stresses, rock failure does
not initiate; otherwise the rock will fail. The fo€ailure stress under a given state of stress can
be predicted by means of a mathematical model, wkinirces its input parameters from the
rock material characteristics. Since the borehtdbikty analysis in this study is carried out
by means of linear elastic solutions, either nuoadly or analytically, the strength of intact
rock under the three-dimensional stress state drthmborehole is the focal point of interest
in rock strength analysis. Intact rock refers te tton-fractured blocks which occur between
structural discontinuities in a typical rock magailure of intact rock can be classified as
brittle which implies a sudden reduction in stréngthen a limiting stress level is exceeded
(Hoek, 1983).

2.4. Strength Analysis of I ntact Rock

The maximum stress that can be sustained by rot&rimlaunder a given set of conditions is
usually referred to as failure stress, which caso dbe interpreted as a measure of rock
strength. If the induced stresses in the proximftgn excavation exceed the failure stress of
the rock material or rock mass, failure occurs #redexcavation may not be able to fulfil the
function for which it was excavated. Hence, failsteess is a key parameter in the design of
underground excavations (Hoek and Brown, 1980)reeedls to be estimated as accurately as
possible. Therefore, the experiments for conducthglies on rock deformation and rock
strength must be designed to simulate the natunatlitons as closely as possible (Mogi,
1966). Moreover, numerous empirical and hypothetivadels have been introduced for the
estimation, or rather prediction, of rock strengimpirical criteria have been formulated
predominantly based on laboratory experiments ck specimens under the stress conditions

simulating those encountered in situ. Hypothetfedlre criteria are also dependent upon
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laboratory tests to source the relevant input patara such as rock material constants which

are characteristic of a particular rock type.

Conventional experiments used for the study of tiezhanical characteristics of rocks are
triaxial tests, in which cylindrical rock specimeae subjected to uniform lateral, confining
pressure €, = g3) and an axial stresg. Conventional triaxial tests have been widely used
because of the equipment simplicity and convenigmécimen preparation and testing
procedures. However, such tests allow to simulatpezial case only where the intermediate
and the minor principal stresses, ando;, are equal. To simulate a general stress state, fo
example at the borehole wattgy > o,, > a,,), more complex equipment and sophisticated
testing procedures are needed. A true-triaxial egtps, which enables to apply three
independent stresses on a prismatic or cubic rpekisen, can be employed to simulate the
in situ, general stress state. However, due topagemt complexity, complicated testing
procedures and difficulties in specimen preparatianlimited number of true-triaxial
experiments have been conducted so far. Accordingdgi (1971b) a common difficulty in
true-triaxial rock testing is to achieve three eliint yet uniform stresses. Non-uniform
stresses can introduce substantial errors intcdleelations of failure stresses done according

to the elasticity theory using a linear stresshstrelationship.

A model used for the prediction of rock strengthugially expressed as a failure criterion
which is a mathematical formulation of the streemponents governing the occurrence of
failure. A number of predictive models have beetmoniuced in the literature to describe
brittle rock failure, among which the Coulomb (1Y,/&hich is a hypothetical failure model,

and the Hoek-Brown (1980) which is an empiricalui@ model, have been widely accepted
and applied by rock mechanics practitioners anehsisits. The Coulomb and the Hoek-Brown
criteria formulate rock failure under a speciaks$ condition, in which the intermediate and
the minor principal stresses are equal % o, = ag3). These criteria do not take into account
the influence of the intermediate principal stresspn rock strength as it grows beyond the

minor principal stressys.
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Coulomb criterion

The Coulomb criterion was introduced by Coulomid#v3, who suggested that rock failure
in compression occurs when the value of the sheassson a hypothetical plane is sufficient
to overcome the natural cohesion of the rock aad #ie frictional force that opposes motion

along the hypothetical failure plane. The Coulomtedon gives the shear stress at failure as:
r=c+0,tang (2.4.1)

Wherea,, is the effective normal stress acting on the sipéame, and and ¢ are cohesion
and the angle of internal friction, respectivelyh& the Coulomb criterion is written in terms

of the principal stresses, the major principalssrat failure is given by:
01=0;+(03 (2.4.2)

Whereo; andg; are the maximum and minimum principal stressespeaetively, and. is the

uniaxial compressive strength of intact rock angiven by the following expression:

2ccosg
= 2.4.3
e 1-sing ( )

The parametey, in Eq. 2.4.2, is also defined as:

_1l¥sing (2.4.4)
1-sing
In the three-dimensional stress spatgd,, 03), the Coulomb criterion can be represented by
a failure surface which is a cone with a hexagonads section on a plane perpendicular to the

hydrostatic axisd; = g, = 0g3).

Hoek-Brown criterion

Hoek and Brown (1980) introduced their failure exibn for evaluating rock strength as an
important parameter for designing underground exiwans in hard rocks. The Hoek-Brown
criterion was derived based on the results fronréisearch on the brittle failure of intact rock

and on model studies of jointed rock mass behavibue Hoek-Brown criterion was initially
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developed based on intact rock properties and these properties were reduced by
introducing factors, which were representativehaf tharacteristics of joints in a rock mass.
According to Hoek et al. (2002) the generalised kdBeown criterion, which is an empirical

model and is based on observed rock behaviouxpgessed in terms of principal stresses as

follows:

a
oq :a3+ac(m)§+sj (215

Cc

Parametersn,;, s anda are rock mass constants and can be estimatedtfrer®eological

Strength Index@S)) as follows:

[GSI—lOO]
m=me: *
(GSI—lOOj
s=e ° and a=05 if GSI>25
s=0 and a= 0.65—% if GSI<25 (2.4.6)

The parameten; is the Hoek-Brown constant parametefor intact rock material and
depends on rock type and mineralogy. Geologicatngth Index GSI) varies from O for
highly fractured rocks to 100 for intact rocks. Bdty speakingGSIdepends on the degree of
interlocking of the rock blocks and on the surfaeelity of the discontinuities in the rock
mass (Hoek and Brown, 1997). Hoek et al. (2002pdhiced a disturbance factbr, which
indicates the amount of disturbance caused by llastage and stress relaxation. The
disturbance factorD, ranges from 0 for rock masses adjacent to mackxeavated
underground openings, to between 0.7 and 1.0 fengpt mine slopes, depending on the
quality of blasting. Hoek et al. (2002) proposed fbllowing revised empirical expressions

for my, s anda:

GSI-100
28-14D

m, =me
. e(e;s_:;ooj

19



CHAPTER 2 Literature review

d) %)

a=05+ - (2

Egs. 2.4.7 have the benefit of covering the emtairgge of GSl values in a single group of
expressions. Furthermore, from Eqgs. 2.4.6 and 2it4.i8 obvious that for intact rock,
parametersn,, s and a are calculated ags;, 1 and 0.5, respectively. Therefore, the

generalised Hoek-Brown criterion takes the follogviarm:

05
01203*‘0{”'\ %+1} (2xn.8

Cc

Eq. 2.4.8 is the original form of the Hoek-Browiterion, which was first introduced in 1980.
The Hoek-Brown criterion is widely accepted, preduamtly because it fits experimental data
reasonably well and its input data can be detemhisienply by measuring the uniaxial
compressive strength (for determining, from mineralogical investigations (for
determiningn;) and structural properties of the rock &S|, (for determining parameters
and s). It is also noteworthy that if a more accuratéinestion of input parameten; is
required, conventional triaxial tests can be cotetlito measure this input parameter. In this
thesis the intact-rock version of the Hoek-Browitecion (Eqg. 2.4.8) is adopted. However,
adopting the generalised version would ultimatdlpva the borehole stability evaluation
techniques discussed in this thesis to be appbedractured rock masses when sufficient

experimental data is available.

It is important to remember that both the Hoek-Bnoand the Coulomb criteria incorporate
only the majorg; and the minorg; principal stresses in the rock failure model oe th
assumption that the intermediate principal stregssdoes not have any influence on rock
strength. However, numerous studies have revediatl tock strength is substantially

influenced when the intermediate principal strassvg beyond the minor principal stress.
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2.4.1. Theinfluence of intermediate principal stresson rock failure stress

Experiments and observations that revealed thenpatesffect of the intermediate principal
stress,ag, on brittle failure of rocks started with Boker (B)1 who carried out biaxial
extension tests on Carrara marble. Boker firstiegp@mn axial stress to the rock specimen and
kept it constant, i.er; = constant, and then raised the confining pressure gi.e= g,, until
failure occurred. Von Karman (1911) also compatezlresults of the biaxial extension tests
and conventional triaxial compressian & o, = g3) tests on the same rock, and it was clear
that Carrara marble was stronger wlagrequalledr;, at any level ob; tested. Similar results
were observed and presented by Handin et al. (1987 conducted similar conventional
triaxial compression and biaxial extension testadimestone, a dolomite and glass. Hollow
cylinder experiments by Hoskins (1969) on trachgiso showed that, has a significant
influence on rock strength. Other researchers dlawe conducted similar types of
experiments. Mogi (1966), however, argued thatrtleiperimental procedures were not
accurate enough, because of non-uniform stressbdisbn at the ends of the specimens in the
Von Karman triaxial cell, i.e. end effects.

In 1967 Mogi measured the failure stress and tlaetdre angle of Dunham dolomite,
Westerly granite and Solnhofen limestone in extandiests §; = g, > 03) after nearly
eliminating the end effects. He compared the resuim compression and extension tests and
noted that the effect af, on rock strength and fracture angle is indispatablowever, Mogi
(1971a) pointed out that in order to investigateendosely the influence of the intermediate
principal stress on brittle failure of rock, a highessure true-triaxial apparatus was needed to

test hard rock specimens under three independapgilyed principal stresses > g, > o03.

The true-triaxial apparatus designed by Mogi (197dbnsisted of a pressure vessel that
accommodated a rectangular prismatic rock samplsizef 15x15%x30 mm. Two sets of
pistons were employed to apply intermediateand majorg; principal stresses, and the
minor, a; principal stress was provided by the confiningsptee in the vessel to ensure a
uniform distribution ofr;. A minor principal stress of the magnitude of 8@Pa could be
applied. In order to prevent the hydraulic flurdrh intruding into the rock specimen, silicon

rubber jacketing was applied to the specimen sgidgected to confining pressure. Mogi
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minimised friction on the sample faces subjectegiston loading by applying lubricants such
as copper sheet jacketing and Teflon or thin ruldlerets between specimen faces and
pistons. Stress concentration at specimen endsfouasl to be greatly reduced by the high

confining pressure (Mogi, 1966).

Mogi (1971b) tested a number of carbonate andasdicocks and plotted the results in the
form of o, at failure versusr, for different families of tests in which; was kept constant.
According to Mogi's experimental studies, failuréresgth increases steadily with the
magnitude ofo, until a plateau is reached following which strénggnds to decline as,
approaches;. The best-fitting curve to experimental data fory agiven o5 is downward
concave, but the strength @sgrows closer ta; remains higher than that whepn = 5. This
behaviour is also predicted by the theoretical rmpdeposed by Wiebols and Cook (1968),

which will be discussed further in Section 2.4.2.

The same results were obtained by Chang and Hair(&@®0) and Haimson and Chang
(2000) who studied the deformational and strendthracteristics of specimens of KTB
amphibolite and Westerly granite. Since Mogi’s @ernng work on the design and fabrication
of a true-triaxial apparatus, a series of truextaltesting machines have been developed to
investigate ther,-dependency of the failure stress. Haimson (20@8)rbviewed the research
conducted over the last 100 years, characterisimd) farmulating the influence of the
intermediate principal stress, on brittle failure of rock. According to HaimsoR0Q6), there

Is conclusive evidence that the intermediate ppaicistress has substantial effect on rock

strength in brittle field.

Scanning electron microscopy observations of thleré process conducted by Chang and
Haimson (2000) revealed that micro-cracks develaniy parallel to thes,-direction as the
intermediate stress grows beyand The micromechanical processes leading to brittle
fracture under true-triaxial stress conditions hegiith the dilatancy onset, when the
development of micro-cracks is sub-parallel to th&gor principal stress,-direction. Asay
increases, micro-cracks grow and localise, creatirsipear-band dipping in tlg-direction.
Upon brittle fracture the shear band fails, formitige eventual main fracture. Similar

observations were also reported by Crawford €tl@95) based on the results from sandstone
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specimens failed under true-triaxial stress. Wbpect to deformation, Chang and Haimson
(2000) established that for the samethe onset of dilatancy increases significantlyhvitte
magnitude ob,, similar to observations by Mogi (1971b) in Mizul@chyte. Thus, the
intermediate principal stress appears to extenctldmgtic range of the stress-strain behaviour,
for a giveno;, and therefore to retard the onset of the failprecess, suggesting a

strengthening effect af,.

Yield and failure

In engineering contexts, the terms ‘yield’ andlag’ often cause confusion. In order to avoid
such confusion a clear definition of both termsnsged¢o be necessary. As defined by Priest
and Hunt (2005), ‘yield’ refers to the stress sttevhich the rock starts to develop rapidly
accelerating inelastic deformations, and ‘failuie’ the stress level at which the rock
disintegrates due to the development of macroscbpictures. Therefore, when vyield is
reached, the rock may still be able to carry sorteadoad or fulfil its engineering function.
Since for brittle rocks the portion of inelasticfa@@nation after the yield point and before the
failure point is small, i.e. less than 3% of perertndeformation before failure (Heard, 1960),
a specific point on the stress-strain curve thatloa attributed to yield stress cannot be easily
identified. However, the stress at some small paanastrain, such as 0.2%, can crudely be
taken as the yield stress. On the other hand,dotild materials, the yield point on the stress-
strain curve can be determined more easily ancethrists a single well-established three-

dimensional criterion for yield, which originatedtivVon Mises (Nadai, 1950) as follows:

1
Toct zé\/(al‘az)z"'(02‘03)2"‘(03‘01)2 =C (2.4.9)

Eqg. 2.4.9 states that the yield point is reachednathe distortional energy, represented by the
octahedral shear stresgs;, is equal to a constant which is a constant characteristic of a
particular material. However, this is not the casérittle rock the strength of which varies

considerably with confining pressure.

Mogi (1971b) measured the vyield stress of threebaraate rocks, namely, Solnhofen

Limestone, Dunham Dolomite and Yumaguchi Marblel four silicate rocks such as Mizuho
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trachyte, Orikabe monzonite, Inada granite and Manaandesite, under three-dimensional
stress state. He observed that yielding appeaestlglin all carbonates and also trachyte.
According to his experimental results, Mogi (197Xdmncluded that the yield stress is
markedly affected by,, but scarcely affected lay. He also pointed out that the measured

yield stresses were correlated well by the follagpiormulation:

Toot = floy+ 0y +03) (2.4.10)

: +o,+
Plotting the octahedral shear strength,, versus mean normal stre %1”32—03 = aoct),

Mogi (1971b) found that Eq. 2.4.10 can be satisigcas a yield criterion for rocks (Fig. 2.2).
He also pointed out that this criterion includes Yfon Mises criterion as a special case with
slope of the curve equal to zero. The physicalrnegation of the generalised Von Mises
criterion (Eq. 2.4.10) is that yielding will occwhen the distortional strain energy reaches a
critical value. This critical energy is not condtabut monotonically increases with the
effective mean normal stress (Fig. 2.2).

350
o
300 * *
*
$ 250
S
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O (oct) MPa
100
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Figure 2.2  Mean octahedral shear stress, 1, vVs. mean octahedral normal a,.;
at yield for Dunham dolomite [after Mogi (2007)]

Mogi (1971b) also found that at failure the sheaiting takes place on a plane parallel to the
direction of g, and therefore, there is no stress component adsdowith the intermediate

principal stress on the failure plane. Hence, tleamnormal stress contributing to failure is
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noto,.., but its two-dimensional representation, ag., = % Accordingly, Mogi (1971b)

suggested that a failure criterion for rock carekpressed in the following form:
Too = 0y +03) (2.4.11)

Where f is a monotonically increasing function. The phgsimterpretation of Eq. 2.4.11 is
that failure takes place when the distortionalistenergy, which increases monotonically
with the effective mean stresss,(,), reaches a critical value on the failure plane.
Experimental studies on KTB amphibolite by Chang ataimson (2000) and Westerly
granite by Haimson and Chang (2000) also mirroredgild conclusion of a general

formulation for brittle ‘failure’ of rock.

It should be noted that ‘yielding’ does not occur any definite slip plane with a definite
direction, therefore, the mean str é‘é@ = Uoct) is taken as the effective mean normal

stress when formulating a ‘yield’ criterion. Subgtal evidence suggests that the intermediate
principal stressg, has a strengthening effect on rock. It can beriatethat the intermediate
principal stress causes the yield stress of thle tmncrease. As a result of the increase in the
yield stress of rock the failure stress of rocloalscreases. It is important, however, to note
that after the yield point is reached, the interiadprincipal stress does not influence the
rock failure. Therefore, rock failure criteria, whi neglect the influence of, do not
appropriately reflect the mechanical behaviour axfkrunder a general stress state. Several
theoretical and empirical three-dimensional failar#geria, which incorporate, in the rock
failure formulation, have been introduced over plast few decades. In the following section

for a number of selected three-dimensional faituiteria detailed discussions are presented.

2.4.2. Frictional criteria
Theoretical or hypothetical criteria are also nefdrto as ‘frictional criteria’ after Priest (2010)

who commented that these criteria source theirtimauameters from one or more of the

parameters of uniaxial compressive strength, coheg) and the coefficient, or the angle, of
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internal friction ¢p). Some frictional failure criteria, which have bemore commonly used in

the petroleum and mining studies, are briefly exgd below.

Drucker-Prager criterion

Drucker and Prager (1952) proposed a mean-strggsident failure criterion, combining the

Coulomb and the Von Mises criteria. Drucker andgBrauggested their criteria as:
J32=p+BY (2.4.12)

Parametergl andB are rock constants and by definimg o, ando; as major, intermediate

and minor principal stresses, respectively, thempeacipal stresg; is given by:

o,+0,+0
3 =7 O (22)
The mean shear stregsat failure is given by:
2 2 2
J,= (01-0,)° +(05 -03)° +(03-03) (2.4.14)

6

A physical interpretation of the Drucker-Pragertemion is that failure occurs when the
octahedral shear stre:{sroct =\/3_/2 ]21/2) exceeds a certain value that depends on the
octahedral normal stress, ;. Parametergl andB can be estimated from the Coulomb shear
strength parameters cohesiomand the angle of internal frictigm The following values for

the parametergl and B represent an inscribed cone to the Coulomb faitunéace in the

principal stress spacey( o, , 03):

p = 06COF and g =—_2SN? (2.4.15)

J3(3+sing) J3(3+sing)
The circumscribed Drucker-Prager can be deriveddiyningA andB as:

bccosp and B, =—_25¢ (2.4.16)

A= J3(3-sing) ° /3(3-sing)
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The cross section of the inscribed and circumsdribaicker-Prager and the cross section of
the Coulomb criterion on the deviatoric plane amspnted in Fig. 2.3. A deviatoric plane is a
plane perpendicular to the hydrostatic axis inghacipal stress space;( o, ,03). Detailed
explanations on the principal stress space andekiatoric plane and associated concepts are

given in Chapter 4.

Deviatoric plane

Circumscribed
Drucker-Prager

Coulomb

Inscribed
Drucker-Prager

= Coulomb  |===-- CDP  ==-=-IDP

Figure 2.3 The cross section of (a) the Coulomb, (b) the circumscribed
and (c) the inscribed Drucker-Prager on the deviatoric plane

Modified Wiebols and Cook criterion

Wiebols and Cook (1968) proposed a failure critefi@sed on the additional energy stored
around Griffith cracks due to the sliding of crakfaces over each other. They hypothesised
that in a homogeneous specimen of rock that caedeeded as an elastic material there exists
a large number of uniformly distributed and randprotiented closed, plane cracks, the
dimensions of which fall within a limited range. ¥fh subjected to stress, a volume of such
material stores within itself strain energy, whadn be divided into two parts. Firstly, there is
the strain energy which would be stored in the saoheme of material when subjected to the
same stresses, in the absence of any cracks. 3gcthrede is the additional strain energy due

to the presence of cracks.

When all three principal stresses applied to théeria are compressive, the surfaces of any

closed crack can be subjected only to normal cosspre stressg,, and shear stress, Let
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the coefficient of sliding friction between the agie surfaces of the cracks be a congtant
Sliding between the opposite surfaces of a cradeunthe influence of the applied stress
occurs if|t| — ua, > 0. The quantity(|t| — ua,) is defined as the ‘effective shear stresmsd

the strain energy per unit volume of the materiafes! around the cracks, as a result of the
sliding produced by this stress, is defined as¢ffective shear strain energy’. The effective
shear stress on any crack depends on the magnitfddse principal stresses and the

orientation of the crack relative to the directiafisthese stresses.

The effective shear strain energy depends on tlgnhmuaes of the effective shear stresses on
each crack in a unit volume, the number of suchks;aand their size and shape. It is assumed
that each crack contributes to failure when itedidand that the strength of rock is determined
by some maximum value of the effective shear steaiergy. It then follows that the strength
of rock is a function of its properties, and alsduaction of the magnitude of each of the
principal stresses. The strain energy criteriorppsed by Wiebols and Cook (1968) had a
major drawback as the coefficient of friction betnetwo crack surfacesg:) could not be

determined through a standard experimental proeedur

Zhou (1994) introduced a three-dimensional modetfmmpressive rock failure, which was an
extension of the Drucker-Prager criterion with $anifeatures to the effective strain energy
criterion proposed by Wiebols and Cook (1968). Tiree-dimensional criterion introduced
by Zhou (1994) is also referred to as modified Wiskand Cook. According to this criterion,

yield is predicted to occur when:
Ji2=p+BI +CI2 (2.4.17)

Where J; and J, are given by Egs. 2.4.13 and 2.4.14 and paraméieiB, and C are
determined such that Eq. 2.4.17 is constrainedoby strengths at both triaxial and biaxial
compressions. In the triaxial stress statg X o, = g3), rock strength is given by the
Coulomb criterion, i.eo; = g, + qo3, and in the biaxial state of stregg & o, > ag3) rock
strength is given by, = G + qo3, whereG is the biaxial plane strength of the rock, (Wiebols
and Cook, 1968), and is defined as:

G=0,(1+06tang) (2.4.18)
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With respect to constraining conditions and by stlitng the uniaxial rock strengtlo{ =
o., 0, =03 =0) into Eq. 2.4.17 and introducing four intermedigtarameters, such as

U,,U,,U; andU, as follows:

U;=G+0o5(q-1)-0o;

U, =2G+03(q-1)-0,

Us=2G+03(2q+1)-0,

U, =a5(q+1)+ 20, (2.4.19)

Parameters,, B andC are defined as:

c=Y27|U; _g-1
U, U3 q+2
_(a-243 _u,C
q+2 3

-9 _S0c_“0c (2.4.20)

Modified Lade criterion

A three-dimensional failure criterion in terms ofress invariants and three material
parameters, was introduced by Kim and Lade (19BéWwever, the criterion was initially
developed for soil and was later modified for ceterby Lade (1982). The material
parameters can be determined from any type of gitnelest, including the simplest possible,
such as the uniaxial compression or conventionakitd compression tests. The Lade

criterion is given as:

ﬁ—Z? L " :/7
|3 Pa !
(2.4.21)
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Wherel, = g, + 0, + 03 andlz = (0y). (0,). (03) and m is a rock mass constant. The value
of I3/I; is 27 under the hydrostatic stress condition, gi.es g, = g;. Furthermore,
parameterg); andm in the Lade criterion can be determined by plgttifé /I; — 27) vs.

(P,/1,) at failure in a log-log diagram and locating thestofitting straight line. The intercept

of this line with the vertical lin§™) =1 is the value ofy, andm is the slope of this line.
1

In order to apply Eq. 2.4.21 to rock material, Kamd Lade (1984) added a constant stress
(a.R,) to the principal stresses before substitutiodfe@n 2.4.21 to incorporate the cohesion

and the tension which can be sustained by rockriahtas follows:

o,=0,+ta.Py

0,=0,+a.P,

O3 =03+a.P, (2.4.22)

Wherea is a dimensionless parameter a)ds the atmospheric pressure and is in the same
units assy o, and g3. According to Kim and Lade (1984), the parametewhich plays a
very important role in characterising the tenstiersgth of rock, can be determined through

triaxial tests.

Ewy (1999) developed a modified version of the Ladeerion by introducing a shift constant
with units of cohesion & to shift the stress axes to the tensile regionaddition, he
subtracted the pore pressure in order to handéetefé stresses. The modified Lade criterion

is expressed as follows:

3
(Il;') =27+n (2.4.23)
3

Where
1= (01 + S - po)+(02+ S~ po) + (03 + S~ o)

|§=(01+51‘ po)(02+51_ po)(03+31‘ po) (2.4.24)
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In Egs. 2.4.24, the parametgyis pore pressure, which can be excluded from thadtation
for non-porous rocks, and parametgrsandn are material constant which can be directly
derived from the Coulomb cohesianand the angle of frictiop through the following

expressions:

_c
= tang
_ 2tan” ¢(9-7sing)

1-sing 425)

Under general stress conditions & o, # g3), the modified Lade criterion, as well as the
original Lade criterion, predicts a strengthenirffe@ due to increase of the intermediate
principal stress. This is followed by a slight retlan in the rock strength oneg becomes

‘too high'’.

2.4.3. Hoek-Brown based criteria

Despite its widespread acceptance and applicative, Hoek-Brown criterion has some
limitations. In the case of anisotropy, for instanthe Hoek-Brown Criterion should not be
used unless allowance is made for this anisotropg. strength anisotropy can be exemplified
by a fault passing through a heavily jointed rockssior a block of intact rock. The rock mass
or the rock material may be treated as an isotrogdium to which the Hoek-Brown failure
criterion is applicable, but the fault must be teglaas an anisotropic weakness plane along
which slip can occur at a much lower stress lelrahtthat which would cause failure in the
rock mass or the rock material. Another importamnithtion is that the Hoek-Brown criterion
was developed based on the assumption that onlyprnad minor principal stresses

contribute to rock failure and that intermediatmg@ipal stress does not have any influence.

In order to take into account the influence of theermediate principal stress, significant
efforts have been made to modify the Hoek-Browrtedon or to introduce a three-

dimensional failure criterion based on the Hoekyirccriterion. Input parameters of such a
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three-dimensional criterion are the same as thbseeoHoek-Brown model. The reason why

such attention has been given to the Hoek-Broweran was outlined by Priest (2005) as:

- The Hoek-Brown criterion has been developed spatifi for rock materials and rock
masses.

- Input parameters for the Hoek-Brown criterion canderived from uniaxial testing of
the rock material, mineralogical examinations aneasurements of the rock mass
fracture characteristics.

- The Hoek-Brown criterion has been applied succégsfua wide range of intact and

fractured rock types over the past decades (HoélBaown, 1997).

Pan-Hudson criterion

Pan and Hudson (1988) proposed a modified threesmbional version of the Hoek-Brown
criterion for predicting the strength of weak rookasses. Based on the assumption that
intermediate principal stress influences rock faespecially in the case of weak rocks, the
Pan-Hudson criterion was developed and expresseernms of invariants of the deviatoric

stress tensor as follows:

iJz +£m,/\]2 —ml—lzsac (2.4.26)
Oc 2 3
If the major, intermediate and minor principal stes are denoted @s o, andos,
respectively, therl; = o, + 0, + g3 and J, is the second invariant of the deviatoric stress
tensor, or the mean shear stress at failure, amgiven by Eq. 2.4.14. If the Pan-Hudson
criterion is rearranged and is written in termsrgf,, the octahedral shear stress at failure, it
yields the following expression:

9 2 3

I1 —
Toet T mr7 m SO, 2.4.27
2 3 oct 2 /—2 oct 3 c ( )

O'1+O'2+O'3

Wherert,; is given by Eq. 2.4.9 anlgr = .
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Priest (2010), through a comparative study, dennatest that the Pan-Hudson criterion
exhibits a substantially different pattern fromttio& other three-dimensional failure criteria,

when predicting the failure of intact rock (Fig4R.
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Figure 2.4  Relation between intermediate and major principal stresses at failure for
eight different failure criteria for a rock mass subjected to a minor principal
stress of 15 MPa, with a uniaxial compressive strength of 75 MPa, m;= 19
and GSI = 90 (Priest (2010))

Furthermore, according to Zhang and Zhu (2007),biexial extensiond; = g, > a3) or
triaxial compressiond; > g, = 03) stress states, the Pan-Hudson criterion doesedate to
the form of the original Hoek-Brown criterion. Huermore, comparison with experimental
data conducted on various rock types suggeststiikaPan-Hudson criterion under-predicts
the rock strength in triaxial compression, but emexdicts the strength in biaxial extension
(Zhang, 2008, Zhang and Zhu, 2007). Reasons folirthi@ations of the Pan-Hudson criterion
will be addressed in detail in Chapter 4.

Generalised Priest criterion

Priest (2005) developed a three-dimensional coiteoy combining the tow-dimensional
Hoek-Brown criterion with the Drucker-Prager criter. The Hoek-Brown criterion was
adopted for its simplicity in acquiring input roplarameters and because it had already been

widely used in the mining industry. The Druckergracriterion was adopted for its common
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application in borehole and wellbore stability Ire tpetroleum industry. The generalised Priest
criterion initially required a numerical iteratida calculate the effective maximum principal
stress at failure. Melkoumian et al. (2009) devetbpn explicit solution for the generalised
Priest criterion. The term generalised implies thatparametea and the dilation parametar

in the Hoek-Brown criterion are not taken simply0as and 1, respectively, and are calculated
using either Egs. 2.4.6 or Eqgs. 2.4.7. An expégpression for the generalised Priest criterion,

as addressed by Melkoumian et al. (2009), is gasfollows:
01t =303y + P~ (0, +03) (2.4.28)

Whereao,  is the major principal stress at failure ang andP are calculated as:

a

P:Uc{[mo U3HBJ+S} (29)

JC

e =2 2

o = 2198, ZEF JE?~F(o,-03) (2.4.30)

2 2F
Parameterg andF are defined as:
F=3+mc®"

(2.4.31)

E =2C%0,
Wherec( is given by:
C:5+M (2.4.32)

20,

Further detail on the generalised Priest criteand its application for prediction of intact rock

strength will be addressed in Chapter 4.

Simplified Priest criterion

Priest (2005) proposed another three-dimensionediore of the Hoek-Brown criterion by

defining a weighting factaw ranging from 0 to 1.0. He then specified that miveis equal to
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0, the intermediate principal stresg,has no influence on failure and wheris equal to 1 the
minor principal stress; has no influence. Priest (2005) suggested tleatvikighting factow
depends only on values of the minor principal streg, and that it can be calculated by the

following expression for a range of sedimentary arelamorphic rocks:
w=ac? (2.4.33)
-~ 3 . .

Wherego; is the minor principal stress and= § = 0.15, for the rock types examined. After
defining the weighting factar, the minor principal stress in the Hoek-Brownemitn can be
defined as follows:

Ogup = W0, +(L-w)os 4234)

The next step is to substitute the value #gfz from Eq. 2.4.34 into the Hoek-Brown
criterion, given by Eq. 2.4.5, to calculatg; ;. Therefore, the major principal stress calculated

by the Hoek-Brown criterion is given by:

a
o
O1g = O3nB +ac(rrb?3+sJ (2.4.35)

C

Then the simplified Priest criterion is expressed a

01t =014 + 2034 — (02 + 03) (2.4.36)

The termo, ¢ is the major principal stress at failure in theethdimensional stress state, i.e.

wheno; > g, > 03. Further explanation on the simplified Priest esiin is given in
Chapter4.

Generalised Zhang-Zhu criterion

Zhang and Zhu (2007) developed a three-dimensioaaion of the Hoek-Brown criterion

based on the assumption made by Mogi (1971b) tfalee criterion can be expressed as:

Toct = f(01+03)
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Where the functionf is defined as a monotonically increasing functidhang and Zhu
(2007), then proposed their criterion as:

9 o» 3
2_0_0 Toct + 2_\/5 MyToct = MyOm,2 = SO¢ (2.4.37)

o1t03
2 .

Zhang-Zhu criterion could be simplified to the amig form of the Hoek-Brown criterion for

Where the parametes,,, is defined as,,, =

Zhang (2008) highlighted that the

biaxial extensiond; = g, > 03) and triaxial compressioro{ > g, = 03) states of stress.
Furthermore, the only difference between the Zhaing-and the Pan-Hudson criteria is the
inclusion of the intermediate principal stresshe third term, in the right hand side of these

two criteria, given by Eq. 2.4.27 and Eq. 2.4.3héve both are written in terms of;).

In fact, the Zhang-Zhu criterion implies an assuorpthat the intermediate principal stress
plays its strengthening role up to a certain pafter which the influence af, on failure will

be eliminated. This assumption accords with theegrental studies on rock performance
under three-dimensional stress. Zhang (2008) nextltfie Zhang-Zhu (2007) criterion so that
it could be applicable to all those rock masseshah the generalised Hoek-Brown criterion
applies. The generalised Zhang-Zhu criterion igessed as:

1 3 1l/a m, 3
Sa]) (ﬁ Toct} Y (E Toctj ~MyOm,2 =80 (2.4.38)
Cc
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CHAPTER 3 Stress analgsund a borehole

3.1. Introduction

When a borehole is introduced into an already séssotropic elastic rock, the pre-existing
stress field in the vicinity of the borehole isistdbuted. The primary driving factor that leads
to borehole instability is the magnitude and denriat nature of the in situ rock stress that
becomes concentrated in the rock adjacent to thehbte wall. Accurate knowledge of the
new, induced stress field due to the introductiérihe borehole is vital for drilling stable
boreholes. The geological stresses can be meabyrad/ariety of deformation measurement
techniques including hydro fracturing, inelasticdast recovery and borehole breakout
estimations. However, due to difficulties assaglatvith in situ stress measurements, it is
desirable for the induced stresses in the viciaftthe borehole to be estimated accurately by

means of numerical or analytical models.

In two-dimensional analysis of axially symmetricdtuctures it is generally convenient to
represent the state of stress and strain in tefrpslar coordinategr, ). The angled (0 to

2n) gives the anti-clockwise angle of rotation fromegerence axis, such as thexis in Fig.
3.1. The distance gives the radial distance from the centre of tk&lly symmetrical
structure. In two dimensions the normal stress anmapts ares,.,. (radial stress) andygy
(tangential or circumferential stress) with theocassted shear stressy. Two-dimensional
polar coordinates can be extended to three-dimeabkaylindrical coordinates by defining the
Z-axis to correspond to the axis of the axially sygtmoal structure. In this case the additional
normal stress componentds, (axial stress) and the associated shear stresses, andoy,.
Two-dimensional and three-dimensional strains canspecified in the same way. It is
important to remember that the actual orientatiohthe radial and tangential stress or strain
components will vary with location around the aaymmetrical structure. Polar and
cylindrical coordinate systems are adopted becthesstress and strain states around axially
symmetrical structures generally vary directly aactions of the parametersandf. The
parameterg and ¢ therefore not only serve to specify the orientatand location of the
stress/strain components, but also appear in fumsthat define the values of the stress/strain
components themselves at the specified location.
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For an isotropic, linearly elastic and homogenemaderial, Kirsch (1898) calculated stress

components around a circular hole, when principrabses were acting at infinity (Fig. 3.1).

LLbbbb bbb bbb bbby,
:::: Y . /UUTT'E_
: RALE
= L/ b
SETRR R

Figure 3.1 Stresses on an element at a radial distance r from the centre
of a circular hole with radius a, in polar coordinates.

The radial, tangential and shear stresses at atlackwise angled, measured from thix-

axis, and a radial distancérom the centre of the hole are given by the feilg equations:

2 2 4
Oyto Oy—0
Oy =—— 12 (22X Y1142 4132 020
2 r2 2 r2 r4

o 2 4
xtOy a Oyx =0y a
= +—|-—2 Y |1+3=_
Ogg > [1 rZJ > [1 3 4}0326

r

2 4
Oy —0
Org=- X2 y[1+2a—2—3a—4}sin20 (3.1.1)

r r

In order to apply Egs. 3.1.1 for stress estimatoound a borehole, the rock into which the
borehole is drilled has to be assumed as continuooimiogeneous, isotropic and linearly
elastic (CHILE) material. However, a rock with suphoperties rarely exists in nature.
Furthermore, in borehole stability evaluation, esgéy in the presence of major

discontinuities at the prospective location of th@ehole, questions arise concerning the
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validity of elastic stress analysis in the desigmcpss and the potential effect of the

discontinuity on the stability of the borehole wall

However, it should be noted that the elastic soluttalculates the induced stresses based on
the assumption that the pre-existing stress fialsl lleen redistributed due to the introduction
of a hole into a CHILE material. Therefore, theséta solution for estimating the induced
stresses, coupled with a predictive model for rstckngth (failure criterion) can be applied to
model the rock behaviour adjacent to the borehak. W the intact rock does not fail under
the induced stresses, then the possibility of algng the major discontinuity should be
investigated, considering the stress componenitsgaoh the faces of the discontinuity. On the
other hand, if the induced stress around the béeglwalculated by means of the elastic
solution, causes failure to initiate within the kauoaterial, the extent to which the failure will
progress needs to be determined and, if the fadym@ears to be too extensive, a suitable
support system must be designed and implementedsist the collapse of the borehole.
Furthermore, the numerical techniques of stresmasbn can also be given consideration as
alternative approaches to analytical solutionseeisly in cases of complicated constitutive
relationships with respect to rock behaviour. Néhaess, according to Brady and Brown
(1993), in some cases, an elastic analysis presevatid basis for design in a discontinuous
rock mass and in others, provides a basis for judge of the engineering significance of a

discontinuity.

The three-dimensional version of Kirsch equatioms stress estimation in the proximity of

vertical and deviated boreholes was first derivgdFairhurst (1968) and has been widely
applied in the mining and petroleum industries esirce. Generally, three-dimensional

Kirsch equations are either applied to rock in Stress measurements or to instability
prediction of any underground structure with a w&c cross section, such as tunnels,
wellbores and boreholes. In rock in situ stresssueanents, by means of borehole breakout
or hydraulic fracturing methods, stresses arounel blorehole are measured and then
subsequently substituted into the three-dimensitirach equations to calculate the far field

stresses. A detailed explanation of stress measmemethods is beyond the scope of this
study and the reader is referred to Amadei andh@tegson (1997) for further explanation on

rock stress and its measurement.
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A detailed mathematical derivation of the 3D Kirsetjuations was presented by Fairhurst
(1968) and Jaeger et al. (2007). In addition, thexrpgations have been applied as a closed
form solution for calculating the induced stressesund a borehole by Amadei and
Stephansson (1997), Zoback et al. (2003), Al-Ajai06) and Fjeer et al. (2008). However,
apart from the mathematical derivation, there is ak@ar explanation of the boundary
conditions on which these equations have been baSedthe other hand, a thorough
understanding of these boundary conditions is éisgefior this analytical solution to be
confidently applied to stress analysis in the eatiam proximity. In order to provide an
unambiguous explanation of boundary conditions Ive@ in the derivation of three-
dimensional Kirsch equations, detailed investigagtiavere conducted on the mathematical
procedure and the simplifying assumptions adopted deriving the three-dimensional
equations from the original two-dimensional Kirszfuations.

A numerical counterpart of the three-dimensionakgh equations was also created to provide
a further opportunity to validate and explain theubdary conditions and simplifying
assumptions involved in the analytical model. Sifgiplg assumptions are usually made to
facilitate the derivation of a closed form solutitma complicated problem. In some cases
without these simplifying assumptions, derivinglased form solution may be impossible.
However, such assumptions, especially in the casgcompatibility with the physics of the
real problem, may sacrifice the accuracy of the ehod Therefore, a numerical model
counterpart to the three-dimensional Kirsch equatienables one to further improve the
accuracy of the model by eliminating some simptifyiassumptions, without which the
analytical solution would be impossible to be folated.

3.2. Stress Analysisaround a Vertical Borehole

Stresses before drilling the borehole

Consider a block of rock, located at a great ddyatheath the Earth’s surface, to which far-

field principal stresses,, o, and g, are acting in the Cartesiain Y and Z coordinate
directions, respectively. Measuring the anglecounter-clockwise from th& direction, the

initial values of radial 4;,,,), tangential §y¢,) and vertical §,,,) stress components, and also
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the associated shear stress componengs 6,,,and gy,, ), can be expressed in a cylindrical

coordinate system as follows:

Ox*+0y , Ox=0y

O, = > cos26 Oz =0,
o,+o, O0,-0
Opgp =Y "X 7Y cos20 0, =0, =0
a4, 2 2 bz, rz,

Oy —0
Org, = -—X_"Y sin26
2 (3.2.1)

0z
iz
E v /\ Oz,

V_Jzr,
928, Orz,
: o
Oz, 10
¢ o
/ ox 7}“9740 Oréo
)
0
Oy

Figure 3.2 The model of the pre-stressed block of rock into which the
borehole will be drilled

In order to model the pre-existing in situ streigddf a block of rock can be assumed to be
removed from its position under the ground and doldaded with the same in situ stress
components from zero. Under such conditions thgalnvalues of the stress components
acting on an element located at an arbitrary gaithe model, as illustrated in Fig. 3.2, can be

expressed in a cylindrical coordinate system deva:

o,+0, 0O,-0
O, = X2 Y+ X 7Y cos20 Oy =0, ~V(Oy+0Ty)
o,+o0, O,-0
Ogg =—— L -—X ¥ ¢cos20 Og =0, =0
66, 2 2 6z, rz,
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g, —0
Jrgl =_% sin26 Z:Q)

In Egs. 3.2.2 the vertical normal stress comporgpt, was calculated regarding the

Poisson’s effect and the Poisson’s ratio,

Stresses after drilling the borehole

After a borehole of radiua has been drilled into an isotropic elastic roctickl which was
loaded from zero by the same stress componentseapré-existing in situ, the radiat,,,
tangential,ay9, and in-plane sheam,, stresses acting on an element of rock at a radial
distance- from the borehole centre can be calculated byyapplthe well known Kirsch
equations, given by Egs. 3.1.1. However, it is ingoat to remember that Egs. 3.1.1 were
originally developed for calculating stresses atbarhole in a thin plane in two dimensions.
On the other hand, since the axis of the borehdiends into the third dimension, i.e. the
axis of a Cartesian or cylindrical coordinate syststress components along the borehole axis

in the third dimension also need to be calculated.

In three-dimensional engineering problems, genestikss states and the associated
deformations are represented by means of secom tadsors with six distinct components.
However, in structures where one dimension is clamably greater than the other two
dimensions, the strain components associated hitlextended dimension are assumed to be
constrained by nearby materials and are substynsiadaller than the cross sectional strains.
Considering the fact that the length of a boreladd®g its axis is substantially greater than the
cross sectional dimensions on a plane perpendidalathe borehole axis, longitudinal
deformations can be assumed to be negligible duket@onstraint imposed by nearby geo-
materials. Therefore, if the borehole axis is asslito be coinciding with th#-axis, all strain
components along th&-axis €, &, ande,,) are assumed to be zero and deformations are
expected to occur only in planes perpendiculathtldorehole axis, i.eX( Y)-planes. Such
simplifying assumption is referred to as planeist@nditions. Furthermore, the strain tensor

which describes the plane strain conditions is esg#d as:
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[g] =&y &y O (3.2.3)
0 0 0

The stress state corresponding to the plane staaiditions is given by the following stress

tensor:

Oxx  Oxy 0
[0]: Oyx Oy O (3.2.4)

O-ZZ

Ogry| 906

Figure 3.3 Demonstrating the conditions for applying plane strain assumption for
calculating longitudinal stress components around a borehole

The component,, can be temporarily removed from the analysis fectfely reduce the
three-dimensional problem to a two-dimensional [@at) dealing only with in-plane terms.
The stress component, will then be determined in a manner to maintai ¢onstraint of

zero longitudinal strain, i.es,, = &, = ¢,, = 0.

Therefore, when far-field in situ stresses are aned as principal stresses with respect to
the borehole orientation (Fig. 3.3), considering.E8}2.2 and the assumption of plane strain
the vertical stress component,, and the associated out-of-plane shear stresseanday,,

can be calculated as follows:
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O,=0g=0 (3.2.5)

Changesin theinitial stress state due to the introduction of the borehole

The pre-existing in situ stress field is redisttdali due to the introduction of the borehole.
Changes in the initial stress state due to thesstredistribution can be manifested as the
difference between the values of pristine stresapoments acting on a rock element before
drilling the borehole, as illustrated in Fig. 3&hd stress components on the same element
after the completion of the drilling operations.eféfore, considering Eqgs. 3.1.1, 3.2.1 and

3.2.5, changes in the pre-existing in situ stredd tan be formulated as follows:
2
;2

2
a

2
Aoy, =0y =0, :—{ 5 Y+ 5 y(4—3r—210082

2
_ _|9x*tO0y Ox—0Oy|_a
AUgg—O’gg 0-‘9‘90 —[ 5 5 3r—2 cos24

4 2
oyt+o
DO =0rg=0rg, =— 5 y [3%_2%}Sin29
r r
a2
AT, =0y~ 0, =2V (U'X - U'y) oz cos268

Ao, =0A0g =0 (3.2.6)

Total induced in Situ stresses

Total induced in situ stress components actinghenrock material adjacent to the borehole
wall can be calculated by adding the stress charmggesn by Egs. 3.2.6 to the initial in situ
stress components given by Eqs. 3.2.1. Therefotal induced stresses in the vicinity of a

vertical borehole are given as follows:
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2 2 2
—_ _ JX + Jy a Jx _Jy a a
2 4
—_ _ JX +Jy a Jx _Jy a
T66,, =966, *A0gs == [1+ 7}_7 1+ 3r—4 cos26
- _ _(JX _Uy) a? _a*)|.
Uré’(t) —Ur6’0+A0r3——2 1+2r—2—3r_4 sin28
8.2
Uzz(t) =0z +A0,,=0,-2V (UX —Jy) r—z cos24
Tregy =Tty =0 (3.2.6)

After the completion of the drilling operations @ formation under pre-existing in situ
stresses, total induced stresses acting on an elexha radial distancefrom the borehole
centre are given by Egs. 3.2.6, provided that #éndi¢ld in situ stresses are principal stresses
with respect to the borehole orientation, as wasctise for the vertical borehole illustrated in
Fig. 3.3. Furthermore, Egs. 3.2.6 show that takes its smallest values ang, takes its
largest values, i.er,.,. andog, are at their most deviatoric staterat a. This observation is
important because rock failure will always be ati¢d at the point where the stresses are at
their most deviatoric state, which is the caserdok material adjacent to the borehole wall. It
is also important to note that Egs. 3.2.6 have lkived based on the assumption that the
hole has been drilled into a pre-stressed blockook, as illustrated in Fig. 3.3, and the
problem is entirely different from drilling a holeto a block and then loading the block from
zero. It is of significant importance to take ind@count this boundary condition when
developing a model for estimating the induced seesround a borehole; nevertheless, it has

always been neglected and has not been clearlgiaerplin the existing literature.

In order to validate the assumed boundary conditiorthe analytical model, a finite element
analysis (FEA) was conducted using the commeraéivare package ABAQUS/6.9. This

FEA was used to numerically calculate the indudezbses in the vicinity of the borehole with
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exactly the same boundary conditions as those asséion developing the analytical model.
Some basic concepts of the finite element methqdiexpin this analysis are presented in
Appendix A.

3.2.1. Numerical model of a vertical borehole

Results of stress measurement in Australia indittetethe vertical stregs, increases linearly
with depth at a rate of approximatedy022 MPa/m, minor horizontal stress;, at a rate of
approximately0.015 MPa/m, major horizontal stressy at a rate of between approximately
0.022 and 0.025 MPa/m, and pore fluid pressure at a rate of approximadedl MPa/m
(Hillis and Reynolds, 2000). Therefore, at a degftR000 m, the total principal stresses could
typically bes, = 66 MPa, g, = 45 MPa andgy = 75 MPa with a pore fluid pressure of 30

MPa in porous rocks.

Finite Element Analysis (FEA) was carried out, gsihe ABAQUS/6.9 software package, for
estimating the induced stresses around a borehaléepth of 3000 m. Here as well as for the
analytical model, plane strain boundary conditiomere assumed, i.e. assuming zero
deformation along the axis of the vertical boreh&lerthermore, the borehole was assumed to
be drilled in a rock with a Poisson’s ratio@B85 and elastic moduli 08 GPa. The borehole
radius was taken @08 m. Furthermore, it is of paramount importance toentiat the
borehole is assumed to be drilled in a block okratich is already stressed. In order to
incorporate this pre-stress field in the finiteneémt model two alternative approaches can be

adopted as follows:

- The model space can be created as a block withboteaon which a given set of far-
field stresses are acting. The location of thespective hole must be specified in the
meshing step. The same as for the analytical madladlisplacements along thaxis
are supposed to be suppressed. After redistribatidhe stress field in the model space
and reaching the state of equilibrium, elementsiviiave been ascribed to the location
of the borehole will be removed from the model gpad then the induced stresses due

to the element removal will be measured. It shobéd noted that as a result of

46



CHAPTER 3 Stress analgsund a borehole

suppressing the displacements along the Z-dire¢h’ertermv(axx + ayy) will act in

the opposite direction of the vertical strass,due to the Poisson’s effect and therefore,

will be subtracted from the pristine valueagf

- An alternative and more convenient approach foorparating the pre-existing stress
field is to create the model space as a block wb@ttains the borehole under the given
set of far-field stresses and define a constanalndidplacement in the Z-direction. The
magnitude of this constant displacement is caledlas:

+
4oty (3.2.7)
E
It merits noting that since the stiffness mxats known (defined in the material property
in ABAQUS/6.9), by introducing a nodal displacemegtven by Eq. 3.2.7, the
associated stress field is calculated and incotpdran subsequent steps of the finite

element analysis.

The second approach has been adopted for conduké&rfmite element analysis (FEA) in the
current study. The result of the numerical analysss then compared to the existing
analytical model (Egs. 3.2.6). The zone of inflimacound the borehole was assumed to be a
circle with a radius of 0.48 m which is six timesegter than the borehole radius. Thus, the
radial distance from the borehole wall and the boaf the zone of influence was 0.4 m. This
zone was discretised by 40 concentric circles aawh @ne of these concentric circles was
discretised into 120 elements. Therefore, the faliistance from the centre of the borehole to

the centroid of each element can be calculated as:
r:a+(5><10_3+0.1m) m=012....,39 (3.2.8)

Where a is the borehole radius and the parameteiis a counter for concentric circles,
counting from O for the circle immediately adjacémthe borehole wall and 39 for the circle
adjacent to the border of the zone of influencetHenmore, the angle, measured counter-
clockwise from theX-axis, as illustrated in Fig. 3.4, indicates they@ar location of the
centroid of each element around the borehole agt/én by:
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6:g+3(n—1) n=12...120 (3.2.9)

Y

Figure 3.4 Radial distance from the borehole centre and angular
position of a given element

The calculated values ferandd from Eqgs. 3.2.8 and 3.2.9 were substituted in¢oathalytical
model (Eqgs. 3.2.6) and then the correspondingsstesiponents in analytical model and the
numerical model were compared to one another. €helts of the quantitative comparison

between the numerical and analytical models areepted in Appendix B, Table B.1

According to Eqgs. 3.2.6, induced stresses arourdbtirehole not only vary as the radial
distance from the borehole wall increases, for astant9, but also alter with changing
angular position around the borehole, for a constaBGhanges in the induced stresses in the
finite element model as a function of angular positaround the borehole have been
illustrated in Figs. 3.5 and 3.6 and have been ewetp graphically with the analytical
solution. Since errors in the numerical analysiglircases are less than 2%, when compared
with the analytical model, it can be inferred thia¢ finite element analysis for estimating
stresses around a borehole, which is drilled intgsatropic, homogeneous and linearly elastic
rock, is valid and has been conducted accuratelythErmore, since the finite element

analysis clarifies the boundary conditions assurfeedderiving the analytical model, for

48



CHAPTER 3 Stress analgsund a borehole

which there exists no clear explanation in theditere, this study can also be considered as a

cross-validation, as it sheds light on the procedirformulating the analytical solution.

As can be observed in Figs. 3.5 and 3.6, stressectration occurs at two opposite points at
the borehole wall, i.e# = 0° andg = 180°, and in the direction of the minimum hornitzl
stressg;,. Apart from the stress concentration, stressedaaned to be highly deviatoric at
these two angular positions (Figs. 3.5 and 3.6¢aliag that borehole instability occurs due
to rock failure at the borehole wall, and knowitgtta highly deviatoric stress state is an
underlying factor which leads to rock failure, taesgular positions, around the borehole, are
of particular interest. However, since the induse@sses around the borehole also vary with
radial distance from the borehole wall, it also ibsemvestigating the changes in induced
stresses along radial direction é&t= 0° or 180° to determine at what distance frora th

borehole wall the induced stresses are at theiirmanr deviatoric state.
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Figure 3.5 Comparison between numerical and analytical model for variation of induced radial
(o,+) and tangential (a49) stresses around the vertical borehole at 7 = 0.085 m
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Figure 3.6  Comparison between numerical and analytical model for variation of induced vertical
(o,z) and in-plane shear (0,4) stresses around the vertical borehole at r = 0.085 m
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Fig. 3.7 illustrates the changes in induced radial, tangentialggg, and verticalg,,, stresses
along the radial directior, As is obvious from Fig. 3.7, the maximum valudésnaluced
stresses occur at the borehole wall, i.e. where 0.08 m (borehole radius), and more
importantly, the induced stress components areyigviatoric at the borehole wal € 0.08

m), compared to other points located at furthetadise from the borehole wall (Fig.3.7).
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Figure 3.7 Comparison between numerical and analytical model for variation of
induced stresses along the radial direction r, at & = 0, for the
vertical borehole

Furthermore, the in-plane shear stress compomept,is zero at the borehole wall and, as
illustrated in Fig. 3.8, it increases dramaticaliyth increasing radial distance from the
borehole wall until it reaches a maximum value distance close to the borehole wall, in this
case at 0.05m, from the borehole wall. After reaghis peak value, at a small distance from
the borehole wall, the in plane-shear stress, declines gradually until it reaches a plateau
(in this case 0.8 MPa).

Accordingly, in the case of the elastic solutioock failure is anticipated to initiate at two
opposite points around the borehole, #.e= 0° andd = 180°, in the direction of the minimum
horizontal stressg;,, and at the borehole wall due to the stress cdrat@n and the deviatoric
nature of the stress state. However, it should diedhthat the occurrence of rock failure is
highly dependent upon the strength of the rock nadtsurrounding the borehole. Techniques

for estimating the strength of rock material w#l bomprehensively investigated in Chapter 4.

52



CHAPTER 3 Stress analysmund a borehole

1.20
1.00
0.80

0.60

ore-Num

ore-An

I

{
040 |1
|
0.20 |
|

In-plane shear stress, o, (MPa)

0.00

0 005 01 015 0.2 025 03 035 04 045
Radial distance from the borehole wall (m)

Figure 3.8 Comparison between numerical and analytical model for variation of
induced in-plane shear stress along the radial direction r, at 8 = 0,
for a vertical borehole

According to Eq. 3.2.6, and with respect to Figs. 8nd 3.8, the stress state at the two
opposite points located on the borehole circumfsgene.6 = 0° andd = 180°, for a vertical

borehole at the depth of 3000 m is given by thiefahg stress tensor:

Or Org Ora 0 0 0
oil=|oa 0w oml|=|0 17992 0 (3.2.10)

Oa 0Oa9 0Oaa| |0 0 8697

3.3. Stress Analysisaround a Deviated Borehole

In cases where the far-field in situ stresses atepnincipal stresses with respect to the
borehole orientation, for example, in the case déaated borehole, as illustrated in Fig. 3.9,
a general stress state exists at the boreholerpitgxiConsidering a block of rock, the upper
and bottom faces of which are perpendicular to hbeehole axis, all components of the

associated stress tensor can be identified.
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Figure 3.9 General stress state in the vicinity of an inclined borehole

Subscripts @) and () in Fig. 3.9 represent the far-field stress congmis, measured with
respect to the global and local coordinates, résmdg. Since the following analyses were
conducted considering a local coordinate systei r@erence th&-axis of which coincides
with the axis of the borehole, the subsctipwill be eliminated in any successive nhomination
of components of the general stress tensor. Therefhe general stress tensor, which

describes the stress state in the vicinity of aaled borehole can be given as:

UXX g JXZ

xy
[Uij]: Iyx Ty Oy (4B

Ozx Ozy Oz

Assuming the axis of the borehole to be the axisladtic symmetry (isotropic case), induced
stresses around a deviated borehole, for whichidltstresses are not principal stresses, were
first analytically formulated by Hiramatsu and Old#62) and later explained in detail in a
report by Fairhurst (1968). The strategy for demvthe analytical solution was to divide the

general stress problem into two separate problems:

- a plane strain problem for calculating inducedsstes around the deviated borehole due

only to far-field normal stresses,, o,, ando,,) and in-plane shear stress acting on a

plane perpendicular to the borehole axis, (= g,,)

54



CHAPTER 3 Stress analgsund a borehole

- an anti-plane strain problem for calculating indicgiresses in the vicinity of the

inclined borehole merely due to out of plane slst@ssesd,, = oy, ando,,, = 0y)

Consequently, adopting the superposition methodyéimeral stress problem is assumed to be
as the summation of the plane strain and anti-pktre@n problems, as illustrated in Fig.
3.10.

(Y Oxz
i [—
Ozy, (o} Uzyi
XZ 0. 7
Oxx Oxx o
V2 —2 - XY, Oyz
Oxy - + Oyx + I
(2

Oyy, rx a, /

@) (b) (©)

Figure 3.10 Corresponding stresses for (a) and (b) plain strain problem and
(c) for anti-plane strain problem

Stress analysis for the case (a) in Fig. 3.10asstime as for a vertical borehole, as explained
in Section 3.2. In order to incorporate the effefctar-field in-plane shear stresses (Fig. 3.10
(b)), the induced stresses around the boreholetalube far-field normal stresses can be
superposed by the induced stresses due to thefgdiield in-plane shear stresses. It merits
noting that in both cases (a) and (b) in Fig. 3f@sses around the borehole are calculated
based on the assumption of plane strain,&,e= ¢, = &,, = 0. The corresponding stress
tensor, which describes the stress state in thesqag and (b) in Fig. 3.10, is also expressed

by the plane strain stress tensor, given by Eq33.2

3.3.1. Stresses at the borehole wall due to far-filed in-plane shear, a,, and
normal stresses, o,,, 6, and 6,,

Consider a plane perpendicular to the borehole amisvhich shear stresses, = o, are

acting (Fig. 3.11). If this plane is rotated todithe principal directions and the associated
principal stresses, then Kirsch equations (Egs.1B.¢an be applied to calculate the total
stresses around the hole. The rotation matrix, rédating a two-dimensional Cartesian

coordinate systen¥X(Y), is defined as follows:
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(3.3.2)

cosf -sing
Linﬁ cosﬂ}

Figure 3.11 Demonstrating the method adopted for calculating induced
stresses around a borehole due to pure far-field shear
stresses. actina on a plane perpendicular to the borehole axis

The angles by which the plane and the coordinaXeandY have to be rotated to put the plane
in a position where it has its faces perpendictdathe principal directionsx ' and Y' (Fig.
3.11), can be calculated from the following relasibip:

{cosﬁ —sinﬁ} 0 oy {cosﬁ —sinﬁ}T o O
= (3.3.3)

sing cosfB sing cosf

0 o

Oyx 0 vs

Subscripts for normal stress components in Eq. 3.3.3 indgdhat the magnitude of the

normal stresses, ando,, is equal to the magnitude of shear stresggs= g,,.

From Eqg. 3.3.3 the angJeis calculated ag; andoy; = —o,s = 0y, as illustrated in Fig. 3.11.

Furthermore, stress components acting on an eleaentadial distance from the borehole
centre and at an angular distance measured cotlotkwise from theX-axis can be

calculated in a cylindrical coordinate system byssituting —o,, and oy, for o, ando,,

respectively, and’ = (9 — %) for 6 in Egs. 3.1.1. Therefore, stress components artuad

borehole due only to far-field in-plane shear stessare calculated as follows:
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2 4
_ 1- da +3a sin20
Jrr(FS) = Oxy (2 4 !

4

_ 3a” | .
T g ——axy(1+r—4jsm26

2 4
=0 |1+22 -3 | oe00
Tr6,0s) = Oxy e oS

UrZ(FS) = UHZ(FS) =0 (3.3.4)
Consequently, on the assumption of plane stra&gws) can be calculated as:

aZ .
UZZ(FS) =V (Urr(FS) + UHH(FS) ): -4y Oxy r—25|n 26 (3.3.5)

The subscriptFS in Egs. 3.3.4 and 3.3.5 indicates that the stoessponents around the
borehole have been calculated by merely considdhegeffect of far-field in-plane shear
stresses on the induced stress field around trehblar. After superposing Egs. 3.2.6 by Egs.
3.3.4 and 3.3.5, components of induced stressamarthe borehole due to the far-field

normal and in-plane shear stresses are given lagviol

2 2

o, +0 2) o,-0 4 4
Oring = Y T Fhe ST E P Sa _4a cos26+o,, :|.+—3a _da
(NS) 2 2 2 a2 a2

]sinZH

2 2 4
2 r

2 4 4

o t0o oy—0

Ogg... =—— 148 |- DTy, 3R c0s26 - o, 1+ lsin26
(N9 r 2 r g

g,-0
T e =(— x2 ysin2¢9+axycos249j(1——4 ZJ

a’ aZ .
2249 :O'Z—ZV(O'X—O'y) r_2 c032€—4vaxyr—25|n29 (BB.
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The subscripiNS in Egs. 3.3.6 indicates that stresses at the btagbroximity have been
calculated due only to the far-field normal anglane shear stresses.

3.3.2. Stresses at the borehole wall due to longitudinal shear stresses

(0x; = 0,) and (ayz = azy)

The closed form solution for stress components ratothe borehole due to the far-field
longitudinal shear stresses acting parallel tdothrehole axis, i.e. the case (c) in Fig. 3.10, was
derived by Fairhurst (1968) based on the assumpfi@mti-plane strain. As opposed to plane
strain boundary conditions, which allow only forfakenations in planes perpendicular to the
borehole axis, in anti-plane strain deformatiores assumed to take place only along the axis
of the borehole and no deformation is allowed iangk containing the cross section of the
borehole.

Considering a block of rock as illustrated in F&10 (c), for infinitesimal displacements

the strain tensor associated with out-of-plane isieasses can be defined as follows:

0 0 % + a&
aaz 0X
[€] = 0 0 My 94, (3.3.7)
0z oy
ou, N ou, O0u, N ouy 0
| OX 0z 9y 0z

However, under anti-plane strain conditions displaents along th& andY directions are
assumed to be zero. Considering rectangular Cantesiordinates, the displacement field that
leads to a state of anti-plane strain is giverodes:

uy =uy, =0

(3.3.8)
u; =uy(xy)
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Whereu, andu, are displacements along tKeandY directions respectively and, is the

displacement in th& direction which is defined as a functionxodnd y. Therefore, the strain
tensor associated with anti-plane strain conditisrtefined as:

0X
(] =0 o %% (3.3.9)
anti— plane strain ay
ou, ou,
| OX 0y

According to Egs. 3.3.8 and 3.3.9 anti-plane std@formations can be visualised, considering
an element of rock with dimensionsdx, dy ancdz, as illustrated in Fig. 3.12. Furthermore,
for an isotropic and linear elastic material thess tensor that results from a state of anti-

plane strain can be expressed as:

_ ou, -
0 0 oy 0 0 X
6] =0 0 o,|=| O o o (3.3.10)
anti— plane strain oy
O Oz 0 G 9u, G 9u, 0
ox oy |

WhereG is the shear modulus of the material.

Accordingly, induced stress components around trehwmle when only far-field longitudinal
stresses are involved and based on the assumgbtaontiglane strain boundary conditions are

given as follows:

Oitiosy = 98605y = 91605y = 92205 ~ 0

Q

N

2
Ot = (O'yz cosfd - a,,sin 9) [1+ r J

QD
N

g rZ0s)

= (ayzsin0+axzcost9) [1— J (3.3.11)

-
N
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The subscripOSin Eqgs. 3.3.11 indicates that the stress compsremoiund the borehole have

been calculated by considering the far-field ouplaine shear stresses only.

fZ
Ju
I ! } ~ dx
0. f Az o Ox
1 zZX O-zy 4 !
- Tys R
I T
I 1
dz | laxz T — ,‘_ _______ -
) ————— F - - - I///L 777777777777777
/s dx Y s
»’ dy

X

Figure 3.12 Deformations associated with anti-plane strain boundary conditions

Details of the mathematical procedure for derivinggitudinal stress components at the
borehole wallg,¢ anday,, is beyond the scope of this research and theeraadeferred to

Fairhurst (1968) for further information. Egs. 8.&long with Egs. 3.3.11 are referred to as
the generalised Kirsch equations, which are beimtghy used for estimating stresses around
boreholes, circular tunnels and any other undergf@iructures with a circular cross section

in the petroleum and mining industries.

In order to further clarify the boundary conditicassumed in deriving the generalised Kirsch
equations, a finite element analysis (FEA) was ceotetl by assuming the same boundary
conditions as those for the analytical model. TE# For stress analysis around a deviated
borehole was undertaken considering the stressitemmlin the Earth’s crustal formations of
Australia, as given in Section 3.2.1, at the degftlBOOO m. The results of the FEA were

compared with the analytical model, namely the gaiseed Kirsch equations.

3.4. Numerical Counterpart of the Generalised Kirsch Equations

Assuming the far-field in situ stresses in the Eartrustal rocks in Australia at the depth of
3000 m aw;, = 45 MPagy = 75 MPa and, = 66 MPa, the general stress state induced in the

vicinity of a deviated borehole is expressed bydhreral stress tensor given by Eq. 3.3.1. It
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was also assumed that the trajectory of the boeel@s manifested by the trend/plunge
system as 125/10. To specify the components of giweeral stress tensor necessitates
transforming the stress tensor associated withfahdield in situ stresses from the global

coordinate system into a local coordinate systame, @ordinate of which coincides with the

borehole axis. The rotation matrix for performinge ttransformation can be derived by

calculating angles between the axes of the loaaldinate system and their counterparts in the
global coordinate system. Furthermore, the afiglebetween two lines of trend/plungg/pg,,

anda, /B, can be found from the following expression:
cosd,, =[coda, - a,) cosB, cosB,| +[sing, sins, ] (3.4.1)

The trend and plunge of the axes of the global dinate systemX, Y, Z) are given as

follows:

Global coordinate system

Coordinates

Trend (Deg)

Plunge (Deg)

X-axis 0 0
Y-axis 90 0
Z-axis 0 90

On the other hand, the trend and plunge of the akeslocal coordinate systerh, (M, N)
which has one of its axes coincide with the axithefinclined borehole with trend and plunge

of 125/10 are given as:

Therefore, with respect to Eq. 3.4.1 the rotatiatrir is calculated as follows:

-0.5649 0.8067

Local coordinate system
Coordinates | Trend (Deg) | Plunge (Deg)
L-axis 125 -10
M-axis 215 0
N-axis 125 80

-0.1736

[R]=|-0.8192 -05736 0.0000

-0.0996 0.1422

0.9848
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Furthermore, the stress state at the depth of 800 the Earth’s crustal rock of Australia

and with respect to the global coordinate systengiven as a principal stress tensor as

follows:
45 0 O

o] =|o 75 o (3.4.3)
0O O 66

Therefore, components of the general stress temgoch describes the general stress state
around the deviated borehole, are calculated mgtoaming the principal stress tensor, given

by Eqg. 3.4.3, and using the transformation maf®}, given by Eq. 3.4.2, as follows:

65.1565 -13.8812 -0.1487
lo ]g =[Rl[o; ]p[R]Tz -13.8812 54.8697 - 24476 (3.4.5)
-0.1487 -2.4476 659738

The finite element model was created for the dedidiorehole using ABAQUS/ 6.9. The
borehole radius was given as 0.08 m and the barelwals assumed to be drilled in an
isotropic, homogeneous and linearly elastic mdtemsh elastic modulus of 48 GPa and
Poisson’s ratio of 0.35.

Boundary conditions assumed for performing the F&Aalculate induced stresses around the
deviated borehole were the same as those assumedefiving the generalised Kirsch
equations. It merits noting that separating theeganstress problem into two problems and
assuming plane strain boundary condition for orgeanrti-plane strain boundary condition for
the other are simplifying measures which make #wévdtion of analytical solution possible.
However, in reality it is impossible for a block reck to undergo deformations, on the one
hand, on the assumption of plane strain conditiarsch is manifested by zero out-of-plane
deformations &,, = ¢, = ¢,, = 0), and on the other hand, on the assumption ofpdarie
strain conditions, which allows only for the outjgiine deformations such thgt # ¢,, # 0

ande,, = 0. It is also impossible to perform these incompatiboundary conditions on a
single finite element model and therefore, as far &nalytical model, two separate models

have been created; one for estimating the induttedses due to the far-field normal and in
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plane shear stresses and the other for modellohgced stresses around the deviated borehole

due to the far-field out-of-plane shear stresses.

As is inferred from Egs. 3.3.6 the radial stress, is at its smallest and the tangential
stressggg, is at its largest values at= a. Furthermore, as was explained in Section 3.8.1, i
the case of a vertical borehole subjected to &dformal stresses only, the tangential stress
is at its maximum value & = 0° and = 180°, compared to any other angular positions
around the borehole. Points located on these twpoife angular positions on the
circumference of the vertical borehole lied in thigection of the minimum horizontal stress
and were referred to as stress concentration pdkigs. 3.5 and 3.6). However, when a
borehole is drilled into a block of rock which igbgected to far-field normal and in-plane
shear stresses, the two opposite points of stgsseatration do not lie in the direction of the
minimum horizontal stressy,, as they do in the case of a vertical boreholgg(F8.13 and
3.14).

An illustrative comparison between the resultsh&f humerical stress analysis, i.e. FEA, and
the results of the estimation of induced stressesral the deviated borehole by means of the
analytical model, i.e. the generalised Kirsch eiguat is presented in Figs. 3.13, 3.14 and
3.15. As can be observed, the results of the fildenent analysis comply with the results of
the analytical model, which is indicative of vatidbf the finite element model. Furthermore,
the finite element model further clarifies the amsd boundary conditions and simplifying
assumptions adopted for deriving the generalisedcKiequations for calculation of induced
stresses in the proximity of a deviated boreholeuantitative comparison and the associated

error analysis are given in Appendix B, Tables B.%-
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Figure 3.13 Comparison between numerical and analytical model for variation of
induced radial (o,,) and tangential (og9) stresses around the inclined
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Figure 3.14 Comparison between numerical and analytical model for variation of induced vertical (a,,)
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The region of stress concentration is represemtedd in the contour model in Figs. 3.13 and
3.14. It merits mentioning that only two distipaints in these stress concentration region, at
which gy is at its maximum value, are of particular interégirthermore, induced stresses
around the borehole are at their most deviatoatesat these two opposite points of stress
concentration. Therefore, it is of utmost impor&ane determine the angular position of the
two opposite points of stress concentration. Assthated in Fig. 3.13 (b), the graph, which
represents changes in tangential stoggsas a function of angular positi@haround the
borehole, shows four optimum points where the slfpiae tangent line to the graph is zero.
Therefore, there are four angular positions aroth borehole where the value of the

tangential stress is either maximum or minimum.

To find these angular positions necessitates eéfffiting the functiow,g, given by Egs.

3.3.6, with respect t and equating the derivative to zero as follows:

4 4
dggﬁ = (0, —ay)(1+ %}sinZ@—ZaxyLH %Jcosze =0 (3.4.6)

Therefore, the angular position where the tangkeastiass is at its minimum or maximum is
given by:
20

tan2=—2— (3.4.7)
oy =0y

Eq. 3.4.7 yields four values for the anglall of which satisfy Eqg. 3.4.6. Recalling that the

periodicity of tan 20 isg, four angular positions are determined &s9 + g 0+mo+ 37”

Substituting these values férinto the gg4-function (Egs. 3.3.6), the maximum and minimum
values ofoyg and, more importantly, the angular positions assed with the maximum value

of g9 Ccan be identified.

In the case of the deviated borehole, which wasidened as a case example for developing
the finite element model, four angular positionswditich the ggq-function is either at its
maximum or minimum values are determined by appl\&q. 3.4.7, as is presented in Table
3.1.
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Table 3.1 Determining the angular position of the two
points of stress concentration

0 (Deg) 55.166 | 145.166 | 235.166 | 325.166

Ogo max min max min

Fig. 3.16 illustrates changes in induced stressehieaangular positio® = 55.166° as a
function of radial distance from the borehole wéil, both numerical and analytical models.
Induced stresses are at their most deviatoric sttbe borehole wall, where the induced
stresses are either at their maximum or minimunueglat a given angular position.
Therefore, the rock failure is envisaged to indgiat the borehole wall and at two opposite
angular position where stress concentration ocdarghis case a = 55.166° andd =
235.66°. In order to predict the rock failure ae thorehole wall and at the two stress
concentration points the common strategy is tordete the stress state at these two points at
the borehole wall and then investigate whetherrtdo& material is strong enough to sustain
the induced stress state. With respect to Fig. @ad also error analysis Tables B.1-B.5 given
in Appendix B), the induced stress state at thedtmess concentration points, iGe= 55.166°
and 6 = 235.66°, at the wall of the deviated boreholecWwhhas been studied as a case

example can be identified by the following stresssor:
Oy Org Oy 0 0 0

oi]=| 08 0 0a|=|0 17924 -302 (3.4.8)
O, O, 0O, |0 —302 8670
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Figure 3.16 Comparison between numerical and analytical model for variation of induced
stresses along the radial direction r, at @ = 55.166°, for the inclined borehole
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3.5. A Madification to the Generalised Kirsch Equations

In the existing analytical model (generalised Kiscstresses around the borehole are
estimated, on one hand, based on the assumptjgared strain in which no axial deformation

is allowed and, on the other hand, based on thergggn of anti-plane strain in which no in-
plane deformation is allowed and the only defororats supposed to take place along the axis
of the borehole. The plane strain boundary conutivere assumed in order to facilitate the
calculation of the induced stresses around a btretunsidering only the far-field in situ
normal and in-plane shear stresses and the am@ gli@ain boundary conditions were adopted
to estimate the effect of the longitudinal, outptdne shear stresses on induced stresses

around the borehole.

The underlying reason for separating the generasstproblem to two problems; one on the
assumption of plane strain and the other on thengsson of anti-plane strain was to reduce a
three-dimensional problem to two two-dimensionalgdems for which deriving the analytical
solution was feasible. The plane strain and amtngl strain conditions are simplifying
assumptions based on which analytical solutions lmrderived as approximations to real
general problems, where the mechanics of the tfiraensional problem allows for making
such assumptions. Considering a block of rock atdépth of 3000 m, into which a borehole
has been drilled, as illustrated in Fig. 3.17,dR&l dimension is considerably greater than the
cross sectional dimensions, so it can be assunaedhth axial deformations are constrained by
nearby geo-materials and, therefore, are negligibempared with cross sectional
deformations. Hence, the physics of the problelomal for approximately calculating the
induced stresses around the borehole due to &fdrgeneral stress state on the assumption
of plane strain. It should be noted that all oliplane deformations are assumed to be zero on
the assumption of plane strain, kg, = ¢,, = ¢,, = 0. Furthermore, the corresponding out-
of-plane shear stresses in the stress tensor as=aevith the plane strain conditions are also
assumed to be zero, i®,, = g,, = 0, and the vertical normal stress,, is determined in a
manner to restrain zero out-of-plane deformatidrige strain and stress tensors associated

with the plan stain conditions are given by Eq2.28and 3.2.3.
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Therefore, the assumption of anti-plane strain ¢@rg, in order to incorporate the effect of
the far-field out-of-plane shear stresses on thduded stresses around the borehole, as
explained in Section 3.3.2, is contradictory to fk@ne strain assumption. However, it was
reasoned by Fairhurst (1968) that since out-of@lsimear stresses do not have any impact on
the in-plane induced stresses around the boreheles,,, og9 and o, (Egs. 3.3.11), the
induced out-of-plane stresses around the borehariebe calculated separately and on the
assumption of anti-plane strain, which assumesataat deformation along the borehole axis
as a function of gradients of the axial displacetmgnn theX andY directions as follows:

du, ’auz) = constant (3.5.2)
ox oy

u, = f(

Nevertheless, it merits noting that although thegltudinal shear stresses do not affect the
induced in-plane stresses around the boreholgsfiemed boundary conditions can be highly

influential on the calculated values for the oufptdne stresses, namety,, o,., andag,.

3000 nf [#hd s

Figure 3.17 A section of a borehole at the depth of 3000 m

A more appropriate approach for estimating stresgesind a borehole when a far-field

general stress state is involved can be given wngpthe three-dimensional problem and by
assuming that deformations along the axis of theshmme is suppressed by nearby geo-
materials as illustrated in Fig. 3.17. Althoughideg an analytical solution to this three-

dimensional problem may be difficult or even impbks numerical methods such as FEA can
be employed to solve the problem.
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The general strain tensor for defining the threaatisional deformations of a rock element
with dimensions oflx, dy anddz, in a Cartesian coordinate system can be expreéssedns

of the infinitesimal displacements as:

du, Ouy ouy  du, L 0u,
0x dy  0Xx Jz  0Xx
le] = ouy ouy, ouy, ouy, , 9y, (35.2)
dy Ox ay Jz oy
du, , Ou,  du,  Ouy ou,
| 0x 0z ody 0z 0z |

However, since the assumption of zero deformatlongathe borehole axis is also indicative
of zero displacement, i.et, = 0, along the axis of the borehole, which is as=d to be
coinciding with theZ-axis of the Cartesian coordinate system, the dedtion of the rock
element in the proximity of the borehole and at tepth of 3000 m is assumed to be

manifested by the following strain tensor:

I duy ou, +0Uy au, |
0x dy  0OXx 0z
ou ou ou
[e]=| 2+ 2 J Y (3.5.3)
dy Ox ay 0z
9uy o
| 0z 0z |
The stress tensor corresponding to this stain tex@sobe given as follows:
£[ 9ux ol %ux , Oy G(OLJ
0x dy 0x 0z
ou ou ou
[o]=| | 2 + 2y E| Y G| -2 (3.5.4)
dy 0Ox ay z
ou
G(a&j G| o,
0z 0z |
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WhereE is the elastic modulus ar@l is the shear modulus of the rock material. In £§.4
the vertical normal stress,,, is supposed to be determined in order to satiiefycondition of
zero displacement along the axis of the borehdherdforeg,, can be defined as a function

of gradients of the longitudinal displacementshi@X, Y andZ directions as follows:

0u= 1 (52522 53)
Applying the proposed boundary conditions, giverthmy strain tensor in Eq. 3.5.3, the results
of the finite element analysis indicate that thenmal and in-plane shear components of the
induced stress state around the deviated borebolain unaltered, compared to their values
calculated by means of the generalised Kirsch @oua(Appendix B, Table B.5). Therefore,
Egs. 3.3.6 can be applied to calculate the stresgonents,.., ggg, d,, anda,g. However,
longitudinal shear stresses, and gy, substantially change under the proposed boundary

conditions, as illustrated in Fig. 3.18.
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Figure 3.18 Changes in longitudinal shear stresses around the borehole under the
proposed boundary conditions 23
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Based on the results of the finite element analybis formulation of the out-of-plane shear

stresses,, anda,, can be modified as follows:

1 . a’
Og = E(Uyz cosd - szsme) (1+ r—zj
~ . a®
O,, = 2(ay25|n9+ axzcose) [1—r—2j (3.5.6)

The angular position of the points with stress emtiation around the borehole can be given
by Eq. 3.4.7 a® = 55.166°, which is also confirmed by the reswlsthe finite element
analysis for the deviated borehole considered asxample for finite element analysis in the
current study. Furthermore, &t= 55.166°, a row of elements in the radial di@ttcan be
selected (Fig. 3.19) in order to indicate changkshe longitudinal shear stressres as a
function of radial distance from theborehole waherefore according to Fig. 3.19 the induced
stress components at the two points of stress otmati®n are given by the following stress

tensor:
Oy Org 0Oy 0 0 0

loi]=| 06 04 04 |=|0 17922 -185 (3.5.7)
O, Ou9 Oy 0 -185 86.70

0.5
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Figure 3.19 Changes in longitudinal shear stresses under
the proposed boundary conditions, along the
radial direction from the borehole wall



CHAPTER 3 Stress analgssund a borehole

According to EQ.3.5.7 the only stress componentth&t borehole wall which changes
compared to the analytical solution, i.e. the gelised Kirsch equations, ig,. It also merits
noting that although the values of the stress coraptys,., differ from the values calculated
by means of the generalised Kirsch equations, rtdaradial distances it takes the value of
zero at the borehole wall.
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CHAPTER 4 Rock strength analysis in three-dimensicitrass

4.1. Introduction

Apart from the evaluation of stress conditions ire tborehole proximity, an accurate
estimation of rock strength under a three-dimeraiatress state is vital for predicting the
borehole instability. In other words, when drillingrough rock or when considering the
stability of borehole in good quality, brittle rgdkvestigating the behaviour of intact rock in
three-dimensional stress regime is a key paranet@esigning and drilling stable boreholes.
The strength evaluation of intact rock is even marportant when considering stability of
boreholes with smaller cross sectional dimensi@mpared to discontinuity spacing and at
great depths.

According to Paterson and Wong (2005), the mechamoperties of intact rock material
such as failure strength, fracture angle and diyGtére function of stress state, temperature
and strain rate. Mechanical behaviour of rock uralgiven stress state which is induced and
imposed on rock due to the introduction of an opgnin the Earth’s crustal formations is the
focal point of interest of this chapter. The effeftstress state on rock strength has been
comprehensively investigated under conventionalxial compressior(o, > g, = 03) and
extensiono, = 0, > 0g3) stress states. However, as pointed out by Modd{20due to the
complicated procedure of true-triaxial experimendsk behaviour in general stress state
(01 > 0, > 03) has not been studied adequately. On the other, hawdnfidently predict the
borehole instability due to the rock failure at ttwrehole wall an accurate estimation of rock

strength under the induced three-dimensional sstegs in the borehole vicinity is required.

Rock strength can be interpreted as the ultimadity capacity of rock material in a given
stress state. The stress state at which failurarsds often referred to as failure stress. Since
most rocks fail with an abrupt failure and plastieformation is barely observed before
macroscopic disintegration, the failure stresshis study is considered as the stress state at
which rock material is disintegrated, as definedRmest and Hunt (2005). The strength of
rock material surrounding an underground strucéirne depth of interest can be determined
by simulating the in situ stress conditions in ekpental studies. However, due to difficulties

with reproducing in situ conditions at great deptid complex experimental procedures of
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CHAPTER 4 Rock strength analysis in three-dimensicitrass

three-dimensional rock testing, it is desirablgtedict the rock failure stress by means of an
accurate predictive model. Such a predictive maglekually presented as a failure criterion,
which is either an empirical or analytical formubat

A failure criterion for a rock is a mathematicalpegssion that defines the stress state as a
combination of stress components which leads t& fadure. Such a criterion is usually
expressed in terms of the stress tensor and mlapgoperties of rock. It is important to
remember that the term ‘failure’ implies that theck has completely disintegrated. It is,
however, possible for the rock to become unserbieem an engineering sense, if substantial
inelastic deformations develop. In this context téren ‘yield criterion’ is more appropriate to
be adopted. Rock failure criteria can be developgttlamentally from the mechanical
analysis of an assumed failure mechanism, or caseleloped empirically by modelling the
observed behaviour of rock during laboratory o s#sts.

4.2. Definition of General, Principal and Deviatoric Stress Tensors

The general stress state which is imposed on & ldbecock (Fig.4.1) can be expressed by

means of a second order tensor which is oftennexfep as stress tenszy:

011 0O O3
=021 Oz Oz 4.2.1)
031 O3 Ogz3

3
Y/ 032
0317 033 ‘ Zl
0-13 I‘ 0-22 2
7*‘0 NS
o

Figure 4.1 Compressive general stresses on a block of rock

If the rock block shown in Fig. 4.1 is rotated dwtt all shear stresses on all faces are

eliminated (Fig. 4.2), then the normal stresse;n@abn each face are known as principal
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CHAPTER 4 Rock strength analysis in three-dimensicitrass

stresses and the associated directions are referrasl principal directions. The stress tensor

which describes this stress state is known as ipahstress tensofg; j]p, and can be written

as:

[Uij]p= 0 o O (4.2.2)

03

03

Figure 4.2 Principal stresses on a block of rock

It should be noted that although in Eq. 4.2.2 stogsnponents in the general stress tensor (Eq.
4.2.1) have changed due to the rotation of the bda&k and the coordinate system, the actual

stress state remains unaltered. Furthermore, Hrereertain invariants associated with every

tensor which are independent of the orientatiorthef coordinate system. For example, a

vector is a simple first order tensor and it isresented by three components in a three-
dimensional space. The magnitude of these compsragend on the coordinate system

chosen to represent the vector, but the lengthef/ector is a scalar and is independent of the
orientation of the coordinate. Similarly, in assdi@n with every second order tensor, such as
the stress tensor, there exist three independeatiamt quantities. Accordingly, the firsl; ),

second [,) and third 1) invariants of the principal stress tensor arengef as follows:
l,=0,+0,+0;
|, =0,0,+0,0;+0;0,

l;=0,0,0, (4.2.3)
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Furthermore, the hydrostatic stress ten[m]r]H, associated with the principal stress tensor

(Eq. 4.2.2) is defined as follows:

il =24, (4.2.4)

Where lqis the first invariant of the principal stress tenand the termlglis referred to as the

mean normal stress. The 3x3 matdxis known as the ‘kronecker delta’ and is defined as

o 100
1if i=j (N
g =gt i=1 Nosum 1o (4.2.5)
)
Oif i#] 00 1

When considering rock performance under a givesststate it is important to note that even
rocks with no shear strength will not fail or digigrate under hydrostatic stress sfate=

0, = 03). Under high hydrostatic stress state, due to tbsuce of pre-existing voids and
micro-fractures in the rock body, rock becomesaattompact and consequently stronger.
Therefore, it can be inferred that, as opposed etalmmaterials, the failure stress of rock is
dependent upon the mean normal stress. Howevemde factor which causes the rock to
fail is the deviation of stress state from the logtiatic state of stress. Hence, to predict the
rock failure it is necessary to evaluate the deviatnature of the stress state acting on the

rock.

Considering the principal stress tensor in Eq.24.the deviatoric stress tens{nr,-j]d, can be

written as:
S1 O 0

[Uij]d =10 S O (4.2.6)
0 0 Si3

Where the diagonal components in Eq. 4.2.6 araeefas:

L Nosum) 4.2.7)

=g —
SI ]) 3
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Furthermore, the first/{), second J;) and third f3) invariants of the principal deviatoric
stress tensor are defined as follows: (for simpli€j,, S,, and S;; are written as;, S,
ands;)

N=5+$+S (a)
P R RO N Y S I
J3=595 (©) €:)2

It is also noteworthy that:

Si —S” = 0ii —0jj No sum (4.2.9)

4.3. Failure Function in Principal Stress Space

In general stress staf@g; > 0, > 0g3) all possible combinations of the stress components
which cause the rock to fail can be representednegns of a mathematical formulation

known as a failure criterion. For an isotropic dmmogenous material in a uniform stress
regime, the failure criterion can be expresseaims of a stress tensfs;;|, which satisfies

the following relationship:
Flgj)=0 (4.3.1)

However, models for predicting the rock failureess are commonly expressed in terms of
principal stresses. Therefore, the functiéenn Eqg. 4.3.1 can also be written in terms of

principal stresses as:

f (01,02,03)= 0

(4.3.2)

The functionf in Eq. 4.3.2, can be interpreted as a surface énptincipal stress-space

(04, 0,,03), as illustrated in Fig. 4.3. This surface is ametrical representation of all failure
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points in the stress space and is, accordinglywknas the failure surface. All stress points
inside the failure surface are stress states athathie rock does not fail and any point located
on the surface represents a failure stress poitnéss points outside of this surface are
theoretically meaningless. However, when experialetta lies outside of a failure surface,
it is inferred that the associated failure critaricmderestimates the rock strength. On the other
hand, observing experimental data inside the miturface indicates that the rock strength has
been overestimated. According to Mogi (2007), ohthe most fundamental problems of rock

mechanics is the study of the shape of the faguréace for various rock types.

It also merits noting that the analysis of industr@sses adjacent to an excavation will usually
produce a general stress tensor (where the sheasas$ are non-zero) expressed relative to a
local set of axes. On the other hand, failure fiomst expressed in terms of principal stresses
are applicable only when the stress state is nm&teifleby the principal stress tensor. In order
to apply such failure functions (Eq. 4.3.2) forimsiting rock strength, it is necessary to
transform the local general stress tensor intopttecipal stress tensor. However, recalling
that the invariants of a second order tensor atepgendent of the orientation of the coordinate
system, it is more convenient to express failumrecfions in terms of the invariants of the
principal stress tensor or the deviatoric principtkess tensor to effectively eliminate the

transformation operations of the stress tensor tiwrprocedure of the rock strength analysis.

(21

Figure 4.3 Failure surface in the principal stress space

81



CHAPTER 4 Rock strength analysis in three-dimensicitrass

4.4. Failurefunctionsin deviatoric stress space

The stress space can be defined using a Cartes@udimate system, each axis of which
represents one of the three principal stresses.a@rary pointP in the principal stress space
is identified by three stress components and reptesa unique stress state. Furthermore, the
position of the poinP in the stress space can be addressed by a stssd/= (04, g, 73),

as illustrated in Fig. 4.4. The limg = 0, = g3, which makes equal angles with the three

principal stress axes is called the ‘Stress-spagodal’ or the ‘Hydrostatic axis’ (Fig. 4.4).

“0'3

P(Up 0y, 0'3)

41

Figure 4.4 Hydrostatic axis and the stress vector @ in the principal stress space

If «, B andy are angles between the hydrostatic axis and @xes ando;, respectively, the

following relation holds between the direction ces:

cosa =cosfB =cosy = 1 4x1

NE

A plane perpendicular to the hydrostatic axis whidso contains the poil is called the
principal stress-deviator plane or simply the ‘@dgoric plane’. A deviatoric plane which

contains the origin of the principal stress spadabwn as the—Plane (Fig. 4.5).

82



CHAPTER 4 Rock strength analysis in three-dimensicitrass
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Figure 4.5 Deviatoric and m-plane

Defining the unit vectord :%(1, 1, 1) along the hydrostatic axis, the magnitofiehe

projection of stress vectos;, on the stress-space diagonal (the dine= o, = 03), can be

calculated as:

6Eﬁ:i(01+02+03):gllzx/§aoct (4.4.2)

NE

Where, I, is the first invariant of the principal stressgenando,.; is the octahedral mean
normal stress. On a certain deviatoric plane, glwelh = constant, the distance between the
point P and the hydrostatic axis which can be given asntlagnitude of the vectat as

illustrated in Fig. 4.6, can be calculated as:

F|=| o’ -(om)? (4.4.3)

Substitution of Eq. 4.4.2 into Eq. 4.4.3 yields tbkkowing relationship:

3

1
S_(1 2 2 2[2__ _
F|= (—[(01 ~0y) +(0p~03) + (03~ 1) D =Toct =+/2J2 (4.4.4)
The magnitude of the vectdy which originates from the hydrostatic axis anthieates at the
point P on the deviatoric plane (Fig. 4.5), indicates etda by which the given stress state

deviates from the hydrostatic stress state. Furtbex, a given stress point in the principal
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stress space, which is a Cartesian coordinate rsystan be represented in a cylindrical
coordinate system as well. Two coordinates of sudylindrical coordinate system are the
hydrostatic axis and the vectéron the deviatoric plane. The third coordinate,chhis the

angled, is measured counter-clockwise form one axis Gheesian coordinate system on the

deviatoric plane.

o
Deviatoric v
lane sy
............ C
Hydrostatic \ &\
axis . 2 I 024
014 P
o) [ >
0,
Q

01

Figure 4.6 Cartesian coordinate system on the deviatoric plane

Such a Cartesian coordinate system on the deuigitame can be defined by transforming the
principal stress coordinates, g,, g3) so that thess-axis coincides with the hydrostatic axis.
The axes of the transformed Cartesian coordinattesyare labelled ag,, 0,; andos, in

Fig. 4.6. Accordingly, any point in theoy o,,05)-space can be transformed to the

(014, 024, 034)-Space using a transformation matrix, throughféflewing relationship:

Q 0 __\/E_
| % o6 -5

-6 246 —4/6
g = g 4.4.5
2d 5 5 5 2 ( )
o) |5 45 4|l

'3 3 3|
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After defining three orthogonal coordinates {, 0,4 andosy;) on the deviatoric plane the
angled can be measured counter-clockwise fromdfgaxis. The relationship between the
cylindrical, (r, 6, 054) and Cartesiangy(, g,, 03), components of the poifi, as illustrated in

Fig. 4.6, can also be established. Consideringptiet P in the cylindrical coordinate system

in Fig. 4.6, the lengtiRC can be calculated from the following relationship:

|QC|=|OC|COS}/=|:§(0‘1+O'2 +J3)i|(?]:m:h (446)

Wherey is the angle between the hydrostatic akd€ (n Fig. 4.6) and thes-axis, and; is

the first invariant of the principal stress tensko.calculate, for example, the third component
of the pointP in the principal stress space, ug, it is necessary to add the magnitude of the
projection of the vector along theQC-direction to the length of th@C, given by Eq. 4.4.6.
Components of the vectarin o,,; anda,, directions are cos 8 andr sin 6, respectively, as
shown in Fig. 4.7. Therefore, considering Eq. 4#h& magnitude of the projection of the

vector? in QC direction, parallel to the;-axis, can be calculated as follows:

‘fQC‘ :(—gjrcost%(—%jrsin@ (4.4.7)

Substitutingr = |7| from Eq. 4.4.4 into Eq. 4.4.7 the third componeithe stress poirf? in

the principal stress space can be calculated as:

o3 = 232 sin[6'+4—”j +11 (4.4.8)
J3 3) 3

The first and the second components of the @@intthe principal stress spacg &ndag,) can
be calculated in the similar manner. Therefore rét&ionship between the components of the
stress poinP in the cylindrical coordinate systefn, 8, 054;) and in the principal stress space

(04, 05, 03) can be established as follows:

85



CHAPTER 4 Rock strength analysis in three-dimensicitrass

o1 sin(6+2?nj
sing + 1 (4.4.9)

V3 , a4
O3 S|n(6+—j
3

Since the componentof a stress point in the cylindrical system isi¢gative of deviation from

the hydrostatic stress state, it can be conclukdadthe cylindrical coordinate system is more
convenient for demonstrating the deviatoric natfra stress point and can be, appropriately,
referred to as the deviatoric stress space. Funibrey, in the deviatoric stress space, with
respect to Eq. 4.4.2, any point on thg-axis, or the hydrostatic axis, can be addressed as
V3

< h and considering Eq. 4.4.4 the magnitude ofrtiemponent for any stress point is given

as./2J,. Therefore, the coordinates of the deviatoricsstrepace can be identified also as

( 2]2,9,§11), in which [; is the first invariant of the principal stress t@nsind/, is the

second invariant of the deviatoric stress tensdre &ngled, known as the ‘lode angle’,
according to Zienkiewicz et al. (1972) can be egped in terms of second and third invariant

of the stress deviator tensgyand/;, respectively.

Deviatoric
Plane

< > 014

Figure 4.7 Polar components of point P on the deviatoric Plane

Considering Eq. 4.4.5, the ter\;zi‘z_]2 sin 8, which represents the magnitude of the projection

of the vector in theao,,-direction (Fig. 4.7) can also be written as:
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2J, sinezg(— 01 +20, - 03) (4.4.10)

Recalling Eq. 4.2.5 and rearranging Eq. 4.4s1®9 can be calculated as:

43S,
sind = 2\/‘]_2 (4.4.11)

According to Eqgs. 4.2.7 (c), considering the trigowtric identity(sin30 = —4sin3 80 +

3sin ) and knowing thas, = —(S; + S3), the lode anglé can be expressed in terms of the

second ;) and third f3) invariants of the principal deviatoric stressstem as follows:

-3V3J3

sin3@ = 3
2325

(4.4.12)

Since the failure stress of rock, as a brittle maltedepends upon the effective mean normal
stress(%) and failure occurs only under highly deviatoriess state, it is more convenient to

express rock failure criteria as a function of fin&t invariant of principal stress tensér, and

the second and third invariants of the principavia®ric stress tensorj,( and Js).

Accordingly, the rock failure function in deviatoristress spac 212,9?11) can be
expressed as:
F(J,,sin36,1,)=0 (4.4.13)

Wheresin 36 is given by Eq. 4.4.12. It also merits noting tbgtemploying Eq. 4.4.9, any
failure criteria in terms of principal stresses dan expressed in terms of invariants of the

principal and principal deviatoric stress tensors.

45. Failure Criteriaon Deviatoric and Meridian Planes

The failure function expressed by Eq. 4.4.13, regmés a failure surface in the deviatoric
stress space. Due to the presence of the t##nR6 in Eq. 4.4.13, a number of general

symmetry properties of the failure function candoelressed. The trace of this failure surface
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on an arbitrary deviatoric plane is obtained for= constant. As the Sin-function is periodic
with a period of 360° it is straightforward to cdumbe that the failure function in Eq. 4.4.13 is
periodic with a period of 120° and therefore trecer of the failure surface on the deviatoric
plane is repeated in every 120° and the dist&neel7|, between hydrostatic axis and the
trace of the failure surface on the deviatoric plaa the same fdt and for6 + 120° as well

as forf + 240° (see Fig. 4.8 (a)).

120

150 )y
(0 +/120°

180

210 ~L |~ 330

240 300

20 (D)

Figure 4.8 Symmetry properties of a failure criterion on the deviatoric plane

Due to the periodicity of 120° the cross sectiooalve is also symmetric abofit= 90°,

6 = 210° andf = 330°, as illustrated in Fig. 4.8 (b). Furthermore, isgté = 30°+ f
yields sin(90 — 3B) = sin(90 + 38) and accordingly, the magnitude of the vecioiis
identical for 8 = 30°+ f andd = 30° — 8, which indicates that the trace of the failure
surface on the deviatoric plane is also symmetimugd = 30° and thereby also symmetric
aboutd = 150° andf = 270°, (see Fig. 4.8 (c)). Similarly, fé = 90° + «, the magnitude
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of the vector? is the same and thereby the trace is symmetricité#be 90° , 6§ = 210°
andf@ = 330°, (see Fig. 4.8 (d)). The symmetry properties shawhig. 4.8 imply that the
trace of the failure surface on the deviatoric plcompletely characterized by its form for
—30° < 6 < 30° and that this form is repeated in other sectorghef deviatoric plane.
Furthermore, ifo, > 0, > g3 are principal stresses, the intermediate princiass can be

written as:

02 :(1—a)al+0'03 O<a<1l (4.5.1)

Substituting Eq. 4.5.1 into Eq. 4.2.5 gives:

5=+ a)(1-05)

s, =3 (1-2a)(01 - 5) 5)
S=(2-a)(01-05)

SubstitutingS, from Eq. 4.5.2 into Eq. 4.4.11 yields:

sing=— 129 (4.5.3)

2\/a2—a+1

Since the parameter ranges between 0 and 1 (r 1), it follows from Eq. 4.5.3 that the
angled ranges from-= and= (- < 6 < 7). Therefore, with the ordering of the principal
stresses such that > g, > a3, all stress states are covered by the afigkenging between

—Zand=.
6 6

The ‘meridians’of the failure surface are the curves whére constant applies. In other
words the ‘meridional’ curves are obtained by thiensection of the failure surface with a

plane containing the hydrostatic axis.
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Figure 4.9 Meridional plane (§ — p coordinates) [after Ottosen and Ristimna(2005)]

Accordingly, the meridians can be depicted irf(éap) coordinate system, known as the
‘meridional plane’ (Fig. 4.9). With respect to E¢s4.2 and 4.4.4, coordinatésand p are
defined as follows:
V3 V3
=—\o1+t0y+03)=—1
3 ( 1 2 3) 3 1 (454)
P =233
For rock materials two meridians are of particutderest. Wherr,> g, = g5 applies, then in
Eq. 45.1,a = 1 and from Eq. 452 = _%- This meridian is termed the ‘compressive
meridian’,as the stress statg> o, = g3 corresponds to a hydrostatic stress state supEtpos

by a compressive stress in thgdirection. This stress state is often referrechgotriaxial

compression in rock mechanics experiments:

s
oy>0,=03 Le 0= % compressive meridian

Uniaxial compressive stress state is located omrdngoressive meridian, and so is the triaxial
compressive stress state when the intermediatehenchinor compressive principal stresses

are equal. When;= o, > g5 holds then Eq. 4.5.1 postulates that 0 and Eq. 4.5.2 calculates

the angled as % This meridian is termed the ‘tensile meridiaas, the stress statg = o, >

o3 corresponds to a hydrostatic stress state supsdgmsa tensile stress in the-direction.
This stress state is often referred to as triagidension in experimental studies of rock

mechanics:
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/[
01 =0,>03 le 0= g tensile meridian

The points where the tensile and compressive nagrsdintersect the deviatoric plane are
illustrated in Fig. 4.10.

180

SX Compressive Meridian

330
~ ~0'2

Figure 4.10 Intersection of tensile and compressive meridians with the
deviatoric plane

4.6. Failure Criteria Especially Developed For Rock Material

In this section a group of empirical three-dimenslarock failure criteria is studied in detail.
Since the input parameters of these three-dimeakioodels are the same as those for the
Hoek-Brown criterion, they can also be referrecasothree-dimensional Hoek-Brown based
criteria. The three-dimensional Hoek-Brown basettica are first expressed in terms of the
invariants of the deviatoric stress tensor usirg ritethod outlined in Section 4.4. Next the
radial distance between the hydrostatic axis arel tthce of the failure surface on the
deviatoric plane is calculated in a unified way dydassuming,, the mean normal stress, as
constant. The three-dimensional failure surfacthéprincipal stress space is then plotted by
reproducing the trace of the failure surface altimg hydrostatic axis. For this purpoke

needs to be defined as a variable.
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4.6.1. The Hoek-Brown criterion

According to Hoek and Brown (1980), the Hoek-Broenterion for estimating the failure
stress of intact rock material can be expressetfaaction of the majorag) and minor §3)
principal stresses as:
1
- 2)2_
Fug (01,03) =01 - 03 - (maca3 + 50, ) =0 (4.6.1)

Where the ternm; is the Hoek-Brown parameten for intact rock and the parameteifor
intact rock is 1. Substituting the relevant forniga for ¢; ando; from Egs. 4.4.9 into Eq.
4.6.1, the Hoek-Brown criterion can be expressedemms of invariants of the principal

deviatoric stress tensor as follows:

1

\]2E . m o¢lq 2| _
O.—%—=|sin@++3cosf|+ —==+5s0.“ |=0
m C_\/é( V3 ) 3 c

FHB = 2\]2% cos@ -

(_Eses’_fj
6 6

Rearranging Eq. 4.6.2, the Hoek-Brown criterionifgact rock can be written as a quadratic

(4.6.2)

equation in terms gf, in the following form:

. T
2m sm[€+j
JI
Fug :(4(:032 0) J22 + 3 2 _Mh_g_y (4.6.3)
. \/3 UC 30-0

c

According to Eqgs. 4.4.4 and 4.6.3 and consideriigy B.5, the radial distance from the
hydrostatic axis to any point on the trace of theekiBrown failure surface on a certain

deviatoric plane, given bly = constant, can be calculated as follows:

V20, I
g =4/2J2,, =_2C—C ~ g+, An” +4¢ —?0_1+S (45.

c

Where parametegsandA are defined as follows:
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¢= 4cos2 7]
2m sir(6?+gj (4.6.5)

SUPYE
6

oy

Furthermore, assuminf as constant, Egs. 4.6.4 and 4.6.5 can be appigdiot the cross
section of the Hoek-Brown failure surface on theiateric plane. As illustrated in Fig. 4.12,
the cross section of the Hoek-Brown failure surfacethe deviatoric plane is a hexagon.

Wheng, = a3, from Egs. 4.5.1 and 4.5.3 it follows titat _%- Substitutingd as—% into

Eq. 4.6.4, the distance between the hydrostatie axd sharp corners of the hexagonal cross

section of the Hoek-Brown criterionyz,, on the deviatoric plane, is calculated as follows

-om  [4m? . (mily
o, J i +12(3ac+sj] (456

Likewise, o; = g, indicates that in Eq. 4.5.& = 0 and form Eqg. 4.5.8 is given as’(r—j.

J2a,
'HB,=+/2J2HB, =~ .

Therefore, the distance between the hydrostate axd blunt corners of the hexagonal cross

section of the Hoek-Brown criteriomyg;), is calculated as follows (Fig. 4.11):

2
-m m, m |
V3 +\/ 3 +12(30§+sj] )

O14 (M Pa)

J2a,
'HB,=+/2J2HB, = ¢ €

Deviatoric plane

\,
/ | rHBb\ B
. . . 0,4 (MPa)
L | THBs
S

Figure 4. 11 The cross section of the Hoek-Brown failure surface on
the deviatoric plane
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Accordingly, sharp corners in the hexagonal cressien of the Hoek-Brown failure surface
represent points where minor and intermediate sgeeswap places, i®, = o3, and blunt
corners are points where major and intermediatecipal stresses become equal, de= o,.
Furthermore, it also merits noting that Eq. 4.6mdwhich the angled is constrained such
that—% <6< % gives only the section SB of the Hoek-Brown feglgurface cross section in
Fig. 4.11 and other sections of this hexagonalscsesttion can be plotted considering the
symmetric properties of the failure criterion. THeek-Brown criterion is a periodic function
with the period ofg , and hence, its trace on the deviatoric plamepgated everg' radians.
Consequently, to plot, for example, the sectioniBFig. 4.11 requires replacing the angle

in Eq. 4.4.9 withd + g which results in the following relationship:

o sin(6’+7—31
2,
02:—42-smw+n +h (4.6.8)
J3 sl 3
O3 SIV’(Q"‘—j
3

Substituting Eq. 4.6.8 into Eqg. 4.6.1 results imfalating the Hoek-Brown criterion in terms
of invariants of the principal deviatoric stresader, similar to Eq. 4.6.4 with defining the

parameteily in Eq. 4.6.4, as follows:

2m sin(g— Hj
AHB(forBT) = \/§

—%ses (4.6.9)

oy

However, the parameteremains unaltered. Other sections of the graphbeaplotted in the

similar manner. Therefore, on the assumption;0f constant, the trace of a given failure
criterion can be plotted on a certain deviatoriangl In order to reproduce the Hoek-Brown
cross sections on different deviatoric planes akhieghydrostatic axis to produce the relevant
three-dimensional failure surface, as illustratedrig. 4.12, the parametéris assumed to be

a variable and is defined, considering Eq.4.6.4HerHoek-Brown criterion, as follows:
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2
3(CJ2HB +AnuB Icy/JoHB ~SOC ) (4.6.10)
m

l1HB =

The components and/; of a failure stress point in the deviatoric stregace predicted by the
Hoek-Brown criterion are given by Eqgs. 4.6.4 arl ¥ for various values of the angl€ry
andl; yg). In order to calculate the corresponding comptmehthe failure stress point in the
principal stress space, the transformation matnx BEq. 4.4.5 can be applied. After
transformation from the deviatoric stress space the principal stress space of all failure
stress points predicted by the Hoek-Brown the tdieeensional failure surface associated
with the Hoek-Brown criterion can be plotted in gréncipal stress space (see Fig. 4.12). The
relevant MATLAB code for plotting the Hoek-Brown ilime surface can be found in

Appendix F.

a, (MPa)

o, (MPa)

a, (MPa)

Figure 4.12 The Hoek-Brown criterion in the principal stress space

As is obvious from Eq. 4.6.1 the Hoek-Brown criv@riincorporates only the minor principal
stress in rock failure stress;§ formulation and neglects the influence of thesiintediate
principal stress on rock strength. In order toude the influence of the intermediate principal
stress to estimate the rock strength in three-déoeal stress state more precisely, a number
of three-dimensional failure criteria, based on l#oek-Brown criterion have been introduced

over the past few decades. The reasons why the-Bamkn criterion has been adopted as a
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basis for developing new three-dimensional predictnodels were outlined in Chapter 2,
Section 2.4.3.

4.6.2. The Pan-Hudson criterion

The strategy adopted by Pan and Hudson (1988)efeeloping a three-dimensional criterion
based on the Hoek-Brown criterion was to approxénté Hoek-Brown failure surface with a
conical surface the cross section of which on theiadoric plane is a circle between the
inscribed and circumscribed circles to the hexabamass section of the Hoek-Brown
criterion (Fig. 4.13). According to Pan and Hud$d®88) for weak rock masses with small
and s the hexagonal cross section of the Hoek-Brown lom deviatoric plane can be
approximated by a circle. Although this approxiroatiproduces a negligible error where
parameters ands are small, errors cannot be ignored in the casrohg rocks for which
parametersn ands are relatively large. In other words, the Pan-Hundsriterion does not
work properly for good quality rock masses or ihtemck. Furthermore, the Pan-Hudson
criterion does not reduce to the original form loé tHoek-Brown criterion wherg, = o;.
Consequently, as pointed out by Priest (2010), utréexial compressiongq > o, = o03) the
Pan-Hudson criterion does not predict the sameeviaiuthe failure stress as the Hoek-Brown
criterion and other three-dimensional criteria deped based on the Hoek-Brown criterion.
Another drawback of the Pan-Hudson criterion ist tte criterion does not calculate the
uniaxial strength of rocko{) under uniaxial compressioroy(> o, = 03 = 0). The Pan-

Hudson criterion can be re-derived through theofeihg procedure:

Whena,; = a,, which corresponds ® = %(Eq. 4.5.1), Eg. 4.6.2 reduces to:

2,/J
Fugp =3J2 - mac( _\/g +|§1J - sacz =0 (4.6.11)

WhereFyg, IS a function which represents the points exdcitated on the blunt corners of
the Hoek-Brown cross section on a certain deviatplane (; = constant). Therefore, the

radius of the inscribed circle to the Hoek-Browrxkdgonal cross section on the deviatoric
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plane can be calculated by solving Eq. 4.6.11 lier term,/J,, which is given also by Eqg.
4.6.7. Furthermore, substituting = — g into Eq. 4.6.2 yields:

FhBs :3Jz—mac[1/;]/_2§ +|—§J—sacz =0 (4.6.12)
Where Fygs represents the points on sharp corners of the Boewn cross section on a
particular deviatoric plane and therefore, the uadf the circumscribed circle to the Hoek-
Brown criterion on the same deviatoric plane carcéleulated by applying Eq. 4.6.12, as is
given also by Eq. 4.6.6. Accordingly, the functiésy which represents a mean circle between
the inscribed and the circumscribed circles toHlek-Brown cross section can be expressed

as follows:

Frgs - F
Fpu =HBSfHBb+ FrBb (4.6.13)

024 (M Pa)

Circumscribed circle

Mean Circle _|
(Pan-Hudson)

014 (MPa)

Inscribed circle

--==- Hoek-Brown | — Pan-Hudson

Figure 4.13 The cross section of the Hoek-Brown criterion on the
deviatoric plane

Expanding and rearranging Eq. 4.6.13, the equatfothe mean circle or the Pan-Hudson

criterion, can be written as follows:

iJ2+£m\/£—ml—1:sac (4.6.14)
Oc 2 3
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The radius of the mean circle or the distance betvibe hydrostatic axis and the trace of the

Pan-Hudson criterion on the deviatoric plane isrefore, given by:

c

Wherem;, sandag, are the Hoek-Brown parameters and the paramgteis given as‘/zE m;.

As illustrated in Fig. 4.13, the Pan-Hudson cirgées six intersections with the Hoek-Brown
hexagonal cross section on the deviatoric planes@lntersections, however, do not coincide
with the apices of the Hoek-Brown hexagonal cresgien wheres; = o, or o3 = g,. This
geometrical interpretation explains the reason wigyPan-Hudson criterion does not reduce
to the original form of the Hoek-Brown criterion @i the stress state is assumed as two-
dimensional, i.es; = 0, ora; = g,. Therefore, it is more appropriate to refer to Ben-
Hudson criterion as a three-dimensional failuréedn which sources its input parameters

from the Hoek-Brown criterion, rather than a thddémensional version of the Hoek-Brown.

The Pan-Hudson radiugy is given by Eq. 4.6.15 and therefore, the Pan-Hudsoss section
on the deviatoric plane can be plottedlfoe= constant. However, considering the parameter
I, as a variable the three-dimensional surface oPdreHudson criterion can be plotted in the

principal stress space (Fig. 4.14).

g, (MPa)

0, (MPa) o, (MPa)

Figure 4.14 The Pan-Hudson criterion in the principal stress space

98



CHAPTER 4 Rock strength analysis in three-dimensicitrass

Considering Eg. 4.6.15 the paramdtefor the Pan-Hudson criterion can be defined as:

2
_ 9J2pH +30¢/JopH —ST¢
mac

l1pH (4.6.16)

The relevant MATLB program, used for plotting th@anPHudson failure surface in the

principal stress space can be found in Appendix F.

4.6.3. The Zhang-Zhu criterion

As pointed out by Zhang and Zhu (2007), it is gdd& for a three-dimensional version of the
Hoek-Brown criterion to be reduced to the origifaim of the Hoek-Brown criterion, when
o, = g3 Orag; = 0,. In triaxial compressiona{ > g, = g3) and extensionodf = g, > 03)

stress states, the second invariant of the deigatmsor/,, (Egs. 4.2.7) reduces to:

IR
J, =@ (4.6.17)

Substituting Eq. 4.6.17 into Eq. 4.6.14, the Panlddum criterion reduces to the following
relationship:

Oc

(01-03)2 + 72 (01 - 03) - My G0y = 502 (4.6.18)

The parametes,, in Eq. 4.6.18 is the mean normal str%§ and is assumed to be constant.

Furthermore, rearranging Eq. 4.6.1, the Hoek-Broviterion can also be written as:

(01 - 03)? -~-mo.03 = so.? (4.6.19)

Substituting Eqg. 4.6.19 into Eq. 4.6.18, the camspmrameter,, can be defined so that Eq.
4.6.18 reduces to the original form of the Hoeksmocriterion under triaxial compression
and extension states of stress. To satisfy thiglion it is necessary to define the constant

parametew,, as follows:
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g1 +03

. (4.6.20)

Om=0m,2 =

Consequently, if the paramet%r in the Pan-Hudson criterion is replaced with the

o1t03

parametev,, , = , the resultant formulation predicts the same failstress for intact

rock material as the Hoek-Brown criterion whewe = 0; ando; = g,. Replacing the
parametellg1 in the Pan-Hudson criterion with,, , yields a three dimensional version of the

Hoek-Brown criterion, which was first proposed biyang and Zhu (2007). Accordingly, the
Zhang-Zhu criterion for predicting the failure stgseof intact rock in three-dimensional stress

state is expressed as:

3., .43
Jy +7m\/£—mam,2 = so,. (4.6.21)

Cc
Where the parametet, ,, given by Eq. 4.6.20 can also be defined as falow

|
Tm,2 =§1—% (4.6.22)

Furthermore, considering Eq. 4.4.11, the Eq. 4.6d2be written in the following form:

_l1_43d2
3

Om,2 Y

sind q43)

Substituting Eq. 4.6.23 into Eqg. 4.6.21, the Zh@hg-criterion can also be expressed as:

3 m - 4/J2 [(mly
Frz =——Jo+—=(3+2sind)*—=-| —=+s|=0 G424
2z o 2 2\/3( )O'C 30, @)

Eq. 4.6.24 presents a more appropriate expressithe @hang-Zhu criterion in the deviatoric
stress space. Considering the functigp in Eq. 4.6.24, the radial distance between the
hydrostatic axis and the trace of the Zhang-Zhtewan on the deviatoric plane is calculated

as follows:

c
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Where the parametdy,, for the Zhang-Zhu criterion is defined as:

Ayy :%(3+25in9) §26)

The trace of the Zhang-Zhu failure surface on aaderic plane can be plotted by applying

Egs. 4.6.25 and 4.6.26 and assuming the fgras constant (Fig. 4.15).

014 (MPa)
Deviatoric plane

024 (M Pa)

— Zhang-Zhu | === Hoek-Brown

Figure 4.15 The cross section of the Zhang-Zhu criterion on the
deviatoric plane

In order to reproduce the Zhang-Zhu cross sectwnslifferent deviatoric planes along the
hydrostatic axis, to produce the associated thieesional failure surface, the Paramdier
iIs assumed to be a variable and is defined, reggrth Eq. 4.6.25, for the Zhang-Zhu

criterion, as follows:

2J +Ar7 Opqfd —502
lyy =3 277 zznc] 277 c (4.6.27)

Considering Eqgs. 4.6.25, 4.6.26 and 4.6.27 and gplyeng an iteration loop, the three-
dimensional failure surface corresponding to thargjaZhu criterion can be plotted in the
principal stress space (see Fig. 4.16). The reteM&®TLAB code for plotting the Zhang-Zhu

criterion can be found in Appendix F.
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o, (MPa)

o, (MPa) o, (MPa)

Figure 4.16 The Zhan-Zhu criterion in the principal stress space

4.6.4. Generalised Priest criterion

Combining the Drucker-Prager and the Hoek-Browteda Priest (2005) developed a three-
dimensional failure criterion. In the generalisede$t criterion the linkage between the
Drucker-Prager and the Hoek-Brown criteria was #ase the assumption that both criteria
are supposed to give the uniaxial compressive giineaf rock under uniaxial compression.
The first invariant of the principal stress ten§) and the second invariant of the principal

deviatoric stress tensagk ) reduce to the following expressions under uniscoanpression:

=2
173
(4.6.28)
2
J2 :O-L
3
The Drucker-Prager criterion can be given as:
J3, = A+ Bl (4.6.29)

3

Substituting Eq. 4.6.28 into Eq. 4.6.29, parameteandB can be given as follows:
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A= Uc(\/éll_s\/z)

) 3('1_00)

B:3VJZ -3

l1-0¢

(4.6.30)

Priest (2005) pointed out that for the two critelnabe compatible the following relationship

must be satisfied:

Il =lipp=h (4.6.31)
Where

o + 20 o1 +0o+0
lihp = w and lipp = % (4.6.32)

In Eq. 4.6.32 the termssy;, anda,y,, are the minor principal stress at failure andftikeire

stress, calculated by means of the Hoek-Brownrasitehrough the following relationship:

a
O1HB = O3HB * Uc( ma;’HB + Sj (4.6.33)
Cc

Furthermore, according to Priest (2005), the radislance between the hydrostatic axis and
the cross section of the failure surface on thaadexc plane must be identical for both the
Hoek-Brown and the Drucker-Prager criteria, that is

'He=rpp="r (4.6.34)

Where

(4.6.35)

11)2 11)2 11)2
or = (s =3 {23 +(s-3)

The parameteo;; is the failure stress for the specified principlessesr, ando;. Priest

(2005) adopted a numerical iteration to solve E46.29 to 4.6.35 for seven unknowns,
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namelyo;yg , o345 , A, B, I1, J, and oyr. Melkoumian et al. (2009) developed an explicit

solution for the Generalised Priest criterion. Gdesng the closed form solution of the
generalised Priest criterion for intact rock matktiie major principal stress at failure is given

as:

01=3034g *+ P—(Uz +03) (4.6.36)
For intact rock parameté&is defined as:

1

P:UCH”] U3HBJ+1}2 (49)3

Oc

Where

02+a3+—E$\/E2—F(02—J3)2

Cain = 4.6.38
3HB > >F ( )
Parameters andE are given as:
-1
F=3+mC ?
. (4.6.39)
E= ZCEO'C
Where
c=1+M(02+03) (4.6.40)
20,

Furthermore, under uniaxial compression the pamamgt;, given by Eq. 4.6.4, is supposed
to be identical tg,, given by Eqgs. 4.6.28. Substituting Eq. 4.6.2® iBg. 4.6.4 gives the

following relationship:

4 2 2m sin(s—ej 1
—cos G+ ==m +1 (4.6.41)
3 3 3
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From Eq. 4.6.41 the angteis calculated a6§ Substituting this value fa# into Eq. 4.6.4 the

Priest criterion for intact rock can be expresseterms of invariants of the deviatoric tensor

as follows:
iJZ +ﬁm\/\]—2—m—|1:saC (4.6.42)
Oc 3 3

Furthermore, the radial distance from the hydrastatis to the trace of the generalised Priest

criterion on a deviatoric plane, given Qy= constant, can be expressed as:

[—Ap + \/Apz +12(%'1 + sj] (4.6.43)

The parametek, for the Priest criterion is defined égmi. Considering Eg. 4.6.43 the cross

V20,
‘6P =y2J2p =— =

section of the generalised Priest failure surfagsehl®e plotted on the deviatoric plane (see Fig.
4.17).

014 (MPa)

-----Hoek-Brown {— Priest criterion

Figure 4.17 The cross section of the generalised Priest criterion on
the deviatoric plane

In order to plot the corresponding three-dimendidaiture surface of the Priest criterion (see
Fig. 4.18) through the same approach as that adldpteother three-dimensional criteria

(Appendix F), the Parametdy is assumed to be a variable.
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a, (MPa)

o, (MPa) o, (MPa)

Figure 4.18 The generalised priest criterion in the principal stress
space

From Eq. 4.6.43 the paramelerfor the generalised Priest criterion is defined as

2
9Jp + M T¢y/3Jpp —350¢ (4.6.44)
m ¢

ligp =

4.6.5. The Simplified Priest Criterion

In addition to the generalised Priest criterion,omler to incorporate the influence of the
intermediate principal stress on the failure stads®ck, Priest (2005) proposed another three-
dimensional failure criterion based on the HoekvBrccriterion. He introduced a weighting
factorw ranging from O to 1 and defined the minor princigiaéss §;5) to be included in the
Hoek-Brown criterion as follows:

O3Hp = W03 +(1-w)o3 (5)

O<sw<l

As is inferred from Eq. 4.6.45, whem is O the intermediate principal stress)(has no
influence and when w is 1 the minor principal strés) has no influence on rock strength.

Substituting Eq. 4.6.45 into the Hoek-Brown criverigives the following formulation:
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1

Cc

Considering Egs. 4.6.31 and 4.6.32, the simpliffest criterion for evaluation of the rock

failure stressd; ) in three-dimensional stress is given by the feitm formulation:

O1f = O + 2034 — (02 + 03) (4.6.47)

Substituting Eq. 4.4.9 into Eq. 4.6.47, the sim@difPriest criterion can be written in terms of
invariants of the deviatoric stress tensor as ¥ailo

J2 VJ2 mly
FSP:_CSP-F_ASP_ +s|=0 (4648)
2 O, 30,

Where parametens;, andAg, are defined as follows:

Csp= 36w° sinz(e + %Tj - 6w(3+ 2\/§sin2<9)+120052(6’ - %Tj

Asp =2m [\/‘3’ sin(6’+ %Tj - wsin(9+ 7—3]

3

(4.6.49)

Considering Egs. 4.6.48 and 4.6.49, the radiahdcs from the hydrostatic axis and the trace

of the simplified Priest criterion on the deviatoplane can be expressed as:

SP c

V20, 2 I
rsp=+/2J2sp = 2 | =Agpt,|[Asp+4Csp ?Ul+s (4.6)5

Using Egs. 4.6.49 and 4.6.50 the cross sectioheoSimplified Priest criterion can be plotted
on the deviatoric plane. However, it should be ddteat since the parameter appears in
these equations, the shape of the cross sectitredimplified Priest criterion changes with
the changes of the parameter Priest (2005) proposed that for a range of sedtiang and
metamorphic rocks the parametedepends only on the minor principal stresg @nd could

be calculated from the following relationship:

w= 01503%1° (4.6.51)
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Therefore, if the minor principal stress;) takes the values of, for example, 10 MPa and 100
MPa, the weighting factaw is calculated as 0.211and 0.299, respectively.cFbss sections

of the simplified Priest criterion on the deviatoplane are given in Fig. 4.19 (a) and (b), for
cases when the least principal stress takes thewvalf 10 MPa and 100 MPa, respectively. As
is obvious from Fig. 4.19, under biaxial extens{on = o, > 03), which is represented by
blunt corners in the Hoek-Brown cross section, fimaplified Priest criterion does not
calculate the same value for the failure stresh@s$ioek-Brown criterion. However, since the
Hoek-Brown criterion itself was developed as an ieiegd criterion based on a series of
conventional triaxial testes in which the stressdition is manifested byo{ > g, = 0g3),
there is no evidence proving that the Hoek-Browitedon accurately calculates the failure

stress under biaxial extension, i.e. when= ¢, > g5 holds.

(b)

— Simplified Priest| ====-Hoek-Brown — Simplified Priest | === Hoek-Brown

Figure 4.19 The cross section of the simplified Priest criterion on the deviatoric
plane for (a) 63 = 10 MPa, (b) 63 = 100 MPa

The three-dimensional failure surface of the sifigai Priest can also be plotted for a given
value ofo; and assuming the parameigrs a variable, which, considering Eq. 4.6.50,lman

defined for the simplified Priest criterion as tolls:

I = 3(CSPJZSP+/]SPUC\/JZSP ‘505)
' m o

(4.6.52)

The relevant MATLAB code for plotting the three-dinsional failure surface, representing

the simplified Priest criterion in the principalesds space can be found in Appendix F. The
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effect of the weighting factor (due to the change in the minor principal streg$ alues) on

the shape of the simplified Priest failure surfec#ustrated in Fig. 4.20 (a) and (b).

(b)

a, (MPa)
o, (MPa)

o, (MPa) o, (MPa) o, (MPa) g, (MPa)

Figure 4.20 The Simplified Priest criterion in the principal stress space, for (a) 63 = 10 MPa
w = 0.211 and (b) 653 = 100 MPa, w = 2.99

4.7. Experimental Evaluations of Rock Behaviour under Three-

Dimensional Stress

Since the Hoek-Brown criterion is an empirical fatation which was developed and
formulated by Hoek and Brown (1980), based on cemgmsive experimental studies on the
rock performance under conventional triaxial te@ts > o, = g3), it is also essential for
three-dimensional failure criteria, which have bederived based on the Hoek-Brown
criterion, to be validated against true-triaxial & 0, > g3) experimental data. Colmenares
and Zoback (2002) examined a number of selectddréacriteria by comparing them with
published true-triaxial experimental data for fidéferent rock types, namely Dunham
dolomite, Shirahama sandstone, Solnhofen limest¥nebari shale and KTB amphibolite.
They first defined a correlation coefficient to @stigate the extent of dependency of the
failure stress of a particular rock type on thesintediate principal stress and then identified
that the Modified Wiebols and Cook (Zhou, 1994) &mel Modified Lade (Ewy, 1999) criteria
are in reasonable agreement with experimental dapgecially for those rocks with highey-
dependency of failure stress. However, it shouleshdted that some three-dimensional Hoek-

Brown based criteria which have been developedcespefor rock material had not been

109



CHAPTER 4 Rock strength analysis in three-dimensicitrass

introduced at that time and therefore, were nofuded in the comparative study by
Colmenares and Zoback (2002).

A statistical evaluation of the Hoek-Brown basece¢hdimensional failure criteria based on
nine sets of published true-triaxial test data wasied out in this study. Data sets selected
from true-triaxial experiments on nine differenpég of rocks, included three carbonates
(Solnhofen limestone, Dunham Dolomite and Yamaguachible) and four silicates (Mizuho
trachyte, Orikabe monzonite, Inada granite and Manaandesite) studied by Mogi (1971a),
also presented by Mogi (2007), Westerly graniteHaymson and Chang (2000) and KTB
amphibolite by Chang and Haimson (2000). All traiextial data were obtained from tests on
prismatic rock specimens. The dimensions of th& specimens in Mogi’s experiments were
15x15x30 mm with the aspect ratio of 2, and for &idg granite and KTB amphibolite the
specimen’s dimensions were 19x19x38 mm with theesaapect ratio of 2. Therefore, the
true-triaxial data in which the intermediate prpali stress is zerar{ = 0) can be applied for
determining the Hoek-Brown parameter and Coulomb parameters @ndg). Table 4.1
presents Coulomb input parameterade), uniaxial compressive strengit.] and the input
parameterm; for the Hoe-Brown criterion for nine types of raclliscussed in this study.

True-triaxial data sets are presented in Appenditakles C.1 to C.9.

Table 4.1 Hoek-Brown and Coulomb parameters of the
rock types studied

Rock specimen o.(MPa) c(MPa) ¢ (Deg) m;
Westerly Granite 165 34 52.6 38.6
KTB Amphibolite 201 31.3 48.5 37.3
Dunham Dolomite 261 64.2 37.6 9.7
Solnhofen Limestone 310 90.4 29.5 4.6
Yamaguchi Marble 82 20 37.8 10.3
Mizuho Trachyte 100 25.9 35.3 10.9
Manazuru Andesite 140 27.2 47.5 33.7
Inada Granite 229 46.4 46 29.5
Orikabe Monzonite 234 50.8 43 20

4.7.1. Theinfluence of intermediate principal stresson failure stress

By plotting true-triaxial experimental data m, — o, domain, theo,-dependency of the

fracture strength can be qualitatively illustratéey. 4.21). In order to quantify the extent to
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which the fracture strengthr() depends upon the change dn values for a constant
Colmenares and Zobak (2002) calculated the coilvalaoefficient betweew; andog, using

linear Pearson’s correlation as:

Cov|oy, 05|

(4.7.1)
S5, Sz,

Corr [01, 02] =
WhereS,;, andS,, are the standard deviation @f anda;, respectively. Pearson’s correlation
lies between -1 and 1. When the Pearson correl@i@nit indicates that; increases linearly
with o, (perfect positive correlation) and when the Pearsorrelation is -1, it means;
decreases linearly as increases (anti-correlation). If the two variablase absolutely
independent, the Pearson correlation coefficietit vé zero. However, the converse in not
always true, i.e. a zero Pearson’s correlation polstulates that there is no linear correlation
between the two variables, yet the variables magobbeslated non-linearly. On the other hand,
as is obvious from Fig. 4.21, the relation betweerand o, is non-linear. Furthermore, if a
second order polynomial (quadratic) function igefitto data points in thg — o, domain for
constant; values, the coefficient of fitness to the quadratnction as a nonlinear correlation

coefficient is calculated as:

r=]1-35E (4.7.2)
SST

Where SSE’is the ‘Sum of the Squared Errors’ between theentesl values of the fracture

stress € obs)) @nd the fitted values of the fracture stregg(;)) given by:

2
N
SSE= Y (0ongi - iy ) (4.7.3)
i=1
The parameterSST'in Eq. 4.7.2 is known as the ‘Sum of the SquaretalTand is calculated

as:

N 2
5ST=3 (010091 ~Fi(onsi) (4.7.4)
i=1
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The parameted; s is the mean value of, ;. Therefore, since the experimental data do

not demonstrate a linear relationship between thetdre stresso{) and the intermediate
principal stress ), calculation of the linear correlation coefficiehetween these two
variables does not provide any information aboatdapendence of, ong,. However, if it is
assumed that the intermediate principal stresstlamdracture stress are correlated through a
quadratic relationship, this correlation can bengdiad by applying Eq. 4.7.2. Furthermore, in
order to visualise the extent ef-dependency of the fracture stress at any givemevilros,
calculated values for the non-linear correlatioefttoient can be plotted versus the minor

principal stress (Fig. 4.22).

The linear correlation coefficient between ando, calculated by the means of Pearson’s
linear correlation coefficient was also plottedstes the minor principal stress and is presented
in Appendix C, Fig. C.1. As illustrated in Fig. 2,2correlation of fithess to quadratic
functions in almost all cases lies between 0.8Hickvindicates that the fracture stress closely
correlates with the intermediate principal streseugh a quadratic function. This close
correlation suggests that the nature of dependehthe failure stresss() on the intermediate

principal stress §,) can be well simulated by a quadratic function.

Furthermore, all quadratic functions fitted to dai@ints are concaved downward, i.e. the
second derivatives of all quadratic functions aggative. Such quadratic functions grow to a
maximum as the variable increases, thereafter timetibn declines with the increasing
variable. Equating the first derivative of each miethese quadratic functions for a given
value fora; to zero, the value of the intermediate princigatss after which increasing
negatively affects the rock strength can be caledlaThe application of the linear correlation
coefficient can only be meaningful if two corretati functions are calculated; the first one
from the pointo, = g5 to the pointo, = ¢ at which the quadratic function is at its maximum,
and the second one from the pagt= o down to the failure point, which is higher thae th
pointg, = a; (Fig. 4.21). It merits noting that the former yigla positive correlation and the

latter gives an anti-correlation.
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Figure 4.21 Fitting quadratic functions to true-triaxial experimental data in 6; — a, domain (continues)
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Continued from Figure 4.21  Fitting quadratic functions to true-triaxial experimental data in g; — g, domain
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Figure 4.22 Non-linear correlation coefficient between the failure stress (o4)
and the intermediate principal stress (o) versus the least
principal stress (o3)
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4.7.2. A modification to the smplified Priest criterion

If the failure stress in the principal stress spiaceepresented by a poiRt as illustrated in
Fig. 4.6, the lengtl©OC along the hydrostatic axis from the origin of frecipal stress space

perpendicular to a deviatoric plan containing tbapP is calculated as:

OCp =i(0'1+0'2 +(T3) KZE)

V3

Furthermore, the radial distance from the hydrastaxis to the poinP on the deviatoric

plane can be given as follows:

p :\/f:\/%[(01—02)2+(02—03)2+(a3—al)2J (%)

On the other hand, the Hoek-Brown criterion prexdiatfailure stress, which can also be
represented by a point such B in the principal stress space. For such a stresg fhe
length OCyg along the hydrostatic axis and the radial distapgefrom the hydrostatic axis
can be given by the following expressions, recgllinat the Hoek-Brown criterion assumes

equal values for the intermediate and the minargypal stresses.

1
OCis :ﬁ(alHB +2038) (a)
4.7.7)

2
' =v2J218 =\/;(01HB‘03HB) (b)

In Eqgs. 4.4.7¢g5,5 andao, yp are calculated from Eqgs. 4.6.45 and 4.6.46, resde In order

to develop a three-dimensional failure criteriorsdmh on the Hoek-Brown criterion, it is
desired that the failure poittB, predicted by the Hoek-Brown criterion, coincideish the
failure pointP which occurs under the three-dimensional stresdition. Therefore, the stress
vector g, in Fig. 4.6, which indicates the position of tllfre stress in the principal stress
space, must be identical with the stress vegtgrcalculated by the means of the Hoek-Brown

criterion:

Op =0HB (4.7.8)
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Therefore, considering Fig. 4.6 and recalling thyghBgoras theorem the Eq. 4.7.8 can be

written as:

b +OCph =rig +OCig 1C)

Rearranging Eq. 4.7.9, the failure stregs can be calculated as follows:

1

gt = [J]_ZHB +20'§HB —(0'5 +J§)}2 (4.7.10)

It should be noted that the prediction accuracyhef failure criterion given by Eq. 4.7.10
depends upon the weighting fact@rwhich appears in the formulation of,; (Eq. 4.6.45)
and consequently, in the formulation igf;5. One strategy for formulating the weighting

factorw is to substitute Eq. 4.6.45 into Eq. 4.6.38, whigsults in the following relationship:

_ 2 2
W:l+—E+\/E -F(0y-03)
2 2F(0’2—0'3)

(4.7.11)

Where parameters andF are given by Egs. 4.6.39. In a given stress stagres, andos

are known by substituting the weighting factefrom Eq. 4.7.11 into Eqg. 4.7.10 the failure
stress is calculated the same way as is done bgeheralised Priest criterion. However, it
merits noting that the generalised Priest criterassumes, as does the Drucker-Prager
criterion, a more profound strengthening effect thog intermediate principal stress than that
which is observed in true-triaxial experiments dherefore, tends to overestimate the rock

strength, especially at higher valuesrof

This overestimating tendency of the generalisedsPgriterion can be addressed considering
the circular cross section of this criterion on theviatoric plane. This circular cross section
indicates that the radial distance between thedsgdtic axis and the predicted failure point on
the trace of the failure surface on the deviatptene is identical for all stress conditions.
However, from Fig. 4.22 it can be observed that thdure stress decreases after the
intermediate principal stress grows closer to ttegomprincipal stress. Therefore, the radial

distance between the hydrostatic axis and the toadbe failure surface on the deviatoric
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plane is supposed to be smaller whenr= g,, i.e. at obtuse corners in the hexagonal cross

section of the Hoek-Brown criterion on the deviat@ane.

Accordingly, in order to incorporate the dual natof o,-dependency of the failure stress, the
weighting factorw can be determined so that the strengthening efifethe intermediate
principal stress to be addressed in accordancetiatlrue-triaxial test data. It should be noted
that on a particular deviatoric plane the radiagtahce between the failure poidtand the
failure point predicted by the Hoek-Brown criteriare supposed to be identical, so according
to Egs. 4.7.6 and 4.7.7 (b) the following relatiopsholds:

(01-02) % (02— 03) % (03-07) ’= 2(01HB — O3HB) 2 (4.7.12)

On the other hand, considering Fig. 4.6, for aipaldr deviatoric plane the distan@&y for
the failure pointP and the distanc®Cyg for the pointHB predicted by the Hoek-Brown
criterion are equal and therefore, recalling Eqg.54and 4.7.7 (a) the major principal stress

can be given as follows:

01 =01HB +203HB —05—-03 (4713)

Substituting Eq. 4.7.13 into Eq. 4.7.12, and a$tenies of expansion and rearrangement, the

following relationship can be derived for calcutgtithe weighting factow for intact rock:

ow* - (18+4n)wW? + (15+87 — 4u)W? — (6+57 —4u)w+ (1+7 - 1) =0 (4.7.13)

Where parametergandu are defined as follows:

2
M and y=9c¢ M0 0, # 0y (4.7.14)

" o2 a3) (05 -03)°

However, substitution of the weighting facter given by Egs. 4.7.13 and 4.7.14, into Eq.
4.7.10 again results in overestimation of the failatress and the predicted values for the
failure stress are quite similar to the predict@tufe stress calculated by the generalised Priest
criterion. It is also important to note that when= o5 Eq. 4.6.45 reduces w,,5; = g; and
consequently the rock failure stresg, in Eqg. 4.7.10 will be the same as the failuresstre
predicted by the original two-dimensional formubati of the Hoek-Brown criterion. An
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alternative approach for determining the weighfactorw is to define this parameter so that
to achieve minimum misfit with true-triaxial data. order to achieve this goal, the parameter
w was first defined to obtain exact match with expental data for each case. On the other
hand, the parameter can be assumed to be proportional to paramegtargly, (which appear
in Eg. 4.7.13 and are given by Eqgs. 4.7.14), anthéominor principal stressr{) and the

uniaxial strengthd,) as follows:

wil (ﬁ—ﬁJ (4.7.15)
n o

The relationship between the weighting facterand parameterg u, o; and o, can be
formulated as a power function by plotting the eslwfw for which Eq. 4.7.10 predicts the
exact value of the failure stress versus the vabigbe term(% — ?) for each stress state
(Fig. 4.23) as follows:
o 05
w= 024 (ﬁ——f*J (4.7.16)
1 Oc

Substituting the parametar, as is given by Eq. 4.7.16, into the proposedetidienensional

failure criterion given by Eq. 4.7.10, the dualuratof theos,-dependency of the failure stress
is appropriately taken into account. A statisticaimparison of three-dimensional failure
criteria which source their input parameters frdra Hoek-Brown criterion was carried out
against nine sets of published true-triaxial expental data and is presented in the

subsequent section.

0.8 -

0.6 -

0.2 -

(Whn)-(O5/00)
0 1 2 3 4 5

Figure 4.23 Actual values of the weighting factor w versus values of the term % -2

Oc
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4.7.3. Comparison of three-dimensional, Hoek-Brown based failure criteria

The common method used to compare the predicticaracy of three-dimensional failure
criteria to experimental data is to create a twuoatisional graph plotting; versuss, for a
constanta; (Appendix D, o; vs.g, graphs). A qualitative analysis is then undertat@n
assess how well the various criteria fit the experital data ino;-0, domain. The key
limitation of this method is that each analysisyotdkes into account a single slice of the

three-dimensional stress space for a constant

A more comprehensive error analysis can be condugyegiving consideration to three-
dimensional failure surfaces of failure criteria pnincipal stress space. Any point on the
failure surface represents a failure stress, whieh been predicted by the associated failure
function and can be addressed by a stress veg}toiffe stress vector form the origin of the
principal stress space to the predicted stresd paithe failure surface is depicted®g,oqer)

in Fig. 4.24. Similarly, an observed data pointha principal stress space can be represented

by a stress vector @, pserveq). as illustrated in Fig. 4.24.

The magnitude of the resulting VectBynoqer) — O(observea). quantifies the difference

between the predicted and observed failure stremsdstherefore, can be interpreted as a
measure of prediction accuracy of the failure modrelrthermore, negative values of the
subtraction resultant vector indicate that thevwaté model underestimates the rock failure
stress and positive values of this vector are pméted as that the rock strength has been
overestimated. Therefore, the prediction accur&®) (of a failure criterion, as a predictive

model, can be defined as follows:
PA= G(mode) ~ I (observed (4.7.5)

However, as the values of ando; are identical for botlF o401y @aNAG(opservea), the only

distance relating to an error is in the direction. Therefore, Eq. 4.7.5 can be reducethé¢o

following expression:
PA= 01(mode) ~ T1(observed (4.7.6)
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In addition, absolute percentage error can be défas:

E- |Ul(modeb - Ul(observed|
O1(observed

x100 (4.7.7)

03
W Deviatoric plane

a(observed)

0

Figure 4.24 Difference between predicted and observed failure stresses

Comparing the calculated values of absolute peagenérrors from Eq. 4.7.7 for each one of
three-dimensional criteria incorporated in thisdstit was revealed that in all cases (with the
exception for Yamaguchi Marble) the proposed dotergiven by Eg. 4.7.10, namely the
modified simplified Priest, predicts the rock fagustress more accurately than other three-
dimensional models. Results of this statistical panson are presented in Table 4.2. After the
proposed criterion the Zhang-Zhu criterion is irodagreement with the experimental data,
and in the case of Yamaguchi marble is more aceuttzan other models, including the
modified simplified Priest criterion. Furthermotbe relative likelihood of being zero f&A,
which is a measure of difference between the empsrial and predicted failure stress values
and is given by Eq. 4.7.6, can be described usiagtobability density function (PDF) which

is parameterised in terms of the ‘mean’ and ‘vargms follows:

_(PA-p)?

f (PA{N,JZJ - 0\/12_ﬂe 20" (4.7.8)
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Whereu ando are the mean and variance, respectively. The prltyadensity functions,
given by Eq. 4.7.8, were plotted verské for the nine data sets and six selected three-
dimensional failure criteria which are presentedAppendix D. The values for mean and

variance were also included in Figs. D.1to D.9\ppendix D.

Table 4.2 Comparison of 3D Hoek-Brown based criteria

Manazuru Andesite
o Average
Criterion Rank | O1mode-O1(observed) (MPa) over/underestimation percentage error
(average) (%)
Modified Simplified Priest 1 4.15 overestimation 5.01
Simplified Priest 2 -16.11 underestimation 6.09
Zhang-Zhu 3 16.80 overestimation 6.79
Hoek-Brown 4 -100.04 underestimation 15.76
Generalised Priest 5 106.24 overestimation 17.83
Pan-Hudson 6 -170.01 underestimation 34.75
Inada Granite
o over/underestimation Average
Criterion Rank | O1moden-O1(observed) (MPa) percentage error
(average) (%)
Modified Simplified Priest 1 -11.58 underestimation 3.73
Simplified Priest 2 -31.17 underestimation 4.34
Zhang-Zhu 3 -12.92 underestimation 4.67
Generalised Priest 5 59.83 overestimation 8.34
Hoek-Brown 4 -119.57 underestimation 12.99
Pan-Hudson 6 -336.48 underestimation 34.94
Orikabe Monzonite
o over/underestimation Average
Criterion Rank | Ojmoden-O1(observed) (MPa) percentage error
(average) (%)
Modified Simplified Priest 1 -7.12 underestimation 5.64
Zhang-Zhu 3 -25.53 underestimation 6.41
Generalised Priest 5 45.28 overestimation 7.91
Simplified Priest 2 -54.12 underestimation 8.55
Hoek-Brown 4 -47.53 underestimation 9.76
Pan-Hudson 6 -251.34 underestimation 31.80
Yamaguchi Marble
o over/underestimation Average
Criterion Rank | O1moden-O1(observed) (MPa) percentage error
(average) (%)
Zhang-Zhu 1 1.59 overestimation 3.88
Modified Simplified Priest 2 -3.33 underestimation 4.35
Simplified Priest 3 -23.35 underestimation 10.43
Generalised Priest 4 41.11 overestimation 15.87
Hoek-Brown 5 -42.64 underestimation 17.70
Pan-Hudson 6 -30.84 underestimation 18.74
Continues
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KTB Amphibolite
. over/underestimation Average
Criterion Rank | 01(model)-O1(observed) (MPa) percentage error
(average) (%)
Modified Simplified Priest 1 33.68 overestimation 12.63
Zhang-Zhu 2 64.73 overestimation 13.65
Simplified Priest 3 -15.70 underestimation 15.91
Hoek-Brown 4 -132.07 underestimation 25.00
Pan-Hudson 5 -141.13 underestimation 25.33
Generalised Priest 6 216.71 overestimation 34.73
Westerly Granite
o Average
Criterion Rank | 0ymodel)-O1(observed) (MPa) overfunderestimation percentage error
(average) (%)
Modified Simplified Priest 1 20.45 overestimation 9.32
Zhang-Zhu 2 19.56 overestimation 9.88
Simplified Priest 3 -38.89 underestimation 9.99
Hoek-Brown 4 -109.73 underestimation 17.97
Generalised Priest 5 112.70 overestimation 23.80
Pan-Hudson 6 -258.34 underestimation 40.95
Dunham Dolomite
o over/underestimation Average
Criterion Rank | 0O1moden-O1(observed) (MPa) percentage error
(average) (%)
Modified Simplified Priest 1 -16.83 underestimation 3.19
Zhang-Zhu 2 -7.43 underestimation 4.29
Simplified Priest 3 -45.30 underestimation 7.02
Generalised Priest 5 83.56 overestimation 11.37
Hoek-Brown 4 -121.30 underestimation 16.69
Pan-Hudson 6 -102.99 underestimation 16.83
Solnhofen
Limestone
o Average
Criterion Rank | O1mode-O1(observed) (MPa) over/underestimation percentage error
(average) (%)
Modified Simplified Priest 1 8.72 overestimation 3.51
Zhang-Zhu 2 8.05 overestimation 3.71
Simplified Priest 3 -36.19 underestimation 7.09
Generalised Priest 5 63.52 overestimation 12.14
Hoek-Brown 4 -65.59 underestimation 12.21
Pan-Hudson 6 -47.75 underestimation 12.40
Mizuho trachyte
o over/underestimation Average
Criterion Rank | O1moden-O1(observed) (MPa) percentage error
(average) (%)
Modified Simplified Priest 1 -14.26 underestimation 4.33
Zhang-Zhu 2 4.57 overestimation 4.65
Simplified Priest 3 -10.31 underestimation 4.49
Hoek-Brown 4 -43.98 underestimation 11.43
Pan-Hudson 5 -20.92 underestimation 16.20
Generalised Priest 6 65.40 overestimation 17.33
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4.8. True-triaxial Experimentsat the University of Adelaide

Although a number of true-triaxial experiments haeen conducted over the past decades, as
a major limitation in studying the rock performangeder three-dimensional stress can still be
mentioned the lack of adequate true-triaxial experntal data in order to validate the
theoretical and empirical rock failure models. Thain reasons for such limitation are the
elaborate rock specimen preparation techniques emahplicated testing procedures.
According to Mogi (1971a) the major difficulty ohe true-triaxial testing is ensuring the
application of three orthogonal, independent yeimbgeneous stresses to rock specimens.
Nevertheless, there exists a serious need fordutthe-triaxial experiments to be conducted
on rock material. Considering this serious demandraber of polyaxial tests were conducted
at the University of Adelaide in collaboration wahgroup of four honours students. The main
purposes of conducting true-triaxial experimentgewt validate three-dimensional rock
failure criteria developed based on the Hoek-Branterion, and to investigate the effect of

the specimen size and shape on the apparent s$trefidie rock specimen.

4.8.1. Experimental setup

True-triaxial apparatus

The true-triaxial cell used for testing was desdyrend fabricated at the University of
Adelaide by Prof. Stephen D. Priest and Dr. Noun&&koumian in collaboration with Mr
Adam Schwartzkopff et al. (2010) (Fig. 4.25). Thesign of the true-triaxial cell was adopted
from and is similar to an existing design outli®dKing et al. (1997) (Schwartzkopff et al.,
2010). Lateral confining pressures are applied peddently and orthogonally by two sets of
hydraulic jacksmounted on a steel reaction ring by means of inedrate jack support units.
Each opposing set of jacks is controlled by a hyldracircuit, which is pressurised by a hand
pump connected to an adjustable pressure relieev@lach jack has a capacaf 718 KN,
which corresponds to maximum pressures of 287, P4D,and 112 MPa on 560, 70 and 80
mm sized cubic specimens, respectively. The hydrgatks control the extension of circular
pistons on which intermediate platen base unitsnasanted using rare earth magnets. The
platen base unit has an indention into which tlag¢epl is inserted.
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One important feature of the true-triaxial celthat replaceable platens of various sizes render
the cell capable of testing cubic specimens ofedsfit sizes, with dimensions of 50, 60, 70
and 80 mm. All different size platens were desigwét the same dimensions at their base, to
allow them to be slotted into the platen base and the platen dimensions change from the
base to the contact surface to match the surfanerdiions of the specimen. In order to avoid
the grinding of the platens which could result anthging the cell, the platens were designed
with a 2% bevel around the edges to account fod#fermation of the rock specimen during
testing (Schwartzkopff et al., 2010).

Top and bottom platens were also fabricated foh egmecimen size and the contacting
surfaces were designed to have the same chamfasniye lateral platens. Axial load is
applied using a compression machine which has anmax capacity of 5000 KN. Strains in

the three principal stress directions are also toogd during testing by means of Linear
Variable Differential Transducers (LVDTs). The liegl system was thoroughly calibrated
using a strain-gaged aluminium sample of knowntielgsoperties. A detailed description of
the design, fabrication and calibration procedufkethe true-triaxial cell at the University of

Adelaide is given in Schwartzkopff et al. (2010).

Figure 4.25 True-triaxial apparatus of the University of Adelaide
[after Schwartzkopff et al.(2010)]
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Specimen preparation

Specimens were made from Kanmantoo bluestone, whiehhard fine-grained, medium to
dark grey-blue meta-siltstone of early Cambrian.afee stone was sourced from the
Kanmantoo Stone Quarry in the Adelaide Hills. Tihgebtone occurs within the Tapanappa
formation within the larger Kanmantoo group withihe Adelaide fold belt geological
providence. Kanmantoo bluestone was chosen becaisa relatively homogeneous rock.
This homogeneity reduces the risk of inaccurate tesults due to flaws in individual

specimens.

To determine the uniaxial compressive strengthand the parametet; for the Hoek-Brown
criterion a number of cylindrical specimens witlpest ratio of 2.4 were prepared to be tested
in the Hoek cell. Cores were drilled out from adil@f Kanmantoo bluestone and were cut to
make specimens of 100mm in length and 42mm in dexm&he top and bottom faces of the

cores then were ground to minimise the paralleb$iset.

To prepare cubic specimens of 60x60x60 mm dimeasionbe tested in the true-triaxial
apparatus, first, cores of 85mm diameter wereeatdtitbut of the Kanmantoo block. Once the
cores were prepared, they were cut into rectanguiams and then two cubes were cut out of
each prism (Fig. 4.26). Cubic specimens (60x60x&0) mwere surface ground to obtain
dimensions within 1mm from the prescribed size,hwil.05 mm of parallelism and
orthogonality offsets. It was a requirement tha tlibic specimens were slightly larger than
their specified size to allow the cubes to be usethe true-triaxial cell without any contact
between platens in the true-triaxial cell. Undedior exact sized cubes may cause contact

between platens.

Figure 4.26 Block of Kanmantoo Blue stone and preparation of cubic
specimens [after Dong et al., (2011)]
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True-triaxial tests

A total number of 10 true-triaxial tests were aadrout on 60x60x60 mm cubic specimens of
Kanmantoo blue stone. True-triaxial tests were ootetl at the University of Adelaide and in
collaboration with a group of four honour studefitsie-triaxial testing procedure consisted of
simultaneously raising all three principal stress¢sa constant rate unti; reached its
prescribed value. Thereafter, the other two prialcgtresseso{ando,) were increased at the
same rate untid, reached its predetermined magnitude. From thistpgi ando, were kept
constant and; alone was raised until the specimen failed. Uriloggvas carried out after;
decreased approximately 5%-10% of its peak levile Tesults of true-triaxial tests are
presented in Table 4.3.

Table 4.3 True-triaxial experimental data of Kanmantoo Bluestone,
The University of Adelaide (2011)

TestNo. | o, (MPa) | o, (MPa) | o3 (MPa) I, (MPa) | \J, (MPa)
1 450.62 21.07 21.43 493.12 247.90
2 426.92 49.16 19.80 495.87 227.05
3 585.70 70.61 22.63 678.93 312.16
4 537.80 41.54 42.65 621.99 286.19
5 582.93 74.73 42.94 700.59 303.00
6 673.06 101.39 40.95 815.40 348.81
7 771.82 59.68 62.66 894.16 410.30
8 792.79 90.75 63.19 946.72 41351
9 701.27 118.27 65.02 884.56 352.97
10 761.87 140.04 63.20 965.11 383.13

Different types of failure were observed from theettriaxial tests. The most common failure
mode from true-triaxial testing was a V-shaped kré€ig. 4.27 (a)). This failure mode

involved the formation of two distinct cracks rungithrough the cubic specimen. Another
failure mode observed from true-triaxial testingsvemn M-shaped crack (Fig. 4.27 (b)). It is
important to mention that regardless of the modiaitire, failure planes were in the direction
of the intermediate principal stregs, as was expected, and the specimens were sepatdted

in the direction of the minimum principal stress,
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Figure 4.27 (a) The V-shaped failure mode and (b) the M-shaped failure
mode [after Dong et al. (2011)]

Comparison and validation of three-dimensional failure criteria against true-

triaxial data

Six rock failure criteria were selected and studiedhis thesis. These criteria have been

developed based on the Hoek-Brown failure criteriothe sense that their input parameters

are the same as those for the Hoek-Brown critenamely the uniaxial compressive strength

and the Hoek-Brown constant parameterin order to evaluate and validate the selected

three-dimensional rock failure criteria against thee-triaxial experimental data, the uniaxial

compressive strength and the Hoek-Brown constardgnpaterm for Kanmantoo bluestone

had to be determined. Uniaxial tests were performedylindrical and cubic specimens of

Kanmantoo bluestone. The aspect ratio (length/diaméor cylindrical specimen was 2.4 and

for the cubic specimen was 1 (Table 4.4).

Table 4.4 Uniaxial compressive strength of cylindrical and cubic
specimens of Kanmantoo bluestone.

Rock specimen Aspect_Ratio ucs Average
(Length/Diameter) (MPa) UCS (MPa)
cylinder 2.4 148.858
cylinder 2.4 149.255 147.11343
cylinder 2.4 143.228
cubic (60 x 60 mm) 1 190.278 190.27778
cubic (50 x 50 mm) 1 208.773 208.7727
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It is important to remember that apparent stremgtshort specimens becomes higher due to
the clamping effect at the two ends of the specimBme underlying reason for this
phenomenon is that the loading machine does notmednd expand as much as the rock does
under the loading. The expansion of rock at machperimen interface exerts an additional
confining pressure on the rock specimen. This ocomdi pressure is the result of the frictional
force acting on the interfacial area between tlek kpecimen and the loading machine and
restricts the lateral expansion of the rock speniraethe two ends of the specimen. It is
evident that with the increase of the length/diangdtio, this effect should decrease gradually
and disappear at some critical value. Above thiscal value, the strength should remain
constant and should represent the true strengtlerumeiform compressionAccording to
Mogi (2007), this critical value for length/diamet&tio is about 2.5. Therefore, considering
Table 4.4, the uniaxial compressive strength ofkbemantoo bluestone is determined as 147
MPa.

Conventional triaxial tests were also conductedsiomlar core samples, using the Hoek cell,
to determine the empirical Hoek-Brown parametdor the Kanmantoo bluestone. Confining
pressure was applied at the same rate as thealddaxl. Once the desired confining pressure
was reached it was maintained constant by bleedfihgxcess pressure as necessary. Since
the specimen tends to expand laterally as it idddavertically, confining pressure can become
too high if it is not bled off. Vertical loading ntnued at a constant rate until the specimen
failed. Hoek cell tests were performed under 5afh@ 15 MPa confining pressures, as it is

given in Table 4.5.

Table 4.5 Conventional triaxial tests for determining the Hoek-
Brown constant parameter m

Confining Failure Stress o./o [(01-0 )/0']2
Pressure (MPa) o, (MPa) e e e
5 212.556 0.034 1.994
10 232.051 0.068 2.282
15 241.533 0.102 2.375

The empirical parameten can be determined by rearranging the Hoek-Browermn (Eg.

4.6.1) as follows:
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(252 (22
UC UC

By plotting [(o; — 03)/0.]*> againsi(os/ao,), for the experimental data (Table 4.5), the
parametem is determined as the slope of a best fit line,ciwhintersects with thfo; — 03)/
o.]%-axis at 1, as illustrated in Fig. 4.28. Therefocensidering the Hoek cell tests the
empirical parametem is determined as equal to 16.131. However, thefficmmat of
determinationR? value of -2.86 indicates that the line is not viiging the data.

3.000

y=16.131x + 1
R%=-2.867

L 2
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Figure 4.28 Best fit line to conventional triaxial data for determining the
Hoek-Brown constant parameter m

Inserting the uniaxial compressive strength,as 147 MPa and the Hoek-Brown constant
as 16.131 into the selected three-dimensional f@itike criteria, the rock failure stress can be
calculated by means of each failure criterion (€ab6). However, using these values dpr
andm it was found out that all three-dimensional faglariteria underestimate the strength of
the cubic rock specimen under three-dimensionaksiras illustrated im, -o, plots in Fig.
4.29.
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Table 4.6 Predicted values of failure stress by the means of each selected failure criteria for m = 16.131 and o.= 147 MPa

(}] g; g g
P (e ] (o f] g . . 1P es L e
(o J3 o3 True-triaxial Hoek-Brown | Pan-Hudson Zhang-Zhu Generallsed Slmpllfled Modified IS|mpI|f|ed
data Priest Priest Priest
0.00 0.00 147.00 147.00 48.64 147.00 147.00 147.00 147.00
21.07 21.43 450.62 290.64 156.87 290.06 289.66 290.37 291.45
49.16 19.80 426.92 281.73 210.52 324.41 353.85 302.60 333.63
70.61 22.63 585.70 297.08 254.76 360.98 405.29 329.43 369.71
41.54 42.65 537.80 393.14 245.11 391.65 390.71 392.38 395.45
74.73 42.94 582.93 394.41 305.79 433.59 458.52 415.01 448.16
101.39 | 40.95 673.06 385.64 343.49 455,52 501.63 423.40 466.79
59.68 62.66 771.82 475.38 317.15 471.73 469.58 473.47 479.48
90.75 63.19 792.79 477.43 370.80 508.94 527.78 494.47 528.73
118.27 | 65.02 701.27 484.47 415.62 541.77 576.70 516.38 558.67
140.04 | 63.20 761.87 477.47 442.21 556.64 606.53 522.54 570.16
500 1 Kanmantoo bluestone,= 20 MPa Kanmantoo bluestone; = 40 MPa Kanmantoo bluestone; = 60 (MPa)
o
(Mléa) 800 -
* ¢ *
700 -
600 - *
500 - ¢
a0 | o
300 Zhang-Zhu
= = = Generalised Priest
200 -
— - = Simplified Priest
100 - ——— MSP
0 [P} (MPa) G2 (MPa) Go (MPa)
0 20 40 60 80 30 50 70 90 110 40 60 80 100 120 140 160
Figure 4.29 ©4-05 plots, demonstrating that all 3D failure criteria underestimate the

strength of the rock specimen
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As is obvious form Table 4.6 and Fig. 4.29 the roess failure stress of cubic specimens of
Kanmantoo bluestone is about 30% (in the caseeoPdn-Hudson criterion 50%) higher than
the predicted values of the failure stress of lhms One of the reasons for such
discrepancies can be the clamping end effects dauséiction on the steel-rock interface. In

order to eliminate the clamping end effect causgdribtion on the steel-rock interface, thin

layers of HDPE plastic were applied between th& ey surface and the steel platens. In this
case, the failure mode can be described as twakctracks developed starting from the end
surfaces of the rock sample and in the directiothefintermediate principal stress. The cubic
specimen was separated out in the direction ofntlemum principal stress and the failure

stress was significantly low. This phenomenon seentecur because of the intrusion of the

plastic layer into the rock specimen (Fig. 4.30]) #rerefore this method is not recommended.

Marks due to the
= intrusion into the
specimen

Figure 4.30 Intrusion of the HDPE plastic layer into the rock specimen
[after Dong et al (2011)]
Another hypothesis can be described as the effetiteosize and shape of the cubic rock
specimens on the apparent strength of the rocksumed using the true-triaxial cell. The
effect of the specimen’s size and shape can beoadkdged by adjusting the input
parameters of the three-dimensional failure coteriAs explained previously, the uniaxial
compressive strength of the Kanmantoo bluestonesuned by conducting uniaxial
compression test on the 60x60x60 mm cubic specica@mot be relied upon due to the
pronounced clamping end effects. Therefore, ie®mmended that the uniaxial compressive
strength,o., of the Kanmantoo blue stone be determined fraeutiiaxial compression tests
on cylindrical specimens with aspect ratio of 24 the other hand, the empirical parameter
m can be determined for the cubic specimens of Katmoahluestone tested in the true-
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triaxial cell. For this purpose, true-triaxial tesh whicho, = g; can be adopted and the

correspondingr; anda; values can be substituted into Eq. 4.81, as predentTable 4.7.

Table 4.7 Triaxial test data on cubic rock specimens for
determination the empirical parameter m

Confining Pressure FallureMSPtress o3/o; [(0'1'0'3)/0'(;]2
(MPa) o1 (MPa)
21.07 450.62 0.11 5.10
41.54 537.80 0.22 6.80
59.68 771.82 0.31 14.00

It is also important to note that since the emplrjgarametem is determined to account for
the size and shape effects of the cubic specimernte apparent rock strength measured in
true-triaxial tests, the apparent uniaxial comguesstrength of the 60x60x60 mm cube is
substituted into Eq. 4.8.1 for determining the paeterm. It merits emphasising that the
uniaxial compressive strength of the 60x60x60 mrhecmust not be used as an input
parameter for three-dimensional criteria, but diolydetermining the empirical parameter
Plotting [ (o, — 03)/0.]? againsi(o;/0.), for the experimental data (Table 4.7), the patame
mis determined as the slope of the best fit linkictv intersects with thf(o;, — 03)/0,]?-axis

at 1, as illustrated in Fig. 4.31.

16

141 y=36.632x+1 ¢
12 R2=0.8408
N, 10 A
o
8
[s2]
o 5 .
IH
L 4
2 4
0 T T T T T T o-3/0-CI

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Figure 4.31 Best fit line to triaxial test data on cubic specimens for
determining the empirical parameter m

Inserting the uniaxial compressive strength,as 147 MPa and the Hoek-Brown constant
as 36.6 into the selected three-dimensional rotlréacriteria, the rock failure stress can be

calculated by means of each failure criterion, @Esgnted in Table 4.8 and illustrated in Fig.
4.32.
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Table 4.8 Predicted values of failure stress by the means of each selected failure criteria for m = 36.6 and o.= 190.3 MPa

0, (41 o o
o, o; | True-triaxial g g1 o1 Generalised | Simplified | Modified Simplified
data Hoek-Brown | Pan-Hudson | Zhang-Zhu Priest Priest Priest/MSP
0.00 0.00 147.00 147.00 23.48 147.00 147.00 147.00 147.00
21.43 21.07 450.62 388.42 153.37 389.27 389.93 290.37 392.05
49.16 19.80 426.92 377.76 220.82 440.48 487.45 302.60 451.31
70.61 22.63 585.70 401.26 277.80 494.95 564.04 329.43 503.87
42.65 41.54 537.80 536.64 263.90 538.69 540.19 392.38 545.39
74.73 42.94 582.93 545.57 341.79 599.90 638.68 415.01 617.22
101.39 | 40.95 673.06 532.81 391.83 631.46 701.96 423.40 642.56
62.66 59.68 771.82 645.11 355.59 649.99 653.38 473.47 664.54
90.75 63.19 792.79 664.51 424.83 706.94 736.03 494.47 730.19
118.27 | 65.02 701.27 674.47 483.70 752.40 805.70 516.38 770.48
140.04 | 63.20 761.87 664.56 519.74 773.72 849.02 522.54 785.58
o 20 Kanmantoo bluestone; = 20 MPa Kanmantoo bluestone; = 40 MPa Kanmantoo bluestone; = 60 (MPa)
(MPa) goo -
700 -
600 -
500 - - 4 data Point
-------------------- Hoek-Brown
2007 R RA S e Pan-Hudson
300 A . Zhan¢-Zhu
200 1 = = — Generalised Priest
=+ = Simplified Priest
100 MSP
o . . _02(MPa) . . . o2 (MPa) . . . _02(MPa)
0 20 40 60 80 30 50 70 90 110 40 60 80 100 120 140 160

Figure 4.32 04-a0, plots, demonstrating the comparison of the selected three-dimensional
failure criterion
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As is obvious from Table 4.8 and Fig. 4.32, aftéjusting the input parameter to account
for the higher apparent strength of the cubic regk&cimens, the values for the failure stress
predicted by means of three-dimensional rock faileniteria show reasonable agreement with
the true-triaxial test data. Comparison of the el rock failure criteria revealed that the
modified simplified Priest and the Zhang-Zhu wére two criteria which predicted the rock

strength more accurately than other three-dimeasifaniure models (Table 4.9).

Table 4.9 Error analysis and quantitative comparison of selected 3D failure criteria

. . Average
Criterion Rank ol(m"d‘z',)\;lg,g;bse”’e‘” over/u(r;(\j/eérrzzt:)natlon percentage error
(%)
Zhang-Zhu 1 -27.91 underestimation 7.00
Modified Simplified Priest 2 -16.51 underestimation 7.21
Simplified Priest 3 -44.01 underestimation 7.56
Generalised Priest 4 7.42 overestimation 8.59
Hoek-Brown 5 -77.60 underestimation 12.13
Pan-Hudson 6 -270.44 underestimation 49.82
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CHAPTER 5 A case study of prediction of boreholstatility

5.1. Introduction

As outlined previously, a common strategy for botelstability evaluation is to estimate the
induced stresses at the borehole vicinity by me&msalytical or numerical models, and then
substitute the in situ stress components into & faiture model to investigate whether or not
the rock failure initiates. Stress analysis basedirear elasticity theory was carried out to
estimate the induced stresses around a verticalaadeviated borehole in Chapter 3. The
existing analytical model for stress estimationuaih a borehole is an elastic solution, which
is a three-dimensional expansion of Kirsch equatiamd also is referred to as the generalised
Kirsch equations. These equations have been wiggblied in the petroleum and mining
industries since they were introduced in 1962 byamatsu and Oka. However, boundary
conditions on which this elastic solution was babade been inadequately addressed in the

existing literature.

Finite element analysis (FEA) was employed to firgtate the numerical counter part of the
analytical solution in order to clarify the boungaronditions involved in the analytical
solution. It appeared that in the case of a dediataehole where the stress state around the
borehole is a general stress state, some simgifggsumptions were made to facilitate the
procedure of deriving the analytical solution. limer words, the three-dimensional problem
was divided into two two-dimentional problems; arethe assumption of plane strain and the
other on the assumption of anti-plane strain. kdsumed that under plane strain conditions
there is no deformation along the borehole axis alhdleformations take place in planes
perpendicular to the axis of the borehole. On thermhand, under anti-plane strain conditions
it is assumed that a constant deformation alongbtinehole axis is the only deformation that
occurs. In order to eliminate this contradictiontire assumed boundary conditions in the
analytical model, a finite element model was depetb based on a new set of boundary
conditions (Chapter 3, Section 3.5) which is intéretompliance with the physics of the

problem. A detailed explanation of the proposednolamy conditions is given in Section 3.5.

After estimating stresses around the boreholestilgility of the rock material at the borehole

wall is required to be investigated. Under a gigegess state, the maximum stress that can be
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tolerated by rock is referred to as the failuresgreThe stability of the rock material
surrounding the borehole can be evaluated by cangpdhe rock failure stress with the
maximum in situ stress at the borehole proximitgildfe stress for rock material can be
estimated by means of mathematical formulationswknas failure criteria. A number of
common failure criteria were briefly explained irhd@pter 2 and in Chapter 4 detailed
discussions on failure criteria which were devetbpespecially for rock material were
presented. A new three-dimensional failure criteneas also introduced by improving the
simplified Priest criterion developed by Priest@3)

In this chapter first the stability of a deviatedréhole is evaluated and then minimum and
maximum mud weight for drilling the bore hole islatdated to demonstrate the practical
application of the technigques developed in thissiheSome equations and relations are

repeated in the following sections for convenience.

5.2. Prediction of boreholeinstability

If the induced stresses around the borehole exteecbck failure stress, failure of intact rock
Is expected to occur at the borehole wall. In otdedemonstrate the procedure of predicting
the borehole instability, a deviated borehole wassalered in this section. The geometrical
characteristics of the deviated borehole is theesamfor the case example given for FEA in
Chapter 3, i.e. a deviated borehole of radius é08ith inclination of 125/10 (trend/plunge)
is considered. The borehole is assumed to be dirilethe Australian crustal rocks with
principal stresses being, = 45 MPagy = 75 MPa andr, = 66 MPa at the depth of 3000 m.
In order to estimate the induced stresses aroumdl¢liated borehole the far-field principal
stress components measured in the global Cartesiamlinate system must be transformed
into a local Cartesian coordinate system wtifeaixis coincides with the borehole axis (Fig.
3.10). Therefore, in this example the far-fieldest state for the deviated bore hole can be

given by the following general stress tensor:
65.1565 -13.8812 -0.1487

[0]; =|-138812 548697 24476 (5.2.1)
-0.1487 -24476 659738
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The associated stress transformation procedureowiised in Chapter 3. In the case of an
unsupported deviated borehole in non-porous anttogic material, the stresses at the

borehole wall can be calculated according to theegdised Kirsch equations, as follows:
o, =0

Ogg = (o*x + ay)— Z(JX —ay)00326—4axy sin26

O,6=0

O,,=0,—2V (JX - Jy) c0s20 - 4v o, sin20

Og = (Jyz cosd-oy, sinH)

o,=0 (5.2.2)

Induced stresses are at their most deviatoric atatee borehole wall and stress concentration
occurs at two opposite points on the circumferenicthe borehole. The angular position of
these two points of stress concentration can bmatsd by applying Eqg. 3.4.7. In the case of
this deviated borehole, the angular position of twe points of stress concentration are
calculated a8 = 55.166° andd = 2355.166°. Therefore, induced stresses at twesst

concentration points on the wall of the unsupportediated borehole are given by the

following stress tensor, as was calculated in Girafit

Or Org 0Oy 0 0 0
oi]=| 08 0w 0a|=|0 17924 -302 (5.2.3)
O, O, 0O, |0 —302 8670

After calculating the induced stresses at two ope@®ints around the borehole the next step
in borehole stability evaluation is to investigatdether or not the rock material at the
borehole wall can sustain the induced stressas.ihportant to remember that failure of a
particular rock type occurs when the failure stigssxceeded by the applied stresses. Since
the stress state at the borehole wall is three{uineal, it is more suitable for the rock failure
stress to be estimated by means of a three-dimeaddiailure criterion. In Chapter 4 a three-

dimensional failure criterion based on the Hoekvrcriterion was developed by modifying
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the simplified Priest criterion. The criterion demstrated significant accuracy in predicting
rock failure stress in three-dimensional streste stdoen it was examined against the nine sets
of published true-triaxial experimental data, arefgrmed the best when compared to the
other three-dimensional rock failure criteria. Amting to the proposed three-dimensional
failure criterion, as also was outlined in Chapferfailure of intact rock occurs when:

1

2 2 2 2\
O = [UlHB +2031B —(02 +03 ﬂz (5.2.4)

The termo, 55 in EqQ. 5.2.4 is calculated, for intact rock madgas follows:

mo 2
0148 = I3HB +Uc{—03HB +1] (5.2.5)
C

Also assuming a weighting factarranging from 0 to 1, the termyy; is given by:

O3Hp = W03 +(1-w)og %)

O<sw<l

Where the weighting factav is defined by the following expression:

05
w= 024 (ﬂ —ﬁ] (5.2.7)
7 O¢

Where parameterg andu are defined as follows:

n= ( mo. )
0, —03
2 (5.2.8)
p=—t——c-2 (0, 2 03)

(o2 ‘03)2

It is important to remember that wher, = 0; Eq. 5.2.6 reduces te;,z = g; and
consequently the rock failure stresgy in Eq. 5.2.4 will be the same as the failure stres

predicted by the original two-dimensional formutettiof the Hoek-Brown criterion.
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If principal stresses acting on the borehole wadlia descending order such thgy > o,, >

0., thenayg, 0,, and g, are corresponding to majas,(), intermediate £,) and minor §)
principal stresses, respectively. It is importanhote that stress components in Eq. 5.2.2 are
not principal stresses. On the other hand, the queg failure model for assessing rock
stability has been formulated in terms of the pgpatstresses. Therefore, it is important to
calculate the values and directions of the prifcgh@sses associated with the general stress
tensor in Eq. 5.2.2. The direction determined by timit vectori is said to be a principal

direction of the stress tensay; if there exists a parametes such that:
l ~0,6)4; =0 (5.2.9)

Whereé;; is the Kronecker delta (Eq. 4.2.5). The expanaenhfof Eq. 5.2.9 is a set of three

linear algebraic equations which can also be espres the following form:

(JXX - Jp) Oxy Oy A
Oyy (ayy - ap) Oy, A, =0
Oxz Oyz (Jzz - Jp) /]3
(5.2.10)

In Eq. 5.2.10 the parameters 1, andA; are direction cosines associated with the priricipa
stress tensor. Furthermore, the three linear agel@quations, given by Eg. 5.210, can be

simultaneously solved by equating the determindnthe coefficient matrix to zero, as

follows:
(Jxx - Up) Oxy Oxz
Oyy (ayy—ap) oy, |=0 (5.2.11)
Oyz Oyz (Jzz - Jp)

Evaluating the determinant in Eq. 5.2.11 givesftilewing characteristic equation:

0,0~ 1,0, % +1,0,-153=0 (5.2.12)
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Wherel;, I, andl; are the first, second and third invariants ofdbeeral stress tensor and are

given as follows:

|1:UXX+U +Uzz

yy

— 2 2 2
I2‘Uxxayy"'Uyyazz"'azzaxx_(ny t0y, +sz)

— 2 2 2
I3 = OxxOyy0 7z + 2nya_yzaxz - (Jzza Y + OxxOyz + OywOxz ) (5.2.13)

Eq. 5.2.12 is a cubic equation so there are thigted values ofs, that provide solutions.

These roots of the cubic equation are the thregcipal stresses. Although the roots of the
characteristic equation can be zero or negatiwy, #re always real (i.e. never imaginary) in
the mathematical sense. This special property mdeisa simple algorithm can be adopted
for solving the equation. In order to solve the aopn, five further intermediate parameters

are needed to be defined as follows:

J]_: |12_3|2

21,3 -91,1, + 271,

J2:

J4:\/J_1

H:Earcta Js (5.2.14)
3 Js

The three principal stresses o, ando; are given by the following expressions: (it sholéd

noted that; > g, > a3).

_1;+2J,cosf

3
_1+2], 003(9—2%)
B 3

%)
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13423, 005(9—4%)

03 3

(5.2.15)

Therefore, principal stresses associated with #reial stress tensor, given by Eg. 5.2.3 can
be calculated as:

g O 0] oy O 0] [179338 0 O
0 o0, O0|=(0 o 0= 0 866 0 (5.2.16)
0 0 o,/ |0 0 o 0 0 o

Furthermore, according to the results of FEA basedhe proposed boundary conditions
which were outlined in Section 3.5, the induce@sstrstate around the deviated borehole is
given by the following stress tensor:

Or Org Op 0 0 0
[Jij]: Og Ogg Og | = 0 17912 -185 (5217)
o, O, O, |0 -185 8670

The corresponding principal stress tensor for tress tensor in Eq. 5.2.10 is given as follows:

o, 0 0] [17916 0 O
loil=l0 o, o|=| o 870 o0 (5.2.18)
0 0 o, 0 0 0

As is obvious there is no considerable differenew®vben the calculated stresses by the means
of the generalised Kirsch equations and the praposenerical model. However, since the
proposed boundary conditions are in relatively dsetigreement with the physics of the
problem, as explained in Chapter 3, the borehaleilgly analysis in this section is continued

by considering the induced stress tensor givendyb2.11.

First it is assumed that the borehole has bedledlin a granite formation, which has the
uniaxial compressive strength), of 229 MPa and the Hoek-Brown dilatancy parameteigf
29.5. Substituting the calculated values for theermediater, = 0,,, and minofg; = o,

principal stresses into Eqgs. 5.2.4 t05.2.7, therkaistress of the rock material at the borehole

142



CHAPTER 5 A case study of prediction of boreholstatility

wall is calculated as 460.73 MPa. Comparing thisevaf the rock failure stress to the major
in situ principal stressg; = gg9 = 179.16 MPa, it is inferred that the rock mateatthe
borehole wall does not fail in compression. Howeviethe borehole is drilled in a rock, for
example marble, with uniaxial compressive strerm§tB2 MPa and the Hoek-Brown dilatancy
parametem of 12, the failure stress calculated by Eqgs. 5t@.8.2.7, is 170.6 MPa which is
smaller compared to the in situ major principaéss$to; = 179.16 MPa, and therefore failure
is anticipated to initiate at the borehole wallblEa5.1 summarises the associated calculation

and procedure of the stability evaluation for tiecdssed example on the deviated borehole.

Table 5.1 Calculation of the failure stress for Granite and Marble

Failure stress Occurrence of
Rock a B w O3HB O1HB oy (MPa) failure at the
& borehole wall
Granite | 77.95 | 84.93 0.25 21.71 | 467.93 | 460.85 (>179.16) No
Marble | 11.35 | 12.25 0.25 21.60 | 188.88 | 170.58 (<179.16) Yes

5.3. Designing thedrilling fluid

In geotechnical engineering drilling fluid is usedaid the drilling of boreholes into the Earth.
Liquid drilling fluid is often referred to as diilg mud. The three main categories of drilling
fluids are water-based mud, non-aqueous mud, kresmil-based mud, and gaseous drilling
fluid, in which a wide range of gases can be applihe main functions of drilling fluids

include providing hydrostatic pressure to prevéat borehole wall from failing, keeping the
drill bit cool and cleaning the borehole duringlldrg by carrying out the drill cuttings.

Drilling mud makes a column of fluid, which exedsradial pressure on the borehole wall.

The magnitude of this radial pressure at a depthietalculated as follows:
Ry = ph (5.3.1)

Whereg is the gravitational acceleration and is usuaflgyumes to be 9.81N/kg apdis the

density of the drilling mud, which according to Eg3.1, is expressed in kgim
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For an unsupported borehole the radial stregs, at the borehole wall is zero and, as
demonstrated in Section 5.2, the corresponding [macipal stress acting on a rock element
at the borehole wall is also zero. However, dugheocolumn of the drilling fluid the redial
pressure at the borehole wall increase®,torhe radial and tangential induced stresses due to

the hydrostatic pressure of the column of mud énldbrehole are given as follows (Fig. 5.1):
Urr = PW

Tgo =Ry (5.3.2)

If it is assumed that the drilling mud completalisfthe borehole and the hydrostatic pressure,
P, is homogeneous around the circumference of théatsl borehole, then total stresses
around a deviated borehole containing a columrrithing) mud (Fig. 5.1) can be calculated by
superimposing Egs. 5.3.2 on the radial and tangjesttiess components,{ andogg) in Egs.

5.2.2 as follows:

Ty =P

Ogg = (JX + ay)— Z(JX —ay) cos260-40,,sin26 - R,
O,9=0

O,;=0,0—2V (JX - Jy) c0s20 - 4v o, sin20

Og = (ayz cos@—axzsine)

o,, =0 (5.3.3)

The hydrostatic pressure imposed on the borehdledwa to the column of drilling mud, acts
as a confining pressure and can dramatically iserébe rock failure stress. In the case of
drilling a deviated borehole in a Marble formatiavhere the rock failure in compression is

expected to occur, it is desired to calculate theimum hydrostatic pressurg,, i, to

prevent the rock material at the borehole wall fifaiture.
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Figure 5.1 Principal in situ stresses acting on a rock element
at the borehole wall, with drilling fluid

Superimposing Eq. 5.3.2 on the stress tensor eaémilby the means of the finite element
analysis, based on the proposed boundary conditithes general stress state around the

deviated borehole is given as:

O + Ry Oro Oz Ry 0 0
[Uij ] =| Og Op-PRy 0gl|=| 0 17912-R, -185 (5.3.4)
UZF UZH UZZ O - 1-85 8670

The principal stress tensor associated with thiseg® stress tensor can be calculated by
applying Egs. 5.2.13 to 5.2.15. Substituting thigypal stresses into the proposed strength
model given by Egs. 5.2.4 to 5.2.7 and equatingctideulated rock failure stress given by
Eq.5.2.4 to the in situ major principal stress, ogf = 0y = 179.12-F,,, the minimum
hydrostatic pressure required for preventing thkira of the rock material at the borehole
wall is calculated a®,miny = 176.9 MPa. Therefore, according to Eq.5.3.1 rtiieimum
density of the drilling mud for safely drilling thaeviated borehole at the depth of 3000 m is

calculated as:

1769x10° N

2

_ m- _ Kg

Prmin = =6010873 /3
N

981 Agx\’%OOOm m

The upper limit or the maximum allowable hydrostgtressure in the borehdg ,qy) is

constrained by the hydraulic fracturing stress. idytic fracture is a tensile fracture which is

assumed to occur if any of stress components didtehole wall becomes sufficiently tensile
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to overcome the rock tensile strendify, Since the most negative stress that can existeat
borehole wall at the two points of stress concéiimaaround the borehole circumference, is
the tangential stress, the condition for hydrafrbcturing is given as follows:

Ogo—Rv="To (5.3.5)

WhereT, is the rock tensile strength. Therefore the maxmallowable hydrostatic pressure

in the borehole is calculated as follows:
I:)W(max) =0gp +T0 (5-3-6)

The tangential stressyy in EQ. 5.3.6 can be calculated #®+55.166° using the generalised
Kirsch equations. However, in this study the resaftthe FEA are applied for determining the

tangential stress component around the deviatezhbbs.

Furthermore, Eqgs. 5.2.4 to 5.2.7 can be appliezhloculate the tensile strength of the rdkk,

through the following procedure:

1 - Equatings, 45 to zero and calculate the parametgy; as follows:
o 1
O3mB =7C m—(m2 +4)z (5.3.7)

2- Calculate parameters andf, by equating the intermediate principal streszdm as

follows:
mao. 0.2

n=—>= and H==5 (BB
_03 0-3

3- Calculate the weighting facter by substituting parameters andg from Eq. 5.3.8 into
Eqg. 5.2.7.

4- Settingoyr in EQ. 5.2.4 to zero, which yields the followinguation:
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1
/J 03 > 2 _
211-024 = -== |2 |g,—05" =0 5.3.9
[ 4{” O-CJ ] 3~ 03 ( )

5- Solving Eqg. 5.3.9 fo#; and settingly = —03

Following the five-step solution, the tensile sg#n of marble into which the deviated
borehole has been drilled is calculated'@as 4.77 MPa. Therefore, considering Eq. 5.3.4 and

Eq. 5.3.6 the maximum mud pressure is calculated as

Pw(max) =0gg +To=17912+ 477=1839MPa

Consequently, considering Eq. 5.3.1 the maximumowalble density of the drilling fluid is

calculated as:

1839x10° N

2

_ m- _ Kg

Prax = =6248726 /3
N

981 Ag x 3000m m
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CHAPTER 6 Conclusion

6.1. Summary and conclusions

Finite element analysis was carried out for calingpthe induced stresses around a borehole
in a continuum, homogeneous, isotropic and lineal®gtic rock. Results from the FEA and
the analytical models, i.e. the generalised Kireghations, were cross-evaluated for vertical
and deviated boreholes to clarify the boundary tmn$ involved in deriving the existing
analytical model. It appeared, however, that thenldary conditions assumed for deriving the
generalised Kirsch equations are incompatible tiéhreal life situation in the physical sense,
i.e. in reality deformation of a continuum body sahbe assumed to be in plane strain and in
anti-plane strain states simultaneously. The d=takxplanation of the reason for this

incompatibility is given in Chapter 3.

In order to address the contradictory boundary timm$ assumed in the existing analytical
model, a finite element analysis was carried ougjyylying a new set of boundary conditions.
Assuming displacement as the unknown variable,ptioposed boundary conditions can be
given by the following strain tensor: (as is alseeg by Eq. 3.5.3 and is repeated here for

convenience)

ou, duy , ou,  ou, |
0X dy Ox 0z
ou ou ou
[e] = | x4 2 Y y (6.1.1)
dy  0OX ay 0z
ou, duy 0
oz 0z |

The underlying assumption for proposing this sdtaindary conditions is that displacements
along the borehole axis are constrained by neagbyngaterials and are negligible, similar to
the plane strain conditions in the physical sen$ewever, since the out-of-plane shear
components appear in the corresponding stressrt€asp 3.5.4), the problem cannot be

considered as a plane strain problem.
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Results from the FEA revealed that under the pregdsoundary conditions, no significant
changes occur in the values of radigl,, tangentialgyg, vertical,o,, and in-plane sheat,.,
stresses around the borehole when compared toetieraised Kirsch equations. However
calculated values for out-of plane shear stresseandoy,, given by Eq. 3.3.11,
demonstrated a dramatic change. Based on thegedulie FEA the formulations of the out-
of-plane shear stress components were modifiedvaassout lined in Chapter 3, Eqgs. 3.5.6.

These equations are also presented here for canei

2
Og = % (ayz cosd - axzsiné?) (1+ ?—ZJ

2

a2
O,, = Z(Jyzsin9+ axzcosﬂ) 1_r_ (6.1.2)

A comprehensive study was also conducted on thraersional rock failure criteria. A new
three-dimensional failure criterion was developgdrindifying the simplified Priest criterion
as was outlined in Chapter 4, Section 4.7.2. Triaedtll experiments were conducted at the
University of Adelaide and the results of the ttraxial testing along with nine sets of
published true-triaxial experimental data were mgblto evaluate the proposed criterion
versus other selected three-dimensional rock maituiteria which are more commonly applied
in rock mechanics studies. Comparison of the sedetiiree-dimensional rock failure criteria
with the true-triaxial experimental data revealbdttthe proposed criterion, i.e. the modified
simplified Priest criterion, can evaluate the rattength under three-dimensional stress more
accurately than other criteria in most cases. Imesgases the Zhang-Zhu criterion provides
more accurate prediction of the rock failure stréssvever, even in such cases the Zhang-Zhu

and the modified simplified Priest criteria arergiigantly close.

6.2. Recommendations for future studies

Although a numerical solution was presented in 8tigdy for implementing the proposed
boundary conditions to calculate values of outdafap shear componentss,(, andoy,)

around a deviated borehole, it merits developingraadytical solution for calculating the out-

148



CHAPTER 6 Conclusion

of plane shears in order to analytically prove tbenulation proposed for calculating the
longitudinal stressewr{, andoy,) around a deviated borehole. Furthermore, thigefielement
model can be utilised as a platform for developingre sophisticated models for stress
analysis around an opening excavated in geo-mktesigh more complicated constitutive
behaviour and geological features.

The rock failure criterion for predicting the faitustress of intact rock developed in Chapter 4
can be generalised in order to evaluate the stienfjirock masses when estimating the

stability of underground excavations with lagerssrsections than of a borehole.

Furthermore, a five-step solution for calculatihg tensile strength of rock was outlined in
this study by applying the proposed three-dimeraidailure model. It would be worthwhile
conducting a series of uniaxial tensile tests teate the accuracy of the proposed method in

predicting the tensile strength of rock.
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APPENDIX A Theifenelement method

The Finite Element Method (FEM)

The finite element method (FEM) is a matrix algebnmethod developed to solve partial
differential equations (PDESs) in order to calcultear or non-linear response of continuous
physical systems to applied boundary conditionse Basic principle of the FEM is the
division of this physical system into a number ohgy shaped continuous sub-domains
(finite elements) in order to find approximate smns for the PDEs. This discretisation may
facilitate the solution of a PDE system at discpgtgts in the model space in cases where an
analytical solution is impossible to obtain. In erdto provide a unique solution and
convergence of the system of equations, appropb@tedary conditions have to be defined.
The simple shape of each finite element is defiogds corner nodes which may be shared
with adjacent elements, depending on their sppbaltion in the model space. All nodes and
elements are uniquely defined in the model spadhdiy identifier. The entirety of all entities
defines the finite element mesh which is the dissed representation of the continuous

problem space.

Once the model space is discretised, a set ofrlegaations of the unknown field variables is
approximated for each element. The most commonoagpr for problems in continuum
mechanics is the displacement method in which tuahdisplacemeriti(x)] is the unknown
field variable. Solving the problem for the unknofsgld variable requires that the equilibrium
of forces, internal continuity and a constitutivelationship with respect to the material
behaviour be satisfied. Through these constituawes stresses are related to strains and hence
to nodal displacements. The equilibrium equatiam lsa derived from the equation of motion
for small movements which can be written (in inedetation) as:

00; _

EerBi = P (A1)
Wherep is the densityB; is the body force and; is the acceleration. For the elastic stress
analysis around a borehole, acceleration can hemeskto be negligible since there exist no
instantaneous displacements at the borehole wélltla equations of static equilibrium are

applicable. In the absence of body forces, thelta@suof all surface forces as well as the

155



APPENDIX A Theifenelement method

resultant moment about any axis has to be vanish#dte state of equilibrium. Therefore the

equilibrium equation can be written as:

60"' _

an

0 (A.2)

For perfect linear elasticity, the strain tensgris proportional to the stress tensg. This

relationship is termed as Hook’s law and can beesged as:

0; =Cy & (A.3)

1

The forth-order tensaf;jy,;, which is a 9x9 matrix, represents the elastitatysor containing
81 components. However, the number of componedtges to 36 since both the stress tensor
(0;j) and the strain tensorgf) are symmetric, having only six distinct compomsent

Substituting Eq. A.3 into Eq. A2, the equilibriumuation of forces can be written as:

0 011 du, . Ou;
—lc &, l=—|=C | —+—L||=0 A.4
aXJ [ ijkl k|] ax [2 ijki (ax axl j] ( )

J J

After each element has been approximated into afdetear equations, the entirety of these
approximation functions are assembled into a gl@gpiation of motion, which enables the

solution of the numerical problem.

On the other hand, the matrix algebraic formulatbbthe fundamental equation of motion can

be expressed as:

i}

2
Ama

F=M-—-+C
at’

QO
S

+Ka (A.5)

Where M is the mass matrix is the damping matrix and is the stiffness matrix. In this

study, the finite element analysis (FEA) is reséicto static and Cauchy static problems,
e -
neglecting acceleratior(égt—’;) and velocities@—j). Therefore Eqg. A.5 is reduced to the static

equilibrium equation as follows:
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F=Kua (A.6)

Since for isotropic materials the elasticity matiixin Eq. A.3, is the same as the stiffness
matrix, K in Eq. A.6, the static equilibrium equation givieynEq. A.6 can be inverted to solve
for the unknown displacements once the stiffnesgixs known. Subsequently, the stress

and strain tensors can be derived.

Two basic principles, the Eulerian and the Lagrandormulations can be followed to solve
the constitutive equations within the finite elemeresh. In the Eulerian approach, material
properties or field variables migrate through theté element mesh which is not deforming
during the analysis. This prevents numerical inBteds due to excessive distortion of the
finite element mesh. However, because the continisimot explicitly defined, boundary
conditions and boundary layers are difficult tacgar redefine. In the Lagrangian approach
the material properties are explicitly defined &mch element and the finite element mesh
deforms during the analysis. The disadvantage eflthgrangian approach is the explicit
definition of the continuum, which leads to excessiistortion of the finite element mesh and
to numerical instability when addressing large defation problems. Since in the linear
elastic solution deformations around a borehole assumed to be infinitesimal, the

ABAQUS/Standard implementation of the Lagrangiaprapch was adopted in this study.

The focus of this thesis is to apply the FEM faess analysis around a borehole drilled in an
isotropic, homogeneous and linearly elastic rook.pfovide a description of the complete
mathematical background of the FEM is beyond thepescof this study. Hence, only the
fundamental concept and the basic equations hae dogtlined. For a complete mathematical
description of the FEM the reader is referred tenkiewicz and Taylor (1994) and
Zienkiewicz et al. (2005).

Mesh resolution

The accuracy of the FEA is directly dependent @ndiscretisation resolution. The behaviour
of the discretised continuum, for example, thedfiehriableu(x) is described by a set of
linear equations such ag = a, + a;u, in whicha indicates the approximation coefficients.

Therefore, a finite discretisation is required idal regions where high gradients 10fx)
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occur, for example, in the regions adjacent to libeehole wall. Fig. 3.4 demonstrates the

impact of discretisation resolution on the accuratgumerical approximation to a non-linear
function.

TUC) Numerical (@ t

approximatiol

uex) b  tux (c)

Figure A.1 The numerical error of the observed field variable (in this case u(x)) can be
minimized by increasing the discretisation resolution stepwise from (a) to

(c).
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Table B.1

Error analysis of the finite element model in comparison with the analytical solution, for calculating the induced stresses
around the vertical borehole (for a quarter-model)

9 Analytical solution Numerical Analysis Error calatibn (%)
(deg) Orr Ogo Oaa Org Ora Oga Orr Ogo Oaa Org Ora Oea | On (€) 066 (€) | Caa(€) | Ors(€) | Ora(€) | OTsal€)
1.5 §9.69 | 163.39 | 84.58 | 0.33 | 0.00 | 0.00 § 9.52 | 167.04 | 85.79 | 0.32 | 0.00 | 0.00§ 1.74 2.23 1.44 1.81 | 0.00 0.00
45 | 9.66 | 162.84 | 84.37 | 0.98 | 0.00 | 0.00 § 9.49 | 166.46 | 85.58 | 0.95 | 0.00 | 0.00 | 1.74 2.22 1.43 2.72 | 0.00 0.00
7.5 | 9.59 | 161.74 | 83.97 | 1.62 | 0.00 | 0.00 § 9.43 | 165.31 | 85.16 | 1.59 | 0.00 | 0.00 | 1.75 2.20 1.42 1.65 | 0.00 0.00
10.5 § 9.50 | 160.12 | 83.37 | 2.24 | 0.00 | 0.00 | 9.33 | 163.60 | 84.53 | 2.20 | 0.00 | 0.00 } 1.76 2.17 1.39 2.02 | 0.00 0.00
13.5 § 9.38 | 157.98 | 82.57 | 2.84 | 0.00 | 0.00 § 9.21 | 161.35 | 83.70 | 2.79 | 0.00 | 0.00 } 1.77 2.13 1.36 1.82 | 0.00 0.00
16.5 § 9.23 | 155.34 | 81.60 | 3.41 | 0.00 | 0.00 § 9.07 | 158.58 | 82.68 | 3.36 | 0.00 | 0.00 } 1.78 2.08 1.32 1.64 | 0.00 0.00
19.5 § 9.06 | 152.25 | 80.46 | 3.94 | 0.00 | 0.00 § 8.89 | 155.33 | 81.48 | 3.87 | 0.00 | 0.00 |} 1.80 2.02 1.27 1.95 | 0.00 0.00
22.518.86 | 148.72 | 79.15 | 4.43 | 0.00 | 0.00 § 8.70 | 151.63 | 80.11 | 4.34 | 0.00 | 0.00§ 1.81 1.95 1.21 2.14 | 0.00 0.00
25.518.64 | 144.81 | 77.71 | 4.87 | 0.00 | 0.00 § 8.48 | 147.51 | 78.60 | 4.76 | 0.00 | 0.00 § 1.82 1.87 1.15 2.23 | 0.00 0.00
28.5 1 8.40 | 140.55 | 76.13 | 5.25 | 0.00 | 0.00 | 8.24 | 143.04 | 76.95 | 5.13 | 0.00 | 0.00 § 1.82 1.77 1.07 2.27 | 0.00 0.00
315814 | 135.99 | 74.45 | 5,58 | 0.00 | 0.00 § 7.99 | 138.25 | 75.18 | 5.46 | 0.00 | 0.00 § 1.82 1.66 0.99 2.26 | 0.00 0.00
345787 | 131.18 | 72.67 | 5.85 | 0.00 | 0.00 § 7.73 | 133.20 | 73.32 | 5.72 | 0.00 | 0.00§ 1.81 1.54 | 0.90 2.21 | 0.00 0.00
375759 | 126.17 | 70.81 | 6.05 | 0.00 | 0.00 § 7.45 | 127.94 | 71.38 | 5.92 | 0.00 | 0.00 § 1.79 1.40 0.81 2.13 | 0.00 0.00
40.5 § 7.30 | 121.02 | 68.91 | 6.19 | 0.00 | 0.00 § 7.17 | 122.53 | 69.39 | 6.06 | 0.00 | 0.00 | 1.76 1.25 0.70 2.03 | 0.00 0.00
43.5 | 7.00 | 115.78 | 66.97 | 6.26 | 0.00 | 0.00 § 6.88 | 117.03 | 67.37 | 6.14 | 0.00 | 0.00 | 1.72 1.08 0.59 1.90 | 0.00 0.00
46.5 | 6.70 | 110.52 | 65.03 | 6.26 | 0.00 | 0.00 § 6.59 | 111.50 | 65.33 | 6.18 | 0.00 | 0.00 | 1.66 0.89 0.47 1.14 | 0.00 0.00
49.5 | 6.41 | 105.28 | 63.09 | 6.19 | 0.00 | 0.00 § 6.31 | 106.00 | 63.31 | 6.09 | 0.00 | 0.00 | 1.58 0.69 0.34 1.58 | 0.00 0.00
52.56.12 | 100.13 | 61.19 | 6.05 | 0.00 | 0.00 | 6.03 | 100.59 | 61.32 | 5.97 | 0.00 | 0.00 § 1.49 0.46 0.21 1.39 | 0.00 0.00
55.5 | 5.83 | 95.12 | 59.33 | 5.85 | 0.00 | 0.00 § 5.75 | 95.34 | 59.38 | 5.68 | 0.00 | 0.00 § 1.38 0.23 0.08 2.89 | 0.00 0.00
58.5 | 5.56 | 90.31 | 57.55 | 5.58 | 0.00 | 0.00 § 5.49 | 90.29 | 57.52 | 5.43 | 0.00 | 0.00§ 1.25 0.02 0.05 2.73 | 0.00 0.00
61.5 | 5.31 | 85.75 | 55.87 | 5.25 | 0.00 | 0.00 § 5.25 | 85.50 | 55.76 | 5.12 | 0.00 | 0.00 § 1.11 0.29 0.19 2.56 | 0.00 0.00
64.5 | 5.06 | 81.49 |54.29 | 487 | 0.00 | 0.00 § 5.02 | 81.03 | 54.12 | 4.75 | 0.00 | 0.00 § 0.95 0.56 0.33 2.39 | 0.00 0.00
67.5 484 | 77.57 |52.85 | 4.43 | 0.00 | 0.00 § 4.81 | 76.93 | 52.61 | 4.33 | 0.00 | 0.00 § 0.79 0.84 | 0.45 2.21 | 0.00 0.00
70.5 464 | 7405 | 51.54 | 3.94 | 0.00 | 0.00 § 4.62 | 73.23 | 51.25 | 3.86 | 0.00 | 0.00 § 0.63 1.11 0.58 2.00 | 0.00 0.00
735 4.47 | 70.96 |50.40 | 3.41 | 0.00 | 0.00 § 4.45 | 69.98 | 50.05 | 3.35 | 0.00 | 0.00 § 0.47 1.37 0.69 1.75 | 0.00 0.00
7651432 | 68.32 | 49.43 | 2.84 | 0.00 | 0.00 § 4.31 | 67.22 | 49.03 | 2.80 | 0.00 | 0.00§ 0.32 1.61 0.79 1.43 | 0.00 0.00
79.5]4.20 | 66.18 | 48.63 | 2.24 | 0.00 | 0.00 § 4.19 | 64.97 | 48.21 | 2.22 | 0.00 | 0.00 § 0.20 1.82 0.87 0.97 | 0.00 0.00
825 4.11 | 6455 | 48.03 | 1.62 | 0.00 | 0.00 § 4.10 | 63.27 | 47.58 | 1.62 | 0.00 | 0.00 § 0.10 1.99 0.94 0.17 | 0.00 0.00
85.5 | 4.05 | 63.46 | 47.63 | 0.98 | 0.00 | 0.00 | 4.05 | 62.12 | 47.16 | 1.00 | 0.00 | 0.00 § 0.04 2.11 0.98 1.68 | 0.00 0.00
88.514.02 | 62.91 |47.42 | 0.33 | 0.00 | 0.00 § 4.02 | 61.54 | 46.95 | 0.33 | 0.00 | 0.00 § 0.03 2.17 1.01 1.78 | 0.00 0.00
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Table B.2 Error analysis of the finite element model in comparison with the analytical solution (the generalised Kirsch equations),
for calculating the induced stresses around a deviated borehole (for a quarter-model)

0 Analytical solution Numerical Analysis Error calatibn (%)

(deg) O Oop Oaa Ore Ora Oga O Ogp Oaa Org Ora Oga Orr (e) Ogg (e) Oaa(e) Org (e) Ora (e) Opa (e)

15 §6.02 | 98.38 | 60.51 | 5.90 | -0.02 | -4.61 } 5.92 | 98.71 | 60.59 | 5.63 | -0.02 | -4.77 | 1.60 0.34 0.14 | 454 | 1.26 | 3.49
45 §6.30 | 103.42 | 62.37 | 6.06 | -0.04 | -4.58 § 6.19 | 103.97 | 62.52 | 5.78 | -0.04 | -4.74 § 1.71 0.53 0.25 | 464 | 0.79 | 3.47
7.5 | 6.59 | 108.56 | 64.27 | 6.16 | -0.05 | -4.54 | 6.47 | 109.34 | 64.50 | 5.86 | -0.05 | -4.70 } 1.80 0.72 0.36 | 474 | 1.74 | 3.46
10.5 1 6.89 | 113.75 | 66.19 | 6.18 | -0.07 | -4.49 § 6.76 | 114.77 | 66.50 | 5.88 | -0.07 | -4.64 | 1.88 0.89 0.47 | 485 | 230 | 3.43
135 7.18 | 118.94 | 68.11 | 6.14 | -0.08 | -4.42 § 7.04 | 120.19 | 68.49 | 5.84 | -0.08 | -4.57 | 1.93 1.05 0.57 | 496 | 2.67 | 3.40
16.5 § 7.47 | 124.06 | 70.00 | 6.03 | -0.10 | -4.35 | 7.32 | 125.55 | 70.47 | 5.83 | -0.09 | -4.49 | 1.97 1.19 0.67 | 341 | 294 | 3.36
195 § 7.75 | 129.07 | 71.85 | 5.86 | -0.11 | -4.26 | 7.59 | 130.78 | 72.40 | 5.65 | -0.11 | -4.40 | 2.00 1.33 0.76 | 3.46 | 3.15 | 3.31
22.518.02 | 133.90 | 73.64 | 5.62 | -0.12 | -4.16 | 7.86 | 135.84 | 74.26 | 5.42 | -0.12 | -4.29 | 2.01 1.45 0.85 | 349 | 3.31 | 3.26
25,5 18.28 | 138.50 | 75.34 | 5.32 | -0.14 | -4.05 | 8.12 | 140.66 | 76.03 | 5.13 | -0.13 | -4.18 | 2.01 1.56 092 | 349 | 3.44 | 3.19
2851853 | 14282 | 76.94 | 496 | -0.15 | -3.92 § 8.35 | 145.19 | 77.70 | 4.79 | -0.14 | -4.05 | 2.00 1.65 1.00 | 3.44 | 356 | 3.12
315 1 8.75 | 146.82 | 78.42 | 4.55 | -0.16 | -3.79 | 8.58 | 149.38 | 79.25 | 4.39 | -0.15 | -3.90 § 1.99 1.74 1.06 | 3.34 | 3.66 | 3.03
34.5 1 8.96 | 150.46 | 79.76 | 4.08 | -0.17 | -3.65 | 8.78 | 153.19 | 80.65 | 3.95 | -0.17 | -3.75 § 1.98 1.82 1.12 | 3.16 | 3.75 | 2.93
37.5 1 9.14 | 153.68 | 80.95 | 3.58 | -0.18 | -3.49 | 8.96 | 156.57 | 81.90 | 3.47 | -0.18 | -3.59 | 1.96 1.88 117 | 286 | 3.83 | 281
40.5 § 9.30 | 156.46 | 81.98 | 3.03 | -0.19 | -3.33 } 9.11 | 159.49 | 82.97 | 2.96 | -0.19 | -3.42 § 1.94 1.93 122 | 239 | 3.89 | 2.67
43.5 | 9.43 | 158.76 | 82.83 | 2.45 | -0.20 | -3.16 § 9.24 | 161.91 | 83.87 | 2.37 | -0.20 | -3.23 § 1.93 1.98 125 | 3.25 | 3.96 | 251
46.5 § 9.53 | 160.57 | 83.50 | 1.84 | -0.21 | -2.97 } 9.35 | 163.81 | 84.57 | 1.77 | -0.21 | -3.04 § 1.91 2.02 128 | 403 | 401 | 2.32
49.5 1 9.60 | 161.86 | 83.97 | 1.21 | -0.22 | -2.78 | 9.42 | 165.16 | 85.07 | 1.16 | -0.21 | -2.84 § 1.90 2.04 1.30 | 4.70 | 4.06 | 2.09
52.5 19.64 | 162.61 | 84.25 | 0.57 | -0.23 | -2.59 § 9.46 | 165.96 | 85.36 | 0.56 | -0.22 | -2.65 § 1.89 2.06 1.31 | 3.26 | 4.11 | 2.59
55.5 1 9.65 | 162.82 | 84.33 | -0.07 | -0.24 | -2.38 | 9.47 | 166.19 | 85.45 | -0.07 | -0.23 | -2.46 | 1.88 2.07 132 | 451 | 415 | 3.17
58.5 1 9.64 | 162.49 | 84.21 | -0.72 | -0.25 | -2.17 § 9.45 | 165.85 | 85.32 | -0.69 | -0.24 | -2.26 | 1.88 2.07 132 | 419 | 419 | 3.84
61.5 ] 9.59 | 161.62 | 83.89 | -1.36 | -0.25 | -1.96 | 9.41 | 164.94 | 84.99 | -1.30 | -0.24 | -2.02 | 1.88 2.06 131 | 415 | 422 | 3.13
64.5 1 9.51 | 160.21 | 83.37 | -1.98 | -0.26 | -1.73 § 9.33 | 163.48 | 84.45 | -1.88 | -0.25 | -1.79 | 1.88 2.04 1.30 | 475 | 425 | 3.38
67.5 § 9.40 | 158.29 | 82.66 | -2.58 | -0.26 | -1.51 § 9.22 | 161.48 | 83.71 | -2.49 | -0.25 | -1.56 § 1.89 2.01 1.27 | 3.43 | 428 | 3.70
70.5 § 9.26 | 155.88 | 81.76 | -3.15 | -0.27 | -1.28 § 9.09 | 158.96 | 82.78 | -3.00 | -0.26 | -1.31 | 1.90 1.97 124 | 487 | 430 | 2.56
73.5 | 9.10 | 153.00 | 80.70 | -3.69 | -0.27 | -1.04 | 8.93 | 155.95 | 81.67 | -3.54 | -0.26 | -1.08 | 1.91 1.93 120 | 405 | 432 | 3.78
76.5 1 8.91 | 149.68 | 79.47 | -4.19 | -0.28 | -0.80 | 8.74 | 152.48 | 80.39 | -3.99 | -0.26 | -0.83 § 1.91 1.87 1.16 | 489 | 433 | 3.21
79.5 | 8.70 | 145.96 | 78.10 | -4.64 | -0.28 | -0.57 | 8.54 | 148.60 | 78.96 | -4.48 | -0.27 | -0.58 | 1.92 1.80 1.10 | 3.58 | 435 | 3.05
82.5 1847 | 141.89 | 76.59 | -5.04 | -0.28 | -0.32 § 8.31 | 144.34 | 77.39 | -4.86 | -0.27 | -0.33 § 1.92 1.73 1.04 | 3.64 | 436 | 2.63
85.5 | 8.23 | 137.50 | 74.97 | -5.39 | -0.28 | -0.08 | 8.07 | 139.75 | 75.70 | -5.19 | -0.27 | -0.08 | 1.91 1.64 0.98 | 3.65 | 4.36 | 3.37
88.5 1 7.96 | 132.84 | 73.24 | -5.68 | -0.28 | 0.16 § 7.81 | 134.88 | 73.91 | -5.47 | -0.27 | 0.17 | 1.90 1.54 0.90 | 3.62 | 4.37 | 3.75
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Table B.3

Error analysis of the finite element analysis based on the proposed boundary conditions in comparison with the analytical
solution (the generalised Kirsch’s equations), for calculating the induced stresses around a deviated borehole (for a

quarter-model)

9 Numerical Analysis Analytical solution Error calatibn (%)
(deg Orr Opp Oaa Oro Ora Oga O Opp Oaa Oro Ora Oga Oy (€) | Ogg(€) | Taa(€) | O9(€) | Tra(€) | Teale)
15 | 592 | 98.68 | 60.31 | -5.71 | -0.05 | -3.29 | 6.02 | 98.38 | 60.51 | -5.90 | -0.02 | -4.61 J 1.64 | 0.30 | 0.33 | 3.32 | 0.30 | 0.33
45 §6.19 | 103.91 | 62.07 | -5.86 | -0.08 | -3.27 | 6.30 | 103.42 | 62.37 | -6.06 | -0.04 | -4.58 | 1.84 | 0.48 | 0.48 | 3.39 | 048 | 0.48
7.5 ] 6.46 | 109.26 | 63.88 | -5.94 | -0.11 | -3.25 | 6.59 | 108.56 | 64.27 | -6.16 | -0.05 | -4.54 | 2.02 | 0.65 | 0.61 | 3.45 | 0.65 | 0.61
10.5 | 6.74 | 114.67 | 65.71 | -5.96 | -0.14 | -3.21 § 6.89 | 113.75 | 66.19 | -6.18 | -0.07 | -4.49 | 2.16 | 0.80 | 0.72 | 3.51 | 0.80 | 0.72
13.5 | 7.02 | 120.07 | 67.54 | -5.92 | -0.17 | -3.16 § 7.18 | 118.94 | 68.11 | -6.14 | -0.08 | -4.42 | 2.29 | 0.95 | 0.83 | 3.55 | 0.95 | 0.83
16.57.29 | 125.41 | 69.35 | -5.82 | -0.20 | -3.11 § 7.47 | 124.06 | 70.00 | -6.03 | -0.10 | -4.35 | 2.39 | 1.08 | 0.93 | 3.57 | 1.08 | 0.93
195 7.56 | 130.62 | 71.12 | -5.65 | -0.22 | -3.05 § 7.75 | 129.07 | 71.85 | -5.86 | -0.11 | -4.26 | 248 | 1.21 | 1.02 | 3.58 | 1.21 | 1.02
225782 |135.66 | 72.83 | -5.42 | -0.25 | -2.97 | 8.02 | 133.90 | 73.64 | -5.62 | -0.12 | -4.16 § 255 | 1.32 | 1.10 | 3.56 | 1.32 | 1.10
255 ] 8.07 | 140.46 | 74.45 | -5.13 | -0.28 | -2.89 | 8.28 | 138.50 | 75.34 | -5.32 | -0.14 | -4.05 J 2.60 | 142 | 1.18 | 3.50 | 1.42 | 1.18
28.5]18.31 | 14497 | 75.97 | -4.79 | -0.30 | -2.81 | 8.53 | 142.82 | 76.94 | -4.96 | -0.15 | -3.92 § 2.65 | 1.50 | 1.26 | 3.39 | 1.50 | 1.26
315852 |149.15 | 77.37 | -4.40 | -0.33 | -2.71 | 8.75 | 146.82 | 78.42 | -4.55 | -0.16 | -3.79 | 2.68 | 1.58 | 1.33 | 3.23 | 1.58 | 1.33
345 ]8.72 | 152.94 | 78.64 | -3.96 | -0.35 | -2.61 | 8.96 | 150.46 | 79.76 | -4.08 | -0.17 | -3.65 J 2.71 | 1.65 | 1.41 | 297 | 1.65 | 141
37.5]8.89 | 156.30 | 79.75 | -3.48 | -0.37 | -2.50 § 9.14 | 153.68 | 80.95 | -3.58 | -0.18 | -3.49 | 2.74 | 1.71 | 1.48 | 2.60 | 1.71 | 1.48
40.5 § 9.05 | 159.21 | 80.70 | -2.97 | -0.39 | -2.38 | 9.30 | 156.46 | 81.98 | -3.03 | -0.19 | -3.33 | 2.76 | 1.75 | 1.56 | 2.02 | 1.75 | 1.56
43.5 §9.17 | 161.61 | 81.47 | -2.38 | -0.41 | -2.26 | 9.43 | 158.76 | 82.83 | -2.45 | -0.20 | -3.16 | 2.78 | 1.79 | 1.64 | 273 | 1.79 | 1.64
46.5 §9.27 | 163.50 | 82.06 | -1.79 | -0.43 | -2.13 | 9.53 | 160.57 | 83.50 | -1.84 | -0.21 | -2.97 | 2.80 | 1.82 | 1.73 | 2.74 | 1.82 | 1.73
49.5 1 9.34 | 164.84 | 82.45 | -1.16 | -0.45 | -1.99 | 9.60 | 161.86 | 83.97 | -1.21 | -0.22 | -2.78 | 2.82 | 1.84 | 1.81 | 431 | 1.84 | 1.81
52.5 | 9.37 | 165.63 | 82.64 | -0.56 | -0.47 | -1.85 | 9.64 | 162.61 | 84.25 | -0.57 | -0.23 | -2.59 § 2.85 | 1.85 | 1.91 | 229 | 1.85 | 191
55.5 | 9.38 | 165.85 | 82.64 | 0.07 | -0.48 | -1.71 § 9.65 | 162.82 | 84.33 | 0.07 | -0.24 | -2.38 | 2.88 | 1.86 | 2.01 | 430 | 1.86 | 2.01
58.5 | 9.36 | 165.50 | 82.43 | 0.69 | -0.50 | -1.55 § 9.64 | 162.49 | 84.21 | 0.72 | -0.25 | -2.17 § 291 | 185 | 2.11 | 3.52 | 1.85 | 2.11
61.5 ] 9.31 | 164.58 | 82.02 | 1.30 | -0.51 | -1.40 § 9.59 | 161.62 | 83.89 | 1.36 | -0.25 | -1.96 | 2.95 | 1.84 | 2.23 | 3.81 | 1.84 | 2.23
64.5 | 9.23 | 163.12 | 81.41 | 1.90 | -0.52 | -1.24 §9.51 | 160.21 | 83.37 | 1.98 | -0.26 | -1.73 § 299 | 1.81 | 2.35 | 4.04 | 1.81 | 2.35
67.5]9.12 | 161.11 | 80.61 | 2.49 | -0.53 | -1.08 | 9.40 | 158.29 | 82.66 | 2.58 | -0.26 | -1.51 § 3.03 | 1.78 | 2.47 | 3.65 | 1.78 | 2.47
70.5 1899 | 158.59 | 79.63 | 3.00 | -0.54 | -0.91 § 9.26 | 155.88 | 81.76 | 3.15 | -0.27 | -1.28 | 3.07 | 1.74 | 2.61 | 494 | 1.74 | 2.61
73.5]8.83 | 155.58 | 78.48 | 3.56 | -0.55 | -0.74 § 9.10 | 153.00 | 80.70 | 3.69 | -0.27 | -1.04 § 3.11 | 1.68 | 2.75 | 3.64 | 1.68 | 2.75
76.5]8.64 | 152.11 | 77.17 | 3.99 | -0.55 | -0.57 | 8.91 | 149.68 | 79.47 | 4.19 | -0.28 | -0.80 § 3.16 | 1.62 | 2.89 | 476 | 1.62 | 2.89
79.5 ]| 8.43 | 148.23 | 75.72 | 4.46 | -0.56 | -0.40 § 8.70 | 145.96 | 78.10 | 4.64 | -0.28 | -0.57 § 3.19 | 155 | 3.05 | 3.89 | 1.55 | 3.05
82.5]8.21|143.97 | 74.13 | 485 | -0.56 | -0.23 | 8.47 | 141.89 | 76.59 | 5.04 | -0.28 | -0.32 § 3.23 | 1.47 | 3.21 | 3.91 | 1.47 | 3.21
85.5 ] 7.97 | 139.38 | 72.44 | 5.18 | -0.56 | -0.06 | 8.23 | 137.50 | 74.97 | 5.39 | -0.28 | -0.08 § 3.26 | 1.37 | 3.38 | 3.90 | 1.37 | 3.38
88.5)7.71|134.52 | 70.65 | 5.46 | -0.56 | 0.12 §7.96 | 132.84 | 73.24 | 5.68 | -0.28 | 0.16 § 3.27 | 1.27 | 355 | 3.86 | 1.27 | 3.55

161




Table B.4 Error analysis of the finite element model in comparison with the analytical solution (the generalised Kirsch’s equations), for

calculating the induced stresses along the radial distance r from the wall of a deviated borehole at @ = 55.166°

r(m)

Numerical analysis

Analytical solution

Error calatibn (%)

Oy Ogo Oaa O Ora Oap Oy Ogp Oaa Org Ora Oap O (e) Ogg (e) 0aa(e) Orp (e) Ora (e) Opa (e)
0.08 § 0.00 | 180.12 | 86.71 | 0.00 | 0.00 | -3.00 §} 0.00 | 179.24 | 86.70 | 0.00 | 0.00 | -3.02 J 0.00 | 0.49 | 0.02 | 0.00 | 0.00 | 0.60
0.085) 9.46 | 165.96 | 85.36 | 0.08 | -0.25 | -2.79 | 9.65 | 162.82 | 84.33 | 0.08 | -0.24 | -2.85 | 2.01 1.93 1.22 | 4.99 2.69 2.01
0.095 § 22.51 | 142.04 | 81.55 | 0.17 | -0.63 | -2.51 } 22.31 | 139.71 | 80.67 | 0.16 | -0.61 | -2.58 |} 0.88 | 1.67 | 1.10 | 4.13 | 2.66 | 2.54
0.105 § 30.14 | 126.49 | 78.78 | 0.21 | -0.91 | -2.32 | 29.78 | 124.62 | 78.00 | 0.20 | -0.88 | -2.39 J 1.20 | 1.50 | 1.00 | 5.74 | 294 | 2.59
0.115) 34.83 | 115.85 | 76.70 | 0.23 | -1.11 | -2.20 § 34.42 | 114.26 | 76.00 | 0.22 | -1.08 | -2.24 | 1.20 1.39 0.92 5.08 2.56 1.93
0.125 § 37.85 | 108.27 | 75.11 | 0.24 | -1.27 | -2.09 | 37.43 | 106.85 | 74.46 | 0.23 | -1.24 | -2.13 | 1.12 1.33 | 0.86 | 4.75 | 2.38 1.71
0.135 § 39.86 | 102.67 | 73.85 | 0.24 | -1.40 | -2.00 § 39.45 | 101.37 | 73.25 | 0.23 | -1.36 | -2.04 | 1.04 1.28 0.82 | 4.56 2.37 2.00
0.145 Q4 41.24 | 98.42 | 72.84 | 0.24 | -1.50 | -1.92 § 40.85 | 97.20 | 72.28 | 0.23 | -1.46 | -1.97 | 0.95 1.25 0.78 | 4.44 | 2.67 2.64
0.155§42.21 | 95.11 | 72.03 | 0.24 | -1.58 | -1.86 | 41.85 | 93.95 | 7149|023 | -1.54 | -1.91 ) 0.87 | 1.23 | 0.75 | 434 | 262 | 2.81
0.165 4291 | 9249 |71.35|0.23 | -1.64 | -1.81 J 4257 | 91.38 |70.85|0.23 | -1.61 | -1.86 ] 0.80 | 1.22 | 0.72 | 426 | 2.08 | 2.73
0.175§43.42 | 90.37 | 70.79 | 0.23 | -1.71 | -1.78 |} 43.10 | 89.30 | 70.30 | 0.22 | -1.66 | -1.82 J 0.74 | 1.21 | 0.70 | 4.19 | 2.70 | 2.20
0.185443.81 | 88.64 | 70.32 | 0.23 | -1.74 | -1.74 § 43,51 | 87.59 |69.85| 0.22 | -1.71 | -1.79 | 0.69 1.20 0.67 | 411 2.07 2.78
0.195 4 44.10 | 87.20 | 69.92 | 0.22 | -1.79 | -1.72 § 43.82 | 86.17 | 69.46 | 0.22 | -1.75 | -1.76 | 0.64 1.19 0.66 | 4.03 2.61 2.26
0.205§44.32 | 85.99 | 69.57|0.22 | -1.82 | -1.69 | 44.06 | 84.99 | 69.13|0.21 | -1.78 | -1.74 § 0.59 | 1.18 | 0.64 | 3.94 | 2.02 2.69
0.215§44.49 | 84.96 | 69.27 | 0.22 | -1.85 | -1.68 | 44.25 | 83.98 | 68.84 | 0.21 | -1.81 | -1.72 J 055 | 1.17 | 0.62 | 3.85 | 2.02 | 2.46
0.225 4 44.63 | 84.08 | 69.01 | 0.22 | -1.88 | -1.65 § 44.40 | 83.11 | 68.59 | 0.21 | -1.84 | -1.70 § 0.52 1.16 0.61 3.75 2.60 2.78
0.235§44.74 | 83.32 | 68.78 | 0.21 | -1.91 | -1.64 | 4452 | 82.37 | 68.38|0.21 | -1.86 | -1.68 | 0.49 | 1.16 | 0.60 | 3.65 | 2.65 | 2.62
0.245)4 44.82 | 82.66 | 68.58 | 0.21 | -1.93 | -1.63 J 44.62 | 81.72 | 68.18 | 0.20 | -1.88 | -1.67 | 0.46 1.15 0.59 3.54 | 2.68 241
0.255444.89 | 82.08 | 68.40 | 0.21 | -1.94 | -1.61 J 44.70 | 81.15 | 68.01 | 0.20 | -1.89 | -1.66 § 0.43 1.14 | 0.57 3.42 2.63 2.65
0.265 4495 | 81.56 |68.24 | 0.21 | -1.96 | -1.61 | 44.77 | 80.65 | 67.86 | 0.20 | -1.91 | -1.65 ] 0.41 1.13 | 0.56 | 3.30 | 2.46 2.32
0.275 Q4 45.00 | 81.11 | 68.10 | 0.20 | -1.96 | -1.59 § 44.83 | 80.21 | 67.73 | 0.20 | -1.92 | -1.64 | 0.39 1.12 0.55 3.18 2.10 2.62
0.285 § 45.04 | 80.70 | 67.97 | 0.20 | -1.98 | -1.59 § 44.87 | 79.82 | 67.61 | 0.20 | -1.94 | -1.63 | 0.37 1.10 0.54 | 3.05 2.29 2.34
0.295 | 45.07 | 80.34 | 67.86 | 0.20 | -2.00 | -1.59 § 4491 | 79.47 |67.50| 0.20 | -1.95 | -1.62 § 0.35 1.09 0.53 2.92 2.51 2.07
0.305 § 45.09 | 80.01 | 67.75 | 0.20 | -2.00 | -1.57 §44.95 | 79.15 | 67.40| 0.19 | -1.96 | -1.61 § 0.33 1.08 0.52 2.78 2.23 2.44
0.315§45.12 | 79.71 | 67.65| 0.20 | -2.02 | -1.56 | 4497 | 7887 |67.31|0.19| -1.97 | -1.61 }J 0.31 | 1.07 | 051 | 2.65 | 2.48 | 2.70
0.325§45.13 | 79.44 | 67.57 | 0.20 | -2.02 | -1.56 | 45.00 | 78.62 | 67.23|0.19| -1.97 | -1.60 J 0.30 | 1.05 | 050 | 250 | 2.24 | 2.61
0.335 45.15 | 79.19 | 67.49 | 0.20 | -2.03 | -1.55 J 45.02 | 78.38 | 67.16 | 0.19 | -1.98 | -1.60 § 0.29 1.04 | 0.49 2.36 2.23 2.85
0.345 4 45.16 | 78.97 | 67.41 | 0.19 | -2.04 | -1.55 § 45.04 | 78.17 | 67.09 | 0.19 | -1.99 | -1.59 | 0.27 1.02 0.48 2.21 2.40 2.85
0.355 4 45.17 | 78.76 | 67.34 | 0.19 | -2.04 | -1.55 | 45.06 | 77.98 | 67.03 | 0.19 | -2.00 | -1.59 | 0.26 1.00 0.47 2.07 2.09 2.55
0.365 § 45.18 | 78.57 | 67.28 | 0.19 | -2.05 | -1.54 § 45.07 | 77.80 | 66.97 | 0.19 | -2.00 | -1.58 § 0.25 | 0.98 | 0.46 | 1.91 | 2.30 2.51
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Table B.5

Error analysis of the finite element analysis based on the proposed boundary conditions in comparison with the
analytical solution (the generalised Kirsch’s equations), for calculating the induced stresses along the radial distance

r from the wall of a deviated borehole at 8 = 55.166°

r(m)

0.085
0.095
0.105
0.115
0.125
0.135
0.145
0.155
0.165
0.175
0.185
0.195
0.205
0.215
0.225
0.235
0.245
0.255
0.265
0.275
0.285
0.295
0.305
0.315
0.325
0.335
0.345
0.355
0.365

Numerical Analytical Error calculation (%)

O Ogo Oaa Org Ora Oap Oy Ogp Oaa O Ora Oap Oy (e) Ogp (e) O—aa(e) Oro (e) Ora (e) Oga (e)
0.08 &h 0.00 | 179.24 | 86.70 | 0.00 | 0.00 | -3.02 § 0.00 | 0.06 | 0.02 | 0.00 | 0.00 | 38.72
9.38 | 165.85 | 82.64 | 0.08 | -0.10 | -1.71 | 9.65 | 162.82 | 84.33 | 0.08 | -0.24 | -2.85 | 2.80 | 1.86 | 2.01 | 3.87 | 59.08 | 40.09
22.29 | 142.02 | 79.20 | 0.17 | -1.11 | -1.56 | 22.31 | 139.71 | 80.67 | 0.16 | -0.61 | -2.58 | 0.10 | 1.66 | 1.83 | 4.69 | 82.09 | 39.69
29.82 | 126.54 | 76.78 | 0.21 | -1.47 | -1.47 | 29.78 | 124.62 | 78.00 | 0.20 | -0.88 | -2.39 | 0.12 | 154 | 1.56 | 3.67 | 66.75 | 38.53
34.45 | 115.95 | 75.01 | 0.22 | -1.68 | -1.41 | 34.42 | 114.26 | 76.00 | 0.22 | -1.08 | -2.24 | 0.09 | 1.48 | 1.31 | 2.12 | 55.34 | 37.05
37.44 | 108.38 | 73.66 | 0.24 | -1.82 | -1.37 | 37.43 | 106.85 | 74.46 | 0.23 | -1.24 | -2.13 | 0.03 | 1.44 | 1.08 | 4.82 | 46.65 | 35.48
39.44 | 102.80 | 72.60 | 0.24 | -1.91 | -1.35 ] 39.45 | 101.37 | 73.25 | 0.23 | -1.36 | -2.04 | 0.03 | 1.42 | 0.88 | 4.89 | 39.87 | 33.94
40.82 | 98.56 | 71.76 | 0.24 | -1.97 | -1.33§40.85 | 97.20 | 72.28 | 0.23 | -1.46 | -1.97 | 0.08 | 1.40 | 0.72 | 3.68 | 34.47 | 32.48
4180 | 95.26 | 71.08 | 0.23 | -2.01 | -1.32 4 41.85 | 93.95 | 7149 | 023 | -1.54 | -1.91 J 0.11 | 1.39 | 0.58 | 1.82 | 30.10 | 31.13
4251 | 92.64 | 70.52 | 0.22 | -2.03 | -1.31 § 4257 | 91.38 | 70.85 | 0.23 | -1.61 | -1.86 | 0.14 | 1.38 | 0.46 | 0.34 | 26.51 | 29.90
43.04 | 90.52 | 70.05 | 0.22 | -2.05 | -1.30 § 43.10 | 89.30 | 70.30 | 0.22 | -1.66 | -1.82 | 0.16 | 1.37 | 0.36 | 2.59 | 23.52 | 28.79
43.44 | 88.78 | 69.66 | 0.21 | -2.07 | -1.29 § 4351 | 87.59 | 69.85|0.22 | -1.71 | -1.79 | 0.17 | 1.36 | 0.27 | 4.80 | 21.01 | 27.78
43.74 | 87.34 | 69.33 | 0.21 | -2.08 | -1.29 | 43.82 | 86.17 | 69.46 | 0.22 | -1.75 | -1.76 | 0.27 | 1.35 | 0.20 | 2.27 | 18.88 | 26.88
43.98 | 86.13 | 69.04 | 0.20 | -2.09 | -1.29 § 44.06 | 84.99 |69.13 | 0.21 | -1.78 | -1.74 | 0.18 | 1.34 | 0.13 | 4.81 | 17.06 | 26.06
44,17 | 85.10 | 68.79 | 0.22 | -2.09 | -1.28 | 44.25 | 83.98 (68.84 | 0.21 | -1.81 | -1.72 | 0.18 | 1.33 | 0.08 | 3.94 | 15.49 | 25.32
4432 | 84.21 | 68.57 | 0.20 | -2.10 | -1.28 | 44.40 | 83.11 [ 68.59 | 0.21 | -1.84 | -1.70 | 0.18 | 1.32 | 0.03 | 2.97 | 14.13 | 24.66
44,44 | 83.45|68.38 | 0.20 | -2.10 | -1.28 | 44.52 | 82.37 | 68.38 | 0.21 | -1.86 | -1.68 | 0.18 | 1.31 | 0.01 | 4.06 | 12.94 | 24.06
4454 | 82.79 | 68.21 | 0.20 | -2.10 | -1.28 § 44.62 | 81.72 | 68.18 | 0.20| -1.88 | -1.67 | 0.27 | 1.30 | 0.05 | 3.08 | 11.89 | 23.51
4463 | 82.20 | 68.07 | 0.20 | -2.10 | -1.28 § 44.70 | 81.15 | 68.01 | 0.20 | -1.89 | -1.66 | 0.127 | 1.29 | 0.08 | 1.34 | 10.97 | 23.02
4469 | 81.69 | 67.93 | 0.20 | -2.10 | -1.28 § 44.77 | 80.65 | 67.86 | 0.20 | -1.91 | -1.65 | 0.17 | 1.28 | 0.10 | 2.20 | 10.15 | 22.57
4475 | 81.23 | 67.81 | 0.19 | -2.11 | -1.27 | 44.83 | 80.21 | 67.73 | 0.20 | -1.92 | -1.64 | 0.17 | 1.27 | 0.13 | 2.94 | 9.42 | 22.16
4480 | 80.82 | 67.71 | 0.20 | -2.11 | -1.27 § 44.87 | 79.82 | 67.61 | 0.20| -1.94 | -1.63 | 0.16 | 1.26 | 0.15 | 1.54 | 8.77 | 21.79
4484 | 80.46 | 67.61 | 0.19 | -2.11 | -1.27 § 44.91 | 79.47 | 67.50 | 0.20 | -1.95 | -1.62 | 0.16 | 1.24 | 0.16 | 4.04 | 8.18 | 21.45
4487 | 80.13 | 67.52 | 0.19 | -2.11 | -1.27 § 4495 | 79.15 | 67.40 | 0.19| -1.96 | -1.61 | 0.16 | 1.23 | 0.18 | 4.43 | 7.66 | 21.13
4491 | 79.83 | 67.44 | 0.18 | -2.11 | -1.27 § 44.97 | 78.87 | 67.31 | 0.19 | -1.97 | -1.61 | 0.15 | 1.21 | 0.19 | 4.71 | 7.18 | 20.84
4493 | 79.56 | 67.36 | 0.18 | -2.11 | -1.27 § 45.00 | 78.62 | 67.23 | 0.19 | -1.97 | -1.60 | 0.15 | 1.20 | 0.20 | 4.88 | 6.75 | 20.58
4495 | 79.31 | 67.30 | 0.18 | -2.11 | -1.27 § 45.02 | 78.38 | 67.16 | 0.19 | -1.98 | -1.60 | 0.15 | 1.18 | 0.21 | 4.95 | 6.35 | 20.33
4497 | 79.08 | 67.23 | 0.18 | -2.11 | -1.27 § 45.04 | 78.17 | 67.09 | 0.19 | -1.99 | -1.59 | 0.15 | 1.16 | 0.22 | 4.95 | 5.99 | 20.10
4499 | 78.87 | 67.17 | 0.18 | -2.11 | -1.27 § 45.06 | 77.98 | 67.03 | 0.19 | -2.00 | -1.59 | 0.214 | 1.14 | 0.22 | 4.92 | 5.67 | 19.89
45,01 | 78.68 | 67.12 | 0.18 | -2.11 | -1.27 § 45.07 | 77.80 | 66.97 | 0.19 | -2.00 | -1.58 J 0.14 | 1.12 | 0.22 | 4.98 | 5.37 | 19.70
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True-triaxial data from theliterature



APPENDIX C True-triaxial data frdhre literature

Table C.1 True-triaxial data of Solnhofen Limestone, Mogi (2007)

Tests No. [ o, (MPa) | o, (MPa) | o3 (MPa) L(MPa) VI, (MPa)
1 310 0 0 310 178.98
2 397 20 20 437 217.66
3 417 51 20 488 220.80
4 413 92 20 525 209.23
5 453 165 20 638 220.40
6 460 206 20 686 220.87
7 465 233 20 718 222.57
8 449 40 40 529 236.14
9 446 40 40 526 234.40
10 486 80 40 606 246.76
11 499 113 40 652 246.65
12 530 193 40 763 250.69
13 547 274 40 861 253.75
14 535 315 40 890 248.01
15 473 60 60 593 238.45
16 517 87 60 664 256.41
17 537 102 60 699 264.11
18 530 113 60 703 257.42
19 576 164 60 800 272.89
20 550 197 60 807 252.81
21 553 275 60 888 247.17
22 557 345 60 962 249.39
23 528 80 80 688 258.65
24 572 126 80 778 271.75
25 577 150 80 807 269.02
26 647 208 80 935 297.38
27 591 225 80 896 263.34
28 677 283 80 1040 303.55
29 665 298 80 1043 295.65
30 650 378 80 1108 285.10
31 680 454 80 1214 303.03
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APPENDIX C True-triaxial data frdhre literature

Table C.2 True-triaxial data on Dunham Dolomite, Mogi (2007)

Test NO. | o; (MPa) | o, (MPa) | o3 (MPa) h(MPa) VL(MPa)
1 265 0 0 265 153.00
2 258 0 0 258 148.96
3 400 25 25 450 216.51
4 475 66 25 566 248.82
5 495 96 25 616 253.36
6 560 129 25 714 283.67
7 571 174 25 770 282.23
8 586 229 25 840 283.96
9 545 272 25 842 260.11
10 487 45 45 577 255.19
11 570 97 45 712 289.27
12 576 126 45 747 286.07
13 606 160 45 811 296.33
14 639 183 45 867 310.86
15 670 240 45 955 319.78
16 670 266 45 981 316.93
17 622 294 45 961 289.40
18 540 60 60 660 277.13
19 568 65 65 698 290.41
20 638 117 65 820 316.88
21 644 153 65 862 312.00
22 687 208 65 960 325.77
23 685 262 65 1012 316.79
24 746 318 65 1129 344.23
25 701 393 65 1159 318.05
26 620 85 85 790 308.88
27 684 128 85 897 334.11
28 719 153 85 957 348.07
29 744 233 85 1062 345.76
30 773 306 85 1164 351.25
31 818 376 85 1279 369.08
32 798 445 85 1328 356.51
33 682 105 105 892 333.13
34 778 167 105 1050 371.95
35 786 205 105 1096 367.72
36 805 268 105 1178 366.27
37 863 270 105 1238 398.63
38 824 334 105 1263 367.31
39 840 356 105 1301 373.60
40 822 415 105 1342 359.59
41 725 125 125 975 346.41
42 824 187 125 1136 386.91
43 860 239 125 1224 395.57
44 863 293 125 1281 386.82
45 897 362 125 1384 395.47
46 941 414 125 1480 413.74
47 918 463 125 1506 397.94
48 886 516 125 1527 380.55
49 883 253 145 1281 398.58
50 927 296 145 1368 414.83
51 923 324 145 1392 407.46
52 922 349 145 1416 402.84
53 1015 392 145 1552 448.34
54 1002 410 145 1557 438.77
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APPENDIX C

Table C.3 True-triaxial data on Yamaguchi Marble, Mogi (2007)

True-triaxial data frdhre literature

Test No. o; (MPa) | o, (MPa) | o3 (MPa) h(MPa) VL(MPa)
1 82 0 0 82 47.34
2 118 6 6 130 64.66
3 140 12.5 12.5 165 73.61
4 179 26 12.5 217.5 92.48
5 177 28 12.5 217.5 90.83
6 196 45 12.5 253.5 97.92
7 213 67 12.5 292.5 103.67
8 225 90 12.5 327.5 107.54
9 228 105 12.5 345.5 108.11
10 200 115 12.5 327.5 93.89
11 189 25 25 239 94.69
12 209 39 25 273 102.43
13 240 58 25 323 115.79
14 252 78 25 355 118.75
15 275 107 25 407 127.44
16 268 132 25 425 121.79
17 268 157 25 450 121.65
18 250 168 25 443 113.87
19 243 40 40 323 117.20
20 290 64 40 394 137.93
21 288 88 40 416 131.53
22 309 88 40 437 143.47
23 319 112 40 471 144.84
24 307 143 40 490 134.66
25 336 160 40 536 148.88
26 321 177 40 538 140.51
27 341 208 40 589 150.84
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APPENDIX C True-triaxial data frdhre literature

Table C.4 True-triaxial test data on Mizuho Trachyte (Mogi, 2007)

TestNo. | o, (MPa) | o, (MPa) | o3 (MPa) L(MPa) VI, (MPa)
1 100 0 0 100 57.74
2 196 15 15 226 104.50
3 259 30 30 319 132.21
4 302 45 45 392 148.38
5 314 58 45 417 151.69
6 327 67 45 439 156.85
7 341 90 45 476 159.50
8 350 138 45 533 156.32
9 359 204 45 608 157.00
10 368 281 45 694 167.13
11 353 323 45 721 169.83
12 341 60 60 461 162.24
13 353 83 60 496 162.93
14 386 133 60 579 171.08
15 401 186 60 647 172.42
16 403 212 60 675 171.87
17 401 254 60 715 171.04
18 381 306 60 747 167.92
19 368 75 75 518 169.16
20 405 108 75 588 181.75
21 415 147 75 637 179.17
22 438 210 75 723 183.47
23 440 279 75 794 182.92
24 430 318 75 823 181.48
25 452 363 75 890 197.06
26 437 100 100 637 194.57
27 463 126 100 689 202.49
28 493 171 100 764 209.43
29 497 256 100 853 200.01
30 522 354 100 976 212.46
31 510 384 100 994 210.01
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Table C.5 True-triaxial test data on Orikabe Monzonite (Mogi, 2007)

True-triaxial data frdhre literature

Test No. | o5 (MPa) | o, (MPa) | o3 (MPa) h(MPa) \L(MPa)
1 234 0 0 234 135.10
2 339 5 5 349 192.83
3 504 20 20 544 279.44
4 584.7 40 40 664.7 314.48
5 636 59 40 735 338.75
6 698 80 40 818 368.89
7 673 101 40 814 349.19
8 775 102 40 917 407.64
9 739 121 40 900 382.34
10 747 143 40 930 381.94
11 777 168 40 985 393.79
12 748 187 40 975 373.63
13 751 80 80 911 387.40
14 834 95 80 1009 431.06
15 810 108 80 998 413.62
16 836 117 80 1033 426.20
17 854 135 80 1069 431.87
18 893 147 80 1120 451.29
19 889 182 80 1151 440.59
20 930 183 80 1193 463.88
21 906 216 80 1202 442.88
22 973 218 80 1271 480.71
23 926 281 80 1287 441.99
24 956 284 80 1320 458.36
25 966 311 80 1357 459.60
26 962 140 140 1242 474.58
27 1098 205 140 1443 535.33
28 1144 259 140 1543 548.54
29 1161 331 140 1632 542.80
30 1168 424 140 1732 530.88
31 1107 200 200 1507 523.66
32 1168 235 200 1603 549.05
33 1244 251 200 1695 588.58
34 1305 298 200 1803 611.65
35 1352 343 200 1895 627.91
36 1329 401 200 1930 602.25
37 1358 473 200 2031 605.35
38 1364 537 200 2101 598.94
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APPENDIX C

Table C.6 True-triaxial test data on Inada Granite (Mogi, 2007)

True-triaxial data frdhre literature

Test No.| oy (MPa) | o, (MPa) | o3 (MPa) h(MPa) \L(MPa)
1 236 0 0 236 136.25
2 232 0 0 232 133.95
3 339 5 5 349 192.83
4 504 20 20 544 279.44
5 583 40 40 663 313.50
6 571 40 40 651 306.57
7 600 40 40 680 323.32
8 636 59 40 735 338.75
9 698 80 40 818 368.89
10 673 101 40 814 349.19
11 775 102 40 917 407.64
12 739 121 40 900 382.34
13 747 143 40 930 381.94
14 777 168 40 985 393.79
15 748 187 40 975 373.63
16 718 80 80 878 368.35
17 742 80 80 902 382.21
18 794 80 80 954 412.23
19 834 95 80 1009 431.06
20 810 108 80 998 413.62
21 836 117 80 1033 426.20
22 854 135 80 1069 431.87
23 893 147 80 1120 451.29
24 889 182 80 1151 440.59
25 930 183 80 1193 463.88
26 906 216 80 1202 442 .88
27 973 218 80 1271 480.71
28 926 281 80 1287 441.99
29 956 284 80 1320 458.36
30 966 311 80 1357 459.60
31 943 140 140 1223 463.61
32 981 140 140 1261 485.55
33 1098 205 140 1443 535.33
34 1144 259 140 1543 548.54
35 1161 331 140 1632 542.80
36 1168 424 140 1732 530.88
37 1107 200 200 1507 523.66
38 1168 235 200 1603 549.05
39 1244 251 200 1695 588.58
40 1305 298 200 1803 611.65
41 1352 343 200 1895 627.91
42 1329 401 200 1930 602.25
43 1358 473 200 2031 605.35
44 1364 537 200 2101 598.94
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Table C.7 True-triaxial test data on Manazuru Andesite (Mogi, 2007)

Test No.| o; (MPa) | o, (MPa) | o (MPa) L(MPa) VI, (MPa)
1 140 0 0 140 80.83
2 349 16 16 381 192.26
3 364 20 20 404 198.61
4 381 20 20 421 208.42
5 470 67 20 557 247.36
6 516 124 20 660 261.56
7 538 186 20 744 264.51
8 552 40 40 632 295.60
9 577 75 40 692 300.44
10 632 112 40 784 323.02
11 669 126 40 835 341.05
12 653 206 40 899 317.05
13 626 278 40 944 294.72
14 671 70 70 811 346.99
15 735 101 70 906 375.31
16 735 152 70 957 362.59
17 808 193 70 1071 395.39
18 812 275 70 1157 383.18
19 801 313 70 1184 372.28
20 833 375 70 1278 384.05
21 806 100 100 1006 407.61
22 875 110 110 1095 441.67
23 881 130 130 1141 433.59
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Table C.8 True-triaxial test data on KTB Amphibolite (Chang and Haimson, 2000)

Test No.| o, (MPa) | o, (MPa) | o5 (MPa) | 1:(MPa) | V3,(MPa)
1 165 0 0 165 95.26
2 346 79 0 425 181.31
3 291 149 0 440 145.51
4 347 197 0 544 174.03
5 267 229 0 496 144.44
6 410 30 30 470 219.39
7 479 60 30 569 251.02
8 599 100 30 729 310.29
<) 652 200 30 882 321.48
10 571 249 30 850 272.13
11 637 298 30 965 304.19
12 702 60 60 822 370.66
13 750 88 60 898 390.54
14 766 103 60 929 395.78
15 745 155 60 960 371.11
16 816 199 60 1075 402.40
17 888 249 60 1197 433.90
18 828 299 60 1187 393.02
19 887 347 60 1294 419.90
20 954 399 60 1413 451.33
21 815 449 60 1324 377.56
22 868 100 100 1068 443.41
23 959 164 100 1223 478.54
24 1001 199 100 1300 494.10
25 945 248 100 1293 451.25
26 892 269 100 1261 417.12
27 1048 300 100 1448 499.70
28 1058 349 100 1507 497.07
29 1155 442 100 1697 538.26
30 1118 597 100 1815 509.05
31 1147 150 150 1447 575.62
32 1065 198 150 1413 514.98
33 1112 199 150 1461 541.82
34 1176 249 150 1575 565.95
35 1431 298 150 1879 700.78
36 1326 348 150 1824 629.64
37 1169 399 150 1718 531.23
38 1284 448 150 1882 587.89
39 1265 498 150 1913 570.47
40 1262 642 150 2054 557.23
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Table C.9 True-triaxial test data on Westerly Granite (Haimson and Chang, 2000)

TestNo. | o, (MPa) | o, (MPa) | o3 (MPa) h(MPa) VL(MPa)
1 201 0 0 201 116.05
2 306 40 0 346 166.33
Bl 301 60 0 361 159.31
4 317 80 0 397 164.85
5 304 100 0 404 154.94
6 231 2 2 235 132.21
7 300 18 2 320 167.62
8 328 40 2 370 178.26
9 359 60 2 421 191.58
10 353 80 2 435 184.31
11 355 100 2 457 182.23
12 430 20 20 470 236.71
13 529 40 20 589 288.27
14 602 60 20 682 325.09
15 554 62 20 636 296.92
16 553 61 20 634 296.60
17 532 79 20 631 280.13
18 575 100 20 695 300.01
19 567 114 20 701 292.48
20 601 150 20 771 304.92
21 638 202 20 860 317.58
22 605 38 38 681 327.36
23 620 38 38 696 336.02
24 700 57 38 795 376.84
25 733 78 38 849 390.22
26 720 103 38 861 376.39
27 723 119 38 880 374.30
28 731 157 38 926 370.56
29 781 198 38 1017 391.05
30 747 60 60 867 396.64
31 811 90 60 961 425.19
32 821 114 60 995 424.63
33 860 180 60 1100 431.43
34 861 249 60 1170 418.70
35 889 77 77 1043 468.81
36 954 102 77 1133 499.28
37 992 142 77 1211 510.55
38 998 214 77 1289 496.93
39 1005 310 77 1392 482.79
40 1012 100 100 1212 526.54
41 1103 165 100 1368 561.26
42 1147 167 100 1414 586.10
43 1155 216 100 1471 578.53
44 1195 259 100 1554 591.66
45 1129 312 100 1541 543.33
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0,-0, plots for the selected rock types from the literat

Figure D.1 o,vs. o, Plots for KTB Amphibolite for different constant values of a3
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Figure D.2 o,vs. 0, Plots for Westerly Granite for different constant values of a3
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Figure D.3 o4vs.d, Plots for Dunham Dolomite for different constant values of a3
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Figure D.4 04vs.0, Plots for Solnhofen Limestone for different constant values of a5
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Figure D.5 o©4vs.a, Plots for Yamaguchi Marble for different constant values of
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Yamaguchi marble, o; = 40 MPa
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Figure D.6 o4vs. o, Plots for Mizuho Trachyte for different constant values of a3
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Figure D.7 o,vs. o, Plots for Manazuru Andesite for different constant values of a5
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Manazuru Andesite, 03 = 40 MPa
1200 -
]
(MPa)
1000 -
800 - ¢ data points
------- Hoek-Brown
600 -
== == Pan-Hudson
Zhang-Zhu
400 -
= == Generalised Priest
200 - = - Simplified Priest
Modified SP
0 T T 1
0 100 200 300
o, (MPa)
5.1400 - Manazuru Andesite, o; = 70 MPa
1
(MPa)
1200 -
1000 -
¢ data points
800 -
------- Hoek-Brown
600 - == == Pan-Hudson
Zhang-Zhu
400 - = == Generalised Priest
=« Simplified Priest
200 -
Modified SP
O T T T 1
0 100 200 300 400
o, (MPa)

190



APPENDIX D 0,-0, plots for the selected rock types from the literat

Figure D.8 0@4vs.ad, Plots for Inada Granite for different constant values of a3
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Figure D.9 o&,vs.o, Plots for Orikabe Monzonite for different constant values of
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Hoek-Brown Criterion

% Input parameters:

% |1= First invariant of stress tensor.

% mb= Parameter m for the Hoek-Brown Criterion.
% sigmac= Uniaxial strength of rock material.

% parameter S for the Hoek-Brown Criterion.

% Output:

% Failure surface for the Hoek-Brown criterion in t

I1=linspace(0,3500,50);
mb=20;
sigmac=100;
S=1,;
%%====Calculation of the Hoek-Brown radius on the d
%---[-pi/6,Pi/B]-----=-mnmmmm e
theta=(-pi/6:.01:pi/6);
lamdal=2*mb*sin(theta+pi/3)./sqrt(3);
A=4*(cos(theta)).”2;
for j=1:length(l1)
for i=l:length(A)
ri(i,j)=(sigmac./(2*A(i))).*(-
lamdal(i)+sqrt(lamdal(i).*2+4*A(i).*(mb*I1(j)/(3*si
end

end
%---[pi/6,pi/2] === mmmmmm e
thetal=(-(pi/6):0.01:pi/6);
lamda2=2*mb*sin(-theta+pi/3)./sqrt(3);
A=4*(cos(theta))."2;
for j=1:length(11)
for i=1l:length(A)
r2(i,j)=(sigmac./(2*A(i))).*(-
lamda2(i)+sqrt(lamda2(i)."2+4*A(i).*(mb*I1(j)/(3*si
end

end
%---[pi/2,2*pi/3]
theta2=(-(pi/6):0.01:pi/6);
lamdal=2*mb*sin(theta+pi/3)./sqrt(3);
for j=1:length(11)
for i=l:length(A)
r3(i,j)=(sigmac./(2*A(i))).*(-
lamdal(i)+sqrt(lamdal(i).*2+4*A(i).*(mb*I1(j)/(3*si
end

end
%---[5*pi/6,7*pi/6]
theta3=((-pi/6):0.01:pi/6);
lamda2=2*mb*sin(-theta+pi/3)./sqrt(3);
for j=1:length(l1)
for i=l:length(A)
rd(i,j)=(sigmac./(2*A(i))).*(-
lamda2(i)+sqrt(lamda2(i)."2+4*A(i).*(mb*I1(j)/(3*si
end

end
%---[7pi/6,3Pi/2]------=-=====mmmmmmemee e

hree-dimensional stress

gmac))+S));

gmac))+S));

gmac))+S));

gmac))+S));
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thetad=((-pi/6):0.01:pi/6);
lamdal=2*mb*sin(theta+pi/3)./sqrt(3);
for j=1:length(11)
for i=l:length(A)
r5(i,j)=(sigmac./(2*A(i))).*(-
lamdal(i)+sqrt(lamdal(i).*2+4*A(i).*(mb*11(j)/(3*si
end
end
%---[3pi/2,-pi/6]---- -- m-mmmmmmeeee-
theta5=(-pi/6:0.01:pi/6);
lamda2=2*mb*sin(pi/3-theta)./sqrt(3);
for j=1:length(11)
for i=l:length(A)
ré(i,j)=(sigmac./(2*A(i))).*(-
lamda2(i)+sqrt(lamda2(i)."2+4*A(i).*(mb*I1(j)/(3*si
end

end
%-- -- -- -- oo
figure(1) % 2-D Hoek-Brown trace on the deviatoric plane.
for h=1:length(l1)
[X,Y] = pol2cart(theta,rl(:,h)";
plot(X,Y)
hold on
[X1,Y1] = pol2cart(thetal+pi/3,r2(:,h)");
plot(X1,Y1)
hold on
[X2,Y2] = pol2cart(theta2+2*pi/3,r3(:,h)");
plot(X2,Y2)
hold on
[X3,Y3] = pol2cart(theta3+pi,r4(:,h)"?;
plot(X3,Y3)
hold on
[X4,Y4] = pol2cart(thetad+4*pi/3,r5(:,h)");
plot(X4,Y4)
hold on
[X5,Y5] = pol2cart(theta5+5*pi/3,r6(:,h)");
plot(X5,Y5)
end

xlabel( \sigma_2d (MPa)' , 'fonthame' , 'times new roman'
ylabel(  ‘\sigma_1d (Mpa)' , fontname' , 'times new roman’

R1=[1/sqrt(2) O -1/sqrt(2);-1/sqrt(6) 2/sqrt(6) -1/
1/sqrt(3) 1/sqrt(3)];
R=inv(R1);

figure(2) % 3-D Hoek-Brown surface in stress space.
for h=1:length(l1)
[X,Y] = pol2cart(theta,sqrt(2).*r1(:,h)";
116=(((((2*A.*r1(:,h)'/sigmac)+lamdal). 2-lamda
S)*3*sigmac/mb;
z1=116;
A1=R*[X;Y;z1/sqrt(3)];
plot3(A1(1,:),A1(2,:),AL(3,), ™)
hold on
[X1,Y1] = pol2cart(thetal+pi/3,sqrt(2).*r2(:,h)
116=(((((2*A.*r2(:,h)'/sigmac)+lamda2).”2-lamda
S)*3*sigmac/mb;
z2=116;

gmac))+S));
gmac))+S));
, 'fontsize' ,14)
, 'fontsize' ,14)

sqrt(6);1/sqrt(3)

1.12).J(4*A))-

)
2./2)./(4*A))-
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B=R*[X1;Y1;z2/sqrt(3)];

plot3(B(1,:),B(2,:),B(3.,3), ™)

hold on

[X2,Y2] = pol2cart(theta2+2*pi/3,sqrt(2).*r3(:,

116=(((((2*A.*r3(:,h)'/sigmac)+lamdal).*2-lamda
S)*3*sigmac/mb;

z3=I16;

C=R*[X2;Y2;z3/sqrt(3)];

plot3(C(1,:),C(2,:),C(3,), ™)

hold on

[X3,Y3] = pol2cart(theta3+pi,sqrt(2).*r4(:,h)")

116=(((((2*A.*r4(:,h)'/sigmac)+lamda2).2-lamda
S)*3*sigmac/mb;

z4=116;

D=R*[X3;Y3;z4/sqrt(3)];

plot3(D(1,:),D(2,:),D(3,3), ™)

hold on

[X4,Y4] = pol2cart(thetad+4*pi/3,sqrt(2).*r5(;,

116=(((((2*A.*r5(:,h)'/sigmac)+lamdal).*2-lamda
S)*3*sigmac/mb;

z5=116;

E=R*[X4;Y4,;z5/sqrt(3)];

plot3(E(1,:),E(2,)),E(3.,), ™)

hold on

[X5,Y5] = pol2cart(theta5+5*pi/3,sqrt(2).*r6(:,

116=(((((2*A.*r6(:,h)'/sigmac)+lamda2).”2-lamda
S)*3*sigmac/mb;

z6=116;

F=R*[X5;Y5;z6/sqrt(3)];

plot3(F(1,:),F(2,:),F(3,:), ™)
end

% Moving axes to the origin of coordinate system.

plot3(get(gca, 'XLim" ),[0 0],[0 0], k)
plot3([0 0],[0 0],get(gca, 'ZLim' ), k')
plot3([0 0],get(gca, "YLim" ),[0 0], k),

% REMOVE TICKS

set(gca, 'Xtick ,[]);
set(gca, ‘'Ytick' []);
set(gca, 'Ztick' 1D;

% GET OFFSETS

Xoff=diff(get(gca, XLim" ))./30;
Y off=diff(get(gca, 'YLIim' ))./30;
Zoff=diff(get(gca, 'ZLim" ))./30;
xlabel(  “\sigma_2 (MPa)' , 'fontname' , 'times new roman'
ylabel( ‘\sigma_ 1 (MPa)' , 'fonthame' , 'times new roman'
zlabel( “\sigma_3 (MPa)' , 'fontname' , 'times new roman'

h)).
1.182)./(4*A))-

2.72)./(4*A))-

h)).
1.182)./(4*A))-

h)).
2./2)./(4*A))-

, 'fontsize'
, 'fontsize'
, 'fontsize'

14)
14)
14)
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Pan-Hudson Criterion

Y%===========Pan-Hudson Criterion ===
% Input parameters:

% |1= First invariant of stress tensor.

% mb= Parameter m for the Hoek-Brown Criterion.

% sigmac= Uniaxial strength of rock material.

% parameter S for the Hoek-Brown Criterion.

% Output:

% Failure surface for the Hoek-Brown criterion in t

clear all
close all
I1=linspace(0,3500,50);
mb=20;
sigmac=100;
S=1;
e=0.00;
%%====Calculation of the Pan-Hudson radius on the d
%:::[_pi/6,pi/G]::::::::::::::::::::::::::::::::
theta=(-pi/6:.01:pi/6);
A=3*ones(1,length(theta));
lamda=(sqrt(3)/2)*mb*ones(1,length(theta));
for j=1:length(l1)
for i=1:length(lamda)
ri(i,j)=(sigmac./6).*(-
lamda(i)+sqgrt(lamda(i).*2+12.*(mb*I1(j)/(3*sigmac))
end
end
%:::[pi/G,pi/2]:::::::::::::::::::
thetal=(-(pi/6)+e:0.01:pi/6);
for j=1:length(11)
for i=1:length(lamda)
r2(i,j)=(sigmac./6).*(-
lamda(i)+sqgrt(lamda(i).*2+12.*(mb*I1(j)/(3*sigmac))
end

%:::::::::::::::[pi/2’2pi/3]:::::::::::::::::::::::
theta2=(-(pi/6)-e:0.01:pi/6);
for j=1:length(l1)

for i=1l:length(lamda)

r3(i,j)=(sigmac./6).*(-
lamda(i)+sqgrt(lamda(i).*2+12.*(mb*I1(j)/(3*sigmac))

end

0/0:::::::::::::::[5pi/677pi/6]::::::::::::::::::::::
theta3=((-pi/6)-e:0.01:pi/6);
for j=1:length(l1)

for i=1:length(lamda)

rad(i,j)=(sigmac./6).*(-
lamda(i)+sqgrt(lamda(i).*2+12.*(mb*I1(j)/(3*sigmac))

end

%:::::::::::::::::[7pi/6,3pi/2]::::::::::::::::::::
thetad=((-pi/6)-e:0.01:pi/6);

hree-dimensional stress

eviatoric plane=========

+S));

+S));
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for j=1:length(11)
for i=l:length(lamda)
r5(i,j)=(sigmac./6).*(-

lamda(i)+sqgrt(lamda(i).*2+12.*(mb*I1(j)/(3*sigmac)) +S));
end
end
0/0:::::::::::::::[3pi/2,-pi/6]:::::::::::::::::::::: ——————————=—=—===

theta5=(-pi/6:0.01:pi/6);
for j=1:length(l1)
for i=1l:length(lamda)
ré(i,j)=(sigmac./6).*(-
lamda(i)+sqgrt(lamda(i).*2+12.*(mb*I1(j)/(3*sigmac)) +S));
end
end
%-- —— —— —— O,
figure(1) % 2-D Pan-Hudson trace on the deviatoric plane.
for h=1:length(l1)
[X,Y] = pol2cart(theta,rl(:,h)";
plot(X,Y)
hold on
[X1,Y1] = pol2cart(thetal+pi/3,r2(:,h)");
plot(X1,Y1)
hold on
[X2,Y2] = pol2cart(theta2+2*pi/3,r3(:,h)");
plot(X2,Y2)
hold on
[X3,Y3] = pol2cart(theta3+pi,r4(:,h)";
plot(X3,Y3)
hold on
[X4,Y4] = pol2cart(thetad+4*pi/3,r5(:,h)");
plot(X4,Y4)
hold on
[X5,Y5] = pol2cart(theta5+5*pi/3,r6(:,h)");
plot(X5,Y5)
end
xlabel(  “\sigma_2d (MPa)' , fontname' , 'times new roman’ , 'fontsize' ,14)
ylabel( ‘\sigma_1d (Mpa)' , 'fonthname' | 'times new roman' , 'fontsize' ,14)
R1=[1/sqrt(2) 0 -1/sqgrt(2);-1/sqrt(6) 2/sqrt(6) -1/ sqrt(6);1/sqrt(3)
1/sqrt(3) 1/sqrt(3)];
R=inv(R1);
R1=[1/sqrt(2) O -1/sqrt(2);-1/sqrt(6) 2/sqrt(6) -1/ sqrt(6);1/sqrt(3)
1/sqrt(3) 1/sqrt(3)];
R=inv(R1);
figure(2) % 3-D Pan-Hudson surface in stress space.
for h=1:length(l1)
[X,Y] = pol2cart(theta,sqrt(2).*r1(:,h)");

126=(((((6*r1(:,h)'/sigmac)+lamda).2-lamda."2) 1(12))-S)*3*sigmac/mb;
z1=116;

Al=R*[X;Y;z1/sqrt(3)];

plot3(A1(1,:),A1(2,:),A1(3,), ™)

hold on

[X1,Y1] = pol2cart(thetal+pi/3,sqrt(2).*r2(:,h) "
126=(((((6*r2(:,h)'/sigmac)+lamda).”2-lamda."2) 1(12))-S)*3*sigmac/mb;
z2=116;

B=R*[X1;Y1;z2/sqrt(3)];

plot3(B(1,:),B(2,:),B(3.,3), ™)

hold on
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[X2,Y2] = pol2cart(theta2+2*pi/3,sqrt(2).*r3(:,
126=(((((6*r3(:,h)'/sigmac)+lamda).”2-lamda."2)
z3=116;

C=R*[X2;Y2;z3/sqrt(3)];
plot3(C(1,:),C(2,:),C(3,3), ™)
hold on

[X3,Y3] = pol2cart(theta3+pi,sqrt(2).*r4(:,h)")
116=(((((6*r4(:,h)'/sigmac)+lamda).2-lamda."2)
z4=116;

D=R*[X3;Y3;z4/sqrt(3)];
plot3(D(1,:),D(2,:),D(3,:), ™)
hold on

[X4,Y4] = pol2cart(thetad+4*pi/3,sqrt(2).*r5(:,
126=(((((6*r5(:,h)'/sigmac)+lamda).”2-lamda."2)
z5=116;

E=R*[X4;Y4;z5/sqrt(3)];
plot3(E(1,:),E(2,)),E(3,), ™)
hold on

[X5,Y5] = pol2cart(theta5+5*pi/3,sqrt(2).*r6(:,
116=(((((6*r6(:,h)'/sigmac)+lamda).2-lamda."2)

26=116;
F=R*[X5;Y5;z6/sqrt(3)];
plot3(F(1,:),F(2,)),F(3,:), ™)
end
% Moving axes to the origin of coordinate system.
plot3(get(gca, ‘XLim" ),[0 0],[0 O], k)
plot3([0 0],[0 0],get(gca, 'ZLim' ), k')
plot3([0 0],get(gca, 'YLim' ),[0 0], k)
X=get(gca, ‘'Xtick' );
Y=get(gca, 'Ytick' );
Z=get(gca, 'Ztick' );
XL=get(gca, ‘'XtickLabel' );
YL=get(gca, 'YtickLabel' );
ZlL=get(gca, 'ZtickLabel' );
% REMOVE TICKS
set(gca, 'Xtick ,[]);
set(gca, ‘'Ytick' []);
set(gca, 'Ztick' 1D;
% GET OFFSETS
Xoff=diff(get(gca, "XLim" ))./30;
Y off=diff(get(gca, 'YLIim' ))./30;
Zoff=diff(get(gca, 'ZLim" ))./30;
xlabel( \sigma_ 2 (MPa)' , 'fonthname' , 'times new roman’
ylabel(  ‘\sigma_1 (MPa)' , 'fontname' , 'times new roman'
zlabel(  "\sigma_3 (MPa)' , 'fonthname' , 'times new roman’

h)’);
1(12))-S)*3*sigmac/mb;

(12))-S)*3*sigmac/mb;

h));
1(12))-S)*3*sigmac/mb;

h)’);
1(12))-S)*3*sigmac/mb;

, ‘fontsize' ,14)
, 'fontsize' ,14)
, ‘fontsize' ,14)
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Zhang-Zhu Criterion

% Input parameters:

% |1= First invariant of stress tensor.

% mb= Parameter m for the Hoek-Brown Criterion.
% sigmac= Uniaxial strength of rock material.

% parameter S for the Hoek-Brown Criterion.

% Output:

% Failure surface for the Hoek-Brown criterion in t

I1=linspace(0,3500,50);

mb=20;

sigmac=100;

S=1;

€=0.00;

%%====Calculation of the Zhang-Zhu radius on the de

0/0:::[-pi/6’pi/6]::::::::::::::::::::::::::::::::

theta=(-pi/6:.01:pi/6);
lamdal=(sqrt(3)/2)*mb+(sqrt(3)/3)*mb*sin(theta);
%A=4*(cos(theta))."2;
for j=1:length(11)
for i=l:length(lamdal)
ri(i,j)=(sigmac./6).*(-
lamdal(i)+sqrt(lamdal(i)."2+12.*(mb*I1(j)/(3*sigmac
end
end

0/0:::[pi/67pi/Z]:::::::::::::::::::

thetal=(-(pi/6)+e:0.01:pi/6);
lamda2=(sqrt(3)/2)*mb-(sqrt(3)/3)*mb*sin(theta);
%A=4*(cos(theta))."2;
for j=1:length(11)
for i=1l:length(lamda2)
r2(i,j)=(sigmac./6).*(-
lamda2(i)+sqrt(lamda2(i).*2+12.*(mb*11(j)/(3*sigmac
end

%:::::::::::::::[pi/2’Zpi/S]:::::::::::::::::::::::

theta2=(-(pi/6)-e:0.01:pi/6);
lamdal=(sqrt(3)/2)*mb+(sqrt(3)/3)*mb*sin(theta);
for j=1:length(11)
for i=1l:length(lamdal)
r3(i,j)=(sigmac./6).*(-
lamdal(i)+sqrt(lamdal(i)."2+12.*(mb*I1(j)/(3*sigmac
end

0/0:::::::::::::::[5pi/677pi/6]::::::::::::::::::::::

theta3=((-pi/6)-e:0.01:pi/6);
lamda2=(sqrt(3)/2)*mb-(sqrt(3)/3)*mb*sin(theta);
for j=1:length(11)
for i=1l:length(lamda2)
ra(i,j)=(sigmac./6).*(-
lamda2(i)+sqrt(lamda2(i).~2+12.*(mb*11(j)/(3*sigmac
end
end

hree-dimensional stress

viatoric plane=========

)+S));

)+S));

)+S));

)*S));
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(VO:::::::::::::::::[7pi/6’3pi/2]::::::::::::::::::::
thetad=((-pi/6)-e:0.01:pi/6);
lamdal=(sqrt(3)/2)*mb+(sqrt(3)/3)*mb*sin(theta);
for j=1:length(11)

for i=l:length(lamdal)

r5(i,j)=(sigmac./6).*(-

lamdal(i)+sqrt(lamdal(i)."2+12.*(mb*I1(j)/(3*sigmac N+S));
end
end
0/0:::::::::::::::[3pi/2,-pi/6]:::::::::::::::::::::: ——————————=—=—===

theta5=(-pi/6:0.01:pi/6);
lamda2=(sqrt(3)/2)*mb-(sqrt(3)/3)*mb*sin(theta);
for j=1:length(l1)
for i=l:length(lamda?2)
ré(i,j)=(sigmac./6).*(-
lamda2(i)+sqrt(lamda2(i).*2+12.*(mb*11(j)/(3*sigmac N+S));
end
end
%-- -- -- -- oo
figure(1) % 2-D Hoek-Brown trace on the deviatoric plane.
for h=1:length(I1)
[X,Y] = pol2cart(theta,rl(:,h)";
plot(X,Y)
hold on
[X1,Y1] = pol2cart(thetal+pi/3,r2(:,h)");
plot(X1,Y1)
hold on
[X2,Y2] = pol2cart(theta2+2*pi/3,r3(:,h)");
plot(X2,Y2)
hold on
[X3,Y3] = pol2cart(theta3+pi,r4(:,h)";
plot(X3,Y3)
hold on
[X4,Y4] = pol2cart(thetad+4*pi/3,r5(:,h)");
plot(X4,Y4)
hold on
[X5,Y5] = pol2cart(theta5+5*pi/3,r6(:,h)");
plot(X5,Y5)
end
xlabel(  ‘\sigma_2d (MPa)' , fontname' , 'times new roman’ , 'fontsize' ,14)
ylabel( ‘\sigma_ 1d (MPa)' , 'fonthame' , 'times new roman' , 'fontsize' ,14)
Ri1=[1/sqrt(2) O -1/sqrt(2);-1/sqrt(6) 2/sqrt(6) -1/ sqrt(6);1/sqrt(3)
1/sqgrt(3) 1/sqrt(3)];
R=inv(R1);
R1=[1/sqrt(2) O -1/sqrt(2);-1/sqrt(6) 2/sqrt(6) -1/ sqrt(6);1/sqrt(3)
1/sqgrt(3) 1/sqrt(3)];
R=inv(R1);
figure(2) % 3-D Hoek-Brown surface in stress space.
for h=1:length(I1)
[X,Y] = pol2cart(theta,sqrt(2).*r1(:,h)");
116=(((((6*r1(:,h)"/sigmac)+lamdal)."2-lamdal.® 2)./(12))-
S)*3*sigmac/mb;
z1=116;
Al=R*[X;Y;z1/sqrt(3)];
plot3(A1(1,:),A1(2,:),AL(3,), ™)
hold on
[X1,Y1] = pol2cart(thetal+pi/3,sqrt(2).*r2(:,h) ;
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116=(((((6*r2(:,h)"/sigmac)+lamda2).”2-lamda2."
S)*3*sigmac/mb;
z2=116;
B=R*[X1;Y1;z2/sqrt(3)];
plot3(B(1,:),B(2,:),B(3,3), ™)
hold on
[X2,Y2] = pol2cart(theta2+2*pi/3,sqrt(2).*r3(:,
116=(((((6*r3(:,h)"/sigmac)+lamdal).*2-lamdal.®
S)*3*sigmac/mb;
z3=I16;
C=R*[X2;Y2;z3/sqrt(3)];
plot3(C(1,:),C(2,:),C(3,3), ™)
hold on
[X3,Y3] = pol2cart(theta3+pi,sqrt(2).*r4(:,h)")
116=(((((6*r4(:,h)"/sigmac)+lamda2).”2-lamda2.”
S)*3*sigmac/mb;
z4=116;
D=R*[X3;Y3;z4/sqrt(3)];
plot3(D(1,:),D(2,:),D(3,3), ™)
hold on
[X4,Y4] = pol2cart(thetad+4*pi/3,sqrt(2).*r5(;,
116=(((((6*r5(:,h)'/sigmac)+lamdal).*2-lamdal.®
S)*3*sigmac/mb;
z5=116;
E=R*[X4;Y4;z5/sqrt(3)];
plot3(E(1,:),E(2,:),E(3,), ™)
hold on
[X5,Y5] = pol2cart(theta5+5*pi/3,sqrt(2).*r6(;,
116=(((((6*r6(:,h)'/sigmac)+lamda2).”2-lamda2.*
S)*3*sigmac/mb;
z6=116;
F=R*[X5;Y5;z6/sqrt(3)];
plot3(F(1,:),F(2,:),F(3,3), ™)
end
% Moving axes to the origin of coordinate system.
plot3(get(gca, ‘XLim" ),[0 0],[0 O], k),
plot3([0 0],[0 0],get(gca, 'ZLim' ), k')
plot3([0 0],get(gca, "YLim" ),[0 0], k')
X=get(gca, ‘Xtick' );
Y=get(gca, 'Ytick' );
Z=get(gca, 'Ztick' );
XL=get(gca, 'XtickLabel' );
YL=get(gca, 'YtickLabel' );
ZL=get(gca, 'ZtickLabel );

% REMOVE TICKS

set(gca, 'Xtick' [D;
set(gca, ‘'Ytick' [D;
set(gca, ‘'Ztick' [D;

% GET OFFSETS

Xoff=diff(get(gca, 'XLim" ))./30;
Y off=diff(get(gca, 'YLim" ))./30;
Zoff=diff(get(gca, 'ZLim" ))./30;
xlabel(  “\sigma_2 (MPa)' , 'fontname' , 'times new roman'
ylabel( ‘\sigma_ 1 (MPa)' , 'fonthame' , 'times new roman'

2)./(12))-

h)");
2)./(12))-

2)./(12))-

h)).
2)./(12))-

h));
2)./(12))-

, 'fontsize'
, 'fontsize'

14)
14)
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zlabel( “\sigma_3 (MPa)' , 'fontname

Simplified Priest Criterion

Criterion s

% Input parameters:

% |1= First invariant of stress tensor.

% mb= Parameter m for the Hoek-Brown Criterion.
% sigmac= Uniaxial strength of rock material.

% parameter S for the Hoek-Brown Criterion.

% Output:

% Failure surface for the Hoek-Brown criterion in t

I11=linspace(0,3500,50);

mb=20;

sigmac=80;

S=1;

w=0.299289347;

€=0.00;

%%-====Calculation of the Simplified Priest

0/0:::[-pi/6’pi/6]::::::::::::::::::::::::::::::::

theta=(-pi/6:.01:pi/6);

lamdal=2*mb.*((sqrt(3)/3)*sin(theta+pi/3)-w*sin(the

A1=9*w"2*(sqrt(3)*sin(theta)+cos(theta)).”2-
6*w*(3+4*sqrt(3)*sin(theta).*cos(theta))+3*(sin(the
/\2;
for j=1:length(l1)
for i=l:length(lamdal)
rl(i,j)=(sigmac./(2*A1(i))).*(-
lamdal(i)+sqrt(lamdal(i)."2+4*AL1(i).*(mb*I1(j)/(3*s
end
end

, 'times new roman'

0/0:::[pi/67pi/Z]:::::::::::::::::::
thetal=(-(pi/6)+e:0.01:pi/6);
lamda2=2*mb.*(-(sqrt(3)/3)*sin(theta-pi/3)+w*sin(th

A2=9*w"2*(sqrt(3)*sin(theta)-cos(theta)).2-6*w*(3-

4*sqrt(3)*sin(theta).*cos(theta))+3*(sin(theta)-sqr
for j=1:length(l1)
for i=1l:length(lamda2)
r2(i,j)=(sigmac./(2*A2(i))).*(-
lamda2(i)+sqrt(lamda2(i).*2+4*A2(i).*(mb*I1(j)/(3*s
end

0/0:::::::::::::::[pi/2’2pi/3]:::::::::::::::::::::

theta2=(-(pi/6)-e:0.01:pi/6);

lamdal=2*mb.*((sqrt(3)/3)*sin(theta+pi/3)-w*sin(the

for j=1:length(11)

, 'fontsize' ,14)

hree-dimensional stress

n the deviatoric

ta+pi/6));

ta)+sqrt(3)*cos(theta)).

igmac))+S));

eta-pi/6));

t(3)*cos(theta))."2;;

igmac))+S));

ta+pi/6));
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for i=1:length(lamdal)
r3(i,j)=(sigmac./(2*A1(i))).*(-

lamdal(i)+sqrt(lamdal(i)."2+4*AL1(i).*(mb*I1(j)/(3*s
end

(VO:::::::::::::::[Spi/G,7pi/6]::::::::::::::::::::::
theta3=((-pi/6)-e:0.01:pi/6);
lamda2=2*mb.*(-(sqrt(3)/3)*sin(theta-pi/3)+w*sin(th
for j=1:length(l1)

for i=1l:length(lamda2)

rd(i,j)=(sigmac./(2*A2(i))).*(-

lamda2(i)+sqrt(lamda2(i).*2+4*A2(i).*(mb*I1(j)/(3*s

end

0/0:::::::::::::::::[7pi/6’3pi/2]::::::::::::::::::::
thetad=((-pi/6)-e:0.01:pi/6);
lamdal=2*mb.*((sqrt(3)/3)*sin(theta+pi/3)-w*sin(the

for j=1:length(11)

for i=1:length(lamdal)

r5(i,j)=(sigmac./(2*A1(i))).*(-
lamdal(i)+sqrt(lamdal(i).*2+4*AL1(i).*(mb*I1(j)/(3*s

end

0/0:::::::::::::::[3pi/2,-pi/6]::::::::::::::::::::::
thetab=(-pi/6:0.01:pi/6);
lamda2=2*mb.*(-(sqrt(3)/3)*sin(theta-pi/3)+w*sin(th
for j=1:length(l1)
for i=1l:length(lamda2)
ré(i,j)=(sigmac./(2*A2(i))).*(-
lamda2(i)+sqrt(lamda2(i)."2+4*A2(i).*(mb*I1(j)/(3*s
end
end
%-- —— —— —— O,
figure(1) % 2-D Simplified Priest trace on the deviatoric pla
for h=1:length(l1)
[X,Y] = pol2cart(theta,rl(:,h)";
plot(X,Y)
hold on
[X1,Y1] = pol2cart(thetal+pi/3,r2(:,h)");
plot(X1,Y1)
hold on
[X2,Y2] = pol2cart(theta2+2*pi/3,r3(:,h)");
plot(X2,Y2)
hold on
[X3,Y3] = pol2cart(theta3+pi,r4(:,h)";
plot(X3,Y3)
hold on
[X4,Y4] = pol2cart(thetad+4*pi/3,r5(:,h)");
plot(X4,Y4)
hold on
[X5,Y5] = pol2cart(theta5+5*pi/3,r6(:,h)");
plot(X5,Y5)
end

xlabel(  ‘\sigma_2d (MPa)' , fontname' , 'times new roman’
ylabel(  ‘\sigma_1d (Mpa)' , fontname' , 'times new roman’

R1=[1/sqrt(2) 0 -1/sqgrt(2);-1/sqrt(6) 2/sqrt(6) -1/
1/sqgrt(3) 1/sqrt(3)];

igmac))+S));

eta-pi/6));

igmac))+S));

ta+pi/6));

igmac))+S));

eta-pi/6));

igmac))+S));

ne.

, 'fontsize' ,14)
, 'fontsize' ,14)
sqrt(6);1/sqrt(3)
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R=inv(R1);

R1=[1/sqrt(2) 0 -1/sqgrt(2);-1/sqrt(6) 2/sqrt(6)

1/sqgrt(3) 1/sqrt(3)];
R=inv(R1);

figure(2) % 3-D Simplified-Priest surface in stress space.

for h=1:length(l1)
[X,Y] = pol2cart(theta,sqrt(2).*r1(:,h)";
116=((3*sigmac).*(((((r1(:,h)"./sigmac).*(2*A1)
lamdal.*2)./(4.*A1))-S))./mb;
z1=116;
T1=R*[X;Y;z1/sqrt(3)];
plot3(T1(1,:),T1(2,:),T1(3,3), ™)
hold on
[X1,Y1] = pol2cart(thetal+pi/3,sqrt(2).*r2(:,h)
116=((3*sigmac).*(((((r2(:,h)"./sigmac).*(2*A2)
lamda2.42)./(4.*A2))-S))./mb;
z2=116;
B=R*[X1;Y1;z2/sqrt(3)];
plot3(B(1,:),B(2,:),B(3.,3), ™)
hold on
[X2,Y2] = pol2cart(theta2+2*pi/3,sqrt(2).*r3(:,
116=((3*sigmac).*(((((r3(:,h)"./sigmac).*(2*A1)
lamdal./2)./(4.*Al))-S))./mb;
z3=I16;
C=R*[X2;Y2;z3/sqrt(3)];
plot3(C(1,:),C(2,:),C(3,), ™)
hold on
[X3,Y3] = pol2cart(theta3+pi,sqrt(2).*r4(:,h)")
116=((3*sigmac).*(((((r4(:,h)"./sigmac).*(2*A2)
lamda2.2)./(4.*A2))-S))./mb;
z4=116;
D=R*[X3;Y3;z4/sqrt(3)];
plot3(D(1,:),D(2,:),D(3,:), ™)
hold on
[X4,Y4] = pol2cart(thetad+4*pi/3,sqrt(2).*r5(:,
116=((3*sigmac).*(((((r5(:,h)"./sigmac).*(2*Al)
lamdal.*2)./(4.*A1))-S))./mb;
z5=116;
E=R*[X4;Y4,;z5/sqrt(3)];
plot3(E(1,:),E(2,)),E(3,), ™)
hold on
[X5,Y5] = pol2cart(theta5+5*pi/3,sqrt(2).*r6(;,
116=((3*sigmac).*(((((r6(:,h)"./sigmac).*(2*A2)
lamda2./2)./(4.*A2))-S))./mb;
z6=116;
F=R*[X5;Y5;z6/sqrt(3)];
plot3(F(1,:),F(2,)),F(3,:), ™)
end
% Moving axes to the origin of coordinate system.
plot3(get(gca, XLim" ),[0 0],[0 0], k)
plot3([0 0],[0 0],get(gca, ZLim' ), k')
plot3([0 0],get(gca, "YLim" ),[0 0], k')
X=get(gca, 'Xtick' );
Y=get(gca, 'Ytick' );
Z=get(gca, 'Ztick' );
XL=get(gca, ‘'XtickLabel' );
YL=get(gca, 'YtickLabel' );

sqrt(6);1/sqrt(3)

+lamdal). 2-

+iamda2)."2-

h)).

+lamdal). 2-

,+Iamda2)."2-

h));

+lamdal). 2-

h));

+lamda?2)./2-
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ZL=get(gca, 'ZtickLabel );

% REMOVE TICKS

set(gca, ‘Xtick' ,[I);
set(gca, ‘Ytick' ,[I);
set(gca, ‘'Ztick' [I);

% GET OFFSETS

Xoff=diff(get(gca, ‘XLim" ))./30;
Y off=diff(get(gca, 'YLim' ))./30;
Zoff=diff(get(gca, ‘ZLim" ))./30;
xlabel(  ‘\sigma_ 2 (MPa)' , 'fonthname' , 'times new roman’
ylabel( “\sigma_1 (MPa)' , 'fontname' , 'times new roman'
zlabel(  "\sigma_3 (MPa)' , 'fonthname' , 'times new roman’

Generalised Priest Criterion

Y===========Generalised-Priest

Criterion s

% Input parameters:

% |1= First invariant of stress tensor.

% mb= Parameter m for the Hoek-Brown Criterion.
% sigmac= Uniaxial strength of rock material.

% parameter S for the Hoek-Brown Criterion.

% Output:

% Failure surface for the Hoek-Brown criterion in t

clear all

close all

I1=linspace(0,3500,50);

mb=20;

sigmac=100;

S=1;

e=0.00;

%%====Calculation of the Generalised Priest radius

theta=(-pi/6:.01:pi/6);
A=3*ones(1,length(theta));
lamda=(sqrt(3)/3)*mb*ones(1,length(theta));
for j=1:length(l1)
for i=1:length(lamda)
ri(i,j)=(sigmac./6).*(-
lamda(i)+sqgrt(lamda(i).*2+12.*(mb*I1(j)/(3*sigmac))
end
end
0/0:::[pi/67pi/2]:::::::::::::::::::
thetal=(-(pi/6)+e:0.01:pi/6);
for j=1:length(I1)
for i=1:length(lamda)

, ‘fontsize' ,14)
, ‘fontsize' ,14)
, ‘fontsize' ,14)

hree-dimensional stress

on the deviatoric

+S));
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r2(i,j)=(sigmac./6).*(-
lamda(i)+sqgrt(lamda(i).*2+12.*(mb*I1(j)/(3*sigmac))
end

(VO:::::::::::::::[pi/Z’2pi/3]:::::::::::::::::::::::
theta2=(-(pi/6)-e:0.01:pi/6);
for j=1:length(l1)

for i=1l:length(lamda)

r3(i,j)=(sigmac./6).*(-
lamda(i)+sqgrt(lamda(i).*2+12.*(mb*I1(j)/(3*sigmac))

end

0/0:::::::::::::::[5pi/6,7pi/6]::::::::::::::::::::::
theta3=((-pi/6)-e:0.01:pi/6);
for j=1:length(l1)

for i=l:length(lamda)

rd(i,j)=(sigmac./6).*(-
lamda(i)+sqgrt(lamda(i).*2+12.*(mb*I1(j)/(3*sigmac))

end

(VO:::::::::::::::::[7pi/6’3pi/2]::::::::::::::::::::
thetad=((-pi/6)-e:0.01:pi/6);
for j=1:length(11)

for i=1l:length(lamda)

r5(i,j)=(sigmac./6).*(-
lamda(i)+sqgrt(lamda(i).*2+12.*(mb*I1(j)/(3*sigmac))

end

0/0:::::::::::::::[3pi/2,-pi/6]::::::::::::::::::::::
theta5=(-pi/6:0.01:pi/6);
for j=1:length(l1)

for i=l:length(lamda)

ré(i,j)=(sigmac./6).*(-
lamda(i)+sqgrt(lamda(i).*2+12.*(mb*I1(j)/(3*sigmac))

end
end
0/0__ e e e e e

figure(1) % 2-D Generalised Priest trace on the deviatoric pl

for h=1:length(l1)
[X,Y] = pol2cart(theta,rl(:,h)";
plot(X,Y)
hold on
[X1,Y1] = pol2cart(thetal+pi/3,r2(:,h)");
plot(X1,Y1)
hold on
[X2,Y2] = pol2cart(theta2+2*pi/3,r3(:,h)");
plot(X2,Y2)
hold on
[X3,Y3] = pol2cart(theta3+pi,r4(:,h)";
plot(X3,Y3)
hold on
[X4,Y4] = pol2cart(thetad+4*pi/3,r5(:,h)");
plot(X4,Y4)
hold on
[X5,Y5] = pol2cart(theta5+5*pi/3,r6(:,h)");
plot(X5,Y5)
end

+S));

+S));

ane.
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xlabel(  ‘\sigma_2d (MPa)' , fontname' , 'times new roman’
ylabel(  ‘\sigma_1d (Mpa)' , fontname' , 'times new roman’
R1=[1/sqrt(2) 0 -1/sqgrt(2);-1/sqrt(6) 2/sqrt(6) -1/
1/sqrt(3) 1/sqrt(3)];

R=inv(R1);

R1=[1/sqrt(2) 0 -1/sqgrt(2);-1/sqrt(6) 2/sqrt(6) -1/

1/sqrt(3) 1/sqrt(3)];
R=inv(R1);

figure(2) % 3-D Generalised Priest surface in stress space.

for h=1:length(l1)
[X,Y] = pol2cart(theta,sqrt(2)*r1(:,h)");
116=(((((6*r1(:,h)'/sigmac)+lamda). 2-lamda."2)
z1=116;
Al=R*[X;Y;z1/sqrt(3)];

P1=plot3(A1(1,:),A1(2,:)),A1(3,), T

%set(P1,'color',[1,0.7344,0]);

hold on

[X1,Y1] = pol2cart(thetal+pi/3,sqrt(2)*r2(:,h)'

116=(((((6*r2(:,h)'/sigmac)+lamda).2-lamda."2)

z2=116;

B=R*[X1;Y1;z2/sqrt(3)];

P2=plot3(B(1,:),B(2,:),B(3,3), ™)
%set(P2,'color',[1,0.7344,0]);

hold on

[X2,Y2] = pol2cart(theta2+2*pi/3,sqrt(2)*r3(:,h

126=(((((6*r3(:,h)'/sigmac)+lamda).2-lamda."2)

z3=116;

C=R*[X2;Y2;z3/sqrt(3)];

P3=plot3(C(1,:),C(2,:),C(3,), ™)
%set(P3,'color',[1,0.7344,0]);

hold on

[X3,Y3] = pol2cart(theta3+pi,sqrt(2)*r4(:,h)";

116=(((((6*r4(:,h)'/sigmac)+lamda).2-lamda."2)

z4=116;

D=R*[X3;Y3;z4/sqrt(3)];

P4=plot3(D(1,:),D(2,:),D(3,), ™)
%set(P4,'color',[1,0.7344,0]);

hold on

[X4,Y4] = pol2cart(thetad+4*pi/3,sqrt(2)*r5(;,h

126=(((((6*r5(:,h)'/sigmac)+lamda).”2-lamda."2)

z5=116;

E=R*[X4;Y4;z5/sqrt(3)];

P5=plot3(E(1,)),E(2,)),E(3,:), ™)
%set(P5,'color',[1,0.7344,0]);

hold on

[X5,Y5] = pol2cart(theta5+5*pi/3,sqrt(2)*r6(:,h

126=(((((6*r6(:,h)'/sigmac)+lamda).2-lamda."2)

z6=116;

F=R*[X5;Y5;z6/sqrt(3)];

P6=plot3(F(1,:),F(2,:),F(3,3), ™)
%set(P6,'color',[1,0.7344,0]);

end
% Moving axes to the origin of coordinate system.

plot3(get(gca, XLim" ),[0 0],[0 0], k)
plot3([0 0],[0 0],get(gca, ZLim' ), k')
plot3([0 0],get(gca, "YLim" ),[0 0], k')

, 'fontsize' ,14)
, 'fontsize' ,14)
sqrt(6);1/sqrt(3)

sqrt(6);1/sqrt(3)

1(12))-S)*3*sigmac/mb;

);
1(12))-S)*3*sigmac/mb;

));
1(12))-S)*3*sigmac/mb;

1(12))-S)*3*sigmac/mb;

1(12))-S)*3*sigmac/mb;

));
1(12))-S)*3*sigmac/mb;
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X=get(gca, ‘Xtick' );
Y=get(gca, 'Ytick' );
Z=get(gca, ‘'Ztick' );

XL=get(gca, ‘'XtickLabel'
YL=get(gca, ‘YtickLabel
ZlL=get(gca, 'ZtickLabel

% REMOVE TICKS

set(gca, ‘Xtick' ,[]);
set(gca, ‘'Ytick' ,[);
set(gca, ‘'Ztick' [);

% GET OFFSETS

Xoff=diff(get(gca, "XLim'
Y off=diff(get(gca, "YLim'
Zoff=diff(get(gca, 'ZLim'

xlabel(
ylabel(
zlabel(

\sigma_2 (MPa)'
\sigma_1 (MPa)'
\sigma_3 (MPa)'

);
);
);

))./30;

))./30;

))./30;
, 'fontname’ , 'times new roman'
, 'fontname’ , 'times new roman'
, 'fonthname’ , 'times new roman'

, 'fontsize'
, 'fontsize'
, 'fontsize'

1 14)
1 14)
1 14)
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