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Abstract 

Underground rock formations are always under some stress, mostly due to overburden 

pressure and tectonic stresses. When a borehole is drilled, the rock material surrounding the 

hole must carry the load which was initially supported by the excavated rock. Therefore, due 

to the introduction of a borehole, the pre-existing stress state in the sub-surface rock mass is 

redistributed and a new stress state is induced in the vicinity of the borehole. This new stress 

state around the borehole can be determined directly by means of in situ measurements, or can 

be estimated by applying numerical methods or closed form solutions.   

In this thesis borehole stability analysis is undertaken by means of the linear elasticity theory. 

The introduction of a borehole into a block of rock which behaves linearly elastic, leads to 

stress concentration near the hole. If the rock material around the borehole is strong enough to 

sustain the induced stress concentration, the borehole will remain stable; otherwise rock 

failure will occur at the borehole wall. Therefore, a key aspect in stability evaluation of a 

borehole is the assessment of rock response to mechanical loading.   

For borehole stability evaluation in good quality brittle rock formations, which can be 

considered as isotopic, homogeneous and linearly elastic, stresses around the borehole are 

usually calculated using a closed form formulation known as the generalised Kirsch equations. 

These equations are the three-dimensional version of the original form of the well known 

Kirsch equations for calculating stresses around a circular hole in an isotropic, linearly elastic 

and homogeneous material. These equations have been widely used in the petroleum and 

mining industries over the past few decades. However, the boundary conditions on which 

these equations were based have been poorly explained in the literature and therefore merit 

further investigation.  

In this thesis, in order to eliminate the ambiguity associated with the boundary conditions 

assumed for deriving the analytical model for stress analysis around the borehole, finite 

element analysis (FEA) was carried out to create a numerical counterpart of the current 

analytical solution. It appeared that the assumed boundary conditions for deriving the 

analytical model, i.e. the generalised Kirsch equations, are incompatible in the physical sense. 



 
 

xiii 
 

A new set of boundary conditions in better compliance with the physics of the problem was 

introduced in order to modify the analytical model, by reducing the simplifying assumptions 

made to facilitate the derivation of the closed form solution. 

Another key parameter in borehole stability evaluation is the strength of the rock material at 

the borehole wall. The rock strength is usually evaluated using a failure criterion which is a 

mathematical formulation that specifies a set of stress components at which failure occurs. A 

number of different failure criteria have been introduced in the literature to describe brittle 

rock failure among which the Coulomb and the Hoek-Brown criteria have been widely used in 

industry; however, they both have limitations. For instance, both the Coulomb and the Hoek-

Brown criteria identify the rock strength only in terms of maximum and minimum principal 

stresses and do not account for the influence of the intermediate principal stress on failure. On 

the other hand, at the borehole wall where a general stress state (�� ' �� ' ��) is encountered, 

a failure criterion which neglects the influence of the intermediate principal stress on failure 

seems to be inadequate for rock strength estimation in the borehole proximity.   

Although a number of three-dimensional failure criteria have been proposed over the past 

decades, none of them has been universally accepted. A major limitation in studying the three-

dimensional rock failure criteria is the lack of adequate true-triaxial experimental data that can 

be used for validation of theoretical rock failure models. A number of true-triaxial tests were 

carried out at the University of Adelaide and the results, along with nine sets of published 

true-triaxial experimental data, were utilised for comparison and validation of five selected 

failure criteria. These failure criteria have been developed especially for rock material and 

include; the Hoek-Brown, the Pan-Hudson, the Zhang-Zhu, the Generalised Priest and the 

Simplified Priest. A new three-dimensional failure criterion was also developed by modifying 

the simplified Priest criterion and was identified as a three-dimensional model which best 

describes the rock failure in three-dimensional stress state, compared to other selected criteria.   

In this thesis, a case example is presented where the borehole instability is predicted by 

comparing the induced major principal stress at the borehole wall to the predicted rock failure 

stress. The major in situ principal stress around the borehole is calculated by means of the 

FEA based on the assumption of a new set of boundary conditions. The rock failure stress 
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under the three-dimensional stress state at the borehole wall is calculated by means of the 

newly proposed three-dimensional failure criterion. 
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1.1. Introduction 

Borehole stability problems have been encountered for as long as wells have been drilled. 

Several new challenges have appeared in recent years, however, making the stability issue 

more difficult to handle, and also more important to solve. For example, there has been an 

increasing demand from the petroleum industry for more sophisticated well trajectories. 

Highly deviated, multilateral and horizontal wells are attractive to the petroleum industry, 

since a single production platform supporting a sophisticated well can drain a larger area, 

reducing the number of platforms required to produce a given field (Fjær et al., 2008). Stable 

drilling is however normally more difficult in deviated than in vertical boreholes. Other 

situations where borehole stability problems may be expected to occur are during infill drilling 

in depleted reservoirs, when drilling in tectonically active areas, and in deep and geologically 

complex surroundings (Zoback, 2007). 

A borehole stability problem is an example of what drillers refer to as a “tight hole” or “stuck 

pipe” incident. There are many possible reasons for drilling rigs to become stuck, but in the 

majority of field cases reported, the fundamental reason is the mechanical collapse of the 

borehole wall (Bol et al., 1994, Gazaniol et al., 1994). Moreover, the mechanical collapse of 

the borehole wall is often combined with a lack of down-hole cleaning ability. Such stability 

problems typically amount to 5%–10% of drilling costs in exploration and production, in 

terms of time lost and sometimes loss of equipment. These numbers imply a worldwide cost to 

the petroleum industry of hundreds of millions of dollars per year (Fjær et al., 2008). 

Underground formations are always under some stress, mostly due to overburden pressure and 

tectonic stresses.  When a borehole is drilled the rock material surrounding the hole must carry 

the load which was initially supported by the excavated rock. Therefore, the pre-existing stress 

state in the sub-surface rock mass is redistributed and a new stress state is induced in the 

borehole proximity. This new stress state around the borehole can be determined directly by 

applying in situ measurements, numerical methods or closed form solutions. The introduction 

of a borehole into a block of rock which can be considered as linearly elastic, leads to stress 

concentration near the hole. If the rock material around the borehole is strong enough to 
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sustain the induced stress concentration the borehole will remain stable. On the other hand, if 

the stresses around the borehole exceed the strength of the surrounding rock, failure will 

eventually occur and a fractured zone will develop around the hole. If the fractured zone is too 

extensive either the design of the excavation must be modified or the excavation must be 

supported appropriately. 

A key aspect in the stability evaluation of a borehole, therefore, is the assessment of the rock 

response to mechanical loading. Ideally a technical model should account for all factors which 

could affect stability, such as well pressure, temperature, time and mud chemistry; however, 

such a model is currently unavailable. The focus of the current study will be on the effect of 

rock response to mechanical loading on borehole stability  

For borehole stability evaluation in good quality brittle rock formations, which can be treated 

as isotopic, homogeneous and linearly elastic, a two-step analysis is suggested, which consists 

of: 

1. Calculating the stresses around the borehole using the linear elastic theory. 

2. Assessing the strength of the rock material surrounding the borehole under the induced 

stress state due to drilling the borehole. 

Calculating stresses: When a borehole is drilled into an ideal rock block (isotropic, linearly 

elastic and homogeneous) stresses around the borehole are usually calculated using a closed 

form formulation known as the generalised Kirsch equations. These equations are a three-

dimensional version of the original form of the Kirsch equations (1898) for calculating 

stresses around a circular hole in an isotropic, linearly elastic and homogeneous material. The  

three-dimensional version of Kirsch equations can be found in a report by Fairhurst (1968). 

These equations have been widely used in the petroleum and mining industries over the past 

few decades. However, the boundary conditions on which these equations were based have 

been poorly explained in the literature and therefore merit further investigation. 

Assessing rock strength: Another key parameter in borehole stability evaluation is the 

strength of the rock material at the borehole wall. The rock strength is usually formulated as a 

failure criterion, which is a mathematical formulation that specifies a set of stress components 
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at which failure occurs. A number of different criteria have been introduced in the literature to 

describe brittle rock failure, among which the Coulomb, introduced in 1773, and the Hoek-

Brown (1980) criteria have been widely used in industry; however, each has some limitations. 

For instance, both the Coulomb and the Hoek-Brown criteria identify the rock strength only in 

terms of maximum and minimum principal stresses and do not account for the influence of the 

intermediate principal stress on failure. On the other hand, at the borehole wall where a 

general stress state (�� ' �� ' ��) is encountered, a failure criterion which neglects the 

influence of the intermediate principal stress on failure seems to be inadequate to rock strength 

estimation in the borehole proximity. 

Nevertheless, currently in the petroleum industry, estimation of rock strength around the 

borehole is mostly undertaken by applying either the Coulomb criterion, or the Drucker-Prager 

criterion (1952), which is a three-dimensional failure criterion and incorporates the influence 

of the intermediate principal stress. However, the Drucker-Prager criterion was initially 

developed for soil. The results of true-triaxial rock testing show that this criterion is unable to 

accurately predict rock strength under a three-dimensional stress state when compared with the 

three-dimensional criteria which have been developed especially for rock material 

(Colmenares and Zoback, 2002). It is desirable, therefore, to use a three-dimensional failure 

criterion specifically designed for rock material to predict rock strength. 

Although a number of three-dimensional rock failure criteria have been proposed over the past 

few decades, none has been universally accepted. A major limitation for studying three-

dimensional rock failure criteria is inadequate true-triaxial test data on rock specimens and as 

pointed out by  Mogi (2007) the few published results of true-triaxial tests have been 

interpreted more as interesting curiosities, rather than serious challenges to the accepted Mohr-

type criteria. Therefore, three-dimensional rock failure criteria require further investigation, 

incorporating more comprehensive true-triaxial experimentation.     

After calculating the induced stresses around the borehole and predicting the failure stress 

using an appropriate rock failure criterion, which best describes the rock behaviour -under a 

three-dimensional stress state-, the possibility of the failure of the rock at the borehole wall 

can be estimated. It is worthwhile emphasising that in this study borehole stability analysis is 
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undertaken by means of the linear elasticity theory. Therefore, strength evaluation of intact 

brittle rock material, which can be assumed to be continuum, homogeneous, isotropic and 

linearly elastic (CHILE), is of interest in this study. The portion of inelastic behaviour, in 

stress-strain plots, before failure, is small in brittle rocks and an abrupt failure occurs shortly 

after the elastic limit or the yield stress, �� is reached (Fig. 1.1). Therefore, since yield and 

failure for brittle materials are approximately the same, it is theoretically rational to compare 

the value of the maximum induced stress at the borehole wall estimated by means of linear 

elasticity theory to the failure stress of the brittle rock material. It also merits mentioning that 

in the case of ductile materials since the failure stress is significantly greater than the elastic 

limit, linear elastic analysis is a conservative model for predicting borehole failure. 

Furthermore, failure progression as the accumulation of damage and non-linearly elastic 

behaviour of rock is beyond the scope of this study.  

 

1.2. Aims of the Study 

Boundary conditions based on which stresses around the borehole were formulated, in the 

generalised Kirsch equations, have been poorly explained in the existing literature and need to 

be studied in further detail. It is important to remember that some simplifying assumptions 

were made about the constitutive behaviour of the rock material to rationalise the application 

of the Kirsch equations for rock material. In other words the rock material is assumed to be a 

continuum, homogeneous, isotropic and linear elastic material. Even for the linear elastic 

�	  
��  

� 

( 

Failure 

Yield 

Figure 1.1  Failure ()*) and yield ()+) stresses for brittle materials 
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constitutive behaviour solving a general three-dimensional problem may be impossible.  

Therefore, boundary conditions are defined, considering the physics of the problem, in a way 

to facilitate the derivation of an analytical model. However, the boundary conditions assumed 

in the current analytical model do not seem to be in compliance with the physics of the real 

problem and need modifications. 

On the other hand, since the rock material at the borehole wall is subjected to a three-

dimensional stress state (��� ' ��� ' ���), a two-dimensional failure criterion such as the 

Coulomb or the Hoek-Brown is inadequate for estimating rock strength in the borehole 

proximity. Therefore, in order to predict the rock failure at the borehole wall, three-

dimensional rock failure criteria need to be given further consideration.   

Aims of this thesis are outlined as follows: 

- Providing a clear explanation to eliminate the ambiguity about the boundary conditions 

assumed for deriving the current analytical model, i.e. the generalised Kirsch 

equations. 

- Modification of the current analytical model by introducing a new set of boundary 

conditions, which reflects the physics of the problem more realistically.  

- Theoretically investigating a number of selected three-dimensional rock failure criteria 

through conceptual studies on failure theory. 

-  Development and introduction of a new three-dimensional rock failure criterion. 

- Conducting true-triaxial experiments to validate and compare the existing and the 

newly proposed rock failure criteria against the true-triaxial experimental data. 

- Demonstration of the linkage between techniques of the stress analysis in the borehole 

proximity and the strength estimation of rock material adjacent to the borehole wall 

through a case study, by predicting instability of a deviated borehole and calculating 

the minimum and maximum allowable mud weight to safely drilling the deviated 

borehole.  
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1.3. Research Method 

In order to evaluate the stability of deep boreholes a stepwise analysis is adopted. This 

stepwise analysis is depicted in the flow chart in Fig. 1.2 and the aims of this research in the 

frame of this analysis are subsequently discussed.  

 

Step A Linear elastic stress analysis is carried out to estimate the induced stresses around the 

borehole by means of numerical and analytical models. Results of the numerical and analytical 

models are cross-evaluated to investigate the boundary conditions assumed in formulating the 

A B 

C 

Borehole Stability Evaluation 

Stress analysis around the borehole 
Estimation of the strength of rock 

materials surrounding the borehole 

Comparison between estimated stresses and 
predicted rock strength in the vicinity of the borehole 

for evaluation of the borehole stability 

Devising strategies for preventing the 
borehole from failure 

(Designing the drilling fluid) 
  

Elastic numerical 
analysis 

Elastic analytical 
solution 

Theoretical studies 
and modifications 

Statistical and 
comparative studies 

Comparison, validation and 
modification 

Clarification of the assumed 
boundary conditions 

A 3D failure criterion is 
selected through comparison, 
identification and modification                               

Figure 1.2  Demonstration of different phases in the stepwise research 
method adopted in this study 
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generalised Kirsch equations as an elastic analytical solution. Finite element analysis is also 

carried out to calculate the induced stresses around the borehole based on newly proposed 

boundary conditions, which more accurately represent the problem in the physical sense. The 

current analytical solution will then be modified based on the finite element analysis, 

incorporating the proposed boundary conditions.   

Step B Five failure criteria, especially developed for rock material, are selected and 

theoretically studied based on the fundamentals of the failure theory. A new three-dimensional 

failure criterion is also developed by modifying the simplified Priest criterion. True-triaxial 

tests are conducted and the results of the experiments along with nine sets of published true-

triaxial test data are applied to validate and compare the three-dimensional rock failure criteria 

against the experimental data. As a result one failure criterion from among the five selected 

criteria is identified as the best three-dimensional model for predicting the rock failure in 

three-dimensional stress state.  

 Step C Following the stepwise analysis, the instability of a deviated borehole is predicted in 

a case study. For this purpose, the maximum in situ stress induced around the borehole is 

compared to the predicted failure stress of the rock material surrounding the borehole to 

predict the initiation of failure at the borehole wall. In addition, to maintain safe drilling of an 

inclined borehole and to prevent the rock material at the borehole wall from compressive and 

tensile (hydro fracturing) failure, the minimum and maximum allowable mud weight are 

determined 

Examination of the influence of all factors affecting borehole stability, such as time, 

temperature and mud chemistry, is beyond the scope of this research. Furthermore, since the 

focus of this research is on borehole stability in good quality brittle rock material or rock 

masses, for which the elastic solution is still valid (Brady and Brown, 1993), the failure is 

assumed to take place when the elastic limit is reached. The progression of failure due to the 

accumulation of micro-cracks and also post failure behaviour of rock are beyond the scope of 

this thesis.  
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1.4. Organisation of the Thesis 

This thesis is made up of two main sections consisting of six chapters overall, including this 

introduction and the conclusion in Chapter 6. The first section, presented in Chapter 3, 

discusses elastic stress analysis around vertical and deviated boreholes by means of analytical 

and numerical approaches. The second section in Chapter 4 discusses procedures for 

determining the failure stress of rock in the three-dimensional stress state.  

The elastic analytical solution for estimating stresses around a borehole, which has been 

drilled in an isotropic, homogeneous and linearly elastic rock was developed in 1962 by 

Hiramatsu and Oka, and has been widely used in industry ever since. The applications of the 

existing elastic analytical solution, which is also known as the generalised Kirsch equations, 

are outlined in Cheaper 2. Moreover, the current techniques for evaluating the strength of rock 

material in a three-dimensional stress state have evolved over the past few decades. In Chapter 

2 the evolution and shortcomings of each of these methods are discussed.   

Finite element analysis was carried out to create a numerical counterpart to the current 

analytical solution for stress analysis around a borehole, aiming to eliminate the ambiguity 

associated with the boundary conditions assumed for deriving the current analytical model. 

The detailed procedure of the numerical analysis and the results of the cross-evaluation of the 

analytical and the numerical models are presented in Chapter 3. Furthermore, a new set of 

boundary conditions with respect to the physics of the problem is introduced in Chapter 3. The 

number of simplifying assumptions is reduced and the current analytical model is modified to 

bring it closer to reality. The analytical and numerical models are compared quantitatively in 

Appendix B.  

Current failure models, which have been especially developed for predicting rock failure in a 

three-dimensional stress state, are discussed in detail in Chapter 4. A new three-dimensional 

failure criterion is also proposed in Chapter 4, by modifying the simplified Priest criterion 

introduced by Priest (2005). In order to compare and validate the three-dimensional rock 

failure criteria, a number of true-triaxial tests were carried out at the University of Adelaide. 

Furthermore, nine sets of published true-triaxial test data are applied to evaluate the accuracy 
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of the newly proposed rock failure criterion, in comparison with other existing three-

dimensional failure models. True-triaxial data sets used in this study are given in Appendix C. 

In addition, an illustrative comparison between three-dimensional rock failure criteria and the 

experimental data is given in Appendix D by plotting the major principal stress versus the 

intermediate principal stress at failure. 

Chapter 5 presents a case study in which the borehole instability is predicted by comparing the 

induced major principal stress at the borehole wall to the predicted rock failure stress. The 

major in situ principal stress around the borehole is calculated by means of finite element 

analysis, based on the assumption of a new set of boundary conditions. The rock failure stress 

under a three-dimensional stress state at the borehole wall is calculated by means of the 

proposed three-dimensional rock failure criterion. These techniques are also applied in 

Chapter 5 to calculate the minimum and maximum allowable mud weight for safely drilling a 

deviated borehole. Chapter 6 presents conclusions and recommendations for future studies. 

 



 
 

 
 

 

 

 

 

CHAPTER 2   

                     Literature review 

Page 

2.1. Introduction                                                                                              10  

2.2. In situ stresses before the introduction of the borehole                        10 

2.3. Stress Analysis around the Borehole                                                      12  

2.4. Strength analysis of intact rock                                                               16 

 

 

 

 



CHAPTER 2                                                                                                Literature review 
 

10 
 

2.1. Introduction 

Underground formations are inherently subjected to a stress field, mainly due to the weight of 

the overburden geo-materials and tectonic activities. Due to the introduction of a borehole to 

the underground formations, the pre-existing stress field is redistributed which leads to stress 

concentration at the borehole wall. The stability of the borehole depends upon whether the 

formation surrounding the borehole fails or remains stable under the new induced stress field. 

The answer to this question is of paramount importance for the stability evaluation of a 

borehole. 

Considering a borehole which has been drilled in a good quality rock mass, the following 

information is required in order to evaluate the stability of the borehole: 

- estimation or measurement of the pre-existing in situ stress field 

- an accurate estimation of the induced in situ stresses in the borehole proximity 

- an accurate estimation of the strength of the rock surrounding the borehole     

2.2. In situ Stresses Prior to the Introduction of the Borehole 

It is important to have an accurate estimation of the pre-existing state of stress in the 

subsurface formations before a borehole is drilled since the stress boundary conditions for 

modelling and estimating induced stresses around the borehole are determined based on the 

pristine state of the in situ stress field. In general, the pre-existing stress state is a function of 

depth; however, the manner in which the three principal stresses and their associated 

directions vary with depth does not always follow a predictable pattern (Amadei and 

Stephansson, 1997). These stresses will be influenced by topography, tectonic forces, 

constitutive behaviour of the rock material and by the local geological history. 

At any given depth below the Earth’s surface the stress state can be described by three 

components; a vertical component, �,, due to the weight of the over lying rock at the depth Z, 

equal to -., where - is the average unit weight of the rock (e.g. in KN/m3); and two horizontal 
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components such as �/, the major, and �0, the minor horizontal stresses. A key assumption 

here is that these stresses are principal stresses, i.e. no shear stresses exist.  

Many expressions for the variations of the magnitude of the vertical and horizontal in situ 

stresses with depth, at specific sites or for different regions of the world, have been introduced 

in the literature. Examples of stress profiles and stress variations are given by Brown and 

Hoek (1978), Haimson and Lee (1980), Zoback and Zoback (1980), Zoback and Healy (1992), 

Lim and Lee (1995) and Jaeger et al. (2007). However, detailed investigation of models and 

expressions for estimating stress variations and stress profiles is beyond the scope of this 

research. 

It is important to note that, to date, no rigorous methods are available for accurately predicting 

the situ stresses. Furthermore, the process of estimating in situ stresses should not be 

considered as a substitute for their measurement (Amadei and Stephansson, 1997). Various 

techniques for rock stress measurement were comprehensively explained by Amadei and 

Stephansson (1997)  such as (a) hydraulic methods including: hydraulic fracturing (Fairhurst, 

1964), sleeve fracturing (Stephansson, 1983), Hydraulic Test on Pre-existing Fracture (HTPF) 

(Cornet, 1986); (b) relief methods including: surface relief methods, borehole relief methods 

and relief of large rock volumes; (c) jacking methods; (d) strain recovery methods and (e) 

borehole breakout methods. 

It merits noting that stress in rock masses cannot be measured directly and methods for 

measuring in situ stresses basically consist of disturbing the rock and analysing the response of 

the rock associated with the disturbance. This analysis is often undertaken based on 

assumptions about the constitutive behaviour of rock, which relates the rock strains to applied 

stresses. However, it is important to remember that due to the complex nature of rocks and 

rock masses, constitutive modelling of rock behaviour is not usually a straightforward matter. 

As pointed out by Amadei and Stephansson (1997), in good to very good rock conditions, 

where the rock is essentially linearly elastic, homogeneous and continuous, and between well-

defined geological boundaries, rock stresses can be determined with an error of 110% � 20% 

for their magnitude and an error of 110% � 20% for their orientation. On the other hand, in 

poor quality rocks, i.e. weathered, weak, soft and heavily fractured, the measurement of rock 
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stresses is extremely difficult. In such cases the success rate of stress measurements is usually 

low. 

2.3. Stress Analysis around the Borehole 

The stress distribution around a circular hole in an infinite plate in one-dimensional tension 

was published by Kirsch (1898). Kirsch equations can also be generalised to calculate stresses 

around vertical and deviated boreholes with anisotropic far-field stresses. The general form of 

the Kirsch equations can be given by calculating the induced stresses around a deviated 

borehole around which there exists a general stress state.   

 

If in situ stresses in a formation are principal stresses with respect to a defined Cartesian 

coordinate system, as illustrated in Fig. 2.1, the general stress state which is induced around an 

inclined borehole can be given by transforming the in situ principal stress components into a 

local Cartesian coordinate system. This local coordinate system is defined by transforming the 

global coordinate system in such a way that the Z-axis coincides with the axis of the inclined 

borehole.  A transform from (X, Y, Z) to (L, M, N) can be obtained in two operations; a rotation 

3 around the Z-axis and a rotation 4 around the Y-axis, in a manner that the Z-axis coincides 

with the N-axis, as shown in Fig. 2.1. Such rotations can be undertaken by calculating the 

direction cosines between the axes in the X, Y, Z coordinates and the corresponding axes in L, 

M, N coordinates (Fig. 2.1) and by applying the following relationship: 

Y 

X 

Z 

�0 

�/ 

�, 

L 

N 

M 
r 

θ 

z 

Figure 2.1  Coordinate system for a deviated borehole [after Fjær et al. (2008)] 
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Where direction cosines, 567 in Eq.2.3.1, and consequently the rotation matrix 89:, are defined 

as follows: 
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Accordingly, the general stress state can be expressed by a general stress tensor which results 

from transforming the principal stress tensor from the global coordinate system (X, Y, Z) into 

the local coordinate system (L, M, N) in the following manner: 
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Where 89: is the rotation matrix, given by Eq.2.3.2, and 89:; is the transpose of the rotation 

matrix. Furthermore, components �/ and �0, in Eq.2.3.3, represent in situ maximum and 

minimum horizontal stresses, respectively, and the component �, is the vertical stress due to 

the weight of  the over lying geo-materials.   

It is important to note that the general stress tensor in Eq. 2.3.3 represents the pristine stress 

state, before the introduction of the borehole. Defining a cylindrical coordinate system by 

measuring the angle � counter-clockwise from the L-axis and the radial distance r from the 

centre of the borehole, as illustrated in Fig. 2.1, the induced stresses around the borehole as a 

result of redistribution of the virgin stress field due to the influence of the borehole, can be 

given by the following stress tensor: 
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For an unsupported borehole of radius a, components of the stress tensor in Eq. 2.3.4 are given 

by a three-dimensional version of Kirsch equations, which can also be referred to as the 

generalised Kirsch equations as follows: 
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A detailed description of the derivation of Eqs.2.3.5 was provided by Bradley (1979), who 

referred to a report by Fairhurst (1968). However, as was also reported by Peska and Zoback 

(1995), the generalised Kirsch equations were first published by Hiramatsu and Oka (1962). It 

is important to note that there exists a sign error in the expression of ��� (Eqs. 2.3.5) in 

Bradley’s paper, as was also reported by Fjær et al. (2008). This error can be observed 

elsewhere in the literature, for instance in the first edition of the “Petroleum Related Rock 

Mechanics” (Fjær et al., 1992), and several other works. However, correct expressions of these 

equations are given by Fairhurst (1968) and Hiramatsu and Oka (1968).  

Eqs. 2.3.5 are used in linear elastic analysis of borehole stability for calculating the induced 

stresses around an unsupported borehole, which has been drilled into nonporous materials. 

Due to the superposition principle, pore pressure effects may simply be added. The borehole 
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influence is given by terms in �<�and �<=, which vanishes rapidly with increasing r. The 

solutions depend also on the angle θ (Fig. 2.1) indicating that the stresses vary with position 

around the borehole. Generally the shear stresses are non-zero. Thus, ���, ��� and ��� are not 

principal stresses for arbitrary orientations of the borehole.  At the borehole wall, Eqs. 2.3.5 

are reduced to:     

0=rrσ
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(2.3.6) 

According to Jaeger et al. (2007) and Fjær et al. (2008), Eqs. 2.3.5 were derived based on the 

assumption of plain strain normal to the borehole axis. However, as explained by Fairhurst 

(1968), the general stress problem was divided into two separate problems; a plane strain 

problem for calculating induced stresses around the borehole by considering only far-field 

normal and in-plane shear stresses and an anti-plane strain problem for estimating the 

influence of far-field, out-of-plane shear stresses on the induced stresses around the borehole. 

In the plane strain problem it is assumed that there exists no displacement along the borehole 

axis and all displacements or deformations occur in planes perpendicular to the axis of the 

borehole.  On the other hand, in the anti-plane strain problem the only deformation is assumed 

to be a constant deformation along the borehole axis.  

Although the generalised Kirsch equations, given by Eqs. 2.3.5, have been presented in several 

works in the literature, the boundary conditions assumed for deriving this analytical elastic 

solution have been poorly explained. Thus, to eliminate the existing ambiguity about the 

boundary conditions assumed for deriving the generalised Kirsch equations necessitates a 
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detailed investigation of the simplifying assumptions made in defining the associated 

boundary conditions.      

After calculating the components of the induced stress state in the borehole proximity (Eqs. 

2.3.4), in order to evaluate the stability of the borehole, it is essential to develop accurate 

knowledge of the strength of the rock material surrounding the borehole wall. If the rock 

material at the borehole wall is strong enough to tolerate the induced stresses, rock failure does 

not initiate; otherwise the rock will fail. The rock failure stress under a given state of stress can 

be predicted by means of a mathematical model, which sources its input parameters from the 

rock material characteristics. Since the borehole stability analysis in this study is carried out 

by means of linear elastic solutions, either numerically or analytically, the strength of intact 

rock under the three-dimensional stress state around the borehole is the focal point of interest 

in rock strength analysis. Intact rock refers to the non-fractured blocks which occur between 

structural discontinuities in a typical rock mass. Failure of intact rock can be classified as 

brittle which implies a sudden reduction in strength when a limiting stress level is exceeded 

(Hoek, 1983). 

2.4. Strength Analysis of Intact Rock 

The maximum stress that can be sustained by rock material under a given set of conditions is 

usually referred to as failure stress, which can also be interpreted as a measure of rock 

strength. If the induced stresses in the proximity of an excavation exceed the failure stress of 

the rock material or rock mass, failure occurs and the excavation may not be able to fulfil the 

function for which it was excavated. Hence, failure stress is a key parameter in the design of 

underground excavations (Hoek and Brown, 1980) and needs to be estimated as accurately as 

possible. Therefore, the experiments for conducting studies on rock deformation and rock 

strength must be designed to simulate the natural conditions as closely as possible (Mogi, 

1966). Moreover, numerous empirical and hypothetical models have been introduced for the 

estimation, or rather prediction, of rock strength. Empirical criteria have been formulated 

predominantly based on laboratory experiments on rock specimens under the stress conditions 

simulating those encountered in situ. Hypothetical failure criteria are also dependent upon 
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laboratory tests to source the relevant input parameters such as rock material constants which 

are characteristic of a particular rock type. 

Conventional experiments used for the study of the mechanical characteristics of rocks are 

triaxial tests, in which cylindrical rock specimens are subjected to uniform lateral, confining 

pressure (�� � ��) and an axial stress ��. Conventional triaxial tests have been widely used 

because of the equipment simplicity and convenient specimen preparation and testing 

procedures. However, such tests allow to simulate a special case only where the intermediate 

and the minor principal stresses, �� and ��, are equal. To simulate a general stress state, for 

example at the borehole wall (��� ' ��� ' ���), more complex equipment and sophisticated 

testing procedures are needed. A true-triaxial apparatus, which enables to apply three 

independent stresses on a prismatic or cubic rock specimen, can be employed to simulate the 

in situ, general stress state. However, due to equipment complexity, complicated testing 

procedures and difficulties in specimen preparation, a limited number of true-triaxial 

experiments have been conducted so far. According to Mogi (1971b) a common difficulty in 

true-triaxial rock testing is to achieve three different yet uniform stresses. Non-uniform 

stresses can introduce substantial errors into the calculations of failure stresses done according 

to the elasticity theory using a linear stress-strain relationship.  

A model used for the prediction of rock strength is usually expressed as a failure criterion 

which is a mathematical formulation of the stress components governing the occurrence of 

failure. A number of predictive models have been introduced in the literature to describe 

brittle rock failure, among which the Coulomb (1773), which is a hypothetical failure model, 

and the Hoek-Brown (1980) which is an empirical failure model, have been widely accepted 

and applied by rock mechanics practitioners and scientists. The Coulomb and the Hoek-Brown 

criteria formulate rock failure under a special stress condition, in which the intermediate and 

the minor principal stresses are equal (�� ' �� � ��). These criteria do not take into account 

the influence of the intermediate principal stress, �� on rock strength as it grows beyond the 

minor principal stress, ��.  



CHAPTER 2                                                                                                Literature review 
 

18 
 

Coulomb criterion 

The Coulomb criterion was introduced by Coulomb in 1773, who suggested that rock failure 

in compression occurs when the value of the shear stress on a hypothetical plane is sufficient 

to overcome the natural cohesion of the rock and also the frictional force that opposes motion 

along the hypothetical failure plane. The Coulomb criterion gives the shear stress at failure as: 

ϕστ tannc+=                                                                                                                    (2.4.1) 

Where �> is the effective normal stress acting on the shear plane, and   and ? are cohesion 

and the angle of internal friction, respectively. When the Coulomb criterion is written in terms 

of the principal stresses, the major principal stress at failure is given by: 

31 σσσ qc +=                                                                                                                       (2.4.2) 

Where �� and �� are the maximum and minimum principal stresses, respectively, and �� is the 

uniaxial compressive strength of intact rock and is given by the following expression: 

ϕ
ϕσ

sin1
cos2

−
= c

c                                                                                                                       (2.4.3) 

The parameter q, in Eq. 2.4.2, is also defined as: 

ϕ
ϕ

sin1
sin1

−
+=q                                                                                                                         (2.4.4) 

In the three-dimensional stress space (��, ��, ��), the Coulomb criterion can be represented by 

a failure surface which is a cone with a hexagonal cross section on a plane perpendicular to the 

hydrostatic axis (�� � �� � ��).  

Hoek-Brown criterion  

Hoek and Brown (1980) introduced their failure criterion for evaluating rock strength as an 

important parameter for designing underground excavations in hard rocks. The Hoek-Brown 

criterion was derived based on the results from the research on the brittle failure of intact rock 

and on model studies of jointed rock mass behaviour. The Hoek-Brown criterion was initially 
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developed based on intact rock properties and then these properties were reduced by 

introducing factors, which were representative of the characteristics of joints in a rock mass. 

According to Hoek et al. (2002) the generalised Hoek-Brown criterion, which is an empirical 

model and is based on observed rock behaviour, is expressed in terms of principal stresses as 

follows: 

a
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Parameters AB, & and C are rock mass constants and can be estimated from the Geological 

Strength Index (GSI) as follows: 
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The parameter A6 is the Hoek-Brown constant parameter A for intact rock material and 

depends on rock type and mineralogy. Geological Strength Index (GSI) varies from 0 for 

highly fractured rocks to 100 for intact rocks. Broadly speaking, GSI depends on the degree of 

interlocking of the rock blocks and on the surface quality of the discontinuities in the rock 

mass (Hoek and Brown, 1997). Hoek et al. (2002) introduced a disturbance factor D, which 

indicates the amount of disturbance caused by blast damage and stress relaxation. The 

disturbance factor D, ranges from 0 for rock masses adjacent to machine excavated 

underground openings, to between 0.7 and 1.0 for open pit mine slopes, depending on the 

quality of blasting. Hoek et al. (2002) proposed the following revised empirical expressions 

for AB, & and C: 
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Eqs. 2.4.7 have the benefit of covering the entire range of GSI values in a single group of 

expressions. Furthermore, from Eqs. 2.4.6 and 2.4.7 it is obvious that for intact rock, 

parameters AB, & and C are calculated as A6, 1 and 0.5, respectively. Therefore, the 

generalised Hoek-Brown criterion takes the following form: 
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Eq. 2.4.8 is the original form of the Hoek-Brown criterion, which was first introduced in 1980.   

The Hoek-Brown criterion is widely accepted, predominantly because it fits experimental data 

reasonably well and its input data can be determined simply by measuring the uniaxial 

compressive strength (for determining ��), from mineralogical investigations (for 

determining A6) and structural properties of the rock i.e. GSI, (for determining parameters C 

and &). It is also noteworthy that if a more accurate estimation of input parameter A6 is 

required, conventional triaxial tests can be conducted to measure this input parameter. In this 

thesis the intact-rock version of the Hoek-Brown criterion (Eq. 2.4.8) is adopted. However, 

adopting the generalised version would ultimately allow the borehole stability evaluation 

techniques discussed in this thesis to be applied for fractured rock masses when sufficient 

experimental data is available.  

It is important to remember that both the Hoek-Brown and the Coulomb criteria incorporate 

only the major, �� and the minor, �� principal stresses in the rock failure model on the 

assumption that the intermediate principal stress, �� does not have any influence on rock 

strength. However, numerous studies have revealed that rock strength is substantially 

influenced when the intermediate principal stress grows beyond the minor principal stress.  
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2.4.1. The influence of intermediate principal stress on rock failure stress 

Experiments and observations that revealed the potential effect of the intermediate principal 

stress, �� on brittle failure of rocks started with Böker (1915), who carried out biaxial 

extension tests on Carrara marble.  Böker first applied an axial stress to the rock specimen and 

kept it constant, i.e. �� �  DE&FCEF, and then raised the confining pressure, i.e. �� � ��, until 

failure occurred. Von Kármán (1911) also compared the results of the biaxial extension tests 

and conventional triaxial compression (�� ' �� � ��) tests on the same rock, and it was clear 

that Carrara marble was stronger when �� equalled ��, at any level of �� tested. Similar results 

were observed and presented by Handin et al. (1967), who conducted similar conventional 

triaxial compression and biaxial extension tests on a limestone, a dolomite and glass. Hollow 

cylinder experiments by Hoskins (1969) on trachyte also showed that �� has a significant 

influence on rock strength. Other researchers also have conducted similar types of 

experiments. Mogi (1966), however, argued that their experimental procedures were not 

accurate enough, because of non-uniform stress distribution at the ends of the specimens in the 

Von Karman triaxial cell, i.e. end effects. 

In 1967 Mogi measured the failure stress and the fracture angle of Dunham dolomite, 

Westerly granite and Solnhofen limestone in extension tests (�� � �� ' ��) after nearly 

eliminating the end effects. He compared the results from compression and extension tests and 

noted that the effect of �� on rock strength and fracture angle is indisputable. However, Mogi 

(1971a) pointed out that in order to investigate more closely the influence of the intermediate 

principal stress on brittle failure of rock, a high-pressure true-triaxial apparatus was needed to 

test hard rock specimens under three independently applied principal stresses �� ' �� ' ��.  

The true-triaxial apparatus designed by Mogi (1971b) consisted of a pressure vessel that 

accommodated a rectangular prismatic rock sample of size 15×15×30 mm.  Two sets of 

pistons were employed to apply intermediate, �� and major, �� principal stresses, and the 

minor, �� principal stress was provided by the confining pressure in the vessel to ensure a 

uniform distribution of ��.  A minor principal stress of the magnitude of 800 MPa could be 

applied.  In order to prevent the hydraulic fluid from intruding into the rock specimen, silicon 

rubber jacketing was applied to the specimen sides subjected to confining pressure.  Mogi 
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minimised friction on the sample faces subjected to piston loading by applying lubricants such 

as copper sheet jacketing and Teflon or thin rubber sheets between specimen faces and 

pistons. Stress concentration at specimen ends was found to be greatly reduced by the high 

confining pressure (Mogi, 1966).  

Mogi (1971b) tested a number of carbonate and silicate rocks and plotted the results in the 

form of �� at failure versus �� for different families of tests in which �� was kept constant. 

According to Mogi’s experimental studies, failure strength increases steadily with the 

magnitude of �� until a plateau is reached following which strength tends to decline as �� 

approaches ��. The best-fitting curve to experimental data for any given �� is downward 

concave, but the strength as �� grows closer to �� remains higher than that when �� � ��. This 

behaviour is also predicted by the theoretical model proposed by Wiebols and Cook (1968),  

which will be discussed further in Section 2.4.2. 

The same results were obtained by Chang and Haimson (2000) and Haimson and Chang 

(2000) who studied the deformational and strength characteristics of specimens of KTB 

amphibolite and Westerly granite. Since Mogi’s pioneering work on the design and fabrication 

of a true-triaxial apparatus, a series of true-triaxial testing machines have been developed to 

investigate the ��-dependency of the failure stress. Haimson (2006) has reviewed the research 

conducted over the last 100 years, characterising and formulating the influence of the 

intermediate principal stress, �� on brittle failure of rock. According to Haimson (2006), there 

is conclusive evidence that the intermediate principal stress has substantial effect on rock 

strength in brittle field. 

Scanning electron microscopy observations of the failure process conducted by Chang and 

Haimson (2000) revealed that micro-cracks develop mainly parallel to the ��-direction as the 

intermediate stress grows beyond ��. The micromechanical processes leading to brittle 

fracture under true-triaxial stress conditions begin with the dilatancy onset, when the 

development of micro-cracks is sub-parallel to the major principal stress ��-direction. As �� 

increases, micro-cracks grow and localise, creating a shear-band dipping in the ��-direction. 

Upon brittle fracture the shear band fails, forming the eventual main fracture. Similar 

observations were also reported by Crawford et al. (1995) based on the results from sandstone 
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specimens failed under true-triaxial stress. With respect to deformation, Chang and Haimson 

(2000) established that for the same �� the onset of dilatancy increases significantly with the 

magnitude of ��, similar to observations by Mogi (1971b) in Mizuho trachyte. Thus, the 

intermediate principal stress appears to extend the elastic range of the stress-strain behaviour, 

for a given ��, and therefore to retard the onset of the failure process, suggesting a 

strengthening effect of ��. 

Yield and failure 

In engineering contexts, the terms ‘yield’ and ‘failure’ often cause confusion. In order to avoid 

such confusion a clear definition of both terms seems to be necessary. As defined by Priest 

and Hunt (2005), ‘yield’ refers to the stress state at which the rock starts to develop rapidly 

accelerating inelastic deformations, and ‘failure’ is the stress level at which the rock 

disintegrates due to the development of macroscopic fractures. Therefore, when yield is 

reached, the rock may still be able to carry some extra load or fulfil its engineering function. 

Since for brittle rocks the portion of inelastic deformation after the yield point and before the 

failure point is small, i.e. less than 3% of permanent deformation before failure (Heard, 1960), 

a specific point on the stress-strain curve that can be attributed to yield stress cannot be easily 

identified. However, the stress at some small permanent strain, such as 0.2%, can crudely be 

taken as the yield stress. On the other hand, for ductile materials, the yield point on the stress-

strain curve can be determined more easily and there exists a single well-established three-

dimensional criterion for yield, which originated with Von Mises (Nadai, 1950) as follows: 

( ) ( ) ( ) coct =−+−+−= 2
13

2
32

2
213

1 σσσσσστ                                                             (2.4.9) 

Eq. 2.4.9 states that the yield point is reached when the distortional energy, represented by the 

octahedral shear stress 
��
, is equal to a constant  , which is a constant characteristic of a 

particular material. However, this is not the case in brittle rock the strength of which varies 

considerably with confining pressure.  

Mogi (1971b) measured the yield stress of three carbonate rocks, namely, Solnhofen 

Limestone, Dunham Dolomite and Yumaguchi Marble, and four silicate rocks such as Mizuho 
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trachyte, Orikabe monzonite, Inada granite and Manazuru andesite, under three-dimensional 

stress state. He observed that yielding appeared clearly in all carbonates and also trachyte. 

According to his experimental results, Mogi (1971b) concluded that the yield stress is 

markedly affected by ��, but scarcely affected by ��. He also pointed out that the measured 

yield stresses were correlated well by the following formulation: 

( )321 σσστ ++= foct                                                                                                       (2.4.10) 

Plotting the octahedral shear strength, 
��
   versus mean normal stress GHIJHKJHL
� � ���
M, 

Mogi (1971b) found that Eq. 2.4.10 can be satisfactory as a yield criterion for rocks (Fig. 2.2). 

He also pointed out that this criterion includes the Von Mises criterion as a special case with 

slope of the curve equal to zero. The physical interpretation of the generalised Von Mises 

criterion (Eq. 2.4.10) is that yielding will occur when the distortional strain energy reaches a 

critical value. This critical energy is not constant, but monotonically increases with the 

effective mean normal stress (Fig. 2.2). 

 

 

Mogi (1971b) also found that at failure the shear faulting takes place on a plane parallel to the 

direction of  �� and therefore, there is no stress component associated with the intermediate 

principal stress on the failure plane. Hence, the mean normal stress contributing to failure is 
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not ���
, but its two-dimensional representation, i.e. �R,� � HIJHL
� . Accordingly, Mogi (1971b) 

suggested that a failure criterion for rock can be expressed in the following form: 

( )31 σστ += foct                                                                                                               (2.4.11) 

Where S is a monotonically increasing function. The physical interpretation of Eq. 2.4.11 is 

that failure takes place when the distortional strain energy, which increases monotonically 

with the effective mean stress (�R,�), reaches a critical value on the failure plane. 

Experimental studies on KTB amphibolite by Chang and Haimson (2000) and Westerly 

granite by Haimson and Chang (2000) also mirrored Mogi’s conclusion of a general 

formulation for brittle ‘failure’ of rock. 

It should be noted that ‘yielding’ does not occur on any definite slip plane with a definite 

direction, therefore, the mean stress GHIJHKJHL
� � ���
M is taken as the effective mean normal 

stress when formulating a ‘yield’ criterion. Substantial evidence suggests that the intermediate 

principal stress, �� has a strengthening effect on rock. It can be inferred that the intermediate 

principal stress causes the yield stress of the rock to increase. As a result of the increase in the 

yield stress of rock the failure stress of rock also increases. It is important, however, to note 

that after the yield point is reached, the intermediate principal stress does not influence the 

rock failure. Therefore, rock failure criteria, which neglect the influence of ��, do not 

appropriately reflect the mechanical behaviour of rock under a general stress state. Several 

theoretical and empirical three-dimensional failure criteria, which incorporate �� in the rock 

failure formulation, have been introduced over the past few decades. In the following section 

for a number of selected three-dimensional failure criteria detailed discussions are presented.   

 2.4.2. Frictional criteria  

Theoretical or hypothetical criteria are also referred to as ‘frictional criteria’ after Priest (2010) 

who commented that these criteria source their input parameters from one or more of the 

parameters of uniaxial compressive strength, cohesion ( ) and the coefficient, or the angle, of 
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internal friction (?). Some frictional failure criteria, which have been more commonly used in 

the petroleum and mining studies, are briefly explained below. 

Drucker-Prager criterion   

Drucker and Prager (1952) proposed a mean-stress-dependent failure criterion, combining the 

Coulomb and the Von Mises criteria. Drucker and Prager suggested their criteria as: 

1
2/1

2 BJAJ +=                                                                                                                   (2.4.12) 

Parameters T and U are rock constants and by defining ��, �� and �� as major, intermediate 

and minor principal stresses, respectively, the mean principal stress, V� is given by: 

octJ σσσσ =++=
3

321
1                                                                                                   (2.4.13) 

The mean shear stress V� at failure is given by: 
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A physical interpretation of the Drucker-Prager criterion is that failure occurs when the 

octahedral shear stress G
��
 � W3 2⁄ V�
�/�M exceeds a certain value that depends on the 

octahedral normal stress, ���
. Parameters T and U can be estimated from the Coulomb shear 

strength parameters cohesion,   and the angle of internal friction ?. The following values for 

the parameters T and U represent an inscribed cone to the Coulomb failure surface in the 

principal stress space (�1, �2 , �3): 
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The circumscribed Drucker-Prager can be derived by defining T and U as: 
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The cross section of the inscribed and circumscribed Drucker-Prager and the cross section of 

the Coulomb criterion on the deviatoric plane are presented in Fig. 2.3. A deviatoric plane is a 

plane perpendicular to the hydrostatic axis in the principal stress space (�1, �2 , �3). Detailed 

explanations on the principal stress space and the deviatoric plane and associated concepts are 

given in Chapter 4.     

 

Modified Wiebols and Cook criterion       

Wiebols and Cook (1968) proposed a failure criterion based on the additional energy stored 

around Griffith cracks due to the sliding of crack surfaces over each other. They hypothesised 

that in a homogeneous specimen of rock that can be regarded as an elastic material there exists 

a large number of uniformly distributed and randomly oriented closed, plane cracks, the 

dimensions of which fall within a limited range. When subjected to stress, a volume of such 

material stores within itself strain energy, which can be divided into two parts. Firstly, there is 

the strain energy which would be stored in the same volume of material when subjected to the 

same stresses, in the absence of any cracks. Secondly, there is the additional strain energy due 

to the presence of cracks. 

When all three principal stresses applied to the material are compressive, the surfaces of any 

closed crack can be subjected only to normal compressive stress, �> and shear stress, 
. Let 

Coulomb  CDP IDP 

Deviatoric plane 

Circumscribed  
Drucker-Prager 

Inscribed 
Drucker-Prager 

Coulomb 

Figure 2.3 The cross section of (a) the Coulomb, (b) the circumscribed 
and (c) the inscribed Drucker-Prager on the deviatoric plane 
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the coefficient of sliding friction between the opposite surfaces of the cracks be a constant �. 

Sliding between the opposite surfaces of a crack under the influence of the applied stress 

occurs if |
| � ��> ' 0. The quantity "|
| � ��>$ is defined as the ‘effective shear stress’ and 

the strain energy per unit volume of the material stored around the cracks, as a result of the 

sliding produced by this stress, is defined as the ‘effective shear strain energy’. The effective 

shear stress on any crack depends on the magnitudes of the principal stresses and the 

orientation of the crack relative to the directions of these stresses.   

The effective shear strain energy depends on the magnitudes of the effective shear stresses on 

each crack in a unit volume, the number of such cracks, and their size and shape. It is assumed 

that each crack contributes to failure when it slides, and that the strength of rock is determined 

by some maximum value of the effective shear strain energy. It then follows that the strength 

of rock is a function of its properties, and also a function of the magnitude of each of the 

principal stresses. The strain energy criterion proposed by Wiebols and Cook (1968) had a 

major drawback as the coefficient of friction between two crack surfaces (�) could not be 

determined through a standard experimental procedure.  

Zhou (1994) introduced a three-dimensional model for compressive rock failure, which was an 

extension of the Drucker-Prager criterion with similar features to the effective strain energy 

criterion proposed by Wiebols and Cook (1968). The three-dimensional criterion introduced 

by Zhou (1994) is also referred to as modified Wiebols and Cook. According to this criterion, 

yield is predicted to occur when: 

2
11

2/1
2 CJBJAJ ++=                                                                                                        (2.4.17) 

Where V� and V� are given by Eqs. 2.4.13 and 2.4.14 and parameters A, B, and C are 

determined such that Eq. 2.4.17 is constrained by rock strengths at both triaxial and biaxial 

compressions. In the triaxial stress state (�� ' �� � ��), rock strength is given by the 

Coulomb criterion, i.e. �� � �� [ \��, and in the biaxial state of stress (�� � �� ' ��) rock 

strength is given by �� � ] [ \��, where ] is the biaxial plane strength of the rock, (Wiebols 

and Cook, 1968), and is defined as: 

( )ϕσ tan6.01+= ciG                                                                                                         (2.4.18) 
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With respect to constraining conditions and by substituting the uniaxial rock strength (�� �
��, �� � �� � 0) into Eq. 2.4.17 and introducing four intermediate parameters, such as 

�̂, �̂, ^� and ^= as follows: 

( ) cqGU σσ −−+= 131  

( ) cqGU σσ −−+= 12 32  

( ) cqGU σσ −++= 122 33  

( ) cqU σσ 2134 ++=                                                                                                          (2.4.19) 

Parameters A, B and C are defined as: 
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Modified Lade criterion     

A three-dimensional failure criterion in terms of stress invariants and three material 

parameters, was introduced by Kim and Lade (1984). However, the criterion was initially 

developed for soil and was later modified for concrete by Lade (1982). The material 

parameters can be determined from any type of strength test, including the simplest possible, 

such as the uniaxial compression or conventional triaxial compression tests. The Lade 

criterion is given as: 
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Where _� �  �� [ �� [ �� and _� � "��$. "��$. "��$ and  A is a rock mass constant. The value 

of _�
�/_� is 27 under the hydrostatic stress condition, i.e. �� � �� � ��. Furthermore, 

parameters �� and A in the Lade criterion can be determined by plotting "_�
�/_�  �  27$ vs. 

"ab/_�$ at failure in a log-log diagram and locating the best fitting straight line. The intercept 

of this line with the vertical line Gcd
eI

M =1 is the value of ��, and A is the slope of this line.  

In order to apply Eq. 2.4.21 to rock material, Kim and Lade (1984) added a constant stress 

(C. ab) to the principal stresses before substitution in Eq. 2.4.21 to incorporate the cohesion 

and the tension which can be sustained by rock material, as follows:  

aPa.11 += σσ  

aPa.22 += σσ  

aPa .33 += σσ                                                                                                                  (2.4.22) 

Where C is a dimensionless parameter and ab is the atmospheric pressure and is in the same 

units as ��,��  CEf ��. According to Kim and Lade (1984), the parameter C, which plays a 

very important role in characterising the tensile strength of rock, can be determined through 

triaxial tests.   

Ewy (1999) developed a modified version of the Lade criterion by introducing a shift constant 

with units of cohesion as g� to shift the stress axes to the tensile region. In addition, he 

subtracted the pore pressure in order to handle effective stresses. The modified Lade criterion 

is expressed as follows: 

( ) η+=
′
′

27
3

3
1

I

I
                                                                                                                    (2.4.23) 

Where 

( ) ( ) ( )0130120111 pSpSpSI −++−++−+=′ σσσ  

( )( )( )0130120113 pSpSpSI −+−+−+=′ σσσ                                                               (2.4.24) 
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In Eqs. 2.4.24, the parameter hi is pore pressure, which can be excluded from the formulation 

for non-porous rocks, and parameters g� and � are material constant which can be directly 

derived from the Coulomb cohesion   and the angle of friction ? through the following 

expressions: 

ϕtan1
c

S =  

( )
ϕ

ϕϕη
sin1

sin79tan2 2

−
−=                                                                                                    (2.4.25) 

Under general stress conditions (�� j �� j ��), the modified Lade criterion, as well as the 

original Lade criterion, predicts a strengthening effect due to increase of the intermediate 

principal stress. This is followed by a slight reduction in the rock strength once �� becomes 

‘too high’. 

 2.4.3. Hoek-Brown based criteria            

Despite its widespread acceptance and application, the Hoek-Brown criterion has some 

limitations. In the case of anisotropy, for instance, the Hoek-Brown Criterion should not be 

used unless allowance is made for this anisotropy. The strength anisotropy can be exemplified 

by a fault passing through a heavily jointed rock mass or a block of intact rock. The rock mass 

or the rock material may be treated as an isotropic medium to which the Hoek-Brown failure 

criterion is applicable, but the fault must be treated as an anisotropic weakness plane along 

which slip can occur at a much lower stress level than that which would cause failure in the 

rock mass or the rock material. Another important limitation is that the Hoek-Brown criterion 

was developed based on the assumption that only major and minor principal stresses 

contribute to rock failure and that intermediate principal stress does not have any influence.  

In order to take into account the influence of the intermediate principal stress, significant 

efforts have been made to modify the Hoek-Brown criterion or to introduce a three-

dimensional failure criterion based on the Hoek-Brown criterion.  Input parameters of such a 
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three-dimensional criterion are the same as those of the Hoek-Brown model. The reason why 

such attention has been given to the Hoek-Brown criterion was outlined by Priest (2005) as: 

- The Hoek-Brown criterion has been developed specifically for rock materials and rock 

masses. 

- Input parameters for the Hoek-Brown criterion can be derived from uniaxial testing of 

the rock material, mineralogical examinations and measurements of the rock mass 

fracture characteristics. 

- The Hoek-Brown criterion has been applied successfully to a wide range of intact and 

fractured rock types over the past decades (Hoek and Brown, 1997).  

Pan-Hudson criterion 

Pan and Hudson (1988) proposed a modified three-dimensional version of the Hoek-Brown 

criterion for predicting the strength of weak rock masses. Based on the assumption that 

intermediate principal stress influences rock failure, especially in the case of weak rocks, the 

Pan-Hudson criterion was developed and expressed in terms of invariants of the deviatoric 

stress tensor as follows: 

cii
c

s
I

mJmJ σ
σ

=−+
32

33 1
22                                                                                    (2.4.26) 

If the major, intermediate and minor principal stresses are denoted as ��, �� and ��, 

respectively, then _� �  �� [ �� [ �� and  V� is the second invariant of the deviatoric stress 

tensor, or the mean shear stress at failure, and is given by Eq. 2.4.14. If the Pan-Hudson 

criterion is rearranged and is written in terms of  
��
, the octahedral shear stress at failure, it 

yields the following expression: 

cioctioct
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mm σττ
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=−+
322
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                                                                               (2.4.27) 

Where 
��
 is given by Eq. 2.4.9 and  eI
� � HIJHKJHL

� . 
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Priest (2010), through a comparative study, demonstrated that the Pan-Hudson criterion 

exhibits a substantially different pattern from that of other three-dimensional failure criteria, 

when predicting the failure of intact rock (Fig. 2.4).  

  

 

Furthermore, according to Zhang and Zhu (2007), for biaxial extension (�� � �� ' ��) or 

triaxial compression (�� ' �� � ��) stress states, the Pan-Hudson criterion does not reduce to 

the form of the original Hoek-Brown criterion. Furthermore, comparison with experimental 

data conducted on various rock types suggests that the Pan-Hudson criterion under-predicts 

the rock strength in triaxial compression, but over-predicts the strength in biaxial extension 

(Zhang, 2008, Zhang and Zhu, 2007). Reasons for the limitations of the Pan-Hudson criterion 

will be addressed in detail in Chapter 4.  

Generalised Priest criterion 

Priest (2005) developed a three-dimensional criterion by combining the tow-dimensional 

Hoek-Brown criterion with the Drucker-Prager criterion. The Hoek-Brown criterion was 

adopted for its simplicity in acquiring input rock parameters and because it had already been 

widely used in the mining industry. The Drucker-Prager criterion was adopted for its common 
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Figure 2.4    Relation between intermediate and major principal stresses at failure for 
eight different failure criteria for a rock mass subjected to a minor principal 
stress of 15 MPa, with a uniaxial compressive strength of 75 MPa, mi = 19 
and GSI = 90 (Priest (2010)) 



CHAPTER 2                                                                                                Literature review 
 

34 
 

application in borehole and wellbore stability in the petroleum industry. The generalised Priest 

criterion initially required a numerical iteration to calculate the effective maximum principal 

stress at failure. Melkoumian et al. (2009) developed an explicit solution for the generalised 

Priest criterion. The term generalised implies that the parameter a and the dilation parameter m 

in the Hoek-Brown criterion are not taken simply as 0.5 and 1, respectively, and are calculated 

using either Eqs. 2.4.6 or Eqs. 2.4.7. An explicit expression for the generalised Priest criterion, 

as addressed by Melkoumian et al. (2009), is given as follows: 

)(3 3231 σσσσ +−+= PHBf                                                                                            (2.4.28) 

Where ��	 is the major principal stress at failure and ��/k and a are calculated as: 
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Parameters l and m are defined as: 
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Where n is given by: 

( )
c

im
sC

σ
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2
32 ++=                                                                                    (2.4.32) 

Further detail on the generalised Priest criterion and its application for prediction of intact rock 

strength will be addressed in Chapter 4.  

Simplified Priest criterion 

Priest (2005) proposed another three-dimensional version of the Hoek-Brown criterion by 

defining a weighting factor � ranging from 0 to 1.0.  He then specified that when � is equal to 
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0, the intermediate principal stress, �� has no influence on failure and when � is equal to 1 the 

minor principal stress,�� has no influence.  Priest (2005) suggested that the weighting factor w 

depends only on values of the minor principal stress, ��, and that it can be calculated by the 

following expression for a range of sedimentary and metamorphic rocks: 

βασ 3≈w                                                                                                                            (2.4.33) 

Where �� is the minor principal stress and 3 o 4 o 0.15, for the rock types examined.  After 

defining the weighting factor w, the minor principal stress in the Hoek-Brown criterion can be 

defined as follows: 

( ) 323 1 σσσ wwHB −+=                                                                                                    (2.4.34)  

The next step is to substitute the value for ��/k from Eq. 2.4.34 into the Hoek-Brown 

criterion, given by Eq. 2.4.5, to calculate ��/k. Therefore, the major principal stress calculated 

by the Hoek-Brown criterion is given by: 

a

c
bcHBHB sm 








++=

σ
σσσσ 3
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Then the simplified Priest criterion is expressed as: 

 ( )32311 2 σσσσσ +−+= HBHBf                                                                                    (2.4.36) 

The term ��	 is the major principal stress at failure in the three-dimensional stress state, i.e. 

when �� ' �� ' ��. Further explanation on the simplified Priest criterion is given in 

Chapter4. 

Generalised Zhang-Zhu criterion 

Zhang and Zhu (2007) developed a three-dimensional version of the Hoek-Brown criterion 

based on the assumption made by Mogi (1971b) that a failure criterion can be expressed as:  

( )31 σστ += foct  
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Where the function S is defined as a monotonically increasing function. Zhang and Zhu 

(2007), then proposed their criterion as: 

cmboctboct
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smm σσττ
σ

=−+ 2,
2

22
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9
                                                                           (2.4.37) 

Where the parameter �R,� is defined as �R,� � HIJHL
� . Zhang (2008) highlighted that the 

Zhang-Zhu criterion could be simplified to the original form of the Hoek-Brown criterion for 

biaxial extension (�� � �� ' ��)  and triaxial compression (�� ' �� � ��) states of stress.  

Furthermore, the only difference between the Zhang-Zhu and the Pan-Hudson criteria is the 

inclusion of the intermediate principal stress in the third term, in the right hand side of these 

two criteria, given by Eq. 2.4.27 and Eq. 2.4.37 (where both are written in terms of 
��
).  

In fact, the Zhang-Zhu criterion implies an assumption that the intermediate principal stress 

plays its strengthening role up to a certain point, after which the influence of �� on failure will 

be eliminated. This assumption accords with the experimental studies on rock performance 

under three-dimensional stress. Zhang (2008) modified the Zhang-Zhu (2007) criterion so that 

it could be applicable to all those rock masses to which the generalised Hoek-Brown criterion 

applies. The generalised Zhang-Zhu criterion is expressed as: 
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3.1. Introduction 

When a borehole is introduced into an already stressed isotropic elastic rock, the pre-existing 

stress field in the vicinity of the borehole is redistributed. The primary driving factor that leads 

to borehole instability is the magnitude and deviatoric nature of the in situ rock stress that 

becomes concentrated in the rock adjacent to the borehole wall. Accurate knowledge of the 

new, induced stress field due to the introduction of the borehole is vital for drilling stable 

boreholes. The geological stresses can be measured by a variety of deformation measurement 

techniques including hydro fracturing, inelastic strain recovery and borehole breakout 

estimations.  However, due to difficulties associated with in situ stress measurements, it is 

desirable for the induced stresses in the vicinity of the borehole to be estimated accurately by 

means of numerical or analytical models.   

In two-dimensional analysis of axially symmetrical structures it is generally convenient to 

represent the state of stress and strain in terms of polar coordinates "�, �$. The angle � (0 to 

2π) gives the anti-clockwise angle of rotation from a reference axis, such as the X-axis in Fig. 

3.1. The distance r gives the radial distance from the centre of the axially symmetrical 

structure. In two dimensions the normal stress components are ��� (radial stress) and ��� 

(tangential or circumferential stress) with the associated shear stress ���. Two-dimensional 

polar coordinates can be extended to three-dimensional cylindrical coordinates by defining the 

Z-axis to correspond to the axis of the axially symmetrical structure. In this case the additional 

normal stress component is ��� (axial stress) and the associated shear stresses are ��� and ���. 

Two-dimensional and three-dimensional strains can be specified in the same way. It is 

important to remember that the actual orientations of the radial and tangential stress or strain 

components will vary with location around the axially-symmetrical structure. Polar and 

cylindrical coordinate systems are adopted because the stress and strain states around axially 

symmetrical structures generally vary directly as functions of the parameters r and �. The 

parameters r and θ therefore not only serve to specify the orientation and location of the 

stress/strain components, but also appear in functions that define the values of the stress/strain 

components themselves at the specified location. 
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For an isotropic, linearly elastic and homogeneous material, Kirsch (1898) calculated stress 

components around a circular hole, when principal stresses were acting at infinity (Fig. 3.1). 

 

The radial, tangential and shear stresses at an anti-clockwise angle θ, measured from the X-

axis, and a radial distance r from the centre of the hole are given by the following equations: 
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In order to apply Eqs. 3.1.1 for stress estimation around a borehole, the rock into which the 

borehole is drilled has to be assumed as continuous, homogeneous, isotropic and linearly 

elastic (CHILE) material. However, a rock with such properties rarely exists in nature. 

Furthermore, in borehole stability evaluation, especially in the presence of major 

discontinuities at the prospective location of the borehole, questions arise concerning the 
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)q 

)+ 

r 

s 

Figure 3.1 Stresses on an element at a radial distance r from the centre 
of a circular hole with radius a, in polar coordinates. 
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validity of elastic stress analysis in the design process and the potential effect of the 

discontinuity on the stability of the borehole wall.   

However, it should be noted that the elastic solution calculates the induced stresses based on 

the assumption that the pre-existing stress field has been redistributed due to the introduction 

of a hole into a CHILE material. Therefore, the elastic solution for estimating the induced 

stresses, coupled with a predictive model for rock strength (failure criterion) can be applied to 

model the rock behaviour adjacent to the borehole wall. If the intact rock does not fail under 

the induced stresses, then the possibility of slip along the major discontinuity should be 

investigated, considering the stress components acting on the faces of the discontinuity. On the 

other hand, if the induced stress around the borehole, calculated by means of the elastic 

solution, causes failure to initiate within the rock material, the extent to which the failure will 

progress needs to be determined and, if the failure appears to be too extensive, a suitable 

support system must be designed and implemented to resist the collapse of the borehole. 

Furthermore, the numerical techniques of stress estimation can also be given consideration as 

alternative approaches to analytical solutions, especially in cases of complicated constitutive 

relationships with respect to rock behaviour. Nevertheless, according to Brady and Brown 

(1993), in some cases, an elastic analysis presents a valid basis for design in a discontinuous 

rock mass and in others, provides a basis for judgement of the engineering significance of a 

discontinuity.  

The three-dimensional version of Kirsch equations for stress estimation in the proximity of 

vertical and deviated boreholes was first derived by Fairhurst (1968) and has been widely 

applied in the mining and petroleum industries ever since. Generally, three-dimensional 

Kirsch equations are either applied to rock in situ stress measurements or to instability 

prediction of any underground structure with a circular cross section, such as tunnels, 

wellbores and boreholes. In rock in situ stress measurements, by means of borehole breakout 

or hydraulic fracturing methods, stresses around the borehole are measured and then 

subsequently substituted into the three-dimensional Kirsch equations to calculate the far field 

stresses. A detailed explanation of stress measurement methods is beyond the scope of this 

study and the reader is referred to Amadei and Stephansson (1997) for further explanation on 

rock stress and its  measurement.  
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A detailed mathematical derivation of the 3D Kirsch equations was presented by Fairhurst 

(1968) and Jaeger et al. (2007). In addition, these equations have been applied as a closed 

form solution for calculating the induced stresses around a borehole by Amadei and 

Stephansson (1997), Zoback et al. (2003), Al-Ajmi (2006) and Fjær et al. (2008). However, 

apart from the mathematical derivation, there is no clear explanation of the boundary 

conditions on which these equations have been based. On the other hand, a thorough 

understanding of these boundary conditions is essential for this analytical solution to be 

confidently applied to stress analysis in the excavation proximity. In order to provide an 

unambiguous explanation of boundary conditions involved in the derivation of three-

dimensional Kirsch equations, detailed investigations were conducted on the mathematical 

procedure and the simplifying assumptions adopted for deriving the three-dimensional 

equations from the original two-dimensional Kirsch equations.     

A numerical counterpart of the three-dimensional Kirsch equations was also created to provide 

a further opportunity to validate and explain the boundary conditions and simplifying 

assumptions involved in the analytical model. Simplifying assumptions are usually made to 

facilitate the derivation of a closed form solution to a complicated problem. In some cases 

without these simplifying assumptions, deriving a closed form solution may be impossible. 

However, such assumptions, especially in the case of incompatibility with the physics of the 

real problem, may sacrifice the accuracy of the model.  Therefore, a numerical model 

counterpart to the three-dimensional Kirsch equations enables one to further improve the 

accuracy of the model by eliminating some simplifying assumptions, without which the 

analytical solution would be impossible to be formulated.    

3.2. Stress Analysis around a Vertical Borehole  

Stresses before drilling the borehole 

Consider a block of rock, located at a great depth beneath the Earth’s surface, to which far-

field principal stresses ��, �� and �� are acting in the Cartesian r, s and Z coordinate 

directions, respectively. Measuring the angle, �, counter-clockwise from the r direction, the 

initial values of radial (���t), tangential (���t) and vertical (���t) stress components, and also 
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the associated shear stress components (���t, ���tCEf ���t ), can be expressed in a cylindrical 

coordinate system as follows:   
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In order to model the pre-existing in situ stress field, a block of rock can be assumed to be 

removed from its position under the ground and to be loaded with the same in situ stress 

components from zero. Under such conditions the initial values of the stress components 

acting on an element located at an arbitrary point in the model, as illustrated in Fig. 3.2, can be 

expressed in a cylindrical coordinate system as follows: 
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Figure 3.2  The model of the pre-stressed block of rock into which the 
borehole will be drilled 
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In Eqs. 3.2.2 the vertical normal stress component, ���t, was calculated regarding the 

Poisson’s effect and the Poisson’s ratio, ν. 

Stresses after drilling the borehole 

After a borehole of radius C has been drilled into an isotropic elastic rock block, which was 

loaded from zero by the same stress components as the pre-existing in situ, the radial, ���, 

tangential, ���, and in-plane shear, ��� stresses acting on an element of rock at a radial 

distance � from the borehole centre can be calculated by applying the well known Kirsch 

equations, given by Eqs. 3.1.1. However, it is important to remember that Eqs. 3.1.1 were 

originally developed for calculating stresses around a hole in a thin plane in two dimensions.  

On the other hand, since the axis of the borehole extends into the third dimension, i.e. the Z-

axis of a Cartesian or cylindrical coordinate system, stress components along the borehole axis 

in the third dimension also need to be calculated.     

In three-dimensional engineering problems, general stress states and the associated 

deformations are represented by means of second order tensors with six distinct components. 

However, in structures where one dimension is considerably greater than the other two 

dimensions, the strain components associated with the extended dimension are assumed to be 

constrained by nearby materials and are substantially smaller than the cross sectional strains. 

Considering the fact that the length of a borehole along its axis is substantially greater than the 

cross sectional dimensions on a plane perpendicular to the borehole axis, longitudinal 

deformations can be assumed to be negligible due to the constraint imposed by nearby geo-

materials. Therefore, if the borehole axis is assumed to be coinciding with the Z-axis, all strain 

components along the Z-axis ((��, (�� and (��) are assumed to be zero and deformations are 

expected to occur only in planes perpendicular to the borehole axis, i.e. (X, Y)-planes. Such 

simplifying assumption is referred to as plane strain conditions. Furthermore, the strain tensor 

which describes the plane strain conditions is expressed as: 
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The stress state corresponding to the plane strain conditions is given by the following stress 

tensor: 
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The component ��� can be temporarily removed from the analysis to effectively reduce the 

three-dimensional problem to a two-dimensional problem, dealing only with in-plane terms. 

The stress component ��� will then be determined in a manner to maintain the constraint of 

zero longitudinal strain, i.e.  (�� � (�� � (�� � 0.   

Therefore, when far-field in situ stresses are considered as principal stresses with respect to 

the borehole orientation (Fig. 3.3), considering Eqs. 3.2.2 and the assumption of plane strain 

the vertical stress component, ���, and the associated out-of-plane shear stresses, ��� and ���, 

can be calculated as follows: 
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Figure 3.3 Demonstrating the conditions for applying plane strain assumption for 
calculating longitudinal stress components around a borehole 
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Changes in the initial stress state due to the introduction of the borehole 

The pre-existing in situ stress field is redistributed due to the introduction of the borehole. 

Changes in the initial stress state due to the stress redistribution can be manifested as the 

difference between the values of pristine stress components acting on a rock element before 

drilling the borehole, as illustrated in Fig. 3.2, and stress components on the same element 

after the completion of the drilling operations. Therefore, considering Eqs. 3.1.1, 3.2.1 and 

3.2.5, changes in the pre-existing in situ stress field can be formulated as follows:       
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Total induced in situ stresses 

Total induced in situ stress components acting on the rock material adjacent to the borehole 

wall can be calculated by adding the stress changes, given by Eqs. 3.2.6 to the initial in situ 

stress components given by Eqs. 3.2.1. Therefore, total induced stresses in the vicinity of a 

vertical borehole are given as follows:  
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After the completion of the drilling operations in a formation under pre-existing in situ 

stresses, total induced stresses acting on an element at a radial distance r from the borehole 

centre are given by Eqs. 3.2.6, provided that the far field in situ stresses are principal stresses 

with respect to the borehole orientation, as was the case for the vertical borehole illustrated in 

Fig. 3.3. Furthermore, Eqs. 3.2.6 show that ��� takes its smallest values and ��� takes its 

largest values, i.e. ��� and ��� are at their most deviatoric state, at � � C. This observation is 

important because rock failure will always be initiated at the point where the stresses are at 

their most deviatoric state, which is the case for rock material adjacent to the borehole wall. It 

is also important to note that Eqs. 3.2.6 have been derived based on the assumption that the 

hole has been drilled into a pre-stressed block of rock, as illustrated in Fig. 3.3, and the 

problem is entirely different from drilling a hole into a block and then loading the block from 

zero. It is of significant importance to take into account this boundary condition when 

developing a model for estimating the induced stresses around a borehole; nevertheless, it has 

always been neglected and has not been clearly explained in the existing literature. 

In order to validate the assumed boundary conditions in the analytical model, a finite element 

analysis (FEA) was conducted using the commercial software package ABAQUS/6.9. This 

FEA was used to numerically calculate the induced stresses in the vicinity of the borehole with 



CHAPTER 3                                                                             Stress analysis around a borehole 
 

46 
 

exactly the same boundary conditions as those assumed for developing the analytical model. 

Some basic concepts of the finite element method applied in this analysis are presented in 

Appendix A. 

 3.2.1. Numerical model of a vertical borehole 

Results of stress measurement in Australia indicate that the vertical stress �, increases linearly 

with depth at a rate of approximately 0.022 MPa/m, minor horizontal stress �0 at a rate of 

approximately 0.015 MPa/m, major horizontal stress �/ at a rate of between approximately 

0.022 and 0.025 MPa/m, and pore fluid pressure at a rate of approximately 0.01 MPa/m 

(Hillis and Reynolds, 2000). Therefore, at a depth of 3000 m, the total principal stresses could 

typically be �, � 66 MPa, �0 � 45 MPa and �/ � 75 MPa with a pore fluid pressure of 30 

MPa in porous rocks.  

Finite Element Analysis (FEA) was carried out, using the ABAQUS/6.9 software package, for 

estimating the induced stresses around a borehole at a depth of 3000 m. Here as well as for the 

analytical model, plane strain boundary conditions were assumed, i.e. assuming zero 

deformation along the axis of the vertical borehole. Furthermore, the borehole was assumed to 

be drilled in a rock with a Poisson’s ratio of 0.35 and elastic moduli of 48 GPa. The borehole 

radius was taken as 0.08 m. Furthermore, it is of paramount importance to note that the 

borehole is assumed to be drilled in a block of rock which is already stressed.  In order to 

incorporate this pre-stress field in the finite element model two alternative approaches can be 

adopted as follows: 

- The model space can be created as a block without a hole on which a given set of far-

field stresses are acting.  The location of the prospective hole must be specified in the 

meshing step. The same as for the analytical model, all displacements along the Z-axis 

are supposed to be suppressed. After redistribution of the stress field in the model space 

and reaching the state of equilibrium, elements which have been ascribed to the location 

of the borehole will be removed from the model space and then the induced stresses due 

to the element removal will be measured. It should be noted that as a result of 
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suppressing the displacements along the Z-direction the term �w��� [ ���x will act in 

the opposite direction of the vertical stress, ��, due to the Poisson’s effect and therefore, 

will be subtracted from the pristine value of ��. 

- An alternative and more convenient approach for incorporating the pre-existing stress 

field is to create the model space as a block which contains the borehole under the given 

set of far-field stresses and define a constant nodal displacement in the Z-direction. The 

magnitude of this constant displacement is calculated as: 

( )
E

d yyxx σσν +
=                                                                                             (3.2.7)                                                                                      

      It merits noting that since the stiffness matrix is known (defined in the material property 

in ABAQUS/6.9), by introducing a nodal displacement, given by Eq. 3.2.7, the 

associated stress field is calculated and incorporated in subsequent steps of the finite 

element analysis.  

The second approach has been adopted for conducting the finite element analysis (FEA) in the 

current study. The result of the numerical analysis was then compared to the existing 

analytical model (Eqs. 3.2.6). The zone of influence around the borehole was assumed to be a 

circle with a radius of 0.48 m which is six times greater than the borehole radius. Thus, the 

radial distance from the borehole wall and the border of the zone of influence was 0.4 m. This 

zone was discretised by 40 concentric circles and each one of these concentric circles was 

discretised into 120 elements. Therefore, the radial distance from the centre of the borehole to 

the centroid of each element can be calculated as: 

39....,,2,1,01.0105 3 =




 +×+= −

mmar                                                           (3.2.8) 

Where a is the borehole radius and the parameter A is a counter for concentric circles, 

counting from 0 for the circle immediately adjacent to the borehole wall and 39 for the circle 

adjacent to the border of the zone of influence. Furthermore, the angle �, measured counter-

clockwise from the X-axis, as illustrated in Fig. 3.4, indicates the angular location of the 

centroid of each element around the borehole and is given by: 
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2
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The calculated values for � and � from Eqs. 3.2.8 and 3.2.9 were substituted into the analytical 

model (Eqs. 3.2.6) and then the corresponding stress components in analytical model and the 

numerical model were compared to one another. The results of the quantitative comparison 

between the numerical and analytical models are presented in Appendix B, Table B.1 

According to Eqs. 3.2.6, induced stresses around the borehole not only vary as the radial 

distance from the borehole wall increases, for a constant �, but also alter with changing 

angular position around the borehole, for a constant r. Changes in the induced stresses in the 

finite element model as a function of angular position around the borehole have been 

illustrated in Figs. 3.5 and 3.6 and have been compared graphically with the analytical 

solution. Since errors in the numerical analysis in all cases are less than 2%, when compared 

with the analytical model, it can be inferred that the finite element analysis for estimating 

stresses around a borehole, which is drilled into an isotropic, homogeneous and linearly elastic 

rock, is valid and has been conducted accurately. Furthermore, since the finite element 

analysis clarifies the boundary conditions assumed for deriving the analytical model, for 

θ 
X 

Y 

r 

Figure 3.4   Radial distance from the borehole centre and angular 
position of a given element    
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which there exists no clear explanation in the literature, this study can also be considered as a 

cross-validation, as it sheds light on the procedure of formulating the analytical solution.      

As can be observed in Figs. 3.5 and 3.6, stress concentration occurs at two opposite points at 

the borehole wall, i.e. � = 0° and � = 180°, and in the direction of the minimum horizontal 

stress, �0. Apart from the stress concentration, stresses are found to be highly deviatoric at 

these two angular positions (Figs. 3.5 and 3.6). Recalling that borehole instability occurs due 

to rock failure at the borehole wall, and knowing that a highly deviatoric stress state is an 

underlying factor which leads to rock failure, these angular positions, around the borehole, are 

of particular interest. However, since the induced stresses around the borehole also vary with 

radial distance from the borehole wall, it also merits investigating the changes in induced 

stresses along radial direction at � = 0° or 180° to determine at what distance from the 

borehole wall the induced stresses are at their maximum deviatoric state.    
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Fig. 3.7 illustrates the changes in induced radial, ���, tangential, ���, and vertical, ���, stresses 

along the radial direction, r. As is obvious from Fig. 3.7, the maximum values of induced 

stresses occur at the borehole wall, i.e. where r = 0.08 m (borehole radius), and more 

importantly, the induced stress components are highly deviatoric at the borehole wall (r = 0.08 

m), compared to other points located at further distance from the borehole wall (Fig.3.7). 

      

 

Furthermore, the in-plane shear stress component, ���, is zero at the borehole wall and, as 

illustrated in Fig. 3.8, it increases dramatically with increasing radial distance from the 

borehole wall until it reaches a maximum value at a distance close to the borehole wall, in this 

case at 0.05m, from the borehole wall. After reaching its peak value, at a small distance from 

the borehole wall, the in plane-shear stress, ���, declines gradually until it reaches a plateau 

(in this case 0.8 MPa). 

Accordingly, in the case of the elastic solution, rock failure is anticipated to initiate at two 

opposite points around the borehole, i.e. � = 0° and � = 180°, in the direction of the minimum 

horizontal stress, �0, and at the borehole wall due to the stress concentration and the deviatoric 

nature of the stress state. However, it should be noted that the occurrence of rock failure is 

highly dependent upon the strength of the rock material surrounding the borehole.  Techniques 

for estimating the strength of rock material will be comprehensively investigated in Chapter 4. 
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According to Eq. 3.2.6, and with respect to Figs. 3.7 and 3.8, the stress state at the two 

opposite points located on the borehole circumference, i.e. � = 0° and � = 180°, for a vertical 

borehole at the depth of 3000 m is given by the following stress tensor: 
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3.3. Stress Analysis around a Deviated Borehole  

In cases where the far-field in situ stresses are not principal stresses with respect to the 

borehole orientation, for example, in the case of a deviated borehole, as illustrated in Fig. 3.9, 

a general stress state exists at the borehole proximity. Considering a block of rock, the upper 

and bottom faces of which are perpendicular to the borehole axis, all components of the 

associated stress tensor can be identified.   
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Subscripts (g) and (l) in Fig. 3.9 represent the far-field stress components, measured with 

respect to the global and local coordinates, respectively. Since the following analyses were 

conducted considering a local coordinate system as a reference the Z-axis of which coincides 

with the axis of the borehole, the subscript L will be eliminated in any successive nomination 

of components of the general stress tensor. Therefore, the general stress tensor, which 

describes the stress state in the vicinity of a deviated borehole can be given as: 
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Assuming the axis of the borehole to be the axis of elastic symmetry (isotropic case), induced 

stresses around a deviated borehole, for which far-field stresses are not principal stresses, were 

first analytically formulated by  Hiramatsu and Oka (1962) and later explained in detail in a 

report by Fairhurst (1968). The strategy for deriving the analytical solution was to divide the 

general stress problem into two separate problems:  

- a plane strain problem for calculating induced stresses around the deviated borehole due 

only to far-field normal stresses (���, ��� and ���) and in-plane shear stress acting on a 

plane perpendicular to the borehole axis (��� � ���)  
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Figure 3.9    General stress state in the vicinity of an inclined borehole 
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- an anti-plane strain problem for calculating induced stresses in the vicinity of the 

inclined borehole merely due to out of plane shear stresses (��� � ��� and ��� � ���) 

Consequently, adopting the superposition method the general stress problem is assumed to be 

as the summation of the plane strain and anti-plane strain problems, as illustrated in Fig. 

3.10.

Stress analysis for the case (a) in Fig. 3.10 is the same as for a vertical borehole, as explained 

in Section 3.2. In order to incorporate the effect of far-field in-plane shear stresses (Fig. 3.10 

(b)), the induced stresses around the borehole due to the far-field normal stresses can be 

superposed by the induced stresses due to the pure far-field in-plane shear stresses. It merits 

noting that in both cases (a) and (b) in Fig. 3.10 stresses around the borehole are calculated 

based on the assumption of plane strain, i.e. (�� � (�� � (�� � 0. The corresponding stress 

tensor, which describes the stress state in the cases (a) and (b) in Fig. 3.10, is also expressed 

by the plane strain stress tensor, given by Eq. 3.2.3.      

3.3.1. Stresses at the borehole wall due to far-filed in-plane shear, )q+ and 

normal stresses, )qq, )++ and )uu   

Consider a plane perpendicular to the borehole axis on which shear stresses ��� � ��� are 

acting (Fig. 3.11). If this plane is rotated to find the principal directions and the associated 

principal stresses, then Kirsch equations (Eqs. 3.1.1) can be applied to calculate the total 

stresses around the hole. The rotation matrix, for rotating a two-dimensional Cartesian 

coordinate system (X, Y), is defined as follows: 

(a) (b) (c) 
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Figure 3.10  Corresponding stresses for (a) and (b) plain strain problem and 
(c) for anti-plane strain problem 
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The angle 4 by which the plane and the coordinates X and Y have to be rotated to put the plane 

in a position where it has its faces perpendicular to the principal directions X ′ and Y′ (Fig. 

3.11), can be calculated from the following relationship:  
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Subscript s for normal stress components in Eq. 3.3.3 indicates that the magnitude of the 

normal stresses �� and �� is equal to the magnitude of shear stresses ��� � ���.   

From Eq. 3.3.3 the angle 4 is calculated as 
�
= and ��� � ���� � ���, as illustrated in Fig. 3.11. 

Furthermore, stress components acting on an element at a radial distance � from the borehole 

centre and at an angular distance measured counter-clockwise from the X-axis can be 

calculated in a cylindrical coordinate system by substituting ���� and ��� for �� and ��, 

respectively, and �� � G� � �
=M for � in Eqs. 3.1.1. Therefore, stress components around the 

borehole due only to far-field in-plane shear stresses are calculated as follows: 
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Figure 3.11  Demonstrating the method adopted for calculating induced 
stresses around a borehole due to pure far-field shear 
stresses, acting on a plane perpendicular to the borehole axis 
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Consequently, on the assumption of plane strain,  �bb"��$ can be calculated as: 
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The subscript FS in Eqs. 3.3.4 and 3.3.5 indicates that the stress components around the 

borehole have been calculated by merely considering the effect of far-field in-plane shear 

stresses on the induced stress field around the borehole. After superposing Eqs. 3.2.6 by Eqs. 

3.3.4 and 3.3.5, components of induced stresses around the borehole due to the far-field 

normal and in-plane shear stresses are given as follows:  
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The subscript NS in Eqs. 3.3.6 indicates that stresses at the borehole proximity have been 

calculated due only to the far-field normal and in-plane shear stresses.  

3.3.2. Stresses at the borehole wall due to longitudinal shear stresses 

()qu � )uq) and ()+u � )u+) 

The closed form solution for stress components around the borehole due to the far-field 

longitudinal shear stresses acting parallel to the borehole axis, i.e. the case (c) in Fig. 3.10, was 

derived by Fairhurst (1968) based on the assumption of anti-plane strain. As opposed to plane 

strain boundary conditions, which allow only for deformations in planes perpendicular to the 

borehole axis, in anti-plane strain deformations are assumed to take place only along the axis 

of the borehole and no deformation is allowed in planes containing the cross section of the 

borehole.   

Considering a block of rock as illustrated in Fig. 3.10 (c), for infinitesimal displacements 

the strain tensor associated with out-of-plane shear stresses can be defined as follows:   
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However, under anti-plane strain conditions displacements along the X and Y directions are 

assumed to be zero. Considering rectangular Cartesian coordinates, the displacement field that 

leads to a state of anti-plane strain is given as follows:  
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′=

==
                                                                                                                        (3.3.8) 
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Where !� and !� are displacements along the X and Y directions respectively and ^� is the 

displacement in the Z direction which is defined as a function of x and y. Therefore, the strain 

tensor associated with anti-plane strain conditions is defined as: 
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According to Eqs. 3.3.8 and 3.3.9 anti-plane strain deformations can be visualised, considering 

an element of rock with dimensions of f#, f� and f�, as illustrated in Fig. 3.12.  Furthermore, 

for an isotropic and linear elastic material the stress tensor that results from a state of anti-

plane strain can be expressed as: 
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Where G is the shear modulus of the material. 

Accordingly, induced stress components around the borehole when only far-field longitudinal 

stresses are involved and based on the assumption of anti-plane strain boundary conditions are 

given as follows:  
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The subscript OS in Eqs. 3.3.11 indicates that the stress components around the borehole have 

been calculated by considering the far-field out-of-plane shear stresses only.     

 

Details of the mathematical procedure for deriving longitudinal stress components at the 

borehole wall, ��� and ��b, is beyond the scope of this research and the reader is referred to 

Fairhurst (1968) for further information. Eqs. 3.3.6 along with Eqs. 3.3.11 are referred to as 

the generalised Kirsch equations, which are being widely used for estimating stresses around 

boreholes, circular tunnels and any other underground structures with a circular cross section 

in the petroleum and mining industries.   

In order to further clarify the boundary conditions assumed in deriving the generalised Kirsch 

equations, a finite element analysis (FEA) was conducted by assuming the same boundary 

conditions as those for the analytical model. The FEA for stress analysis around a deviated 

borehole was undertaken considering the stress conditions in the Earth’s crustal formations of 

Australia, as given in Section 3.2.1, at the depth of 3000 m. The results of the FEA were 

compared with the analytical model, namely the generalised Kirsch equations.  

3.4. Numerical Counterpart of the Generalised Kirsch Equations 

Assuming the far-field in situ stresses in the Earth’s crustal rocks in Australia at the depth of 

3000 m as �0 = 45 MPa, �/ = 75 MPa and �� = 66 MPa, the general stress state induced in the 

vicinity of a deviated borehole is expressed by the general stress tensor given by Eq. 3.3.1. It 
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Figure 3.12   Deformations associated with anti-plane strain boundary conditions 
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was also assumed that the trajectory of the borehole was manifested by the trend/plunge 

system as 125/10. To specify the components of the general stress tensor necessitates 

transforming the stress tensor associated with the far-field in situ stresses from the global 

coordinate system into a local coordinate system, one coordinate of which coincides with the 

borehole axis. The rotation matrix for performing the transformation can be derived by 

calculating angles between the axes of the local coordinate system and their counterparts in the 

global coordinate system. Furthermore, the angle ��, between two lines of trend/plunge 3�/4� 

and 3,/4, can be found from the following expression: 

( )[ ] [ ]vuvuvuuv ββββααθ sinsincoscoscoscos +−=                                                        (3.4.1) 

The trend and plunge of the axes of the global coordinate system (X, Y, Z) are given as 

follows:   

Global coordinate system 

Coordinates Trend (Deg) Plunge (Deg) 

X-axis 0 0 

Y-axis 90 0 

Z-axis 0 90 

On the other hand, the trend and plunge of the axes of a local coordinate system (L, M, N) 

which has one of its axes coincide with the axis of the inclined borehole with trend and plunge 

of 125/10 are given as: 

Local coordinate system 

Coordinates Trend (Deg) Plunge (Deg) 

L-axis 125 -10 

M-axis 215 0 

N-axis 125 80 

Therefore, with respect to Eq. 3.4.1 the rotation matrix is calculated as follows: 
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Furthermore, the stress state at the depth of 3000 m, in the Earth’s crustal rock of Australia 

and with respect to the global coordinate system is given as a principal stress tensor as 

follows: 
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Therefore, components of the general stress tensor, which describes the general stress state 

around the deviated borehole, are calculated by transforming the principal stress tensor, given 

by Eq. 3.4.3, and using the transformation matrix, 89:, given by Eq. 3.4.2, as follows: 

   [ ] [ ] [ ] [ ]
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4476.28697.548812.13
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pijgij RR σσ                                           (3.4.5) 

The finite element model was created for the deviated borehole using ABAQUS/ 6.9.  The 

borehole radius was given as 0.08 m and the borehole was assumed to be drilled in an 

isotropic, homogeneous and linearly elastic material with elastic modulus of 48 GPa and 

Poisson’s ratio of 0.35.   

Boundary conditions assumed for performing the FEA to calculate induced stresses around the 

deviated borehole were the same as those assumed for deriving the generalised Kirsch 

equations. It merits noting that separating the general stress problem into two problems and 

assuming plane strain boundary condition for one and anti-plane strain boundary condition for 

the other are simplifying measures which make the derivation of analytical solution possible. 

However, in reality it is impossible  for a block of rock to undergo deformations, on the one 

hand, on the assumption of plane strain conditions, which is manifested by zero out-of-plane 

deformations ((�� � (�� � (�� � 0), and on the other hand, on the assumption of anti-plane 

strain conditions, which allows only for the out-of-plane deformations such that (�� j (�� j 0 

and (�� � 0. It is also impossible to perform these incompatible boundary conditions on a 

single finite element model and therefore, as for the analytical model, two separate models 

have been created; one for estimating the induced stresses due to the far-field normal and in 
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plane shear stresses and the other for modelling induced stresses around the deviated borehole 

due to the far-field out-of-plane shear stresses. 

As is inferred from Eqs. 3.3.6 the radial stress, ���, is at its smallest and the tangential 

stress,���, is at its largest values at r = a. Furthermore, as was explained in Section 3.2.1, in 

the case of a vertical borehole subjected to far-field normal stresses only, the tangential stress 

is at its maximum value at � = 0° and � = 180°, compared to any other angular positions 

around the borehole. Points located on these two opposite angular positions on the 

circumference of the vertical borehole lied in the direction of the minimum horizontal stress 

and were referred to as stress concentration points (Figs. 3.5 and 3.6). However, when a 

borehole is drilled into a block of rock which is subjected to far-field normal and in-plane 

shear stresses, the two opposite points of stress concentration do not lie in the direction of the 

minimum horizontal stress, �0, as they do in the case of a vertical borehole (Figs. 3.13 and 

3.14). 

An illustrative comparison between the results of the numerical stress analysis, i.e. FEA, and 

the results of the estimation of induced stresses around the deviated borehole by means of the 

analytical model, i.e. the generalised Kirsch equations, is presented in Figs. 3.13, 3.14 and 

3.15. As can be observed, the results of the finite element analysis comply with the results of 

the analytical model, which is indicative of validity of the finite element model. Furthermore, 

the finite element model further clarifies the assumed boundary conditions and simplifying 

assumptions adopted for deriving the generalised Kirsch equations for calculation of induced 

stresses in the proximity of a deviated borehole. A quantitative comparison and the associated 

error analysis are given in Appendix B, Tables B.1-B.5 
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Figure 3.13  Comparison between numerical and analytical model for variation of 
induced radial ()��) and tangential ()��) stresses around the inclined 
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Figure 3.14   Comparison between numerical and analytical model for variation of induced vertical ()uu) 
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The region of stress concentration is represented in red in the contour model in Figs. 3.13 and 

3.14.  It merits mentioning that only two distinct points in these stress concentration region, at 

which �� is at its maximum value, are of particular interest. Furthermore, induced stresses 

around the borehole are at their most deviatoric state at these two opposite points of stress 

concentration. Therefore, it is of utmost importance to determine the angular position of the 

two opposite points of stress concentration. As illustrated in Fig. 3.13 (b), the graph, which 

represents changes in tangential stress ��� as a function of angular position � around the 

borehole, shows four optimum points where the slope of the tangent line to the graph is zero.  

Therefore, there are four angular positions around the borehole where the value of the 

tangential stress is either maximum or minimum.   

To find these angular positions necessitates differentiating the function ���, given by Eqs. 

3.3.6, with respect to � and equating the derivative to zero as follows: 
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Therefore, the angular position where the tangential stress is at its minimum or maximum is 

given by:   

yx

xy

σσ
σ

θ
−

=
2

2tan                                                                                                                (3.4.7) 

Eq. 3.4.7 yields four values for the angle � all of which satisfy Eq. 3.4.6. Recalling that the 

periodicity of tan 2� is ��, four angular positions are determined as: �, � [ �
�, � [ �, � [ ��

� . 

Substituting these values for � into the  ���-function (Eqs. 3.3.6), the maximum and minimum 

values of ��� and, more importantly, the angular positions associated with the maximum value 

of ��� can be identified. 

In the case of the deviated borehole, which was considered as a case example for developing 

the finite element model, four angular positions at which the ���-function is either at its 

maximum or minimum values are determined by applying Eq. 3.4.7, as is presented in Table 

3.1. 
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Fig. 3.16 illustrates changes in induced stresses at the angular position � = 55.166° as a 

function of radial distance from the borehole wall, for both numerical and analytical models.  

Induced stresses are at their most deviatoric state at the borehole wall, where the induced 

stresses are either at their maximum or minimum values at a given angular position.  

Therefore, the rock failure is envisaged to initiate at the borehole wall and at two opposite 

angular position where stress concentration occurs, in this case at � = 55.166° and � = 

235.66°. In order to predict the rock failure at the borehole wall and at the two stress 

concentration points the common strategy is to determine the stress state at these two points at 

the borehole wall and then investigate whether the rock material is strong enough to sustain 

the induced stress state. With respect to Fig. 3.16 (and also error analysis Tables B.1-B.5 given 

in Appendix B), the induced stress state at the two stress concentration points, i.e. � = 55.166° 

and � = 235.66°, at the wall of the deviated borehole which has been studied as a case 

example can be identified by the following stress tensor: 
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θ (Deg) 55.166 145.166 235.166 325.166 

σθθ max min max min 

Table 3.1    Determining the angular position of the two 
points of stress concentration 
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3.5.  A Modification to the Generalised Kirsch Equations 

In the existing analytical model (generalised Kirsch), stresses around the borehole are 

estimated, on one hand, based on the assumption of plane strain in which no axial deformation 

is allowed and, on the other hand, based on the assumption of anti-plane strain in which no in-

plane deformation is allowed and the only deformation is supposed to take place along the axis 

of the borehole. The plane strain boundary conditions were assumed in order to facilitate the 

calculation of the induced stresses around a borehole considering only the far-field in situ 

normal and in-plane shear stresses and the anti-plane strain boundary conditions were adopted 

to estimate the effect of the longitudinal, out-of-plane shear stresses on induced stresses 

around the borehole.  

The underlying reason for separating the general stress problem to two problems; one on the 

assumption of plane strain and the other on the assumption of anti-plane strain was to reduce a 

three-dimensional problem to two two-dimensional problems for which deriving the analytical 

solution was feasible. The plane strain and anti-plane strain conditions are simplifying 

assumptions based on which analytical solutions can be derived as approximations to real 

general problems, where the mechanics of the three-dimensional problem allows for making 

such assumptions. Considering a block of rock at the depth of 3000 m, into which a borehole 

has been drilled, as illustrated in Fig. 3.17, the axial dimension is considerably greater than the 

cross sectional dimensions, so it can be assumed that the axial deformations are constrained by 

nearby geo-materials and, therefore, are negligible compared with cross sectional 

deformations.  Hence, the physics of the problem allows for approximately calculating the 

induced stresses around the borehole due to a far-field general stress state on the assumption 

of plane strain.  It should be noted that all out-of-plane deformations are assumed to be zero on 

the assumption of plane strain, i.e. (�� � (�� � (�� � 0. Furthermore, the corresponding out-

of-plane shear stresses in the stress tensor associated with the plane strain conditions are also 

assumed to be zero, i.e. ��� � ��� � 0, and the vertical normal stress, ���, is determined in a 

manner to restrain zero out-of-plane deformations. The strain and stress tensors associated 

with the plan stain conditions are given by Eqs. 3.2.2 and 3.2.3.  
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Therefore, the assumption of anti-plane strain conditions, in order to incorporate the effect of 

the far-field out-of-plane shear stresses on the induced stresses around the borehole, as 

explained in Section 3.3.2, is contradictory to the plane strain assumption. However, it was 

reasoned by Fairhurst (1968) that since out-of-plane shear stresses do not have any impact on 

the in-plane induced stresses around the borehole, i.e. ���, ��� and ��� (Eqs. 3.3.11), the 

induced out-of-plane stresses around the borehole can be calculated separately and on the 

assumption of anti-plane strain, which assumes a constant deformation along the borehole axis 

as a function of gradients of the axial displacement !� in the X and Y directions as follows: 

constant
y

u

x

u
fu zz

z =
∂

∂
∂

∂= ),(                                                                                             (3.5.1) 

Nevertheless, it merits noting that although the longitudinal shear stresses do not affect the 

induced in-plane stresses around the borehole, the assumed boundary conditions can be highly 

influential on the calculated values for the out-of-plane stresses, namely ���, ��� and ���.    

 

A more appropriate approach for estimating stresses around a borehole when a far-field 

general stress state is involved can be given by solving the three-dimensional problem and by 

assuming that deformations along the axis of the borehole is suppressed by nearby geo-

materials as illustrated in Fig. 3.17. Although deriving an analytical solution to this three-

dimensional problem may be difficult or even impossible, numerical methods such as FEA can 

be employed to solve the problem.   

Figure 3.17     A section of a borehole at the depth of 3000 m 

!� � 0 

!� � 0 
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The general strain tensor for defining the three-dimensional deformations of a rock element 

with dimensions of f#, f� and f�, in a Cartesian coordinate system can be expressed in terms 

of the infinitesimal displacements as: 
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However, since the assumption of zero deformation along the borehole axis is also indicative 

of zero displacement, i.e. !� = 0, along the axis of the borehole, which is assumed to be 

coinciding with the Z-axis of the Cartesian coordinate system, the deformation of the rock 

element in the proximity of the borehole and at the depth of 3000 m is assumed to be 

manifested by the following strain tensor:     

[ ]





























∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

+
∂

∂

∂
∂

∂
∂

+
∂

∂
∂

∂

=

0
z

u

z

u

z

u

y

u

x

u

y

u

z

u

x

u

y

u

x

u

yx

yyyx

xyxx

ε                                                                            (3.5.3) 

The stress tensor corresponding to this stain tensor can be given as follows: 
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Where E is the elastic modulus and G is the shear modulus of the rock material. In Eq. 3.5.4 

the vertical normal stress, ���, is supposed to be determined in order to satisfy the condition of 

zero displacement along the axis of the borehole. Therefore, ��� can be defined as a function 

of gradients of the longitudinal displacements in the X, Y and Z directions as follows: 

),,(
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u
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u
f zzz

zz ∂
∂

∂
∂

∂
∂=σ                                                                                                     (3.5.5) 

Applying the proposed boundary conditions, given by the strain tensor in Eq. 3.5.3, the results 

of the finite element analysis indicate that the normal and in-plane shear components of the 

induced stress state around the deviated borehole remain unaltered, compared to their values 

calculated by means of the generalised Kirsch equations (Appendix B, Table B.5). Therefore, 

Eqs. 3.3.6 can be applied to calculate the stress components ���, ���, ��� and ���. However, 

longitudinal shear stresses ��� and ��� substantially change under the proposed boundary 

conditions, as illustrated in Fig. 3.18. 
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Based on the results of the finite element analysis, the formulation of the out-of-plane shear 

stresses ��� and ��� can be modified as follows: 
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The angular position of the points with stress concentration around the borehole can be given 

by Eq. 3.4.7 as � = 55.166°, which is also confirmed by the results of the finite element 

analysis for the deviated borehole considered as an example for finite element analysis in the 

current study. Furthermore, at � = 55.166°, a row of elements in the radial direction can be 

selected (Fig. 3.19) in order to indicate changes of the longitudinal shear stressres as a 

function of radial distance from theborehole wall. Therefore according to Fig. 3.19 the induced 

stress components at the two points of stress concentration are given by the following stress 

tensor:   
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According to Eq.3.5.7 the only stress component at the borehole wall which changes 

compared to the analytical solution, i.e. the generalised Kirsch equations, is ���. It also merits 

noting that although the values of the stress component ��� differ from the values calculated 

by means of the generalised Kirsch equations, at farther radial distances it takes the value of 

zero at the borehole wall.   
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4.1. Introduction 

Apart from the evaluation of stress conditions in the borehole proximity, an accurate 

estimation of rock strength under a three-dimensional stress state is vital for predicting the 

borehole instability. In other words, when drilling through rock or when considering the 

stability of borehole in good quality, brittle rock, investigating the behaviour of intact rock in 

three-dimensional stress regime is a key parameter in designing and drilling stable boreholes. 

The strength evaluation of intact rock is even more important when considering stability of 

boreholes with smaller cross sectional dimensions compared to discontinuity spacing and at 

great depths.   

According to Paterson and Wong (2005), the mechanical properties of intact rock material 

such as failure strength, fracture angle and ductility, are function of stress state, temperature 

and strain rate. Mechanical behaviour of rock under a given stress state which is induced and 

imposed on rock due to the introduction of an opening in the Earth’s crustal formations is the 

focal point of interest of this chapter. The effect of stress state on rock strength has been 

comprehensively investigated under conventional triaxial compression "�₁ ' �₂ � �₃$ and 

extension "�₁ � �₂ ' �₃$ stress states. However, as pointed out by Mogi (2007), due to the 

complicated procedure of true-triaxial experiments rock behaviour in general stress state 

"�� ' �� ' ��$ has not been studied adequately. On the other hand, to confidently predict the 

borehole instability due to the rock failure at the borehole wall an accurate estimation of rock 

strength under the induced three-dimensional stress state in the borehole vicinity is required.  

Rock strength can be interpreted as the ultimate loading capacity of rock material in a given 

stress state. The stress state at which failure occurs is often referred to as failure stress. Since 

most rocks fail with an abrupt failure and plastic deformation is barely observed before 

macroscopic disintegration, the failure stress in this study is considered as the stress state at 

which rock material is disintegrated, as defined by Priest and Hunt (2005). The strength of 

rock material surrounding an underground structure at the depth of interest can be determined 

by simulating the in situ stress conditions in experimental studies. However, due to difficulties 

with reproducing in situ conditions at great depth and complex experimental procedures of 
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three-dimensional rock testing, it is desirable to predict the rock failure stress by means of an 

accurate predictive model. Such a predictive model is usually presented as a failure criterion, 

which is either an empirical or analytical formulation.  

A failure criterion for a rock is a mathematical expression that defines the stress state as a 

combination of stress components which leads to rock failure. Such a criterion is usually 

expressed in terms of the stress tensor and material properties of rock. It is important to 

remember that the term ‘failure’ implies that the rock has completely disintegrated. It is, 

however, possible for the rock to become unserviceable in an engineering sense, if substantial 

inelastic deformations develop. In this context the term ‘yield criterion’ is more appropriate to 

be adopted. Rock failure criteria can be developed fundamentally from the mechanical 

analysis of an assumed failure mechanism, or can be developed empirically by modelling the 

observed behaviour of rock during laboratory or site tests. 

4.2. Definition of General, Principal and Deviatoric Stress Tensors 

The general stress state which is imposed on a block of rock (Fig.4.1) can be expressed by 

means of a second order tensor which is often referred to as stress tensorijσ : 
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If the rock block shown in Fig. 4.1 is rotated so that all shear stresses on all faces are 

eliminated (Fig. 4.2), then the normal stresses acting on each face are known as principal 
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stresses and the associated directions are referred to as principal directions. The stress tensor 

which describes this stress state is known as principal stress tensor, ��67�
�
, and can be written 

as: 
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It should be noted that although in Eq. 4.2.2 stress components in the general stress tensor (Eq. 

4.2.1) have changed due to the rotation of the rock block and the coordinate system, the actual 

stress state remains unaltered. Furthermore, there are certain invariants associated with every 

tensor which are independent of the orientation of the coordinate system. For example, a 

vector is a simple first order tensor and it is represented by three components in a three-

dimensional space. The magnitude of these components depend on the coordinate system 

chosen to represent the vector, but the length of the vector is a scalar and is independent of the 

orientation of the coordinate. Similarly, in association with every second order tensor, such as 

the stress tensor, there exist three independent invariant quantities. Accordingly, the first (_�), 

second (_�) and third (_�) invariants of the principal stress tensor are defined as follows: 

3211 σσσ ++=I  

1332212 σσσσσσ ++=I  

3213 σσσ=I                                                                                                                       (4.2.3) 
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Furthermore, the hydrostatic stress tensor, ��67�/, associated with the principal stress tensor 

(Eq. 4.2.2) is defined as follows: 

[ ] ijHij
I δσ
3
1=                                                                                                                     (4.2.4) 

Where 1I is the first invariant of the principal stress tensor and the term 
3
1I is referred to as the 

mean normal stress. The 3×3 matrix ijδ is known as the ‘kronecker delta’ and is defined as: 
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When considering rock performance under a given stress state it is important to note that even 

rocks with no shear strength will not fail or disintegrate under hydrostatic stress state "�₁ �
�₂ � �₃$. Under high hydrostatic stress state, due to the closure of pre-existing voids and 

micro-fractures in the rock body, rock becomes rather compact and consequently stronger.  

Therefore, it can be inferred that, as opposed to metal materials, the failure stress of rock is 

dependent upon the mean normal stress. However, the main factor which causes the rock to 

fail is the deviation of stress state from the hydrostatic state of stress. Hence, to predict the 

rock failure it is necessary to evaluate the deviatoric nature of the stress state acting on the 

rock. 

Considering the principal stress tensor in Eq. 4.2.2, the deviatoric stress tensor, ��67��, can be 

written as: 
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Where the diagonal components in Eq. 4.2.6 are defined as: 

ijjjii
I

S δσ
3
1−=        (No sum)                                                                                           (4.2.7)         
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Furthermore, the first (V�), second (V�) and third (V�) invariants of the principal deviatoric 

stress tensor are defined as follows: (for simplicity g��, g�� and g�� are written as g�, g� 

and g�) 

)(3211 aSSSJ ++=  

( ) ( ) ( )[ ] )(
6
1 2

13
2

32
2

212 bSSSSSSJ −+−+−=  

)(3213 cSSSJ =                                                (4.2.8) 

It is also noteworthy that: 

sumNoSS jjiijjii σσ −=−                                                                                      (4.2.9) 

4.3. Failure Function in Principal Stress Space 

In general stress state "�₁ ' �₂ ' �₃$ all possible combinations of the stress components, 

which cause the rock to fail can be represented by means of a mathematical formulation 

known as a failure criterion. For an isotropic and homogenous material in a uniform stress 

regime, the failure criterion can be expressed in terms of a stress tensor, ��67�, which satisfies 

the following relationship:  

( ) 0=ijF σ                                                                                                                            (4.3.1)                                                

However, models for predicting the rock failure stress are commonly expressed in terms of 

principal stresses. Therefore, the function F in Eq. 4.3.1 can also be written in terms of 

principal stresses as: 

( ) 0,, 321 =σσσf                                                                                                                

(4.3.2) 

The function f in Eq. 4.3.2, can be interpreted as a surface in the principal stress-space 

(��, ��, ��), as illustrated in Fig. 4.3. This surface is a geometrical representation of all failure 
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points in the stress space and is, accordingly, known as the failure surface. All stress points 

inside the failure surface are stress states at which the rock does not fail and any point located 

on the surface represents a failure stress point. Stress points outside of this surface are 

theoretically meaningless. However, when experimental data lies outside of a failure surface, 

it is inferred that the associated failure criterion underestimates the rock strength. On the other 

hand, observing experimental data inside the failure surface indicates that the rock strength has 

been overestimated. According to Mogi (2007), one of the most fundamental problems of rock 

mechanics is the study of the shape of the failure surface for various rock types. 

It also merits noting that the analysis of induced stresses adjacent to an excavation will usually 

produce a general stress tensor (where the shear stresses are non-zero) expressed relative to a 

local set of axes. On the other hand, failure functions expressed in terms of principal stresses 

are applicable only when the stress state is manifested by the principal stress tensor. In order 

to apply such failure functions (Eq. 4.3.2) for estimating rock strength, it is necessary to 

transform the local general stress tensor into the principal stress tensor. However, recalling 

that the invariants of a second order tensor are independent of the orientation of the coordinate 

system, it is more convenient to express failure functions in terms of the invariants of the 

principal stress tensor or the deviatoric principal stress tensor to effectively eliminate the 

transformation operations of the stress tensor from the procedure of the rock strength analysis.  

 

 

)� 
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)� 

Figure 4.3    Failure surface in the principal stress space  
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4.4. Failure functions in deviatoric stress space 

The stress space can be defined using a Cartesian coordinate system, each axis of which 

represents one of the three principal stresses. Any arbitrary point a in the principal stress space 

is identified by three stress components and represents a unique stress state.  Furthermore, the 

position of the point P in the stress space can be addressed by a stress vector )��  � "��, ��, ��$, 

as illustrated in Fig. 4.4. The line �₁ � �₂ � �₃, which makes equal angles with the three 

principal stress axes is called the ‘Stress-space diagonal’ or the ‘Hydrostatic axis’ (Fig. 4.4).   

 

If  3, 4 and - are angles between the hydrostatic axis and axes ��, �� and ��, respectively, the 

following relation holds between the direction cosines: 

3

1
coscoscos === γβα                                                                                                 (4.4.1) 

A plane perpendicular to the hydrostatic axis which also contains the point P is called the 

principal stress-deviator plane or simply the ‘deviatoric plane’. A deviatoric plane which 

contains the origin of the principal stress space is known as the π−Plane (Fig. 4.5).   

   

4 

�� 

�� 

�� 

- 
)��  

a"��, ��, ��$ 

3 

�� � �� � �� 

Figure 4.4    Hydrostatic axis and the stress vector )��  in the principal stress space 
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Defining the unit vector  C  � �
√� (1, 1, 1) along the hydrostatic axis, the magnitude of the 

projection of stress vector, )�� , on the stress-space diagonal (the line �� � �� � ��), can be 

calculated as: 

( ) octIa σσσσσ 3
3

3

3

1
1321 ==++=⋅ rr

                                                                    (4.4.2) 

Where, _� is the first invariant of the principal stress tensor and ���
 is the octahedral mean 

normal stress. On a certain deviatoric plane, given by _� �  DE&FCEF, the distance between the 

point P and the hydrostatic axis which can be given as the magnitude of the vector � , as 

illustrated in Fig. 4.6, can be calculated as:  

( )22 ar
rrrr ⋅−= σσ                                                                                                             (4.4.3) 

Substitution of Eq. 4.4.2 into Eq. 4.4.3 yields the following relationship:  
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The magnitude of the vector � , which originates from the hydrostatic axis and terminates at the 

point P on the deviatoric plane (Fig. 4.5), indicates a factor by which the given stress state 

deviates from the hydrostatic stress state. Furthermore, a given stress point in the principal 
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stress space, which is a Cartesian coordinate system, can be represented in a cylindrical 

coordinate system as well. Two coordinates of such a cylindrical coordinate system are the 

hydrostatic axis and the vector �  on the deviatoric plane. The third coordinate, which is the 

angle �, is measured counter-clockwise form one axis of a Cartesian coordinate system on the 

deviatoric plane.    

 

Such a Cartesian coordinate system on the deviatoric plane can be defined by transforming the 

principal stress coordinates ( ��, ��,  ��) so that the  ��-axis coincides with the hydrostatic axis. 

The axes of the transformed Cartesian coordinate system are labelled as ���, ��� and ��� in 

Fig. 4.6. Accordingly, any point in the (��, ��, ��)-space can be transformed to the 

(���, ���, ���)-space using a transformation matrix, through the following relationship: 
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Figure 4.6    Cartesian coordinate system on the deviatoric plane 
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After defining three orthogonal coordinates (���, ��� and ���) on the deviatoric plane the 

angle � can be measured counter-clockwise from the ���-axis. The relationship between the 

cylindrical, "�, �, ���$ and Cartesian, (��, ��, ��), components of the point P, as illustrated in 

Fig. 4.6, can also be established. Considering the point P in the cylindrical coordinate system 

in Fig. 4.6, the length QC can be calculated from the following relationship: 

( )
333
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3
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













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Where - is the angle between the hydrostatic axis (OC in Fig. 4.6) and the ��-axis, and _� is 

the first invariant of the principal stress tensor. To calculate, for example, the third component 

of the point P in the principal stress space, i.e. ��, it is necessary to add the magnitude of the 

projection of the vector �  along the QC-direction to the length of the QC, given by Eq. 4.4.6. 

Components of the vector �  in ��� and ��� directions are � cos � and � sin �, respectively, as 

shown in Fig. 4.7. Therefore, considering Eq. 4.4.5 the magnitude of the projection of the 

vector �  in QC direction, parallel to the ��-axis, can be calculated as follows:  
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Substituting � � |� | from Eq. 4.4.4 into Eq. 4.4.7 the third component of the stress point P in 

the principal stress space can be calculated as:  

33

4
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2 12
3

IJ
+






 += πθσ                                                                                               (4.4.8)                                

The first and the second components of the point P in the principal stress space (��and ��) can 

be calculated in the similar manner. Therefore, the relationship between the components of the 

stress point P in the cylindrical coordinate system "�, �, ���$ and in the principal stress space 

(��, ��, ��) can be established as follows: 
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Since the component r of a stress point in the cylindrical system is indicative of deviation from 

the hydrostatic stress state, it can be concluded that the cylindrical coordinate system is more 

convenient for demonstrating the deviatoric nature of a stress point and can be, appropriately, 

referred to as the deviatoric stress space. Furthermore, in the deviatoric stress space, with 

respect to Eq. 4.4.2, any point on the ���-axis, or the hydrostatic axis, can be addressed as 

√�
�

_� and considering Eq. 4.4.4 the magnitude of the r component for any stress point is given 

as W2V�. Therefore, the coordinates of the deviatoric stress space can be identified also as 

(W2V�, � , √�
� _�), in which _� is the first invariant of the principal stress tensor and V� is the 

second invariant of the deviatoric stress tensor. The angle �, known as the ‘lode angle’, 

according to Zienkiewicz et al. (1972) can be expressed in terms of second and third invariant 

of the stress deviator tensor, V� and V�, respectively.    

 

Considering Eq. 4.4.5, the term W2V� sin �, which represents the magnitude of the projection 

of the vector �   in the ���-direction (Fig. 4.7) can also be written as: 

Figure 4.7    Polar components of point P on the deviatoric Plane 

� 

P 

Deviatoric 
Plane 

��� 

��� 

W2V� sin � 

W2V� cos � 

|� | � W2V� 
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( )3212 2
6

6
sin2 σσσθ −+−=J                                                                                   (4.4.10) 

Recalling Eq. 4.2.5 and rearranging Eq. 4.4.10, sin � can be calculated as: 

2

2

2

3
sin

J

S=θ                                                                                                                                                            (4.4.11) 

According to Eqs. 4.2.7 (c), considering the trigonometric identity "sin 3� � �4 sin� � [
3 sin �$ and knowing that g� � �"g� [ g�$, the lode angle � can be expressed in terms of the 

second (V�) and third (V�) invariants of the principal deviatoric stress tensor, as follows: 

2
3

2

3

2

33
3sin

J

J−
=θ                                                                                                                 (4.4.12) 

Since the failure stress of rock, as a brittle material, depends upon the effective mean normal 

stress G¨I
� M and failure occurs only under highly deviatoric stress state, it is more convenient to 

express rock failure criteria as a function of the first invariant of principal stress tensor, _�, and 

the second and third invariants of the principal deviatoric stress tensor (V� and V�).  

Accordingly, the rock failure function in deviatoric stress space (W2V�, � , √�
� _�) can be 

expressed as:  

( ) 0,3sin, 12 =IJF θ                                                                                                          (4.4.13) 

Where &©E 3� is given by Eq. 4.4.12. It also merits noting that by employing Eq. 4.4.9, any 

failure criteria in terms of principal stresses can be expressed in terms of invariants of the 

principal and principal deviatoric stress tensors.  

4.5. Failure Criteria on Deviatoric and Meridian Planes 

The failure function expressed by Eq. 4.4.13, represents a failure surface in the deviatoric 

stress space. Due to the presence of the term sin 3� in Eq. 4.4.13, a number of general 

symmetry properties of the failure function can be addressed. The trace of this failure surface 
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on an arbitrary deviatoric plane is obtained for _� = constant. As the Sin-function is periodic 

with a period of 360° it is straightforward to conclude that the failure function in Eq. 4.4.13 is 

periodic with a period of 120° and therefore the trace of the failure surface on the deviatoric 

plane is repeated in every 120° and the distance 9 � |� |, between hydrostatic axis and the 

trace of the failure surface on the deviatoric plane, is the same for � and for � [  120° as well 

as for � [ 240° (see Fig. 4.8 (a)).  

             

           
 

Due to the periodicity of 120° the cross sectional curve is also symmetric about � � 90°, 
� � 210° and � � 330°, as illustrated in Fig. 4.8 (b). Furthermore, setting � � 30° 1  4 

yields sin"90 � 34$ � sin"90 [ 34$ and accordingly, the magnitude of the vector �  is 

identical for � � 30° [ 4 and � � 30° � 4, which indicates that the trace of the failure 

surface on the deviatoric plane is also symmetric about � �  30° and thereby also symmetric 

about � � 150° and � � 270°, (see Fig. 4.8 (c)). Similarly, for � � 90° 1  3, the magnitude 
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Figure 4.8    Symmetry properties of a failure criterion on the deviatoric plane 
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of the vector �  is the same and thereby the trace is symmetric about � � 90° , � � 210° 
and � � 330°, (see Fig. 4.8 (d)). The symmetry properties shown in Fig. 4.8 imply that the 

trace of the failure surface on the deviatoric plane is completely characterized by its form for 

�30° ±  � ±  30° and that this form is repeated in other sectors of the deviatoric plane. 

Furthermore, if  �₁ ' �₂ ' �₃ are principal stresses, the intermediate principal stress can be 

written as: 

( ) 101 312 ≤≤+−= ασασασ                                                                         (4.5.1) 

Substituting Eq. 4.5.1 into Eq. 4.2.5 gives: 

( )( )

( )( )

( )( )313

312

311

2
3
1

21
3

1

1
3
1

σσα

σσα

σσα

−−−=

−−=

−+=

S

S

S

                                                                                                   (4.5.2) 

Substituting g� from Eq. 4.5.2 into Eq. 4.4.11 yields:  

12

21
sin

2 +−

−=
αα

αθ                                                                                                          (4.5.3) 

Since the parameter 3 ranges between 0 and 1 (0 < 3 < 1), it follows from Eq. 4.5.3 that the 

angle � ranges from � �
² and 

�
² (� �

² ± � ± �
²). Therefore, with the ordering of the principal 

stresses such that �₁ ' �₂ ' �₃, all stress states are covered by the angle � ranging between 

� �
² and �².   

The ‘meridians’ of the failure surface are the curves where � �  DE&FCEF applies. In other 

words the ‘meridional’ curves are obtained by the intersection of the failure surface with a 

plane containing the hydrostatic axis.   
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Accordingly, the meridians can be depicted in a "�, �$ coordinate system, known as the 

‘meridional plane’ (Fig. 4.9). With respect to Eqs. 4.4.2 and 4.4.4, coordinates � and  � are 

defined as follows: 

( )

2

1321

2

3

3

3

3

J

I

=

=++=

ρ

σσσξ
                                                                                           (4.5.4) 

For rock materials two meridians are of particular interest. When ��> �� = �� applies, then in 

Eq. 4.5.1, 3 = 1 and from Eq. 4.5.2 � � � �
². This meridian is termed the ‘compressive 

meridian’, as the stress state ��> �� = �� corresponds to a hydrostatic stress state superposed 

by a compressive stress in the ��-direction. This stress state is often referred to as triaxial 

compression in rock mechanics experiments: 

�� ' �� � ��       ©. ³.     � � � �
6       DAh�³&&©%³ A³�©f©CE 

Uniaxial compressive stress state is located on the compressive meridian, and so is the triaxial 

compressive stress state when the intermediate and the minor compressive principal stresses 

are equal. When ��= �� > �� holds then Eq. 4.5.1 postulates that 3 = 0 and Eq. 4.5.2 calculates 

the angle � as  �². This meridian is termed the ‘tensile meridian’, as the stress state �� � �� '
�� corresponds to a hydrostatic stress state superposed by a tensile stress in the ��-direction. 

This stress state is often referred to as triaxial extension in experimental studies of rock 

mechanics:  

� 

Hydrostatic 
axis 

�� 

�� 

�� 

¢��  

� 
a"��, ��, ��$ 

Figure 4.9  Meridional plane (´ � µ coordinates) [after Ottosen and Ristimna(2005)] 
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�� � �� ' ��       ©. ³.     � � �
6      F³E&©5³ A³�©f©CE 

The points where the tensile and compressive meridians intersect the deviatoric plane are 

illustrated in Fig. 4.10.  

 

4.6. Failure Criteria Especially Developed For Rock Material 

In this section a group of empirical three-dimensional rock failure criteria is studied in detail. 

Since the input parameters of these three-dimensional models are the same as those for the 

Hoek-Brown criterion, they can also be referred to as three-dimensional Hoek-Brown based 

criteria. The three-dimensional Hoek-Brown based criteria are first expressed in terms of the 

invariants of the deviatoric stress tensor using the method outlined in Section 4.4. Next the 

radial distance between the hydrostatic axis and the trace of the failure surface on the 

deviatoric plane is calculated in a unified way and by assuming _�, the mean normal stress, as 

constant. The three-dimensional failure surface in the principal stress space is then plotted by 

reproducing the trace of the failure surface along the hydrostatic axis. For this purpose _� 

needs to be defined as a variable.   
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Figure 4.10  Intersection of tensile and compressive meridians with the 
deviatoric plane 



CHAPTER 4                                                  Rock strength analysis in three-dimensional stress 
 

92 
 

 4.6.1. The Hoek-Brown criterion 

According to Hoek and Brown (1980), the Hoek-Brown criterion for estimating the failure 

stress of intact rock material can be expressed as a function of the major (��) and minor (��) 

principal stresses as: 

( ) ( ) 0, 2

1

2
33131 =+−−= cciHB smF σσσσσσσ                                                               (4.6.1)                                                       

Where the term A6 is the Hoek-Brown parameter m for intact rock and the parameter s for 

intact rock is 1. Substituting the relevant formulation for �� and �� from Eqs. 4.4.9 into Eq. 

4.6.1, the Hoek-Brown criterion can be expressed in terms of invariants of the principal 

deviatoric stress tensor as follows: 

( )








 ≤≤−
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


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
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πθπ
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ciHB s
ImJ
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                       (4.6.2) 

Rearranging Eq. 4.6.2, the Hoek-Brown criterion for intact rock can be written as a quadratic 

equation in terms of V� in the following form:  

0
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c
HB σσ

πθ

σ
θ                                       (4.6.3) 

According to Eqs. 4.4.4 and 4.6.3 and considering Fig. 4.5, the radial distance from the 

hydrostatic axis to any point on the trace of the Hoek-Brown failure surface on a certain 

deviatoric plane, given by _� �  DE&FCEF, can be calculated as follows: 





















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+++−== s

Im
Jr

c

i
HBHB

c
HB HB σ

ςλλ
ς
σ

3
4

2

2
2 12

2                                               (4.6.4) 

Where parametersς and λ are defined as follows: 
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Furthermore, assuming _� as constant, Eqs. 4.6.4 and 4.6.5 can be applied to plot the cross 

section of the Hoek-Brown failure surface on the deviatoric plane. As illustrated in Fig. 4.12, 

the cross section of the Hoek-Brown failure surface on the deviatoric plane is a hexagon. 

When �� � ��, from Eqs. 4.5.1 and 4.5.3 it follows that � � � �
². Substituting � as � �

² into 

Eq. 4.6.4, the distance between the hydrostatic axis and sharp corners of the hexagonal cross 

section of the Hoek-Brown criterion, �/k�, on the deviatoric plane, is calculated as follows:   
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Likewise, �� � �� indicates that in Eq. 4.5.1 3 � 0 and form Eq. 4.5.3 � is given as �
 ².  

Therefore, the distance between the hydrostatic axis and blunt corners of the hexagonal cross 

section of the Hoek-Brown criterion (�/kB), is calculated as follows (Fig. 4.11):   


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
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Figure 4. 11  The cross section of the Hoek-Brown failure surface on 
the deviatoric plane 
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Accordingly, sharp corners in the hexagonal cross section of the Hoek-Brown failure surface 

represent points where minor and intermediate stresses swap places, i.e. �� � ��, and blunt 

corners are points where major and intermediate principal stresses become equal, i.e. �� � ��. 

Furthermore, it also merits noting that Eq. 4.6.4, in which the angle � is constrained such 

that � �
² ¶ � ¶ �

², gives only the section SB of the Hoek-Brown failure surface cross section in 

Fig. 4.11 and other sections of this hexagonal cross section can be plotted considering the 

symmetric properties of the failure criterion. The Hoek-Brown criterion is a periodic function 

with the period of  
�
� , and hence, its trace on the deviatoric plane is repeated every 

�
� radians. 

Consequently, to plot, for example, the section BT in Fig. 4.11 requires replacing the angle � 

in Eq. 4.4.9 with � [ �
�, which results in the following relationship:   
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                                                                                    (4.6.8) 

Substituting Eq. 4.6.8 into Eq. 4.6.1 results in formulating the Hoek-Brown criterion in terms 

of invariants of the principal deviatoric stress tensor, similar to Eq. 4.6.4 with defining the 

parameter ·/k in Eq. 4.6.4, as follows: 

663
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sin2
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πθπ
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λ ≤≤−

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
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

 −
=

i
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m

BTfor
                                                      (4.6.9) 

However, the parameterς remains unaltered. Other sections of the graph can be plotted in the 

similar manner. Therefore, on the assumption of  _� �  DE&FCEF, the trace of a given failure 

criterion can be plotted on a certain deviatoric plane. In order to reproduce the Hoek-Brown 

cross sections on different deviatoric planes along the hydrostatic axis to produce the relevant 

three-dimensional failure surface, as illustrated in Fig. 4.12, the parameter _� is assumed to be 

a variable and is defined, considering Eq.4.6.4 for the Hoek-Brown criterion, as follows: 
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The components � and _� of a failure stress point in the deviatoric stress space predicted by the 

Hoek-Brown criterion are given by Eqs. 4.6.4 and 4.6.10 for various values of the angle � (�/k 

and _�/k). In order to calculate the corresponding components of the failure stress point in the 

principal stress space, the transformation matrix in Eq. 4.4.5 can be applied. After 

transformation from the deviatoric stress space into the principal stress space of all failure 

stress points predicted by the Hoek-Brown the three-dimensional failure surface associated 

with the Hoek-Brown criterion can be plotted in the principal stress space (see Fig. 4.12). The 

relevant MATLAB code for plotting the Hoek-Brown failure surface can be found in 

Appendix F. 

 

As is obvious from Eq. 4.6.1 the Hoek-Brown criterion incorporates only the minor principal 

stress in rock failure stress (��) formulation and neglects the influence of the intermediate 

principal stress on rock strength. In order to include the influence of the intermediate principal 

stress to estimate the rock strength in three-dimensional stress state more precisely, a number 

of three-dimensional failure criteria, based on the Hoek-Brown criterion have been introduced 

over the past few decades. The reasons why the Hoek-Brown criterion has been adopted as a 

σ
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P
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Figure 4.12   The Hoek-Brown criterion in the principal stress space 
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basis for developing new three-dimensional predictive models were outlined in Chapter 2, 

Section 2.4.3. 

4.6.2. The Pan-Hudson criterion  

The strategy adopted by Pan and Hudson (1988), for developing a three-dimensional criterion 

based on the Hoek-Brown criterion was to approximate the Hoek-Brown failure surface with a 

conical surface the cross section of which on the deviatoric plane is a circle between the 

inscribed and circumscribed circles to the hexagonal cross section of the Hoek-Brown 

criterion (Fig. 4.13). According to Pan and Hudson (1988) for weak rock masses with small A 

and & the hexagonal cross section of the Hoek-Brown on the deviatoric plane can be 

approximated by a circle. Although this approximation produces a negligible error where 

parameters A and & are small, errors cannot be ignored in the case of strong rocks for which 

parameters A and & are relatively large. In other words, the Pan-Hudson criterion does not 

work properly for good quality rock masses or intact rock. Furthermore, the Pan-Hudson 

criterion does not reduce to the original form of the Hoek-Brown criterion where �� � ��. 

Consequently, as pointed out by Priest (2010), under triaxial compression (�� ' �� � ��) the 

Pan-Hudson criterion does not predict the same value for the failure stress as the Hoek-Brown 

criterion and other three-dimensional criteria developed based on the Hoek-Brown criterion.  

Another drawback of the Pan-Hudson criterion is that the criterion does not calculate the 

uniaxial strength of rock (��) under uniaxial compression (�� ' �� � �� � 0). The Pan-

Hudson criterion can be re-derived through the following procedure:    

When �� � ��, which corresponds to � �  �
² (Eq. 4.5.1), Eq. 4.6.2 reduces to:  

0
33

2
3 212

2 =−













+

−
−= ccibHB s

IJ
mJF σσ                                                                  (4.6.11)

  

Where m/kB is a function which represents the points exactly located on the blunt corners of 

the Hoek-Brown cross section on a certain deviatoric plane ( _� �  DE&FCEF). Therefore, the 

radius of the inscribed circle to the Hoek-Brown hexagonal cross section on the deviatoric 
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plane can be calculated by solving Eq. 4.6.11 for the term WV�, which is given also by Eq. 

4.6.7. Furthermore, substituting  � � � �
²  into Eq. 4.6.2 yields: 

0
33

3 212
2 =−
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
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





+

−
−= ccisHB s

IJ
mJF σσ                                                                     (4.6.12) 

Where  m/k� represents the points on sharp corners of the Hoek-Brown cross section on a 

particular deviatoric plane and therefore, the radius of the circumscribed circle to the Hoek-

Brown criterion on the same deviatoric plane can be calculated by applying Eq. 4.6.12, as is 

given also by Eq. 4.6.6. Accordingly, the function mc/ which represents a mean circle between 

the inscribed and the circumscribed circles to the Hoek-Brown cross section can be expressed 

as follows: 

HBb
HBbHBs

PH F
FF

F +−=
2

                                                                                           (4.6.13) 

 

Expanding and rearranging Eq. 4.6.13, the equation of the mean circle or the Pan-Hudson 

criterion, can be written as follows: 

cii
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mJmJ σ
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=−+
32
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22                                                                                    (4.6.14) 
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Figure 4.13  The cross section of the Hoek-Brown criterion on the 
deviatoric plane 
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The radius of the mean circle or the distance between the hydrostatic axis and the trace of the 

Pan-Hudson criterion on the deviatoric plane is, therefore, given by: 


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Where A6, s and ��  are the Hoek-Brown parameters and the parameter ·c/ is given as √�
� A6. 

As illustrated in Fig. 4.13, the Pan-Hudson circle has six intersections with the Hoek-Brown 

hexagonal cross section on the deviatoric plane. These intersections, however, do not coincide 

with the apices of the Hoek-Brown hexagonal cross section where �� � �� or  �� � ��. This 

geometrical interpretation explains the reason why the Pan-Hudson criterion does not reduce 

to the original form of the Hoek-Brown criterion when the stress state is assumed as two-

dimensional, i.e. �� � �� or �� � ��. Therefore, it is more appropriate to refer to the Pan-

Hudson criterion as a three-dimensional failure criterion which sources its input parameters 

from the Hoek-Brown criterion, rather than a three-dimensional version of the Hoek-Brown.  

The Pan-Hudson radius �c/ is given by Eq. 4.6.15 and therefore, the Pan-Hudson cross section 

on the deviatoric plane can be plotted for _� �  DE&FCEF. However, considering the parameter 

_� as a variable the three-dimensional surface of the Pan-Hudson criterion can be plotted in the 

principal stress space (Fig. 4.14).  
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Figure 4.14  The Pan-Hudson criterion in the principal stress space 



CHAPTER 4                                                  Rock strength analysis in three-dimensional stress 
 

99 
 

Considering Eq. 4.6.15 the parameter _� for the Pan-Hudson criterion can be defined as:   

ci

cPHcPH
PH m

sJJ
I

σ
σσ 2

22
1

39 −+
=                                                                              (4.6.16) 

The relevant MATLB program, used for plotting the Pan-Hudson failure surface in the 

principal stress space can be found in Appendix F. 

4.6.3. The Zhang-Zhu criterion 

As pointed out by Zhang and Zhu (2007), it is desirable for a three-dimensional version of the 

Hoek-Brown criterion to be reduced to the original form of the Hoek-Brown criterion, when 

�� � �� or �� � ��. In triaxial compression (�� ' �� � ��) and extension (�� � �� ' ��) 

stress states, the second invariant of the deviatoric tensor, V�, (Eqs. 4.2.7) reduces to: 

( )
3

2
31

2
σσ −=J                                                                                                                (4.6.17) 

Substituting Eq. 4.6.17 into Eq. 4.6.14, the Pan-Hudson criterion reduces to the following 

relationship:  

( ) ( ) 2
31

2
31 2 cmci

ci sm
m σσσσσσσσ =−−+−                                                              (4.6.18) 

The parameter �R in Eq. 4.6.18 is the mean normal stress GeI
� M and is assumed to be constant. 

Furthermore, rearranging Eq. 4.6.1, the Hoek-Brown criterion can also be written as: 

( ) 2
3

2
31 cci sm σσσσσ =−−                                                                                             (4.6.19) 

Substituting Eq. 4.6.19 into Eq. 4.6.18, the constant parameter �R can be defined so that Eq. 

4.6.18 reduces to the original form of the Hoek-Brown criterion under triaxial compression 

and extension states of stress. To satisfy this condition it is necessary to define the constant 

parameter �R as follows: 
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2
31

2,
σσσσ +== mm                                                                                                       (4.6.20)  

Consequently, if the parameter  eI
�  in the Pan-Hudson criterion is replaced with the 

parameter �R,� � HIJHL
� , the resultant formulation predicts the same failure stress for intact 

rock material as the Hoek-Brown criterion where �� � �� and �� � ��. Replacing the 

parameter 
eI
�  in the Pan-Hudson criterion with �R,� yields a three dimensional version of the 

Hoek-Brown criterion, which was first proposed by Zhang and Zhu (2007). Accordingly, the 

Zhang-Zhu criterion for predicting the failure stress of intact rock in three-dimensional stress 

state is expressed as: 

cmii
c

smJmJ σσ
σ

=−+ 2,22 2

33
                                                                                (4.6.21) 

Where the parameter �R,�, given by Eq. 4.6.20 can also be defined as follows: 

23
21

2,
SI

m −=σ                                                                                                                  (4.6.22) 

Furthermore, considering Eq. 4.4.11, the Eq. 4.6.22 can be written in the following form: 

θσ sin
3

3

3
21

2,
JI

m −=                                                                                                    (4.6.23) 

Substituting Eq. 4.6.23 into Eq. 4.6.21, the Zhang-Zhu criterion can also be expressed as: 

( ) 0
3

sin23
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θ
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                                                 (4.6.24) 

Eq. 4.6.24 presents a more appropriate expression of the Zhang-Zhu criterion in the deviatoric 

stress space. Considering the function m̧ ¸ in Eq. 4.6.24, the radial distance between the 

hydrostatic axis and the trace of the Zhang-Zhu criterion on the deviatoric plane is calculated 

as follows: 


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CHAPTER 4                                                  Rock strength analysis in three-dimensional stress 
 

101 
 

Where the parameter ·¸¸ for the Zhang-Zhu criterion is defined as: 

( )θλ sin23
32

+= i
ZZ

m                                                                                                     (4.6.26) 

The trace of the Zhang-Zhu failure surface on a deviatoric plane can be plotted by applying 

Eqs. 4.6.25 and 4.6.26 and assuming the term _� as constant (Fig. 4.15). 

 

In order to reproduce the Zhang-Zhu cross sections on different deviatoric planes along the 

hydrostatic axis, to produce the associated three-dimensional failure surface, the Parameter _� 

is assumed to be a variable and is defined, regarding to Eq. 4.6.25, for the Zhang-Zhu 

criterion, as follows: 


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2
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3
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                                                                     (4.6.27) 

Considering Eqs. 4.6.25, 4.6.26 and 4.6.27 and by applying an iteration loop, the three-

dimensional failure surface corresponding to the Zhang-Zhu criterion can be plotted in the 

principal stress space (see Fig. 4.16). The relevant MATLAB code for plotting the Zhang-Zhu 

criterion can be found in Appendix F.  

 

Zhang-Zhu Hoek-Brown 

Deviatoric plane 

���  (MPa) 

���  (MPa) 

Figure 4.15  The cross section of the Zhang-Zhu criterion on the 
deviatoric plane 
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4.6.4. Generalised Priest criterion 

Combining the Drucker-Prager and the Hoek-Brown criteria Priest (2005) developed a three-

dimensional failure criterion. In the generalised Priest criterion the linkage between the 

Drucker-Prager and the Hoek-Brown criteria was based on the assumption that both criteria 

are supposed to give the uniaxial compressive strength of rock under uniaxial compression. 

The first invariant of the principal stress tensor (_�) and the second invariant of the principal 

deviatoric stress tensor (V�) reduce to the following expressions under uniaxial compression: 

3

3

2

2

1

c

c

J

I

σ

σ

=

=

                                                                                                                         (4.6.28) 

The Drucker-Prager criterion can be given as: 

3
1

2
BI

AJ +=                                                                                                                  (4.6.29) 

Substituting Eq. 4.6.28 into Eq. 4.6.29, parameters A and B can be given as follows: 

σ
2
 (MPa)σ

1
 (MPa)

σ 3 (
M

P
a)

Figure 4.16    The Zhan-Zhu criterion in the principal stress space 
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Priest (2005) pointed out that for the two criteria to be compatible the following relationship 

must be satisfied: 

111 III DPHB ==                                                                                                               (4.6.31) 

Where 

3
2 31

1
HBHB
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3
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DPI                                  (4.6.32) 

In Eq. 4.6.32 the terms ��0B and ��0B are the minor principal stress at failure and the failure 

stress, calculated by means of the Hoek-Brown criterion through the following relationship:  
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Furthermore, according to Priest (2005), the radial distance between the hydrostatic axis and 

the cross section of the failure surface on the deviatoric plane must be identical for both the 

Hoek-Brown and the Drucker-Prager criteria, that is: 

rrr DPHB ==                                                                                                                   (4.6.34) 
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The parameter ��	 is the failure stress for the specified principal stresses �� and ��. Priest 

(2005) adopted a numerical iteration to solve Eqs. 4.6.29 to 4.6.35 for seven unknowns, 
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namely ��/k , ��/k , A, B, _�, V� and ��	. Melkoumian et al. (2009) developed an explicit 

solution for the Generalised Priest criterion. Considering the closed form solution of the 

generalised Priest criterion for intact rock material the major principal stress at failure is given 

as: 

( )3231 3 σσσσ +−+= PHB                                                                                             (4.6.36) 

For intact rock parameter P is defined as:  
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Where 
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Parameters F and E are given as: 
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Where  

( )
c

im
C

σ
σσ

2
1 32 ++=                                                                                                         (4.6.40) 

Furthermore, under uniaxial compression the parameter V�/k, given by Eq. 4.6.4, is supposed 

to be identical to V�, given by Eqs. 4.6.28. Substituting Eq. 4.6.28 into Eq. 4.6.4 gives the 

following relationship: 
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From Eq. 4.6.41 the angle � is calculated as  �² . Substituting this value for � into Eq. 4.6.4 the 

Priest criterion for intact rock can be expressed in terms of invariants of the deviatoric tensor 

as follows: 

c
i

i
c

s
Im

JmJ σ
σ

=−+
33

33 1
22                                                                                     (4.6.42)  

Furthermore, the radial distance from the hydrostatic axis to the trace of the generalised Priest 

criterion on a deviatoric plane, given by _� �  DE&FCEF, can be expressed as: 
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The parameter ·c for the Priest criterion is defined as  √�
� A6. Considering Eq. 4.6.43 the cross 

section of the generalised Priest failure surface can be plotted on the deviatoric plane (see Fig. 

4.17). 

 

In order to plot the corresponding three-dimensional failure surface of the Priest criterion (see 

Fig. 4.18) through the same approach as that adopted for other three-dimensional criteria 

(Appendix F), the Parameter  _� is assumed to be a variable.  

Hoek-Brown  Priest criterion 

Deviatoric plane 

��� (MPa) 

��� (MPa) 

Figure 4.17    The cross section of the generalised Priest criterion on 
the deviatoric plane 
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From Eq. 4.6.43 the parameter _� for the generalised Priest criterion is defined as: 

ci

cPciP
GP m

sJmJ
I

σ
σσ 2

22
1

339 −+
=                                                                               (4.6.44) 

4.6.5. The Simplified Priest Criterion 

In addition to the generalised Priest criterion, in order to incorporate the influence of the 

intermediate principal stress on the failure stress of rock, Priest (2005) proposed another three-

dimensional failure criterion based on the Hoek-Brown criterion. He introduced a weighting 

factor w ranging from 0 to 1 and defined the minor principal stress (��/k) to be included in the 

Hoek-Brown criterion as follows: 

( )
10

1 323

≤≤

−+=

w

wwHB σσσ
                                                                                                  (4.6.45) 

As is inferred from Eq. 4.6.45, when w is 0 the intermediate principal stress (��) has no 

influence and when w is 1 the minor principal stress (��) has no influence on rock strength. 

Substituting Eq. 4.6.45 into the Hoek-Brown criterion gives the following formulation:  

σ
2
 (MPa)σ

1 (MPa)

σ 3 (
M

P
a)

Figure 4.18  The generalised priest criterion in the principal stress 
space 



CHAPTER 4                                                  Rock strength analysis in three-dimensional stress 
 

107 
 

2

1

3
31 








++= s

m

c

HB
cHBHB σ

σσσσ                                                                                   (4.6.46) 

Considering Eqs. 4.6.31 and 4.6.32, the simplified Priest criterion for evaluation of the rock 

failure stress (��	) in three-dimensional stress is given by the following formulation: 

( )32311 2 σσσσσ +−+= HBHBf                                                                                     (4.6.47) 

Substituting Eq. 4.4.9 into Eq. 4.6.47, the simplified Priest criterion can be written in terms of 

invariants of the deviatoric stress tensor as follows: 
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Where parameters -¹c and ·¹c are defined as follows: 
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Considering Eqs. 4.6.48 and 4.6.49, the radial distance from the hydrostatic axis and the trace 

of the simplified Priest criterion on the deviatoric plane can be expressed as: 
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Using Eqs. 4.6.49 and 4.6.50 the cross section of the simplified Priest criterion can be plotted 

on the deviatoric plane. However, it should be noted that since the parameter w appears in 

these equations, the shape of the cross section of the simplified Priest criterion changes with 

the changes of the parameter w. Priest (2005) proposed that for a range of sedimentary and 

metamorphic rocks the parameter w depends only on the minor principal stress (��) and could 

be calculated from the following relationship: 

15.0
315.0 σ≈w                                                                                                                  (4.6.51)   



CHAPTER 4                                                  Rock strength analysis in three-dimensional stress 
 

108 
 

Therefore, if the minor principal stress (��) takes the values of, for example, 10 MPa and 100 

MPa, the weighting factor w is calculated as 0.211and 0.299, respectively. The cross sections 

of the simplified Priest criterion on the deviatoric plane are given in Fig. 4.19 (a) and (b), for 

cases when the least principal stress takes the values of 10 MPa and 100 MPa, respectively. As 

is obvious from Fig. 4.19, under biaxial extension (�� � �� ' ��), which is represented by 

blunt corners in the Hoek-Brown cross section, the simplified Priest criterion does not 

calculate the same value for the failure stress as the Hoek-Brown criterion. However, since the 

Hoek-Brown criterion itself was developed as an empirical criterion based on a series of 

conventional triaxial testes in which the stress condition is manifested by (�� ' �� � ��), 

there is no evidence proving that the Hoek-Brown criterion accurately calculates the failure 

stress under biaxial extension, i.e. when �� � �� ' �� holds.   

    

 

The three-dimensional failure surface of the simplified Priest can also be plotted for a given 

value of �� and assuming the parameter _� as a variable, which, considering Eq. 4.6.50, can be 

defined for the simplified Priest criterion as follows: 
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The relevant MATLAB code for plotting the three-dimensional failure surface, representing 

the simplified Priest criterion in the principal stress space can be found in Appendix F.  The 

Figure 4.19   The cross section of the simplified Priest criterion on the deviatoric 
plane for (a) )� � �­ MPa, (b) )� � �­­ MPa 

Simplified Priest Hoek-Brown 

(b) 

Simplified Priest Hoek-Brown 

(a) 
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effect of the weighting factor w (due to the change in the minor principal stress (��) values) on 

the shape of the simplified Priest failure surface is illustrated in Fig. 4.20 (a) and (b).   

   

 

 

4.7. Experimental Evaluations of Rock Behaviour under Three-

Dimensional Stress 

Since the Hoek-Brown criterion is an empirical formulation which was developed and 

formulated by Hoek and Brown (1980), based on comprehensive experimental studies on the 

rock performance under conventional triaxial tests (�� ' �� � ��), it is also essential for 

three-dimensional failure criteria, which have been derived based on the Hoek-Brown 

criterion, to be validated against true-triaxial (�� ' �� ' ��) experimental data. Colmenares 

and Zoback (2002) examined a number of selected failure criteria by comparing them with 

published true-triaxial experimental data for five different rock types, namely Dunham 

dolomite, Shirahama sandstone, Solnhofen limestone, Yuubari shale and KTB amphibolite. 

They first defined a correlation coefficient to investigate the extent of dependency of the 

failure stress of a particular rock type on the intermediate principal stress and then identified 

that the Modified Wiebols and Cook (Zhou, 1994) and the Modified Lade (Ewy, 1999) criteria 

are in reasonable agreement with experimental data, especially for those rocks with higher ��-

dependency of failure stress. However, it should be noted that some three-dimensional Hoek-

Brown based criteria which have been developed especially for rock material had not been 
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Figure 4.20   The Simplified Priest criterion in the principal stress space, for (a) )� � �­ MPa 
º � ­. ��� and (b) )� � �­­ MPa, º � �. ¬¬  
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introduced at that time and therefore, were not included in the comparative study by 

Colmenares and Zoback (2002). 

A statistical evaluation of the Hoek-Brown based three-dimensional failure criteria based on 

nine sets of published true-triaxial test data was carried out in this study. Data sets selected 

from true-triaxial experiments on nine different types of rocks, included three carbonates 

(Solnhofen limestone, Dunham Dolomite and Yamaguchi marble) and four silicates (Mizuho 

trachyte, Orikabe monzonite, Inada granite and Manazuru andesite) studied by Mogi (1971a), 

also presented by Mogi (2007), Westerly granite by Haimson and Chang (2000) and KTB 

amphibolite by Chang and Haimson (2000). All true-triaxial data were obtained from tests on 

prismatic rock specimens. The dimensions of the rock specimens in Mogi’s experiments were 

15×15×30 mm with the aspect ratio of 2, and for Westerly granite and KTB amphibolite the 

specimen’s dimensions were 19×19×38 mm with the same aspect ratio of 2. Therefore, the 

true-triaxial data in which the intermediate principal stress is zero (�� � 0) can be applied for 

determining the Hoek-Brown parameter A6 and Coulomb parameters (  and ?). Table 4.1 

presents Coulomb input parameters (  and ?), uniaxial compressive strength (��) and the input 

parameter A6 for the Hoe-Brown criterion for nine types of rocks discussed in this study. 

True-triaxial data sets are presented in Appendix C, tables C.1 to C.9. 

 

Rock specimen σc (MPa) c(MPa) φ (Deg) mi 

Westerly Granite 165 34 52.6 38.6 
KTB Amphibolite 201 31.3 48.5 37.3 
Dunham Dolomite 261 64.2 37.6 9.7 
Solnhofen Limestone 310 90.4 29.5 4.6 
Yamaguchi Marble 82 20 37.8 10.3 
Mizuho Trachyte 100 25.9 35.3 10.9 
Manazuru Andesite 140 27.2 47.5 33.7 
Inada Granite 229 46.4 46 29.5 
Orikabe Monzonite 234 50.8 43 20 

4.7.1. The influence of intermediate principal stress on failure stress 

By plotting true-triaxial experimental data in �� � �� domain, the ��-dependency of the 

fracture strength can be qualitatively illustrated (Fig. 4.21). In order to quantify the extent to 

Table 4.1    Hoek-Brown and Coulomb parameters of the 
rock types studied 
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which the fracture strength (��) depends upon the change in �� values for a constant �� 

Colmenares and Zobak (2002) calculated the correlation coefficient between �� and �� using 

linear Pearson’s correlation as: 

[ ] [ ]
21

21
21

,
,

σσ

σσσσ
SS

Cov
Corr =                                                                                               (4.7.1) 

Where gHI and gHK are the standard deviation of �� and ��, respectively. Pearson’s correlation 

lies between -1 and 1. When the Pearson correlation is 1, it indicates that �� increases linearly 

with �� (perfect positive correlation) and when the Pearson correlation is -1, it means �� 

decreases linearly as �� increases (anti-correlation). If the two variables are absolutely 

independent, the Pearson correlation coefficient will be zero. However, the converse in not 

always true, i.e. a zero Pearson’s correlation only postulates that there is no linear correlation 

between the two variables, yet the variables may be correlated non-linearly. On the other hand, 

as is obvious from Fig. 4.21, the relation between �� and  �� is non-linear. Furthermore, if a 

second order polynomial (quadratic) function is fitted to data points in the �� � �� domain for 

constant �� values, the coefficient of fitness to the quadratic function as a nonlinear correlation 

coefficient is calculated as: 

SST

SSE
r −= 1                                                                                                                      (4.7.2) 

Where ‘SSE’ is the ‘Sum of the Squared Errors’ between the observed values of the fracture 

stress (��"�B�$) and the fitted values of the fracture stress (��"	6
$) given by: 
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The parameter ‘SST’ in Eq. 4.7.2 is known as the ‘Sum of the Squared Total’ and is calculated 

as: 
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The parameter �»�"�B�$ is the mean value of ��"�B�$6. Therefore, since the experimental data do 

not demonstrate a linear relationship between the fracture stress (��) and the intermediate 

principal stress (��), calculation of the linear correlation coefficient between these two 

variables does not provide any information about the dependence of �� on ��. However, if it is 

assumed that the intermediate principal stress and the fracture stress are correlated through a 

quadratic relationship, this correlation can be quantified by applying Eq. 4.7.2. Furthermore, in 

order to visualise the extent of ��-dependency of the fracture stress at any given value for ��, 

calculated values for the non-linear correlation coefficient can be plotted versus the minor 

principal stress (Fig. 4.22).     

The linear correlation coefficient between �� and �� calculated by the means of Pearson’s 

linear correlation coefficient was also plotted versus the minor principal stress and is presented 

in Appendix C, Fig. C.1. As illustrated in Fig. 4.22, correlation of fitness to quadratic 

functions in almost all cases lies between 0.8-1, which indicates that the fracture stress closely 

correlates with the intermediate principal stress through a quadratic function. This close 

correlation suggests that the nature of dependency of the failure stress (��) on the intermediate 

principal stress ( ��) can be well simulated by a quadratic function.  

Furthermore, all quadratic functions fitted to data points are concaved downward, i.e. the 

second derivatives of all quadratic functions are negative. Such quadratic functions grow to a 

maximum as the variable increases, thereafter the function declines with the increasing 

variable. Equating the first derivative of each one of these quadratic functions for a given 

value for �� to zero, the value of the intermediate principal stress after which increasing �� 

negatively affects the rock strength can be calculated. The application of the linear correlation 

coefficient can only be meaningful if two correlation functions are calculated; the first one 

from the point �� � �� to the point �� � � at which the quadratic function is at its maximum, 

and the second one from the point �� � � down to the failure point, which is higher than the 

point �� � �� (Fig. 4.21). It merits noting that the former yields a positive correlation and the 

latter gives an anti-correlation.   
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Figure 4.21    Fitting quadratic functions to true-triaxial experimental data in )� � )� domain (continues) 
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 4.7.2. A modification to the simplified Priest criterion 

If the failure stress in the principal stress space is represented by a point P, as illustrated in 

Fig. 4.6, the length OC along the hydrostatic axis from the origin of the principal stress space 

perpendicular to a deviatoric plan containing the point P is calculated as:  

( )321
3

1 σσσ ++=POC                                                                                                    (4.7.5) 

Furthermore, the radial distance from the hydrostatic axis to the point P on the deviatoric 

plane can be given as follows:  

( ) ( ) ( )




 −+−+−== 2

13
2

32
2

212 3

1
2 σσσσσσJrP                                                 (4.7.6) 

On the other hand, the Hoek-Brown criterion predicts a failure stress, which can also be 

represented by a point such as HB in the principal stress space. For such a stress point the 

length OCHB along the hydrostatic axis and the radial distance �/k from the hydrostatic axis 

can be given by the following expressions, recalling that the Hoek-Brown criterion assumes 

equal values for the intermediate and the minor principal stresses. 

( )
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HBHBHB

σσ

σσ

−==

+=

                                                                     (4.7.7) 

In Eqs. 4.4.7, ��/k and ��/k are calculated from Eqs. 4.6.45 and 4.6.46, respectively. In order 

to develop a three-dimensional failure criterion based on the Hoek-Brown criterion, it is 

desired that the failure point HB, predicted by the Hoek-Brown criterion, coincides with the 

failure point P which occurs under the three-dimensional stress condition. Therefore, the stress 

vector � c in Fig. 4.6, which indicates the position of the failure stress in the principal stress 

space, must be identical with the stress vector � /k calculated by the means of the Hoek-Brown 

criterion: 

HBP σσ rr =                                                                                                                           (4.7.8) 



CHAPTER 4                                                  Rock strength analysis in three-dimensional stress                                                      
 

117 
 

Therefore, considering Fig. 4.6 and recalling the Pythagoras theorem the Eq. 4.7.8 can be 

written as:   

2222
HBHBPP OCrOCr +=+                                                                                                    (4.7.9) 

Rearranging Eq. 4.7.9, the failure stress ��	  can be calculated as follows: 

2

1
2
3

2
2

2
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2
11 2
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


 





 +−+= σσσσσ HBHBf                                                                            (4.7.10) 

It should be noted that the prediction accuracy of the failure criterion given by Eq. 4.7.10 

depends upon the weighting factor w which appears in the formulation of ��/k (Eq. 4.6.45) 

and consequently, in the formulation of ��/k. One strategy for formulating the weighting 

factor w is to substitute Eq. 4.6.45 into Eq. 4.6.38, which results in the following relationship:  

( )
( )32
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σσ
σσ

−
−−−

+=
F

FEE
w

m
                                                                                (4.7.11) 

Where parameters E and F are given by Eqs. 4.6.39. In a given stress state where �� and �� 

are known by substituting the weighting factor w from Eq. 4.7.11 into Eq. 4.7.10 the failure 

stress is calculated the same way as is done by the generalised Priest criterion. However, it 

merits noting that the generalised Priest criterion assumes, as does the Drucker-Prager 

criterion, a more profound strengthening effect for the intermediate principal stress than that 

which is observed in true-triaxial experiments and therefore, tends to overestimate the rock 

strength, especially at higher values of ��.   

This overestimating tendency of the generalised Priest criterion can be addressed considering 

the circular cross section of this criterion on the deviatoric plane. This circular cross section 

indicates that the radial distance between the hydrostatic axis and the predicted failure point on 

the trace of the failure surface on the deviatoric plane is identical for all stress conditions. 

However, from Fig. 4.22 it can be observed that the failure stress decreases after the 

intermediate principal stress grows closer to the major principal stress. Therefore, the radial 

distance between the hydrostatic axis and the trace of the failure surface on the deviatoric 
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plane is supposed to be smaller when �� � ��, i.e. at obtuse corners in the hexagonal cross 

section of the Hoek-Brown criterion on the deviatoric plane.   

Accordingly, in order to incorporate the dual nature of ��-dependency of the failure stress, the 

weighting factor w can be determined so that the strengthening effect of the intermediate 

principal stress to be addressed in accordance with the true-triaxial test data. It should be noted 

that on a particular deviatoric plane the radial distance between the failure point P and the 

failure point predicted by the Hoek-Brown criterion are supposed to be identical, so according 

to Eqs. 4.7.6 and 4.7.7 (b) the following relationship holds: 

( ) ( ) ( ) ( ) 2
31

2
13

2
32

2
21 2 HBHB σσσσσσσσ −=−+−+−

 
                                           (4.7.12) 

On the other hand, considering Fig. 4.6, for a particular deviatoric plane the distance OCP for 

the failure point P and the distance OCHB for the point HB predicted by the Hoek-Brown 

criterion are equal and therefore, recalling Eqs. 4.7.5 and 4.7.7 (a) the major principal stress 

can be given as follows: 

32311 2 σσσσσ −−+= HBHB                                                                                          (4.7.13) 

Substituting Eq. 4.7.13 into Eq. 4.7.12, and after series of expansion and rearrangement, the 

following relationship can be derived for calculating the weighting factor w for intact rock:  

( ) ( ) ( ) ( ) 0145648154189 234 =−++−+−−+++− µηµηµηη wwww                    (4.7.13) 

Where parameters � and � are defined as follows: 

( ) ( ) 322
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+=
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= ccc mm                            (4.7.14) 

However, substitution of the weighting factor w, given by Eqs. 4.7.13 and 4.7.14, into Eq. 

4.7.10 again results in overestimation of the failure stress and the predicted values for the 

failure stress are quite similar to the predicted failure stress calculated by the generalised Priest 

criterion. It is also important to note that when �� � �� Eq. 4.6.45 reduces to ��/k � �� and 

consequently the rock failure stress, ��	 in Eq. 4.7.10 will be the same as the failure stress 

predicted by the original two-dimensional formulation of the Hoek-Brown criterion. An 
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alternative approach for determining the weighting factor w is to define this parameter so that 

to achieve minimum misfit with true-triaxial data. In order to achieve this goal, the parameter 

w was first defined to obtain exact match with experimental data for each case. On the other 

hand, the parameter w can be assumed to be proportional to parameters � and �, (which appear 

in Eq. 4.7.13 and are given by Eqs. 4.7.14), and to the minor principal stress (��) and the 

uniaxial strength (��) as follows: 









−∝

c
w

σ
σ

η
µ 3                                                                                                                  (4.7.15) 

The relationship between the weighting factor w and parameters �, �, �� and �� can be 

formulated as a power function by plotting the values of w for which Eq. 4.7.10 predicts the 

exact value of the failure stress versus the values of the term G¼
½ � HL

H¾
M for each stress state 

(Fig. 4.23) as follows: 
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                                                                                                      (4.7.16)                         

Substituting the parameter w, as is given by Eq. 4.7.16, into the proposed three-dimensional 

failure criterion given by Eq. 4.7.10, the dual nature of the ��-dependency of the failure stress 

is appropriately taken into account. A statistical comparison of three-dimensional failure 

criteria which source their input parameters from the Hoek-Brown criterion was carried out 

against nine sets of published true-triaxial experimental data and is presented in the 

subsequent section.   
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4.7.3. Comparison of three-dimensional, Hoek-Brown based failure criteria  

The common method used to compare the prediction accuracy of three-dimensional failure 

criteria to experimental data is to create a two-dimensional graph plotting �� versus �� for a 

constant �� (Appendix D,  �� vs. �� graphs). A qualitative analysis is then undertaken to 

assess how well the various criteria fit the experimental data in ��-�� domain. The key 

limitation of this method is that each analysis only takes into account a single slice of the 

three-dimensional stress space for a constant ��.   

A more comprehensive error analysis can be conducted by giving consideration to three-

dimensional failure surfaces of failure criteria in principal stress space. Any point on the 

failure surface represents a failure stress, which has been predicted by the associated failure 

function and can be addressed by a stress vector (� ). The stress vector form the origin of the 

principal stress space to the predicted stress point on the failure surface is depicted as � "R��Á�$ 

in Fig. 4.24. Similarly, an observed data point in the principal stress space can be represented 

by a stress vector as � "�B�Á�,Á�$, as illustrated in Fig. 4.24.   

The magnitude of the resulting vector, � "R��Á�$ � � "�B�Á�,Á�$, quantifies the difference 

between the predicted and observed failure stresses and therefore, can be interpreted as a 

measure of prediction accuracy of the failure model. Furthermore, negative values of the 

subtraction resultant vector indicate that the relevant model underestimates the rock failure 

stress and positive values of this vector are interpreted as that the rock strength has been 

overestimated. Therefore, the prediction accuracy (PA) of a failure criterion, as a predictive 

model, can be defined as follows: 

)()( observedmodelPA σσ rr −=                                                                                                (4.7.5) 

However, as the values of �� and �� are identical for both � "R��Á�$ and � "�B�Á�,Á�$, the only 

distance relating to an error is in the �� direction. Therefore, Eq. 4.7.5 can be reduced to the 

following expression: 

)(1)(1 observedmodelPA σσ −=                                                                                             (4.7.6) 
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In addition, absolute percentage error can be defined as: 

100
)(1

)(1)(1 ×
−

=
observed

observedmodel
E

σ
σσ

                                                                                    (4.7.7) 

 

Comparing the calculated values of absolute percentage errors from Eq. 4.7.7 for each one of 

three-dimensional criteria incorporated in this study it was revealed that in all cases (with the 

exception for Yamaguchi Marble) the proposed criterion, given by Eq. 4.7.10, namely the 

modified simplified Priest, predicts the rock failure stress more accurately than other three-

dimensional models. Results of this statistical comparison are presented in Table 4.2. After the 

proposed criterion the Zhang-Zhu criterion is in good agreement with the experimental data, 

and in the case of Yamaguchi marble is more accurate than other models, including the 

modified simplified Priest criterion. Furthermore, the relative likelihood of being zero for PA, 

which is a measure of difference between the experimental and predicted failure stress values 

and is given by Eq. 4.7.6, can be described using the probability density function (PDF) which 

is parameterised in terms of the ‘mean’ and ‘variance’ as follows: 
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Figure 4.24  Difference between predicted and observed failure stresses 
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Where � and � are the mean and variance, respectively. The probability density functions, 

given by Eq. 4.7.8, were plotted versus PA for the nine data sets and six selected three-

dimensional failure criteria which are presented in Appendix D. The values for mean and 

variance were also included in Figs. D.1to D.9, in Appendix D. 

 

  Manazuru Andesite   

Criterion Rank σ₁(model)-σ₁(observed) (MPa) over/underestimation 
(average) 

Average 
percentage error 

(%) 
Modified Simplified Priest 1 4.15 overestimation 5.01 

Simplified Priest 2 -16.11 underestimation 6.09 
Zhang-Zhu 3 16.80 overestimation 6.79 

Hoek-Brown 4 -100.04 underestimation 15.76 
Generalised Priest 5 106.24 overestimation 17.83 

Pan-Hudson 6 -170.01 underestimation 34.75 

  Inada Granite   

Criterion Rank σ₁(model)-σ₁(observed) (MPa) over/underestimation 
(average) 

Average 
percentage error 

(%) 
Modified Simplified Priest 1 -11.58 underestimation 3.73 

Simplified Priest 2 -31.17 underestimation 4.34 
Zhang-Zhu 3 -12.92 underestimation 4.67 

Generalised Priest 5 59.83 overestimation 8.34 
Hoek-Brown 4 -119.57 underestimation 12.99 
Pan-Hudson 6 -336.48 underestimation 34.94 

  Orikabe Monzonite   

Criterion Rank σ₁(model)-σ₁(observed) (MPa) over/underestimation 
(average) 

Average 
percentage error 

(%) 
Modified Simplified Priest 1 -7.12 underestimation 5.64 

Zhang-Zhu 3 -25.53 underestimation 6.41 
Generalised Priest 5 45.28 overestimation 7.91 
Simplified Priest 2 -54.12 underestimation 8.55 

Hoek-Brown 4 -47.53 underestimation 9.76 
Pan-Hudson 6 -251.34 underestimation 31.80 

  Yamaguchi Marble   

Criterion Rank σ₁(model)-σ₁(observed) (MPa) over/underestimation 
(average) 

Average 
percentage error 

(%) 
Zhang-Zhu 1 1.59 overestimation 3.88 

Modified Simplified Priest 2 -3.33 underestimation 4.35 
Simplified Priest 3 -23.35 underestimation 10.43 

Generalised Priest 4 41.11 overestimation 15.87 
Hoek-Brown 5 -42.64 underestimation 17.70 
Pan-Hudson 6 -30.84 underestimation 18.74 

Continues 

Table 4.2    Comparison of 3D Hoek-Brown based criteria 
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  KTB Amphibolite   

Criterion Rank σ₁(model)-σ₁(observed) (MPa) over/underestimation 
(average) 

Average 
percentage error 

(%) 
Modified Simplified Priest 1 33.68 overestimation 12.63 

Zhang-Zhu 2 64.73 overestimation 13.65 
Simplified Priest 3 -15.70 underestimation 15.91 

Hoek-Brown 4 -132.07 underestimation 25.00 
Pan-Hudson 5 -141.13 underestimation 25.33 

Generalised Priest 6 216.71 overestimation 34.73 

  Westerly Granite   

Criterion Rank σ₁(model)-σ₁(observed) (MPa) over/underestimation 
(average) 

Average 
percentage error 

(%) 
Modified Simplified Priest 1 20.45 overestimation 9.32 

Zhang-Zhu 2 19.56 overestimation 9.88 
Simplified Priest 3 -38.89 underestimation 9.99 

Hoek-Brown 4 -109.73 underestimation 17.97 
Generalised Priest 5 112.70 overestimation 23.80 

Pan-Hudson 6 -258.34 underestimation 40.95 

  Dunham Dolomite   

Criterion Rank σ₁(model)-σ₁(observed) (MPa) over/underestimation 
(average) 

Average 
percentage error 

(%) 
Modified Simplified Priest 1 -16.83 underestimation 3.19 

Zhang-Zhu 2 -7.43 underestimation 4.29 
Simplified Priest 3 -45.30 underestimation 7.02 

Generalised Priest 5 83.56 overestimation 11.37 
Hoek-Brown 4 -121.30 underestimation 16.69 
Pan-Hudson 6 -102.99 underestimation 16.83 

  Solnhofen 
Limestone 

  

Criterion Rank σ₁(model)-σ₁(observed) (MPa) over/underestimation 
(average) 

Average 
percentage error 

(%) 
Modified Simplified Priest 1 8.72 overestimation 3.51 

Zhang-Zhu 2 8.05 overestimation 3.71 
Simplified Priest 3 -36.19 underestimation 7.09 

Generalised Priest 5 63.52 overestimation 12.14 
Hoek-Brown 4 -65.59 underestimation 12.21 
Pan-Hudson 6 -47.75 underestimation 12.40 

  Mizuho trachyte   

Criterion Rank σ₁(model)-σ₁(observed) (MPa) over/underestimation 
(average) 

Average 
percentage error 

(%) 
Modified Simplified Priest 1 -14.26 underestimation 4.33 

Zhang-Zhu 2 4.57 overestimation 4.65 
Simplified Priest 3 -10.31 underestimation 4.49 

Hoek-Brown 4 -43.98 underestimation 11.43 
Pan-Hudson 5 -20.92 underestimation 16.20 

Generalised Priest 6 65.40 overestimation 17.33 
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4.8. True-triaxial Experiments at the University of Adelaide 

Although a number of true-triaxial experiments have been conducted over the past decades, as 

a major limitation in studying the rock performance under three-dimensional stress can still be 

mentioned the lack of adequate true-triaxial experimental data in order to validate the 

theoretical and empirical rock failure models. The main reasons for such limitation are the 

elaborate rock specimen preparation techniques and complicated testing procedures. 

According to Mogi (1971a) the major difficulty of the true-triaxial testing  is ensuring the 

application of three orthogonal, independent yet  homogeneous stresses to rock specimens. 

Nevertheless, there exists a serious need for further true-triaxial experiments to be conducted 

on rock material. Considering this serious demand a number of polyaxial tests were conducted 

at the University of Adelaide in collaboration with a group of four honours students. The main 

purposes of conducting true-triaxial experiments were to validate three-dimensional rock 

failure criteria developed based on the Hoek-Brown criterion, and to investigate the effect of 

the specimen size and shape on the apparent strength of the rock specimen.     

4.8.1. Experimental setup    

True-triaxial apparatus 

The true-triaxial cell used for testing was designed and fabricated at the University of 

Adelaide by Prof. Stephen D. Priest and Dr. Nouné S. Melkoumian in collaboration with Mr 

Adam Schwartzkopff et al. (2010) (Fig. 4.25). The design of the true-triaxial cell was adopted 

from and is similar to an existing design outlined by King et al. (1997) (Schwartzkopff et al., 

2010). Lateral confining pressures are applied independently and orthogonally by two sets of 

hydraulic jacks mounted on a steel reaction ring by means of intermediate jack support units. 

Each opposing set of jacks is controlled by a hydraulic circuit, which is pressurised by a hand 

pump connected to an adjustable pressure relief valve. Each jack has a capacity of 718 KN, 

which corresponds to maximum pressures of 287, 200, 147 and 112 MPa on 50, 60, 70 and 80 

mm sized cubic specimens, respectively. The hydraulic jacks control the extension of circular 

pistons on which intermediate platen base units are mounted using rare earth magnets. The 

platen base unit has an indention into which the platen is inserted.    
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One important feature of the true-triaxial cell is that replaceable platens of various sizes render 

the cell capable of testing cubic specimens of different sizes, with dimensions of 50, 60, 70 

and 80 mm. All different size platens were designed with the same dimensions at their base, to 

allow them to be slotted into the platen base unit and the platen dimensions change from the 

base to the contact surface to match the surface dimensions of the specimen. In order to avoid 

the grinding of the platens which could result in damaging the cell, the platens were designed 

with a 2% bevel around the edges to account for the deformation of the rock specimen during 

testing (Schwartzkopff et al., 2010). 

Top and bottom platens were also fabricated for each specimen size and the contacting 

surfaces were designed to have the same chamfering as the lateral platens. Axial load is 

applied using a compression machine which has a maximum capacity of 5000 KN. Strains in 

the three principal stress directions are also monitored during testing by means of Linear 

Variable Differential Transducers (LVDTs). The loading system was thoroughly calibrated 

using a strain-gaged aluminium sample of known elastic properties. A detailed description of 

the design, fabrication and calibration procedures of the true-triaxial cell at the University of 

Adelaide is given in Schwartzkopff et al. (2010).  

 

Figure 4.25   True-triaxial apparatus of the University of Adelaide 
[after Schwartzkopff et al.(2010)] 
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Specimen preparation 

Specimens were made from Kanmantoo bluestone, which is a hard fine-grained, medium to 

dark grey-blue meta-siltstone of early Cambrian age. The stone was sourced from the 

Kanmantoo Stone Quarry in the Adelaide Hills. The bluestone occurs within the Tapanappa 

formation within the larger Kanmantoo group within the Adelaide fold belt geological 

providence. Kanmantoo bluestone was chosen because it is a relatively homogeneous rock. 

This homogeneity reduces the risk of inaccurate test results due to flaws in individual 

specimens.   

To determine the uniaxial compressive strength, ��, and the parameter A6 for the Hoek-Brown 

criterion a number of cylindrical specimens with aspect ratio of 2.4 were prepared to be tested 

in the Hoek cell. Cores were drilled out from a block of Kanmantoo bluestone and were cut to 

make specimens of 100mm in length and 42mm in diameter. The top and bottom faces of the 

cores then were ground to minimise the parallelism offset. 

To prepare cubic specimens of 60×60×60 mm dimensions to be tested in the true-triaxial 

apparatus, first, cores of 85mm diameter were drilled out of the Kanmantoo block. Once the 

cores were prepared, they were cut into rectangular prisms and then two cubes were cut out of 

each prism (Fig. 4.26). Cubic specimens (60×60×60 mm) were surface ground to obtain 

dimensions within 1mm from the prescribed size, with 0.05 mm of parallelism and 

orthogonality offsets. It was a requirement that the cubic specimens were slightly larger than 

their specified size to allow the cubes to be used in the true-triaxial cell without any contact 

between platens in the true-triaxial cell. Undersized or exact sized cubes may cause contact 

between platens.  

 

Figure 4.26   Block of Kanmantoo Blue stone and preparation of cubic 
specimens [after Dong et al., (2011)] 
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True-triaxial tests 

A total number of 10 true-triaxial tests were carried out on 60×60×60 mm cubic specimens of 

Kanmantoo blue stone. True-triaxial tests were conducted at the University of Adelaide and in 

collaboration with a group of four honour students. True-triaxial testing procedure consisted of 

simultaneously raising all three principal stresses at a constant rate until �� reached its 

prescribed value. Thereafter, the other two principal stresses (��and ��) were increased at the 

same rate until �� reached its predetermined magnitude. From this point �� and �� were kept 

constant and �� alone was raised until the specimen failed. Unloading was carried out after �� 

decreased approximately 5%-10% of its peak level. The results of true-triaxial tests are 

presented in Table 4.3. 

 

 

Test No. σ₁ (MPa) σ₂ (MPa) σ₃ (MPa) I1 (MPa) √J2 (MPa) 

1 450.62 21.07 21.43 493.12 247.90 
2 426.92 49.16 19.80 495.87 227.05 
3 585.70 70.61 22.63 678.93 312.16 
4 537.80 41.54 42.65 621.99 286.19 
5 582.93 74.73 42.94 700.59 303.00 
6 673.06 101.39 40.95 815.40 348.81 
7 771.82 59.68 62.66 894.16 410.30 
8 792.79 90.75 63.19 946.72 413.51 
9 701.27 118.27 65.02 884.56 352.97 
10 761.87 140.04 63.20 965.11 383.13 

 

Different types of failure were observed from the true-triaxial tests. The most common failure 

mode from true-triaxial testing was a V-shaped crack (Fig. 4.27 (a)). This failure mode 

involved the formation of two distinct cracks running through the cubic specimen. Another 

failure mode observed from true-triaxial testing was an M-shaped crack (Fig. 4.27 (b)). It is 

important to mention that regardless of the mode of failure, failure planes were in the direction 

of the intermediate principal stress, ��, as was expected, and the specimens were separated out 

in the direction of the minimum principal stress, ��.    

Table 4.3  True-triaxial experimental data of Kanmantoo Bluestone, 
The University of Adelaide (2011) 
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Comparison and validation of three-dimensional failure criteria against true-
triaxial data 

Six rock failure criteria were selected and studied in this thesis. These criteria have been 

developed based on the Hoek-Brown failure criterion in the sense that their input parameters 

are the same as those for the Hoek-Brown criterion, namely the uniaxial compressive strength 

and the Hoek-Brown constant parameter m. In order to evaluate and validate the selected 

three-dimensional rock failure criteria against the true-triaxial experimental data, the uniaxial 

compressive strength and the Hoek-Brown constant parameter m for Kanmantoo bluestone 

had to be determined. Uniaxial tests were performed on cylindrical and cubic specimens of 

Kanmantoo bluestone. The aspect ratio (length/diameter) for cylindrical specimen was 2.4 and 

for the cubic specimen was 1 (Table 4.4).   

 

Rock specimen Aspect Ratio 
(Length/Diameter) 

UCS 
(MPa) 

Average 
UCS (MPa) 

cylinder  2.4 148.858 
147.11343 cylinder  2.4 149.255 

cylinder  2.4 143.228 
cubic  (60 × 60 mm) 1 190.278 190.27778 
cubic  (50 × 50 mm) 1 208.773 208.7727 

 

Figure 4.27   (a) The V-shaped failure mode and (b) the M-shaped failure 
mode [after Dong et al. (2011)] 

(a) (b) 

Table 4.4  Uniaxial compressive strength of cylindrical and cubic 
specimens of Kanmantoo bluestone. 
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It is important to remember that apparent strength in short specimens becomes higher due to 

the clamping effect at the two ends of the specimen. The underlying reason for this 

phenomenon is that the loading machine does not deform and expand as much as the rock does 

under the loading. The expansion of rock at machine-specimen interface exerts an additional 

confining pressure on the rock specimen. This confining pressure is the result of the frictional 

force acting on the interfacial area between the rock specimen and the loading machine and 

restricts the lateral expansion of the rock specimen at the two ends of the specimen. It is 

evident that with the increase of the length/diameter ratio, this effect should decrease gradually 

and disappear at some critical value. Above this critical value, the strength should remain 

constant and should represent the true strength under uniform compression. According to 

Mogi (2007), this critical value for length/diameter ratio is about 2.5. Therefore, considering 

Table 4.4, the uniaxial compressive strength of the Kanmantoo bluestone is determined as 147 

MPa.   

Conventional triaxial tests were also conducted on similar core samples, using the Hoek cell, 

to determine the empirical Hoek-Brown parameter m for the Kanmantoo bluestone. Confining 

pressure was applied at the same rate as the vertical load. Once the desired confining pressure 

was reached it was maintained constant by bleeding off excess pressure as necessary. Since 

the specimen tends to expand laterally as it is loaded vertically, confining pressure can become 

too high if it is not bled off. Vertical loading continued at a constant rate until the specimen 

failed. Hoek cell tests were performed under 5, 10 and 15 MPa confining pressures, as it is 

given in Table 4.5. 

 

Confining 
Pressure (MPa) 

Failure Stress 
σ1 (MPa) σ3/σc [(σ1-σ3)/σc]

2 

5 212.556 0.034 1.994 
10 232.051 0.068 2.282 
15 241.533 0.102 2.375 

 

The empirical parameter m can be determined by rearranging the Hoek-Brown criterion (Eq. 

4.6.1) as follows: 

Table 4.5  Conventional triaxial tests for determining the Hoek-
Brown constant parameter m  
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By plotting 8"�� � ��$/��:� against "��/��$, for the experimental data (Table 4.5), the 

parameter m is determined as the slope of a best fit line, which intersects with the 8"�� � ��$/
��:�-axis at 1, as illustrated in Fig. 4.28. Therefore, considering the Hoek cell tests the 

empirical parameter m is determined as equal to 16.131. However, the coefficient of 

determination, 9� value of -2.86 indicates that the line is not well fitting the data.                                           

 

 

 

Inserting the uniaxial compressive strength, ��, as 147 MPa and the Hoek-Brown constant m 

as 16.131 into the selected three-dimensional rock failure criteria, the rock failure stress can be 

calculated by means of each failure criterion (Table 4.6). However, using these values for �� 

and m it was found out that all three-dimensional failure criteria underestimate the strength of 

the cubic rock specimen under three-dimensional stress, as illustrated in ��-�� plots in Fig. 

4.29.         

 

 

y = 16.131x + 1

R² = -2.867

0.000

0.500

1.000

1.500

2.000
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3.000
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[(
σ

1-
σ

3)
/σ

c]
2

σ3/σc

Figure 4.28  Best fit line to conventional triaxial data for determining the 
Hoek-Brown constant parameter m  
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σ2 σ3 
 σ1               

True-triaxial 
data 

σ1         
Hoek-Brown 

 σ1          
Pan-Hudson 

σ1       
Zhang-Zhu 

 σ1        
Generalised 

Priest 

σ1           
Simplified 

Priest 

σ1                 
Modified Simplified 

Priest 
0.00 0.00 147.00 147.00 48.64 147.00 147.00 147.00 147.00 

21.07 21.43 450.62 290.64 156.87 290.06 289.66 290.37 291.45 
49.16 19.80 426.92 281.73 210.52 324.41 353.85 302.60 333.63 
70.61 22.63 585.70 297.08 254.76 360.98 405.29 329.43 369.71 
41.54 42.65 537.80 393.14 245.11 391.65 390.71 392.38 395.45 
74.73 42.94 582.93 394.41 305.79 433.59 458.52 415.01 448.16 
101.39 40.95 673.06 385.64 343.49 455.52 501.63 423.40 466.79 
59.68 62.66 771.82 475.38 317.15 471.73 469.58 473.47 479.48 
90.75 63.19 792.79 477.43 370.80 508.94 527.78 494.47 528.73 
118.27 65.02 701.27 484.47 415.62 541.77 576.70 516.38 558.67 
140.04 63.20 761.87 477.47 442.21 556.64 606.53 522.54 570.16 
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Table 4.6    Predicted values of failure stress by the means of each selected failure criteria for m = 16.131 and )P= 147 MPa 

Figure 4.29   )�-)� plots, demonstrating that all 3D failure criteria underestimate the 
strength of the rock specimen  



CHAPTER 4                                                  Rock strength analysis in three-dimensional stress 
 

132 
 

As is obvious form Table 4.6 and Fig. 4.29 the measured failure stress of cubic specimens of 

Kanmantoo bluestone is about 30% (in the case of the Pan-Hudson criterion 50%) higher than 

the predicted values of the failure stress of bluestone. One of the reasons for such 

discrepancies can be the clamping end effects caused by friction on the steel-rock interface. In 

order to eliminate the clamping end effect caused by friction on the steel-rock interface, thin 

layers of HDPE plastic were applied between the rock end surface and the steel platens. In this 

case, the failure mode can be described as two vertical cracks developed starting from the end 

surfaces of the rock sample and in the direction of the intermediate principal stress. The cubic 

specimen was separated out in the direction of the minimum principal stress and the failure 

stress was significantly low. This phenomenon seems to occur because of the intrusion of the 

plastic layer into the rock specimen (Fig. 4.30) and therefore this method is not recommended.   

 

Another hypothesis can be described as the effect of the size and shape of the cubic rock 

specimens on the apparent strength of the rock, measured using the true-triaxial cell. The 

effect of the specimen’s size and shape can be acknowledged by adjusting the input 

parameters of the three-dimensional failure criterion. As explained previously, the uniaxial 

compressive strength of the Kanmantoo bluestone measured by conducting uniaxial 

compression test on the 60×60×60 mm cubic specimen cannot be relied upon due to the 

pronounced clamping end effects. Therefore, it is recommended that the uniaxial compressive 

strength, ��, of the Kanmantoo blue stone be determined from the uniaxial compression tests 

on cylindrical specimens with aspect ratio of 2.4. On the other hand, the empirical parameter 

m can be determined for the cubic specimens of Kanmantoo bluestone tested in the true-

Figure 4.30   Intrusion of the HDPE plastic layer into the rock specimen  
[after Dong et al (2011)] 

Marks due to the 
intrusion into the 

specimen 
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triaxial cell. For this purpose, true-triaxial tests in which �� o �� can be adopted and the 

corresponding �� and �� values can be substituted into Eq. 4.81, as presented in Table 4.7.   

 

 

Confining Pressure 
(MPa) 

Failure Stress 
σ1 (MPa) σ3/σc [(σ1-σ3)/σc]

2 

21.07 450.62 0.11 5.10 
41.54 537.80 0.22 6.80 
59.68 771.82 0.31 14.00 

It is also important to note that since the empirical parameter m is determined to account for 

the size and shape effects of the cubic specimens on the apparent rock strength measured in 

true-triaxial tests, the apparent uniaxial compressive strength of the 60×60×60 mm cube is 

substituted into Eq. 4.8.1 for determining the parameter m. It merits emphasising that the 

uniaxial compressive strength of the 60×60×60 mm cube must not be used as an input 

parameter for three-dimensional criteria, but only for determining the empirical parameter m. 

Plotting 8"�� � ��$/��:� against "��/��$, for the experimental data (Table 4.7), the parameter 

m is determined as the slope of the best fit line, which intersects with the 8"�� � ��$/��:�-axis 

at 1, as illustrated in Fig. 4.31.   

 

 

Inserting the uniaxial compressive strength, ��, as 147 MPa and the Hoek-Brown constant m 

as 36.6 into the selected three-dimensional rock failure criteria, the rock failure stress can be 

calculated by means of each failure criterion, as presented in Table 4.8 and illustrated in Fig. 

4.32. 

y = 36.632x + 1

R² = 0.8408
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Table 4.7  Triaxial test data on cubic rock specimens for 
determination the empirical parameter m 

Figure 4.31    Best fit line to triaxial test data on cubic specimens for 
determining the empirical parameter m 
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σ2 σ3 
σ1                 

True-triaxial 
data 

  σ1            
Hoek-Brown 

σ1           
Pan-Hudson 

σ1       
Zhang-Zhu 

σ1           
Generalised 

Priest 

σ1            
Simplified 

Priest 

σ1                 
Modified Simplified 

Priest/MSP 
0.00 0.00 147.00 147.00 23.48 147.00 147.00 147.00 147.00 

21.43 21.07 450.62 388.42 153.37 389.27 389.93 290.37 392.05 
49.16 19.80 426.92 377.76 220.82 440.48 487.45 302.60 451.31 
70.61 22.63 585.70 401.26 277.80 494.95 564.04 329.43 503.87 
42.65 41.54 537.80 536.64 263.90 538.69 540.19 392.38 545.39 
74.73 42.94 582.93 545.57 341.79 599.90 638.68 415.01 617.22 
101.39 40.95 673.06 532.81 391.83 631.46 701.96 423.40 642.56 
62.66 59.68 771.82 645.11 355.59 649.99 653.38 473.47 664.54 
90.75 63.19 792.79 664.51 424.83 706.94 736.03 494.47 730.19 
118.27 65.02 701.27 674.47 483.70 752.40 805.70 516.38 770.48 
140.04 63.20 761.87 664.56 519.74 773.72 849.02 522.54 785.58 
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Table 4.8    Predicted values of failure stress by the means of each selected failure criteria for m = 36.6 and )P= 190.3 MPa 

Figure 4.32    )�-)� plots, demonstrating the comparison of the selected three-dimensional 
failure criterion 
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As is obvious from Table 4.8 and Fig. 4.32, after adjusting the input parameter m to account 

for the higher apparent strength of the cubic rock specimens, the values for the failure stress 

predicted by means of three-dimensional rock failure criteria show reasonable agreement with 

the true-triaxial test data. Comparison of the selected rock failure criteria revealed that the 

modified simplified Priest and the Zhang-Zhu were the two criteria which predicted the rock 

strength more accurately than other three-dimensional failure models (Table 4.9).    

 

Criterion Rank σ₁₁₁₁(model)-σ₁₁₁₁(observed) 
(MPa) 

over/underestimation 
(average) 

Average 
percentage error 

(%) 

Zhang-Zhu 1 -27.91 underestimation 7.00 

Modified Simplified Priest 2 -16.51 underestimation 7.21 

Simplified Priest 3 -44.01 underestimation 7.56 

Generalised Priest 4 7.42 overestimation 8.59 

Hoek-Brown 5 -77.60 underestimation 12.13 

Pan-Hudson 6 -270.44 underestimation 49.82 

 
 

 

 

 

 

Table 4.9    Error analysis and quantitative comparison of selected 3D failure criteria 



 

 
 

 

 

 

 

 

CHAPTER 5   

A case study of prediction of borehole 
instability 

Page 

5.1. Introduction                                                                                              136           

5.2. Prediction of borehole instability                                                            137                    

5.3. Designing the drilling fliud                                                                      143 

 

 

 

 

 



CHAPTER 5                                                    A case study of prediction of borehole instability  

136 
 

5.1. Introduction 

As outlined previously, a common strategy for borehole stability evaluation is to estimate the 

induced stresses at the borehole vicinity by means of analytical or numerical models, and then 

substitute the in situ stress components into a rock failure model to investigate whether or not 

the rock failure initiates. Stress analysis based on linear elasticity theory was carried out to 

estimate the induced stresses around a vertical and a deviated borehole in Chapter 3. The 

existing analytical model for stress estimation around a borehole is an elastic solution, which 

is a three-dimensional expansion of Kirsch equations and also is referred to as the generalised 

Kirsch equations. These equations have been widely applied in the petroleum and mining 

industries since they were introduced in 1962 by Hiramatsu and Oka. However, boundary 

conditions on which this elastic solution was based have been inadequately addressed in the 

existing literature. 

Finite element analysis (FEA) was employed to first create the numerical counter part of the 

analytical solution in order to clarify the boundary conditions involved in the analytical 

solution. It appeared that in the case of a deviated borehole where the stress state around the 

borehole is a general stress state, some simplifying assumptions were made to facilitate the 

procedure of deriving the analytical solution. In other words, the three-dimensional problem 

was divided into two two-dimentional problems; one on the assumption of plane strain and the 

other on the assumption of anti-plane strain. It is assumed that under plane strain conditions 

there is no deformation along the borehole axis and all deformations take place in planes 

perpendicular to the axis of the borehole. On the other hand, under anti-plane strain conditions 

it is assumed that a constant deformation along the borehole axis is the only deformation that 

occurs. In order to eliminate this contradiction in the assumed boundary conditions in the 

analytical model, a finite element model was developed based on a new set of boundary 

conditions (Chapter 3, Section 3.5) which is in better compliance with the physics of the 

problem. A detailed explanation of the proposed boundary conditions is given in Section 3.5. 

After estimating stresses around the borehole, the stability of the rock material at the borehole 

wall is required to be investigated. Under a given stress state, the maximum stress that can be 
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tolerated by rock is referred to as the failure tress. The stability of the rock material 

surrounding the borehole can be evaluated by comparing the rock failure stress with the 

maximum in situ stress at the borehole proximity. Failure stress for rock material can be 

estimated by means of mathematical formulations known as failure criteria. A number of 

common failure criteria were briefly explained in Chapter 2 and in Chapter 4 detailed 

discussions on failure criteria which were developed especially for rock material were 

presented. A new three-dimensional failure criterion was also introduced by improving the 

simplified Priest criterion developed by Priest (2005). 

In this chapter first the stability of a deviated borehole is evaluated and then minimum and 

maximum mud weight for drilling the bore hole is calculated to demonstrate the practical 

application of the techniques developed in this thesis. Some equations and relations are 

repeated in the following sections for convenience. 

5.2. Prediction of borehole instability  

If the induced stresses around the borehole exceed the rock failure stress, failure of intact rock 

is expected to occur at the borehole wall. In order to demonstrate the procedure of predicting 

the borehole instability, a deviated borehole was considered in this section. The geometrical 

characteristics of the deviated borehole is the same as for the case example given for FEA in 

Chapter 3, i.e. a deviated borehole of radius 0.08 m with inclination of  125/10 (trend/plunge) 

is considered. The borehole is assumed to be drilled in the Australian crustal rocks with 

principal stresses being �0 = 45 MPa, �/ = 75 MPa and �� = 66 MPa at the depth of 3000 m. 

In order to estimate the induced stresses around the deviated borehole the far-field principal 

stress components measured in the global Cartesian coordinate system must be transformed 

into a local Cartesian coordinate system which Z-axis coincides with the borehole axis (Fig. 

3.10). Therefore, in this example the far-field stress state for the deviated bore hole can be 

given by the following general stress tensor:  

[ ]
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The associated stress transformation procedure was outlined in Chapter 3. In the case of an 

unsupported deviated borehole in non-porous and isotropic material, the stresses at the 

borehole wall can be calculated according to the generalised Kirsch equations, as follows: 

0=rrσ  

( ) ( ) θσθσσσσσθθ 2sin42cos2 xyyxyx −−−+=  

0=θσ r  

( ) θσνθσσνσσ 2sin42cos20 xyyxzzz −−−=                                                   

( )θσθσσθ sincos xzyzz −=  

0=rzσ                                                                                                                                 (5.2.2)  

Induced stresses are at their most deviatoric state at the borehole wall and stress concentration 

occurs at two opposite points on the circumference of the borehole. The angular position of 

these two points of stress concentration can be estimated by applying Eq. 3.4.7. In the case of 

this deviated borehole, the angular position of the two points of stress concentration are 

calculated as � = 55.166° and � = 2355.166°. Therefore, induced stresses at two stress 

concentration points on the wall of the unsupported deviated borehole are given by the 

following stress tensor, as was calculated in Chapter 3: 
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                                                              (5.2.3) 

After calculating the induced stresses at two opposite points around the borehole the next step 

in borehole stability evaluation is to investigate whether or not the rock material at the 

borehole wall can sustain the induced stresses. It is important to remember that failure of a 

particular rock type occurs when the failure stress is exceeded by the applied stresses. Since 

the stress state at the borehole wall is three-dimensional, it is more suitable for the rock failure 

stress to be estimated by means of a three-dimensional failure criterion. In Chapter 4 a three-

dimensional failure criterion based on the Hoek-Brown criterion was developed by modifying 
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the simplified Priest criterion. The criterion demonstrated significant accuracy in predicting 

rock failure stress in three-dimensional stress state when it was examined against the nine sets 

of published true-triaxial experimental data, and performed the best when compared to the 

other three-dimensional rock failure criteria. According to the proposed three-dimensional 

failure criterion, as also was outlined in Chapter 4, failure of intact rock occurs when:
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The term ��/k in Eq. 5.2.4 is calculated, for intact rock material as follows: 
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Also assuming a weighting factor w ranging from 0 to 1, the term ��/k is given by: 
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Where the weighting factor w is defined by the following expression: 
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Where parameters � and � are defined as follows: 
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It is important to remember that when �� � �� Eq. 5.2.6 reduces to ��/k � �� and 

consequently the rock failure stress, ��	 in Eq. 5.2.4 will be the same as the failure stress 

predicted by the original two-dimensional formulation of the Hoek-Brown criterion.     
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If principal stresses acting on the borehole wall are in descending order such that ��� ' ��� '
���, then ���, ��� and  ��� are corresponding to major (��), intermediate (��) and minor (��) 

principal stresses, respectively. It is important to note that stress components in Eq. 5.2.2 are 

not principal stresses. On the other hand, the proposed failure model for assessing rock 

stability has been formulated in terms of the principal stresses. Therefore, it is important to 

calculate the values and directions of the principal stresses associated with the general stress 

tensor in Eq. 5.2.2. The direction determined by the unit vector λ is said to be a principal 

direction of the stress tensor �67 if there exists a parameter �� such that: 

( ) 0=− jijpij λδσσ                                                                                                             (5.2.9) 

Where É67 is the Kronecker delta (Eq. 4.2.5). The expanded form of Eq. 5.2.9 is a set of three 

linear algebraic equations which can also be expressed in the following form: 
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(5.2.10) 

In Eq. 5.2.10 the parameters ·�, ·� and ·� are direction cosines associated with the principal 

stress tensor. Furthermore, the three linear algebraic equations, given by Eq. 5.210, can be 

simultaneously solved by equating the determinant of the coefficient matrix to zero, as 

follows: 
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                                                                   (5.2.11) 

Evaluating the determinant in Eq. 5.2.11 gives the following characteristic equation: 

032
2

1
3 =−+− III ppp σσσ                                                                                           (5.2.12) 
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Where _�, _� and _� are the first, second and third invariants of the general stress tensor and are 

given as follows: 

zzyyxxI σσσ ++=1  

( )222
2 xzyzxyxxzzzzyyyyxxI σσσσσσσσσ ++−++=  

( )222
3 2 xzyyyzxxxyzzxzyzxyzzyyxxI σσσσσσσσσσσσ ++−+=                                   (5.2.13) 

Eq. 5.2.12 is a cubic equation so there are three distinct values of �� that provide solutions. 

These roots of the cubic equation are the three principal stresses. Although the roots of the 

characteristic equation can be zero or negative, they are always real (i.e. never imaginary) in 

the mathematical sense. This special property means that a simple algorithm can be adopted 

for solving the equation. In order to solve the equation, five further intermediate parameters 

are needed to be defined as follows: 
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The three principal stresses ��, �� and �� are given by the following expressions: (it should be 

noted that �� ' �� ' ��).  
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Therefore, principal stresses associated with the general stress tensor, given by Eq. 5.2.3 can 

be calculated as:  
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Furthermore, according to the results of FEA based on the proposed boundary conditions 

which were outlined in Section 3.5, the induced stress state around the deviated borehole is 

given by the following stress tensor: 
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The corresponding principal stress tensor for the stress tensor in Eq. 5.2.10 is given as follows: 
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As is obvious there is no considerable difference between the calculated stresses by the means 

of the generalised Kirsch equations and the proposed numerical model. However, since the 

proposed boundary conditions are in relatively better agreement with the physics of the 

problem, as explained in Chapter 3, the borehole stability analysis in this section is continued 

by considering the induced stress tensor given by Eq. 5.2.11.  

 First it is assumed that the borehole has been drilled in a granite formation, which has the 

uniaxial compressive strength, �� of 229 MPa and the Hoek-Brown dilatancy parameter, m, of 

29.5. Substituting the calculated values for the intermediate,�� � ���, and minor,�� � ���, 

principal stresses into Eqs. 5.2.4 to5.2.7, the failure stress of the rock material at the borehole 
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wall is calculated as 460.73 MPa. Comparing this value of the rock failure stress to the major 

in situ principal stress, �� �  ��� = 179.16 MPa, it is inferred that the rock material at the 

borehole wall does not fail in compression. However, if the borehole is drilled in a rock, for 

example marble, with uniaxial compressive strength of 82 MPa and the Hoek-Brown dilatancy 

parameter m of 12, the failure stress calculated by Eqs. 5.2.4 to 5.2.7, is 170.6 MPa which is 

smaller compared to the in situ major principal stress, �� = 179.16 MPa, and therefore failure 

is anticipated to initiate at the borehole wall. Table 5.1 summarises the associated calculation 

and procedure of the stability evaluation for the discussed example on the deviated borehole. 

 

Rock α β w σ3HB σ1HB 
Failure stress 
σ1f (MPa) 

Occurrence of 
failure at the 
borehole wall 

Granite 77.95 84.93 0.25 21.71 467.93 460.85 (>179.16) No 

Marble 11.35 12.25 0.25 21.60 188.88 170.58 (<179.16) Yes 
 

5.3. Designing the drilling fluid 

In geotechnical engineering drilling fluid is used to aid the drilling of boreholes into the Earth. 

Liquid drilling fluid is often referred to as drilling mud. The three main categories of drilling 

fluids are water-based mud, non-aqueous mud, known as oil-based mud, and gaseous drilling 

fluid, in which a wide range of gases can be applied. The main functions of drilling fluids 

include providing hydrostatic pressure to prevent the borehole wall from failing, keeping the 

drill bit cool and cleaning the borehole during drilling by carrying out the drill cuttings. 

Drilling mud makes a column of fluid, which exerts a radial pressure on the borehole wall. 

The magnitude of this radial pressure at a depth of h is calculated as follows: 

ghPw ρ=                                                                                                                             (5.3.1) 

Where g is the gravitational acceleration and is usually assumes to be 9.81N/kg and � is the 

density of the drilling mud, which according to Eq. 5.3.1, is expressed in kg/m3.  

Table 5.1    Calculation of the failure stress for Granite and Marble 
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For an unsupported borehole the radial stress, ���, at the borehole wall is zero and, as 

demonstrated in Section 5.2, the corresponding least principal stress acting on a rock element 

at the borehole wall is also zero. However, due to the column of the drilling fluid the redial 

pressure at the borehole wall increases to aÊ. The radial and tangential induced stresses due to 

the hydrostatic pressure of the column of mud in the borehole are given as follows (Fig. 5.1): 

wrr P=σ  

wP−=θθσ                                                                                                                           (5.3.2) 

If it is assumed that the drilling mud completely fills the borehole and the hydrostatic pressure, 

aÊ is homogeneous around the circumference of the deviated borehole, then total stresses 

around a deviated borehole containing a column of drilling mud (Fig. 5.1) can be calculated by 

superimposing Eqs. 5.3.2 on the radial and tangential stress components (��� and ���) in Eqs. 

5.2.2 as follows:   

wrr P=σ  

( ) ( ) wxyyxyx P−−−−+= θσθσσσσσθθ 2sin42cos2  

0=θσ r  

( ) θσνθσσνσσ 2sin42cos20 xyyxzzz −−−=                                                   

( )θσθσσθ sincos xzyzz −=  

0=rzσ                                                                                                                                 (5.3.3) 

The hydrostatic pressure imposed on the borehole wall due to the column of drilling mud, acts 

as a confining pressure and can dramatically increase the rock failure stress. In the case of 

drilling a deviated borehole in a Marble formation, where the rock failure in compression is 

expected to occur, it is desired to calculate the minimum hydrostatic pressure, aÊ"R6>$ to 

prevent the rock material at the borehole wall from failure.  
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Superimposing Eq. 5.3.2 on the stress tensor calculated by the means of the finite element 

analysis, based on the proposed boundary conditions, the general stress state around the 

deviated borehole is given as: 
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The principal stress tensor associated with this general stress tensor can be calculated by 

applying Eqs. 5.2.13 to 5.2.15. Substituting the principal stresses into the proposed strength 

model given by Eqs. 5.2.4 to 5.2.7 and equating the calculated rock failure stress given by 

Eq.5.2.4 to the in situ major principal stress, i.e. ��	 � �� � 179.12�aÊ, the minimum 

hydrostatic pressure required for preventing the failure of the rock material at the borehole 

wall is calculated as aÊ"R6>$ = 176.9 MPa. Therefore, according to Eq.5.3.1 the minimum 

density of the drilling mud for safely drilling the deviated borehole at the depth of 3000 m is 

calculated as: 

3

2
6

min 873.6010
300081.9

109.176

m
Kg

mkg
N

m
N

=
×

×
=ρ  

The upper limit or the maximum allowable hydrostatic pressure in the borehole aÊ"Rb�$ is 

constrained by the hydraulic fracturing stress. Hydraulic fracture is a tensile fracture which is 

assumed to occur if any of stress components at the borehole wall becomes sufficiently tensile 

�� � �� 

�� � �� � aÊ 

�� � aÊ  

Figure 5.1  Principal in situ stresses acting on a rock element 
at the borehole wall, with drilling fluid  
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to overcome the rock tensile strength, Ëi. Since the most negative stress that can exist at the 

borehole wall at the two points of stress concentration around the borehole circumference, is 

the tangential stress, the condition for hydraulic fracturing is given as follows: 

0TPw −=−θθσ                                                                                                                   (5.3.5) 

Where Ëi is the rock tensile strength. Therefore the maximum allowable hydrostatic pressure 

in the borehole is calculated as follows: 

0(max) TPw += θθσ                                                                                                               (5.3.6) 

The tangential stress, ��� in Eq. 5.3.6 can be calculated for �=55.166° using the generalised 

Kirsch equations. However, in this study the results of the FEA are applied for determining the 

tangential stress component around the deviated borehole. 

Furthermore, Eqs. 5.2.4 to 5.2.7 can be applied to calculate the tensile strength of the rock, Ëi 

through the following procedure:  

1 - Equating ��/k to zero and calculate the parameter ��/k as follows: 

     

( )
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2- Calculate parameters 3 and 4, by equating the intermediate principal stress to zero as   

follows: 

2
3

2

3 σ
σµ

σ
ση cc and

m =
−

=                                                (5.3.8) 

3- Calculate the weighting factor w by substituting parameters 3 and 4 from Eq. 5.3.8 into 

Eq. 5.2.7. 

4- Setting ��	 in Eq. 5.2.4 to zero, which yields the following equation: 
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5- Solving Eq. 5.3.9 for �� and setting 30 σ−=T  

Following the five-step solution, the tensile strength of marble into which the deviated 

borehole has been drilled is calculated as Ëi = 4.77 MPa. Therefore, considering Eq. 5.3.4 and 

Eq. 5.3.6 the maximum mud pressure is calculated as:   

MPaTPw 9.18377.412.1790(max) =+=+= θθσ
 

Consequently, considering Eq. 5.3.1 the maximum allowable density of the drilling fluid is 

calculated as: 
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6.1. Summary and conclusions 

Finite element analysis was carried out for calculating the induced stresses around a borehole 

in a continuum, homogeneous, isotropic and linearly elastic rock. Results from the FEA and 

the analytical models, i.e. the generalised Kirsch equations, were cross-evaluated for vertical 

and deviated boreholes to clarify the boundary conditions involved in deriving the existing 

analytical model. It appeared, however, that the boundary conditions assumed for deriving the 

generalised Kirsch equations are incompatible with the real life situation in the physical sense, 

i.e. in reality deformation of a continuum body cannot be assumed to be in plane strain and in 

anti-plane strain states simultaneously. The detailed explanation of the reason for this 

incompatibility is given in Chapter 3.   

In order to address the contradictory boundary conditions assumed in the existing analytical 

model, a finite element analysis was carried out by applying a new set of boundary conditions. 

Assuming displacement as the unknown variable, the proposed boundary conditions can be 

given by the following strain tensor: (as is also given by Eq. 3.5.3 and is repeated here for 

convenience) 
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The underlying assumption for proposing this set of boundary conditions is that displacements 

along the borehole axis are constrained by nearby geo-materials and are negligible, similar to 

the plane strain conditions in the physical sense. However, since the out-of-plane shear 

components appear in the corresponding stress tensor (Eq. 3.5.4), the problem cannot be 

considered as a plane strain problem.   
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Results from the FEA revealed that under the proposed boundary conditions, no significant 

changes occur in the values of radial, ���, tangential, ���, vertical, ��� and in-plane shear, ���, 

stresses around the borehole when compared to the generalised Kirsch equations. However 

calculated values for out-of plane shear stresses, ��� and ���, given by Eq. 3.3.11, 

demonstrated a dramatic change. Based on the results of the FEA the formulations of the out-

of-plane shear stress components were modified, as was out lined in Chapter 3, Eqs. 3.5.6.  

These equations are also presented here for convenience: 
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A comprehensive study was also conducted on three-dimensional rock failure criteria. A new 

three-dimensional failure criterion was developed by modifying the simplified Priest criterion 

as was outlined in Chapter 4, Section 4.7.2. True-triaxial experiments were conducted at the 

University of Adelaide and the results of the true-triaxial testing along with nine sets of 

published true-triaxial experimental data were applied to evaluate the proposed criterion 

versus other selected three-dimensional rock failure criteria which are more commonly applied 

in rock mechanics studies. Comparison of the selected three-dimensional rock failure criteria 

with the true-triaxial experimental data revealed that the proposed criterion, i.e. the modified 

simplified Priest criterion, can evaluate the rock strength under three-dimensional stress more 

accurately than other criteria in most cases. In some cases the Zhang-Zhu criterion provides 

more accurate prediction of the rock failure stress, however, even in such cases the Zhang-Zhu 

and the modified simplified Priest criteria are significantly close.         

6.2. Recommendations for future studies 

Although a numerical solution was presented in this study for implementing the proposed 

boundary conditions to calculate values of out-of-plane shear components ( ��� and ���) 

around a deviated borehole, it merits developing an analytical solution for calculating the out-
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of plane shears in order to analytically prove the formulation proposed for calculating the 

longitudinal stresses (��� and ���) around a deviated borehole. Furthermore, this finite element 

model can be utilised as a platform for developing more sophisticated models for stress 

analysis around an opening excavated in geo-materials with more complicated constitutive 

behaviour and geological features. 

The rock failure criterion for predicting the failure stress of intact rock developed in Chapter 4 

can be generalised in order to evaluate the strength of rock masses when estimating the 

stability of underground excavations with lager cross sections than of a borehole.     

Furthermore, a five-step solution for calculating the tensile strength of rock was outlined in 

this study by applying the proposed three-dimensional failure model. It would be worthwhile 

conducting a series of uniaxial tensile tests to evaluate the accuracy of the proposed method in 

predicting the tensile strength of rock.     
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The Finite Element Method (FEM) 

The finite element method (FEM) is a matrix algebraic method developed to solve partial 

differential equations (PDEs) in order to calculate linear or non-linear response of continuous 

physical systems to applied boundary conditions. The basic principle of the FEM is the 

division of this physical system into a number of simply shaped continuous sub-domains 

(finite elements) in order to find approximate solutions for the PDEs. This discretisation may 

facilitate the solution of a PDE system at discrete points in the model space in cases where an 

analytical solution is impossible to obtain. In order to provide a unique solution and 

convergence of the system of equations, appropriate boundary conditions have to be defined. 

The simple shape of each finite element is defined by its corner nodes which may be shared 

with adjacent elements, depending on their spatial position in the model space. All nodes and 

elements are uniquely defined in the model space by their identifier. The entirety of all entities 

defines the finite element mesh which is the discretised representation of the continuous 

problem space.    

Once the model space is discretised, a set of linear equations of the unknown field variables is 

approximated for each element. The most common approach for problems in continuum 

mechanics is the displacement method in which the nodal displacement 8!�Ì"#$: is the unknown 

field variable. Solving the problem for the unknown field variable requires that the equilibrium 

of forces, internal continuity and a constitutive relationship with respect to the material 

behaviour be satisfied. Through these constitutive laws stresses are related to strains and hence 

to nodal displacements. The equilibrium equation can be derived from the equation of motion 

for small movements which can be written (in index notation) as:  

ii
j

ij
aB

x
ρρ

σ
=+

∂
∂

                                                                                                                   (A.1) 

Where � is the density, U6 is the body force and C6 is the acceleration. For the elastic stress 

analysis around a borehole, acceleration can be assumed to be negligible since there exist no 

instantaneous displacements at the borehole wall and the equations of static equilibrium are 

applicable. In the absence of body forces, the resultant of all surface forces as well as the 
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resultant moment about any axis has to be vanished in the state of equilibrium. Therefore the 

equilibrium equation can be written as:   

0=
∂
∂

j

ij

x

σ
                                                                                                                                (A.2) 

For perfect linear elasticity, the strain tensor (Í� is proportional to the stress tensor �67. This 

relationship is termed as Hook’s law and can be expressed as: 

klijklij C εσ =                                                                                                                           (A.3)   

The forth-order tensor n67Í�, which is a 9×9 matrix, represents the elasticity tensor containing 

81 components. However, the number of components reduces to 36 since both the stress tensor 

(�67) and the strain tensor ((Í�) are symmetric, having only six distinct components. 

Substituting Eq. A.3 into Eq. A2, the equilibrium equation of forces can be written as: 

[ ] 0
2
1 =



























∂
∂

+
∂
∂

∂
∂=

∂
∂

i

j

j

i
ijkl

j
klijkl

j x

u

x

u
C

x
C

x
ε                                                                            (A.4)  

After each element has been approximated into a set of linear equations, the entirety of these 

approximation functions are assembled into a global equation of motion, which enables the 

solution of the numerical problem.   

On the other hand, the matrix algebraic formulation of the fundamental equation of motion can 

be expressed as: 

uK
t

u
C

t

u
MF

v
vv

v
+

∂
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∂=

2

2

                                                                                                      (A.5)        

Where ÎÏ  is the mass matrix, nÐ is the damping matrix and ÑÏ is the stiffness matrix. In this 

study, the finite element analysis (FEA) is restricted to static and Cauchy static problems, 

neglecting accelerations GÒK���Ì
Ò
KM and velocities GÒ���Ì

Ò
 M. Therefore Eq. A.5 is reduced to the static 

equilibrium equation as follows: 
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uKF
vv

=                                                                                                                                  (A.6)     

Since for isotropic materials the elasticity matrix, C in Eq. A.3, is the same as the stiffness 

matrix, K in Eq. A.6, the static equilibrium equation given by Eq. A.6 can be inverted to solve 

for the unknown displacements once the stiffness matrix is known. Subsequently, the stress 

and strain tensors can be derived. 

Two basic principles, the Eulerian and the Lagrangian formulations can be followed to solve 

the constitutive equations within the finite element mesh. In the Eulerian approach, material 

properties or field variables migrate through the finite element mesh which is not deforming 

during the analysis. This prevents numerical instabilities due to excessive distortion of the 

finite element mesh. However, because the continuum is not explicitly defined, boundary 

conditions and boundary layers are difficult to trace or redefine. In the Lagrangian approach 

the material properties are explicitly defined for each element and the finite element mesh 

deforms during the analysis. The disadvantage of the Lagrangian approach is the explicit 

definition of the continuum, which leads to excessive distortion of the finite element mesh and 

to numerical instability when addressing large deformation problems. Since in the linear 

elastic solution deformations around a borehole are assumed to be infinitesimal, the 

ABAQUS/Standard implementation of the Lagrangian approach was adopted in this study. 

The focus of this thesis is to apply the FEM for stress analysis around a borehole drilled in an 

isotropic, homogeneous and linearly elastic rock. To provide a description of the complete 

mathematical background of the FEM is beyond the scope of this study. Hence, only the 

fundamental concept and the basic equations have been outlined. For a complete mathematical 

description of the FEM the reader is referred to Zienkiewicz and Taylor (1994) and 

Zienkiewicz et al. (2005). 

Mesh resolution        

The accuracy of the FEA is directly dependent on the discretisation resolution. The behaviour 

of the discretised continuum, for example, the field variable !�Ì"#$ is described by a set of 

linear equations such as !�ÌÓ � 3i [ 3�!�Ì, in which 3 indicates the approximation coefficients. 

Therefore, a finite discretisation is required in model regions where high gradients of !�Ì"#$ 
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occur, for example, in the regions adjacent to the borehole wall. Fig. 3.4 demonstrates the 

impact of discretisation resolution on the accuracy of numerical approximation to a non-linear 

function. 

 

 

 

 

(c) u(X) (b) u(X) Numerical 

approximation 

Numerical error 

(a) u(X) 

Figure A.1    The numerical error of the observed field variable (in this case Ô���Ì"q$) can be 
minimized by increasing the discretisation resolution stepwise from (a) to 
(c). 
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θ  
(deg) 

Analytical solution Numerical Analysis Error calculation (%) 

σrr σθθ σaa σrθ σra σθa σrr σθθ σaa σrθ σra σθa σrr (e) σθθ (e) σaa (e)   σrθ (e) σra (e)         σθa (e) 
1.5 9.69 163.39 84.58 0.33 0.00 0.00 9.52 167.04 85.79 0.32 0.00 0.00 1.74 2.23 1.44 1.81 0.00 0.00 
4.5 9.66 162.84 84.37 0.98 0.00 0.00 9.49 166.46 85.58 0.95 0.00 0.00 1.74 2.22 1.43 2.72 0.00 0.00 
7.5 9.59 161.74 83.97 1.62 0.00 0.00 9.43 165.31 85.16 1.59 0.00 0.00 1.75 2.20 1.42 1.65 0.00 0.00 

10.5 9.50 160.12 83.37 2.24 0.00 0.00 9.33 163.60 84.53 2.20 0.00 0.00 1.76 2.17 1.39 2.02 0.00 0.00 
13.5 9.38 157.98 82.57 2.84 0.00 0.00 9.21 161.35 83.70 2.79 0.00 0.00 1.77 2.13 1.36 1.82 0.00 0.00 
16.5 9.23 155.34 81.60 3.41 0.00 0.00 9.07 158.58 82.68 3.36 0.00 0.00 1.78 2.08 1.32 1.64 0.00 0.00 
19.5 9.06 152.25 80.46 3.94 0.00 0.00 8.89 155.33 81.48 3.87 0.00 0.00 1.80 2.02 1.27 1.95 0.00 0.00 
22.5 8.86 148.72 79.15 4.43 0.00 0.00 8.70 151.63 80.11 4.34 0.00 0.00 1.81 1.95 1.21 2.14 0.00 0.00 
25.5 8.64 144.81 77.71 4.87 0.00 0.00 8.48 147.51 78.60 4.76 0.00 0.00 1.82 1.87 1.15 2.23 0.00 0.00 
28.5 8.40 140.55 76.13 5.25 0.00 0.00 8.24 143.04 76.95 5.13 0.00 0.00 1.82 1.77 1.07 2.27 0.00 0.00 
31.5 8.14 135.99 74.45 5.58 0.00 0.00 7.99 138.25 75.18 5.46 0.00 0.00 1.82 1.66 0.99 2.26 0.00 0.00 
34.5 7.87 131.18 72.67 5.85 0.00 0.00 7.73 133.20 73.32 5.72 0.00 0.00 1.81 1.54 0.90 2.21 0.00 0.00 
37.5 7.59 126.17 70.81 6.05 0.00 0.00 7.45 127.94 71.38 5.92 0.00 0.00 1.79 1.40 0.81 2.13 0.00 0.00 
40.5 7.30 121.02 68.91 6.19 0.00 0.00 7.17 122.53 69.39 6.06 0.00 0.00 1.76 1.25 0.70 2.03 0.00 0.00 
43.5 7.00 115.78 66.97 6.26 0.00 0.00 6.88 117.03 67.37 6.14 0.00 0.00 1.72 1.08 0.59 1.90 0.00 0.00 
46.5 6.70 110.52 65.03 6.26 0.00 0.00 6.59 111.50 65.33 6.18 0.00 0.00 1.66 0.89 0.47 1.14 0.00 0.00 
49.5 6.41 105.28 63.09 6.19 0.00 0.00 6.31 106.00 63.31 6.09 0.00 0.00 1.58 0.69 0.34 1.58 0.00 0.00 
52.5 6.12 100.13 61.19 6.05 0.00 0.00 6.03 100.59 61.32 5.97 0.00 0.00 1.49 0.46 0.21 1.39 0.00 0.00 
55.5 5.83 95.12 59.33 5.85 0.00 0.00 5.75 95.34 59.38 5.68 0.00 0.00 1.38 0.23 0.08 2.89 0.00 0.00 
58.5 5.56 90.31 57.55 5.58 0.00 0.00 5.49 90.29 57.52 5.43 0.00 0.00 1.25 0.02 0.05 2.73 0.00 0.00 
61.5 5.31 85.75 55.87 5.25 0.00 0.00 5.25 85.50 55.76 5.12 0.00 0.00 1.11 0.29 0.19 2.56 0.00 0.00 
64.5 5.06 81.49 54.29 4.87 0.00 0.00 5.02 81.03 54.12 4.75 0.00 0.00 0.95 0.56 0.33 2.39 0.00 0.00 
67.5 4.84 77.57 52.85 4.43 0.00 0.00 4.81 76.93 52.61 4.33 0.00 0.00 0.79 0.84 0.45 2.21 0.00 0.00 
70.5 4.64 74.05 51.54 3.94 0.00 0.00 4.62 73.23 51.25 3.86 0.00 0.00 0.63 1.11 0.58 2.00 0.00 0.00 
73.5 4.47 70.96 50.40 3.41 0.00 0.00 4.45 69.98 50.05 3.35 0.00 0.00 0.47 1.37 0.69 1.75 0.00 0.00 
76.5 4.32 68.32 49.43 2.84 0.00 0.00 4.31 67.22 49.03 2.80 0.00 0.00 0.32 1.61 0.79 1.43 0.00 0.00 
79.5 4.20 66.18 48.63 2.24 0.00 0.00 4.19 64.97 48.21 2.22 0.00 0.00 0.20 1.82 0.87 0.97 0.00 0.00 
82.5 4.11 64.55 48.03 1.62 0.00 0.00 4.10 63.27 47.58 1.62 0.00 0.00 0.10 1.99 0.94 0.17 0.00 0.00 
85.5 4.05 63.46 47.63 0.98 0.00 0.00 4.05 62.12 47.16 1.00 0.00 0.00 0.04 2.11 0.98 1.68 0.00 0.00 
88.5 4.02 62.91 47.42 0.33 0.00 0.00 4.02 61.54 46.95 0.33 0.00 0.00 0.03 2.17 1.01 1.78 0.00 0.00 

Table B.1    Error analysis of the finite element model in comparison with the analytical solution, for calculating the induced stresses 
around the vertical borehole (for a quarter-model) 
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θ 
(deg) 

Analytical solution Numerical Analysis Error calculation (%) 

σrr σθθ σaa σrθ σra σθa σrr σθθ σaa σrθ σra σθa σrr (e) σθθ (e) σaa (e) σrθ (e) σra (e) σθa (e) 
1.5 6.02 98.38 60.51 5.90 -0.02 -4.61 5.92 98.71 60.59 5.63 -0.02 -4.77 1.60 0.34 0.14 4.54 1.26 3.49 
4.5 6.30 103.42 62.37 6.06 -0.04 -4.58 6.19 103.97 62.52 5.78 -0.04 -4.74 1.71 0.53 0.25 4.64 0.79 3.47 
7.5 6.59 108.56 64.27 6.16 -0.05 -4.54 6.47 109.34 64.50 5.86 -0.05 -4.70 1.80 0.72 0.36 4.74 1.74 3.46 

10.5 6.89 113.75 66.19 6.18 -0.07 -4.49 6.76 114.77 66.50 5.88 -0.07 -4.64 1.88 0.89 0.47 4.85 2.30 3.43 
13.5 7.18 118.94 68.11 6.14 -0.08 -4.42 7.04 120.19 68.49 5.84 -0.08 -4.57 1.93 1.05 0.57 4.96 2.67 3.40 
16.5 7.47 124.06 70.00 6.03 -0.10 -4.35 7.32 125.55 70.47 5.83 -0.09 -4.49 1.97 1.19 0.67 3.41 2.94 3.36 
19.5 7.75 129.07 71.85 5.86 -0.11 -4.26 7.59 130.78 72.40 5.65 -0.11 -4.40 2.00 1.33 0.76 3.46 3.15 3.31 
22.5 8.02 133.90 73.64 5.62 -0.12 -4.16 7.86 135.84 74.26 5.42 -0.12 -4.29 2.01 1.45 0.85 3.49 3.31 3.26 
25.5 8.28 138.50 75.34 5.32 -0.14 -4.05 8.12 140.66 76.03 5.13 -0.13 -4.18 2.01 1.56 0.92 3.49 3.44 3.19 
28.5 8.53 142.82 76.94 4.96 -0.15 -3.92 8.35 145.19 77.70 4.79 -0.14 -4.05 2.00 1.65 1.00 3.44 3.56 3.12 
31.5 8.75 146.82 78.42 4.55 -0.16 -3.79 8.58 149.38 79.25 4.39 -0.15 -3.90 1.99 1.74 1.06 3.34 3.66 3.03 
34.5 8.96 150.46 79.76 4.08 -0.17 -3.65 8.78 153.19 80.65 3.95 -0.17 -3.75 1.98 1.82 1.12 3.16 3.75 2.93 
37.5 9.14 153.68 80.95 3.58 -0.18 -3.49 8.96 156.57 81.90 3.47 -0.18 -3.59 1.96 1.88 1.17 2.86 3.83 2.81 
40.5 9.30 156.46 81.98 3.03 -0.19 -3.33 9.11 159.49 82.97 2.96 -0.19 -3.42 1.94 1.93 1.22 2.39 3.89 2.67 
43.5 9.43 158.76 82.83 2.45 -0.20 -3.16 9.24 161.91 83.87 2.37 -0.20 -3.23 1.93 1.98 1.25 3.25 3.96 2.51 
46.5 9.53 160.57 83.50 1.84 -0.21 -2.97 9.35 163.81 84.57 1.77 -0.21 -3.04 1.91 2.02 1.28 4.03 4.01 2.32 
49.5 9.60 161.86 83.97 1.21 -0.22 -2.78 9.42 165.16 85.07 1.16 -0.21 -2.84 1.90 2.04 1.30 4.70 4.06 2.09 
52.5 9.64 162.61 84.25 0.57 -0.23 -2.59 9.46 165.96 85.36 0.56 -0.22 -2.65 1.89 2.06 1.31 3.26 4.11 2.59 
55.5 9.65 162.82 84.33 -0.07 -0.24 -2.38 9.47 166.19 85.45 -0.07 -0.23 -2.46 1.88 2.07 1.32 4.51 4.15 3.17 
58.5 9.64 162.49 84.21 -0.72 -0.25 -2.17 9.45 165.85 85.32 -0.69 -0.24 -2.26 1.88 2.07 1.32 4.19 4.19 3.84 
61.5 9.59 161.62 83.89 -1.36 -0.25 -1.96 9.41 164.94 84.99 -1.30 -0.24 -2.02 1.88 2.06 1.31 4.15 4.22 3.13 
64.5 9.51 160.21 83.37 -1.98 -0.26 -1.73 9.33 163.48 84.45 -1.88 -0.25 -1.79 1.88 2.04 1.30 4.75 4.25 3.38 
67.5 9.40 158.29 82.66 -2.58 -0.26 -1.51 9.22 161.48 83.71 -2.49 -0.25 -1.56 1.89 2.01 1.27 3.43 4.28 3.70 
70.5 9.26 155.88 81.76 -3.15 -0.27 -1.28 9.09 158.96 82.78 -3.00 -0.26 -1.31 1.90 1.97 1.24 4.87 4.30 2.56 
73.5 9.10 153.00 80.70 -3.69 -0.27 -1.04 8.93 155.95 81.67 -3.54 -0.26 -1.08 1.91 1.93 1.20 4.05 4.32 3.78 
76.5 8.91 149.68 79.47 -4.19 -0.28 -0.80 8.74 152.48 80.39 -3.99 -0.26 -0.83 1.91 1.87 1.16 4.89 4.33 3.21 
79.5 8.70 145.96 78.10 -4.64 -0.28 -0.57 8.54 148.60 78.96 -4.48 -0.27 -0.58 1.92 1.80 1.10 3.58 4.35 3.05 
82.5 8.47 141.89 76.59 -5.04 -0.28 -0.32 8.31 144.34 77.39 -4.86 -0.27 -0.33 1.92 1.73 1.04 3.64 4.36 2.63 
85.5 8.23 137.50 74.97 -5.39 -0.28 -0.08 8.07 139.75 75.70 -5.19 -0.27 -0.08 1.91 1.64 0.98 3.65 4.36 3.37 
88.5 7.96 132.84 73.24 -5.68 -0.28 0.16 7.81 134.88 73.91 -5.47 -0.27 0.17 1.90 1.54 0.90 3.62 4.37 3.75 

Table B.2    Error analysis of the finite element model in comparison with the analytical solution (the generalised Kirsch equations), 
for calculating the induced stresses around a deviated borehole (for a quarter-model) 
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  θ   
(deg)  

Numerical Analysis Analytical solution Error calculation (%) 

σrr σθθ σaa σrθ σra σθa σrr σθθ σaa σrθ σra σθa σrr (e)   σθθ (e) σaa (e) σrθ (e) σra (e) σθa (e) 
1.5 5.92 98.68 60.31 -5.71 -0.05 -3.29 6.02 98.38 60.51 -5.90 -0.02 -4.61 1.64 0.30 0.33 3.32 0.30 0.33 
4.5 6.19 103.91 62.07 -5.86 -0.08 -3.27 6.30 103.42 62.37 -6.06 -0.04 -4.58 1.84 0.48 0.48 3.39 0.48 0.48 
7.5 6.46 109.26 63.88 -5.94 -0.11 -3.25 6.59 108.56 64.27 -6.16 -0.05 -4.54 2.02 0.65 0.61 3.45 0.65 0.61 

10.5 6.74 114.67 65.71 -5.96 -0.14 -3.21 6.89 113.75 66.19 -6.18 -0.07 -4.49 2.16 0.80 0.72 3.51 0.80 0.72 
13.5 7.02 120.07 67.54 -5.92 -0.17 -3.16 7.18 118.94 68.11 -6.14 -0.08 -4.42 2.29 0.95 0.83 3.55 0.95 0.83 
16.5 7.29 125.41 69.35 -5.82 -0.20 -3.11 7.47 124.06 70.00 -6.03 -0.10 -4.35 2.39 1.08 0.93 3.57 1.08 0.93 
19.5 7.56 130.62 71.12 -5.65 -0.22 -3.05 7.75 129.07 71.85 -5.86 -0.11 -4.26 2.48 1.21 1.02 3.58 1.21 1.02 
22.5 7.82 135.66 72.83 -5.42 -0.25 -2.97 8.02 133.90 73.64 -5.62 -0.12 -4.16 2.55 1.32 1.10 3.56 1.32 1.10 
25.5 8.07 140.46 74.45 -5.13 -0.28 -2.89 8.28 138.50 75.34 -5.32 -0.14 -4.05 2.60 1.42 1.18 3.50 1.42 1.18 
28.5 8.31 144.97 75.97 -4.79 -0.30 -2.81 8.53 142.82 76.94 -4.96 -0.15 -3.92 2.65 1.50 1.26 3.39 1.50 1.26 
31.5 8.52 149.15 77.37 -4.40 -0.33 -2.71 8.75 146.82 78.42 -4.55 -0.16 -3.79 2.68 1.58 1.33 3.23 1.58 1.33 
34.5 8.72 152.94 78.64 -3.96 -0.35 -2.61 8.96 150.46 79.76 -4.08 -0.17 -3.65 2.71 1.65 1.41 2.97 1.65 1.41 
37.5 8.89 156.30 79.75 -3.48 -0.37 -2.50 9.14 153.68 80.95 -3.58 -0.18 -3.49 2.74 1.71 1.48 2.60 1.71 1.48 
40.5 9.05 159.21 80.70 -2.97 -0.39 -2.38 9.30 156.46 81.98 -3.03 -0.19 -3.33 2.76 1.75 1.56 2.02 1.75 1.56 
43.5 9.17 161.61 81.47 -2.38 -0.41 -2.26 9.43 158.76 82.83 -2.45 -0.20 -3.16 2.78 1.79 1.64 2.73 1.79 1.64 
46.5 9.27 163.50 82.06 -1.79 -0.43 -2.13 9.53 160.57 83.50 -1.84 -0.21 -2.97 2.80 1.82 1.73 2.74 1.82 1.73 
49.5 9.34 164.84 82.45 -1.16 -0.45 -1.99 9.60 161.86 83.97 -1.21 -0.22 -2.78 2.82 1.84 1.81 4.31 1.84 1.81 
52.5 9.37 165.63 82.64 -0.56 -0.47 -1.85 9.64 162.61 84.25 -0.57 -0.23 -2.59 2.85 1.85 1.91 2.29 1.85 1.91 
55.5 9.38 165.85 82.64 0.07 -0.48 -1.71 9.65 162.82 84.33 0.07 -0.24 -2.38 2.88 1.86 2.01 4.30 1.86 2.01 
58.5 9.36 165.50 82.43 0.69 -0.50 -1.55 9.64 162.49 84.21 0.72 -0.25 -2.17 2.91 1.85 2.11 3.52 1.85 2.11 
61.5 9.31 164.58 82.02 1.30 -0.51 -1.40 9.59 161.62 83.89 1.36 -0.25 -1.96 2.95 1.84 2.23 3.81 1.84 2.23 
64.5 9.23 163.12 81.41 1.90 -0.52 -1.24 9.51 160.21 83.37 1.98 -0.26 -1.73 2.99 1.81 2.35 4.04 1.81 2.35 
67.5 9.12 161.11 80.61 2.49 -0.53 -1.08 9.40 158.29 82.66 2.58 -0.26 -1.51 3.03 1.78 2.47 3.65 1.78 2.47 
70.5 8.99 158.59 79.63 3.00 -0.54 -0.91 9.26 155.88 81.76 3.15 -0.27 -1.28 3.07 1.74 2.61 4.94 1.74 2.61 
73.5 8.83 155.58 78.48 3.56 -0.55 -0.74 9.10 153.00 80.70 3.69 -0.27 -1.04 3.11 1.68 2.75 3.64 1.68 2.75 
76.5 8.64 152.11 77.17 3.99 -0.55 -0.57 8.91 149.68 79.47 4.19 -0.28 -0.80 3.16 1.62 2.89 4.76 1.62 2.89 
79.5 8.43 148.23 75.72 4.46 -0.56 -0.40 8.70 145.96 78.10 4.64 -0.28 -0.57 3.19 1.55 3.05 3.89 1.55 3.05 
82.5 8.21 143.97 74.13 4.85 -0.56 -0.23 8.47 141.89 76.59 5.04 -0.28 -0.32 3.23 1.47 3.21 3.91 1.47 3.21 
85.5 7.97 139.38 72.44 5.18 -0.56 -0.06 8.23 137.50 74.97 5.39 -0.28 -0.08 3.26 1.37 3.38 3.90 1.37 3.38 
88.5 7.71 134.52 70.65 5.46 -0.56 0.12 7.96 132.84 73.24 5.68 -0.28 0.16 3.27 1.27 3.55 3.86 1.27 3.55 

 

Table B.3    Error analysis of the finite element analysis based on the proposed boundary conditions in comparison with the analytical 
solution (the generalised Kirsch’s equations), for calculating the induced stresses around a deviated borehole (for a 
quarter-model) 
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r (m) 
Numerical analysis Analytical solution Error calculation (%) 

σrr σθθ σaa σrθ σra σaθ σrr σθθ σaa σrθ σra σaθ σrr (e) σθθ (e) σaa (e) σrθ (e) σra (e) σθa (e) 
0.08 0.00 180.12 86.71 0.00 0.00 -3.00 0.00 179.24 86.70 0.00 0.00 -3.02 0.00 0.49 0.02 0.00 0.00 0.60 
0.085 9.46 165.96 85.36 0.08 -0.25 -2.79 9.65 162.82 84.33 0.08 -0.24 -2.85 2.01 1.93 1.22 4.99 2.69 2.01 
0.095 22.51 142.04 81.55 0.17 -0.63 -2.51 22.31 139.71 80.67 0.16 -0.61 -2.58 0.88 1.67 1.10 4.13 2.66 2.54 
0.105 30.14 126.49 78.78 0.21 -0.91 -2.32 29.78 124.62 78.00 0.20 -0.88 -2.39 1.20 1.50 1.00 5.74 2.94 2.59 
0.115 34.83 115.85 76.70 0.23 -1.11 -2.20 34.42 114.26 76.00 0.22 -1.08 -2.24 1.20 1.39 0.92 5.08 2.56 1.93 
0.125 37.85 108.27 75.11 0.24 -1.27 -2.09 37.43 106.85 74.46 0.23 -1.24 -2.13 1.12 1.33 0.86 4.75 2.38 1.71 
0.135 39.86 102.67 73.85 0.24 -1.40 -2.00 39.45 101.37 73.25 0.23 -1.36 -2.04 1.04 1.28 0.82 4.56 2.37 2.00 
0.145 41.24 98.42 72.84 0.24 -1.50 -1.92 40.85 97.20 72.28 0.23 -1.46 -1.97 0.95 1.25 0.78 4.44 2.67 2.64 
0.155 42.21 95.11 72.03 0.24 -1.58 -1.86 41.85 93.95 71.49 0.23 -1.54 -1.91 0.87 1.23 0.75 4.34 2.62 2.81 
0.165 42.91 92.49 71.35 0.23 -1.64 -1.81 42.57 91.38 70.85 0.23 -1.61 -1.86 0.80 1.22 0.72 4.26 2.08 2.73 
0.175 43.42 90.37 70.79 0.23 -1.71 -1.78 43.10 89.30 70.30 0.22 -1.66 -1.82 0.74 1.21 0.70 4.19 2.70 2.20 
0.185 43.81 88.64 70.32 0.23 -1.74 -1.74 43.51 87.59 69.85 0.22 -1.71 -1.79 0.69 1.20 0.67 4.11 2.07 2.78 
0.195 44.10 87.20 69.92 0.22 -1.79 -1.72 43.82 86.17 69.46 0.22 -1.75 -1.76 0.64 1.19 0.66 4.03 2.61 2.26 
0.205 44.32 85.99 69.57 0.22 -1.82 -1.69 44.06 84.99 69.13 0.21 -1.78 -1.74 0.59 1.18 0.64 3.94 2.02 2.69 
0.215 44.49 84.96 69.27 0.22 -1.85 -1.68 44.25 83.98 68.84 0.21 -1.81 -1.72 0.55 1.17 0.62 3.85 2.02 2.46 
0.225 44.63 84.08 69.01 0.22 -1.88 -1.65 44.40 83.11 68.59 0.21 -1.84 -1.70 0.52 1.16 0.61 3.75 2.60 2.78 
0.235 44.74 83.32 68.78 0.21 -1.91 -1.64 44.52 82.37 68.38 0.21 -1.86 -1.68 0.49 1.16 0.60 3.65 2.65 2.62 
0.245 44.82 82.66 68.58 0.21 -1.93 -1.63 44.62 81.72 68.18 0.20 -1.88 -1.67 0.46 1.15 0.59 3.54 2.68 2.41 
0.255 44.89 82.08 68.40 0.21 -1.94 -1.61 44.70 81.15 68.01 0.20 -1.89 -1.66 0.43 1.14 0.57 3.42 2.63 2.65 
0.265 44.95 81.56 68.24 0.21 -1.96 -1.61 44.77 80.65 67.86 0.20 -1.91 -1.65 0.41 1.13 0.56 3.30 2.46 2.32 
0.275 45.00 81.11 68.10 0.20 -1.96 -1.59 44.83 80.21 67.73 0.20 -1.92 -1.64 0.39 1.12 0.55 3.18 2.10 2.62 
0.285 45.04 80.70 67.97 0.20 -1.98 -1.59 44.87 79.82 67.61 0.20 -1.94 -1.63 0.37 1.10 0.54 3.05 2.29 2.34 
0.295 45.07 80.34 67.86 0.20 -2.00 -1.59 44.91 79.47 67.50 0.20 -1.95 -1.62 0.35 1.09 0.53 2.92 2.51 2.07 
0.305 45.09 80.01 67.75 0.20 -2.00 -1.57 44.95 79.15 67.40 0.19 -1.96 -1.61 0.33 1.08 0.52 2.78 2.23 2.44 
0.315 45.12 79.71 67.65 0.20 -2.02 -1.56 44.97 78.87 67.31 0.19 -1.97 -1.61 0.31 1.07 0.51 2.65 2.48 2.70 
0.325 45.13 79.44 67.57 0.20 -2.02 -1.56 45.00 78.62 67.23 0.19 -1.97 -1.60 0.30 1.05 0.50 2.50 2.24 2.61 
0.335 45.15 79.19 67.49 0.20 -2.03 -1.55 45.02 78.38 67.16 0.19 -1.98 -1.60 0.29 1.04 0.49 2.36 2.23 2.85 
0.345 45.16 78.97 67.41 0.19 -2.04 -1.55 45.04 78.17 67.09 0.19 -1.99 -1.59 0.27 1.02 0.48 2.21 2.40 2.85 
0.355 45.17 78.76 67.34 0.19 -2.04 -1.55 45.06 77.98 67.03 0.19 -2.00 -1.59 0.26 1.00 0.47 2.07 2.09 2.55 
0.365 45.18 78.57 67.28 0.19 -2.05 -1.54 45.07 77.80 66.97 0.19 -2.00 -1.58 0.25 0.98 0.46 1.91 2.30 2.51 

 

Table B.4    Error analysis of the finite element model in comparison with the analytical solution (the generalised Kirsch’s equations), for 
calculating the induced stresses along the radial distance r from the wall of a deviated borehole at � = 55.166° 



 

163 
 

 

r (m) 
Numerical Analytical Error calculation (%) 

σrr σθθ σaa σrθ σra σaθ σrr σθθ σaa σrθ σra σaθ σrr (e) σθθ (e) σaa (e) σrθ (e) σra (e) σθa (e) 
0.08 0.00 179.12 86.71 0.00 0.00 -1.85 0.00 179.24 86.70 0.00 0.00 -3.02 0.00 0.06 0.02 0.00 0.00 38.72 
0.085 9.38 165.85 82.64 0.08 -0.10 -1.71 9.65 162.82 84.33 0.08 -0.24 -2.85 2.80 1.86 2.01 3.87 59.08 40.09 
0.095 22.29 142.02 79.20 0.17 -1.11 -1.56 22.31 139.71 80.67 0.16 -0.61 -2.58 0.10 1.66 1.83 4.69 82.09 39.69 
0.105 29.82 126.54 76.78 0.21 -1.47 -1.47 29.78 124.62 78.00 0.20 -0.88 -2.39 0.12 1.54 1.56 3.67 66.75 38.53 
0.115 34.45 115.95 75.01 0.22 -1.68 -1.41 34.42 114.26 76.00 0.22 -1.08 -2.24 0.09 1.48 1.31 2.12 55.34 37.05 
0.125 37.44 108.38 73.66 0.24 -1.82 -1.37 37.43 106.85 74.46 0.23 -1.24 -2.13 0.03 1.44 1.08 4.82 46.65 35.48 
0.135 39.44 102.80 72.60 0.24 -1.91 -1.35 39.45 101.37 73.25 0.23 -1.36 -2.04 0.03 1.42 0.88 4.89 39.87 33.94 
0.145 40.82 98.56 71.76 0.24 -1.97 -1.33 40.85 97.20 72.28 0.23 -1.46 -1.97 0.08 1.40 0.72 3.68 34.47 32.48 
0.155 41.80 95.26 71.08 0.23 -2.01 -1.32 41.85 93.95 71.49 0.23 -1.54 -1.91 0.11 1.39 0.58 1.82 30.10 31.13 
0.165 42.51 92.64 70.52 0.22 -2.03 -1.31 42.57 91.38 70.85 0.23 -1.61 -1.86 0.14 1.38 0.46 0.34 26.51 29.90 
0.175 43.04 90.52 70.05 0.22 -2.05 -1.30 43.10 89.30 70.30 0.22 -1.66 -1.82 0.16 1.37 0.36 2.59 23.52 28.79 
0.185 43.44 88.78 69.66 0.21 -2.07 -1.29 43.51 87.59 69.85 0.22 -1.71 -1.79 0.17 1.36 0.27 4.80 21.01 27.78 
0.195 43.74 87.34 69.33 0.21 -2.08 -1.29 43.82 86.17 69.46 0.22 -1.75 -1.76 0.17 1.35 0.20 2.27 18.88 26.88 
0.205 43.98 86.13 69.04 0.20 -2.09 -1.29 44.06 84.99 69.13 0.21 -1.78 -1.74 0.18 1.34 0.13 4.81 17.06 26.06 
0.215 44.17 85.10 68.79 0.22 -2.09 -1.28 44.25 83.98 68.84 0.21 -1.81 -1.72 0.18 1.33 0.08 3.94 15.49 25.32 
0.225 44.32 84.21 68.57 0.20 -2.10 -1.28 44.40 83.11 68.59 0.21 -1.84 -1.70 0.18 1.32 0.03 2.97 14.13 24.66 
0.235 44.44 83.45 68.38 0.20 -2.10 -1.28 44.52 82.37 68.38 0.21 -1.86 -1.68 0.18 1.31 0.01 4.06 12.94 24.06 
0.245 44.54 82.79 68.21 0.20 -2.10 -1.28 44.62 81.72 68.18 0.20 -1.88 -1.67 0.17 1.30 0.05 3.08 11.89 23.51 
0.255 44.63 82.20 68.07 0.20 -2.10 -1.28 44.70 81.15 68.01 0.20 -1.89 -1.66 0.17 1.29 0.08 1.34 10.97 23.02 
0.265 44.69 81.69 67.93 0.20 -2.10 -1.28 44.77 80.65 67.86 0.20 -1.91 -1.65 0.17 1.28 0.10 2.20 10.15 22.57 
0.275 44.75 81.23 67.81 0.19 -2.11 -1.27 44.83 80.21 67.73 0.20 -1.92 -1.64 0.17 1.27 0.13 2.94 9.42 22.16 
0.285 44.80 80.82 67.71 0.20 -2.11 -1.27 44.87 79.82 67.61 0.20 -1.94 -1.63 0.16 1.26 0.15 1.54 8.77 21.79 
0.295 44.84 80.46 67.61 0.19 -2.11 -1.27 44.91 79.47 67.50 0.20 -1.95 -1.62 0.16 1.24 0.16 4.04 8.18 21.45 
0.305 44.87 80.13 67.52 0.19 -2.11 -1.27 44.95 79.15 67.40 0.19 -1.96 -1.61 0.16 1.23 0.18 4.43 7.66 21.13 
0.315 44.91 79.83 67.44 0.18 -2.11 -1.27 44.97 78.87 67.31 0.19 -1.97 -1.61 0.15 1.21 0.19 4.71 7.18 20.84 
0.325 44.93 79.56 67.36 0.18 -2.11 -1.27 45.00 78.62 67.23 0.19 -1.97 -1.60 0.15 1.20 0.20 4.88 6.75 20.58 
0.335 44.95 79.31 67.30 0.18 -2.11 -1.27 45.02 78.38 67.16 0.19 -1.98 -1.60 0.15 1.18 0.21 4.95 6.35 20.33 
0.345 44.97 79.08 67.23 0.18 -2.11 -1.27 45.04 78.17 67.09 0.19 -1.99 -1.59 0.15 1.16 0.22 4.95 5.99 20.10 
0.355 44.99 78.87 67.17 0.18 -2.11 -1.27 45.06 77.98 67.03 0.19 -2.00 -1.59 0.14 1.14 0.22 4.92 5.67 19.89 
0.365 45.01 78.68 67.12 0.18 -2.11 -1.27 45.07 77.80 66.97 0.19 -2.00 -1.58 0.14 1.12 0.22 4.98 5.37 19.70 

Table B.5    Error analysis of the finite element analysis based on the proposed boundary conditions in comparison with the 
analytical solution (the generalised Kirsch’s equations), for calculating the induced stresses along the radial distance 
r from the wall of a deviated borehole at � = 55.166° 
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Tests No. σ₁ (MPa) σ₂ (MPa) σ₃ (MPa) I1(MPa) √J2(MPa) 
1 310 0 0 310 178.98 

2 397 20 20 437 217.66 

3 417 51 20 488 220.80 

4 413 92 20 525 209.23 

5 453 165 20 638 220.40 

6 460 206 20 686 220.87 

7 465 233 20 718 222.57 

8 449 40 40 529 236.14 

9 446 40 40 526 234.40 

10 486 80 40 606 246.76 

11 499 113 40 652 246.65 

12 530 193 40 763 250.69 

13 547 274 40 861 253.75 

14 535 315 40 890 248.01 

15 473 60 60 593 238.45 

16 517 87 60 664 256.41 

17 537 102 60 699 264.11 

18 530 113 60 703 257.42 

19 576 164 60 800 272.89 

20 550 197 60 807 252.81 

21 553 275 60 888 247.17 

22 557 345 60 962 249.39 

23 528 80 80 688 258.65 

24 572 126 80 778 271.75 

25 577 150 80 807 269.02 

26 647 208 80 935 297.38 

27 591 225 80 896 263.34 

28 677 283 80 1040 303.55 

29 665 298 80 1043 295.65 

30 650 378 80 1108 285.10 

31 680 454 80 1214 303.03 

 

 

 

 

 

Table C.1    True-triaxial data of Solnhofen Limestone, Mogi (2007) 
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Test NO. σ₁ (MPa) σ₂ (MPa) σ₃ (MPa) I1(MPa) √J2(MPa) 
1 265 0 0 265 153.00 

2 258 0 0 258 148.96 

3 400 25 25 450 216.51 

4 475 66 25 566 248.82 

5 495 96 25 616 253.36 

6 560 129 25 714 283.67 

7 571 174 25 770 282.23 

8 586 229 25 840 283.96 

9 545 272 25 842 260.11 

10 487 45 45 577 255.19 

11 570 97 45 712 289.27 

12 576 126 45 747 286.07 

13 606 160 45 811 296.33 

14 639 183 45 867 310.86 

15 670 240 45 955 319.78 

16 670 266 45 981 316.93 

17 622 294 45 961 289.40 

18 540 60 60 660 277.13 

19 568 65 65 698 290.41 

20 638 117 65 820 316.88 

21 644 153 65 862 312.00 

22 687 208 65 960 325.77 

23 685 262 65 1012 316.79 

24 746 318 65 1129 344.23 

25 701 393 65 1159 318.05 

26 620 85 85 790 308.88 

27 684 128 85 897 334.11 

28 719 153 85 957 348.07 

29 744 233 85 1062 345.76 

30 773 306 85 1164 351.25 

31 818 376 85 1279 369.08 

32 798 445 85 1328 356.51 

33 682 105 105 892 333.13 

34 778 167 105 1050 371.95 

35 786 205 105 1096 367.72 

36 805 268 105 1178 366.27 

37 863 270 105 1238 398.63 

38 824 334 105 1263 367.31 

39 840 356 105 1301 373.60 

40 822 415 105 1342 359.59 

41 725 125 125 975 346.41 

42 824 187 125 1136 386.91 

43 860 239 125 1224 395.57 

44 863 293 125 1281 386.82 

45 897 362 125 1384 395.47 

46 941 414 125 1480 413.74 

47 918 463 125 1506 397.94 

48 886 516 125 1527 380.55 

49 883 253 145 1281 398.58 

50 927 296 145 1368 414.83 

51 923 324 145 1392 407.46 

52 922 349 145 1416 402.84 

53 1015 392 145 1552 448.34 

54 1002 410 145 1557 438.77 

Table C.2    True-triaxial data on Dunham Dolomite, Mogi (2007) 



APPENDIX C                                                                    True-triaxial data from the literature  
 

166 
 

 

 

Test No. σ₁ (MPa) σ₂ (MPa) σ₃ (MPa) I1(MPa) √J2(MPa) 
1 82 0 0 82 47.34 

2 118 6 6 130 64.66 

3 140 12.5 12.5 165 73.61 

4 179 26 12.5 217.5 92.48 

5 177 28 12.5 217.5 90.83 

6 196 45 12.5 253.5 97.92 

7 213 67 12.5 292.5 103.67 

8 225 90 12.5 327.5 107.54 

9 228 105 12.5 345.5 108.11 

10 200 115 12.5 327.5 93.89 

11 189 25 25 239 94.69 

12 209 39 25 273 102.43 

13 240 58 25 323 115.79 

14 252 78 25 355 118.75 

15 275 107 25 407 127.44 

16 268 132 25 425 121.79 

17 268 157 25 450 121.65 

18 250 168 25 443 113.87 

19 243 40 40 323 117.20 

20 290 64 40 394 137.93 

21 288 88 40 416 131.53 

22 309 88 40 437 143.47 

23 319 112 40 471 144.84 

24 307 143 40 490 134.66 

25 336 160 40 536 148.88 

26 321 177 40 538 140.51 

27 341 208 40 589 150.84 

 

 

 

 

 

 

 

 

Table C.3    True-triaxial data on Yamaguchi Marble, Mogi (2007) 
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Test No. σ₁ (MPa) σ₂ (MPa) σ₃ (MPa) I1(MPa) √J2(MPa) 
1 100 0 0 100 57.74 

2 196 15 15 226 104.50 

3 259 30 30 319 132.21 

4 302 45 45 392 148.38 

5 314 58 45 417 151.69 

6 327 67 45 439 156.85 

7 341 90 45 476 159.50 

8 350 138 45 533 156.32 

9 359 204 45 608 157.00 

10 368 281 45 694 167.13 

11 353 323 45 721 169.83 

12 341 60 60 461 162.24 

13 353 83 60 496 162.93 

14 386 133 60 579 171.08 

15 401 186 60 647 172.42 

16 403 212 60 675 171.87 

17 401 254 60 715 171.04 

18 381 306 60 747 167.92 

19 368 75 75 518 169.16 

20 405 108 75 588 181.75 

21 415 147 75 637 179.17 

22 438 210 75 723 183.47 

23 440 279 75 794 182.92 

24 430 318 75 823 181.48 

25 452 363 75 890 197.06 

26 437 100 100 637 194.57 

27 463 126 100 689 202.49 

28 493 171 100 764 209.43 

29 497 256 100 853 200.01 

30 522 354 100 976 212.46 

31 510 384 100 994 210.01 

 

 

 

 

 

 

Table C.4    True-triaxial test data on Mizuho Trachyte (Mogi, 2007) 
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Test  No. σ₁ (MPa) σ₂ (MPa) σ₃ (MPa) I1(MPa) √J2(MPa) 
1 234 0 0 234 135.10 

2 339 5 5 349 192.83 

3 504 20 20 544 279.44 

4 584.7 40 40 664.7 314.48 

5 636 59 40 735 338.75 

6 698 80 40 818 368.89 

7 673 101 40 814 349.19 

8 775 102 40 917 407.64 

9 739 121 40 900 382.34 

10 747 143 40 930 381.94 

11 777 168 40 985 393.79 

12 748 187 40 975 373.63 

13 751 80 80 911 387.40 

14 834 95 80 1009 431.06 

15 810 108 80 998 413.62 

16 836 117 80 1033 426.20 

17 854 135 80 1069 431.87 

18 893 147 80 1120 451.29 

19 889 182 80 1151 440.59 

20 930 183 80 1193 463.88 

21 906 216 80 1202 442.88 

22 973 218 80 1271 480.71 

23 926 281 80 1287 441.99 

24 956 284 80 1320 458.36 

25 966 311 80 1357 459.60 

26 962 140 140 1242 474.58 

27 1098 205 140 1443 535.33 

28 1144 259 140 1543 548.54 

29 1161 331 140 1632 542.80 

30 1168 424 140 1732 530.88 

31 1107 200 200 1507 523.66 

32 1168 235 200 1603 549.05 

33 1244 251 200 1695 588.58 

34 1305 298 200 1803 611.65 

35 1352 343 200 1895 627.91 

36 1329 401 200 1930 602.25 

37 1358 473 200 2031 605.35 

38 1364 537 200 2101 598.94 

 

 

 

 

 

Table C.5    True-triaxial test data on Orikabe Monzonite (Mogi, 2007) 
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Test   No. σ₁ (MPa) σ₂ (MPa) σ₃ (MPa) I1(MPa) √J2(MPa) 
1 236 0 0 236 136.25 

2 232 0 0 232 133.95 

3 339 5 5 349 192.83 

4 504 20 20 544 279.44 

5 583 40 40 663 313.50 

6 571 40 40 651 306.57 

7 600 40 40 680 323.32 

8 636 59 40 735 338.75 

9 698 80 40 818 368.89 

10 673 101 40 814 349.19 

11 775 102 40 917 407.64 

12 739 121 40 900 382.34 

13 747 143 40 930 381.94 

14 777 168 40 985 393.79 

15 748 187 40 975 373.63 

16 718 80 80 878 368.35 

17 742 80 80 902 382.21 

18 794 80 80 954 412.23 

19 834 95 80 1009 431.06 

20 810 108 80 998 413.62 

21 836 117 80 1033 426.20 

22 854 135 80 1069 431.87 

23 893 147 80 1120 451.29 

24 889 182 80 1151 440.59 

25 930 183 80 1193 463.88 

26 906 216 80 1202 442.88 

27 973 218 80 1271 480.71 

28 926 281 80 1287 441.99 

29 956 284 80 1320 458.36 

30 966 311 80 1357 459.60 

31 943 140 140 1223 463.61 

32 981 140 140 1261 485.55 

33 1098 205 140 1443 535.33 

34 1144 259 140 1543 548.54 

35 1161 331 140 1632 542.80 

36 1168 424 140 1732 530.88 

37 1107 200 200 1507 523.66 

38 1168 235 200 1603 549.05 

39 1244 251 200 1695 588.58 

40 1305 298 200 1803 611.65 

41 1352 343 200 1895 627.91 

42 1329 401 200 1930 602.25 

43 1358 473 200 2031 605.35 

44 1364 537 200 2101 598.94 

 

 

Table C.6    True-triaxial test data on Inada Granite (Mogi, 2007) 
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Test   No. σ₁ (MPa) σ₂ (MPa) σ₃ (MPa) I1(MPa) √J2(MPa) 
1 140 0 0 140 80.83 

2 349 16 16 381 192.26 

3 364 20 20 404 198.61 

4 381 20 20 421 208.42 

5 470 67 20 557 247.36 

6 516 124 20 660 261.56 

7 538 186 20 744 264.51 

8 552 40 40 632 295.60 

9 577 75 40 692 300.44 

10 632 112 40 784 323.02 

11 669 126 40 835 341.05 

12 653 206 40 899 317.05 

13 626 278 40 944 294.72 

14 671 70 70 811 346.99 

15 735 101 70 906 375.31 

16 735 152 70 957 362.59 

17 808 193 70 1071 395.39 

18 812 275 70 1157 383.18 

19 801 313 70 1184 372.28 

20 833 375 70 1278 384.05 

21 806 100 100 1006 407.61 

22 875 110 110 1095 441.67 

23 881 130 130 1141 433.59 

 

 

 

 

 

 

 

 

 

 

Table C.7    True-triaxial test data on Manazuru Andesite (Mogi, 2007) 
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Test   No. σ₁ (MPa) σ₂ (MPa) σ₃ (MPa) I1(MPa) √J2(MPa) 
1 165 0 0 165 95.26 

2 346 79 0 425 181.31 

3 291 149 0 440 145.51 

4 347 197 0 544 174.03 

5 267 229 0 496 144.44 

6 410 30 30 470 219.39 

7 479 60 30 569 251.02 

8 599 100 30 729 310.29 

9 652 200 30 882 321.48 

10 571 249 30 850 272.13 

11 637 298 30 965 304.19 

12 702 60 60 822 370.66 

13 750 88 60 898 390.54 

14 766 103 60 929 395.78 

15 745 155 60 960 371.11 

16 816 199 60 1075 402.40 

17 888 249 60 1197 433.90 

18 828 299 60 1187 393.02 

19 887 347 60 1294 419.90 

20 954 399 60 1413 451.33 

21 815 449 60 1324 377.56 

22 868 100 100 1068 443.41 

23 959 164 100 1223 478.54 

24 1001 199 100 1300 494.10 

25 945 248 100 1293 451.25 

26 892 269 100 1261 417.12 

27 1048 300 100 1448 499.70 

28 1058 349 100 1507 497.07 

29 1155 442 100 1697 538.26 

30 1118 597 100 1815 509.05 

31 1147 150 150 1447 575.62 

32 1065 198 150 1413 514.98 

33 1112 199 150 1461 541.82 

34 1176 249 150 1575 565.95 

35 1431 298 150 1879 700.78 

36 1326 348 150 1824 629.64 

37 1169 399 150 1718 531.23 

38 1284 448 150 1882 587.89 

39 1265 498 150 1913 570.47 

40 1262 642 150 2054 557.23 

 

 

 

 

Table C.8    True-triaxial test data on KTB Amphibolite (Chang and Haimson, 2000) 
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Test No. σ₁ (MPa) σ₂ (MPa) σ₃ (MPa) I1(MPa) √J2(MPa) 
1 201 0 0 201 116.05 

2 306 40 0 346 166.33 

3 301 60 0 361 159.31 

4 317 80 0 397 164.85 

5 304 100 0 404 154.94 

6 231 2 2 235 132.21 

7 300 18 2 320 167.62 

8 328 40 2 370 178.26 

9 359 60 2 421 191.58 

10 353 80 2 435 184.31 

11 355 100 2 457 182.23 

12 430 20 20 470 236.71 

13 529 40 20 589 288.27 

14 602 60 20 682 325.09 

15 554 62 20 636 296.92 

16 553 61 20 634 296.60 

17 532 79 20 631 280.13 

18 575 100 20 695 300.01 

19 567 114 20 701 292.48 

20 601 150 20 771 304.92 

21 638 202 20 860 317.58 

22 605 38 38 681 327.36 

23 620 38 38 696 336.02 

24 700 57 38 795 376.84 

25 733 78 38 849 390.22 

26 720 103 38 861 376.39 

27 723 119 38 880 374.30 

28 731 157 38 926 370.56 

29 781 198 38 1017 391.05 

30 747 60 60 867 396.64 

31 811 90 60 961 425.19 

32 821 114 60 995 424.63 

33 860 180 60 1100 431.43 

34 861 249 60 1170 418.70 

35 889 77 77 1043 468.81 

36 954 102 77 1133 499.28 

37 992 142 77 1211 510.55 

38 998 214 77 1289 496.93 

39 1005 310 77 1392 482.79 

40 1012 100 100 1212 526.54 

41 1103 165 100 1368 561.26 

42 1147 167 100 1414 586.10 

43 1155 216 100 1471 578.53 

44 1195 259 100 1554 591.66 

45 1129 312 100 1541 543.33 

 

 

 

Table C.9    True-triaxial test data on Westerly Granite (Haimson and Chang, 2000) 
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Figure C.1   Linear correlation coefficient calculated by the means of Pearson linear 
correlation coefficient for the nine sets of true-triaxial data 
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Figure D.1    )�ÈÇ. )� Plots for KTB Amphibolite for different constant values of )� 
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Figure D.2    )�ÈÇ. )� Plots for Westerly Granite for different constant values of )� 
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Figure D.3    )�ÈÇ. )� Plots for Dunham Dolomite for different constant values of )� 
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Figure D.4    )�ÈÇ. )� Plots for Solnhofen Limestone for different constant values of )� 
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Figure D.5    )�ÈÇ. )� Plots for Yamaguchi Marble for different constant values of 
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Figure D.6    )�ÈÇ. )� Plots for Mizuho Trachyte for different constant values of )� 
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Figure D.7    )�ÈÇ. )� Plots for Manazuru Andesite for different constant values of )� 
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Figure D.8    )�ÈÇ. )� Plots for Inada Granite for different constant values of )� 



APPENDIX D                                     ��-�� plots for the selected rock types from the literature 

192 
 

 

 

 

 

200

400

600

800

1000

1200

1400

1600

0 100 200 300 400

σ1
(MPa)

σ2 (MPa)

Inada Granite, σ₃ = 100 MPa

data points

Hoek-Brown

Pan-Hudson

Zhang-Zhu

Generalised Priest

Simplified Priest

Modified SP



APPENDIX D                                     ��-�� plots for the selected rock types from the literature 

193 
 

 

 

 

 

400

600

800

1000

1200

1400

1600

1800

100 150 200 250 300 350 400

σ1
(MPa)

σ2 (MPa)

Inada Granite, σ₃ = 150 MPa

data points

Hoek-Brown

Pan-Hudson

Zhang-Zhu

Generalised Priest

Simplified Priest

Modified SP

600

800

1000

1200

1400

1600

1800

2000

150 250 350 450 550

σ1
(MPa)

σ2 (MPa)

Inada Granite, σ₃ = 200 MPa

data points

Hoek-Brown

Pan-Hudson

Zhang-Zhu

Generalised Priest

Simplified Priest

Modified SP



APPENDIX D                                     ��-�� plots for the selected rock types from the literature 

194 
 

 

 

 

 

0

100

200

300

400

500

600

700

800

900

0 50 100 150 200

σ1
(MPa)

σ2 (MPa)

Orikabe Monzonite, σ₃ = 40 MPa

data points

Modified SP

Zhang-Zhu

Hoek-Brown

Pan-Hudson

Generalised Priest

Simplyfied Preist

200

300

400

500

600

700

800

900

1000

1100

1200

0 100 200 300 400

σ1
(MPa)

σ2 (MPa)

Orikabe Monzonite, σ₃ = 80 MPa

data points

Modified SP

Zhang-Zhu

Hoek-Brown

Pan-Hudson

Generalised Priest

Simplyfied Preist
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Figure E.2    Normal distribution of failure prediction accuracy of selected 
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Figure E.1    Normal distribution of failure prediction accuracy of selected failure 
criteria for Orikabe Monzonite 
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Figure E.3    Normal distribution of failure prediction accuracy of selected 
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Figure E.4    Normal distribution of failure prediction accuracy of selected 
failure criteria for Mizuho Trachyte 



APPENDIX E                                                                              Error analysis diagrams (PDF) 

198 
 

 

  

 

  

  

 

 

 

-500 -400 -300 -200 -100 0 100 200 300 400 500
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

X = σ
1(model)

- σ
1(observed)

p
ro

b
ab

ili
ty

 d
en

si
ty

 f
u

n
ct

io
n

 f
 (

X
)

 

 
 PH (µ=-38.1004,σ=24.691)
 HB (µ=-52.1682,σ=31.5101)
 ZZ (µ=-12.2573,σ=11.0639)
 GP (µ=25.3423,σ=31.7413)
 SP (µ=-35.9554,σ=21.4355)
MSP (µ=-14.1799,σ=14.4977)

-500 -400 -300 -200 -100 0 100 200 300 400 500
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

X = σ
1(model)

- σ
1(observed)

p
ro

b
ab

ili
ty

 d
en

si
ty

 f
u

n
ct

io
n

 f
 (

X
)

 

 
 PH (µ=-47.7463,σ=53.427)
 HB (µ=-65.5869,σ=42.0773)
 ZZ (µ=8.05335,σ=23.5526)
 GP (µ=63.5216,σ=62.4703)
 SP (µ=-36.1893,σ=25.6439)
MSP (µ=13.3831,σ=22.5641)

Figure E.5     Normal distribution of failure prediction accuracy of selected 
failure criteria for Yamaguchi Marble 

Figure E.6    Normal distribution of failure prediction accuracy of selected 
failure criteria for Solnhofen Limestone 
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Figure E.7    Normal distribution of failure prediction accuracy of selected 
failure criteria for Dunham Dolomite 

Figure E.8    Normal distribution of failure prediction accuracy of selected 
failure criteria for Westerly Granite 
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Hoek-Brown Criterion 

%===========Hoek Brown Criterion=================== ========================  
% Input parameters:  
% I1= First invariant of stress tensor.  
% mb= Parameter m for the Hoek-Brown Criterion.  
% sigmac= Uniaxial strength of rock material.  
% parameter S for the Hoek-Brown Criterion.  
% Output:  
% Failure surface for the Hoek-Brown criterion in t hree-dimensional stress 
space.  
%================================================== ========================  
I1=linspace(0,3500,50);  
mb=20;  
sigmac=100;  
S=1;  
%%====Calculation of the Hoek-Brown radius on the d eviatoric plane=========  
%---[-pi/6,pi/6]----------------------------------- ------------------------  
theta=(-pi/6:.01:pi/6);  
lamda1=2*mb*sin(theta+pi/3)./sqrt(3);  
A=4*(cos(theta)).^2;  
for  j=1:length(I1)  
    for  i=1:length(A)  
        r1(i,j)=(sigmac./(2*A(i))).*(-
lamda1(i)+sqrt(lamda1(i).^2+4*A(i).*(mb*I1(j)/(3*si gmac))+S));  
    end  
end  
%---[pi/6,pi/2]------------------------------------ ------------------------  
theta1=(-(pi/6):0.01:pi/6);  
lamda2=2*mb*sin(-theta+pi/3)./sqrt(3);  
A=4*(cos(theta)).^2;  
for  j=1:length(I1)  
    for  i=1:length(A)  
        r2(i,j)=(sigmac./(2*A(i))).*(-
lamda2(i)+sqrt(lamda2(i).^2+4*A(i).*(mb*I1(j)/(3*si gmac))+S));  
    end  
end  
%---[pi/2,2*pi/3]---------------------------------- ---------------------  
theta2=(-(pi/6):0.01:pi/6);  
lamda1=2*mb*sin(theta+pi/3)./sqrt(3);  
for  j=1:length(I1)  
    for  i=1:length(A)  
        r3(i,j)=(sigmac./(2*A(i))).*(-
lamda1(i)+sqrt(lamda1(i).^2+4*A(i).*(mb*I1(j)/(3*si gmac))+S));  
    end  
end  
%---[5*pi/6,7*pi/6]-------------------------------- ------------------------  
theta3=((-pi/6):0.01:pi/6);  
lamda2=2*mb*sin(-theta+pi/3)./sqrt(3);  
for  j=1:length(I1)  
    for  i=1:length(A)  
        r4(i,j)=(sigmac./(2*A(i))).*(-
lamda2(i)+sqrt(lamda2(i).^2+4*A(i).*(mb*I1(j)/(3*si gmac))+S));  
    end  
end  
%---[7pi/6,3pi/2]---------------------------------- ------------------------  
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theta4=((-pi/6):0.01:pi/6);  
lamda1=2*mb*sin(theta+pi/3)./sqrt(3);  
for  j=1:length(I1)  
    for  i=1:length(A)  
        r5(i,j)=(sigmac./(2*A(i))).*(-
lamda1(i)+sqrt(lamda1(i).^2+4*A(i).*(mb*I1(j)/(3*si gmac))+S));  
    end  
end  
%---[3pi/2,-pi/6]---------------------------------- ------------------------  
theta5=(-pi/6:0.01:pi/6);  
lamda2=2*mb*sin(pi/3-theta)./sqrt(3);  
for  j=1:length(I1)  
    for  i=1:length(A)  
        r6(i,j)=(sigmac./(2*A(i))).*(-
lamda2(i)+sqrt(lamda2(i).^2+4*A(i).*(mb*I1(j)/(3*si gmac))+S));  
    end  
end  
%-------------------------------------------------- ------------------------  
figure(1) % 2-D Hoek-Brown trace on the deviatoric plane.  
for  h=1:length(I1)  
    [X,Y] = pol2cart(theta,r1(:,h)');  
    plot(X,Y)  
    hold on 
    [X1,Y1] = pol2cart(theta1+pi/3,r2(:,h)');  
    plot(X1,Y1)  
    hold on 
    [X2,Y2] = pol2cart(theta2+2*pi/3,r3(:,h)');  
    plot(X2,Y2)  
    hold on 
    [X3,Y3] = pol2cart(theta3+pi,r4(:,h)');  
    plot(X3,Y3)  
    hold on 
    [X4,Y4] = pol2cart(theta4+4*pi/3,r5(:,h)');  
    plot(X4,Y4)  
    hold on 
    [X5,Y5] = pol2cart(theta5+5*pi/3,r6(:,h)');  
    plot(X5,Y5)  
end  
xlabel( '\sigma_2d (MPa)' , 'fontname' , 'times new roman' , 'fontsize' ,14)  
ylabel( '\sigma_1d (Mpa)' , 'fontname' , 'times new roman' , 'fontsize' ,14)  
R1=[1/sqrt(2) 0 -1/sqrt(2);-1/sqrt(6) 2/sqrt(6) -1/ sqrt(6);1/sqrt(3) 
1/sqrt(3) 1/sqrt(3)];  
R=inv(R1);  
  
figure(2) % 3-D Hoek-Brown surface in stress space.  
for  h=1:length(I1)  
    [X,Y] = pol2cart(theta,sqrt(2).*r1(:,h)');  
    I16=(((((2*A.*r1(:,h)'/sigmac)+lamda1).^2-lamda 1.^2)./(4*A))-
S)*3*sigmac/mb;  
    z1=I16;  
    A1=R*[X;Y;z1/sqrt(3)];  
    plot3(A1(1,:),A1(2,:),A1(3,:), 'r' )  
    hold on 
    [X1,Y1] = pol2cart(theta1+pi/3,sqrt(2).*r2(:,h) ');  
    I16=(((((2*A.*r2(:,h)'/sigmac)+lamda2).^2-lamda 2.^2)./(4*A))-
S)*3*sigmac/mb;  
    z2=I16;  
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    B=R*[X1;Y1;z2/sqrt(3)];  
    plot3(B(1,:),B(2,:),B(3,:), 'r' )  
    hold on 
    [X2,Y2] = pol2cart(theta2+2*pi/3,sqrt(2).*r3(:, h)');  
    I16=(((((2*A.*r3(:,h)'/sigmac)+lamda1).^2-lamda 1.^2)./(4*A))-
S)*3*sigmac/mb;  
    z3=I16;  
    C=R*[X2;Y2;z3/sqrt(3)];  
    plot3(C(1,:),C(2,:),C(3,:), 'r' )  
    hold on 
    [X3,Y3] = pol2cart(theta3+pi,sqrt(2).*r4(:,h)') ;  
    I16=(((((2*A.*r4(:,h)'/sigmac)+lamda2).^2-lamda 2.^2)./(4*A))-
S)*3*sigmac/mb;  
    z4=I16;  
    D=R*[X3;Y3;z4/sqrt(3)];  
    plot3(D(1,:),D(2,:),D(3,:), 'r' )  
    hold on 
    [X4,Y4] = pol2cart(theta4+4*pi/3,sqrt(2).*r5(:, h)');  
    I16=(((((2*A.*r5(:,h)'/sigmac)+lamda1).^2-lamda 1.^2)./(4*A))-
S)*3*sigmac/mb;  
    z5=I16;  
    E=R*[X4;Y4;z5/sqrt(3)];  
    plot3(E(1,:),E(2,:),E(3,:), 'r' )  
    hold on 
    [X5,Y5] = pol2cart(theta5+5*pi/3,sqrt(2).*r6(:, h)');  
    I16=(((((2*A.*r6(:,h)'/sigmac)+lamda2).^2-lamda 2.^2)./(4*A))-
S)*3*sigmac/mb;  
    z6=I16;  
    F=R*[X5;Y5;z6/sqrt(3)];  
    plot3(F(1,:),F(2,:),F(3,:), 'r' )  
end  
  
% Moving axes to the origin of coordinate system.  
plot3(get(gca, 'XLim' ),[0 0],[0 0], 'k' );  
plot3([0 0],[0 0],get(gca, 'ZLim' ), 'k' );  
plot3([0 0],get(gca, 'YLim' ),[0 0], 'k' );  
  
% REMOVE TICKS 
set(gca, 'Xtick' ,[]);  
set(gca, 'Ytick' ,[]);  
set(gca, 'Ztick' ,[]);  
  
% GET OFFSETS 
Xoff=diff(get(gca, 'XLim' ))./30;  
Yoff=diff(get(gca, 'YLim' ))./30;  
Zoff=diff(get(gca, 'ZLim' ))./30;  
xlabel( '\sigma_2 (MPa)' , 'fontname' , 'times new roman' , 'fontsize' ,14)  
ylabel( '\sigma_1 (MPa)' , 'fontname' , 'times new roman' , 'fontsize' ,14)  
zlabel( '\sigma_3 (MPa)' , 'fontname' , 'times new roman' , 'fontsize' ,14)  
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Pan-Hudson Criterion 

%===========Pan-Hudson Criterion=================== ========================  
% Input parameters:  
% I1= First invariant of stress tensor.  
% mb= Parameter m for the Hoek-Brown Criterion.  
% sigmac= Uniaxial strength of rock material.  
% parameter S for the Hoek-Brown Criterion.  
% Output:  
% Failure surface for the Hoek-Brown criterion in t hree-dimensional stress 
space.  
%================================================== ========================  
clear all  
close all  
I1=linspace(0,3500,50);  
mb=20;  
sigmac=100;  
S=1;  
e=0.00;  
%%====Calculation of the Pan-Hudson radius on the d eviatoric plane=========  
%===[-pi/6,pi/6]================================  
theta=(-pi/6:.01:pi/6);  
A=3*ones(1,length(theta));  
lamda=(sqrt(3)/2)*mb*ones(1,length(theta));  
for  j=1:length(I1)  
    for  i=1:length(lamda)  
        r1(i,j)=(sigmac./6).*(-
lamda(i)+sqrt(lamda(i).^2+12.*(mb*I1(j)/(3*sigmac)) +S));  
    end  
end  
%===[pi/6,pi/2]================================  
theta1=(-(pi/6)+e:0.01:pi/6);  
for  j=1:length(I1)  
    for  i=1:length(lamda)  
        r2(i,j)=(sigmac./6).*(-
lamda(i)+sqrt(lamda(i).^2+12.*(mb*I1(j)/(3*sigmac)) +S));  
    end  
end  
%===============[pi/2,2pi/3]======================= ==========  
theta2=(-(pi/6)-e:0.01:pi/6);  
for  j=1:length(I1)  
    for  i=1:length(lamda)  
        r3(i,j)=(sigmac./6).*(-
lamda(i)+sqrt(lamda(i).^2+12.*(mb*I1(j)/(3*sigmac)) +S));  
    end  
end  
%===============[5pi/6,7pi/6]====================== =============  
theta3=((-pi/6)-e:0.01:pi/6);  
for  j=1:length(I1)  
    for  i=1:length(lamda)  
        r4(i,j)=(sigmac./6).*(-
lamda(i)+sqrt(lamda(i).^2+12.*(mb*I1(j)/(3*sigmac)) +S));  
    end  
end  
%=================[7pi/6,3pi/2]====================  
theta4=((-pi/6)-e:0.01:pi/6);  
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for  j=1:length(I1)  
    for  i=1:length(lamda)  
        r5(i,j)=(sigmac./6).*(-
lamda(i)+sqrt(lamda(i).^2+12.*(mb*I1(j)/(3*sigmac)) +S));  
    end  
end  
%===============[3pi/2,-pi/6]====================== ===============  
theta5=(-pi/6:0.01:pi/6);  
for  j=1:length(I1)  
    for  i=1:length(lamda)  
        r6(i,j)=(sigmac./6).*(-
lamda(i)+sqrt(lamda(i).^2+12.*(mb*I1(j)/(3*sigmac)) +S));  
    end  
end  
%-------------------------------------------------- ------------------------  
figure(1) % 2-D Pan-Hudson trace on the deviatoric plane.  
for  h=1:length(I1)  
    [X,Y] = pol2cart(theta,r1(:,h)');  
    plot(X,Y)  
    hold on 
    [X1,Y1] = pol2cart(theta1+pi/3,r2(:,h)');  
    plot(X1,Y1)  
    hold on 
    [X2,Y2] = pol2cart(theta2+2*pi/3,r3(:,h)');  
    plot(X2,Y2)  
    hold on 
    [X3,Y3] = pol2cart(theta3+pi,r4(:,h)');  
    plot(X3,Y3)  
    hold on 
    [X4,Y4] = pol2cart(theta4+4*pi/3,r5(:,h)');  
    plot(X4,Y4)  
    hold on 
    [X5,Y5] = pol2cart(theta5+5*pi/3,r6(:,h)');  
    plot(X5,Y5)  
end  
xlabel( '\sigma_2d (MPa)' , 'fontname' , 'times new roman' , 'fontsize' ,14)  
ylabel( '\sigma_1d (Mpa)' , 'fontname' , 'times new roman' , 'fontsize' ,14)  
R1=[1/sqrt(2) 0 -1/sqrt(2);-1/sqrt(6) 2/sqrt(6) -1/ sqrt(6);1/sqrt(3) 
1/sqrt(3) 1/sqrt(3)];  
R=inv(R1);  
R1=[1/sqrt(2) 0 -1/sqrt(2);-1/sqrt(6) 2/sqrt(6) -1/ sqrt(6);1/sqrt(3) 
1/sqrt(3) 1/sqrt(3)];  
R=inv(R1);  
figure(2) % 3-D Pan-Hudson surface in stress space.  
for  h=1:length(I1)  
    [X,Y] = pol2cart(theta,sqrt(2).*r1(:,h)');  
    I16=(((((6*r1(:,h)'/sigmac)+lamda).^2-lamda.^2) ./(12))-S)*3*sigmac/mb;  
    z1=I16;  
    A1=R*[X;Y;z1/sqrt(3)];  
    plot3(A1(1,:),A1(2,:),A1(3,:), 'r' )  
    hold on 
    [X1,Y1] = pol2cart(theta1+pi/3,sqrt(2).*r2(:,h) ');  
    I16=(((((6*r2(:,h)'/sigmac)+lamda).^2-lamda.^2) ./(12))-S)*3*sigmac/mb;  
    z2=I16;  
    B=R*[X1;Y1;z2/sqrt(3)];  
    plot3(B(1,:),B(2,:),B(3,:), 'r' )  
    hold on 
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    [X2,Y2] = pol2cart(theta2+2*pi/3,sqrt(2).*r3(:, h)');  
    I16=(((((6*r3(:,h)'/sigmac)+lamda).^2-lamda.^2) ./(12))-S)*3*sigmac/mb;  
    z3=I16;  
    C=R*[X2;Y2;z3/sqrt(3)];  
    plot3(C(1,:),C(2,:),C(3,:), 'r' )  
    hold on 
    [X3,Y3] = pol2cart(theta3+pi,sqrt(2).*r4(:,h)') ;  
    I16=(((((6*r4(:,h)'/sigmac)+lamda).^2-lamda.^2) ./(12))-S)*3*sigmac/mb;  
    z4=I16;  
    D=R*[X3;Y3;z4/sqrt(3)];  
    plot3(D(1,:),D(2,:),D(3,:), 'r' )  
    hold on 
    [X4,Y4] = pol2cart(theta4+4*pi/3,sqrt(2).*r5(:, h)');  
    I16=(((((6*r5(:,h)'/sigmac)+lamda).^2-lamda.^2) ./(12))-S)*3*sigmac/mb;  
    z5=I16;  
    E=R*[X4;Y4;z5/sqrt(3)];  
    plot3(E(1,:),E(2,:),E(3,:), 'r' )  
    hold on 
    [X5,Y5] = pol2cart(theta5+5*pi/3,sqrt(2).*r6(:, h)');  
    I16=(((((6*r6(:,h)'/sigmac)+lamda).^2-lamda.^2) ./(12))-S)*3*sigmac/mb;  
    z6=I16;  
    F=R*[X5;Y5;z6/sqrt(3)];  
    plot3(F(1,:),F(2,:),F(3,:), 'r' )  
end  
% Moving axes to the origin of coordinate system.  
plot3(get(gca, 'XLim' ),[0 0],[0 0], 'k' );  
plot3([0 0],[0 0],get(gca, 'ZLim' ), 'k' );  
plot3([0 0],get(gca, 'YLim' ),[0 0], 'k' );  
X=get(gca, 'Xtick' );  
Y=get(gca, 'Ytick' );  
Z=get(gca, 'Ztick' );  
XL=get(gca, 'XtickLabel' );  
YL=get(gca, 'YtickLabel' );  
ZL=get(gca, 'ZtickLabel' );  
  
% REMOVE TICKS 
set(gca, 'Xtick' ,[]);  
set(gca, 'Ytick' ,[]);  
set(gca, 'Ztick' ,[]);  
  
% GET OFFSETS 
Xoff=diff(get(gca, 'XLim' ))./30;  
Yoff=diff(get(gca, 'YLim' ))./30;  
Zoff=diff(get(gca, 'ZLim' ))./30;  
xlabel( '\sigma_2 (MPa)' , 'fontname' , 'times new roman' , 'fontsize' ,14)  
ylabel( '\sigma_1 (MPa)' , 'fontname' , 'times new roman' , 'fontsize' ,14)  
zlabel( '\sigma_3 (MPa)' , 'fontname' , 'times new roman' , 'fontsize' ,14)  
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Zhang-Zhu Criterion 

%===========Zhang-Zhu Criterion==================== =======================  
% Input parameters:  
% I1= First invariant of stress tensor.  
% mb= Parameter m for the Hoek-Brown Criterion.  
% sigmac= Uniaxial strength of rock material.  
% parameter S for the Hoek-Brown Criterion.  
% Output:  
% Failure surface for the Hoek-Brown criterion in t hree-dimensional stress 
space.  
%================================================== ========================  
I1=linspace(0,3500,50);  
mb=20;  
sigmac=100;  
S=1;  
e=0.00;  
%%====Calculation of the Zhang-Zhu radius on the de viatoric plane=========  
%===[-pi/6,pi/6]================================  
theta=(-pi/6:.01:pi/6);  
lamda1=(sqrt(3)/2)*mb+(sqrt(3)/3)*mb*sin(theta);  
%A=4*(cos(theta)).^2;  
for  j=1:length(I1)  
    for  i=1:length(lamda1)  
        r1(i,j)=(sigmac./6).*(-
lamda1(i)+sqrt(lamda1(i).^2+12.*(mb*I1(j)/(3*sigmac ))+S));  
    end  
end  
%===[pi/6,pi/2]================================  
theta1=(-(pi/6)+e:0.01:pi/6);  
lamda2=(sqrt(3)/2)*mb-(sqrt(3)/3)*mb*sin(theta);  
%A=4*(cos(theta)).^2;  
for  j=1:length(I1)  
    for  i=1:length(lamda2)  
        r2(i,j)=(sigmac./6).*(-
lamda2(i)+sqrt(lamda2(i).^2+12.*(mb*I1(j)/(3*sigmac ))+S));  
    end  
end  
%===============[pi/2,2pi/3]======================= ==========  
theta2=(-(pi/6)-e:0.01:pi/6);  
lamda1=(sqrt(3)/2)*mb+(sqrt(3)/3)*mb*sin(theta);  
for  j=1:length(I1)  
    for  i=1:length(lamda1)  
        r3(i,j)=(sigmac./6).*(-
lamda1(i)+sqrt(lamda1(i).^2+12.*(mb*I1(j)/(3*sigmac ))+S));  
    end  
end  
%===============[5pi/6,7pi/6]====================== =============  
theta3=((-pi/6)-e:0.01:pi/6);  
lamda2=(sqrt(3)/2)*mb-(sqrt(3)/3)*mb*sin(theta);  
for  j=1:length(I1)  
    for  i=1:length(lamda2)  
        r4(i,j)=(sigmac./6).*(-
lamda2(i)+sqrt(lamda2(i).^2+12.*(mb*I1(j)/(3*sigmac ))+S));  
    end  
end  



 

208 
 

%=================[7pi/6,3pi/2]====================  
theta4=((-pi/6)-e:0.01:pi/6);  
lamda1=(sqrt(3)/2)*mb+(sqrt(3)/3)*mb*sin(theta);  
for  j=1:length(I1)  
    for  i=1:length(lamda1)  
        r5(i,j)=(sigmac./6).*(-
lamda1(i)+sqrt(lamda1(i).^2+12.*(mb*I1(j)/(3*sigmac ))+S));  
    end  
end  
%===============[3pi/2,-pi/6]====================== ===============  
theta5=(-pi/6:0.01:pi/6);  
lamda2=(sqrt(3)/2)*mb-(sqrt(3)/3)*mb*sin(theta);  
for  j=1:length(I1)  
    for  i=1:length(lamda2)  
        r6(i,j)=(sigmac./6).*(-
lamda2(i)+sqrt(lamda2(i).^2+12.*(mb*I1(j)/(3*sigmac ))+S));  
    end  
end  
%-------------------------------------------------- ------------------------  
figure(1) % 2-D Hoek-Brown trace on the deviatoric plane.  
for  h=1:length(I1)  
    [X,Y] = pol2cart(theta,r1(:,h)');  
    plot(X,Y)  
    hold on 
    [X1,Y1] = pol2cart(theta1+pi/3,r2(:,h)');  
    plot(X1,Y1)  
    hold on 
    [X2,Y2] = pol2cart(theta2+2*pi/3,r3(:,h)');  
    plot(X2,Y2)  
    hold on 
    [X3,Y3] = pol2cart(theta3+pi,r4(:,h)');  
    plot(X3,Y3)  
    hold on 
    [X4,Y4] = pol2cart(theta4+4*pi/3,r5(:,h)');  
    plot(X4,Y4)  
    hold on 
    [X5,Y5] = pol2cart(theta5+5*pi/3,r6(:,h)');  
    plot(X5,Y5)  
end  
xlabel( '\sigma_2d (MPa)' , 'fontname' , 'times new roman' , 'fontsize' ,14)  
ylabel( '\sigma_1d (MPa)' , 'fontname' , 'times new roman' , 'fontsize' ,14)  
R1=[1/sqrt(2) 0 -1/sqrt(2);-1/sqrt(6) 2/sqrt(6) -1/ sqrt(6);1/sqrt(3) 
1/sqrt(3) 1/sqrt(3)];  
R=inv(R1);  
R1=[1/sqrt(2) 0 -1/sqrt(2);-1/sqrt(6) 2/sqrt(6) -1/ sqrt(6);1/sqrt(3) 
1/sqrt(3) 1/sqrt(3)];  
R=inv(R1);  
figure(2) % 3-D Hoek-Brown surface in stress space.  
for  h=1:length(I1)  
    [X,Y] = pol2cart(theta,sqrt(2).*r1(:,h)');  
    I16=(((((6*r1(:,h)'/sigmac)+lamda1).^2-lamda1.^ 2)./(12))-
S)*3*sigmac/mb;  
    z1=I16;  
    A1=R*[X;Y;z1/sqrt(3)];  
    plot3(A1(1,:),A1(2,:),A1(3,:), 'r' )  
    hold on 
    [X1,Y1] = pol2cart(theta1+pi/3,sqrt(2).*r2(:,h) ');  
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    I16=(((((6*r2(:,h)'/sigmac)+lamda2).^2-lamda2.^ 2)./(12))-
S)*3*sigmac/mb;  
    z2=I16;  
    B=R*[X1;Y1;z2/sqrt(3)];  
    plot3(B(1,:),B(2,:),B(3,:), 'r' )  
    hold on 
    [X2,Y2] = pol2cart(theta2+2*pi/3,sqrt(2).*r3(:, h)');  
    I16=(((((6*r3(:,h)'/sigmac)+lamda1).^2-lamda1.^ 2)./(12))-
S)*3*sigmac/mb;  
    z3=I16;  
    C=R*[X2;Y2;z3/sqrt(3)];  
    plot3(C(1,:),C(2,:),C(3,:), 'r' )  
    hold on 
    [X3,Y3] = pol2cart(theta3+pi,sqrt(2).*r4(:,h)') ;  
    I16=(((((6*r4(:,h)'/sigmac)+lamda2).^2-lamda2.^ 2)./(12))-
S)*3*sigmac/mb;  
    z4=I16;  
    D=R*[X3;Y3;z4/sqrt(3)];  
    plot3(D(1,:),D(2,:),D(3,:), 'r' )  
    hold on 
    [X4,Y4] = pol2cart(theta4+4*pi/3,sqrt(2).*r5(:, h)');  
    I16=(((((6*r5(:,h)'/sigmac)+lamda1).^2-lamda1.^ 2)./(12))-
S)*3*sigmac/mb;  
    z5=I16;  
    E=R*[X4;Y4;z5/sqrt(3)];  
    plot3(E(1,:),E(2,:),E(3,:), 'r' )  
    hold on 
    [X5,Y5] = pol2cart(theta5+5*pi/3,sqrt(2).*r6(:, h)');  
    I16=(((((6*r6(:,h)'/sigmac)+lamda2).^2-lamda2.^ 2)./(12))-
S)*3*sigmac/mb;  
    z6=I16;  
    F=R*[X5;Y5;z6/sqrt(3)];  
    plot3(F(1,:),F(2,:),F(3,:), 'r' )  
end  
% Moving axes to the origin of coordinate system.  
plot3(get(gca, 'XLim' ),[0 0],[0 0], 'k' );  
plot3([0 0],[0 0],get(gca, 'ZLim' ), 'k' );  
plot3([0 0],get(gca, 'YLim' ),[0 0], 'k' );  
X=get(gca, 'Xtick' );  
Y=get(gca, 'Ytick' );  
Z=get(gca, 'Ztick' );  
XL=get(gca, 'XtickLabel' );  
YL=get(gca, 'YtickLabel' );  
ZL=get(gca, 'ZtickLabel' );  
  
% REMOVE TICKS 
set(gca, 'Xtick' ,[]);  
set(gca, 'Ytick' ,[]);  
set(gca, 'Ztick' ,[]);  
  
% GET OFFSETS 
Xoff=diff(get(gca, 'XLim' ))./30;  
Yoff=diff(get(gca, 'YLim' ))./30;  
Zoff=diff(get(gca, 'ZLim' ))./30;  
xlabel( '\sigma_2 (MPa)' , 'fontname' , 'times new roman' , 'fontsize' ,14)  
ylabel( '\sigma_1 (MPa)' , 'fontname' , 'times new roman' , 'fontsize' ,14)  
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zlabel( '\sigma_3 (MPa)' , 'fontname' , 'times new roman' , 'fontsize' ,14)  
 
 

 

Simplified Priest Criterion 

%===========Simplified-Priest 
Criterion========================================== = 
% Input parameters:  
% I1= First invariant of stress tensor.  
% mb= Parameter m for the Hoek-Brown Criterion.  
% sigmac= Uniaxial strength of rock material.  
% parameter S for the Hoek-Brown Criterion.  
% Output:  
% Failure surface for the Hoek-Brown criterion in t hree-dimensional stress 
space.  
%================================================== ========================  
I1=linspace(0,3500,50);  
mb=20;  
sigmac=80;  
S=1;  
w=0.299289347;  
e=0.00;  
%%====Calculation of the Simplified Priest radius o n the deviatoric 
plane=========  
%===[-pi/6,pi/6]================================  
theta=(-pi/6:.01:pi/6);  
lamda1=2*mb.*((sqrt(3)/3)*sin(theta+pi/3)-w*sin(the ta+pi/6));  
A1=9*w^2*(sqrt(3)*sin(theta)+cos(theta)).^2-
6*w*(3+4*sqrt(3)*sin(theta).*cos(theta))+3*(sin(the ta)+sqrt(3)*cos(theta)).
^2;  
for  j=1:length(I1)  
    for  i=1:length(lamda1)  
r1(i,j)=(sigmac./(2*A1(i))).*(-
lamda1(i)+sqrt(lamda1(i).^2+4*A1(i).*(mb*I1(j)/(3*s igmac))+S));  
    end   
end   
%===[pi/6,pi/2]================================  
theta1=(-(pi/6)+e:0.01:pi/6);  
lamda2=2*mb.*(-(sqrt(3)/3)*sin(theta-pi/3)+w*sin(th eta-pi/6));  
A2=9*w^2*(sqrt(3)*sin(theta)-cos(theta)).^2-6*w*(3-
4*sqrt(3)*sin(theta).*cos(theta))+3*(sin(theta)-sqr t(3)*cos(theta)).^2;;  
for  j=1:length(I1)  
 for  i=1:length(lamda2)  
  r2(i,j)=(sigmac./(2*A2(i))).*(-
lamda2(i)+sqrt(lamda2(i).^2+4*A2(i).*(mb*I1(j)/(3*s igmac))+S));  
 end   
end  
%===============[pi/2,2pi/3]======================= ==========  
 theta2=(-(pi/6)-e:0.01:pi/6);  
lamda1=2*mb.*((sqrt(3)/3)*sin(theta+pi/3)-w*sin(the ta+pi/6));  
for  j=1:length(I1)  
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   for  i=1:length(lamda1)  
       r3(i,j)=(sigmac./(2*A1(i))).*(-
lamda1(i)+sqrt(lamda1(i).^2+4*A1(i).*(mb*I1(j)/(3*s igmac))+S));  
   end  
end  
%===============[5pi/6,7pi/6]====================== =============  
theta3=((-pi/6)-e:0.01:pi/6);  
lamda2=2*mb.*(-(sqrt(3)/3)*sin(theta-pi/3)+w*sin(th eta-pi/6));  
for  j=1:length(I1)  
    for  i=1:length(lamda2)  
    r4(i,j)=(sigmac./(2*A2(i))).*(-
lamda2(i)+sqrt(lamda2(i).^2+4*A2(i).*(mb*I1(j)/(3*s igmac))+S));  
    end   
end   
%=================[7pi/6,3pi/2]====================  
theta4=((-pi/6)-e:0.01:pi/6);  
lamda1=2*mb.*((sqrt(3)/3)*sin(theta+pi/3)-w*sin(the ta+pi/6));  
for  j=1:length(I1)  
for  i=1:length(lamda1)  
r5(i,j)=(sigmac./(2*A1(i))).*(-
lamda1(i)+sqrt(lamda1(i).^2+4*A1(i).*(mb*I1(j)/(3*s igmac))+S));  
end  
end  
%===============[3pi/2,-pi/6]====================== ===============  
theta5=(-pi/6:0.01:pi/6);  
lamda2=2*mb.*(-(sqrt(3)/3)*sin(theta-pi/3)+w*sin(th eta-pi/6));  
for  j=1:length(I1)  
for  i=1:length(lamda2)  
r6(i,j)=(sigmac./(2*A2(i))).*(-
lamda2(i)+sqrt(lamda2(i).^2+4*A2(i).*(mb*I1(j)/(3*s igmac))+S));  
end   
end   
%-------------------------------------------------- ------------------------  
figure(1) % 2-D Simplified Priest trace on the deviatoric pla ne.  
for  h=1:length(I1)  
    [X,Y] = pol2cart(theta,r1(:,h)');  
    plot(X,Y)  
    hold on 
    [X1,Y1] = pol2cart(theta1+pi/3,r2(:,h)');  
    plot(X1,Y1)  
    hold on 
    [X2,Y2] = pol2cart(theta2+2*pi/3,r3(:,h)');  
    plot(X2,Y2)  
    hold on 
    [X3,Y3] = pol2cart(theta3+pi,r4(:,h)');  
    plot(X3,Y3)  
    hold on 
    [X4,Y4] = pol2cart(theta4+4*pi/3,r5(:,h)');  
    plot(X4,Y4)  
    hold on 
    [X5,Y5] = pol2cart(theta5+5*pi/3,r6(:,h)');  
    plot(X5,Y5)  
end  
xlabel( '\sigma_2d (MPa)' , 'fontname' , 'times new roman' , 'fontsize' ,14)  
ylabel( '\sigma_1d (Mpa)' , 'fontname' , 'times new roman' , 'fontsize' ,14)  
R1=[1/sqrt(2) 0 -1/sqrt(2);-1/sqrt(6) 2/sqrt(6) -1/ sqrt(6);1/sqrt(3) 
1/sqrt(3) 1/sqrt(3)];  
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R=inv(R1);  
R1=[1/sqrt(2) 0 -1/sqrt(2);-1/sqrt(6) 2/sqrt(6) -1/ sqrt(6);1/sqrt(3) 
1/sqrt(3) 1/sqrt(3)];  
R=inv(R1);  
figure(2) % 3-D Simplified-Priest surface in stress space.  
for  h=1:length(I1)  
    [X,Y] = pol2cart(theta,sqrt(2).*r1(:,h)');  
    I16=((3*sigmac).*(((((r1(:,h)'./sigmac).*(2*A1) +lamda1).^2-
lamda1.^2)./(4.*A1))-S))./mb;  
    z1=I16;  
    T1=R*[X;Y;z1/sqrt(3)];  
    plot3(T1(1,:),T1(2,:),T1(3,:), 'r' )  
    hold on 
    [X1,Y1] = pol2cart(theta1+pi/3,sqrt(2).*r2(:,h) ');  
    I16=((3*sigmac).*(((((r2(:,h)'./sigmac).*(2*A2) +lamda2).^2-
lamda2.^2)./(4.*A2))-S))./mb;  
    z2=I16;  
    B=R*[X1;Y1;z2/sqrt(3)];  
    plot3(B(1,:),B(2,:),B(3,:), 'r' )  
    hold on 
    [X2,Y2] = pol2cart(theta2+2*pi/3,sqrt(2).*r3(:, h)');  
    I16=((3*sigmac).*(((((r3(:,h)'./sigmac).*(2*A1) +lamda1).^2-
lamda1.^2)./(4.*A1))-S))./mb;  
    z3=I16;  
    C=R*[X2;Y2;z3/sqrt(3)];  
    plot3(C(1,:),C(2,:),C(3,:), 'r' )  
    hold on 
    [X3,Y3] = pol2cart(theta3+pi,sqrt(2).*r4(:,h)') ;  
    I16=((3*sigmac).*(((((r4(:,h)'./sigmac).*(2*A2) +lamda2).^2-
lamda2.^2)./(4.*A2))-S))./mb;  
    z4=I16;  
    D=R*[X3;Y3;z4/sqrt(3)];  
    plot3(D(1,:),D(2,:),D(3,:), 'r' )  
    hold on 
    [X4,Y4] = pol2cart(theta4+4*pi/3,sqrt(2).*r5(:, h)');  
    I16=((3*sigmac).*(((((r5(:,h)'./sigmac).*(2*A1) +lamda1).^2-
lamda1.^2)./(4.*A1))-S))./mb;  
    z5=I16;  
    E=R*[X4;Y4;z5/sqrt(3)];  
    plot3(E(1,:),E(2,:),E(3,:), 'r' )  
    hold on 
    [X5,Y5] = pol2cart(theta5+5*pi/3,sqrt(2).*r6(:, h)');  
    I16=((3*sigmac).*(((((r6(:,h)'./sigmac).*(2*A2) +lamda2).^2-
lamda2.^2)./(4.*A2))-S))./mb;  
    z6=I16;  
    F=R*[X5;Y5;z6/sqrt(3)];  
    plot3(F(1,:),F(2,:),F(3,:), 'r' )  
end  
% Moving axes to the origin of coordinate system.  
plot3(get(gca, 'XLim' ),[0 0],[0 0], 'k' );  
plot3([0 0],[0 0],get(gca, 'ZLim' ), 'k' );  
plot3([0 0],get(gca, 'YLim' ),[0 0], 'k' );  
X=get(gca, 'Xtick' );  
Y=get(gca, 'Ytick' );  
Z=get(gca, 'Ztick' );  
XL=get(gca, 'XtickLabel' );  
YL=get(gca, 'YtickLabel' );  
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ZL=get(gca, 'ZtickLabel' );  
  
% REMOVE TICKS 
set(gca, 'Xtick' ,[]);  
set(gca, 'Ytick' ,[]);  
set(gca, 'Ztick' ,[]);  
  
% GET OFFSETS 
Xoff=diff(get(gca, 'XLim' ))./30;  
Yoff=diff(get(gca, 'YLim' ))./30;  
Zoff=diff(get(gca, 'ZLim' ))./30;  
xlabel( '\sigma_2 (MPa)' , 'fontname' , 'times new roman' , 'fontsize' ,14)  
ylabel( '\sigma_1 (MPa)' , 'fontname' , 'times new roman' , 'fontsize' ,14)  
zlabel( '\sigma_3 (MPa)' , 'fontname' , 'times new roman' , 'fontsize' ,14)  
 

 

Generalised Priest Criterion 

%===========Generalised-Priest 
Criterion========================================== = 
% Input parameters:  
% I1= First invariant of stress tensor.  
% mb= Parameter m for the Hoek-Brown Criterion.  
% sigmac= Uniaxial strength of rock material.  
% parameter S for the Hoek-Brown Criterion.  
% Output:  
% Failure surface for the Hoek-Brown criterion in t hree-dimensional stress 
space.  
%================================================== ========================  
clear all  
close all  
I1=linspace(0,3500,50);  
mb=20;  
sigmac=100;  
S=1;  
e=0.00;  
%%====Calculation of the Generalised Priest radius on the deviatoric 
plane=========  
%===[-pi/6,pi/6]================================  
theta=(-pi/6:.01:pi/6);  
A=3*ones(1,length(theta));  
lamda=(sqrt(3)/3)*mb*ones(1,length(theta));  
for  j=1:length(I1)  
    for  i=1:length(lamda)  
        r1(i,j)=(sigmac./6).*(-
lamda(i)+sqrt(lamda(i).^2+12.*(mb*I1(j)/(3*sigmac)) +S));  
    end  
end  
%===[pi/6,pi/2]================================  
theta1=(-(pi/6)+e:0.01:pi/6);  
for  j=1:length(I1)  
    for  i=1:length(lamda)  
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        r2(i,j)=(sigmac./6).*(-
lamda(i)+sqrt(lamda(i).^2+12.*(mb*I1(j)/(3*sigmac)) +S));  
    end  
end  
%===============[pi/2,2pi/3]======================= ==========  
theta2=(-(pi/6)-e:0.01:pi/6);  
for  j=1:length(I1)  
    for  i=1:length(lamda)  
        r3(i,j)=(sigmac./6).*(-
lamda(i)+sqrt(lamda(i).^2+12.*(mb*I1(j)/(3*sigmac)) +S));  
    end  
end  
%===============[5pi/6,7pi/6]====================== =============  
theta3=((-pi/6)-e:0.01:pi/6);  
for  j=1:length(I1)  
    for  i=1:length(lamda)  
        r4(i,j)=(sigmac./6).*(-
lamda(i)+sqrt(lamda(i).^2+12.*(mb*I1(j)/(3*sigmac)) +S));  
    end  
end  
%=================[7pi/6,3pi/2]====================  
theta4=((-pi/6)-e:0.01:pi/6);  
for  j=1:length(I1)  
    for  i=1:length(lamda)  
        r5(i,j)=(sigmac./6).*(-
lamda(i)+sqrt(lamda(i).^2+12.*(mb*I1(j)/(3*sigmac)) +S));  
    end  
end  
%===============[3pi/2,-pi/6]====================== ===============  
theta5=(-pi/6:0.01:pi/6);  
for  j=1:length(I1)  
    for  i=1:length(lamda)  
        r6(i,j)=(sigmac./6).*(-
lamda(i)+sqrt(lamda(i).^2+12.*(mb*I1(j)/(3*sigmac)) +S));  
    end  
end  
%-------------------------------------------------- ------------------------  
figure(1) % 2-D Generalised Priest trace on the deviatoric pl ane.  
for  h=1:length(I1)  
    [X,Y] = pol2cart(theta,r1(:,h)');  
    plot(X,Y)  
    hold on 
    [X1,Y1] = pol2cart(theta1+pi/3,r2(:,h)');  
    plot(X1,Y1)  
    hold on 
    [X2,Y2] = pol2cart(theta2+2*pi/3,r3(:,h)');  
    plot(X2,Y2)  
    hold on 
    [X3,Y3] = pol2cart(theta3+pi,r4(:,h)');  
    plot(X3,Y3)  
    hold on 
    [X4,Y4] = pol2cart(theta4+4*pi/3,r5(:,h)');  
    plot(X4,Y4)  
    hold on 
    [X5,Y5] = pol2cart(theta5+5*pi/3,r6(:,h)');  
    plot(X5,Y5)  
end  
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xlabel( '\sigma_2d (MPa)' , 'fontname' , 'times new roman' , 'fontsize' ,14)  
ylabel( '\sigma_1d (Mpa)' , 'fontname' , 'times new roman' , 'fontsize' ,14)  
R1=[1/sqrt(2) 0 -1/sqrt(2);-1/sqrt(6) 2/sqrt(6) -1/ sqrt(6);1/sqrt(3) 
1/sqrt(3) 1/sqrt(3)];  
R=inv(R1);  
  
R1=[1/sqrt(2) 0 -1/sqrt(2);-1/sqrt(6) 2/sqrt(6) -1/ sqrt(6);1/sqrt(3) 
1/sqrt(3) 1/sqrt(3)];  
R=inv(R1);  
figure(2) % 3-D Generalised Priest surface in stress space.  
for  h=1:length(I1)  
    [X,Y] = pol2cart(theta,sqrt(2)*r1(:,h)');  
    I16=(((((6*r1(:,h)'/sigmac)+lamda).^2-lamda.^2) ./(12))-S)*3*sigmac/mb;  
    z1=I16;  
    A1=R*[X;Y;z1/sqrt(3)];  
    P1=plot3(A1(1,:),A1(2,:),A1(3,:), 'r' )  
    %set(P1,'color',[1,0.7344,0]);  
    hold on 
    [X1,Y1] = pol2cart(theta1+pi/3,sqrt(2)*r2(:,h)' );  
    I16=(((((6*r2(:,h)'/sigmac)+lamda).^2-lamda.^2) ./(12))-S)*3*sigmac/mb;  
    z2=I16;  
    B=R*[X1;Y1;z2/sqrt(3)];  
    P2=plot3(B(1,:),B(2,:),B(3,:), 'r' )  
    %set(P2,'color',[1,0.7344,0]);  
    hold on 
    [X2,Y2] = pol2cart(theta2+2*pi/3,sqrt(2)*r3(:,h )');  
    I16=(((((6*r3(:,h)'/sigmac)+lamda).^2-lamda.^2) ./(12))-S)*3*sigmac/mb;  
    z3=I16;  
    C=R*[X2;Y2;z3/sqrt(3)];  
    P3=plot3(C(1,:),C(2,:),C(3,:), 'r' )  
    %set(P3,'color',[1,0.7344,0]);  
    hold on 
    [X3,Y3] = pol2cart(theta3+pi,sqrt(2)*r4(:,h)');  
    I16=(((((6*r4(:,h)'/sigmac)+lamda).^2-lamda.^2) ./(12))-S)*3*sigmac/mb;  
    z4=I16;  
    D=R*[X3;Y3;z4/sqrt(3)];  
    P4=plot3(D(1,:),D(2,:),D(3,:), 'r' )  
    %set(P4,'color',[1,0.7344,0]);  
    hold on 
    [X4,Y4] = pol2cart(theta4+4*pi/3,sqrt(2)*r5(:,h )');  
    I16=(((((6*r5(:,h)'/sigmac)+lamda).^2-lamda.^2) ./(12))-S)*3*sigmac/mb;  
    z5=I16;  
    E=R*[X4;Y4;z5/sqrt(3)];  
    P5=plot3(E(1,:),E(2,:),E(3,:), 'r' )  
    %set(P5,'color',[1,0.7344,0]);  
    hold on 
    [X5,Y5] = pol2cart(theta5+5*pi/3,sqrt(2)*r6(:,h )');  
    I16=(((((6*r6(:,h)'/sigmac)+lamda).^2-lamda.^2) ./(12))-S)*3*sigmac/mb;  
    z6=I16;  
    F=R*[X5;Y5;z6/sqrt(3)];  
    P6=plot3(F(1,:),F(2,:),F(3,:), 'r' )  
    %set(P6,'color',[1,0.7344,0]);  
end  
% Moving axes to the origin of coordinate system.  
plot3(get(gca, 'XLim' ),[0 0],[0 0], 'k' );  
plot3([0 0],[0 0],get(gca, 'ZLim' ), 'k' );  
plot3([0 0],get(gca, 'YLim' ),[0 0], 'k' );  
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X=get(gca, 'Xtick' );  
Y=get(gca, 'Ytick' );  
Z=get(gca, 'Ztick' );  
XL=get(gca, 'XtickLabel' );  
YL=get(gca, 'YtickLabel' );  
ZL=get(gca, 'ZtickLabel' );  
  
% REMOVE TICKS 
set(gca, 'Xtick' ,[]);  
set(gca, 'Ytick' ,[]);  
set(gca, 'Ztick' ,[]);  
  
% GET OFFSETS 
Xoff=diff(get(gca, 'XLim' ))./30;  
Yoff=diff(get(gca, 'YLim' ))./30;  
Zoff=diff(get(gca, 'ZLim' ))./30;  
xlabel( '\sigma_2 (MPa)' , 'fontname' , 'times new roman' , 'fontsize' ,14)  
ylabel( '\sigma_1 (MPa)' , 'fontname' , 'times new roman' , 'fontsize' ,14)  
zlabel( '\sigma_3 (MPa)' , 'fontname' , 'times new roman' , 'fontsize' ,14)  
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