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Abstract
Knowing the breeding system of a species is important in order to understand individual var-

iation in reproductive success. Large variation in reproductive success and thus reproduc-

tive skew strongly impacts on the effective number of breeders and thus the long-term

effective population size (Ne). Fishes, in particular species belonging to the salmonid family,

exhibit a wide diversity of breeding systems. In general, however, breeding systems are

rarely studied in detail in the wild. Here we examine the breeding system of the spring-

spawning European grayling Thymallus thymallus from a small Norwegian stream using

parentage assignment based on the genotyping of 19 polymorphic microsatellite loci. In

total 895 individual grayling fry and 154 mature grayling (57 females and 97 males) were

genotyped. A total of 466 offspring were assigned a father, a mother, or a parent pair with a

confidence of 90% or higher. Successfully reproducing males had on average 11.9 ± 13.3

(SD) offspring with on average 2.1 ± 1.2 partners, whereas successful females had on aver-

age 9.5 ± 12.8 offspring and 2.3 ± 1.5 partners. Parents with more partners also produced

more offspring. Thus the grayling breeding system within this small stream revealed a poly-

gynandrous breeding system, similar to what has been observed for many other salmonid

fish species. The present study thus unambiguously corroborates a polygynadrous breed-

ing system in the European grayling. This knowledge is critical for managing populations of

this species, which has suffered significant local population declines throughout its range

over the last several decades.

Introduction
Animals have a wide variety of breeding systems, ranging from promiscuous to monogamous
[1,2]. For many species the breeding system is more or less unknown. The breeding system of a
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species impacts on the variation in individual reproductive success and reproductive skew.
Among-individual variation in breeding success may thus lead to mate-mate competition and
mate choice [3]. The level of reproductive skew furthermore strongly impacts on the effective
number of breeders and thus the long-term effective population size (Ne) [4,5] which highlights
the need for a detailed understanding of a species’ breeding system, especially for species of
conservation concern.

Fishes in general [2,6], and salmonid fishes in particular, exhibit a wide diversity of breeding
systems [7,8]. Even within a population, both female and male reproductive success may vary
considerably [8–10]. Salmonids have aggregate breeding systems and competition for mates
can be intense. Differential reproductive success and thus reproductive skew is a probable out-
come. This variation creates opportunity for sexual selection that might shape their behaviour,
morphology and life history.

It has, however, in the past been difficult to study the breeding system of salmonid fish species
in detail as their fertilisation is external and accurate observations under water are difficult to at-
tain. Recently, however, the availability of genetic genotyping and parentage assignment methods
has lead to a number of studies on the genetic breeding system of salmonid fishes [9–11]. Based
on these studies it seems like the ‘typical’ salmonid breeding system is polygamous or polygynan-
drous. Males compete for access to receptive females and females choose among males [8,12,13].
Salmonid breeding systems vary in the degrees of intra-sex competition, strength of sexual selec-
tion in the two sexes, and the development of secondary sexual characteristics. Reproductive
skew is therefore to be expected, and has been documented in a number of recent studies using
molecular genotyping techniques and parentage assignment performed in the wild [10,14,15].

The European grayling Thymallus thymallus is a spring-spawning freshwater salmonid for
which little is known about its breeding system. Grayling exhibit iteroparity (repeat spawning),
and earlier observational studies indicate that they have a polygynandrous breeding system
where both sexes mate with more than one partner within the same spawning season [16–19].
A recent study using parental assignment of a limited number of larvae do indicate that the
mating system is polygynandrous [20]. Males guard against other males a spawning territory
where they are approached by mature female grayling. Dominant males may therefore hold
high-quality territories and attract more females. Larger males would then be expected to have
higher individual reproductive success. Also, as female fecundity increases with female body
size [21], larger females are expected to have higher individual reproductive success than
smaller individuals.

The overall aim of this study was to investigate the genetic breeding system in a small
stream-spawning grayling population by testing if grayling indeed exhibit a polygynandrous
breeding system, and investigating the level of variation in individual reproductive success and
potential causes for such individual differences in both sexes.

Material and Methods

Study species
Grayling is a salmonid fish that usually spawns in small rivers and streams during spring or
early summer [18]. Male grayling arrive early on the spawning ground and are aggressive, at-
tacking both trespassing males and unripe females, thus larger males usually acquire better
spawning sites [16]. The eggs hatch after 140–200 degree-days, and the juveniles become free-
swimming after another ca. 140 degree-days [22–25]. After the larvae emerge from the gravel
and become free-living, they might either stay in the tributary for some time before they mi-
grate or drift downstream shortly after emergence [22,26,27].
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Study site and sampling
Lake Lesjaskogsvatnet is a shallow (mean depth of 10 metres) mountain lake (611 meters above
sea level) with a surface area of approximately 4.52 km2. Grayling were introduced to the Les-
jaskogsvatnet system at the end of the 19th century [22]. Since then spawning populations have
been established in a large number of tributaries. The populations are now weakly genetically
differentiated based on neutral genetic markers [28,29]. Despite the weak structuring the popu-
lations differ in a number of genetically based early life history traits [25,30] as well as in gene
expression [31]. Søre Skottåe is one of the tributaries used by grayling in Lesjaskogsvatnet. It is
a small stream, 1–1.5 meters wide, in the northeast end of the lake [32]. Each year grayling as-
cend the stream for spawning during a few days in May-June. The exact timing of spawning de-
pends on local environmental conditions that vary strongly among years [33].

Migrating adult grayling were sampled with fyke nets in Søre Skottåe during the spawning
season 2008. In total 149 mature grayling were captured during a 10-day period starting on
May 31st and ending on June 11th. Very few fish ascended the stream after June 7th. This indi-
cates that migration and spawning is highly synchronized. The effective population size (Ne) of
the grayling in this tributary has earlier been estimated to 63 (confidence interval 40–126) [28],
based on samples collected in 2001 and 2008. Ne in that study was estimated based on short-
term allelic frequency changes using a method allowing for migration [34]. Thus, the Søre
Skottåe grayling population is relatively small.

All captured mature fish were anesthetized with clove oil [35], their fork length was mea-
sured (nearest mm) and they were sexed based on external sexual characters. Further, the adi-
pose fin was excised and stored in 96% ethanol for later genetic analysis. The individuals were
allowed to recover from the anaesthesia before they were released back to the stream upstream
of the nets to complete their spawning.

Grayling fry (n = 895) were subsequently sampled with drift nets over a period of approxi-
mately three weeks in July 2008. A number of drift nets were deployed to cover most of the
stream to collect larvae drifting downstream with the current. The drift net also collected large
amounts of debris so that the fry had to be sorted from the debris afterwards. Sometimes indi-
vidual fry were crushed while in the nets; if that was the case all potential pieces were collected
(and separated into individuals based on genotypes later). The majority (>90%) of the fry were
caught during two days (9th and 10th July) indicating that drift happens over a very short time
period. We thus assume that the acquired sample is a random representation of all downstream
drifting fry. The fry were stored individually in 96% ethanol until later DNA isolation.

Ethics statement
Animal sampling and experimentation were performed in compliance with permission given
by the Norwegian Animal Research Authority (permission ID 2008/7368.5). All mature fish
were returned to the stream to complete natural reproduction after tissue sampling. The gray-
ling is listed as a species of least concern (LC) on the Norwegian Red List (2010).

Genotyping
DNA was extracted using the salt extraction method [36], or by the DNeasy Blood & Tissue Kit
(Qiagen, Hilden, Germany) according to manufacturer’s protocol.

The polymerase chain reaction (PCR) amplifications of the 19 polymorphic microsatellite
loci were performed in seven different reactions, two single and five multiplex PCRs (Table 1)
[28,37]. In short, the PCRs had annealing temperatures ranging from 58°C to 60°C and each
individual reaction consisted of 2x Qiagen multiplex PCR master mix, 1.5 μl of DNA, primer
concentration varying from 0.04–057 μM, and sterile H2O. PCR cycles were: 95°C for 15 min;
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followed by 37 cycles of: 94°C for 30 s, 58–60°C for 1 min and 30 sec, 72°C for 1 min; then
60°C for 30 min. All PCR products from one individual were combined, diluted and 2 μl of
those were added to a 10:1 mix of formamide and GeneScan—600 LIZ size standard (Applied
Biosystems (ABI), CA, USA), reaching a total volume of 12 μl in each well. This was then elec-
trophoresed on an ABI 3730 DNA analyser (ABI) and genotypes were scored using GeneMap-
per 4.0 software (ABI). Positive controls were included on a regular basis and all the scored
alleles were visually checked after the automated scoring process to minimize the amount of
scoring errors and maximize accuracy.

Analyses
GenAlEx 6.41 [38] was used to perform a multi-locus match analysis for co-dominant data to
ensure that no individual grayling appeared more than once in the data set. This was particu-
larly important in this study as some of the fry were retrieved only as pieces from the drift nets,
since the small delicate fry easily get damaged when captured together with different kinds of
floating debris. CERVUS 3.0 [39,40] was used to calculate the polymorphic information con-
tent (PIC) of each of the 19 microsatellite loci. The PIC value of a locus is calculated from the

Table 1. Microsatellite loci and primers used in the study.

Locus name Multiplex group Dye Primer Concentration (μM) Annealing temperature Na Allelic range

BFRO13§ MP1 FAM 0.09 58 4 235–247

213# single FAM 0.38 60 11 283–327

414# MP2 FAM 0.20 60 6 393–413

309# MP4 FAM 0.57 59 2 447–451

TAR106$ MP5 FAM 0.07 59 8 193–221

BFRO10** MP1 VIC 0.08 58 2 96–122

BFRO15& MP1 VIC 0.04 58 2 144–154

BFRO18& MP1 VIC 0.04 58 4 181–195

207# MP1 VIC 0.10 58 2 216–224

BFRO9* MP1 VIC 0.05 58 2 243–247

438# single VIC 0.34 60 9 265–297

BFRO11** MP3 NED 0.30 59 2 86–102

313# MP2 NED 0.18 60 6 180–200

Ogo2@ MP1 NED 0.07 58 3 233–241

433b# MP3 NED 0.18 59 8 287–315

445# MP4 NED 0.13 59 12 374–422

415# MP3 PET 0.33 59 9 193–225

214# MP1 PET 0.14 58 4 292–313

407b# MP5 PET 0.20 59 7 230–254

The multiplex group for the locus or if it was single locus PCR amplification is given as well as primer concentration, fluorescent dye type, annealing

temperature, number of alleles (Na) and allelic range (base pairs).
§ GenBank: AF151370,
# [53],
$ [37],

* [54],
& [55],

** [56],
@ [57]

doi:10.1371/journal.pone.0122032.t001
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allele frequencies, and the PIC is a measure of the information content and variation at each
locus. PIC values ranging from 0–0.29 is considered uninformative, from 0.3–0.59 is consid-
ered moderately informative, and a PIC above 0.6 is considered highly informative [41]. GenA-
lEx was further used to calculate the observed (HO) and unbiased expected (HE) heterozygosity
and to check for potential deviations from Hardy-Weinberg equilibrium (HWE) for the sample
of adult fish.

We used a Bayesian approach implemented in the R package MasterBayes [42]. Using Mar-
kov Chain Monte Carlo (MCMC) methods, MasterBayes confidence in parentage is assessed at
the level of individual assignments using all the information provided by potential parents. The
pedigree configuration was very similar regardless of the priors used, a testimony of the ade-
quacy of the data used for such analyses. The default uniform priors were consequently used.
The Markov chains converged easily, and runs were performed with 1300000 iterations, burn
in interval of 300000 iterations, and a thinning interval of 100. Maximum one mismatch be-
tween parent and offspring genotypes was allowed when performing the assignments. Here, we
use a cut-off for assignment probability of 90%.

There are a number of different software for performing parentage assignments, each with
different assumptions and algorithms. As a test of the assignment procedure we also used COL-
ONY v. 2.0 [43,44] to assign progeny into half- and full-sib families with known parents. These
results were only used as a comparison of methods; the main analysis is based on the
MasterBayes assignments.

We used the parentage assignment results to get an estimate for the effective number of
breeders (Nb) in this reproductive event. The effective number of female breeders, Nbf, was cal-
culated using Nbf = kf � (Nf - 1)/(1 + Vf/kf), where Nf is the number of sexually mature females
and kf and Vkf are the mean and the variance of the number of progeny produced [45]. The ef-
fective number of male breeders, Nbm, was calculated analogously. The total effective number
of breeders was then calculated as Nb = 4� (Nbf

� Nbm)/ (Nbf + Nbm). To obtain confidence in-
tervals for the estimated Nb, we resampled with replacement the reproductive success (number
of offspring) of the observed spawners. This bootstrap procedure was repeated 1000 times, and
the 2.5% and 97% percentiles were taken as the lower and upper 95% confidence limits for
Nb, respectively.

Generalized linear models (GLM) were used to test for relationships between individual re-
productive success (number of assigned progeny, number of partners) and fork length and for
the relationship between number of partners and number of assigned progeny. A Poisson dis-
tribution with a log-link was used, implemented in JMP [46].

Results
In total 895 individual grayling fry samples and fin clips from 154 mature grayling (57 females
and 97 males) were collected. The male grayling were significantly larger (mean fork
length ± SD; 321 ± 28 mm) than female grayling (288 ± 19 mm; Welch two sample t-test, t =
-8.62, p< 0.001). Of the sampled and genotyped fry samples, multi-locus match analysis for
co-dominant data in GenAlEx revealed that 45 samples had to be removed as their exact geno-
type already appeared in the data set (probability of identity over 19 loci = 7.5E-14). This was
due to some fry samples being composed of small bits of tissue due to interaction with all the
debris that was collected together with the fry in the drift traps. Consequently, 840 unique fry
genotypes were analysed in this study. The mean total length of a subset of 530 fry (60% of the
total sample) was 13.9 ± 1.5 mm, ranging from 8 to 17 mm.

The mean polymorphic information content (PIC) over all loci ranged from 0.15 to 0.82
(mean ± SD, 0.53 ± 0.19) (Table 1). The 19 loci were moderately to highly informative (2 loci
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below 0.3, 9 loci 0.3–0.59, 8 loci above 0.6). The mean unbiased expected heterozygosity for the
adults was 0.59, and the mean observed heterozygosity was 0.60 (Table 2). The adult genotypes
deviated from Hardy-Weinberg equilibrium at only one locus (Tth-407b), which is not signifi-
cant after adjustment for multiple tests. This indicates that the sample of mature fish can be
considered a random sample of the spawning population.

MasterBayes assigned a total of 466 offspring with confidence of 90% or higher. Of these
346 offspring were assigned to a sampled father, 203 offspring were assigned to a sampled
mother and 149 offspring were assigned to both a sampled mother and a sampled father. A
total of 32 males out of 97 (33.0%) were assigned offspring, whereas 22 out of 57 (38.6%) fe-
males were assigned offspring.

The parentage assignments based on COLONY were very similar to that based on Master-
Bayes. Around 90% of the individuals that were assigned parentage with COLONY were also
assigned parentage with MasterBayes (91.0% for fathers, 89.2% for mothers).

Many of the progeny were only assigned (using MasterBayes) either a father or a mother.
When evaluating the number of partners of each individual, we assumed that progeny having
the same mother or father, but with an unassigned parent, was parented by only one individual
of the opposite gender. Successfully reproducing males had on average 11.9 ± 13.3 (SD) (range
1–62) offspring with on average 2.1 ± 1.2 (range 1–6) partners, and males with more partners
also sired more offspring (generalized linear model with Poisson distribution and log-link,
χ2 = 249.0, n = 35, P< 0.0001) (Fig. 1). The successful females had on average 9.5 ± 12.8

Table 2. Genetic diversity indices for all 19 loci for the adult grayling.

Locus HE HO H-W PIC

BFRO13 0.65 0.70 0.445 0.59

213 0.79 0.84 0.204 0.76

414 0.73 0.71 0.919 0.68

309 0.45 0.40 0.180 0.35

TAR106 0.67 0.64 0.588 0.62

BFRO10 0.36 0.36 0.852 0.29

BFRO15 0.50 0.51 0.744 0.38

BFRO18 0.55 0.59 0.644 0.47

207 0.49 0.52 0.561 0.36

BFRO9 0.17 0.17 0.790 0.15

438 0.80 0.83 0.909 0.77

BFRO11 0.45 0.46 0.658 0.35

313 0.74 0.77 0.909 0.69

Ogo2 0.64 0.68 0.737 0.56

433b 0.66 0.60 0.469 0.61

445 0.84 0.86 0.936 0.82

415 0.76 0.77 0.714 0.72

214 0.50 0.51 0.241 0.45

407b 0.44 0.39 0.005 0.42

Mean±se 0.59±0.4 0.60±0.04 - 0.53±0.19

HE is the unbiased expected heterozygosity, HO is the observed heterozygosity, H-W states the

significance test (p-value) for deviation from Hardy-Weinberg equilibrium (deviating loci are in bold) and

PIC is the polymorphic information content of each locus. The last row contains the average and the

standard deviation of the heterozygosity and PIC across all loci.

doi:10.1371/journal.pone.0122032.t002
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(range 1–51) offspring with on average 2.3 ± 1.5 (range 1–6) partners, and females with more
partners also sired more offspring (GLM, χ2 = 205.0, n = 25, P< 0.0001; Fig. 1). Larger males
produced more progeny (GLM, χ2 = 36.8, n = 35, P< 0.0001) but they did not have more part-
ners (GLM, χ2 = 1.35, n = 35, P = 0.250) (Fig. 2). For the females, there was a tendency for larg-
er females to produce fewer progeny (χ2 = 5.6, n = 25, P = 0.017), and there was no relationship
between female size and number of partners (GLM, χ2 = 0.001, n = 35, P = 0.980; Fig. 2).

Based on the family size variation, the effective number of breeders (Nb) in the population
was estimated to be 24.7 (96% confidence interval: 16.1–35.5).

Discussion
The genetic investigation of the European grayling breeding system within this small alpine
stream revealed a polygynandrous breeding system. This has previously been suggested on the
basis of observational studies of behaviour [16,17,19]. Further, in a recent study Meraner et al.

Fig 1. Number of breeding partners. Estimated number of partners and offspring for male and female
grayling breeding pairs.

doi:10.1371/journal.pone.0122032.g001
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[20] used sibship reconstruction methods to show that a sample of 22 related juveniles identi-
fied in their study was aggregated into four full-sib families nested into 8 paternal and 5 mater-
nal half-sib family groups. In our study we found strong evidence that many males and females
successfully produced offspring with more than one partner, and that the individual reproduc-
tive success was highly skewed. Both for males and females it was clear that the individuals
with more partners also produce more progeny. In total, this should open for strong sexual se-
lection in the system.

There was large variation in individual reproductive success, both for male and female gray-
ling. Generally, male reproductive success in salmonid fishes such as salmon, trout and grayling
will be determined by access (proximity) to females during the actual spawning whereas female
reproductive success mainly is assumed to be determined by fecundity [12]. The fecundity of
female grayling is positively related to female size [18,21]. Larger females have the potential to
produce more eggs and thus potentially have more offspring than the smaller females. This
was, however, not the case for the grayling in this study; actually there was a weak tendency for
the larger females to produce somewhat fewer progeny. In most other studies of the breeding
system of salmonid fishes no or a weakly positive relationship between female size and repro-
ductive success have been found [9,10,14,47]. Thus, other factors such as male quality and the

Fig 2. Effect of grayling length (mm) of assigned number of partners and offspring.Data are presented as box plots for each 20 mm length bin.

doi:10.1371/journal.pone.0122032.g002
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quality of the selected spawning habitat might be more important for female fitness. Further, in
the grayling population studied here the variation in female size was relatively limited, both
leading to relatively small differences in expected fecundity and to low power of detecting a
size-effect if such an effect was present.

The larger grayling males sired more offspring than smaller males. For male salmonids it is
usually assumed that large males, due to their dominance and competitive ability, will get the
larger amount of breeding attempts and thus higher reproductive success [12]. However, other
studies of the breeding system of salmonid fishes have produced conflicting results [9,10,14,48],
indicating that other factors than size may be just as important for success. As mentioned
above, habitat quality may be one such factor. Timing of spawning may also impact on repro-
ductive success, especially when there is an extended duration of the spawning season. In our
study system all grayling migrated into the stream during a very short time window, and based
on experience with this and other grayling systems the actual spawning happens soon after as-
cent into the streams. Given this very limited variance in timing of ascent it was not possible to
test for any effect of timing on success.

The number of partners differed strongly among individual grayling. Overall, the number of
partners for the successful individuals varied from 1 to 6, with an average of approximately 2
partners for both males and females. However, most of the spawners were not assigned a partner
and were thus unsuccessful. It is suggested that males have larger opportunity than females to
mate multiple times as individual males may be sexually active for longer time periods than fe-
males. Females, on the other hand, have a short time window following ovulation when spawn-
ing has to be completed. In total this may lead to a male-biased operational sex ratio (OSR, the
ratio of sexually active females to males [49]). In our study we also observed a larger number of
males than females, enhancing the possibility for a male-based OSR. Such a male-biased sex ratio
was described recently for grayling in Lake Thun, Switzerland [50]. Such male biased operational
sex ratios may lead to strong male-male competition, allow for female choice and lead to strong
intra-sexual selection [12]. Dominant males thus have the opportunity to acquire multiple
mates, potentially also producing a strong male reproductive skew [9,10,14]. However, the num-
bers of partners for successful male and female grayling were very similar. One reason for this
may be that the spawning season for the grayling is very short in this stream (see also [33]). Gray-
ling usually spawn at temperatures between 5–8°C [51,52] and during spring the small stream
studied here rapidly becomes warmer than this. This reduces the time available for males to ac-
quire multiple mates since receptive females are only available during a relatively short time in-
terval. Such a short spawning period would also lessen the potential for strong sexual selection.

The grayling population studied here is relatively small, with an observed number of spawn-
ers (N) of 154. It is possible that the population is larger, as sampling of migrating fish was not
100% efficient at all times. However, the population effective number of breeders estimated
based on the family size variances is also small (Nb = 24.7). In a previous study based on data
from 2001 and 2008 (this sample), the effective population size was estimated using the tempo-
ral method (MNe 1.0; [34]) to be 63 (CI: 40–126) [28]. Therefore, although the actual number
of breeders probably is higher than the number of effective breeders, it is still unlikely that the
Søre Skottåe grayling represent a large population. Overall, these estimates indicated an Nb/N
ratio of 0.16 and a Ne/N ratio of 0.41. This is very similarly to what we recently observed in an
extensively studied brown trout Salmo trutta population (see estimates and discussion in [4]).
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