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The impulse-approximation expression used hitherto to define the pion’s valence-quark distribution 
function is flawed because it omits contributions from the gluons which bind quarks into the pion. 
A corrected leading-order expression produces the model-independent result that quarks dressed via 
the rainbow–ladder truncation, or any practical analogue, carry all the pion’s light-front momentum at 
a characteristic hadronic scale. Corrections to the leading contribution may be divided into two classes, 
responsible for shifting dressed-quark momentum into glue and sea-quarks. Working with available 
empirical information, we use an algebraic model to express the principal impact of both classes of 
corrections. This enables a realistic comparison with experiment that allows us to highlight the basic 
features of the pion’s measurable valence-quark distribution, qπ (x); namely, at a characteristic hadronic 
scale, qπ (x) ∼ (1 − x)2 for x � 0.85; and the valence-quarks carry approximately two-thirds of the pion’s 
light-front momentum.

© 2014 Argonne National Laboratory and the authors. Published by Elsevier B.V. This is an open access 
article under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

With the advent of the constituent-quark model, the pion came 
to be considered as a two-body problem. This perception contin-
ued into the era of quantum chromodynamics (QCD), with the 
pion being viewed as the simplest accessible manifestation of QCD 
dynamics and therefore the natural testing ground for theoret-
ical methods that aim to elucidate a wide range of QCD phe-
nomena. Growing in parallel was an appreciation that the pion 
occupies a special place in nuclear and particle physics; viz., as 
the archetype for meson-exchange forces, and hence plays a crit-
ical role as an elementary field in the nuclear structure Hamilto-
nian [1,2]. These conflicting views are reconciled in the modern 
paradigm [3], which simultaneously describes the pion as a con-
ventional bound-state in quantum field theory and the Goldstone 
mode associated with dynamical chiral symmetry breaking (DCSB). 
This dichotomy entails that fine tuning cannot play any role in 
a veracious explanation of pion properties and ensures that elu-
cidating the nature of its parton content is critical to any under-
standing of QCD.

* Corresponding author.
http://dx.doi.org/10.1016/j.physletb.2014.08.009
0370-2693/© 2014 Argonne National Laboratory and the authors. Published by Elsevier B
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
One of the earliest predictions of the QCD parton model was 
the behaviour of the pion’s valence-quark distribution function at 
large Bjorken-x [4,5]: qπ (x) ∼ (1 − x)2. Owing to the validity of 
factorisation in QCD, qπ (x) is directly measurable in π N Drell–
Yan experiments. However, as described elsewhere [6], conclusions 
drawn from a leading-order analysis of these experiments proved 
controversial, producing [7] qπ (x) ∼ (1 − x) and thus an appar-
ent disagreement with QCD. We address this issue herein by first 
correcting a commonly used expression for the valence-quark dis-
tribution function and then illustrating its consequences with an 
algebraic model that incorporates salient features of QCD.

2. Quark distribution function in the pion

The hadronic tensor relevant to inclusive deep inelastic lepton–
pion scattering may be expressed in terms of two invariant struc-
ture functions [8]. In the deep-inelastic Bjorken limit [9]: q2 → ∞, 
P · q → −∞ but x := −q2/[2P · q] fixed, that tensor can be written 
(tμν = δμν − qμqν/q2, P t

μ = tμν Pν )

Wμν(q; P ) = F1(x)tμν − F2(x)
P t

μ P t
ν, F2(x) = 2xF1(x). (1)
P · q
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Fig. 1. Amplitude-(1) for virtual-photon–pion Compton scattering in RL truncation 
is obtained from the sum (A) + (B) − (C). The “dots” in (A) and (B) indicate sum-
mation of infinitely many ladder-like rungs. The other two amplitudes are obtained 
as follows: (2) – switch vertices to which q and q′ are attached; and (3) – switch 
vertex insertions associated with q′ and P ′ . The lines and vertices mean the follow-
ing: dashed line – pion; undulating line – photon; spring – interaction-gluon in the 
RL kernels; solid line – dressed-quark; open-cross circle – dressed-quark–photon ver-
tex; filled circle – pion Bethe–Salpeter amplitude. Each of the last three is computed 
in RL truncation.

F1(x) is the pion structure function, which provides access to the 
pion’s quark distribution functions:

F1(x) = 1

2

∑
q∈π

e2
qqπ (x), (2)

where eq is the quark’s electric charge. The sum in Eq. (2) runs 
over all quark flavours; but in the π+ it is naturally dominated 
by u(x), d̄(x). Moreover, in the G-parity symmetric limit, which we 
employ throughout, u(x) = d̄(x). (Importantly, Bjorken-x is equiv-
alent to the light-front momentum fraction of the struck parton.)
The structure function may be computed from the imaginary part 
of the virtual-photon–pion forward Compton scattering amplitude: 
γ (q) + π(P ) → γ (q) + π(P ).

3. Rainbow–ladder truncation

Herein we analyse qπ (x) in Eq. (2) within the context of 
the rainbow–ladder (RL) truncation of QCD’s Dyson–Schwinger 
equations [10]. That truncation is the leading-order term in 
a symmetry-preserving scheme [11–13] which is accurate for, 
amongst other systems, isospin-nonzero-pseudoscalar-mesons be-
cause corrections in this channel largely cancel owing to parame-
ter-free preservation of the Ward–Green–Takahashi (WGT) identi-
ties.

Following Ref. [14], it is evident that the virtual Compton am-
plitude in RL truncation should be built from permutations of the 
three diagrams illustrated in Fig. 1 [15]. This collection is necessary 
and sufficient to ensure preservation of the relevant WGT identi-
ties so long as the dressed-quark propagators, pion Bethe–Salpeter 
amplitudes and dressed-quark–photon vertices, appearing in the 
diagrams, are all computed in RL truncation.

Consider the virtual forward Compton amplitude in the Bjorken 
limit. The Amplitude-(3) permutation of the diagrams in Fig. 1 cor-
responds to a collection of so-called cat’s ears contributions. They 
are greatly suppressed compared to the other two permutations in 
the Bjorken limit and hence may be neglected. The Amplitude-(2)
permutation corresponds simply to symmetrising the incoming 
and outgoing photons and so need not explicitly be considered fur-
ther. Consequently, one may focus solely on those diagrams drawn 
explicitly in Fig. 1.

In the forward and Bjorken limits, Diagram-(A) in Fig. 1 is 
the textbook handbag contribution to virtual Compton scattering, 
which yields the following piece of the structure function:

qπ
A (x) = Nc tr

∫
dk

δx
n(kη)n · γHπ (P ,k), (3)

where Nc = 3 and the trace is over spinor indices; 
∫

dk := ∫ d4k
(2π)4 is 

a translationally invariant regularisation of the integral; δx
n(kη) :=

δ(n ·kη − xn · P ); n is a light-like four-vector, n2 = 0; P is the pion’s 
four-momentum, P 2 = −m2

π and n · P = −mπ , with mπ being the 
pion’s mass; and kη = k + ηP , kη̄ = k − (1 − η)P , η ∈ [0, 1]. Ow-
ing to Poincaré covariance, no observable can legitimately depend 
on η; i.e., the definition of the relative momentum. Diagram-(A) 
is typically the only contribution retained in computations of the 
pion’s quark distribution function; see, e.g., Refs. [16–21].

In RL truncation, Hπ (P , k) is an infinite sum of ladder-like 
rungs, as illustrated in Fig. 1, so that one may write [21]

qπ
A (x) = Nc tr

∫
dk

iΓπ(kη,−P )

× S(kη)Γ n(k; x)S(kη)iΓπ(kη̄, P )S(kη̄), (4)

wherein

S(k) = Z
(
k2)/[iγ · k + M

(
k2)] (5)

is the dressed-quark propagator, Γπ(k, P ) is the pion’s Bethe–
Salpeter amplitude, and Γ n(k; x) is a generalisation of the quark–
photon vertex, describing a dressed-quark scattering from a zero 
momentum photon. It satisfies a RL Bethe–Salpeter equation with 
inhomogeneity in · γ δx

n(kη) [21].
This treatment of Diagram-(A) is precisely analogous to the 

symmetry preserving analysis of the pion’s electromagnetic form 
factor (at Q 2 = 0) [22]. Eq. (4) ensures 

∫ 1
0 dx qπ

A (x) = 1 be-
cause 

∫
dx Γ n(�; x) gives the Ward-identity vertex and the Bethe–

Salpeter amplitude is canonically normalised. The minimal Ansatz
sufficient to preserve these qualities is Γ n(k; x) = δx

n(kη)∂n
kη

S−1(kη), 
∂n

kη
= n · ∂kη , wherewith

qπ
A (x) = Nc tr

∫
dk

δx
n(kη)Γπ (kη,−P )∂n

kη
S(kη)Γπ (kη̄, P )S(kη̄). (6)

The other two diagrams in Fig. 1 have hitherto been overlooked. 
Given that the combination (B) − (C) is crucial if the WGT iden-
tities are to be satisfied in a RL analysis of Compton scattering, it 
would seem a mistake to ignore these terms. Let us therefore con-
sider their content. A first observation is that (B)0 − (C) = 0; i.e., 
if one omits all terms from the ladder-like sum in Diagram-(B), 
then it is completely cancelled by Diagram-(C). So, (B) − (C) is 
a sum of infinitely many ladder-like rungs, beginning with one 
rung. This is illustrated in Fig. 2 (left panel), which also exposes 
the internal structure of the pion’s RL-truncation Bethe–Salpeter 
amplitude. Studying this figure, the nature of the combination 
(B) − (C) becomes plain; viz., it expresses a photon being ab-
sorbed by a dressed-quark, which then proceeds to become part 
of the pion bound-state before re-emitting the photon. Thinking 
perturbatively, one might imagine these processes to represent ef-
fects associated with initial/final-state interaction corrections to 
the handbag diagram and thus to be suppressed. However, so long 
as the gluon exchanges are soft, which is the limit depicted in the 
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Fig. 2. Left panel – Forward limit of the combination (B) − (C) in Fig. 1. The figure 
also exposes the internal structure of the pion’s Bethe–Salpeter amplitude obtained 
in RL-truncation. In the Bjorken limit, the initial/final-state interactions involve very 
soft gluons and hence, in combination with the ladder resummation, produce a con-
tribution that is of the same order as Diagram-(A) in Fig. 1. Right panel – Imaginary 
part of the left panel in the Bjorken limit: the vertex insertion can appear between 
any two interaction lines. The compound vertex on the right is readily simplified 
using the RL Bethe–Salpeter equation.

left-panel of Fig. 2, that is not the case because the resummation 
of ladder-like rungs is resonant. This contribution is thus of pre-
cisely the same order as that from Diagram-(A) in Fig. 1. In fact, 
akin to the final state interactions that produce single spin asym-
metries [23], the contribution we have identified is leading-twist 
and its appearance signals failure of the impulse approximation.

To elucidate further, consider the imaginary part of Fig. 2-left-
panel in the Bjorken limit, which produces the leading contribu-
tion illustrated in the right panel: the vertex insertion can appear 
between any pair of interaction lines. Using the recursive struc-
ture of the ladder Bethe–Salpeter kernel and the Ward identity, 
which entails that inserting a zero-momentum vector-probe into 
a propagator line is equivalent to differentiation of the propagator, 
then the compound vertex on the right side of Fig. 2-right-panel is 
readily seen to correspond to differentiation of the Bethe–Salpeter 
amplitude itself with respect to kη . One thus arrives at the fol-
lowing contribution from (B) − (C) to the pion’s quark distribution 
function:

qπ
BC (x) = Nc tr

∫
dk

δx
n(kη)∂n

kη
Γπ (kη,−P )S(kη)Γπ (kη̄, P )S(kη̄). (7)

This expression is nonzero in general. It only vanishes when the 
pion’s Bethe–Salpeter amplitude is independent of relative mo-
mentum; i.e., in the class of theories that employ a momentum-
independent interaction, which includes models of the Nambu–
Jona-Lasinio type [24] and DSE-formulated analogues [25].

Adding Eqs. (6) and (7), we have our amended result for the 
quark distribution function in RL truncation:

qπ
L (x) = qπ

A (x) + qπ
BC (x) (8a)

= Nc tr
∫
dk

δx
n(kη)∂kη

[
Γπ(kη,−P )S(kη)

]
Γπ(kη̄, P )S(kη̄),

(8b)

where the derivative acts only on the bracketed terms. Eq. (8b) is 
the minimal expression that retains the contribution to the quark 
distribution function from the gluons which bind dressed-quarks 
into the pion. It produces results that are independent of η; i.e., 
the definition of the relative momentum.

4. Sketching the dressed-quark PDF

A range of novel insights into the dressed-quark structure of the 
pion can be obtained by using [26], with 
M (s) = 1/[s + M2],

S(k) = [−iγ · k + M]
M
(
k2), (9a)
ρν(z) = 1√
π

Γ (v + 3/2)

Γ (ν + 1)

(
1 − z2)ν, (9b)

nπΓπ (kη̄/η;±P ) = iγ5

1∫
−1

dz ρν(z)
̂ν
M

(
k2

z

)
, (9c)

where M is a dressed-quark mass-scale; 
̂M (s) = M2
M(s); kz =
kη̄/η + (z ± 1)P/2 and we work in the chiral limit (P 2 = 0); and 
nπ is the Bethe–Salpeter amplitude’s normalisation constant.

To frame the analysis, one may begin by considering the pion’s 
valence-quark parton distribution amplitude (PDA):

fπϕπ (x) = Nc tr
∫
dk

δx
n(kη)γ5γ · nχπ(k; P ), (10)

where χπ(k; P ) = S(kη)Γπ (k; P )S(kη̄) is the pion’s Bethe–Salpeter 
wave function and fπ is its leptonic decay constant. A QCD-like 
theory corresponds to ν = 1 in Eq. (9c), in which case Eq. (10)
yields [26]: fπ nπ = Nc M/(8π2); and

ϕπ(x) = 6x(1 − x) =: ϕasy(x), (11)

i.e., the PDA appropriate to QCD’s conformal limit [27–29].
Now consider qπ

A (x) in Eq. (6), which was hitherto the only 
contribution retained in evaluating the pion’s dressed-quark distri-
bution function. There are numerous ways to evaluate the integrals 
that arise after inserting Eqs. (9). The simplest, perhaps, is to work 
with η = 0, and use light-front coordinates and the residue theo-
rem, thereby obtaining

qπ
A (x) = nq

[
x3(x

[−2(x − 4)x − 15
] + 30

)
ln(x) + (

2x2 + 3
)

× (x − 1)4 ln(1 − x) + x
[
x
(
x[2x − 5] − 15

) − 3
]
(x − 1)

]
,

(12)

where nq = 9/(20π2n2
π ). The result is independent of η, as one 

may establish by direct computation, and the x-dependence is in-
dependent of M , the defining mass-scale in Eqs. (9). (Eq. (12) has 
also been obtained via analysis of the pion’s generalised parton 
distribution beginning with Eqs. (9) [30].)

Computation of qπ
BC (x) in Eq. (7) can similarly be completed:

qπ
BC (x) = nq

[
x3(2x

([x − 3]x + 5
) − 15

)
ln(x) − (

2x3 + 4x + 9
)

× (x − 1)3 ln(1 − x) − x(2x − 1)
([x − 1]x − 9

)
(x − 1)

]
.

(13)

The result is plainly nonzero; and it is also independent of η
and M . Given that this term was previously omitted, one must en-
quire into its importance. The first thing to observe is

1∫
0

dx qπ
BC (x) = 0, (14)

so qπ
BC (x) doesn’t contribute net baryon number to the PDF. One 

might have anticipated this from Fig. 2 (right panel), which de-
scribes qπ

BC (x) as adding momentum from the binding gluons.
In connection with baryon number then, only qπ

A (x) can con-
tribute; and, as noted above, in a symmetry preserving analysis 
the normalisation of the Bethe–Salpeter amplitude ensures that 
the pion charge form factor is unity at Q 2 = 0 [31]. This condition 
is algebraically equivalent to 

∫ 1
0 dx qπ

A (x) = 1, so that Eqs. (9) are 
completed with n2

π = 5/(32π2). (A notion of scale is provided by 
the observation that r2

π = 162/(125M2) and hence M = 0.33 GeV
yields the empirical value [32] rπ = 0.67 fm.)
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Fig. 3. Pion dressed-quark distribution function in rainbow–ladder truncation: 
solid – complete result, Eq. (16); dashed – handbag contribution usually retained, 
Eq. (6); and dot-dashed – amendment described in connection with Eq. (7). An in-
teresting comparison is provided by the dotted curve: q2(x) = 30x2(1 − x)2. To the 
eye, it is barely distinguishable from our complete result; and the mean value of 
the absolute relative difference between the curves is just 9%. Hence q2(x) can be 
useful as an approximation to Eq. (16).

One is now in a position to consider the momentum sum rule; 
namely, to compute the light-front momentum fraction carried by 
the pion’s dressed-quark in RL truncation:

〈x〉πq =
1∫

0

dx
[
xqπ

A (x) + xqπ
BC (x)

] = 117

250
+ 8

250
= 1

2
; (15)

viz., the dressed-quark and -antiquark each carry half the pion’s 
momentum but that is only true after the leading contributions 
from all diagrams in Fig. 1 are summed.

Another important feature is hidden in Eq. (15); namely, as il-
lustrated in Fig. 3, including qπ

BC (x) produces a symmetric dressed-
quark PDF in RL truncation:

qπ
L (x) = 72

25

[
x3(x[2x − 5] + 15

)
ln(x) + (

x[2x + 1] + 12
)

× (1 − x)3 ln(1 − x) + 2x
(
6 − [1 − x]x)(1 − x)

]
. (16)

This is logical because the dressed-quark and -antiquark are the 
sole measurable constituents of the pion in an internally consistent 
RL computation: they and their associated bound-state amplitude 
absorb and contain all contributions from sea or glue partons. It 
follows that if the dressed quark carries a fraction x of the pion’s
momentum, the dressed antiquark carries [1 − x]. Notably, only 
a symmetric distribution produces 〈x〉πq = 1/2 without fine-tuning.

We close this part with an analysis of the large-x behaviour. As 
noted in connection with Eq. (11), QCD-like scaling behaviour is 
obtained with ν = 1. It is thus unsurprising that

qπ
L (x)

x∼1= 216

5
(1 − x)2 + O

([1 − x]3). (17)

This is the power-law predicted by the QCD parton model [4,5], ob-
tained simply and exactly. Owing to symmetry under x ↔ [1 − x], 
the same power-law is manifest on x ∼ 0, a result which empha-
sises that qπ

L (x) is truly a constituent-like distribution: any sea-
quark contamination would produce a marked asymmetry. Notably, 
there is a direct connection between the k2-dependence of a the-
ory’s interaction (ν in Eq. (9c)), the behaviour of the asymptotic 
PDA (ϕasy

ν ∝ [x(1 − x)]ν [26]) and the PDF’s power-law behaviour 
at a characteristic hadronic scale, ζH (defined below):

∀ν ≥ 0: qπ
L (x) ≈ [

ϕ
asy
ν (x)

]2 ⇒ qπ (x; ζH )
x�1∼ (1 − x)2ν .

(18)
Fig. 4. Illustration of some corrections to RL truncation. Effects such as those il-
lustrated in Diagrams-(1) and -(2) can be absorbed into the dressed-quark and the 
pion’s Bethe–Salpeter amplitude and belong in [C1]; but Diagram-(3) is [C2] because 
it shifts momentum into the pion’s dressed-gluon distribution without altering the 
distribution of baryon number.

5. Incorporating sea-quarks and glue

The dressed-quark basis obtained using the rainbow–ladder 
truncation with a realistic one-loop renormalisation-group-im-
proved (RGI) interaction [33] provides a good description of a wide 
range of pion properties [10], including its mass and decay con-
stant, electroweak form factors, and ππ scattering. It produces the 
dressed-quark PDF in Eq. (8b), which is invariant under x ↔ [1 −x], 
and consequently generates a purely valence-quark distribution. 
As is evident from the illustrations in Section 3, this is because 
RL truncation includes no mechanism that can shift momentum 
from the dressed-quarks into sea-quarks and gluons: a RL pion 
is constituted solely from a dressed-quark and dressed-antiquark. 
(This explains the useful feature that whilst Eqs. (9) produce the 
conformal-limit PDA from the exact formula in Eq. (10), they can-
not generate the asymptotic valence-quark PDF, qπ (x) = δ(x), from 
the approximation in Eq. (8).)

In the context of the pion’s PDFs, corrections to the RL trunca-
tion can be separated into two classes: [C1] redistributes baryon-
number and momentum into the dressed-quark sea; and [C2] 
shifts momentum into the dressed-gluon distribution within the 
pion. Perhaps the most obvious contributions within [C1] are those 
associated with what have been called resonant or meson-cloud
corrections to the kernels in the gap and scattering equations. One 
example is

π+ = ud̄ → u(d̄d)d̄ = (ud̄)(dd̄) ∼ π+ρ0 → ud̄ = π+, (19)

which describes a RL-π+ , dressing itself with a RL-ρ0. This pro-
cess enables the photon to interact with RL-dressed ū- and d-quark 
components within the physical π+ , thereby shifting momentum 
into the pion’s RL-dressed sea. Let us associate a total flux “Z ” with 
such fluctuations. In a symmetry preserving treatment, such pro-
cesses do not change the total baryon-number content of the pion 
but they do reduce the probability of finding the RL-pion within 
the physical pion; and hence the quark distribution becomes

qπ
vs(x) = (1 − Z)qπ

L (x) + Zqπ
M(x),

1∫
0

dx qπ
M(x) = 1, (20)

where qπ
M(x) describes the cumulative effect on the PDF of all res-

onant corrections to the RL computation.
In order to identify the second class of corrections, [C2], con-

sider Fig. 4. Contributions of the type in Diagram-(1) contribute 
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additional dressing to the quark; and those in Diagram-(2) con-
tribute additional binding within the pion’s Bethe–Salpeter ampli-
tude. As such, they can be absorbed into the distribution of the 
dressed-quarks and dressed-antiquarks within the pion, so that 
they serve mainly to modify the natural basis states and have little 
noticeable impact on either qπ

L (x) or qπ
M(x). On the other hand, 

Diagram-(3) has the effect of shifting momentum into the pio-
n’s gluon distribution. Evidently, whilst the struck dressed-quark 
is still carrying a fraction x of the pion’s momentum, the mo-
mentum of the spectator system is shared between the dressed-
antiquarks and -gluons: attributing a net xg > 0 to the dressed-
gluon, then the dressed-antiquark carries 1 − x − xg . In a sym-
metry preserving treatment, corrections in [C2] have no impact 
on net baryon number within the pion but they do rob momen-
tum from the baryon-number-carrying dressed-partons; namely, 
qπ

L,M(x) → qπ
Lg ,Mg

(x) with

1∫
0

dx qπ
Lg ,Mg

(x) =
1∫

0

dx qπ
L,M(x), (21a)

1∫
0

dx xqπ
Lg ,Mg

(x) <

1∫
0

dx xqπ
L,M(x). (21b)

Thus, with δgqπ
L,M(x) := qπ

Lg ,Mg
(x) − qπ

L,M(x), one arrives finally at 
the complete dressed-quark distribution function

qπ (x) = (1 − Z)
[
qπ

L (x) + δgqL(x)
] + Z

[
qπ

M(x) + δgqM(x)
]
. (22)

A procedure one may follow in order to compute the pion’s
valence-quark distribution function, Eq. (22), is now apparent: be-
gin with RL results, obtained using a sophisticated RGI kernel 
and with the resolution set via renormalisation at a particular 
scale ζH; then proceed systematically to add the corrections identi-
fied above; and, finally, use DGLAP evolution [34–37] to obtain the 
result at any other scale ζ > ζH. The last step is simply a labour-
saving device because it eliminates the need for complete recom-
putation of the PDF at the new scale. In this way one fixes a priori
that parameter, ζH, which practitioners usually identify as the typ-
ical hadronic scale, and whose variation provides them with consid-
erable flexibility as they seek to validate their model through a fit 
to data.

It is natural to ask for the value of ζH at which the RL result 
alone should be most realistic. That is ζH � 0 GeV, because the 
light-front momentum fraction carried by dressed-sea and -glue 
diminishes as ζ is reduced. However, use of the available DGLAP 
equations at such a small value of ζH is impossible because 
they are only valid on the perturbative domain. What, then, is 
a suitable compromise? An answer was provided in Ref. [6]: one 
should use ζH ≥ 2ΛQCD ≈ 0.5 GeV, which corresponds to a scale 
whereat the chiral-limit dressed-quark mass-function, M(p2) in 
Eq. (5), is concave-up (convex) and dropping rapidly but does 
not yet exhibit the behaviour associated with its truly asymp-
totic momentum-dependence. As explained elsewhere [38], it is 
only for momenta within this domain that a rigorous connection 
with perturbative QCD (pQCD) exists: it is impossible to begin at 
a smaller scale because then the crucial elements in any calcu-
lation, e.g., the dressed-quark propagator, exhibit momentum de-
pendence that is essentially nonperturbative in origin, such as the 
inflexion point associated with confinement [10]. Notably, the ex-
pansion parameter in the DGLAP equations is α(s)/[2π ], where 
α(s) is the strong running coupling; and α(4Λ2

QCD)/(2π) ≈ 0.17

whereas α(2Λ2
QCD)/(2π) ≈ 0.34, which further vitiates any choice 

ζH < 2ΛQCD.
Some remarks are in order before proceeding. Notwithstand-
ing the existence of calculable corrections to the RL truncation, the 
dressed-quarks and bound-states obtained in RL truncation pro-
vide a good basis for describing numerous hadron observables. 
This is readily illustrated via the pion’s electromagnetic form factor, 
Fπ (Q 2). Meson-loop corrections only measurably affect its low-Q 2

behaviour, contributing � 15% to r2
π (squared-charge-radius) [39]; 

and gluonic corrections analogous to Diagram-(3) serve only to 
modify the form-factor’s anomalous dimension [10,29,40]. The 
salient features of Fπ (Q 2), including parton model scaling and 
the existence of scaling violations, are captured by the RL trun-
cation [41].

6. Illustrating the essentials

Eqs. (8) and the framework in Section 4 can be used to illustrate 
what may reasonably be expected from the procedure described 
in Section 5. This is valuable because, as will become apparent, 
differences between this illustration and results obtained using the 
complete procedure cannot be qualitatively significant.

The illustration can be built upon two observations, one con-
cerning the dressed-sea distribution and the other relating to glue. 
Note first that with realistic masses, meson-loop corrections to the 
RL result for the pion electromagnetic form factor at Q 2 = 0 are 
an O(5%) effect. This is evident in Ref. [39] and also in the result 
that, absent chiral corrections, the pion’s leptonic decay constant 
is [42] f 2

0 ≈ (0.09 GeV)2 cf. experiment [32], f 2
π ≈ (0.092 GeV)2. 

In Eq. (22), one may therefore fix

Z = 0.05. (23)

Regarding the profile of the dressed-sea contribution, we draw 
guidance from empirical information on π N Drell–Yan [43]:

xqπ
M(x) = 1

N
xᾱ(1 − x)β̄ (1 − γ̄

√
x + δ̄x) (24)

where 1/N is a simple algebraic factor that ensures∫ 1
0 dx qπ

M(x) = 1. Then, at ζH = 0.51 GeV an empirical assessment 
of the pion’s sea-quark distribution is consistent with

ᾱ = 0.16, β̄ = 5.20, γ̄ = 3.243, δ̄ = 5.206. (25)

The same consideration of π N Drell–Yan shows that 29% of the 
pion’s momentum is carried by glue at ζH (〈xg〉 = 0.29), in a dis-
tribution that has [43] αg ≈ 3/2 and βg ≈ 1 + βV , where βV is the 
exponent which characterises the pion’s valence-quark distribution 
on x � 1. In Eq. (22), we therefore use δgqL,M = δgq,

δgq(x) = sg xαg−1(1 − x)βg P
(βg ,αg−1)

1 (2x − 1), (26)

with sg a parameter, in order to shift 29% of the RL-dressed quarks’ 
momentum into the gluon distribution. (Eq. (26) is consistent with 
Eqs. (21).) With βg = 3, owing to Eq. (17), one finds sg = 8.5. (This 
procedure and Eq. (26) are suggested by the dot-dashed curve in 
Fig. (3), which shows how the resummation of gluon lines into the 
Bethe–Salpeter amplitude effects a redistribution of the dressed-
quark momentum.)

Using Eqs. (16) and (22)–(26), the pion’s dressed-quark distri-
bution function is completely determined. Notably, it is not very 
sensitive to the values of the 〈xs〉 ≈ Z and 〈xg〉, so long as 〈xs +xg〉, 
the momentum fraction contained in sea-quarks and glue, remains 
constant. We have explained our preferred values of Z , 〈xg〉. Given 
the simplicity of our input, there is little sense in fine tuning them; 
but we will subsequently illustrate the effect of increasing the sum 
to 〈xs + xg〉 = 0.40 at ζH .
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Before proceeding further, however, it is worth comparing our 
model’s predictions with available results from numerical simula-
tions of lattice-regularised QCD (lQCD). Such studies typically work 
with a resolving scale ζ2 = 2 GeV, so comparison requires DGLAP 
evolution of our prediction from ζH → ζ2. That is readily accom-
plished by working with the Mellin moments. One first computes

〈
xm
ζH

〉π
q =

1∫
0

dx xmqπ (x; ζH) (27)

up to a maximum number of moments: we use mmax = 40. Then, 
at ζ > ζH [44]:

〈
xm
ζ

〉π
q = 〈

xm
ζH

〉π
q

[
α(ζ 2)

α(ζ 2
H)

]γ m
0 /β0

, (28)

where β0 = 11 − (2/3)n f ,

γ m
0 = −4

3

[
3 + 2

(m + 1)(m + 2)
− 4

m+1∑
k=1

1

k

]
. (29)

(We use [33] n f = 4, ΛQCD = 0.234 GeV in the computation.)
An approximation to qπ (x; ζ2) is readily reconstructed from the 
evolved moments by supposing the PDF is well described by a dis-
tribution with the functional form in Eq. (24). The procedure yields

qπ (x; ζ2) = 4.21x0.18(1 − x)2.10. (30)

Eq. (28) describes leading-order evolution. Any material differences 
generated by next-to-leading-order (NLO) evolution are masked by 
a 25% increase in ζH [43].

Owing to the loss of Poincaré-covariance, existing lQCD algo-
rithms only provide access to the lowest three nontrivial moments 
of qπ (x). A contemporary simulation [45], using two dynamical 
fermion flavours, mπ � 0.34 GeV and nonperturbative renormali-
sation at ζ2 = 2 GeV, produces the first row here:

〈x〉 〈x2〉 〈x3〉
[45] 0.27(1) 0.13(1) 0.074(10)

[46] 0.28(8) 0.11(3) 0.048(20)

[47] 0.24(2) 0.09(3) 0.053(15)

Average 0.26(8) 0.11(4) 0.058(27)

Herein 0.28 0.11 0.057

(31)

The results in Ref. [45] agree with those obtained in earlier es-
timates based on simulations of quenched lQCD [46,47] and are 
consistent with the values obtained from our computed distribu-
tion, evolved to ζ2.

In Fig. 5 we compare our result with available experiment [7]. 
The average mass-scale for the data is ζ5 = 5.2 GeV [49], so we 
plot our prediction for xqπ (x) evolved from ζH → ζ5; viz.,

qπ (x; ζ5) = 3.47x0.021(1 − x)2.33. (32)

In considering the data in Fig. 5, it is important to recall that 
E615 [7] reported a PDF obtained via a leading-order analysis in 
pQCD; and, as noted in Section 1 and discussed elsewhere [6,
20,49], this yielded controversial behaviour on x � 1, contradict-
ing QCD-based expectations: producing qπ (x) ∼ (1 − x) instead of 
qπ (x) ∼ (1 − x)2. A subsequent NLO reanalysis [48], which, cru-
cially, also included soft-gluon resummation, indicated that the 
data are actually consistent with qπ (x) ∼ (1 − x)2: as empha-
sised by Ref. [49], NLO evolution alone cannot expose that. Thus, 
in Fig. 5 we plot the E615 data rescaled as follows E6152010 =
F (x)E6151989, where F (x) is the x-dependent ratio of Fit-3 in 
Ref. [48] to the E615 fit described in Table VII of Ref. [50]. It is ap-
parent in Fig. 5 that the data and all QCD-based calculations agree 
on the behaviour of qπ (x) within the valence-quark domain.
Fig. 5. Pion dressed-quark distribution function. Solid curve – result obtained herein 
with 〈xs + xg 〉 = 0.34 and dot–dash–dash – result obtained with 〈xs + xg 〉 = 0.40, il-
lustrating the effect of shifting 10% more of the dressed-quarks’ momentum into sea 
and glue; data – Ref. [7], rescaled according to the reanalysis described in Ref. [48]
(dot–dot-dashed curve); dotted – DSE result in Ref. [21]; and dot-dashed – first DSE 
prediction [20].

7. Conclusions and prospects

A useful starting point for the analysis of parton distribution 
functions and amplitudes is the rainbow–ladder (RL) truncation of 
QCD’s Dyson–Schwinger equations. This framework provides a de-
scription of hadrons via a dressed-quark basis, the accuracy of 
which in any given channel is knowable a priori. In this connec-
tion, we argued that the impulse-approximation expression used 
hitherto to define the pion’s dressed-quark distribution function 
is incorrect owing to omission of contributions from the gluons 
which bind dressed-quarks into the pion. The corrected expression 
(Eq. (8)) ensures that, independent of model details, RL-dressed 
quarks define a purely valence distribution, they always each carry 
one-half of the pion’s light-front momentum (Eq. (15)), and the 
valence-quark distribution behaves as (1 − x)2 on x � 1 (Eq. (17)). 
Using algebraic formulae for the dressed-quark propagator and 
pion Bethe–Salpeter amplitude, which express effects associated 
with dynamical chiral symmetry breaking and produce the cor-
rect asymptotic pion parton distribution amplitude, we computed 
the RL result for the pion’s valence-quark momentum distribution 
function (Fig. 3).

We subsequently explained (Section 5) that corrections to the 
RL prediction for the pion’s structure function may be divided into 
two classes: [C1], which redistributes baryon-number and momen-
tum into the dressed-quark sea; and [C2], which shifts momentum 
into the pion’s dressed-gluon distribution. So far as one can de-
termine empirically, contributions within [C2] are most important 
at a hadronic scale; viz., ζH ≈ 2ΛQCD. Working with this informa-
tion, we built a simple algebraic model to express the principal 
impact of both classes of corrections, which, coupled with the 
RL prediction, permitted a realistic comparison with existing ex-
periment (Fig. 5). This enabled us to reveal essential features of 
the pion’s valence-quark distribution. Namely, at a characteristic 
and reasonable hadronic scale, the pion’s valence-quark distribu-
tion behaves as (1 − x)2 for x � 0.85; and the valence-quarks carry 
roughly two-thirds of the pion’s light-front momentum. It follows 
from this analysis that extant measurements of the pion’s valence-
quark distribution function confirm basic features of QCD.

On the other hand, a valuable opportunity is now available. 
Employing the methods introduced in Refs. [26,41,51], one can fol-
low the procedures sketched in Sections 5 and 6 so as to achieve 
a quantitatively reliable, QCD-connected unification of the pion’s 
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valence-quark distribution function (PDF) with, inter alia, its distri-
bution amplitudes and elastic electromagnetic form factor. Whilst 
this cannot change the essential features of the valence-quark PDF, 
it will produce some quantitative modifications and one would 
also thereby obtain predictions for the sea-quark and gluon dis-
tributions, which are poorly constrained by existing experiment 
and theory. Completing such a picture is crucial as hadron physics 
enters an era of new-generation experimental facilities, whereat 
measurements could be made that would better constrain all the 
pion’s parton distribution functions, using techniques such as those 
discussed in Refs. [52–56]. The attendant possibilities also provide 
strong motivation for generalising both our algebraic framework 
and more sophisticated treatments in order to compute the kaon’s 
PDF.
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