Statistical analysis of proteomic mass spectrometry data for the identification of biomarkers and disease diagnosis

Tyman Stanford

Thesis submitted for the degree of Doctor of Philosophy in Statistics at The University of Adelaide

October 30, 2015

Discipline of Statistics School of Mathematical Sciences

Signed statement

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

SIGNED: DATE:

Contents

Si	Signed statement i				
A	Acknowledgements xii				
\mathbf{A}	bstra	ct			xiii
A	crony	yms an	d abbreviations		xv
1	Dise	ease, p	proteins and mass spectrometry		1
	1.1	Motiva	ation		2
	1.2	Biolog	gical background		4
		1.2.1	Amino acids and proteins		4
		1.2.2	Proteins via genes		5
		1.2.3	Gene and protein expression		7
		1.2.4	Protein function, sera and cancer		7
		1.2.5	Proteomics		8
		1.2.6	Biomarker discovery		11
		1.2.7	Linear TOF-MS		13
		1.2.8	Ionisation of proteins		14
	1.3	MS Da	ata		17
		1.3.1	Synthetic data		18
		1.3.2	Proteomic MS for cancer classification		19
		1.3.3	Adam et al. (2002)		20
		1.3.4	de Noo et al. (2006)		22
		1.3.5	Asthma studies		23
		1.3.6	Gastric cancer mice study		26
	1.4	Summ	ary of data		29
2	Met	thods a	of intra-spectra pre-processing		33
	2.1	Pre-pr	cocessing step I: signal smoothing		36
		2.1.1	Savitzky-Golay smoothing		37
		2.1.2	Comparison to moving-average filters		38
		2.1.3	Further considerations		39

	2.2	Pre-processing step II: baseline correction	40
		2.2.1 Morphological image analysis and theory	41
		2.2.2 Implementation	44
		2.2.3 A more efficient implementation	46
		2.2.4 Towards automated baseline correction	49
		2.2.5 Morphological analysis for unequally spaced values	51
		2.2.6 The novel continuous line segment algorithm	52
		2.2.7 Comparison of piecewise and continuous baseline subtraction .	58
	2.3	Recommendations	62
3	Met	thods of inter-spectra pre-processing	63
	3.1	Pre-processing step III: spectra normalisation	64
		3.1.1 Total ion current normalisation	66
		3.1.2 Empirical quantile normalisation	66
		3.1.3 Cyclic LOESS normalisation	67
		3.1.4 Evaluating methods of normalisation	70
	3.2	Pre-processing step IV(a): peak detection	74
	3.3	Pre-processing step IV(b): peak alignment	78
		3.3.1 Dynamic programming	81
		3.3.2 Modifications required for MALDI/SELDI TOF-MS	85
		3.3.3 Implementation and calibration	91
		3.3.4 Comparison to standard peak alignment techniques	94
	3.4	Recommendations	96
4	Dat	a visualisation, intermediate analysis and biomarker discovery	98
	4.1	Unsupervised exploratory analysis	99
		4.1.1 Principal component analysis	99
		4.1.2 Missing values	100
	4.2	Using linear models to identify potential biomarkers	108
		4.2.1 Linear modelling of the GC mice data	108
		4.2.2 Regression on the other peak expression data	120
	4.3	GC mice: the effect of missingness on statistical inference	125
		4.3.1 Missing peak expression as an outcome	127
		4.3.2 Linear models with imputed data	130
	4.4	Unknown and unwanted variation	134
		4.4.1 Surrogate variable analysis	136
		4.4.2 Remove unwanted variation	140
	4.5	GC mice biomarker candidate summary	145
5	Sta	tistical and computational methods of classification	148
	5.1	Supervised learning in the context of diagnostics	149
	5.2	Unbiased error prediction	150
	53	Statistical classification	153

		5.3.1 Linear discriminant analysis	153
		5.3.2 Quadratic discriminant analysis	155
	5.4	Extending statistical classification for $SnLp$ problems	156
		5.4.1 Pairwise fusion discriminant analysis	156
		5.4.2 Regularised discriminant analysis	158
	5.5	Computational classification	158
		5.5.1 RandomForests	159
		5.5.2 Support Vector Machines	162
	5.6	Feature Selection	166
		5.6.1 Fisher Score	167
		5.6.2 Classification with in-built feature selection	168
		5.6.3 RandomForests	168
		5.6.4 Pareto Fronts	168
	5.7	Summary	174
6	Clas	ssification results	176
	6.1	Towards optimal discrimination	177
		6.1.1 A standardised approach	178
	6.2	Optimising discrimination of the GC mice dataset	181
		6.2.1 Averaging over peak expression vectors	181
		6.2.2 Threshold of replicates to achieve successful discrimination	183
		6.2.3 Individual mice and their classification	187
	6.3	Comparison of data handling	190
		6.3.1 Change in basis of data	190
		6.3.2 Treatment of missing values	191
		6.3.3 Peak expression quantification	195
	6.4	Comparison of feature selection and classification methods \ldots .	196
		6.4.1 Feature selection	197
		6.4.2 Classification model	199
	6.5	The effects of spectra normalisation on classification	200
	6.6	Comparison of proteomic data results	202
	6.7	Summary	206
7	Con	cluding remarks	209
\mathbf{A}	R co	ode	211
P	Cor	tinuous line sogment algorithm proof	91 <i>1</i>
р	COL	innuous mie segment algorithmi proor	414
\mathbf{C}	Bio	marker investigation supplementary information	218
D	Pro	babilistic LDA classification of GC mice	232
Bi	bliog	graphy	235

List of Figures

1.1	Elemental structure of an amino acid		5
1.2	The components of blood.		9
1.3	The context of biomarker discovery	•	10
1.4	An example of a mass spectrum $(m/z \text{ vs intensity})$: a serum derived		
	SELDI TOF-MS raw spectrum from the Adam et al. (2002) study.		12
1.5	An illustration of the basic construct of TOF-MS.		13
1.6	A schematic of a MALDI TOF-MS system		15
1.7	An example spectrum from the Morris et al. (2005) generated data.		19
1.8	Schematic of location and run order of samples on the MALDI Bruker		
	Daltronics Anchorchip for the asthma2 data	•	26
1.9	Scatter plot of the median absolute deviation of spectra against the		
	natural logarithm of total signal detected for each spectrum in the		
	asthma2 dataset.		27
1.10	Experimental design for the GC mice data	•	29
2.1	Sources of false signal in MALDI/SELDI TOF-MS data.		34
2.2	Pipeline of MALDI/SELDI TOF-MS pre-processing and analysis.		35
2.3	A randomly selected raw spectrum from the GC mice data on a subset		
	of the m/z -axis with overlays of Savitzky-Golay and moving-average		
	smoothing techniques.		39
2.4	An example of ϵ_B , ω_B and τ_B on a set f		44
2.5	A spectrum from the asthmal dataset demonstrating the baseline		
	estimates in the signal using the top-hat operator, spline and LOESS		
	methods		46
2.6	A random selection of five spectra from the GC mice dataset and		
	their respective peak widths of detected peaks		50
2.7	A random selection of ten spectra represented by different colours		
	from the GC mice dataset and their respective peak widths of detected		
	peaks		51
2.8	An example of data where the x values are unevenly spaced points in		
	R for a SE of size $k = 3$ and the point $x = 2.44$.		52
2.9	An example of data where $\theta_{w_i^{\vee}} = \theta_{w_i^{\wedge}+1}$ and the computation required		
	for the continuous line segment algorithm.	•	55

2.10	An example of data where $\theta_{w_i^{\nabla}-1} = \theta_{w_i^{\wedge}}$ and the computation required	50
0.11	for the continuous line segment algorithm.	50
2.11	Computation time of calculating the morphological opening for ran-	•
	domly generated data in R.	58
2.12	Baseline correction on a randomly selected spectrum at the low end	
	of m/z -values from the GC mice dataset using piecewise top-hat and	
	transformed TOF-values with constant SE width and the continuous	
	definition of morphological operators	59
2.13	Baseline correction on a randomly selected spectrum at an interme-	
	diary section of m/z -values using piecewise top-hat and transformed	
	TOF-values with constant SE width and the continuous definition of	
	morphological operators.	60
2.14	Baseline correction on a randomly selected spectrum at the high end	
	of m/z -values using piecewise top-hat and transformed TOF-values	
	with constant SE width and the continuous definition of morpholog-	
	ical operators.	61
3.1	Randomly selected spectra from the Adam et al. (2002) dataset	65
3.2	An example empirical quantile normalisation on two spectra with	
	intensities at three m/z -values	67
3.3	Identical MA plots of two spectra from the Adam et al. (2002) data.	68
3.4	The effect of MA -LOESS adjustment on two spectra	70
3.5	Density and histogram plots of total ion current for asthma2 spectra	
	over the 4000-7000 subsection of the m/z -axis with constant x-axes	72
3.6	Heat map plots of MALDI chip location total ion current for asthma2	
	spectra over the 4000-7000 subsection of the m/z -axis using (a) TCN,	
	(b) EQN and (c) CLN	75
3.7	Simple S2N ratio peak detection on the Adam et al. (2002) data	
	(patient 20) over a subset of the m/z -axis	76
3.8	An illustration of peak width against peak location using TOF-values	
	and m/z -values; peaks are generally wider for larger molecular masses.	77
3.9	An estimated non-linear regression Gaussian curve fitted to the in-	
	tensities satisfying $f(x_i) \ge \frac{1}{2}a_f$	78
3.10	W matrix for the amalgamated alignment of two 4-alignments of the	
	de Noo et al. (2006) dataset	84
3.11	A calibrated T matrix for two spectra from the Adam et al. (2002) data.	
	The four heatmaps below are S matrices using different metrics	87
3.12	Alignment amalgamation de Noo et al. (2006) spectra.	89
3.13	Peak alignment example for two spectra along a subset of the m/z -axis.	90
3.14	A subset of the GC mice spectra over the 8788-9907Da subinterval of	
	the m/z domain; a potential alignment	93
3.15	Alignment heatmaps of two datasets and two alignment methods for	
	comparison.	95

4.1	PCA plots of GC mice peak expression data with disease classification	100
4.0	group $(k = 1, 2, \dots, 5)$ and chip $(j = 1, 2, 3)$ labelled.	102
4.2	PCA plots of GC mice peak expression data with labels for chip only	101
	(j = 1, 2, 3)	104
4.3	PCA plots of GC mice peak expression from chip 1 only with run-	
	order information. The 360 PCA points are plotted in a random order	
	irrespective of chip run-order to avoid a visual bias from plotting	
	points in run-order	105
4.4	PCA plots of peak expression intensities of the Adam et al. (2002)	
	dataset	106
4.5	PCA plots of peak expression intensities of the de Noo et al. (2006)	
	dataset	107
4.6	Experimental design of GC mice dataset with linear mixed effect	
	model annotation.	109
4.7	GC mice peak expression data as a heatmap	110
4.8	Theoretical and empirical pairwise correlation structure of peak ex-	
	pression for each set of 27 spectra for each mouse in the GC mice	
	dataset.	112
4.9	Proportional random effect contributions to the variance for each	
	of the 159 LME peak models for (a) the four-level model of Equa-	
	tion (4.1) and (b) the three-level model of Equation (4.6)	117
4.10	Volcano plot of phenotype group differences for each peak of the GC	
	mice expression data; adjusted p -value vs. fold change on the \log_2 -scale	.119
4.11	Parallel plot of the GC mice peak expression data for peaks identified	
	in Figure 4.10	120
4.12	Volcano plot for the de Noo et al. (2006) dataset for group differences	
	peak expressions; adjusted p -value vs. fold change on the \log_2 -scale.	122
4.13	Volcano plot for the Adam et al. (2002) dataset for group differences	
	peak expressions; adjusted p -value vs. fold change on the \log_2 -scale.	123
4.14	Parallel plots of peak expression on the \log_2 -scale relative to the	
	model-estimated control group effect for each peak identified in the	
	volcano plot in Figures 4.12 and 4.13.	124
4.15	Scatter plot of the mean log ₂ expression against proportionate miss-	
	ingness for each peak in the GC mice dataset.	126
4.16	Parameter estimates for identified potential biomarkers, relative to	
	the WT group, for the LME models when missing values are ignored	
	and when the missing values are k NN imputed	132
4.17	Volcano plot of phenotype group differences for each peak of the GC	
	mice expression data with k NN imputed data	133
4.18	Peak expression data as a heatmap for the 12 peaks satisfying a fold	
	change of 1.5 and significant group effect when modelled (a) with no	
	imputation and (b) using kNN imputed data	135

4.194.204.21	Plot of estimated number of surrogate variables, h , found by the permutation p -values of eigenvalues method for the peak expression datasets	. 139 . 142 . 144
$5.1 \\ 5.2 \\ 5.3$	The two-class supervised learning problem	. 149 . 151
5.4	An illustration of the construction of a classification tree for two-class data in a RandomForest.	. 159 . 161
$5.5 \\ 5.6$	The expression for two different features in a two-class problem Feature importance calculation example for a single RandomForest	. 167
5.7	tree	. 169
5.8	A receiver operator curve showing the sensitivity and specificity of the feature ranking methods in selecting the 25 differentially expressed features and the cumulative proportion of truly differentiated features selected by the feature ranking methods.	. 174
6.1	Discrimination results for GC mice dataset using different levels of averaging of the peak expression vectors.	. 182
6.2	Discrimination results for the GC mice dataset for varying replication in the training data (C8 averaged).	. 184
6.3	Modified sensitivity and specificity plots for replicates on GC mice data.	. 186
6.4	Heatmap of the SVM predictive error for GC mice dataset for differ- ent peak expression vector averaging schemes: (a) none, (b) C8, (c)	
6.5	aliquot and (d) mouse	. 188
6.6	Discrimination results for GC mice and Adam et al. (2002) datasets using varying data transformation methods	. 190
6.7	Discrimination results for GC mice and Adam et al. (2002) datasets using different imputation methods	. 193
6.8	Modified sensitivity and specificity plots for different missing value imputation methods on the GC mice data.	. 194
	-	

6.9	Discrimination results for GC mice and Adam et al. (2002) datasets
	using varying peak quantification methods
6.10	Discrimination results for GC mice and Adam et al. (2002) datasets
	using varying feature selection methods
6.11	Number of features selected for the final predictive model in the 100
	iterations
6.12	Discrimination results for GC mice and Adam et al. (2002) datasets
	using different classification methods
6.13	Discrimination results for GC mice and Adam et al. (2002) datasets
	using different spectra normalisation methods
6.14	The final discrimination results using SVM and LDA classification 202
6.15	Confusion matrices as heatmaps of the average test predictive error
	for the GC and Adam et al. (2002) datasets
<u>.</u>	
C.1	PCA plots of GC mice peak expression data by chip 2 run-order 219
C.2	PCA plots of GC mice peak expression data by chip 3 run-order 220
C.3	PCA plots of peak expression intensities of the asthmal dataset by
~	group labels
C.4	PCA plots of peak expression intensities of the asthma2 dataset by
~ ~	group labels
C.5	Statistics to assess different random effects model structures
C.6	Schematic of the three-level LME model structure for the GC mice
~ -	data of the form $\mathbf{Y}_p = \mathbf{X}\boldsymbol{\beta}_p + \mathbf{Z}\mathbf{B}_p + \boldsymbol{\epsilon}_p$
C.7	Parameter estimates, relative to the WT group, for the LME models
	when missing values are ignored and when the missing values are kNN
C a	imputed
C.8	Volcano plots for asthmal dataset relating to group differences peak
C a	expressions; adjusted p -value vs. fold change on the log ₂ -scale 230
C.9	Volcano plots for asthma2 dataset relating to group differences peak
	expressions; adjusted p -value vs. fold change on the \log_2 -scale 231
D 1	Heatman of the LDA predictive error for GC mice dataset for differ-
10.1	ent peak expression vector averaging schemes: (a) none (b) C8 (c)
	aliquot and (d) mouse
D 2	Belationship between prediction certainty and prediction outcome for
10.4	the C8 averaged GC mice data using LDA classification 234
	the courrent of the data using DDA classification

List of Tables

1.1	Summary of subjects in the Adam et al. (2002) study	20
1.2	Demographic information for the de Noo et al. (2006) study	23
1.3	Classification results for the de Noo et al. (2006) study	23
1.4	Groups in the GC mice data.	28
1.5	Summary of experimental groups for the datasets	30
1.6	Summary of important features of the MS datasets	32
2.1	Computation time of top-hat operator using different code on gener- ated data	48
$3.1 \\ 3.2$	CV_r value using different normalisation methods and data Mean misclassification proportion (bootstrapped 95% confidence in-	73
	terval of the mean) using the normalisation methods TCN and EQN.	73
3.3	Dynamic programming parameters.	91
3.4	Harmonic means of pairwise dynamic programming and vote alignment on randomly sampled Adam et al. (2002) spectra.	94
4.1	Top five peaks contributing to the first three principal components of the GC mice peak expression data.	103
4.2	GEE GLM modelling of the binary outcome of missingness in the GC mice peak expression dataset using the predictors of disease group and chip	190
43	Pipeline for using the BUV-rep method on the GC mice data	143
4.4	GEE GLM modelling of the binary outcome of missingness in the GC	110
1.1	mice peak expression dataset using the predictors of disease group and chip.	146
5.1	Probability of an individual observation being sampled for a tree in a RandomForest.	160
5.2	Summary of attributes of discrimination methods used	175

6.1	The median and 25 th percentile sensitivity, specificity and area un-	
	der the curve for the GC mice data using varying numbers of peak	
	expression vector replicates in the training data (model creation) for	
	test dataset prediction	187
6.2	The interquartile range of the number of features used in the test data	
	prediction model for the Adam et al. (2002) and GC mice datasets.	199
6.3	Proportional representation of peaks in the 100 final classification	
	models used to classify the GC mice test data, restricted to peaks	
	occurring in 80 or more models	204
6.4	The step-wise approach of Chapter 6 to 'optimise' the discrimination	
	of classification groups.	208
C.1	Peaks with significant group difference and fold changes of at least $\frac{3}{2}$	
	in the GC mice peak expression dataset.	225
C.2	Missingness observed for peak expressions for peaks 8337, 8607 and	
	12161m/z for GC mice dataset.	226
C.3	Peaks with significant group difference and fold changes of at least 2	
	in the de Noo et al. (2006) peak expression dataset	228
C.4	Peaks with significant group difference and fold changes of at least $\frac{3}{2}$	
	in the Adam et al. (2002) peak expression dataset	229
C.5	Peaks with fold changes of at least $\frac{3}{2}$ in the asthmal peak expression	
	dataset	230
C.6	Peaks with fold changes of at least $\frac{3}{2}$ in the asthma2 peak expression	
	dataset.	231

Acknowledgements

I must emphasise my gratitude to my supervisors, Professor Patty Solomon and Dr Chris Bagley. Patty, I have tremendous admiration for your statistical knowledge and thank you for your fantastic insights, guidance and wisdom along the way. Chris, your incredibly sharp eye combined with your patience when answering my questions is thoroughly appreciated.

Mum, Dad, Mel and Liana, I hope we can do away with the "are you done yet?" question. Thank you to you all for your encouragement from near and far, recently and formerly. I am under no illusions that without your combined support I would not be writing this now. I will be a better son, brother and partner now I promise. I extended this to friends who have been very understanding of my absenteeism. Thank you for your support as well.

Thank you to Chris Davies also for his initial work in his honours thesis that allowed me to hit the ground running. Many thanks to The University of Adelaide, specifically to the School of Mathematical Sciences and those I have had the most contact with at the Adelaide Proteomics Centre: Megan Penno, Vicki Clifton and Peter Hoffmann.

Since I have the floor, there are some more general sentiments I would like to make. I am grateful to exist in the time and location I do, and to be able to do what I love. My exclamation of "what a time to be alive!" is rarely sarcastic, albeit a poor attempt at humour. It would be remiss of me not to reference 'standing on the shoulders of giants' (but to complete the metaphor, in my case, rather than standing I might be sitting or even sliding off). I also wish to thank others that I have not met, those who get insufficient acknowledgement for what is a tremendous service to society: people that create and maintain publicly available software. Particularly the authors and contributors of R and $T_{\rm E}X/{\rm LATEX}$, software I have used extensively in this thesis.

Abstract

Proteomic spectra obtained from matrix-assisted laser desorption ionisation (MALDI) time-of-flight mass spectrometry (TOF-MS) are generated from the proteins and peptides present in serum obtained from blood. By ionising the proteins and resolving them in the mass spectrometer, data on the expression of proteins can be obtained, realised from the amplitude of signal for different mass to charge ratios. Of primary interest is the biological signal, in particular, the expression of proteins related to disease. In common with many 'omic' technologies, the raw spectra suffer from systematic errors due to technological artefacts and batch-effects, in addition to sample and biological variability. To negate these effects, novel application of genetic microarray pre-processing and analysis methods to proteomic TOF-MS data are presented. However, there are important differences between microarray and TOF-MS data which require consideration and non-trivial modifications to be successfully applied. One important difference between MALDI TOF-MS data and other high-throughput data, seldom addressed, is the high proportion of missing values.

The pre-processing of raw proteomic TOF-MS data needs to be undertaken prior to analysis and remains a mathematical and statistical challenge. Performed in distinct steps, pre-processing consists of signal smoothing, baseline correction, spectra normalisation, peak detection and peak alignment. An argument as to why the order of these steps is highly important is presented. Standard and novel data pre-processing methods are investigated and compared to optimise the process. Each step is given due consideration since the cumulative effects of substandard pre-processing can render subsequent statistical analysis highly unreliable.

Ultimately, the aim of proteomic MS is to analyse the protein profiles. Two different but related approaches to the analysis are undertaken. The first approach is to identify biological markers (biomarkers) that exhibit differential expression between disease groups. Identifying potential biomarkers for further research requires appropriate exploratory, visual and statistical modelling which is addressed in detail here. The second approach is to perform statistical discrimination between groups, a classical supervised learning problem. The ability of mathematical models to predict disease groups using differential biological signal provides insight into the plausibility of diagnostic tests. Methodologically, supervised learning is a multifaceted problem given that feature selection, model parameter optimisation, and the handling of the training and test data all contribute to the inference that can be made from the results. Empirical appraisal of the methods applied to the proteomic data are provided with the outcome of discrimination error as a quantitative benchmark.

A number of proteomic TOF-MS datasets with differing characteristics are used throughout this thesis to assess the validity of the methods presented. The detailed analysis of a murine model MALDI TOF-MS dataset has facilitated the discovery of potential biomarkers for gastric cancer. Correct classification of spectra to their respective disease group (gastric cancer or control mice) as high as 97.4% was achieved using supervised learning. The thorough treatment of all the differently behaved datasets contained in this thesis, starting from the raw data pre-processing steps through to the challenging process of identifying potential biomarkers, provides a comprehensive and best-practice pipeline to analyse real-world proteomic MS data.

Acronyms and abbreviations

For simplicity, many abbreviations will be used throughout this thesis. The abbreviation/acronym will appear in parentheses at the first occurrence of the phrase but the table below provides a comprehensive list for quick reference.

Abbreviation	Meaning
APC	Adelaide Proteomics Centre
С	The portable and compiled programming language
C8 beads	Alkyl group beads used in proteomic sample fractionation
CLSA	Continuous line segment algorithm
CLN	Cyclic LOESS normalisation
CRC	Colorectal cancer
CV	Coefficient of variation
(k)Da	(kilo)Daltons; $\frac{1}{12}$ th of a carbon-12 atom's mass (~ 1.7×10^{-27} kg)
DNA	Deoxyribonucleic acid
DP	Dynamic programming
EQN	Empirical quantile normalisation
FDR	False discovery rate
\mathbf{FS}	Fisher score
FWHM	Full-width at half-maximum
GC	Gastric cancer
GC-MS	Gas chromatography-mass spectrometry
GEE	Generalised estimating equation
GFCV	G-fold cross-validation, traditionally denoted k -fold
GLM	Generalized linear model
HM	Harmonic mean
IMAC-Cu	Immobilised metal affinity chromatography - copper
$k \mathrm{NN}$	k-nearest neighbours
LC-MS	Liquid chromatography?mass spectrometry
LDA	Linear discriminant analysis
LME	Linear mixed effects
LOESS	Locally weighted scatterplot smoothing (local regression)
LSA	Line segment algorithm

Abbreviation	Meaning
MA	A transformation of paired minus vs. average log intensities
MAR	Missing at random
MALDI	Matrix-assisted laser desorption/ionisation
MCAR	Missing completely at random
MS	Mass spectrometry
m/z	Mass divided by charge: the x -axis of TOF-MS
$\mu { m m}$	Micrometre (10^{-6} metres)
Nd:YAG	Neodymium-yttrium aluminium garnet (laser)
n_k	The number of patients/subjects in $k = 1, \ldots, K$ groups
nm	Nanometre (10^{-9} metres)
NW	Needleman and Wunsch (algorithm)
OOB	Out-of-bag
OLS	Ordinary linear least-squares (regression)
\mathbf{PC}	Prostate cancer
PCA	Principal component analysis
\mathbf{PF}	Pareto Front
PFDA	Pairwise fusion discriminant analysis
PLS	Penalised least squares (regression)
pН	Acidity/akalinity scale; hydrogen ion concentration metric
$\mathrm{pmol}/\mathrm{\mu L}$	Molecular concentration/microlitre; pmol $\approx 6 \times 10^{11}$ molecules
QDA	Quadratic discriminant analysis
R	The statistical programming environment
RDA	Regularised discriminant analysis
REML	Restricted maximum likelihood
\mathbf{RF}	RandomForest
RNA	Ribonucleic acid
RUV	Remove unwanted variation
S2N	Signal to noise (ratio)
SAX	Strong anion exchange
SE	Structuring element
SELDI	Surface-enhanced laser desorption/ionisation
S-G	Savitzky-Golay
$\mathrm{S}n\mathrm{L}p$	Small- n Large- p (problem)
SVA	Surrogate variable analysis
SVD	Singular value decomposition
SVM	Support vector machine
SW	Smith and Waterman (algorithm)
TCN	TIC normalisation
TIC	Total ion current
TOF	Time-of-flight
T_x	Treatment
UV	Ultraviolet
WCX	Weak cation exchange