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Abstract

Background: We consider data from a time course microarray experiment that was conducted on grapevines over
the development cycle of the grape berries at two different vineyards in South Australia. Although the underlying
biological process of berry development is the same at both vineyards, there are differences in the timing of the
development due to local conditions. We aim to align the data from the two vineyards to enable an integrated analysis
of the gene expression and use the alignment of the expression profiles to classify likely developmental function.

Results: We present a novel alignment method based on hidden Markov models (HMMs) and use the method to
align the motivating grapevine data. We show that our alignment method is robust against subsets of profiles that are
not suitable for alignment, investigate alignment diagnostics under the model and demonstrate the classification of
developmentally driven genes.

Conclusions: The classification of developmentally driven genes both validates that the alignment we obtain is
meaningful and also gives new evidence that can be used to identify the role of genes with unknown function. Using
our alignment methodology, we find at least 1279 grapevine probe sets with no current annotated function that are
likely to be controlled in a developmental manner.

Keywords: Alignment, Classification, Hidden Markov models, Time course microarray experiment

Background
Alignment of time course gene expression data is an
important problem since, ‘biological processes have the
property that multiple instances of a single process may
unfold at different and possibly non-uniform rates in dif-
ferent organisms, strains, individuals, or conditions’ [1].
Such different rates may affect the timing of gene expres-
sion, which will be manifest in the observed expression
profiles.
We consider a time course microarray experiment

conducted on grapevines (Vitis vinifera L., Cabernet
Sauvignon) at the ‘Willunga’ and ‘Clare’ vineyards in South
Australia. The experiment was run over the duration of
the development cycle of the grape berries, from the
closed-flower to ripe-red stage of the berries themselves.
For each gene, we have a pair of expression profiles, one
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from each of the Willunga and Clare vineyards. Pairs of
expression profiles for four example genes can be seen in
Fig. 1. For each pair of profiles, we aim to obtain a single
profile that captures the relevant gene expression informa-
tion over the development cycle of the grape berries from
both vineyards. The common representations can then be
used for an overall analysis of the gene expression.
The rate of development of the grape berries was dif-

ferent at the Willunga and Clare vineyards. Differences
between the vineyards such as soil conditions, viticul-
tural management and climate are likely causes of the
different rates of berry development [2]. During the exper-
iment, the length of the development cycle was 19 weeks
at Willunga and 17 weeks at Clare. Since the exper-
iment called for weekly measurements, the expression
profiles from Willunga have length 19 while the expres-
sion profiles from Clare have length 17 (Fig. 1). Hence
we require an alignment between the different length
profiles.
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Fig. 1 Expression profiles for four example genes from the Willunga
(blue) and Clare (orange) vineyards

The basic underlying pattern of berry growth and
ripening was the same at both the Willunga and Clare
vineyards, which suggests a common underlying frame-
work of gene expression control. Hence in spite of the
different conditions, if a pair of expression profiles exhibit
the same basic shape at both vineyards and are suitable
for alignment, this is strong evidence that the correspond-
ing gene is likely to be developmentally controlled. On
the other hand, pairs of profiles with different shapes are
not suitable for alignment and the corresponding gene is
unlikely to be driven by the development process but by
other factors.
A recent survey of grapevine genes [3] indicated that

the annotation of 44% of genes is ‘poorly informative’
(including 29% having no Blast hit and 9% with function
unknown). Actual functional data is available for only a
small subset of those genes with an assigned function and
most often function is defined on the basis of sequence
similarity with genes from other species. Additionally, the
assignment of a biochemical function does not define
whether a gene has a mainly developmental role or is
merely responding to external cues.
Hence considering whether a pair of profiles is well

aligned will give important additional evidence that can be
used to identify genes as either likely to be developmen-
tally driven or not.
The time sparsity and variability of the grapevine data is

typical of longer term time course gene expression exper-
iments. Interpolation of the expression values between
observed time points is not readily justified as signifi-
cant non-linear variations in expression could conceiv-
ably occur between adjacent time points. Rather than the
expression levels week by week, the biological relevance is

in the general expression behaviour over the entire devel-
opment cycle, which is where both the available data and
current biological understanding lie.
Non-model based alignment methods such as discrete

time warping (DTW) have been used for alignment of
time course gene expression data [1]. However, for the
grapevine data, DTW invariably produces pathological
results. For example, >3 time points mapped to a single
time point from Willunga to Clare immediately followed
by the same from Clare to Willunga has no reasonable
interpretation when each time step is a week and espe-
cially when the alignment differs for different pairs of pro-
files. Simply considering the lag between profiles would
also not be a suitable model for the timing differences
between vineyards and would violate the experimental
set-up.
In order to work with the typical sparsity of the

grapevine data, as well as to provide a principled way to
obtain a common alignment across both vineyards, we
turn to hidden Markov model (HMM) based alignment
methods.

Left-right HMMs
Lin et al. [4] aligned gene expression profiles using an
HMMby constraining theMarkov chain component to be
a ‘left-right’ model. In a left-right HMM a state can never
be revisited once it has been left and transitions away from
a state may only occur to a single other state. Hence an
alignment is achieved between the expression profiles by
considering the different times the state transitions occur
in the corresponding Viterbi paths.
A left-right HMM can be altered to allow for less restric-

tive transitions between states while keeping the same
alignment idea, for example allowing the ‘leapfrogging’ of
states. Schliep et al. [5] considered such an alignment,
however their main focus was a model-based ‘soft’ clus-
tering method for expression profiles using mixtures of
HMMs.
We aim to capture the basic pattern of each pair of pro-

files, which may be different from any other pair (Fig. 1).
Hence approaches that constrain the Markov state transi-
tions to the extent that all realised state sequences must
share the same basic shape are not suitable in this case.

Pair HMMs
Pair HMMs are the standard model for the alignment
of genomic sequence data [6]. However, Pair HMMs
require discrete emission random variables to model the
genomic sequences of interest. In addition, the condi-
tional information of a previous emission observation is
not the actual observed value but whether the observa-
tion was a pair or single nucleotide symbol. Since we aim
to interpret the underlying Markov structure as capturing
distinct quantitative levels of the expression profiles, we
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require more than the binary pair/single nucleotide sym-
bol dynamics of the Markov chain component of a Pair
HMM.

Extensions of Pair HMMs
Two ways in which Pair HMMs could be extended to
model time course gene expression data are to:

• Retain the binary dynamics of the Markov chain
component of the model and consider continuous
emission random variables; or

• Incorporate additional information into the model so
that the Markov structure encodes more than just
binary dynamics.

Note that these possible extensions do not explicitly take
alignment into account, although the motivation in con-
sidering such extensions is that the established alignment
method of Pair HMMs could be carried over.

BinaryMarkov dynamics with continuous emissions
Yuan and Kendziorski [7], and Yoneya and Mamitsuka [8]
both proposed extensions of a Pair HMM that retain the
binary dynamics of the Markov chain component of the
model. Both modelled time course gene expression data
and hence considered continuous emission random vari-
ables. Yuan and Kendziorski [7] did not aim to obtain
an alignment between expression profiles, and it is not
clear how their model could be adapted for this purpose.
Although the model of Yoneya and Mamitsuka [8] could
be used as the basis of an alignment, their model requires
strict assumptions about the shape of the expression pro-
files, assuming average expression levels except for at least
one spike feature. Most genes in the grapevine data do not
display expression profiles with such patterns (Fig. 1) so
this approach is not suitable.

Additional information incorporated into themodel
Listgarten et al. [9] proposed a ‘Continuous Profile Model’
(CPM), which they consider to be a ‘continuous analogue’
to a Profile HMM. Also widely used for the alignment of
genomic sequence data, Profile HMMs are closely related
to Pair HMMs [6]. Under a CPM, each time series is
modelled as an emission sequence and the corresponding
realisation of the state sequence is a mapping to an addi-
tional input sequence or ‘latent trace’. The latent trace has
a higher number of time points than the observed time
series (approximately double), which allows the mapping
to ‘slow down’ and ‘speed up’ relative to ‘latent time’ and
hence constitute an alignment.
The CPM was developed for mass spectrometry and

speech waveform time series that were sampled frequently
enough in time that interpolating smoothly between time
points was a reasonable approach. The assumption of

smoothness in time necessary for the ‘continuous’ CPM
alignment is not reasonable for the grapevine data. There-
fore, it would not be appropriate to apply the CPM
alignment method to the grapevine data.

Our approach
We will model the expression profiles as multiple emis-
sion sequences of an HMM so that each pair corresponds
to a common underlying state sequence. The emission
sequences are aligned under the model in that aligned
emission random variables are conditioned by the same
state random variable. We will assume that the underlying
Markov state sequence represents a common expression
profile at both vineyards and that the Markov states rep-
resent distinct quantitative levels of gene expression.
Like the CPM, our alignment HMM is conceptually

similar to a Pair HMM. However, in contrast to Pair
HMMs, the alignment in our model is not determined by
the underlying Markov chain but through ‘gap position’
parameters, which we incorporate into the model as addi-
tional information. Rather than the latent trace and con-
tinuous time warping of Listgarten et al. [9], this coarse
approach to alignment is necessitated by the sparsity of
our data.
We use our alignment HMM to achieve an alignment of

the grapevine data and quantify how well each pair of pro-
files is aligned. We show that our method of training the
model is computationally efficient and also robust against
subsets of profiles that do not align. We then consider
diagnostics under the model and demonstrate that genes
can be classified as either likely to be developmentally
driven or not by how well they align.

Methods
Grapevine data
In addition to being from spatially distinct vineyards,
the time course microarray experiment was run in the
2004 grape growing season at Willunga and in the
2005 grape growing season at Clare. Gene expression
levels were measured weekly at both vineyards using
Affymetrix grapevine GeneChips (Santa Clara, CA, USA,
Part #520054). We discard the expression profiles not dif-
ferentially expressed in time at the 0.001% significance
level using LIMMA [10], as well as those without at least
a 2-fold change in expression level. We also discard all
profiles corresponding to the Vitis vinifera Array (non
vinifera / non 3 prime) Mask. We average the replicate
expression observations at each time point and then lin-
early scale each profile individually so that all observed
expression levels lie in the interval [0,1] (Additional file 1:
Figure S1). We refer to the resultant 8644 pairs of profiles
as the ‘grapevine data’.
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Alignment model
We present our alignment methodology based on an
HMM for the scaled time course gene expression
grapevine data. The conditional independence graph of
the alignment model is given in Fig. 2. Each pair of expres-
sion profiles is modelled as the two sequences of emission
random variablesW1:19 andC1:17 (indexed by time) for the
Willunga and Clare vineyards respectively. The alignment
is obtained based on the assumption that both emission
sequences arise from a single state sequence S1:19. The
time points for the Willunga sequence W1:19 correspond
directly to those of the common state sequence S1:19, while
the time points for the Clare sequence C1:17 are obtained
via ‘gap positions’ 1 < g1 < g2 ≤ 19. In our approach the
gap positions are treated as parameters of the model to be
estimated from the data.
For a single pair of expression profiles, there is usually

insufficient information to identify optimal gap positions.
However, since the grapevine data have been scaled so that
all observed expression levels lie in the interval [0,1], the
Markov state space and conditional emission distributions
can be considered common for all genes. This allows us to
estimate a single set of gap positions by pooling the data
from all pairs of profiles.
The state random variables S1:19 that form the Markov

chain component of the alignment HMM are discrete
valued and take values in a common state space �S =
{1, 2, . . . ,N}. For convenience we use p(x) to symbolise
both a probability density function and a probability mass
function, in addition to using the event ‘X = x’ as an
argument.
Let a = (a1, a2, . . . , aN )T be the N × 1 vector of ini-

tial state probabilities and A = {aij} be the N × N
state transition matrix of the Markov chain state sequence
where

ai = p(S1 = i)

for i = 1, 2, . . . ,N and

aij = p(St = j|St−1 = i)

for i, j = 1, 2, . . . ,N .

Let B = {
μ1, σ 2

1 ,μ2, σ 2
2 , . . . ,μN , σ 2

N
}
be the set of all

parameters of the Gaussian emission distributions so that

p
(
x|St = j

) = b
(
x|μj, σ 2

j

)
where

b
(
x|μj, σ 2

j

)
= 1√

2πσ 2
j

exp
{

− 1
2σ 2

j
(x − μj)

2
}

for j = 1, 2, . . . ,N .
In the general case for the kth gene, we consider an

underlying state sequence,

S(k)
1 , S(k)

2 , . . . , S(k)
T

and model the L expression profiles for each gene as the
emission sequences

X(k)
l,1 ,X

(k)
l,2 , . . . ,X

(k)
l,Tl

where Tl ≤ T for l = 1, 2, . . . , L. The alignment of the
lth expression sequence to the underlying common state
sequence is defined by values

1 ≤ τl,1 < τl,2 < · · · < τl,Tl ≤ T

that indicate the state positions corresponding to each
observed expression value.
Taking the set of HMM parameters to be

λ ≡ {a,A,B}
and the set of alignments to be

τ = {τl,t | l = 1, 2, . . . , L and t = 1, 2, . . . ,Tl}
the general alignment HMM log-likelihood can be written
as

�(λ, τ |x) =
K∑

k=1
log

⎡
⎣ ∑

(s1,s2,...,sT )

p(s1, s2, . . . , sT )

×
L∏

l=1

Tl∏
t=1

p
(
x(k)
l,t

∣∣Sτl,t = sτl,t
)⎤
⎦

where

p(s1, s2, . . . , sT ) = as1
T∏
t=2

ast−1st

Fig. 2 Conditional independence graph of the alignment HMM for the grapevine data
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and

p
(
x(k)
l,t

∣∣Sτl,t = sτl,t
)

= b
(
x(k)
l,t

∣∣μsτl,t , σ
2
sτl,t

)
.

The alignment is determined by maximising � with
respect to the HMM parameters λ and the alignment
points τ . The model underlying this likelihood allows
each gene its own unique state sequence but imposes a
common alignment over all genes.
For the grapevine data, K = 8644, L = 2 and T = 19.

Taking w and c to represent the expression data from
Willunga and Clare respectively (x(k)

1,t = w(k)
t and x(k)

2,t =
c(k)t for k = 1, 2, . . . , 8644 and t = 1, 2, . . . ,Tl), we have
T1 = 19, T2 = 17 and

τ1,t = t for t = 1, 2, . . . , 19.

The alignment is then determined by choosing

1 = τ2,1 < τ2,2 < · · · < τ2,17 ≤ 19

which can be specified by equivalently choosing two gap
positions g1 < g2 in the sequence 2, 3 . . . , 19. That is,

τ2,t =
⎧⎨
⎩

t for t = 1, 2, . . . , g1 − 1
t + 1 for t = g1, g1 + 1, . . . , g2 − 2
t + 2 for t = g2 − 1, g2, . . . , 17,

as represented by the conditional independence graph in
Fig. 2. Note that due to the experimental set-up, we con-
strain the first expression values fromWillunga and Clare
to align (τ1,1 = τ2,1 = 1). The log-likelihood of the
alignment model for the grapevine data is then

�(λ, g1, g2|w, c) =
8644∑
k=1

log

⎡
⎣ ∑

(s1,s2,...,sT )

p (s1, s2, . . . , sT )

×
19∏
t=1

p
(
w(k)
t

∣∣Sτ1,t = sτ1,t
)

×
17∏
t=1

p
(
c(k)t

∣∣Sτ2,t = sτ2,t
) ]

.

(1)

There are well established methods for efficient cal-
culation of the likelihood, finding the Viterbi paths and
estimating the model parameters for a standard HMM
[11]. These methods are readily adapted to our alignment
model defined by (1) if the gaps g1 and g2 are given. Note
that our alignment HMM is a special case of a hidden
semi-Markov model [12].

Alignment model fitting method
We fit the alignment HMM to the grapevine data by
maximising the log-likelihood �(λ, g1, g2) with respect to
the HMM parameters λ and the gap positions g1 and
g2. A profile likelihood approach could be implemented
by applying the Baum-Welch algorithm [11] to obtain
an estimate λ̂∗(g1, g2) for the HMM parameters for each

pair (g1, g2) and then maximising the profile likelihood
�(λ̂∗(g1, g2), g1, g2) with respect to g1 and g2.
We propose a two-step approach with a much lower

computational requirement and greater robustness to
non-aligned expression profiles. In the first step, an esti-
mate λ̂ for the HMM parameter is obtained, independent
of the pairing and of the gap positions. In the second
step, the log-likelihood �(λ̂, g1, g2) is evaluated for each
pair (g1, g2) and the maximum likelihood estimates are
selected from the enumeration. The estimate λ̂ is obtained
from modelling each individual expression profile at both
Willunga and Clare by a standard HMM [11] in which the
same parameters λ apply to both vineyards. Such a model
is implied by (1) when dropping the constraint that each
pair of emission sequences correspond to a common state
sequence.
The computational advantage of this approach is that

it requires only a single maximisation of the HMM like-
lihood rather than one for each pair of gap positions.
More importantly, it is also robust against the influence of
expression profiles not suitable for alignment. The notion
of a common alignment is plausible for developmental
genes but not for those driven by environmental factors
such as temperature. Since the non-developmental genes
are not known in advance, they cannot be removed and
their presencemay produce significant bias in the estimate
λ̂∗(ĝ1, ĝ2). A minor issue is that the standard HMMmodel
from which λ̂ is obtained is inconsistent with the align-
ment HMM (1) because of the gaps in the Clare sequence.
However, it is reasonable to assume that any bias arising
from this inconsistency is minor compared to that arising
from non-aligned expression profiles in the full likelihood
estimate λ̂∗(ĝ1, ĝ2).
To summarise, we produce an alignment for the

grapevine data in the following steps:

1. The gene expression profiles are filtered so that only
those with significant differential expression and at
least 2-fold change in expression over the time
course are retained.

2. Each expression profile is linearly rescaled to lie in
the interval [0,1].

3. A standard HMM is fitted to the data to obtain the
estimated HMM parameters λ̂.

4. The gap positions are estimated by maximising the
alignment HMM log-likelihood �(λ̂, g1, g2) with
respect to g1 and g2.

5. A single representation of the aligned expression
profiles can be obtained either by averaging the
aligned expression profiles or by finding the Viterbi
path.

We implemented our methodology in MATLAB by
adapting the code provided in the HMM Toolbox [13].
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Results and discussion
A standard HMM with N = 5 states was fitted to the
grapevine data. The variances of the emission distribu-
tions were constrained so that σ 2

j ≥ 0.001 for j =
1, 2, . . . , 5. This constraint was applied to avoid difficul-
ties arising from the fact that the distribution of scaled
expression values has point masses at the endpoints 0 and
1 (Additional file 1: Figure S1). The gap positions that
maximise the log-likelihood �(λ̂, g1, g2) were found to be
ĝ1 = 2 and ĝ2 = 11 (Fig. 3). The single peak in Fig. 3 indi-
cates that the gap positions are well determined for the
grapevine data.
Figure 4 shows the aligned expression profile for gene

1621649_at, together with the Viterbi path and aver-
age profile representations. For this gene, the alignment
HMM has produced a suitable alignment. The method
performs similarly for the other genes shown in Fig. 1.
On the other hand, Fig. 5 shows poorly aligned expres-
sion profiles for genes 1622520_at and 1616700_at. For
gene 1622520_at, the expression profiles at Willunga and
Clare have very different shapes and cannot be aligned.
The expression profiles for gene 1616700_at have similar
shapes at Willunga and Clare but are not well aligned by
the estimated gaps ĝ1 = 2 and ĝ2 = 11.
For the purpose of comparison, the parameters λ were

also estimated from the alignment HMM (1) with fixed
gaps ĝ1 = 2 and ĝ2 = 11. The estimated emission distribu-
tions for λ̂ and λ̂∗(ĝ1, ĝ2) are shown in Fig. 6. In both cases
the estimated means are spaced evenly across the range
[ 0, 1]. However, for λ̂∗(ĝ1, ĝ2), the estimated variances are
noticeably larger. An explanation for this difference is
the presence of genes with expression profiles that are
not suitable for alignment. In particular, the presence of
misaligned profiles will lead to very different expression
values being aligned at the same time point and equally

Fig. 3 Heat-map of the alignment HMM log-likelihood for the
grapevine data (1) evaluated using λ̂ and each possible combination
of the gap positions 1 < g1 < g2 ≤ 19

Fig. 4 Expression profiles from the Willunga (blue) and Clare (orange)
vineyards, aligned expression profiles, Viterbi path and average profile
representation for gene 1621649_at. The Viterbi path is plotted at the
estimated means of the emission distributions

contributing to the parameter estimates for the same state,
hence inflating the estimated variance.
We consider the robustness of the estimates of the

gap positions. In a simulation experiment, even with up
to 80% of the data not suitable for alignment, the true
gaps can clearly still be found through the log-likelihood
(Additional file 2: Figure S2). For subsets of simulated
profiles with different true gap positions, the maximum
peak in the log-likelihood heat-map becomes less concen-
trated and spreads out (Additional file 2: Figure S2). For
the grapevine data, the log-likelihood is sharply peaked
(Fig. 3) and the estimated gaps additionally conform with
other physiological features measured on the berries dur-
ing the experiment. For example, both total soluble solids
(sugar content) and berry weight were also measured
weekly at Willunga and Clare and the same gap positions
appear to work well for this additional data (Additional
file 3: Figure S3).

Fig. 5 Poorly aligned expression profiles for two example genes from
the Willunga (blue) and Clare (orange) vineyards
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Fig. 6 Estimated emission densities corresponding to λ̂ (left) and
λ̂∗(ĝ1, ĝ2) (right)

We also consider fitting the alignment model with dif-
ferent choices of the number of states N . The estimated
emission densities and heat-maps for N = 3 and N = 7
are given in Additional file 4: Figure S4. We can see that
the same maximum likelihood gaps are found in both
cases. It appears that N = 3 states is not enough over the
range of the data while N = 7 is too many as two of the
emission densities coincide.
It is the difference between the estimates λ̂ and λ̂∗(ĝ1, ĝ2)

seen in Fig. 6 that suggests the presence of poorly aligned
profiles in the grapevine data. To identify the well and
poorly aligned expression profiles we consider the Ham-
ming distance between the Viterbi path for each pair
of aligned profiles and the Viterbi paths obtained for
the individual profiles. Let Ŝ(k)

1:19 be the alignment HMM
Viterbi path for the kth pair of profiles, and let Ŝw(k)

1:19
and Ŝc(k)1:17 be the standard HMM Viterbi paths for the
kth Willunga and Clare profiles respectively. The Ham-
ming distance between the Viterbi paths for the kth pair of
expression profiles is

H(k) =
19∑
t=1

I
{
Ŝ(k)
τ1,t �= Ŝw(k)

t

}
+

17∑
t=1

I
{
Ŝ(k)
τ2,t �= Ŝc(k)t

}
.

The Hamming distance H(k) has a negative linear
relationship to log-likelihood (Additional file 5: Figure
S5). Table 1 shows the Hamming distances and the log-
likelihoods for the example expression profiles shown in
Figs. 1 and 5. Well aligned expression profiles typically

Table 1 Log-likelihood and Hamming distance for the example
pairs of profiles given in Figs. 1 and 5

Affy ID Figure Log-likelihood H(k)

1621649_at Fig. 1 17.4670 7

1610245_at Fig. 1 41.7735 6

1616418_at Fig. 1 25.6842 7

1609985_at Fig. 1 18.3318 10

1622520_at Fig. 5 -43.0573 18

1616700_at Fig. 5 24.1855 10

have high log-likelihood and low Hamming distance while
conversely, the poorly aligned expression profiles typically
have low log-likelihood and high Hamming distance. Not
all profiles are obviously well or poorly aligned. Note that
the aligned profiles for gene 1622520_at have relatively
high log-likelihood because they are well aligned for all the
time points when the gene exhibits low expression (Fig. 5).
While the Hamming distance is purely a measure of the
quality of alignment as determined by the Viterbi paths,
the log-likelihood incorporates other aspects of model fit
such as the distance from the expression values to the
state means. For this reason we recommend the Hamming
distance to identify poorly aligned expression profiles.
As previously outlined, how well a pair of expression

profiles align across vineyards is evidence for whether the
corresponding gene is likely to be developmentally driven.
To illustrate the potential for identification of biological
function from alignment, a set of 198 genes were consid-
ered as test data (Additional file 6). Although this test data
were also used to train the alignment model, we never
made use of the labels in the model fitting. Our classifier
arises out of the diagnostics of the alignment HMM as we
assume there is a correspondence between ‘well aligned’
and ‘developmental’.
The left side of Fig. 7 shows the distribution of Ham-

ming distances for all pairs of expression profiles in the
grapevine data. The right side of Fig. 7 shows the receiver
operating characteristic (ROC) curve for classifying genes
as ‘developmental’ or ‘non-developmental’ (temperature
responsive) based on whether the Hamming distance is
below or above a given threshold. The area under the
curve is 0.91, indicating a good level of discrimination for
this data. When the threshold is taken as H(k) = 10,
the true positive rate is 85.3% and the false positive rate
is 21.9%. This suggests that applying the same threshold
is a potentially useful filter for the classification of devel-
opmentally controlled genes amongst a set of genes of
unknown function.
Grimplet et al. [3] surveyed the current gene function

annotation for grapevines. Assigning a developmental role

Fig. 7 Histogram of H(k) for the grapevine data (left) and ROC curve
for classifying ‘developmental’ or ‘non-developmental’ (temperature
responsive) genes based on whether they are above or below a given
H(k) threshold (right)
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to genes based on the putative function of the proteins
they encode, as determined by sequence similarity to
other genes of known function and without reference to
their expression patterns, is an uncertain practice. For
example, so-called ‘heat shock’ proteins with similar pro-
tein sequences may be either developmentally controlled
or may be induced by changes in temperature, or both.
Additionally, differences in the promoter sequences of
genes encoding similar proteins may determine whether a
gene is involved in a developmentally controlled process
or not.
By comparing the expression of genes under different

growth conditions, as has been done in this paper, we
are able to gain evidence regarding the reproducibility of
gene expression patterns indicative of a role in develop-
ment as opposed to a response to external signals. This
information can be used as additional evidence in the fur-
ther investigation of gene function. For example, using
the annotation of Grimplet et al. [3], of the 8644 genes
represented in the grapevine data, 1968 have no descrip-
tion of possible function (‘no function’, ‘no hit’, ‘unknown’
or ‘unknown function’) and of these we find 1279 probe
sets with H(k) ≤ 10. That is, 1279 genes with no current
annotated function are well aligned between theWillunga
and Clare vineyards and therefore we now have additional
information that these genes are likely to be controlled in
a developmental manner Additional file 7.
The proposed alignment method could be extended

and refined in a number of ways. In particular, poten-
tial improvementsmay be obtained throughmore detailed
modelling of the emission distributions in the HMM. In
the present paper, we have applied Gaussian emission dis-
tributions to the expression profiles averaged over repli-
cates within vineyards. This approach could be refined
by considering the replicates as multivariate observations
instead of averaging and also by considering alterna-
tives to the Gaussian emission assumption. Autoregressive
emissions as well as higher-order Markov components
of HMMs have been investigated and found to improve
performance in the identification of over-expressed genes
[14]. The incorporation of this structure into our frame-
work may more realistically model the expression profiles
with potential improvements in performance. The imple-
mentation and evaluation of these improvements are the
subject of future research.

Conclusion
We have presented a novel alignment method based on an
HMM and demonstrated the alignment on the grapevine
data. This is a model suitable for sparse time course
data where interpolation is not appropriate. The esti-
mated model parameters have simple interpretations and
the estimated gap positions are well determined for the
grapevine data. We have demonstrated that the estimates

of the HMM parameters as well as the gap positions are
robust against subsets of profiles that are not suitable for
alignment. For pairs of expression profiles that are well
aligned, the Viterbi paths or average profile representa-
tions can be used as the input to downstream analysis of
the data. This allows for an integrated analysis of multiple
site time course gene expression data such as theWillunga
and Clare grapevine data.
We have demonstrated the use of the Hamming dis-

tance and the log-likelihood as a measure of quality for
the alignment of a pair of expression profiles. Pairs of pro-
files that are well aligned will have high log-likelihood and
a small Hamming distance while the poorly aligned pairs
will have low log-likelihood and a large Hamming dis-
tance. We have also shown, for a set of genes with known
function, that classification of genes according to the
Hamming distance has reasonable predictive power for
the classification of developmentally driven genes. This
both validates that the alignment we obtain is meaningful
and also suggests the potential for helping to identify the
role of genes with unknown function.

Availability of supporting data
TheMATLAB code and grapevine data to obtain all of the
output described in this paper are provided as Additional
files. The raw gene expression data is stored at NCBI in
the GEO database as GSE7677 (Willunga) and GSE8445
(Clare) Additional file 8.

Additional files

Additional file 1: Figure S1. Histogram of the scaled expression levels for
the grapevine data overlaid with a mixture density of the estimated
emission densities where the mixture coefficients are the stationary Markov
transitions of the estimated alignment HMM parameters λ̂.

Additional file 2: Figure S2. Heat-maps corresponding to a number of
simulation experiments. Top row: 1000 pairs of profiles were simulated
using the estimated HMM parameters λ̂ and with true gap positions
(g1 = 5, g2 = 13). Pairs of profiles not suitable for alignment were
obtained by permuting the pairing information of a subset of profiles.
From left to right: Heat-maps calculated using the simulated data and
parameters λ̂ with an increasingly large subset of profiles not suitable for
alignment. Middle row: Same simulation set-up with true gaps of either (5,
13) or (8, 16). From left to right: Heat-maps calculated using the simulated
data and parameters λ̂ with an increasingly mixed proportion of pairs of
profiles with different true gaps. Bottom row: Same simulation set-up with
true gaps of either (4, 9) or (12, 17).

Additional file 3: Figure S3. Total soluble solids (left) and average berry
weight (right) measured over the development cycle at the Willunga (blue)
and Clare (orange) vineyards with the same alignment as found for the
grapevine expression data. Note that these measurements did not
commence at the beginning of the experiment.

Additional file 4: Figure S4. Estimated emission densities and heat-maps
when fitting the alignment model with N = 3 (top) and N = 7 (bottom)
states to the grapevine data.

Additional file 5: Figure S5. Log-likelihood under the alignment HMM by
Hamming distance for each pair of expression profiles in the grapevine
data.

http://www.biomedcentral.com/content/supplementary/s12859-015-0634-9-s1.pdf
http://www.biomedcentral.com/content/supplementary/s12859-015-0634-9-s1.pdf
http://www.biomedcentral.com/content/supplementary/s12859-015-0634-9-s2.pdf
http://www.biomedcentral.com/content/supplementary/s12859-015-0634-9-s2.pdf
http://www.biomedcentral.com/content/supplementary/s12859-015-0634-9-s3.pdf
http://www.biomedcentral.com/content/supplementary/s12859-015-0634-9-s3.pdf
http://www.biomedcentral.com/content/supplementary/s12859-015-0634-9-s4.pdf
http://www.biomedcentral.com/content/supplementary/s12859-015-0634-9-s4.pdf
http://www.biomedcentral.com/content/supplementary/s12859-015-0634-9-s5.pdf
http://www.biomedcentral.com/content/supplementary/s12859-015-0634-9-s5.pdf
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Additional file 6: The set of 198 labelled genes (test data). From a
separate experiment, 96 of these genes had been identified as
‘temperature responsive’ genes through the response of gene expression
to changes in temperature. The remaining 102 genes were selected from
the Grapevine Affymetrix array probe list on the basis of annotated function
where selected genes were thought to be involved in a developmental
process in grapevine (and often in other plant species) and, where possible,
on the basis of gene expression patterns throughout development.

Additional file 7: Final grapevine output. Log-likelihood under the
alignment HMM, Hamming distance and current annotation [3] for all 8644
genes in the grapevine data.

Additional file 8: MATLAB code and grapevine data. The MATLAB code
and grapevine data to obtain all of the output described in this paper.
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