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Abstract

Very steep solitary waves on the surface of a flow in a channel have been widely

studied, in part due to their connection with the onset of wave breaking. An

important extension to the study of solitary waves in a channel is the effect

of localised forcing on their evolution. Forced very steep waves are the focus

of this study, as they have received only limited attention in the past, and are

of importance in the latter stages of wave breaking. Two types of forcing are

considered, a localised pressure disturbance applied to the free surface, or a

localised change to the otherwise flat topography of the channel, such as a bump

or a trench. Gravity is the only body force considered, as surface tension is

neglected. Boundary-integral methods are used to determine solutions to the free

surface, whose evolution is described by a fully nonlinear potential flow model.

It is shown that for both types of forcing, like for unforced waves, the waves

approach a Stokes limiting configuration as the wave-height is increased, and

the solutions also exhibit non-uniqueness with respect to quantities such as the

wave energy. The stability of the forced solutions is investigated here using a

weakly nonlinear theory, valid in the limit when the wave-height and the steepness

are small. The time-evolution of a perturbed steady solution is computed, and

linearised stability analysis is performed numerically. It is shown that the unstable

solutions may emit a solitary wave ahead of the forcing, and attain the form of the

stable solution near the forcing location.
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4.3.7 Forced solitary wave of type II with the area of the topography
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Chapter 1

Introduction

Steep waves are a widespread phenomenon in fluid flows, one only needs to

look to the ocean to find steep waves generated by storms, tsunami caused by

earthquakes, or the waves approaching a shoreline before they spectacularly

and chaotically break. The study of steep waves is, at least in part, motivated

by this association to wave-breaking. The focus in this thesis is to further our

understanding of this important type of wave.

Very steep (periodic and solitary) gravity waves, without any other forcing

present, have been studied since the late 19th century. The limiting case of the

highest wave was conjectured to have a Stokes corner flow [58, 59], and this

structure was confirmed shortly after by calculations in the early 20th century of

the highest wave by Havelock [29]. Eventually, the existence of these waves was

proven by Toland [61].

Although the highest waves with these configurations were proven to exist,

accurate results for the properties of the wave required considerable computational

and analytical effort. Lenau [37] used a combination of asymptotic results and

numerical methods to determine very precisely the height and speed of the wave.

Further properties of these waves, such as their momentum and energy, were

1
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then calculated by Longuet-Higgins & Fenton [39] and Williams [69] using a

combination of asymptotic expansions and numerical techniques.

Highly nonlinear phenomena slowly became apparent in the study of the

‘almost-highest’ waves, those just shorter than the highest wave. Longuet-Higgins

& Fenton [39] showed, via Padé approximation, that the speed and energy of the

wave pass a local maxima as the wave-height increases. Independent numerical

calculations by Byatt-Smith & Longuet-Higgins [11] and others [30, 51] confirmed

this behaviour for solitary waves, and for periodic waves by Vanden-Broeck [64].

The local maxima of the total energy with respect to wave-height was of particular

interest once it was observed to correspond to the onset of an instability; Tanaka

[60] performed a stability analysis of the almost-highest solutions, and showed that

this maxima corresponds with the onset of a superharmonic (short wavelength)

instability. Longuet-Higgins & Cleaver [38] and Longuet-Higgins & Tanaka [41]

demonstrated that this instability is caused by the flow near the crest of the wave.

Furthermore, rather than passing through just one local maxima, the speed

and energy were conjectured to pass through a potentially infinite number of local

maxima and minima as the wave height increases; these local turning points have

been estimated asymptotically by Longuet-Higgins & Fox [40], numerically by

Maklakov [43], while the existence of at least one turning point has been proven

by McLeod [46].

The effect of an additional localised forcing on gravity waves has been studied

extensively. In this thesis we consider two additional types of forcing, that of a

pressure disturbance on the free surface, and that of a small localised bump or

trench in the topography of the flow. The waves subjected to these types of forcing

will be referred to as ‘forced’, while those not will be called ‘unforced’.

The theory of such forced waves in the small-amplitude limit is well established,

dating back more than a century, see Lamb [35]. Akylas [2] and Grimshaw & Smyth
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[27] derived models in the long-wavelength limit which exhibited an unusual

phenomenon; the generation of upstream solitary waves in the transcritical regime.

This feature was established numerically and experimentally by Wu [70] and Lee

et al. [36]. Steady waves in the non-transcritical regime were also identified using

this model, in narrow and wide disturbance limits, by Akylas and Grimshaw &

Smyth; and other solutions for the narrow obstacle limit were later reported by

Malomed [44] and Miles [47].

However, there are only limited results for such forced waves in the almost-

highest regime. Dias & Vanden-Broeck [15] and Elcrat & Miller [21] considered

the case of a triangular disturbance in the topography, and calculated highest

and almost-highest waves, although the details in the latter regime were not

determined.

In this thesis we show that forced steady solutions approach the Stokes limiting

configurations for both types of disturbance. The limiting configurations for forced

waves have an included angle of 120◦ at the highest crests of the flow. We find

that like the unforced regime, the almost-highest forced solutions exhibit non-

uniqueness of solutions with respect to properties such as speed or energy of the

flow as the wave-height is increased.

However, we find there are some differences between the waves generated by

the two types of forcing and the unforced waves. The pressure disturbance admits

almost-highest solutions with a cusp at the crest, whereas these are not observed

for topographical forcing nor in the unforced case. We find that for the almost-

highest waves with a cusp, the orientation of the peaks of the limiting configuration

are affected by the nearby pressure disturbance, which is not observed in the crests

of an unforced solution. For the topographical disturbance, we find that a further

increase in the depth of the trench does not significantly alter the free surface of

the flow when the trench is considerably deep.
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In this study the flow is taken to be the two-dimensional and irrotational flow

of an incompressible and inviscid fluid. Gravity is the only body force accounted

for, as surface tension is neglected. Throughout this study we restrict our attention

to symmetric waves and to flow that is supercritical, defined as when the depth-

based Froude number F, defined in (2.1.1), is greater than unity. The potential flow

model, derived in Appendix A, is referred to as the fully nonlinear model.

In Chapter 2 we present the derivation of a boundary-integral method for

solving the fully nonlinear model, and we present an outline of the numerical

continuation method from Allgower & Georg [3]. Numerical continuation is used

to find families of solutions to the algebraic systems presented in Chapters 3

and 4 which correspond to flow past a pressure disturbance and a topographical

disturbance respectively. The boundary integrals are evaluated by discretising

the flow domain, where an irregular grid inspired by Hunter & Vanden-Broeck

[30] is used to improve the accuracy for the almost-highest solutions. The error

in evaluating these integrals is shown to be bounded in Appendix B, extending

the results of Noble & Beighton [48] to account for a change of variables in the

integration.

We also present a weakly nonlinear model governed by a forced Korteweg

de-Vries (fKdV) equation [33]. Our derivation follows that of Shen [54], presented

in Appendix C. The weakly nonlinear model is only valid when the flow is near

critical and the forcing is small, however the model proves useful in classifying

solutions, identifying the free parameters in the system and for studying the

unsteady behaviour of the forced waves. The weakly nonlinear theory identifies

the forced wave solutions as either a perturbation to a uniform stream or as a

perturbation to one or two solitary waves. These classifications are also applied to

our fully nonlinear results.

We enumerate the different types of waves as types I to V. A sketch of these
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II

I

III

IV

V

Figure 1.1.1: Sketch of the five solution types identified by the weakly nonlinear

theory.

different types of waves is provided in figure 1.1.1, where a bump or trench in

the topography is used to illustrate the type of disturbance appropriate to the

enumerated wave type. Type-I and type-V waves are perturbations to uniform

streams, being waves of elevation and depression respectively. Waves of types II

or III are shown to be perturbations to a single solitary wave, where the type-II

wave has a single crest and the type-III wave has a cusp-like appearance with two

peaks. Waves of type IV are perturbations to two solitary waves, with two distinct

crests.

In Chapter 3 we determine the solution space for the flow past a pressure

disturbance, following from the results in Wade et al. [68]. It is confirmed that

for a fixed forcing, non-uniqueness with respect to energy or speed of the wave

is present for the almost-highest waves. These are all type-II–IV waves, and

all approach a Stokes limiting configuration of a corner flow with an included

angle of 120◦ and a stagnation point at the crest. An additional effect due to the

presence of the nearby forcing is observed in the numerical results, and is explored

by a modified Stokes’ analysis, showing that the crest is rotated slightly from

the horizontal for the type-III waves. The stability of all five types of wave is

considered in Chapter 5.

In Chapter 4 the solution space for the flow past a topographical disturbance
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is considered. The fully nonlinear solution space is significantly different to that

observed for a pressure disturbance when considering the amplitude of forcing-

wave height plane. In the case where the forcing represents a trench, when the

trench gets very deep, an increase in the amplitude of the disturbance no longer

produces a significant difference in the shape of the free surface. For this reason,

the computational method is no longer able to find converged solutions for very

deep trenches.

In the domain where converged solutions could be found for flow past a topo-

graphical disturbance, the almost-highest waves of type II and IV were observed,

and both demonstrate the non-uniqueness that the unforced waves exhibit as they

approach a Stokes limiting configuration. The type-III waves do not appear to

approach a limiting configuration for this type of disturbance, unlike in the case of

a pressure disturbance. The stability analysis presented in Chapter 5 also applies

to the topographical disturbance, at least where the weakly nonlinear model is a

valid approximation.

The time-dependent fKdV equation is used in Chapter 5 to investigate the

stability of our newly identified steady solutions. The stability of the type-III and

type-IV solutions have not been previously investigated. Two approaches are used

within this chapter, the first being to perturb the steady solution and compute the

evolution of the free surface using a spectral approximation to the time-dependent

fKdV, similar to the approach of Chardard et al. [14]. The second approach is

to perform a linearised stability analysis of the fKdV equation. This follows the

approach used by Ee & Clarke [18] of numerically finding the eigenvalues and

eigenmodes of a spectral approximation to the linearised fKdV.

The evolution of the perturbed steady solutions indicates that waves that are

classified as perturbations to a solitary wave are unstable, whereas those waves

classified as perturbations to uniform streams are stable. The peaks of the type-III
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waves will coalesce, before emitting a solitary wave upstream and a combination

of nonlinear solitary-like waves and dispersive oscillatory waves downstream.

The type-IV waves when perturbed will, depending upon the exact perturbation

as discussed in Chapter 5, immediately emit a solitary wave upstream and a

dispersive wave downstream, then after some time emit another solitary wave

upstream together with some downstream solitary and dispersive waves.

The linearised analysis in Chapter 5 agrees with results obtained previously by

Camassa & Wu [12] and Ee & Clarke [18]. The perturbations to uniform streams

are linearly stable, whereas the perturbations to solitary waves are not, due to

the appearance of eigenmodes with positive real part. There are some limitations

to the linearised stability analysis as the amplitude of the disturbance gets small,

which is attributed to the assumption of periodicity of the domain.

In the final chapter, we summarise the results of Chapter 3–5, make some

concluding remarks and discuss some potential avenues for future work.
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Chapter 2

Formulation

This chapter begins with a statement of the fully nonlinear governing equations

for the steady potential flow past either a pressure or topographic disturbance.

From this starting point the boundary integral formulation for the shape of steep

waves on the surface is presented, followed by the details of the numerical scheme

we employ for finding solutions. We derive an expression for the error in the

numerical evaluation of the integrals, allowing us to demonstrate that the error is

well behaved as an irregular grid is further refined. Lastly a corresponding weakly

nonlinear model is presented in order to identify the system’s free parameters,

classify the solutions, and to provide a model for the investigation of unsteady

behaviour which is considered in Chapter 5.

2.1 Model

The flow in a channel can be modelled by a two-dimensional irrotational flow

of an incompressible and inviscid fluid of uniform density, otherwise known as

a potential flow model, see Batchelor [6]. The two-dimensional flow domain is

shown in figure 2.1.1. For this model, the domain is bounded above by a free

9
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U

Hy∗
x∗

σ∗

η∗

g

p∗

downstreamupstream

Figure 2.1.1: Schematic of the flow in a channel with either a pressure disturbance

travelling with a wave, or a topographical disturbance such as smooth trench in

the floor of the channel.

surface which is taken to be the interface between the water in the channel and

the air above it. It is also bounded below by the impermeable topography of the

channel, which is assumed to be flat in the far upstream and downstream regions

of the flow.

The flow is described by its density, height, speed and the acceleration due

to gravity. The density in the channel is taken to be uniform and is given by

the constant ρ. The flow far downstream is an undisturbed uniform flow, which

provides two parameters for the flow, the height, H, of the interface between

fluid and air and a horizontal speed, U. A Cartesian coordinate system (x∗, y∗) is

chosen with the x∗ axis aligned with the uniform topography far upstream and

far downstream. The y∗ axis is orthogonal to the x∗ axis, with y∗ positive in the

opposite direction of the acceleration due to gravity, whose magnitude is denoted

by g. The free surface can now be described by the coordinates y∗ � H + η∗ for

some unknown η∗(x∗). Similarly, the function σ∗(x∗) specifies the location of the

bottom topography at y∗ � σ∗. Although the pressure is defined throughout the

fluid, only the pressure disturbance on the free surface is required in order to

close the problem, and this is given by the function p∗(x∗). As we only consider

systems with one disturbance, one of either σ∗ or p∗ is assumed to be zero. When
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considering unsteady flow, the non-dimensional time variable is denoted t∗.

2.1.1 Non-dimensional variables

We non-dimensionalise all lengths with respect to the unperturbed channel depth,

H, and all velocities with respect to the uniform stream speed, U. We then define

non-dimensional variables (x , y) with corresponding non-dimensional velocities

(u , v) as (x , y) � (x∗, y∗)/H and (u , v) � (u∗, v∗)/U. The non-dimensional pres-

sure variable is given by p � p∗/ρgH, and the non-dimensional time variable is

t � UH−1t∗.

The Froude number F for this flow is given by the ratio of the uniform stream

speed to the linear long-wave speed, thus

F �
U√
gH

. (2.1.1)

A Froude number greater than one indicates the flow is supercritical, a flow regime

where the waves predicted by the small-amplitude linear theory are travelling

slower than the uniform stream (see Stoker [57]).

2.1.2 Disturbances

2.1.2.1 Pressure disturbance

To model a localised pressure disturbance on the free surface, we assume that the

pressure, p, is a smooth rapidly decaying function of x. In particular we choose a

Gaussian function with two real parameters A and B, given by

p(x) �
AB
√
π

e−(Bx)2
, (2.1.2)

where B > 0. This pressure term satisfies
∫
∞

−∞
p(x) dx � A, and so we will refer

to A as the amplitude of forcing. Both the absolute value of A and the value of B
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are linearly related to the magnitude of the pressure at x � 0. The parameter B is

also related to the spatial rate of decay of the disturbance, and the larger B is, the

narrower the disturbance. Taking the limit of very narrow disturbances gives

lim
B→∞

p(x) � lim
B→∞

AB
√
π

e−(Bx)2
� Aδ(x),

where δ(x) is the Dirac delta function.

2.1.2.2 Topographical disturbances

The localised perturbation to the topography can be given by having either a trench

along the bottom, as shown schematically in figure 2.1.1, or a bump intruding

into the flow. The bump or trench is modelled in this thesis by a pair of smoothed

steps, each of which is given by hyperbolic tangent functions. The topography is

thus specified by

σ(x) �
A
2l

[tanh S(x + l/2) − tanh S(x − l/2)] . (2.1.3)

The quantity A is again referred to as the amplitude of the disturbance. The

topographical disturbance given by (2.1.3) is a smooth bump when A > 0, and is

a trench for A < 0. The parameter S determines the steepness of the smoothed

steps, and we fix this throughout at S � 10. Much larger values of S will make the

corners of the disturbance sharper, and for this the potential flow may not be an

appropriate model, while very small values of S � 1 would increase significantly

the length of the disturbance. The distance between the inflexion points of the

topographical disturbance at ±l/2 is fixed at unity, i.e. l � 1 throughout.

The function σ(x) given by (2.1.3) has the property (see appendix C.2) that∫
∞

−∞

σ(x) dx � A,

and, like p(x) given by (2.1.2), approaches Aδ(x) as the limit of the disturbance

width l → 0 is taken. This also shows that |A| is the area of the disturbance.
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2.1.3 The governing equations

The non-dimensional form of the fully nonlinear time-dependent model is derived

in Appendix A. The system of equations for our model is comprised of a governing

equation (A.6), and boundary conditions on the topography, the free surface and

the far field. The boundary conditions are no-penetration (kinematic) conditions

on the topography and the free surface, given by equations (A.4) and (A.5), and a

dynamic boundary condition on the free surface, given by Bernoulli’s equation

(A.9). The far-field conditions are given by (A.8).

The equations are restated here assuming a steady flow and using the velocity

potential φ derived from the equations u � φx and v � φy . For steady flows, all

field variables are independent of time and it follows that all partial derivatives

with respect to t can be set equal to zero. The steady flow is solved using boundary-

integral methods, in particular the inverse plane methods introduced by Vanden-

Broeck & Schwartz [67] and used more recently by Binder et al. [10], Dias &

Vanden-Broeck [16], Lustri et al. [42], Vanden-Broeck [66] which we will formulate

in §2.2.

Laplace’s equation emerges as the governing equation of the velocity potential

from either the divergence-free velocity condition (A.6) or by recalling that φ is

the real part of an analytic function defined by (A.7), thus

φxx + φy y � 0 (2.1.4)

in the domain of the fluid σ < y < 1 + η. The kinematic boundary conditions (A.4)

and (A.5) are;

φxηx � φy for y � 1 + η(x), and (2.1.5)

φxσx � φy for y � σ(x). (2.1.6)

Bernoulli’s equation (A.9), in terms of φ, is applied on the free-surface streamline
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to give the dynamic boundary condition

1
2

(φ2
x + φ

2
y) +

1
F2 (y + p) �

1
2
+

1
F2 on y � 1 + η. (2.1.7)

To close the problem we impose the far-field downstream condition

φ ∼ x and η→ 0 as x →∞.

In addition to these physical boundary conditions we also impose a radiation

condition, which ensures that the waves are generated only by the disturbance and

not from reflections from the far field; this ensures that all waves are advected out

of the domain away from the source of the disturbance. In this model the radiation

condition implies that any non-local waves are downstream of the disturbance,

and thus for symmetric flows, no non-local waves will be present.

2.2 Conformal mapping

To determine the shape of the free surface, a boundary-integral method is used that

is based on conformal mappings of the flow domain. Conformal maps preserve

the analyticity of quantities of the flow in the flow domain, and so the Cauchy

integral formula [5] is used to provide an equation allowing for the solution for

the free surface without solving for the entire flow domain. Consider the flow

in the complex plane z � x + iy, one such example with a smooth trench is

shown in the upper left of figure 2.2.2. Introduce the steady complex potential

f (x , y) � φ(x , y) + iψ(x , y). Without loss of generality we set ψ � 1 on the free

surface, and it then follows that ψ � 0 on the bottom of the channel from the

definition of the non-dimensional stream-function. The mapping from the z-plane

to the f -plane is illustrated in the top two images presented in figure 2.2.2.

The domain of the flow is now exactly known in the f -plane, it consists of the

simple region between the horizontal lines ψ � 0 and ψ � 1. The function φ will
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contain a free constant, which is fixed by letting φ � 0 at x � 0. The inflexion

points in the physical domain of the trench will be used in Chapter 4 and are

indicated as A and B for illustrative purposes here, with corresponding values

f � φA and f � φB along the real axis in the f -plane also shown.

Following Vanden-Broeck [66] and later Lustri et al. [42] (and references there-

in), the transformation

ζ � α + iβ � eπ f (2.2.8)

is chosen to conformally map the flow domain in the f -plane to the upper half of

the ζ-plane, where α, β ∈ R. The flow in the far upstream region is now mapped

to the origin, and the far downstream region of the flow is mapped to |ζ | → ∞.

This mapping is shown schematically at the bottom of figure 2.2.2. The bottom of

the channel is mapped to the positive segment of the α (real) axis, while the free

surface is mapped to negative segment of the α axis. The two inflexion points of

the topography are found on the real axis in the ζ-plane, and are located at ζ � αA

and ζ � αB in figure 2.2.2.

The complex velocity w(ζ) is an analytic function in the domain of the flow in

the ζ-plane, it is defined by

d f
dz

� w(ζ) � u(ζ) − iv(ζ). (2.2.9)

This expression can be integrated and we use this to find the shape of the free

surface, which is given by z(ζ) � z(α) for α ∈ R > 0.

We will employ a subscript notation to distinguish a function of ζ from the

same quantity expressed as a function of φ. The subscript s indicates a flow

quantity evaluated on the free surface as a function of φ, for example the hori-

zontal component of velocity on the free surface is denoted by us (φ) � u(−eπφ).

A subscript b indicates a quantity evaluated on the channel floor, for example

ub (φ) � u(eπφ).
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Using this notation, integrating (2.2.9), with d f � dφ along a streamline, then

equating real and imaginary components yields

ys (φ) � 1 −
∫
∞

φ

vs (φ̂)

us (φ̂)2 + vs (φ̂)2
dφ̂, (2.2.10)

and

xs (φ) �
∫ φ

0

us (φ̂)

us (φ̂)2 + vs (φ̂)2
dφ̂, (2.2.11)

where ys (φ) → 1 as φ →∞ and xs (0) � 0 has been used in the evaluation of the

integrals
∫

dz.

Bernoulli’s equation (2.1.7) on the free surface can be written using functions

of φ as

us (φ)2
+ vs (φ)2

+
2
F2

(
ys (φ) + p(xs (φ)) − 1

)
� 1. (2.2.12)

Equations (2.2.10), (2.2.11) and (2.2.12) form a system of three equations for the

variables us , vs , xs , ys , p and F. One more equation is needed to close the system if

F and p are considered known. The Cauchy integral theorem applied to a function

which is analytic in the flow domain provides this next equation, and it relates the

real and imaginary components of such a function on the boundary of the flow

domain. We will now formulate the resulting equation, also known as a Hilbert

transform.

2.2.1 Hilbert transform applied to the boundary of the transfor-

med flow domain

Consider a closed contour traversed anti-clockwise, shown schematically in figure

2.2.3, which is contained in the upper half ζ-plane, and is comprised of four

segments, labelled Γ1, Γ2, Γ3 and Γ4. The contour, which we will denote as Γ,

depends on two positive real parameters ε and R, and a coordinate on the real
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Γ4

R

iβ

Γ2

α

ε Γ3Γ1

upstreamupstream downstreamdownstream

Figure 2.2.3: Diagram of contours Γ1 . . . Γ4 in the α + iβ plane used to evaluate the

Hilbert transform of a function which is analytic in the upper-half plane.

axis (α, 0) where α is finite. In order for the contour to be simple and closed, it is

required that |α | < R − ε. The first segment of the contour, Γ1, is the line segment

along the real axis from (−R, 0) to (α−ε, 0). The segment Γ2 is the circular segment

of radius ε from (α − ε, 0) to (α + ε, 0), which is in the clockwise sense. Γ3 is the

straight path from (α + ε, 0) to (R, 0). Lastly, Γ4 is the circular segment of radius R

taken anti-clockwise from (R, 0) to (−R, 0).

The Hilbert transform of a function g(ζ), defined in the upper-half plane, can

be written in terms of the contours Γ1 and Γ3 by taking the limit as R → ∞ and

ε → 0,

H (g)(α) �
1
π
−

∫
∞

−∞

g(α̂)
α̂ − α

dα̂

� lim
ε→0

R→∞

1
π

(∫ α−ε

α−R

g(α̂)
α̂ − α

dα̂ +

∫ α+R

α+ε

g(α̂)
α̂ − α

dα̂
)
.

Assuming g is analytic in the upper-half plane and |α | < R − ε (as required),

then by Cauchy’s integral theorem,

1
π

∫
Γ

g(ζ)
ζ − α

dζ � 0
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for all ε, R. It then follows from the definition ofH (g)(α) above, that an expression

for the Hilbert transform using the Γ2 and Γ4 contours is given by

H (g)(α) � − lim
ε→0

R→∞

1
π

∫
Γ2+Γ4

g(ζ)
ζ − α

dζ. (2.2.13)

These two contour integrals can be evaluated by parameterising the paths of

integration. Let Γ2 be parameterised by ζ(γ) � α + εe iπ(1−γ) for 0 < γ < 1. Then

the integral over Γ2 is given by

1
π

∫
Γ2

g(ζ)
ζ − α

dζ � −i
∫ 1

0
g
(
α + εe iπ(1−γ)

)
dγ. (2.2.14)

Similarly, by parameterising Γ4 as ζ(γ) � Re iπγ for 0 < γ < 1, then

1
π

∫
Γ4

g(ζ)
ζ − α

dζ � i
∫ 1

0

g(Re iπγ)Re iπγ

Re iπγ − α
dγ. (2.2.15)

We define the transform I of the function g as

I(g) � −i lim
R→∞

∫ 1

0

g(Re iπγ)Re iπγ

Re iπγ − α
dγ. (2.2.16)

Provided the limit as ε → 0 and R → ∞ exists for equations (2.2.13)–(2.2.16),

the Hilbert transform of the function g evaluated at α is equal to a complex rotation

of g(α) by π/2 plus a constant,

H (g)(α) � I(g) + ig(α). (2.2.17)

The following lemma is a near-direct consequence of the estimation lemma, also

known as the M-L inequality [5], which we use in the next step of the formulation.

Lemma 1. If g(ζ) vanishes at infinity, then

I(g) � 0.
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Proof. Let z � Re iθ and w � A + iB, then

|z − w |2 � (R cos θ − A)2
+ (R sin θ − B)2

� A2
+ B2

− 2R(A cos θ + B sin θ) + R2

≥ R2
− 2R(A cos θ + B sin θ).

It follows that if

R2(1 − δ2) − 2R(A cos θ + B sin θ) ≥ 0

for 0 < δ < 1 in some region R ≥ R̂, then |z − w | > δR for R ≥ R̂. The zeros of

the polynomial in R from the left-hand-side of the inequality above are R � 0 and

R � 2(A cos θ + B sin θ)/(1 − δ2). Let

R̂ � max
(
0,

2(A cos θ + B sin θ)
1 − δ2

)
.

Now for any δ between 0 and 1, there is a finite number R̂ such that for R ≥ R̂,

|z − w | ≥ δR. (2.2.18)

Now return to the absolute value of the integral in (2.2.16);

�����

∫ 1

0

g(Re iπγ)Re iπγ

Re iπγ − α
dγ

�����
≤

∫ 1

0

�����
g(Re iπγ)Re iπγ

Re iπγ − α

�����
dγ

≤
1
δ

∫ 1

0

���g(Re iπγ)��� dγ

for all R ≥ R̂, by letting w � α in (2.2.18). Applying the estimation lemma to the

above yields

1
δ

∫ 1

0

���g(Re iπγ)��� dγ ≤
1
δ

max
γ∈[0,1]

|g(Re iπγ) |

for all R ≥ R̂. As limR→∞ g(Re iπγ) � 0 by assumption, it follows by the squeeze

theorem that I(g) � 0. �
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If g(ζ) vanishes at infinity in (2.2.17), then by equating real components and

using Lemma 1, it can be shown that

Re
(
g(α)

)
�

1
π
−

∫
∞

−∞

Im
(
g(α̂)

)
α̂ − α

dα̂. (2.2.19)

Breaking the domain of integration into α̂ > 0 and α̂ < 0, and using the

substitutions α̂ � ∓eπφ̂ respectively, along with α � −eπφ on the free surface, the

integral from the expression (2.2.19) can be written in terms of functions of φ using

the s and b subscript notation from earlier:

Re
(
gs (φ)

)
� − −

∫
∞

−∞

Im
(
gs (φ̂)

)
eπφ̂ − eπφ

eπφ̂ dφ̂︸                          ︷︷                          ︸
contribution from surface

+

∫
∞

−∞

Im
(
gb (φ̂)

)
eπφ̂ + eπφ

eπφ̂ dφ̂︸                         ︷︷                         ︸
contribution from channel floor

. (2.2.20)

The real part of a quantity on the bottom of the channel can similarly be related

to the imaginary part on the whole boundary; for this again, split the integral

domain and let α̂ � ∓eπφ̂ as required, along with α � eπφ in (2.2.19), and

Re
(
gb (φ)

)
� −

∫
∞

−∞

Im
(
gs (φ̂)

)
eπφ̂ + eπφ

eπφ̂ dφ̂ + −

∫
∞

−∞

Im
(
gb (φ̂)

)
eπφ̂ − eπφ

eπφ̂ dφ̂. (2.2.21)

The remaining equation for solving the free surface, given (2.2.10)–(2.2.12), is

found by the choice of the function g(ζ).

2.2.1.1 Flow past a pressure disturbance

For a flow with a pressure disturbance, let g(ζ) � (u(ζ) − 1) + iv(ζ), which is

a function representing the complex velocity minus the fluid velocity far down-

stream and upstream. This function will vanish as ζ →∞, see Appendix D, so we

can use (2.2.20). As the channel is flat, vb (φ) � 0, and so (2.2.20) is now

us (φ) � 1 + −

∫
∞

−∞

vs (φ̂)

eπφ̂ − eπφ
eπφ̂ dφ̂. (2.2.22)

Equation (2.2.22) combined with (2.2.10)–(2.2.12) forms a system of four equa-

tions, with unknowns us , vs , xs and ys for any choice of parameter F and known

p, and so the system is closed.
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2.2.1.2 Flow past a topographical disturbance

For a topographical disturbance vb , 0 in general, and so a more convenient

formulation is to follow Binder & Vanden-Broeck [9], Lustri et al. [42], Vanden-

Broeck [66] and others and let g(ζ) � τ(ζ) − iθ(ζ), defined by the transform of

the complex velocity

u(ζ) − iv(ζ) � eτ(ζ)−iθ(ζ) . (2.2.23)

For fixed topography, θb (φ) is considered known, so (2.2.20) becomes

τs (φ) � −

∫
∞

−∞

θs (φ̂)eπφ̂

eπφ̂ − eπφ
dφ̂ −

∫
∞

−∞

θb (φ̂)eπφ̂

eπφ̂ + eπφ
dφ̂. (2.2.24)

For a topographical disturbance the unknowns are τs , θs , xs and ys for a given F

and σ, while p is assumed to be zero everywhere. Equation (2.2.24) along with

(2.2.10)–(2.2.12) then form a system of four equations in the four unknowns.

The solutions are not known in general for both these systems of integral

equations, either (2.2.10)–(2.2.12) combined with (2.2.22) or (2.2.24) for a pressure

disturbance or a topographical disturbance respectively. To find solutions, Vanden-

Broeck & Schwartz [67], Forbes & Schwartz [23], Vanden-Broeck [66] derive a

system of algebraic equations by combining domain truncation, discretisation

of the φ-coordinate, removing the singularity in the integrals (2.2.22) or (2.2.24)

and applying simple integration rules such as the mid-point or trapezoidal rule

to evaluate all integrals. The free surface is then solved on the discrete grid

numerically using an iterative solver, with the majority of the system of equations

being given by the free-surface dynamic boundary condition (2.2.12) evaluated on

the discrete grid, combined with other boundary or flow conditions to ensure a

closed system. Here, the domain of the integral in equations (2.2.22) or (2.2.24) is

truncated to [φa , φb], for some choice of φa and φb such that the error introduced

by the truncation is small.
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2.3 Numerical method for boundary integrals

2.3.1 Irregular grid

Hunter & Vanden-Broeck [30] computed very steep solitary waves using a bound-

ary-integral method which clustered the grid points near the peak of the wave.

This was achieved by introducing a change of variables φ � ϕ(β) in the integrals.

Hunter & Vanden-Broeck [30] used ϕ(β) ∼ β3 to cluster the grid points near the

location of the crest at φ � 0, where the shape of the free surface varies rapidly

for small changes in φ. In order to efficiently compute the entire range of waves

and those with multiple crests, this idea is extended here to a piecewise-cubic

polynomial, so that the transform ϕ with a regular discretisation in the new

variable β will cluster the grid points near the crest(s) of the flow in the physical

coordinates; especially for those regions of the parameter space where the wave

gets steeper. We refer to this type of grid throughout as an ‘irregular’ grid, as it is

an irregular computational grid in the variable for which most of our formulation

is given, φ. In the usual sense, however, the grid is regular in the β variable.

The intervals of the piecewise-cubic polynomial are defined by either the

location of a crest or an endpoint of the truncated integral. An endpoint of an

interval will be denoted φ[ j], for j � 1, . . . ,M + 1 where M is the number of

intervals of the piece-wise function. Here φ[1] � φa is the value at left end-point of

the truncated profile, and φ[M+1] � φb is the right end-point. Values of φ[ j] from

j � 2, . . . ,M are the locations of the crests.

Define the piecewise polynomial ϕ as

ϕ(β) � ϕ[ j](β) for β ∈ (β[ j], β[ j+1]), (2.3.25)
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where ϕ[ j] is defined by

ϕ[ j](β) � (1 − s)
[
φ[ j]m[ j](β) + φ[ j+1]n[ j](β)

]

+ s
[
φ[ j]a[ j](β) + φ[ j+1]b[ j](β) + λ[ j]c[ j](β) + λ[ j+1]d[ j](β)

]
.

Here the β[ j] are values of β chosen at the endpoints of an interval, determined

later to ensure monotonicity of the transform, and λ[ j] are chosen so that the slope

of the polynomial is small near endpoints where clustering is desired, i.e. at the

crests of steep waves. As s varies from 0 to 1, ϕ varies from a piecewise-linear

function to a piecewise-cubic function, shown in figure 2.3.4. When s � 0 the

grid is based on linear interpolation from (β[ j], φ[ j]) and (β[ j+1], φ[ j+1]) within each

interval, which implies no clustering occurs near the locations φ[ j]. For s � 1 the

grid is based on cubic polynomial interpolation, and clustering is present near

φ[ j] if the value of λ[ j] is taken to be small. In brief, all computations presented in

Chapters 3 and 4 are shown with s � 1. The reason for introducing the piecewise-

linear grid is that in some calculations a low resolution solution was interpolated

onto a higher resolution grid, then the higher resolution surface was found for

s � 0 and then, by numerical continuation, determined for s � 1.

The linear interpolant is constructed from basis functions m[ j] and n[ j], where

m[ j](β[ j]) � 1 and m[ j](β[ j+1]) � 0, while n[ j] is defined such that n[ j](β[ j]) � 0 and

n[ j](β[ j+1]) � 1. Explicitly,

m[ j](β) � −
β − β[ j+1]

∆β[ j]
and

n[ j](β) �
β − β[ j]

∆β[ j]
,

where ∆β[ j] � β[ j+1] − β[ j].

The cubic polynomial on each interval (β[ j], β[ j+1]) is the unique cubic poly-

nomial that passes through the points (β[ j], φ[ j]) and (β[ j+1], φ[ j+1]) and has slope

λ[ j] at each β[ j]. This polynomial is constructed from basis functions which are
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relatively easy to determine for any choice of β[ j], β[ j+1], φ[ j], φ[ j+1], λ[ j], and λ[ j+1].

The basis functions of the piecewise-cubic interpolating polynomial are;

a[ j](β) � 2
(β − β[ j+1])2(β − β[ j] + ∆β[ j]/2)

∆β[ j]
3 ,

b[ j](β) � −2
(β − β[ j])2(β − β[ j] − ∆β[ j]/2)

∆β[ j]
3 ,

c[ j](β) �
(β − β[ j])2(β − β[ j+1])

∆β[ j]
2 and

d[ j](β) �
(β − β[ j])(β − β[ j+1])2

∆β[ j]
2 .

These are shown in the overlay cut-out in figure 2.3.4, where the purpose of each

basis function can be inferred by whether its value or slope is zero or one at a

given endpoint.

The intervals are sub-divided using a regular grid over an arbitrary domain in

β. For convenience we let βi � i for i � 0, 1, . . . ,N, where N is the total number

of grid points (or sub-intervals). In figure 2.3.4, the effect of the clustering when

λ[ j] is small is shown by considering a unit change in β at two different locations

β � i0 and β � i1, and the corresponding change in φ denoted by ∆φi0 and ∆φi1 is

shown in blue on the left-hand vertical axis.

The choice of β[ j] determines the number of grid points within each interval

of the piecewise transform. In order to avoid low sampling near a segment with

high curvature, we aim to keep zs (ϕ(βi+1)) − zs (ϕ(βi)) roughly constant. Using

the definition of the complex velocity, and knowing that vs is generally small

compared to us , we choose

β[ j+1] − β[ j] �
N − 1∑M

k�1 ∆φ[k]

(
us (φ[k+1]) + us (φ[k])

) −1∆φ[ j]
(
us (φ[ j+1]) + us (φ[ j])

) −1

with β[1] � 0. This ensures enough grid points within each segment such that,

clustering details aside, the grid will be close to regular in the physical coordinates,
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even though clearly irregular in φ.

The values of λ[ j] drive the clustering, and are taken such that clustering

occurs when the velocity near the crests is small, i.e. λ[ j] must become small as

us (φ[ j]) → 0. In addition, the coefficients λ[ j] should ensure that the derivative

ϕ′(β) is non-zero, as a value of zero will adversely effect the Jacobian of the

algebraic systems of equations which we must solve, presented later. For this

reason λ[ j] is taken to be

λ[ j] � us (φ[ j])2γ1 + (1 − us (φ[ j]))2γ2. (2.3.26)

The coefficient γ1 � (φb − φa)/(N − 1) is used to ensure that the spacing is close to

that of a regular grid when us (φ[ j]) ≈ 1. We take γ2 � δγ1 for some small δ ≈ 0.01,

so that the grid is clustered near the crest if us (φ[ j]) ≈ 0.

2.3.1.1 Monotonicity

When s � 0 each ϕ[ j](β) is monotonic, as is the whole transform ϕ(β). For the

cubic polynomial (when s , 0), the monotonicity of each ϕ[ j](β) depends largely

on us (φ[ j]) and us (φ[ j+1]), and the choice of δ. Monotonicity can be established

in the case s � 1 if the derivative of ϕ′[ j](β) is always positive. Firstly, since λ[ j] is

positive, then the values of ϕ′[ j](β) at the endpoints of the intervals are positive.

Noting also that ϕ′[ j](β) is a quadratic, then provided the coefficient of the β2 term

is negative, then the quadratic will be positive on its domain. Now consider the

coefficient of the β2 term in ϕ′[ j](β),

3
(β[ j+1] − β[ j])2

(
λ[ j] + λ[ j+1] −

φ[ j+1] − φ[ j]

β[ j+1] − β[ j]

)
,

from which it can be shown that ϕ[ j](β) is monotonic provided

λ[ j] + λ[ j+1] <
φ[ j+1] − φ[ j]

β[ j+1] − β[ j]
. (2.3.27)
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The right-hand-side is clearly positive given the definition of φ[ j] and β[ j]. Assum-

ing us (φ[ j]) ≤ 1 then the right-hand-side obeys the following inequality;

φ[ j+1] − φ[ j]

β[ j+1] − β[ j]
≥
φb − φa

N − 1

(
us (φ[ j+1]) + us (φ[ j])

)
.

Using this as a lower bound on the right-hand-side in (2.3.27), it follows that if

λ[ j] + λ[ j+1] −
φb − φa

N − 1

(
us (φ[ j+1]) + us (φ[ j])

)
≤ 0 (2.3.28)

holds, then (2.3.27) also holds. A contour plot of the left-hand part of the inequality

(2.3.28) is shown in figure 2.3.5 for δ � 0.01 and −φa � φb � 12. From the chosen

form of λ[ j] there is a factor (φb − φa)/(N − 1) throughout the expression, thus

φa , φb and N do not affect the domain where the inequality above holds. There

are small regions in three corners in figure 2.3.5 where the inequality (2.3.28)

does not hold, and although the area (or extent) of these regions can be reduced

by choosing smaller δ, this is generally not necessary as the condition is only

a sufficient condition, and in all computations performed the transform ϕ(β)

behaved in a monotonic fashion for all δ used.

2.3.2 Numerical error in evaluating the Cauchy principal value

integral

In Appendix B the error in numerically evaluating a Cauchy principal value inte-

gral by removing the singularity and applying the trapezoidal rule is determined.

Noble & Beighton [48] found that the error for a certain class of Cauchy principal

value integrals is second order in the grid spacing and bounded under certain

conditions. This proof is extended to the Cauchy principal value integrals such as

(2.2.22) and (2.2.24) which have a change of variables φ � ϕ(β), a case not explicitly

considered by Noble & Beighton [48]. Corollary 2 in the appendix shows the error

is bounded and second order in the grid spacing provided both v(α) (or τ(α)) and

the change of variables for the irregular grid are sufficiently differentiable.
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Figure 2.3.5: Contours of the value of the left-hand side of inequality (2.3.28) for

δ � 0.01 and −φa � φb � 12.

2.4 Numerical continuation procedure

The precise details of the system of equations are dependent upon the problem,

and these are detailed in Chapters 3 and 4. All the solutions to the fully nonlinear

problem are obtained by using the predictor-corrector method of Allgower &

Georg [3] in order to obtain one-parameter families of solutions (or branches) in an

automated fashion. The predictor-corrector method requires an underdetermined

system which has one more unknown than equations; this differs from the usual

approach of using Newton’s method on an exactly determined system.

The one-parameter family of solutions can be thought of as the kernel of a

smooth map. Let H : RN+1
→ RN be a smooth map, and let x0 be a regular point of

the map, i.e. a point x0 where the Jacobian of the map, denoted H′, has maximum

rank, N. The solution to the system is given by the curve x(s), where s is the

arclength, which satisfies

H(x(s)) � 0, (2.4.29)
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and

H′(x)ẋ � 0, ‖ẋ‖ � 1, and x(0) � x0. (2.4.30)

As a simple example, if the system of equations was a single equation say x2 +

y2
− 1 � 0, then H(x , y) : R2

→ R1 would be given by H(x , y) � x2 + y2
− 1.

Let x0, x1, x2, . . . be a sequence of vectors in RN+1. The numerical procedure

uses the QR factorisation H′(xn)∗ � QnRn . The Jacobian H′ is estimated using a

simple finite-difference approximation.

Let the vectors qn , j be the column vectors of Q � [qn ,0, . . . , qn , j , . . . , qn ,N+1].

The first vector x1 is a predictor for x(h) and is given by

x1 � x0 ± hq0,N+1,

where h is a step-size, and the ± branch is chosen depending upon the sign

of det(Qn) det(Rn). The details of how to calculate the sign, and how q0,N+1

corresponds to the tangent induced by H′ are given in Allgower & Georg [3].

A sequence of corrector steps is then employed which generates x2, x3, . . .

until H(xn) is less than some chosen tolerance. The vectors xn are defined by

a recurrence relation, which is evaluated by solving first for yn by backward

substitution, first calculate

R∗nyn � H(xn)

and then evaluate xn+1 given

xn+1 � xn −Qnyn .

Once this process has converged at n steps, then xn ≈ x(h), which may also be a

regular point of the map. The arclength between x0 and xn will be approximately

h. The process of predicting and correcting can then be repeated to determine the

image of x(s) at discrete locations with approximately even spacing of h in terms

of the parameter s.
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2.5 Weakly non-linear dimensionless flow model

The continuation procedure in §2.4 will be applied to a discretised version of

the system described at the end of §2.2.1. As the shape of the free surface is

to be determined numerically, the number of free parameters in the problem

is an important consideration, as it is not clear due to the system’s nonlinear

nature. A weakly nonlinear model can be used to provide a parametric map of

the solutions in the region in which the weakly nonlinear theory is valid [18].

The weakly nonlinear theory given by Akylas [2] and Grimshaw & Smyth [27]

is used here, who derived the forced Korteweg & de Vries (fKdV) equation [33]

for time dependent and near critical flow past either a pressure disturbance or a

topographical forcing.

The fKdV equation is derived in Appendix C using long wavelength asymp-

totics. It follows closely the derivation given in Shen [54]. The variables are

rescaled by assuming there is a characteristic length L (e.g. a length related to

wavelength) such that (H/L)2 � ε � 1 and that the free surface is of O(ε) . The

other scalings are found by balancing the leading order terms and using the result

given by Akylas [2] that the topographic forcing or pressure forcing must be O
(
ε2

)
.

By matching terms of the same order in ε the fKdV equation is derived. When

written in terms of the variables used in the nonlinear computations the fKdV

equation is

6ηt − ηxxx − 9ηηx + 6(F − 1)ηx � 3(px + σx). (2.5.31)

This is referred to as the time-dependent fKdV equation, and is the model used

in the stability analysis in Chapter 5. The steady forced KdV is introduced next,

which we use for classification and comparison in the next two chapters.
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2.5.1 Steady forced KdV

Given the flow is steady, the integrated form of the fKdV equation (2.5.31) is

ηxx +
9
2
η2
− 6(F − 1)η � −3(p + σ), (2.5.32)

where the limits p , η, σ → 0 as x →∞ have been used. According to this equation,

the pressure and topographical disturbances should have the same solutions at

this order of approximation, or in other words the two types of forcing produce an

equivalent physical response in the system. At higher order the equivalence of the

two types of disturbance no longer holds, for example and additional dispersive

term due to topographical forcing appears in the generalized-Boussinesq model

of Lee et al. [36] that does not appear in the fKdV equation. In spite of this, the

fKdV model is very accurate for disturbances that are not larger than about half

the downstream free-surface height [55].

If the magnitude of the disturbance is sufficiently small and the disturbances

have compact support, then they can be modelled by the δ(x) function. This is

valid provided the amplitude parameter A ∼ ε3/2. There is also a range, or scale, of

validity for the parameters that affect the support, namely B and l, for a Gaussian

(2.1.2) or the smooth disturbances using hyperbolic functions (2.1.3) respectively.

For Gaussian disturbances, B/
√
π ∼ ε1/2, and for the hyperbolic tangent based

disturbances, l ∼ ε−1/2. Using the long-wavelength scaled variables and these

scales for the parameters, it follows that the disturbance approaches δ(x) as ε → 0.

By integration in the scaled variables and then reverting back to the unscaled

variables, the following equations govern the free surface;

ηxx +
9
2
η2
− 6(F − 1)η � 0 for x , 0; and (2.5.33)

ηx (0+) − ηx (0−) � −3A. (2.5.34)

In the unforced regime where A � 0 this dynamical system has two fixed points

when F > 1. These fixed points are located at (0, 0) and (4(F − 1)/3, 0) in the
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Figure 2.5.6: KdV phase portrait, + indicates the fixed points, saddle at origin and

centre at η �
4
3 (F − 1). A solid line indicates unstable/stable sets of the fixed point

at the origin and the dashed lines show a periodic orbit about the centre and two

unbounded trajectories.

(η, ηx)-phase plane; and a linear stability analysis around these fixed points shows

that they are a saddle and a centre respectively. The solution in the phase plane

can be obtained by integrating equation (2.5.33) again, which gives

(
ηx

) 2
+ 3η3

− 6(F − 1)η2
�




Cup x < 0,

0 x > 0,
(2.5.35)

where Cup is the upstream constant, and the downstream constant must be taken

to be zero to satisfy η, ηx → 0 as x → ∞. The contours of (2.5.35) are used to

determine the possible trajectories in the phase plane shown in figure 2.5.6, these

include periodic orbits, unbounded trajectories and a homoclinic orbit enclosing

the origin.

For either unforced or forced solutions, the trajectory in the phase plane must

contain an interval of the stable manifold of the origin which includes the origin

in order to satisfy the downstream far-field condition. If the (non-trivial) solution

is unforced (A � 0) there is only one way of achieving this, namely by traversing



2.5. WEAKLY NON-LINEAR DIMENSIONLESS FLOW MODEL 34

the homoclinic (or solitary wave) orbit in a clockwise direction in the phase plane

as shown in figure 2.5.6.

When forcing is present, equation (2.5.34) introduces a vertical jump in the

phase plane, which provides a way of transitioning between fixed points and

the various trajectories in the phase plane. In this weakly nonlinear model such

forced solutions are described by two parameters; the Froude number F fixes the

qualitative behaviour of the solutions in the phase plane and the amplitude of

forcing A determines the size of the jump in the phase plane. For given values

of A and F (and A , 0), the location of the jump in the phase-plane determines

the solution. Fixing F and allowing A to be free parameter will therefore admit

one-parameter families of solutions in the (A, η(0)) plane.

The next two chapters contain the results for the free surface using the bound-

ary-integral and continuation methods discussed in this chapter. We present the

one-parameter families of solutions for the fully nonlinear problems, using the

weakly nonlinear model for both comparison and classification.



Chapter 3

Waves past a localised pressure

disturbance

3.1 Introduction

The solution space of almost-highest waves subject to a pressure disturbance is

presented in this chapter. The topography is assumed flat, shown schematically

in figure 3.1.1, and the symmetric pressure disturbance is given by (2.1.2). Only

supercritical flow for which F > 1 is considered, where the linear theory predicts

u � 1

1y
x

η(x)

1

downstreamupstream

p(x)p(x)p(x)

Figure 3.1.1: Schematic of the flow considered in this chapter, with flat topograhy

and pressure disturbance given by (2.1.2), with symmetry about x � 0.

35
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that the steady solutions are symmetric (due to the symmetry of pressure distur-

bance on the free surface), see for example Stoker [57]. This symmetry is then

applied to the formulation so that only symmetric waves for the fully nonlinear

model need to be considered. The specific details of the numerical procedure for

finding solutions to the fully nonlinear model are given in §3.2, following on from

the procedures outlined in the previous chapter.

As discussed in the introduction, an analysis of the weakly nonlinear phase

plane of the fKdV model provides a systematic way of identifying and classifying

the (fully) nonlinear solutions of the unforced system, as either a perturbation to a

uniform stream or a solitary wave (or waves). This classification scheme has been

applied to flows past topographical disturbances [15, 23, 65], and we present this

classification for both the weakly nonlinear and fully nonlinear solutions to the

flow past a pressure disturbance studied here. Further detailed discussion of the

fKdV model and its solutions may be found in Baines [4] and Ee et al. [19, 20].

In §3.3 we show that as wave-height increases, all fully nonlinear waves that

are classified as perturbations to solitary waves approach the Stokes limiting

wave with an included angle of 120◦ and a stagnation point at the crest of the

wave. These limiting configurations are not predicted by the weakly nonlinear

model, and so the solution space between the two models differs considerably,

in particular as the wave-height or Froude number increases. We also find a new

fully nonlinear solution which is not predicted by the weakly nonlinear theory.

This fully nonlinear solution does not display the presence of a cusp as per the

corresponding solution to the weakly nonlinear model.

Like the unforced waves investigated previously by Longuet-Higgins & Fox

[40] and Maklakov [43], we show that many properties of the forced waves are

not unique with respect to the height of the wave as the limiting configuration is

approached in §3.3.2. We also present an analysis of the cusped solutions as they



CHAPTER 3. WAVES PAST A PRESSURE DISTURBANCE 37

approach the limiting configuration, where the limiting configuration is rotated

slightly. The findings are summarised and discussed in the concluding remarks in

§3.4.

3.2 Formulation

For this problem the boundary integral relating us (φ) to vs (φ) in (2.2.22) is used

to form the system of equations for which the free-surface is found as a solution

(rather than (2.2.24) which relates τs and θs). This approach was chosen as it allows

a significant simplification to the contribution from the far-field by substituting

Stokes’ result (see, for example, [11] and [30]) for the velocity; this is derived in

Appendix D, and given by (D.11).

As only symmetric waves are considered, we can exploit this symmetry to

write

vs (−φ) � −vs (φ) and us (φ) � us (−φ),

so that the integral (2.2.22) is given, by an appropriate change of variables, as

us (φ) � 1 +
1
2
−

∫
∞

0
G(φ, φ̂) dφ̂ for −∞ < φ < ∞, (3.2.1)

where

G(φ, φ̂) �
vs (φ̂)

eπ(φ+φ̂) − 1
+

vs (φ̂)

1 − eπ(φ−φ̂)
+

vs (φ̂)

eπ(φ̂−φ) − 1
+

vs (φ̂)

1 − e−π(φ+φ̂)
. (3.2.2)

In order to use the trapezoidal rule (B.5), the semi-infinite domain in this equation

is split into a finite segment for which the trapezoidal rule is applied, and a semi-

infinite segment which can be either ignored or approximated [30]. The equation

for the horizontal velocity is then

us (φ) � 1 +
1
2
−

∫ φm

0
G(φ, φ̂) dφ̂ +

1
2

∫
∞

φm

G(φ, φ̂) dφ̂ for −φm < φ < φm,

(3.2.3)
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where φm � 1 is the domain truncation parameter.

Stokes’ result on the asymptotic, or linearised, behaviour of the complex ve-

locity as |φ | → ±∞ is used to approximate the integrand in the second integral in

(3.2.3). The far-field complex velocity given by (D.11) can be written, again using

the symmetry of the flow, as

us (φ) − ivs (φ) ≈ 1 + De−λ0 |φ | (cos λ0 ± i sin λ0) , as |φ | → ∞, (3.2.4)

for some real D. Here, λ � λ0 is the smallest positive solution to

tan λ � λF2, (3.2.5)

with the positive sign in (3.2.4) taken for the downstream direction and the negative

sign taken for the upstream direction.

The semi-infinite integral in (3.2.3) can be evaluated efficiently using hyperge-

ometric functions (denoted 2F1, see Abramowitz & Stegun [1]); for example the

first term can be transformed by α̂ � eπφ̂,

∫
∞

φm

vs (φ̂)

eπ(φ+φ̂) − 1
dφ̂ �

D sin λ0

π

∫
∞

eπφm

α̂−(λ0/π+1)

1 − eπφ α̂
dα̂,

� −D sin λ0
e−π(φm+φ)e−φmλ0

π + λ0
2F1

(
1, 1 + λ0/π; 2 + λ0/π; e−π(φm+φ)

)
,

by formula 3.194.2 of [25]. The other terms in the semi-infinite integral have

similar expressions in terms of 2F1 (of which only one other is needed). Combining

these results with the removal of the singularity (B.1) in the finite domain integral,
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equation (3.2.3) can be written as

us (φ) ≈ 1 +
1
2

∫ φm

0
coth(π(φ + φ̂)/2)(vs (φ̂) + vs (φ)) dφ̂

+
1
2

∫ φm

0
coth(π(φ̂ − φ)/2)(vs (φ̂) − vs (φ)) dφ̂ +

vs (φ)
π

ln
�����
sinh(π(φ − φm)/2)
sinh(π(φ + φm)/2)

�����
− D sin λ0

{
e−π(φm+φ)e−λ0φm

π + λ0
2F1

(
1, 1 + λ0/π; 2 + λ0/π; e−π(φm+φ)

)
+

e−λ0φm

λ0
2F1

(
1, λ0/π; 1 + λ0/π; e−π(φm−φ)

) } (3.2.6)

for −φm < φ < φm.

The singular term involving the logarithm function in (3.2.6) is partly compen-

sated for by the fact that vs (φ) decays exponentially as shown in Appendix D.

Provided the computational method does not involve evaluation of us (φ) from

(3.2.6) with φ ≈ φm, there is no risk of significant subtractive cancellation error

when using a floating-point number system.

3.2.1 Numerical procedure

The piecewise-cubic transform from §2.3.1 is now applied to form a regular grid in

the new variable β, and an irregular grid in φ. For symmetric waves, the left-hand

endpoint of the integral is given by φ[1] � 0, and the right-hand endpoint is located

at φ[M+1] � φm. For symmetric calculations, the value of M, which we recall is

the number of intervals of the piece-wise cubic described in §2.3.1, also happens

to be the number of crests of the wave. As per the form of the type-I–V waves,

we find that there are only two cases for the number of crests to consider in the

results presented in this chapter. The first case is when there is one only one crest

at φ � x � 0 and so M � 1, and the piece-wise cubic has one interval representing

the portion of the wave in the region x > 0. When there are two crests, and thus

two pieces to the x > 0 component of the wave, we have M � 2. In this case, the
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location φ[2] of the downstream crest is unknown and must be determined as part

of the solution (φ[3] � φm is the downstream end of the truncated domain).

The regular grid in β from §2.3.1 is

βi � i , for i � 0, 1, 2, . . . ,N , (3.2.7)

and the corresponding irregular grid in φ is given by the function ϕ(β) from

(2.3.25),

φi � ϕ(βi), (3.2.8)

where we also define the mid-points

φi+1/2 � ϕ (i + 1/2) for i � 0, 1, 2, . . . ,N − 1. (3.2.9)

As stated previously, the majority of the equations in the algebraic system of

equations are given by equating the dynamic boundary condition (2.2.12) evalu-

ated at the mid-points φi+1/2 with the same equation evaluated at the final point

φN−1/2, thus

[
us (φ)2

+ vs (φ)2
+

2
F2

(
ys (φ) + p(xs (φ))

) ] φ�φi+1/2

φ�φN−1/2

� 0 (3.2.10)

for i � 0, 1, . . . ,N − 2. The values of us (φi+1/2) are determined by applying the

trapezoidal rule (B.5) to the integrals in (3.2.6). The pressure term can be calculated

once xs (φi+1/2) is known, which is found by applying the mid-point rule to the

integral (2.2.11)

xs (φi) �
1
2

i−1∑
j�0

us (φ j+1/2)
us (φ j+1/2)2 + vs (φ j+1/2)2ϕ

′( j + 1/2) (3.2.11)

for i � 0, . . . ,N, then (while still maintaining the order of approximation) using

the average xs (φi+1/2) ≈ 1
2 (xs (φi) + xs (φi+1)). As there is no known or fixed value

of ys (φ) to work from, unlike xs (0) � 0, we instead calculate the value ys (φi+1/2)−
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ys (φN−1/2). Using the midpoint rule in (2.2.10), and the same averaging as for

xs (φi+1/2), the following expression is derived:

ys (φi+1/2) − ys (φN−1/2) ≈
1
4

vs (φi+1/2)
us (φi+1/2)2 + vs (φi+1/2)2ϕ

′(i + 1/2)

−
1
2

N−2∑
j�i

vs (φ j+1/2)
us (φ j+1/2)2 + vs (φ j+1/2)2ϕ

′( j + 1/2)

−
1
4

vs (φN−1/2)
us (φN−1/2)2 + vs (φN−1/2)2ϕ

′(N − 1/2). (3.2.12)

The space of permissible solutions is explored by using the predictor-corrector

method described in §2.4 to determine solution branches on which F is fixed. We

choose value of B, which affects the width of the disturbance, to be 2.8 throughout

this chapter so that the distance between the inflexion points of the pressure dis-

turbance is approximately one. The qualitative nature of the results is fairly robust

to changes in B, although there are certainly differences in the wide disturbance

regime, when B � 1, that are not considered here. The uniform stream solution

for a fixed Froude number F > 1 is taken as a starting point for our calculations.

Given that solutions with one crest are found in the neighbourhood of the uniform

stream, there are initially N + 3 unknowns A, D, λ0 and vs (φi) for i � 1, . . . ,N (as

v(φ0 � 0) � 0, due to symmetry), and so N + 2 equations are required altogether.

Equation (3.2.10) provides the first N − 1 equations. Another two equations are

given by using the values vs (φN−1/2) and vs (φN−3/2), chosen to match the flow to

the linearised solution by equating real and imaginary components of equation

(3.2.4). The last equation we use is the relationship for λ0 given by (3.2.5).

For each computed solution, two-crest solutions were detected by searching

for any i such that vs (φi+1)vs (φi) < 0 with vs (φi) > 0. When this occurred,

the solution for which an additional crest was detected was interpolated onto a

new grid with an extra unknown φ[2] and an extra equation vs (φ[2]) � 0, and

the continuation algorithm was then resumed on this new system. Numerical
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solutions were checked to be independent of the choice of N and φm (the results

presented here are converged to within graphical accuracy). Typically N > 1000

and φm ≈ 10 in the computations. The choice of φm and the convergence of

solutions is presented in further detail in §3.2.2.

There are other ways to explore the solutions space rather than simply fixing

the Froude number. The branch of unforced waves can be computed using the

same continuation method as for the fixed-F solution branches, except now A � 0

is fixed and F is an unknown system parameter to be determined. Other branches

for fixed non-zero amplitude of forcing can be computed using the same approach.

Another useful branch of solutions is the branch for which the velocity at the crest

of the wave is fixed and small. As the velocity is small, these solutions are very

close to solutions with a Stokes’ corner flow at the crest, these are the waves which

we refer to as the ‘almost-highest’ waves. We will compute the almost-highest

waves using the unforced almost-highest solitary wave as a starting point. The

system of equations and unknowns is again similar to those just described, except

for the inclusion of a new equation umin − mini us (φi) � 0, with umin a fixed

(known) constant, and A and F are now considered unknowns in the system.

3.2.2 Irregular grid equations and convergence

So far the unknowns and equations required for the transform ϕ(β) from §2.3.1,

as well as the choice of the parameter δ � 1 which affects clustering near crests,

have been omitted from the system. The unknowns in the formula for ϕ(β) are

the values of λ[ j], and each adds a corresponding equation given by (2.3.26) to

the system, so as required by our continuation method, there is still one more

unknown than equations.

As shown in Appendix B, the error in the numerical evaluation of the integrals

is well behaved with respect to the number of grid points, however the effect
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of the width of the domain, φm, and the clustering parameter, δ, also needs to

be considered. Hunter & Vanden-Broeck [30] showed that for unforced almost-

highest waves, the linearised boundary condition allows for accurate solutions to

be obtained for φm ≈ 10, however the clustering parameter is not considered in

detail. Exact solutions are not available for most forced-wave problems and so to

determine the effect of φm and δ, solutions using less refined grids are compared

to solutions obtained by very refined grids to find an approximate value of the

error.

First we consider the convergence of the free surface as function of φm. The

grid spacing is held constant while the domain width is varied, to determine the

approximate error as a function of domain width. This leads to a visual analysis

of the region for which the solution is independent of φm.

The value ∆ � φm/N is used as a proxy for the grid spacing for our irregular

grid. An estimate of the error for a given less-refined grid with ∆ � ∆0 and a

particular value of the domain width φm � φ0 is the average error in the `∞ norm

over many values of φm for which a chosen high-resolution grid was computed. If

the highest-resolution grid was computed with φm ∈ (φmin, φmax) and ∆ � ∆high,

then the error in the lower-resolution solution with ∆ � ∆0 and φm � φ0 is

E(∆0, φ0) �
1

φmax − φmin

∫ φmax

φmin

∫ X

−X

���ηnum(∆0, φ0) − ηnum(∆high, φ̂)��� dx dφ̂,

(3.2.13)

where X � xs (φm) is the physical extent of the domain, ηnum(∆, φm) is a piece-

wise continuous polynomial, calculated using MATLAB’s spline(), fitted to the

numerical solution with grid spacing parameter equal to ∆ and domain width φm.

Newton’s method was used to find almost-highest solutions for different grids

with ∆ � 0.0275, 0.0241, 0.0201, 0.0149 and ∆high � 0.00688. The approximate

error was evaluated for two free-surface problems, one being an almost-highest

unforced solitary wave, the other being an almost-highest forced type-III wave. On
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Figure 3.2.2: Estimate of the average error E for us (0) � 0.05, ∆high � 0.00688,

φmin � 7 and φmax � 13 with B � 2.8. Panels (a) and (b) show results for the

unforced almost-highest wave with F � 1.29089 and the forced type-III wave with

F � 1.32 respectively.

any branch of solutions there are two parameters to fix, so we fixed us � 0.05 at the

crest and took F � 1.29089 for the unforced wave and F � 1.32 for the forced wave.

The system of equations for Newton’s method includes an additional equation

to fix the value of us at the crest of the wave, compared to the under-determined

system which we use to explore the solution space in this chapter. The forcing

parameter A is thus found as part of the solution.

The value of the inner integral in (3.2.13) was computed by fitting splines to the

free surface (using MATLAB’s fit() function) for twenty evenly spaced values

of φm in the range (7, 13), then applying MATLAB’s quad() routine. The outer

integral was then computed by the same spline-fitting and numerical integration

routine.

The logarithm of the approximate error as a function of φm is shown in figure

3.2.2 for the two types of wave. The almost-highest unforced wave is shown in

panel (a), and the almost-highest type-III wave is shown in panel (b). The error

is very stable for φm > 10, with the majority of the change in the error being
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attributed to changes in grid-spacing in this region. This was observed in all

the calculations presented in this chapter and in the following chapter where

topographical disturbances are investigated.

We observed during computations throughout that the continuation method

would fail to converge to a solution for values of φm significantly greater than those

considered here. We conjecture that this is a result of the exponential decaying free-

surface quantities being of similar magnitude to the numerical integration error.

This would cause the failure of the requirement that the solution be a regular point

of the system. Nevertheless, accurate free-surface profiles were clearly obtained

with values of φm ≈ 10, with the the number of grid points being the predominant

driver of error.

The effect of the clustering parameter δ is investigated in a very similar manner.

For a given less-refined grid with N � N0 and a particular value δ � δ0 the average

error is determined over the values of δ for which a chosen high-resolution grid

was computed. If the high-resolution grid was computed for δ ∈ (δa , δb) and

N � Nhigh grid points, then the error for a grid with N � N0 points and δ � δ0 is

E(N0, δ0) �
1

δb − δa

∫ δb

δa

∫ X

−X

���ηnum(N0, δ0) − ηnum(Nhigh, δ̂)��� dx dδ̂ (3.2.14)

where again X � xs (φm) is the physical extent of the domain, ηnum(N, δ) is a

piecewise continuous polynomial calculated using MATLAB’s spline() fitted

to the numerical solution given by a grid with N points and δ as the clustering

parameter.

The continuation method was well suited to finding the required solutions.

The solutions were obtained by fixing us at the crest of an almost-highest unforced

solitary, with F � 1.29089. The value of A comes as part of the solution, and δ

acts as the parameter for the one-parameter family of solutions. The value of the

inner integral was computed, again, by fitting splines to the free-surface solutions

found for a discrete set of values in δ ∈ (0.005, 0.2) (the discrete values are not
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Figure 3.2.3: Estimate of the average error E for F � 1.2909, Nhigh � 1600, δa �

0.005 and δb � 0.1 with B � 2.8. Panels (a) and (b) show results for velocity

us (0) � 0.08 and us (0) � 0.05 at the crest respectively.

necessarily the same for each continuation performed) for N � 400, 456, 548, 736,

and Nhigh � 1600 and applying MATLAB’s quad() routine. The outer integral was

then computed by the same spline fitting and numerical integration routine.

The results in figure 3.2.3 show that values of δ near to 0.01 yield a minimum

in the computed error for profiles with small velocities at the crest. The results

also suggest that too small a value of δ may adversely impact the convergence of

solutions for us (0) near zero. The value of δ is taken to be 0.01 for the rest of the

calculations in this chapter, and for the calculations performed in the following

chapter for topographical disturbances.

3.3 Results

3.3.1 Weakly nonlinear model discussion

The solutions to the forced KdV equation are explored first so that the fully non-

linear results can be classified with reference to these solutions. According to
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the weakly nonlinear model the solution’s orbit within the phase plane given by

(2.5.35) must begin and end with the saddle point at the origin for the supercritical

flows studied here; this is the mathematical manifestation of the physical require-

ment that the free surface must approach a uniform stream with unit depth in

both far upstream and downstream directions.

When the amplitude of forcing A is positive there are two types of solutions,

as found by Grimshaw & Smyth [27] and Miles [47], here denoted as type I and II;

these are illustrated in the phase-plane diagram of figure 3.3.4(b). The orbit in the

phase plane for these two types of solution starts with the saddle point, moving

in a clockwise direction along the homoclinic orbit in the upper half of the phase

plane. The jump condition (2.5.34) when A > 0 gives a jump downwards in the

phase plane. For the same value of A > 0 there are two positions at which the

phase-plane trajectory can jump vertically downwards onto the homoclinic orbit

in the lower half of the phase plane. The orbit through the phase plane for both

type I and II solutions then continues along the homoclinic orbit (in the lower-half

plane), returning to the saddle point. The weakly nonlinear type I solution has

a vertical jump to the left of the centre, and as A → 0 the solution approaches a

uniform stream. On the other hand, the weakly nonlinear type II solution has a

vertical jump to the right of the centre, and as A→ 0 the solution approaches the

unforced solitary wave solution. Hence, the solution types I and II can be classified

as perturbations of a uniform stream and (single) solitary wave, respectively.

The weakly nonlinear analysis in the phase plane shown in figure 3.3.4(d)

predicts three types of solution III, IV and V when A < 0. Solution types III

and IV were found as solutions to narrow disturbances by Miles [47], amongst

others, while type V was found as a solution to the fKdV equation for a narrow

disturbance by Malomed [44]. Starting with the saddle point, the solution types

III and IV both traverse the homoclinic orbit from the upper half to the lower half
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Figure 3.3.4: Forced solutions for the Froude number F � 1.26. Shown are (a)

the nonlinear profiles for A � 0.09; here the profile labelled type II is a forced

solitary wave with η(0) � 0.62 and the profile labelled type I is a perturbation

of a uniform stream with η(0) � 0.093; (b) the weakly nonlinear phase portrait

corresponding to (a) with η(0) � 0.12 and η(0) � 0.50, for the flow types I and II

respectively; (c) the nonlinear profiles for A � −0.09. The profiles labelled types

III and IV are forced solitary waves with η(0) � 0.55 and η(0) � 0.091 respectively.

The flow type V is a perturbation of a uniform stream with η(0) � −0.063; and

(d) the weakly nonlinear phase portraits corresponding to (c) with η(0) � 0.50,

η(0) � 0.12 and η(0) � −0.099, for the flow types III, IV and V respectively.
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of the phase plane, before jumping vertically upwards back onto the homoclinic

orbit in the upper half of the phase plane. The orbit in the phase plane for these

two solution types then continues around the homoclinic orbit terminating at the

saddle point. The type III solution exhibits a vertical jump to the right of the centre,

and as A → 0 the solution approaches the unforced solitary wave solution. The

type IV solution has a vertical jump to the left of the centre, and as A → 0 the

solution approaches two unforced solitary waves that are infinitely far apart. The

type III and IV solutions can therefore be classified as perturbations of a single

solitary wave and two solitary waves, respectively. The last type V solution, which

exhibits a jump between two unbounded phase-plane trajectories that intersect

with the saddle point, can be classified as a perturbation of a uniform stream.

For F � 1.26 and the values of A given in the caption, the fully nonlinear

solutions plotted in figure 3.3.4(a) and (c) can be compared with the weakly non-

linear phase-plane diagrams of figure 3.3.4(b) and (d) respectively. The qualitative

agreement between the weakly and fully nonlinear calculations is excellent. Due

to the similarity in the solution space the fully nonlinear profiles, even the very

steep profiles, are classified according to their weakly nonlinear counterparts; we

will elaborate on some of the finer details regarding the classification of very steep

waves next.

3.3.2 Fully nonlinear solution space

In figures 3.3.5(a)–(d) each panel shows two sets of solutions for a fixed value

of F plotted as curves in the (A, η(0))-plane, obtained from the nonlinear (solid

curve) and weakly nonlinear (dotted curve) calculations. In addition a set of

almost-highest solutions is plotted (two dashed curves) which have a fixed, but

small, velocity at the crest rather than a fixed value of F. For 1 < F < 1.26 the

qualitative nature of the solution space in the (A, η(0))-plane was found to be
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Figure 3.3.5: Plots of the variation of η(0) versus forcing amplitude for the four

values of Froude number F � {1.26, 1.262, 1.2909, 1.32}. The solid curves are

derived from the fully nonlinear calculations. The dotted curves indicate values

derived from the weakly nonlinear analysis. The dashed curves in (a)–(d) are

the locus of the ‘near-limiting’ values, with u � 0.05 at the wave crests. The

markers in (a) indicate the location in parameter space of the unforced solution

and the five types of forced solution shown in figure 3.3.4, whereas in (b) they

identify the forced almost-highest solitary waves, in (c) the upper and two lower

markers denote the unforced and forced (type indicated next to marker) almost-

highest solitary waves respectively, and finally in (d) all markers denote forced

almost-highest solitary waves, with types indicated.
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the same for the fully nonlinear and weakly nonlinear system, with the ‘loop’

contracting towards the origin as F → 1, with a tail in the lower-half plane as

A → −∞. The number of parameters required to determine a fully nonlinear

solution is exactly as per the weakly nonlinear solution. The weakly nonlinear

results, whilst still providing good qualitative agreement with the fully nonlinear

calculations, begin to diverge from the fully nonlinear results as F increases away

from 1. For F > 1.26 the solid curve obtained from the numerical continuation of

the nonlinear problem becomes disconnected (see figures 3.3.5(b)–(d)), which is

not predicted by the weakly nonlinear analysis.

We note that all of the almost-highest waves are perturbations of either one

or two solitary waves, not uniform streams, and are classified according to their

corresponding weakly nonlinear counterparts as being of either type II, III or IV.

The upper dashed curve in figure 3.3.5 are the almost-highest type II waves which

have a single crest, while the dashed curve which emanates from the origin into

the left-hand side of the upper half of the (A, η0)-plane begins with solutions of

type IV with two crests, as it is traversed upwards, it reaches a turning point after

which the solutions are all considered of type III, with a cusp-like appearance

at the crest. The key difference between the type-II and type-III solutions is the

presence of the cusp, the presence of which is maintained on the almost-highest

branch as the height increases up to the limit of the computational scheme used

here, near η(0) ≈ 1.3.

The almost-highest forced type-II waves do not all have F � Fu, the Froude

number corresponding to the highest unforced solitary wave. The markers in

figure 3.3.5(b) indicate two almost-highest waves with F � 1.262, where the branch

of solutions for fixed F is now disconnected. As the value of the Froude number

increases, to F � 1.2909 ≈ Fu in figure 3.3.5(c), and F � 1.32 in figure 3.3.5(d), the

distance between the two markers on the upper almost-highest solution branch
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in the (A, η(0))-plane increases. The left-most marker in figure 3.3.5(b), when

F � 1.262, corresponds to a type-II solution shown in figure 3.3.7(a), and the

corresponding marker for F � Fu in figure 3.3.5(c) indicates the unforced wave

shown in figure 3.3.6(a). Finally, as this marker moves towards the position shown

in figure 3.3.5(d) for F � 1.32, it corresponds to a type-II solution shown in figure

3.3.9(a). This last solution is new, and is classified as a perturbation of a single

solitary wave, but differs from the corresponding weakly nonlinear solution as

it lacks a cusp at the centre of the wave; this is a result of the non-singular and

smooth pressure disturbance in the fully nonlinear calculations.

The almost-highest type-IV solutions all have F ≈ Fu, which can be explained

by the fact that the position of the two wave crests for wave form IV are a consider-

able distance away from the centre of the free-surface pressure distribution (2.1.2).

As the wave crests are not affected by the localised forcing of the pressure and

are therefore effectively unforced, they retain the limiting value of F being very

close to Fu. The lower marker on the branch of almost-highest type IV solutions

in figure 3.3.5(c) corresponds to the profile (solid curve) in figure 3.3.8(a). Once

the solutions along this branch are considered of type III, the value of F for the

almost-highest wave varies. It can be seen that as the type-III marker moves

up to its location in figure 3.3.5(d) the value of F has increased to 1.32 for the

almost-highest wave (shown in figure 3.3.10(a)); as F increases further, so does the

height of the centre of the wave.

The results presented in figure 3.3.6–3.3.10 show the detail in the solution space;

clearly demonstrating the non-uniqueness for a fixed forcing when the waves

are very steep. These solutions were computed using solutions found in figure

3.3.5(c)–(d) as starting points, with the amplitude of forcing fixed as previously

described in §3.2. The layout of the panels (a)–(d) in figure 3.3.7–3.3.10 is described

next, with reference to the well known results of the unforced case shown in figure
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3.3.6.

Figure 3.3.6(a) shows the elevation of the free surface for two unforced nonlin-

ear waves, broken and solid curves respectively, that are both close to the Stokes

limiting configuration, for the same value of the Froude number F � Fu. The

broken and solid curves plotted in figure 3.3.6(b) show the angle θ the free surface

makes with the horizontal for each of the two profiles shown in figure 3.3.6(a).

Following Longuet-Higgins & Fox [40] and others, we define the parameter

ω � 1 − (us (φc)F)2, (3.3.15)

where φc is the location of the wave-crest. This parameter represents a rescaled

wave-height, with a maximum value ω � 1, corresponding to waves with a Stokes

limiting configuration. Figure 3.3.6(c) shows a plot of the Froude number against

the wave-height parameter ω, close to the Stokes limiting configuration.

A plot of the total energy E � T + V versus ω is shown in figure 3.3.6(d). The

total energy E is evaluated using the numerical solution for the free-surface on the

irregular grid using the following quantities;

mass � M �

∫
∞

−∞

η dx;

kinetic energy � T �

∫
∞

−∞

∫ 1+η

0

1
2

(
(u + 1)2

+ v2
)

dy dx;

potential energy � V �
1
F2

∫
∞

−∞

1
2
η2 dx;

circulation � C �

∫
∞

−∞

(u + 1, v) · dx �
[
φ(x , 1) − x

] x�∞
x�−∞ .

The circulation C is estimated by using the values of φ and x on the free surface at

the end-points of the truncated domain rather than at x � ±∞, while M and V are

estimated using the trapezoidal rule on the free surface. The kinetic energy T is

calculated using the result from Longuet-Higgins & Fenton [39],

2T � M − C. (3.3.16)
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One of the striking features of the unforced solutions is the oscillatory nature

of the values of F and E as the solution approaches the limiting configuration, i.e.

as ω → 1; see figure 3.3.6(c) and (d). For a grid size with N � 1000, these results

show the first two turning points of the oscillation; it has been conjectured by

Longuet-Higgins & Fox [40] that there are infinitely many oscillations (decreasing

in amplitude) as ω → 1 in the unforced case. The solid lines in figure 3.3.6(c)

and (d) are nearly coincident with the cross markers which show the numerical

results of Longuet-Higgins & Tanaka [41]. The agreement in the values for the

Froude number F is excellent, while the energy E obtained from these results is

slightly less accurate due to the use of the trapezoidal rule to estimate the mass M

and potential energy V ; nevertheless the presence of at least two local extrema as

ω → 1 is clear. By using a more refined grid with twice as many grid points, the

third turning point of F and E could be obtained by this method.

We now have evidence of the oscillatory behaviour which has been observed

in the unforced case also being present in the forced solutions as they approach the

limiting configuration; see figures 3.3.7–3.3.10(c) and (d). Two local extrema were

observed for both F and E for all the branches observed as ω → 1. It is possible

that further local extrema, or even infinitely many, could be found as ω → 1, much

like the unforced case [40], although this cannot be properly established by these

numerical results. We do not pursue this matter here.

Another feature that is common between the forced and unforced solutions

is that all solution-types which are perturbations to solitary waves, approach

the Stokes limiting configuration of an included angle of 120◦ and a stagnation

point at their crests, although there is an additional effect on the crest due to

the nearby pressure disturbance found for the type III solutions. The angle of

the computed free surfaces (figures 3.3.6(b)–3.3.10(b)) illustrate the near-Stokes

limiting configuration by way of a rapid change from π/6 to −π/6 near the crest,
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Figure 3.3.6: Results for unforced solitary waves. Shown are (a) the free-surface

profiles for a value of the Froude number F � 1.2909, solid and dashed curves

are for values of ω � 0.995 and ω � 0.849, respectively; (b) a plot of θ versus x

for (a) ; (c) and (d) plots of the Froude number F and wave energy E versus ω

defined in 3.3.15, respectively. Circular markers in (c) indicate the location of the

profiles shown in (a), while crosses indicate the numerical results obtained by

Longuet-Higgins & Tanaka [41] for almost-highest waves.
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Figure 3.3.7: Forced solitary waves of type II, with amplitude of forcing A � 0.07.

Shown are (a) nonlinear profile for a value of the Froude number F � 1.262, the

solid and dashed curves are for values of ω � 0.998 and ω � 0.932, respectively; (b)

plot of free-surface angle θ versus x for (a); (c) and (d) plots of the Froude number

F and wave energy E versus ω, respectively. Markers in (c) indicate location of

profiles shown in (a).
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Figure 3.3.8: Forced solitary waves of type IV, with amplitude of forcing A � −0.10.

Shown are (a) Free-surface profile for a value of the Froude number F � 1.2909, the

solid and dashed curves are for values of ω � 0.995 and ω � 0.850, respectively;

(b) plot of θ versus x for (a); (c) and (d) plots of the Froude number F and wave

energy E versus ω, respectively. Markers in (c) indicate location of the profiles

shown in (a).
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Figure 3.3.9: Forced solitary wave of type II with amplitude of forcing A � −0.0441.

This type of solution is not predicted by the weakly nonlinear analysis. Shown

are (a) Nonlinear profiles for a value of the Froude number F � 1.320, solid and

dashed curves are for values of ω � 0.985 and ω � 0.776, respectively; (b) Plot of

θ versus x for (a); (c) and (d) plots of the Froude number F and wave energy E

versus ω, respectively, markers in (c) indicate the location of the profiles shown in

(a).
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Figure 3.3.10: Forced solitary wave of type III with amplitude of forcing A � −0.157.

This type of solution is not predicted by the weakly nonlinear analysis. Shown

are (a) Nonlinear profiles for a value of the Froude number F � 1.321, solid and

dashed curves are for values of ω � 0.989 and ω � 0.891, respectively; (b) Plot of

θ versus x for (a); (c) and (d) plots of the Froude number F and wave energy E

versus ω, respectively, markers in (c) indicate the location of the profiles shown in

(a).
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except in the case of figure 3.3.10(b). At the crests of the solution shown in figure

3.3.10(b), the plot shows a rapid change in θ of similar magnitude, but shifted

vertically. This indicates that the corner flow has the same included angle but the

left and right crests are perturbed by a small rotation; counter-clockwise for the

left crest, and clockwise for the right. This is consistent with a modified Stokes’

analysis, as we now demonstrate.

To proceed with the analysis, we adopt a reference frame given by the com-

plex coordinate z̃ � x̃ + i ỹ where x̃ � x − xc and ỹ � y − (1 + ηc). xc is the

horizontal displacement of the crest relative to the pressure disturbance, and ηc

is the displacement of the crest from a uniform stream. In this reference frame

the crest is at the origin in the z̃ plane. Dropping the tilde notation from here on

(but maintaining the new reference frame), the complex potential near the crest is

assumed to be of the form f (z) � φ(z) + iψ(z) � Re iτzn for real numbers R and τ

with the index n > 1 to be determined.

In these coordinates, equation (2.1.2) is

p(x; A, B, xc) �
AB
√
π

e−(B[x+xc])2
.

Expanding the pressure disturbance in x about x � 0 using a Taylor series gives

p(x; A, B, xc) � Â
(
1 − xB̂

)
+ · · ·

where Â � ABπ−1/2e−(Bxc )2
and B̂ � 2Bxc , and here · · · denotes higher-order

terms.

Bernoulli’s equation (2.1.7), under the assumption that for small x the stream-

line of the free surface is asymptotically y � m+x downstream, and y � m−x

upstream, combined with the expansion of the pressure term, gives

R2n2((1 + m±2)x2)n−1
+

2
F2

(
m±x + ηc + Â

(
1 − xB̂ + · · ·

) )
� 1. (3.3.17)

As x → 0 the leading-order component of (3.3.17) yields 2(ηc + Â)/F2 � 1. To

determine the index n, we proceed to higher-order terms and balance the O(x2n−2)
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terms with the O(x) term in (3.3.17), this yields the value n � 3/2. Substituting

this value in to (3.3.17) it follows that

R �
2

3F

√√√
±2

(
ÂB̂ − m±

)
√

1 + m±2
,

where the ± is taken on the downstream and upstream sides respectively, and

ÂB̂ > m+ for x > 0, and ÂB̂ < m− for x < 0. As R is a constant, the following

equation needs to be satisfied

(ÂB̂ − m+)
√

1 + m−2 + (ÂB̂ − m−)
√

1 + m+
2 � 0. (3.3.18)

For the assumed form of the potential and the flow domain Im
(

f
)
∈ (−1, 0) (a

condition imposed by the non-dimensionalisation chosen here), it follows that if

the downstream streamline of the free surface is given by z+(r) � re iθ+ , and the

upstream streamline is given by z−(r) � re iθ− then

θ+ � −
2
3
τ and θ− � −

2
3

(τ + π).

As fz � φx − iφy and φy/φx is the slope of the streamline, then since

d f
dz

�
3R
2

e iτz1/2

a relationship between τ and m± is found by substituting z− and z+ into the above

expression and applying the previous two equations relating τ and θ±;

tan
(2

3
τ
)
� −m+ and tan

(
π
3
−

2
3
τ
)
� m−. (3.3.19)

Solving equations (3.3.18) and (3.3.19) serves to determine the slope m± of the

downstream and upstream surfaces, which must have an included angle of 120◦.

These provide the same result as that of Stokes when xc � 0 (and when A � 0), i.e.

when the pressure disturbance is at the location of the crest (or when there is no

pressure disturbance). In this case the flow has a crest with a 120◦ included angle

and it is symmetric in the sense that −m+ � m− � tan(π/6).
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When xc , 0 and A , 0 then the solutions to (3.3.18) and (3.3.19) suggest

a crest that will be re-orientated, but still having a 120◦ included angle. When

xc is positive, the crest is rotated slightly clockwise and when xc is negative the

crest will be rotated counter-clockwise, similar to figure 3.3.10(b). As |xc | gets

large, the solutions will limit to −m+ → m− and m− → tan(π/6), so the symmetric

result will be observed for crests that are far from the pressure disturbance, as in

figure 3.3.8(b).

3.4 Conclusion

The solution space for the forced waves and the presence of almost-highest forced

solitary waves has been established. The forced solutions that approach the Stokes

limiting configuration consist of perturbations of either one or two solitary waves.

For all values of the Froude number F > 1.262, almost-highest type II waves

with amplitude of forcing A > 0 exist, as seen in figures 3.3.5(b)–(d) (right-most

markers). The almost-highest unforced and forced type IV waves, where A < 0,

exist for the value F � Fu. When the Froude number F > Fu there are almost-

highest type II and III waves with A < 0, as shown in figure 3.3.5 (d) (left-most

and upper markers).

The nearby forcing for the almost-highest type III solution has the effect of

altering the orientation of the limiting configuration of the crests, visible in figure

3.3.10(b). For single crested waves the limiting configuration is symmetric about a

vertical axis, and the crest has an included angle of 120◦. For the type III wave the

included angle is still 120◦ at each crest, however the downstream crest is rotated

slightly clockwise and the upstream crest is rotated slightly counter-clockwise

from a horizontal orientation. This result is consistent with the modified Stokes’

analysis presented at the end of §3.3.
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We have shown that, like unforced waves, the total energy of the forced waves

passes through local maxima and minima as the wave-height is increased. This

raises a question about the stability of the forced waves, given that for unforced

waves the first local maxima is associated with a superharmonic, i.e. short wave-

length, instability [32, 40, 60].

The stability of the forced solutions prior to reaching the almost-highest waves

is investigated in Chapter 5. The weakly nonlinear theory provides a model of

the behaviour in this regime [14, 28]. The linearisation of the fKdV about steady

solutions is considered numerically [18], as well as the results of time-dependent

simulations using spectral or finite-difference code for the fKdV equation with a

Gaussian forcing term.



3.4. CONCLUSION 64



Chapter 4

Waves past a localised topographical

disturbance

4.1 Introduction

The solution space of almost-highest waves subject to a topographical disturbance

is presented in this chapter. The topography is assumed flat except for a localised

disturbance like a bump or a dip in the channel, the latter case is shown schemati-

cally in figure 4.1.1. As for the case of the pressure disturbances, we only consider

u � 1

1y
x

σ

η

1

downstreamupstream

Figure 4.1.1: Schematic of the flow considered in this chapter, with zero pressure

on surface, topography given by equation (2.1.3) and symmetry about x � 0.

65
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supercritical flow (F > 1), and the topography is assumed to be symmetric about

the vertical axis, where the shape of the topography is given by equation (2.1.3).

For comparison with the results for a pressure disturbance, only symmetric steady

solutions are considered, and so this symmetry is utilised in the formulation of

the free-surface problem. The specific details of the numerical procedure for find-

ing solutions to the fully nonlinear model are given in §4.2, using the numerical

methods outlined in Chapter 2.

The time-dependent response of resonant flow past a topographical distur-

bance has received considerable attention due to the phenomenon of the generation

of upstream advancing solitary waves [4, 13, 27, 36, 70, 71]. The consistent result of

these investigations, using weakly nonlinear and fully nonlinear approaches, has

been that the free surface near to the disturbance will tend towards a perturbation

to a uniform stream, however the solution space of steady solutions is still not

entirely established.

For the steady supercritical flow past a bump, the perturbations to uniform

streams and solitary waves were computed by Forbes & Schwartz [23] and Vanden-

Broeck [65] using a boundary-integral method. Dias & Vanden-Broeck [15] and

Elcrat & Miller [21] also computed limiting configurations for a triangle shaped

obstacle with a boundary-integral method, but did not explicitly comment on

whether the non-uniqueness observed for the unforced flows as they approach

limiting configurations was observed. Using the weakly nonlinear theory, a

parametric map of these solutions was found by Ee & Clarke [18].

Perturbations to solitary waves were found via weakly nonlinear theory by

Shen [53] as solutions to flow past a trench, and a parametric map of these solutions

was determined by Ee et al. [20]. Some corresponding fully nonlinear profiles have

been computed using boundary-integral methods [8, 10], however very steep

waves near limiting configurations have yet to be computed.
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In §4.3 we find that the space of solutions differs considerably from that found

for a pressure disturbance, in particular when the amplitude of forcing is negative,

i.e. for a flow past a trench. The solutions for flow past a trench extend into a

region with very deep trenches where, for a fixed value of F, an increase in the

amplitude of the topographical disturbance no longer has a significant impact on

the shape of the free surface. It is found that only the flow near the topography

is affected by the increase in the amplitude of the forcing. The true physical flow

past a very deep trench would likely differ from these results. In the real setting it

would be expected that the boundary layer would separate from the topography,

and viscous effects which dominate this region are not modelled in potential flow

considered here.

As the wave-height increases the solutions identified as a perturbation to a

solitary wave with a single crest, or a perturbation to two solitary waves, approach

the Stokes limiting configuration of a wave with a 120◦ included angle and stag-

nation point at the crest, or crests in the latter case. In the case of a perturbation

to a solitary wave with a cusp, the solutions approach a wave with a single crest

as the wave-height increases. We find that as the topographically forced solu-

tions approach a Stokes limiting configuration, many properties of the wave are

non-unique with respect to the height of the wave, as per the results for unforced

waves [40, 43]. In §4.4 some concluding remarks are made about the results and

potential future work.

4.2 Formulation

In contrast to the calculations for flow past a pressure disturbance in the previous

chapter, which utilised equation (2.2.22), we use equation (2.2.24) to form the

system of equations for the free surface. This equation gives τs (φ) explicitly using
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θs (φ), rather than us (φ) via the integral transform of vs (φ).

The symmetry exploited in the formulation of equation (3.2.6) for the waves

past a pressure disturbance is also used here, and so again only one half of the

wave is needs to be computed. By exploiting the symmetry for the free surface,

namely

θs (−φ) � −θs (φ) and τs (φ) � τs (−φ),

the principal-value integral in (2.2.24) is transformed by an appropriate change of

variables to a familiar form;

τs (φ) �
1
2
−

∫
∞

0
G(φ, φ̂) dφ̂︸                  ︷︷                  ︸
�I1(φ)

−

∫
∞

−∞

θb (φ̂)

eπφ̂ + eπφ
eπφ̂ dφ̂︸                       ︷︷                       ︸

�I2(φ)

for −∞ < φ < ∞, (4.2.1)

where

G(φ, φ̂) �
θs (φ̂)

eπ(φ+φ̂) − 1
+

θs (φ̂)

1 − eπ(φ−φ̂)
+

θs (φ̂)

eπ(φ̂−φ) − 1
+

θs (φ̂)

1 − e−π(φ+φ̂)
. (4.2.2)

The principal-value integral in equation (4.2.1) is denoted I1(φ). This is treated

in a similar manner to the corresponding integral in equation (3.2.1) from the

pressure-disturbance calculations presented in the previous chapter, except for

a difference in the evaluation of the contributions from the far field which will

be discussed next. Following this the non-principal-value integral in equation

(4.2.1), denoted I2(φ), is examined. In the pressure-disturbance calculations the

analogous non-principal value integral was exactly zero, however here it will be

evaluated numerically as the angle of the topography θb (φ) is generally non-zero.

The semi-infinite domain for the term I1(φ) in equation (4.2.1) is split into a

finite and a semi-infinite segment to prepare for the use of the trapezoidal rule

(B.5), so

I1(φ) �
1
2
−

∫ φm

0
G(φ, φ̂) dφ̂ +

1
2

∫
∞

φm

G(φ, φ̂) dφ̂ for −φm < φ < φm (4.2.3)
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where φm � 1 is the domain truncation parameter. By removing the singularity

and applying equations (2.2.23), (D.11) and (D.12) to approximate the contribution

from the far-field, equation (4.2.3) yields

I1(φ) ≈
1
2

∫ φm

0
coth(π(φ̂ + φ)/2)(θs (φ̂) + θs (φ)) dφ̂

+
1
2

∫ φm

0
coth(π(φ̂ − φ)/2)(θs (φ̂) − θs (φ)) dφ̂ +

θs (φ)
π

ln
�����
sinh(π(φm − φ)/2)
sinh(π(φm + φ)/2)

�����

+

∫
∞

φm

arctan *
,

De−λ0φ̂ sin λ0

1 + De−λ0φ̂ cos λ0

+
-

eπφ̂

eπφ̂ − eπφ
dφ̂

+

∫
−φm

−∞

arctan *
,
−Deλ0φ̂ sin λ0

1 + Deλ0φ̂ cos λ0

+
-

eπφ̂

eπφ̂ − eπφ
dφ̂. (4.2.4)

As per equation (3.2.1), the singular term is well-enough behaved provided the

grid does not attempt to evaluate I1(φ) for φ ≈ φm. As θs decays exponentially

a larger value of φm helps reduce the chance of any difficulty associated with

subtractive cancellation.

The last two integrals in (4.2.4) are the contributions from the far-field, which

we denote as I3(φ) and I4(φ) respectively. A convenient expression in terms of

special functions was not found for these terms, unlike the corresponding terms in

the calculation of us (φ) given by (3.2.6). As there is no simple expression for the

integral, the far-field terms are computed by converting the domain of integration

to a finite interval using a change of variables, and applying standard numerical

integration routines.

The mapping applied to the integral I3(φ) can be viewed as two separate

mappings, the first is simply returning to the α variable from (2.2.8), and then a

second mapping is used to smooth the behaviour of the integrand and reduce the

appearance of any sharp gradients. These mappings are given by

eπφ̂ � α̂(ξ̂) � eπφm +
1 − ξ̂γ

ξ̂γ
.
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Figure 4.2.2: Integrand of I3 from equation (4.2.4) after a transform from φ̂ → ξ̂,

for values φ � 10.9, D � 0.5, λ � 0.9 and φm � 11

By applying these mappings, the finite domain form of the integral is

I3(φ) �
γ

π

∫ 1

0
arctan *

,
De−λ0α̂(ξ̂)/π sin λ0

1 + De−λ0α̂(ξ̂)/π cos λ0

+
-

1

α̂(ξ̂) − eπφ
1

ξ̂γ+1
dξ̂. (4.2.5)

The integrand from the preceding equation is shown for varying γ in figure 4.2.2 to

determine its sensitivity to changes in γ. For a typical value of φm, λ and a value

of φ close to φm (where the integrand obtains steeper gradients), the behaviour

of the integrand over the domain appears reasonable for γ > 10. Based on this

observation, we chose to use a value of γ � 25 for the calculations in this chapter.

The mapping for the integral I4(φ) is simply a mapping back to the α variable,

eπφ̂ � α̂. Using this change of variables in the expression for I4(φ) we obtain

I4(φ) �
1
π

∫ e−πφm

0
arctan

(
−Deλ0α̂/π sin λ0

1 + Deλ0α̂/π cos λ0

)
1

α̂ − eπφ
dα̂. (4.2.6)

This integrand displayed smooth behaviour and manageable gradients for typical

values of D , λ0 and φm, and for all values of φ required by the system of equations.

Equations (4.2.5) and (4.2.6) were efficiently computed with a relative error of

10−7 using adaptive 21-point Gauss-Kronrod quadrature methods supplied by GSL

[24], requiring about three hundred function evaluations or less.
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The topography given by (2.1.3) could be solved for by applying a similar

discretisation scheme and iterative procedure as for the free surface, however this

is considered computationally expensive. Rather than specify an exact topography,

we approximate θb (φ) as given in (2.1.3) in a way that retains two key properties;

the general appearance of a smooth trench or a bump, and the width of the

disturbance must be approximately constant when l is fixed. We now outline the

method to compute the non-principal value integral I2(φ) in (4.2.3). The precise

shape for the topography given by equation (2.1.3) is not important in what follows,

so some approximations are made such that an efficient expression is found for

the function θb (φ) which is seen in the expression for I2(φ). The approximations

used maintain the important features of the topographical disturbance such as its

localisation and the general trench or bump-like appearance.

First we utilise the approximation that in equation (2.1.3) the variable x can be

replaced by φ to a reasonable degree of accuracy, particularly when the topography

has small curvature. Using this substitution we obtain

σ(φ) �
A
2l

(
tanh S(φ + φc) − tanh S(φ − φc)

)
, (4.2.7)

where the unknown quantity φc is the location of the downstream point of inflex-

ion in the topography. To maintain the localised nature of the disturbance the

following equation must be satisfied

xb (±φc) � ±l/2. (4.2.8)

The angle of the topography θb is then approximated by using the approximation
d

dx σ(x) ≈ d
dφσ(φ), thus

θb (φ) ≈ arctan
(

dσ
dφ

)
. (4.2.9)

The precise shape of the topography will now come as part of the solution to

the free surface, rather than being specified by (2.1.3). However, the value of φc
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must be found as part of the solution, and so (4.2.8) should be included in our

system of equations. For this reason the calculation of xb (φc) is required, and the

numerical method we use for this is outlined in §4.2.1.

Given that we now specify the topography using (4.2.9), the expression for

I2(φ) is

I2(φ) �
∫
∞

−∞

arctan
(AS

2l

[
sech2S(φ̂ + φc) − sech2S(φ̂ − φc)

] ) eπφ̂

eπφ̂ + eπφ
dφ̂.

(4.2.10)

The integral in equation (4.2.10) is non-singular and is evaluated, like I3(φ)

and I4(φ), by using a mapping to a finite domain, ξ̃ ∈ [−1, 1]. The mapping used

for this is given by

φ̂(ξ̃) �
φc tanh−1(ξ̃)

tanh−1(1/2)
.

This has the property that ξ̃ � ±1/2 7→ φ̂ � ±φc, which assists in maintaining the

general shape of the integrand for all values of φc. A typical calculation may have

parameter values φc � 0.5, S � 10 and A � 0.1. The integrand from (4.2.10) is

evaluated at varying φ for these parameter values in figure 4.2.3, demonstrating

the behaviour of the integrand in the finite domain. Using the same adaptive

Gauss-Kronrod routine, the integral can be computed with a relative error of 10−7

typically using three hundred function evaluations or less.

4.2.1 Inflexion point of topography

The value of xb (φc) is computed using the analogue of equation (2.2.11) for the

topography, namely

xb (φc) �
∫ φc

0
e−τb (φ) cos θb (φ) dφ. (4.2.11)

The integrand is the product of two factors, e−τb (φ) which can be evaluated
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Figure 4.2.3: Plot of the integrand of (4.2.10) after transforming from φ̂ → ξ̃ for

φc � 0.5, S � 10 and A � 0.1

using the boundary integral result given by (2.2.21), and θb (φ) which is given by

equation (4.2.9).

Using equation (2.2.21), we find

τb (φ) �
∫
∞

−∞

θs (φ̂)

eπφ̂ + eπφ
eπφ̂ dφ̂︸                       ︷︷                       ︸

I5(φ)

− −

∫
∞

−∞

θb (φ̂)

eπφ̂ − eπφ
eπφ̂ dφ̂︸                        ︷︷                        ︸

I6(φ)

. (4.2.12)

The first integral I5(φ) is a non-principal-value integral and is evaluated by

using the trapezoidal rule over the truncated domain determined by the computa-

tional grid discussed in §4.2.2. The contributions from both far upstream and far

downstream are given by mapping the semi-infinite domains to a finite domain

and applying the linearised result for θs . The mappings used are the same used to

derive equations (4.2.5) and (4.2.5) for I3(φ) and I4(φ) respectively.

The second integral I6(φ) is a principal-value integral and is evaluated by trun-

cating the domain and removing the singularity. There is considerable freedom

for choosing the truncated domain, as unlike the integrals over the free surface,

the angle of the topography is known for all φ ∈ R. For this integral the trunca-

tion is chosen so that the contributions from far upstream and far downstream
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are negligible, and no effort is spent on mapping the semi-infinite upstream or

downstream domains. The domain is truncated at φn � max(2φc, φm), that is

either at the usual limit from the computational domain of the free surface, or at

least twice as far in φ from the inflexion of the topography, whichever is greater.

The truncated integral is then computed using standard routines supplied by GSL.

4.2.2 Numerical procedure

An algebraic system of equations is formed by equating the dynamic boundary

condition (2.2.12) evaluated at the mid-points φi+1/2 with the same equation

evaluated at the final point φN−1/2. We again use the regular grid in the variable

β (and hence an irregular grid in φ) given by equations (3.2.7)–(3.2.9). Using the

transformed velocity τs the equations are

[
exp(2τs (φ)) +

2
F2 ys (φ)

] φ�φi+1/2

φ�φN−1/2

� 0 (4.2.13)

for i � 0, 1, . . . ,N − 2, using p ≡ 0 on the free surface.

The values of τs (φi+1/2) for i � 0, 1, . . . ,N − 1 are calculated by applying

the trapezoidal rule to the principal-value integral in (4.2.4) and evaluating the

other terms as outlined in the previous subsections. As there is no fixed value

of ys (φ), the quantity ys (φi+1/2) − ys (φN−1/2) is calculated via the mid-point rule

and averaging, the same approach taken to derive equation (3.2.12). The resulting

expression is;

ys (φi+1/2) − ys (φN−1/2) ≈
1
4

exp(−τs (φi+1/2)) sin(θs (φi+1/2))ϕ′(i + 1/2)

−
1
2

N−2∑
j�i

exp(−τs (φ j+1/2)) sin(θs (φ j+1/2))ϕ′( j + 1/2)

−
1
4

exp(−τs (φN−1/2)) sin(θs (φN−1/2))ϕ′(N − 1/2).
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The solution space of the algebraic system of equations is explored with the

predictor-corrector method from §2.4. The correct number of unknowns and

equations must be identified, with one more unknown than equations required by

the predictor-corrector method. We fix the steepness parameter for the topography,

and the distance between the inflexion points of the topography, so S � 10 and

l � 1 is used throughout this chapter. The choice for l ensures that the width of

the topographical disturbance is similar to the width in the pressure-disturbance

calculations from Chapter 3. The clustering parameter for the irregular grid δ is

fixed at 0.01 again, as in Chapter 3.

For solution branches with a fixed value of F, presented in §4.3, the unknowns

in the system are the amplitude of forcing A, the topography parameter φc , the

quantities D and λ0 from the linearised far-field solution, the angle of the free

surface θs (φi) for i � 1, . . . ,N, where θs (φ0 � 0) � 0 is already known due to

symmetry, and the unknowns required by the transform ϕ(β) from §2.3.1, λ[ j].

There are thus N + 4 unknowns, excluding the λ[ j] that vary in number depending

on the number of crests.

The first N + 2 equations in the system are; the N − 1 equations (4.2.13); two

equations matching the linearised solution for θs (φN−1/2) and θs (φN−3/2) given

by (3.2.4); and the equation for λ0 given by (3.2.5). To make N + 3 equations, the

equation which ensures localised topography, (4.2.8), is included in the system.

The system also has one equation for each λ[ j], given by equation (2.3.26), thus

maintaining one more unknown than equations as required.

As before, two-crest solutions are detected along these fixed-F branches by

searching for any i such that θs (φi+1)θs (φi) < 0 with θs (φi) > 0. When this

occurs, the solution for which an additional crest was detected is interpolated onto

a new grid with the extra unknown φ[2] and the extra equation θs (φ[2]) � 0, and

the continuation algorithm proceeds from this starting point for the new system
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of equations.

There are two other types of solution branch which are used to examine the

solution space. Branches with fixed amplitude of forcing A are computed using

the same system of equations as above by allowing F to be an unknown that is

determined as part of the solution. The almost-highest branches, those with a

small velocity at the crest, are computed by allowing both A and F considered

unknown, and the equation umin −mini eτs (φi ) cos θs (φi) � 0 is included in the

system with umin a fixed constant.

4.3 Results

The solutions for the fully nonlinear model of a flow with a topographical dis-

turbance are classified using the counterparts from the weakly nonlinear theory.

The solution space is explored in the (Â, η(0))-plane, where Â is the area of the

topographical disturbance. The weakly nonlinear theory predicts that the topo-

graphical disturbance will behave the same as the pressure disturbance for F

close to one. This is found to be true for the nonlinear solutions, and is a useful

starting point for navigating the nonlinear solution space of the topographical

disturbances.

The area of the topographical disturbance, Â, is given by

Â �

∫
∞

−∞

yb (φ) dφ. (4.3.14)

The parameter Â is calculated after the free surface has been found. The right-hand-

side of equation (4.3.14) is calculated numerically by applying domain truncation

and adaptive Gauss-Kronrod quadrature (supplied by GSL) to the equation

yb (φ) �
∫ φ

−∞

e−τb (φ) sin θb (φ) dφ.

The τb (φ) term in the above integrand is evaluated as discussed in §4.2.1.
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Figure 4.3.4: Forced solitary waves past topographical disturbances with F � 1.1.

Shown are (a) nonlinear profiles of type-I and type-II waves for Â � 0.04, and

η(0) � 0.0858 and 0.167 respectively, and (b) nonlinear profiles of waves of type

III, IV and V for Â � −0.07, and η(0) � 0.206, 0.162 and −0.0843 respectively.

We now recall the qualitatively different solution types. For a bump in the

channel, when Â > 0, the weakly nonlinear theory predicts two types of solution,

type I and II, which are a perturbation to a uniform stream and solitary wave

respectively. An example of the nonlinear profiles of these two types of wave is

shown in figure 4.3.4(a) for flow past a bump with amplitude of forcing Â � 0.04,

with Froude number F � 1.1.

For a trench in the channel, when Â < 0, the weakly nonlinear theory predicts

three qualitatively different types of solution, the cusped perturbation to a solitary

wave, the perturbation to two solitary waves and the dip-like perturbation to a

uniform stream, these are type III, IV and V respectively. Nonlinear examples of

these obtained by the boundary-integral method are shown in figure 4.3.4(b) for

flow past a trench with an amplitude of forcing Â � −0.07 and Froude number

F � 1.1.
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4.3.1 Fully nonlinear solution space

Each panel in figure 4.3.5(a)–(d) shows two sets of solutions for a fixed value

of F plotted as curves in the (Â, η(0))-plane, obtained from the nonlinear (solid

curve) and weakly nonlinear (dotted curve) calculations. Just as for the flow

past a pressure disturbance, the number of parameters in the fully nonlinear and

weakly nonlinear systems match. In addition to the fixed-F branches, the set of

almost-highest solutions with a fixed small velocity, |u | ≈ 0.03, at the crest are

shown as dashed curves in figures 4.3.5(a)–(d).

The solution space when F � 1.1 is presented in figure 4.3.5(a), with the differ-

ent solution types identified in the weakly nonlinear theory indicated by circular

markers. The corresponding free-surface profiles are plotted in figure 4.3.4(a) and

(b). The location of the different solution types I–V, at least qualitatively, is very

similar to the flow with F � 1.26 past a pressure disturbance shown in the previous

chapter in figure 3.3.5(a).

For very deep trenches, a difference in the amplitude of forcing parameter Â no

longer corresponds to significant differences in the free-surface profile, imposing a

limitation on the solution space we can explore in these results. The phenomenon

is featured in figure 4.3.5(b) and (c), where F � 1.16 and F � 1.24 respectively, by

the near horizontal appearance of the fixed-F branch as the amplitude of forcing

|Â| grows. The near horizontal trend of the set of solutions in the (Â, η(0))-plane

is also observed in the set of almost-highest solutions, plotted in figure 4.3.5(b)–(d),

as the trench gets deeper.

The lack of influence on the free surface of increasingly deep trenches is demon-

strated by comparing the free surface of a flow with an amplitude of forcing

Â � −0.5, to that of a flow with a larger amplitude of forcing, Â � −1.0. Taking

the Froude number to be F � 1.16 as an example, for each solution type, II, IV and

V, two profiles with these differing amplitudes of forcing are marked on figure
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Figure 4.3.5: Plots of the variation of η(0) versus forcing amplitude Â for the four

values of Froude number F � {1.10, 1.16, 1.24, 1.32}. The solid curves are derived

from the fully nonlinear calculations. The dotted curves indicate values derived

from the weakly nonlinear analysis. The dashed curves in (b)–(d) are the locus of

the ‘near-limiting’ values, with |u | � 0.03 at the wave crests. The markers in (a)

indicate the location in parameter space of the five types of forced solution shown

in figure 4.3.4, whereas in (b) they identify the free-surface flows shown in figure

4.3.6(c)–(b), and in (c) and (d) all markers denote forced almost-highest solitary

waves.
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4.3.5(b). The difference in the displacement of the free surface at the centre of the

wave is small within solution types, roughly 3%, 9% and 4% for types II, IV and V

respectively.

The free-surface profile, channel topography and interior streamlines of these

solutions are plotted in figure 4.3.6(c)– (b). The streamlines were calculated using

the method outlined in Appendix E, using the fully nonlinear solution for the free

surface. The flow for a smaller trench is shown with solid lines, while the flow

past a deeper trench is plotted as dashed curves. The difference in the topography

is visibly larger than the differences observed in the streamlines of each flow. This

indicates that, for deep trenches, the topography has limited influence on the flow

except in the region where ψ is small, that is, the flow very near the topography.

As a result of this behaviour when the trench is deep, the solution space when

1.16 ≤ F ≤ Fu extends into a region where the boundary-integral method requires

a large and eventually impractical number of grid points to converge. In this

region of the parameter space, the solution is no longer strongly influenced by the

parameter Â and so the system of equations gains, numerically, an extra degree of

freedom. The additional degree of freedom in this deeper trench regime causes the

corrector procedure to fail due to the fact that the solution no longer corresponds

to a regular point as required by the procedure, as discussed in §2.4. Converged

solutions were found for trenches with amplitude up to Â ≈ −1.1.

In theory, a larger number of grid points could compute more of the solution

space with this method, although there are other physical reasons for not pur-

suing this. In most physical flows, a boundary layer where viscous effects are

present would form near the topography, which may or may not remain attached

depending on the topography. In the case of these more extreme topographical

disturbances, it is expected that the boundary layer would separate at the up-

stream corner. This separation would create a large region where viscous effects
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Figure 4.3.6: Nonlinear free-surface profile, topography and interior streamlines

for three types of flow with F � 1.16. Plotted in (a), (b) and (c) are the type II, IV

and V flows, respectively, with solid curves corresponding to a flow with Â � −0.5

and dashed curves to a flow with Â � −1.0.
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are important, fundamentally changing the flow, and this is not modelled by a

potential flow model. Another possibility is that the flow becomes subcritical in

the very deep trench, although this type of bifurcation was not detected in the

region we were able to compute.

In the flow past a pressure disturbance, the boundaries of the solution space

were generally determined by almost-highest solutions, and so we discuss these

next.

The almost-highest branches, shown as dashed curves in figure 4.3.5(a)–(d),

contain either perturbations to a single solitary wave, type II, along the upper

branch, or a perturbation to two solitary waves, type IV, along the lower branch.

No approach towards a limiting configuration was made by solutions which were

considered a perturbation to a single solitary wave with a cusp and two peaks,

a type-III solution. We suggest that the main reason the almost-highest type-III

waves were not observed is due to the fact that, in general, a cusp was not present

at the crest of a solution unless the trench was sufficiently deep. Type-II waves

persist for flow past a trench along the fixed-F branches in figures 4.3.5(a)–(c) as

the branches continue into the Â < 0 half-plane. Once the local maximum of η(0)

is reached along that branch, the solutions with a cusp appear, an example of

which is indicated by a circular marking on the F � 1.1 branch from figure 4.3.5(a),

with corresponding profile shown in figure 4.3.4(b). It is possible that if more

of the solution space were available, a type-III almost-highest solution could be

observed.

Almost-highest type-II waves for flow past a trench are found to exist for

1.22 < F < Fu . The value of F for the type-II almost-highest waves is given by

F ≈
√

2η(0). At F ≈ Fu the almost-highest solution is on the Â � 0 axis, and the

value of F decreases as the almost-highest branch is followed in figure 4.3.5(c) into

the Â < 0 half-plane. At the circular marker shown in figure 4.3.5(c), the value
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of the Froude number is F � 1.24, and the Froude number reaches F � 1.22 at

Â � −1.1. The almost-highest branch likely extends beyond Â < −1.1, and as we

were unable to evaluate trenches of this depth, the range of values of F < 1.22

such that these almost-highest type-II waves exist were not established by these

results. Again, starting from the unforced almost-highest solution and proceeding

along the almost-highest branch to the right, the value of F is now increasing from

F ≈ Fu . At the circular marker in figure 4.3.5(d) the value of F is 1.32. It is inferred

that almost-highest waves past a bump exist for all F > Fu .

The variation of F is very small for the almost-highest type-IV waves compared

to the type-II case. At the circular marker shown on the lower branch in figure

4.3.5(c), the value of F is 1.2906, and towards the origin the value of F approaches

Fu � 1.2909. The reason that F remains very close to Fu for the type-IV waves is

because the two crests are at some distance from disturbance, and so are locally

very similar to the unforced limiting configuration, as for the same type of waves

in flow past a pressure disturbance. Like the type-II almost-highest waves, this

branch extends into the region of deep trenches, and so it was not possible to

establish all the values of F for which the almost-highest type-IV waves exist.

The space of solutions for flow past a bump is relatively straightforward. The

type-I waves were found for all values of F shown in figure 4.3.5(a)–(d), and for

each fixed value of F they exist for all values of Â before the turning point in

the branch where the solutions are then classified as type II. This is qualitatively

consistent with the results of the weakly non-linear analysis.

For flow past a trench, no type-III solutions were found for F > 1.16, and

no type-IV solutions were found for F > Fu . The result for the type-IV waves

is consistent with those for the pressure disturbance, as the two crests reach a

limiting configuration at F ≈ Fu . The type-V solutions are found by following

the fixed-F branch from the origin of panels 4.3.5(a)–(d) into the lower half-plane
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where η(0) < 0. These solutions do not approach a limiting configuration as

|Â| → ∞ and according to the weakly nonlinear analysis should exist for all values

of Â < 0. Here converged nonlinear solutions were found for Â > −1.2 for all the

values of F shown.

We note that the weakly nonlinear theory does not perform as well for flow

past a bump or trench as it did for the flow past a pressure disturbance. This can

be attributed to two assumptions in the derivation of the fKdV equation (2.5.35)

with the jump condition (2.5.34). Firstly, Lee et al. [36] found that at higher order

the topographical disturbance introduces additional dispersive effects that the

pressure disturbance does not experience in a generalised-Boussinesq model, and

that the pressure disturbance has a larger influence on the free surface than a

topographical disturbance for forcings that are considered equivalent in the lower

order fKdV model. In effect, the balance of nonlinearity and dispersion assumed in

the derivation of the fKdV for a topographical disturbance does not remain valid

for as large a region of the solution space. Secondly, the fKdV equation requires

that the amplitude of forcing is small compared to the wave height, which is not

true for flow past a deep trench.

The detail of the solution space near the almost-highest waves is presented

in figures 4.3.7–4.3.9. We find that topographical disturbances also admit non-

uniqueness for a fixed value of the original forcing parameter A. We chose to fix

the parameter A rather than the area of the topography |Â| in order to reduce

computational effort. For these branches finding the free-surface profiles required

a considerable number of grid points, up to N � 1600, and the additional equation

to compute Â proved too costly. It was checked that the variation on Â was small,

in the third significant digit, and did not alter the qualitative nature of the results.

The almost-highest solutions presented in figures 4.3.7–4.3.9 were computed

using solutions to the free-surface found in figure 4.3.5(c)–(d) as starting points.
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Figure 4.3.7: Forced solitary wave of type II with the area of the topography being

Â � 0.079. Shown are (a) nonlinear profiles for a value of the Froude number

F � 1.32, solid and dashed curves are for values of ω � 0.993 and ω � 0.862,

respectively, shaded region shows the topography located at y � 0; (b) Plot of θ

versus x for (a); (c) and (d) plots of the Froude number F and wave mass M versus

ω, respectively, markers in (c) indicate the location of the profiles shown in (a).
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Figure 4.3.8: Forced solitary wave of type II with the area of the trench being

Â � 0.22. This type of solution is not predicted by the weakly nonlinear analysis.

Shown are (a) nonlinear profiles for a value of the Froude number F � 1.24, solid

and dashed curves are for values of ω � 0.990 and ω � 0.813, respectively, shaded

region shows the topography located at y � 0; (b) Plot of θs versus x for (a); (c)

and (d) plots of the Froude number F and wave mass M versus ω, respectively,

markers in (c) indicate the location of the profiles shown in (a).
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Figure 4.3.9: Forced solitary wave of type IV with the area of the trench being

Â � 0.196. Shown are (a) nonlinear profiles for a value of the Froude number

F � 1.2906, solid and dashed curves are for values of ω � 0.995 and ω � 0.848,

respectively shaded region shows the topography located at y � 0; (b) Plot of θs

versus x for (a); (c) and (d) plots of the Froude number F and wave mass M versus

ω, respectively, markers in (c) indicate the location of the profiles shown in (a).
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The layout of the panels (a)–(d) in figure 4.3.7–4.3.9 is similar to the corresponding

results for the almost-highest waves presented in figures figure 3.3.7–3.3.10 from

the previous chapter. Respectively the panels (a)–(d) contain; plots of the free-

surface elevation for two nonlinear waves with the same value of F but different

values of the parameter ω defined by equation (3.3.15); a plot of the angle of the

two free surfaces from panel (a); a plot of the value of the Froude number F versus

ω for the almost-highest waves; and a plot of the mass M of the wave versus ω

for the almost-highest waves. The mass of the wave for flow past topography is

defined here as

M �

∫
∞

−∞

η dx ,

which is calculated by applying the trapezoidal rule to the free surface over the

truncated domain.

To locate these solutions in figure 4.3.5, note that the profiles plotted as solid

lines in figure 4.3.8(a) and figure 4.3.9(a) are indicated respectively by the upper

and lower circular markers in figure 4.3.5(c), while the solid-line profile in figure

4.3.7(a) corresponds to the circular marker in figure 4.3.5(d).

As with the unforced flow and the flow past a pressure disturbance, the per-

turbations to solitary waves for a flow past a trench approach the Stokes limiting

configuration of an included angle of 120◦ and a stagnation point at their crest

as the re-scaled wave-height ω approaches one. The included angle at the crest

of 120◦ is observed in the plot of the angle given by the solid line in figures

4.3.7–4.3.9(b), where a rapid change in the angle from π/6 to −π/6 at the location

of the crests is observed.

The oscillatory behaviour of the variables F and M with respect to a parameter

such as ω has now been observed in the solutions for flow past topography, see

figures 4.3.7–4.3.9(c) and (d). Two local extrema were observed for both F and
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M for all types of forced solution as ω → 1. Further local extrema could, in

theory, be computed with more grid points, however whether infinitely many

local extrema exist or not cannot be determined by these numerical results. It was

also found that the location of the extrema for the type-IV solution were the same

to three significant figures as for unforced flow, providing further evidence that

the behaviour at the crest for this type of solution is not heavily influenced by the

topographical disturbance.

4.4 Conclusion

The fully nonlinear solution space for symmetric supercritical flow past topograph-

ical disturbances was explored, except in the regime of very deep trenches which

could not be computed. Given a unit-width disturbance, for a fixed value of F the

set of solutions in the (Â, η(0))-plane consisted of either one or two branches of

solution.

For 1 < F < 1.16 there was one connected branch, as shown in figure 4.3.5(a),

containing all five types of solution. For F > 1.16 no type-III waves were observed,

and for F > Fu no type-IV waves were observed. For 1.16 ≤ F ≤ 1.22 there are

two branches (see figure 4.3.5(b)), both extending into the region of deep trenches.

The type-IV solutions were found on an isolated branch, while the other branch

contained waves of types I, II and V. For 1.22 < F ≤ Fu there are also two branches,

shown for F � 1.24 in figure 4.3.5(c), both extending into the domain of deep

trenches. The type-IV solutions, again, were found on an isolated branch from

the rest of the solutions, while the other branch ends at a type-II solution with a

limiting configuration. For F > Fu , shown for F � 1.32 in figure 4.3.5(c), there was

a single branch which contained solutions of type I, II and V, ending at a type-II

wave with Â > 0 with a limiting configuration. All the type-V solutions extend
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into the domain of very deep trenches, and it is suggested that they exist for all

Â < 0.

The reason that the waves past a deep trench could not be determined by this

method is due to the fact that free surface was no longer strongly influenced by

the parameter Â for such a trench, see figure 4.3.6. The system of equations gains,

numerically, an extra degree of freedom in this regime, and so fails to converge.

There is an additional physical consideration in the deep trench regime, that is

the presence of large velocities near the boundary, suggesting a boundary layer

would form in this flow which would then require viscous effects to model. The

presence of a bifurcation such as the flow becoming subcritical in the trench was

not observed, but is posed as another possible bifurcation in this regime.

Almost-highest type-II and type-IV waves were found. In contrast to the flow

past a pressure disturbance, no almost-highest type-III waves were observed for

flow past a trench. Similarly to the almost-highest unforced waves and the almost-

highest waves due to a pressure disturbance, properties such as the Froude number

and the mass of the wave pass through local maxima and minima as the wave-

height is increased for the almost-highest presented in this chapter, see figures

4.3.7–4.3.9. These turning points in the flow quantities may also coincide with the

presence of an instability, as per the unforced case Kataoka [32], Longuet-Higgins

& Fox [40], Tanaka [60], which could be considered in future research.

Although the nonlinear results do depart considerably from the weakly non-

linear, the stability analysis in Chapter 5 is also relevant to the topographical

disturbance case, particularly when the waves are not too steep and when the flow

is close to critical, that is F ≈ 1. A linearised analysis based on the method for

unforced waves given by Tanaka [60] is discussed as future work in Chapter 6.



Chapter 5

Weakly nonlinear unsteady response

to flow past forcing

5.1 Introduction

The time-dependent fKdV equation (2.5.31) is used in this chapter to investigate

the stability of the solutions identified in Chapter 3 and 4 before they approach

the Stokes limiting configuration. Here the forcing term is given by a Gaussian

function as in equation (2.1.2).

The weakly nonlinear theory is capable of reproducing many of the key fea-

tures of the fully nonlinear unsteady response, at least in the time-period before

any wave-breaking phenomena are observed [13, 36, 26]. As covered in the intro-

duction, one of the striking features of near critical forced flow is the generation

of upstream propagating waves observed by Ertekin [22] and Wu [70]. This phe-

nomenon has been observed using weakly nonlinear models and fully nonlinear

models.

The stability analysis performed by Camassa & Wu [12] finds that the waves

which are considered perturbations to uniform streams are stable using both

91
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linearised as well as some nonlinear approaches, and that the forced perturbations

to solitary waves with a single crest are unstable. Using weakly nonlinear theory

the same result has been observed by Chardard et al. [14] and Grimshaw & Smyth

[27]. Grimshaw & Maleewong [26] also confirm this behaviour, providing a

comparison between the fully nonlinear evolution of the perturbation to a solitary

wave with the behaviour predicted by weakly nonlinear theory. They found the

two to be in good agreement for small disturbances with the Froude number close

to unity.

The cusped and double-hump solutions, that is the type-III and type IV waves,

to the fKdV model have not been previously considered, and so are investigated

here in two ways. The first is to perturb the steady states by multiplying them by

a constant close to one and then compute the evolution of the free surface. This is

performed by discretising the fKdV equation, the same approach used by Chardard

et al. [14], Grimshaw & Maleewong [26] and others (see references therein). A

discrete Fourier method is employed to determine spatial derivatives, and time

stepping is performed using the explicit fourth order Runge-Kutta formula. The

details of this method are outlined in §5.2.

The second approach is to identify the presence of growing modes using a

linearised perturbation analysis to determine if the steady solutions are linearly

unstable. The perturbations obey an unforced KdV equation with a spatially

varying coefficient; see Camassa & Wu [12], Ee & Clarke [18], given by (5.2.3). The

associated eigenvalue and eigenfunction problem is then solved numerically on

a discrete periodic grid by exploiting Fourier approximations to the derivatives

using standard matrix methods, the same approach as was used by Ee & Clarke

[18]. After the modes are determined, the accuracy of the linearised analysis is

considered by using the fastest growing mode as a perturbation to the full fKdV

system.



CHAPTER 5. UNSTEADY RESPONSE TO FLOW PAST FORCING 93

The first approach, presented in §5.3.1, finds that the negatively forced pertur-

bations to solitary waves are unstable. The perturbed cusped waves, identified as

type-III, coalesce then generate an upstream solitary wave. The same behaviour is

also observed for the type-IV wave, which is a perturbation to two solitary waves,

except in the case of an initial state which has enough energy to generate two

upstream waves, rather than one upstream wave. The region near the forcing

eventually attains the shape of the stable perturbation to a uniform stream.

The eigenvalues and eigenmodes and the response of the system to the fastest

growing mode, identified by our linearised analysis, are discussed in §5.3.2. Eigen-

values with positive real part are found for all perturbations to one or two solitary

waves. The rate of growth of the unsteady response is largest for the positively

forced type-II wave, this causes the linearised analysis to break down at the ear-

liest time of all the identified types of wave. The type-III wave has the slowest

perturbation growth, and so the fKdV and the predicted linear growth agree while

the cusp coalesces, while the fastest growing mode for a type-IV solution has

similar growth rate to the positively forced solitary wave, and we find here that

effects not accounted for by the linear solution are significant before the two waves

coalesce.

Determination of the precise growth rates of the unstable modes for the waves

of type III and IV using the linearised analysis is confounded when using a

periodic domain as we have here. For these wave types, there is a decaying spatial

oscillation present in the eigenmodes with non-zero real part. The rate of spatial

decay may cause the oscillation to leak from the downstream domain into the

upstream domain, making the eigenvalue and eigenmode sensitive to the choice

of domain. The implications of this and possible future work is discussed in §5.4.
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5.2 Formulation

5.2.1 Spectral collocation method for the time-dependent fKdV

equation

The behaviour of the free surface as modelled by the fKdV equation (2.5.31) on

the infinite domain is approximated by using a periodic domain. The spatial

derivatives are approximated on a discrete periodic domain using a spectral

collocation method and the discrete Fourier transform. Once an initial steady

profile is found, an explicit time-stepping scheme is employed to simulate the

unsteady flow.

Let η have period of 2W , and take the spatial domain to be [−W,W], so that

the computational grid is given by

x j � W ( j − N)/N

for j � 1, . . . , 2N .

An initial steady solution to the fKdV equation (2.5.31) with the Gaussian

forcing is found by solving two boundary-value problems using the chebfun

package Trefethen [63]. The first boundary-value problem is to find an ‘inner’

solution; the solution near the crest. The inner solution is then used for the second

boundary-value problem, which is to find a solution on the larger and periodic

domain. The initial guess for the inner solution is found by taking the forcing

term to be a δ function with equivalent amplitude, resulting in the sharp crested

or cusped solutions via the jump condition (2.5.34). The inner solution for the

smooth Gaussian forcing function is then found using chebfun’s boundary-value

problem (BVP) class with linearised boundary conditions.

In the second problem, periodic boundary conditions are imposed, and the so-

lution is found using the same BVP solver supplied by chebfun. The initial guess
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is given by extending the inner solution found above to the rest of the domain.

This is achieved by matching it with the solution to the far-field linearised fKdV.

Typically, we use a domain of width W � 100 or more so that the unsteady calcu-

lations are terminated before the waves propagating upstream and downstream

approach the extents of the periodic domain.

The spectral derivative is approximated on the spatial grid using the discrete

Fourier transform (DFT). The DFT of the function η(x , t) is

η̂(k , t) �
2N∑
j�1

η(x j , t)e−ikx j

for −N + 1 ≤ k ≤ N. Let s � π/W , then by taking the discrete Fourier transform

of the fKdV equation (2.5.31) an expression for η̂t is given by

η̂t � s
(1

6
s2D̂3η +

3
4

D̂η2 − (F − 1)D̂η +
1
2

D̂p
)

(5.2.1)

for −N +1 ≤ k ≤ N and (D̂η) is the discrete spectral derivative of η. The nth-order

spectral derivative is, for a suitable function u(x), given by

(D̂nu)(k) �




(ik)n û(k), k , N, n even,

(iN)n û(N), k � N, n even,

0, k � N, n odd,

(5.2.2)

for wavenumbers −N + 1 ≤ k ≤ N (see [62]).

Time stepping is performed by applying the fourth-order explicit Runge-Kutta

method to generate η̂(k , t0 +∆t) from the values given by η̂(k , t0) for a fixed, small

time step of size ∆t. That is, the profile is evolved in Fourier space rather than

in the spatial domain. The fast Fourier transform (FFT) is used to find an initial

profile in Fourier space η̂(k , t0), and at each time step all the spatial derivatives on

the right-hand-side of the discrete form of the fKdV equation (5.2.1) are efficiently

computed as per equation (5.2.2). The only term from the right-hand-side that
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requires some extra effort is the D̂η2 term. This is calculated by applying the

inverse FFT on η̂(k , t0), then taking the square of the result and applying the FFT

to find η̂2(k , t0), and finally applying the spectral derivative.

Both the spatial grid and the size of the time-steps were varied to check the

independence of the resulting unsteady response. Calculations were done with

different choices of period 2W , N and different time steps ∆t. Only the results

shown obtained from the highest resolution grid, and with the smallest time-step

attempted, are shown here.

5.2.2 Linearised stability analysis

The linearised stability analysis is formulated by introducing a small perturbation

variable C(x , t) such that η(x , t) � ηs (x) + C(x , t) exists, where ηs is a solution to

the steady fKdV equation (2.5.32);

ηsxxx + 9ηsηsx − 6(F − 1)ηsx � −3px .

By substituting η � ηs + C and the above equation into the fKdV equation and

linearising, the perturbation variable C must satisfy

6Ct − Cxxx − 9(Cηs )x + 6(F − 1)Cx � 0, (5.2.3)

which can be written as

Ct � L(C), (5.2.4)

where the operator

L{φ(x)} �
∂
∂x

(
1
6
∂2φ

∂x2 +
3
2
ηs (x)φ(x) − (F − 1)φ(x)

)
; (5.2.5)

noting that the problem here is treated with periodic boundary conditions on the

finite domain [−W,W], and that this is a non-self-adjoint operator.
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As equation (5.2.4) is linear, separable solutions of the form eλtXλ (x) can be

found, and then the general solution is given by a sum of eigenfunctions of L,

assuming the eigenfunctions form a basis in a suitable function space. Setting

C(x , t) �
∑
λ∈Λ

eλtXλ (x) (5.2.6)

where Λ is the set of all the eigenvalues from the eigenvalue problem;

λXλ � L{Xλ}. (5.2.7)

When ηs is real and symmetric it can be shown from the definition of L that

L{φ(−x)} � −L{φ(x)} and L{φ}∗ � L{φ∗}.

It then follows that if λ and Xλ (x) are an eigenvalue and eigenfunction pair for

the operator L, then −λ and Xλ (−x) is also an eigenvalue and eigenfunction pair,

and so are ±λ∗ and (Xλ (±x))∗. So a symmetric solution ηs of the fKdV equation is

linearly unstable whenever there is a non-zero real part for any eigenvalue of the

associated operator L.

The eigenvalues and eigenfunctions of L can be determined using standard

matrix methods by assuming that the operator is well approximated by the discrete

and finite dimensional form of the operator given by the spectral derivative matrix.

Trefethen [62] provides the discrete form of the minimal oscillation (or band-

limited) spectral derivative operator Di j and the second derivative operator D2
i j

as;

Di j �




π(−1) i− j

2W tan(π(i − j)/2N)
, i , j,

0, i � j;

D2
i j �




−2π2(−1) i− j

4W2 sin2(π(i − j)/2N)
, i , j,

−2π2(1 + 2N2)
12W2 , i � j,
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which implies that D2
i j , Di jDi j [62]. The matrix approximation to L on the finite

grid is now denoted as

Li j � −(F − 1)Di j +
∑

k

(
DikD2

k j +
3
2

Dikδk jη j

)
.

The eigenvalues of Li j are calculated using the standard function eig() from

MATLAB [45].

5.3 Results

5.3.1 Evolution of perturbed steady solutions of the fKdV equa-

tion

Following Camassa & Wu [12] the wave-resistance coefficient Cr is introduced,

which in physical terms provides a non-dimensional measure of the power being

supplied or absorbed by the forcing. This can be useful in determining if there

is oscillatory behaviour in the system (see [12]). The time-rate of change of the

‘energy’ of the fKdV equation is found by taking the product of (2.5.31) with η,

and integrating over the spatial domain (and incorporating the condition that the

functions η, ηx decay as x → ±∞), to give;

d
dt

∫
∞

−∞

η2 dx �

∫
∞

−∞

pxη dx , (5.3.8)

where the left-hand-side is time-rate of change of the energy of the system, and

the right-hand-side is the definition of Cr .

The numerical simulation of the three steady solutions to the time-dependent

fKdV equation which correspond to perturbations of solitary waves, types II–IV,

demonstrates the instability of all three steady states; at least in the flow regime

where the fKdV is a valid approximation. The system obtains either steady state

of type I or V if A ≷ 0, combined with some emission of waves which travel away



CHAPTER 5. UNSTEADY RESPONSE TO FLOW PAST FORCING 99

from the forcing. These results are summarised in figures 5.3.1–5.3.3 which we

will now discuss, with reference to the known results for type II profiles shown in

figure 5.3.1.

For positively forced waves, as observed by Camassa & Wu [12], Grimshaw &

Maleewong [26], Shen et al. [56], the type-II waves are unstable to perturbations

and will decay to a type-I solution near the region of forcing, with some emission

of a finite number of waves. Figures 5.3.1(a) and (b) show the evolution of the

free surface from the numerical simulation of the time-dependent fKdV with two

different initial states. The initial states are the type-II solution with a normalised

amplitude of 0.98 and 1.02. For the larger initial state a single solitary wave is

emitted which advances upstream, combined with some radiation downstream

in the form of a dispersive oscillatory wave. As seen by the positive value of

Cr in figure 5.3.1(c), the fluid flow absorbs some energy from the forcing as it

emits the upstream wave and decays to the stable solution in the forcing region.

For the smaller initial state, no solitary wave is emitted upstream and energy is

absorbed by the forcing as the solution smoothly decays to the type-I wave near

the forcing, with the emission of a downstream solitary wave. The negative value

of Cr observed in figure 5.3.1(d) indicates the system releases some energy to the

forcing as the free-surface tends to the stable state.

For negatively forced solutions, the type-V solution is known to be stable

[12, 44], and the profiles in figures 5.3.2 and 5.3.3 demonstrate that the type-III and

type-IV waves are both unstable and emit waves both upstream and downstream

as the free-surface attains a type-V-like profile near the forcing region. This is in

contradiction to the suggestion by Malomed [44] that the cusped type-III wave

may be stable. These results for the unsteady response to a small perturbation of

this type of solution, which has a cusp, are new.

For the negatively forced solutions the emitted waves display complicated
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Figure 5.3.1: Perturbation to forced solitary wave of type II. Amplitude of forcing

is A � 0.13, with domain width W � 400 and N � 8192 grid points, shown are (a)

and (b) evolution of the free surface given initial states with normalised amplitude

of 1.02 and 0.98 respectively; and (c) and (d) the wave-resistance coefficient as a

function of time.
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behaviour, and the choice of initial amplitude produced qualitatively different

responses within solution types. The perturbed type-III waves emit a single

solitary wave upstream, as well as nonlinear solitary-type waves and dispersive

oscillatory waves downstream, this is shown in the evolution of the surface in

figure 5.3.2(a) and (b). The cusp, although not visible on this scale, coalesces,

before a single crested solitary wave is formed near the forcing. The larger initial

state used in figure 5.3.2(a) shows some oscillation of the coalesced waveform

about the forcing from time T ≈ 200 before the final emission of the wave upstream

at T ≈ 350. As either the system or forcing absorbs energy, according to Cr shown

in figure 5.3.2(c), the solitary-like wave near the forcing appears to be accelerated

upstream or downstream respectively in figure 5.3.2(a). The wave-resistance Cr

rapidly approaches zero from below as this solitary wave travels upstream, while

the region near the forcing approaches the shape of the type-V solutions from

thereon.

For the initial state with a smaller amplitude shown in figure 5.3.2(b) and (d)

the solitary wave is emitted much sooner while travelling noticeably slower. There

is only one oscillatory dispersive wave emitted in figure 5.3.2(b), as opposed to

two that can be observed in figure 5.3.2(a) for the larger initial condition. In other

respects, the behaviour for the smaller initial state is qualitatively very similar,

with a somewhat diminished oscillation of the solitary mass near the forcing

observed before the solitary wave is emitted upstream.

The final unstable solution, type IV, shown in figure 5.3.3(a)–(d), contains even

more dramatic variation in the qualitative behaviour depending on the initial

amplitude. For the smaller initial state shown in figure 5.3.3(b), the upstream

and downstream humps are initially drawn towards the forcing, coalescing, and

eventually emitted as a solitary wave upstream, similar to the type-III solution. The

evolution of the larger initial state, shown in figure 5.3.3(a), shows the upstream
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Figure 5.3.2: Perturbation to forced solitary wave of type III. Amplitude of forcing

is A � −0.13, with domain width W � 400 and N � 8192 grid points, shown are (a)

and (b) evolution of the free surface given initial states with normalised amplitude

of 1.02 and 0.98 respectively; and (c) and (d) the wave-resistance coefficient as a

function of time.
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hump is very quickly emitted upstream. The same behaviour as observed for

type-III solutions is seen with a remaining solitary-like wave near the forcing

region from T ≈ 140. This wave also accelerates upstream or downstream as the

system or forcing absorbs energy respectively, and then finally heads upstream

near T ≈ 300. After this time, the type-V-like profile is observed near the forcing

region from thereon.

All the solutions shown appear to tend to a steady stable state after the initial

transients have decayed or been emitted, as supported by the rapid decay of

the energy being absorbed by the system (or the forcing) shortly after the final

solitary wave is generated. For any initial profile that resulted in the emission of

an upstream supercritical solitary wave, the system absorbed energy in doing so,

which can be confirmed by integrating the Cr curve over time.

5.3.2 Linearised stability analysis

The numerical results here agree with known result that the steady solutions given

by perturbations to uniform streams, waves of type I and type V, are stable [12].

For these two types of wave, no eigenvalues with a real part larger in magnitude

than 1.2 × 10−9 were found for the case of F � 1.26 and A ∈ (0, 0.175). The

eigenvalues which contained a real part less than 10−9 were found in pairs λ, λ∗,

and so are assumed to be purely imaginary complex conjugate eigenvalues.

Meanwhile, the unstable solutions as identified in the previous section all

demonstrate linear instability through the presence of eigenvalues which have

significant non-zero real component. The eigenvalues for these solution types

for fixed F � 1.26 are summarised in figure 5.3.4 over the range of A for which

steady solutions exist. The results for the different wave types are presented in

separate subfigures. For any eigenvalue with a significant real part, that is larger

than 10−9, the real component of the eigenvalue is plotted in figure 5.3.4(a), (b)
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Figure 5.3.3: Perturbation to forced solitary wave of type IV. Amplitude of forcing

given by A � −0.13, with domain width W � 400 and N � 8192 grid points, shown

are (a) and (b) evolution of the free surface given initial states with normalised am-

plitude of 1.02 and 0.98 respectively; and (c) and (d) the wave-resistance coefficient

as a function of time.
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Figure 5.3.4: Markers indicate eigenvalues of (5.2.7) for F � 1.26 with significant

positive real part found by MATLAB. Shown are (a) real part of eigenvalues for

type-II waves, (b) and (c) real and imaginary parts for type-III waves and (d) and

(e) real and imaginary parts for type-IV waves, with solid line fitted for illustrative

purposes. Blue marker/line indicates a pure real eigenvalue, black marker/line

indicates eigenvalue with a positive imaginary component. Eigenvalues with

negative imaginary part not shown.
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and (d) for type II, III and IV waves respectively, while the imaginary component

of the eigenvalue is plotted in figure 5.3.4(c) and (e) for type III and IV waves

respectively. Eigenvalues that appear as real pairs ±λ are shown in blue, whereas

complex quartet eigenvalues ±λ,±λ∗ are shown in black. Pairs and quartets of

eigenvalues appear in the numerical results as expected from the symmetry of

the operator L defined by equation (5.2.5). Any other eigenvalue calculated for

F � 1.26 over this range of A appear to be purely complex conjugate pairs (or

zero), with magnitude of their real part less than 1.2 × 10−9 as observed for all

eigenvalues of the stable solutions.

The type-II wave has one linearly unstable eigenvalue with effectively zero

imaginary component. Qualitatively similar results for other values of F near unity

to the results shown for F � 1.26 in figure 5.3.4(a) were observed. For this type

of wave the eigenvalue approaches zero on the approach to the unforced solitary

wave solution, i.e. as A → 0, which is known to be stable. It can also be seen

that as we approach the stable uniform stream solution, that is as A approaches

approximately 0.175, the eigenvalue approaches zero. Of all the types of wave,

this type of wave has the largest rate of growth of linear instability.

The type-III wave has a complex quartet of eigenvalues, and like the type-

II wave, the real part approaches zero as the stable unforced solitary wave is

approached. In contrast, the real part does not approach zero as the type-IV wave

is approached, for example as A approaches roughly 0.177 in figure 5.3.4(b) and

(c) for the flow with F � 1.26. As the eigenvalues should depend continuously

along the solution space for fixed F, this complex quartet of eigenvalues will be

found within some region of the type IV solutions, too. This was observed in

the numerical results as the complex quartet of eigenvalues for the type-III and

type-IV waves approach the same value as A approaches approximately 0.177 in

figure 5.3.4(d) and (e) for flow with F � 1.26. This was also observed for other
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values of the Froude number.

The type-IV solution, in addition to possessing the complex quartet of eigen-

values, has a purely real pair of eigenvalues for all amplitudes of forcing. This real

pair of eigenvalues approaches zero as either the type-III solution is approached,

or as the limiting case of two solitary waves separated by a uniform stream is

approached as A→ 0.

The behaviour of the eigenvalues for the complex quartets is difficult to de-

termine for type-IV waves. With respect to the real part, there is an ‘enveloping’

effect, similar to that observed by Ee & Clarke [18] seen in figure 5.3.4(d), and to

a lesser extent as A → 0 for type III waves in figure 5.3.4(b). Additionally, the

imaginary part does not appear to depend smoothly on A in figure 5.3.4(e) for type

IV waves. These results are an artefact of the periodic domain assumption, which

will be discussed in more detail after the general appearance of the eigenmodes

and how well they perform as predictors of the evolution of the fKdV equation is

determined.

The fastest growing mode can be used to determine the time scale of the

validity of the linearised theory. Using these modes as an initial perturbation to

the steady solution, the evolution of the perturbation given by η(x , t)− ηs (x) from

the full fKdV equation (2.5.31) can be compared to the expected growth from the

linear theory (5.2.4).

Of all three unstable solution types, the type-II wave has the fastest growing

linear instability, and so the agreement between the linearised theory breaks

down at the earliest time. The eigenmode corresponding to a positive real-part

eigenvalue when F � 1.26 and A � 0.155 is shown in figure 5.3.5(a). The evolution

of the perturbation using the full fKdV equation is computed using the spectral

method before, and compared to the growth predicted by the linear theory. The

results from both computations for a type-II wave are shown in figure 5.3.5(b)
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Figure 5.3.5: Linearised results for type-II solution with F � 1.26 and A � 0.155.

Shown are (a) eigenmode corresponding to eigenvalue with significant positive

real part, black line for the real part of eigenmode, blue dashed line for the

imaginary part and (b) evolution of the eigenmode as a perturbation using the

linear theory (solid line) and the full fKdV equation (dashed lines).
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Figure 5.3.6: Linearised results for type-III solution with F � 1.26 and A � −0.155.

Shown are (a) eigenmode corresponding to eigenvalue with significant positive

real part, black line for the real part of eigenmode, blue dashed line for the

imaginary part and (b) evolution of the eigenmode as a perturbation using the

linear theory (solid line) and the full fKdV equation (dashed lines).

when the eigenmode is used as a perturbation with L∞ norm being 0.02. Due to

the larger rate of growth, the linearised prediction begins to depart from the full

fKdV solution at the earliest time in comparison with the other types of wave. At

t � 60 the agreement worsens, and a solitary wave is emitted upstream shorty after

much like the behaviour observed in figure 5.3.1(a); the solitary wave emission is

not predicted by the linearised perturbation theory.

As the type-III wave has a complex quartet of eigenmodes, and we desire a

real perturbation, we take the sum of the eigenmodes from a complex conjugate
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pair with positive growth rate as a perturbation. The eigenmode with positive real

and imaginary part is shown in figure 5.3.6(a) for F � 1.26 and A � 0.155. The

growth rate of these modes is generally much less than for wave-types II and IV,

and so the linear theory accurately predicts the response of the free surface for a

longer period of time. This is seen in figure 5.3.6(b) where the behaviour of the

two theories, again for F � 1.26 and A � 0.155, is similar up until about t � 200.

At around t � 200 the two peaks have coalesced in both theories (not shown here).

After this time, the oscillation of a solitary mass near the forcing occurs in the full

fKdV model, as observed in the results for the simpler initial perturbation shown

in figure 5.3.2(a) and (b), which the linear theory is unable to predict.

The fastest growing mode for the type-IV wave for most values of A is from

the real pair of eigenvalues. This eigenmode is shown in figure 5.3.7(b), while the

eigenmode corresponding to the eigenvalue with positive real and imaginary part

from the complex quartet is shown in figure 5.3.7(b). The fastest mode is used as

a perturbation for the type-IV waves, with the same value of F and A as before,

and the evolution of the perturbation is shown in figure 5.3.7(c). The linear theory

departs from the predictions of the full fKdV equation on a similar time-scale to

the type-II solution, as the growth rate is relatively similar. The coalescence of the

two waves is correctly predicted by the linear theory, but beyond t � 80 the size of

the perturbation is such that the linear theory is no longer valid, the emission of a

solitary wave upstream in the full fKdV model follows shortly after.

The presence of a decaying spatial oscillation and how it is affected by the

periodic domain is an important feature of the eigenmodes corresponding to a

complex-quartet eigenvalue. The decaying oscillation is shown in figure 5.3.6(a)

and figure 5.3.7(a) for the wave-types III and IV respectively. When this spatial

oscillation decays rapidly, as in the type-III waves, the computed eigenvalues are

consistent over a wide range of domain sizes. For the type-IV waves, the rate of
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Figure 5.3.7: Linearised results for the type-IV solution with F � 1.26 and A �

−0.155. Shown are (a) and (b) eigenmodes corresponding to eigenvalue with

significant positive real part from the complex quartet and real pair respectively,

black line for the real part of eigenmode, blue dashed line for the imaginary part;

and (c) evolution of the eigenmode in (b) as a perturbation using the linear theory

(solid line) and the full fKdV equation (dashed lines).
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Figure 5.3.8: Real part (positive value only) of the complex quartet eigenvalues for

type-IV solutions with F � 1.26. The ◦, + and ×markers indicate W � 99.96, 110.04

and 120 respectively, with fixed spatial sampling W/N. Dashed line follows the

W � 120 eigenvalues, returning to the A axis where no complex quartet found.

spatial decay is generally smaller, and so the oscillation will reach the edge of the

periodic domain and then wrap-around and appear at the other end.

The results for the eigenvalues using this numerical method is sensitive to the

width of the domain. The lack of convergence over different domain sizes with

fixed spatial sampling rate ∆x for type-IV waves is shown in figure 5.3.8. For a

fixed domain width, the real part of the eigenvalues intermittently tend to zero

as A decreases. Each time this occurs a complex quartet of eigenvalues returns

to the imaginary axis (cf. the dashed line in figure 5.3.8 returning to the A axis),

and then another pair of pure-imaginary complex conjugate eigenvalues with a

smaller wavenumber depart from the imaginary axis to form the new complex

quartet as A continues to decrease. This behaviour gives the appearance of jumps

in the imaginary part of the eigenvalues as A varies, as shown for the type-IV

waves in figure 5.3.4(e).

Changes in domain size were the main driver of the changes in the eigenvalues,

and so it can be concluded that the decaying spatial oscillation’s incompatibility

with a periodic boundary condition is responsible for the envelope effect on the
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eigenvalues. Although the linear theory still indicates instability, the rate of growth

of the perturbation cannot be accurately ascertained by the numerical approach

used here. While it is possible that these may be spurious eigenvalues, we note

that such eigenvalues are found for the case of type-III waves with a small forcing

in Camassa & Wu [12].

5.4 Conclusion

The negatively forced perturbations to solitary waves, of either type III or type

IV, are unstable. The type-III solution generates a solitary wave upstream after

coalescing and oscillating about the forcing position for some initial interval of

time, shown in figure 5.3.2(a) and (b). The downstream flow contains a mixture

of solitary-like waves and dispersive wave trains. The type-IV solution behaves

similarly but for the generation of two upstream waves when the initial state has

enough mass, as shown in figure 5.3.3(a).

The linearised stability analysis agrees with previous investigations; the type-

I and type-V solutions have no eigenvalues with non-zero real part, and are

thus linearly stable. The significant eigenvalues for type-II waves appear as real-

valued pairs, while type-III waves have a complex quartet, and type-IV waves

have both a real valued pair and a complex quartet of eigenvalues. For the

linear operators with complex-quartet eigenvalues, the numerical approach for

calculating eigenvalues and eigenmodes breaks down as the rate of decay of the

spatially oscillating mode associated with the complex quartet, seen in figure

5.3.6(a) and figure 5.3.7(a), decreases. This is a result of the assumption of a

periodic domain in the linearised analysis, and so the downstream wave train of

the eigenmode does not decay sufficiently fast to not interfere with the upstream

portion of the eigenmode. This limits the significance of the results for the complex
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quartet of eigenvalues obtained, in particular for the type-IV waves.

One potential remedy for the complex-quartet eigenvalue calculation is to

relax the periodicity assumption and try a spectral collocation method with a

different set of basis functions (such as Hermite exponential functions or Laguerre

basis functions) [52]. This could then be extended further to a linearised stability

analysis of the fully nonlinear problem, similar to that undertaken by Tanaka [60].

As a final comment, these results are more applicable to the pressure distur-

bance problem than for the flow past a topographical disturbance, as the latter

departs from the weakly nonlinear analysis very rapidly as F or A get larger. The

linearised stability analysis of the fully nonlinear problem could provide a much

more accurate picture of the stability of the solutions to flow past a topographical

disturbance. This future work is discussed in the next chapter.



Chapter 6

Conclusions

6.1 Summary of findings

In Chapter 2 a boundary-integral method for solving the fully nonlinear model

of the flow past a disturbance in the channel was derived. A numerical method

for finding the fully nonlinear solutions using an irregular discretisation was

presented, with an analysis of the error given in Appendix B which extends a

result of Noble & Beighton [48]. The forced Korteweg de-Vries equation with a

jump condition was presented as a weakly nonlinear model, which is used in the

classification of the fully nonlinear solutions.

The solutions to flow past a pressure disturbance were then considered in Chap-

ter 3. Efficient expressions to approximate the contributions of the far-upstream

and far-downstream flow were employed in the boundary integrals, based on the

linearised solution in the far-field presented in Appendix D. The solution space

was then presented by considering one-parameter families of solution with a fixed

value of F, shown in figure 3.3.5. All the types of flow identified by the weakly

nonlinear model were identified, which we enumerate as type I–V. Waves types I

and V waves are perturbations to uniform streams, being waves of elevation and

115
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depression respectively. Wave types II and type III are perturbations to a single

solitary wave, where the type-II wave has a single crest and the type-III wave has

a cusp-like appearance with two peaks. Type-IV waves are perturbation to two

solitary waves, with two distinct crests.

The fully nonlinear solutions which were perturbations to solitary waves, that

is type-II, III and IV, were found to approach a Stokes limiting configuration as

the wave-height increased, as shown in figure 3.3.7–3.3.10. New results showing

that quantities such as the speed and total energy of these wave, shown in figures

3.3.7-3.3.10(c) and (d), are not unique with respect to wave-height in the almost-

highest regime.

An previously unobserved effect due to the presence of the nearby pressure

disturbance was found for the almost-highest type-III wave. The peaks of the

wave had a 120◦ included angle, but were not symmetric about a vertical axis,

as evidenced by in figure 3.3.7(b), a slight clockwise/anti-clockwise rotation of

the configuration was observed down/upstream. This was explained by a modi-

fied analysis of the Stokes limiting configuration using an approximation of the

pressure disturbance when the cusp is small.

The solution space of the topographical disturbances was explored in Chapter 4,

as summarised in figure 4.3.5. The solution space differed from that of the pressure

disturbance solutions, particularly for large disturbances. The free-surface is

no longer strongly influenced by changes in the size of the trench as the trench

gets very deep. This was seen in figure 4.3.6, and would cause the continuation

method to fail to converge for Â < −1.1, due to the practical limit on the size of

the grid. We obtained almost-highest solutions for type II waves for flow past a

bump or a trench, see figures 4.3.7 and 4.3.8, and type IV waves for flow past a

trench, see figure 4.3.9. For the trenches that could be computed, no almost-highest

solution corresponding to a type III wave, those with a cusp, and a Stokes limiting
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configuration at each peak was found.

The non-uniqueness with respect to quantities such as the speed and mass

of the flow as the wave-height increases was also observed for the first time, see

figures 4.3.7-4.3.9(c) and (d). For the type-IV waves, for flow with either of the

pressure or topographical disturbances considered, the location of the turning

points and the form of the two crests were observed to be almost exactly that of

the unforced solutions. This indicates that these properties are more local to the

crest and not influenced by the forcing which is far from the crest.

The stability of the five different solution types was then reviewed in Chapter

5 using the time-dependent fKdV equation. Weakly nonlinear solutions for the

steady fKdV with a Gaussian forcing function were found numerically using

chebfun [63]. The evolution of the free surface given a perturbed steady solution

was used to examine stability. The perturbations to uniform streams were found

to be stable, as determined previously [12, 27], while the perturbations to solitary

waves were unstable.

The type-II waves for flow past a positive amplitude forcing behaved as ex-

pected, see figure 5.3.1, with the emission of an upstream solitary wave and a

downstream dispersive oscillatory wave when the initial state had enough mass,

or, for an initial state with less mass a single solitary mass propagates downstream.

The region near the forcing returns to the stable perturbation to a uniform stream.

The type-III waves past a negative amplitude of forcing displayed a more

complex unsteady response, see figure 5.3.2. This included the coalescence of the

cusp, followed by emission of a solitary wave upstream and a combination of

solitary masses and dispersive oscillatory waves downstream. The region near the

forcing eventually attains the form of the perturbation to a uniform stream. The

unsteady response for the type-IV waves is similar, except for the case where the

initial state is such that two solitary waves are emitted upstream, see figure 5.3.3,
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one of which is emitted almost immediately along with a dispersive wave-train

downstream.

A linearised analysis of the fKdV equation was also performed, confirming the

instability of the perturbations to solitary waves via the presence of eigenmodes

with significant positive real part. The linearised analysis was performed by

applying a finite spectral approximation to the linear operator (5.2.5). The linear

analysis showed the type-II solution has a real pair of eigenvalues, and is thus

unstable. The type-III waves past a negative forcing had a complex quartet of

eigenvalues, while the type-IV waves had both a real pair and a complex quartet

of eigenvalues. This is the first time the instability of these latter two solution

types has been demonstrated. The complex quartet of eigenvalues had smaller

real part than the real pair, and so the linear analysis remained valid for a longer

time than for the other solution types, see figures 5.3.5b–5.3.7c. The emission of the

solitary wave upstream was generally an indicator of when the linearised theory

would break down, as expected by such a nonlinear phenomenon.

The eigenmodes from a complex quartet of eigenvalues possess a spatially

decaying oscillation, see figure 5.3.6(a) and figure 5.3.7(a), which combined with

the assumption of periodicity, prevented the determination of the exact behaviour

of the eigenvalues and eigenmodes, particularly for type-IV waves, or for type-III

waves with a small forcing.

6.2 Future work

One of the aims of this research was to determine the entire solution space for the

potential flow past a trench. As this was not fully determined, we suggest two

further investigations into potential flow past a trench. The first is to investigate

large trenches using the same numerical method here but with a larger grid.
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Recently Pethiyagoda et al. [49] and Pethiyagoda et al. [50] utilised GPU hardware

to implement Jacobian-free Krylov subspace methods to find solutions to the

two-dimensional free surface of a model of the flow past a ship, using typically

721 × 241 grid points for a two-dimensional surface. Applying a similar approach

here could provide enough grid points to explore the remainder of the solution

space. The other avenue to explore is the solution space of a different weakly

nonlinear model, the generalised-Boussinesq equation, which was derived for this

same flow in Wu [70]. This could offer insight to the reasons for the difference

between the fKdV and the fully nonlinear solution space.

The solution space of combined disturbances (e.g. pressure and topogra-

phy) in the almost-highest wave regime is another area of potential investigation.

Although combinations of topographical and pressure disturbances have been

previously studied by others [7, 9, 17], their behaviour when almost highest waves

are present is not yet understood. We hypothesise that trapped almost-highest

waves might be observed between two disturbances, and that they are likely to be

unstable, similar to the unforced and forced waves studied here, and the waves

studied by Chardard et al. [14].

For the flows past a trench, it is clear that a boundary layer would form where

viscous effects need to be modelled to understand realistic fluid flow. Still, the

effect of viscosity is an open question in the almost-highest regime for either forced

and unforced waves. The almost-highest solutions may be strongly affected by a

dissipative force such as viscosity, as well as surface tension. Underlying currents

or a stratified flow is another flow configuration for which the highest waves could

be considered.

The evolution of perturbed steady solutions in Chapter 5 was based entirely

on the weakly nonlinear fKdV model. Grimshaw & Maleewong [26] employed a

method for computing the evolution of the fully nonlinear free surface for forced
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waves. This approach could be used to examine the evolution of the steady states

that we obtained in Chapter 3 and 4, particularly for the wave types III and IV

which have not been considered previously.

In the unforced case, the non-uniqueness of the almost-highest waves has

implications for the stability, as the local maxima of the energy as a function of

wave-height is connected to the onset of a short wavelength instability [32, 60]. It

may not be the case that the perturbations to uniform streams which are close to

limiting configurations are stable, for example when A is large in figure 3.3.5(d). If

these are unstable, the next question would be whether this is due to the presence

of a turning point in some integral quantity such as the energy.

As a first step towards investigating this, the stability could be considered

numerically using a linearised stability analysis based on the approach of Tanaka

[60], which we briefly formulate here. Once a steady solution is obtained, that is,

τs and θs are known for a steady flow, then the kinematic and dynamic boundary

conditions given by (A.4) and Bernoulli’s equation (A.9) can be linearised about

the steady state to form an eigenvalue problem for the stability.

Let the steady states ηs and φs satisfy;
1
2

(φ2
sx + φ

2
s y) +

1
F2 (1 + ηs + p) �

1
2
+

1
F2 and

ηsxφsx � φs y ,
(6.2.1)

and assume η(x , t) � ηs (x) + η̂(x , t) and φ(x , y , t) � φs (x , y) + φ̂(x , y , t), where

η̂ and φ̂ are small perturbations. Assuming that the small perturbations are of the

form η̂ � eλt η̃(x) and φ̂ � eλt φ̃(x) yields;

λφ̃ � −eτs
dφ̃
dl
−

(
eτs

d
dl

(eτs sin θs ) +
1
F2

)
η̃ and

λη̃ � −eτs
dη̃
dl
− sec θs

dψ̃
dl
− η̃ sec θs

d
dl

(eτs cos θs )

(6.2.2)

by introducing a perturbation stream function ψ̃(x , y , t) such that φ̃y � −ψ̃x , and

l is the arclength along the free surface.
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The preceding equation is the same as equation (7) in Tanaka [60] expressed

in terms of the variables τs and θs . Given a symmetric steady state, it will follow

that the eigenvalues appear in pairs/quartets as before, depending on whether

they have non-zero real and imaginary part, much like the linearised analysis of

the fKdV equation presented in Chapter 5.

Using the Schwarz reflection principle on the function f̃ � φ̃+ iψ̃ and assuming

that it vanishes at infinity, the contour integral enclosing the flow and its reflection

of the function f̃ ( f )/( f − φ + i) results in the following expression;

ψ̃(φ) +
2
π

∫
∞

−∞

ψ̃(φ̂)

(φ̂ − φ)2 + 4
dφ̂ �

1
π
−

∫
∞

−∞

φ̃(φ̂)

φ̂ − φ
dφ̂ −

1
π

∫
∞

−∞

(φ̂ − φ)φ̃(φ̂)

(φ̂ − φ)2 + 4
dφ̂.

From this expression, an operator G can be constructed which solves ψ̃ � G(φ̃).

This allows for the approximation of the operator on the right-hand-side of the

eigenvalue problem given by (6.2.2) as a matrix. The spatial derivatives can be

approximated either using a spectral approach where the domain is assumed

periodic, or a finite difference scheme as per Tanaka [60]. The eigenvalues could

then, in theory, be found numerically. It may be the case that, as in Chapter 5,

the periodic assumption could cause inaccuracies for operators with eigenmodes

with slow decay, and so alternative basis functions for the approximation of the

operator, such as Hermite exponential functions Shen et al. [52], may be useful.

6.3 Final remarks

Very steep waves in free-surface potential flows past two types of disturbance

have been considered. The non-uniqueness of very steep waves for flow past

a localised forcing has been established clearly, for the first time, by computing

the free-surface profiles using a boundary-integral method. The forced solutions

which are considered perturbations to one or two solitary waves have been shown
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to be unstable in the domain of validity of a weakly nonlinear model given by the

fKdV equation. This is the first observation of the instability of the cusped and

double-crested solutions.



Appendix A

Equations of fluid motion

A.1 Governing Equations

Euler’s equations of motion are a statement of the balance of momentum and

force in a continuous medium. The equations are derived here using Reynolds’

transport theorem and the divergence (Ostrogradsky-Gauss) theorem.

For the purpose of the derivation, consider a three-dimensional domain, rather

than two-dimensional, with Eulerian coordinates x∗ � (x∗, y∗, z∗). Let the velocity

and pressure be functions of the spatial variable x∗ and time t∗ (as a dimensional

quantity). Denote each component of a vector quantity f � ( f1, f2, f3), where the

components are scalar functions of the spatial variables and the time variable, i.e.

fi � fi (x∗, y∗, z∗, t∗) for i � 1, 2, 3, the divergence is

∇x∗f �
∂ f1

∂x∗
+
∂ f2

∂y∗
+
∂ f3

∂z∗
,

and for a scalar quantity f � f (x∗, t∗);

∇x∗ f �

(
∂ f
∂x∗

,
∂ f
∂y∗

,
∂ f
∂z∗

)
.

Definition 1. The material derivative operator is

D
Dt∗

�
∂
∂t∗

+ u∗ · ∇x∗
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Theorem 1 (Reynolds’ transport theorem). Given a flow with Eulerian coordinate x∗

and a flow r∗ (e.g. position of a fluid particle) with ∂r∗/∂t∗ � u∗, and some quantity f in

the flow domain, differentiation (w.r.t. material derivative) outside an integral over any

moving ‘control’ volume Vt∗ in the flow can be brought inside the integral by the following

equality,

D
Dt∗

∫
Vt∗

f dV �

∫
Vt∗

D f
Dt∗

+ f∇x∗u∗ dV,

where dV indicates the usual volume integral.

Theorem 2 (Divergence theorem). For a vector quantity f,∫
St∗

f · n dA �

∫
Vt∗

∇x∗f dV,

where dA is usual oriented surface area integral, with St∗ being the surface of the volume

Vt∗ at time t∗.

Corollary 1 (Divergence theorem ). Consider f � f (x∗). The divergence theorem

applied to
∑

i ei
∫

St∗
( f ei) · n dA, for the usual Cartesian coordinate basis ei , gives the

following; ∫
St∗

f n dA �

∫
Vt∗

∇x∗ f dV.

Momentum is given by ∫
Vt∗

ρu∗ dV.

Let u∗ � (u∗1, u
∗

2, u
∗

3), and let the force in the system be F � (F1, F2, F3). Using

Reynolds’ transport theorem and Newton’s second law of motion, for i � 1, 2, 3,

D
Dt∗

∫
Vt∗

ρu∗i dV �

∫
Vt∗

D
Dt∗

(ρu∗i ) + ρu∗i∇x∗u∗ dV � Fi .

Pressure and gravity are the only forces considered, so we can use the corollary of

the divergence theorem 1 to find an expression for the force due to pressure Fp ,∫
St∗

−p∗n dA �

∫
Vt∗

−∇xp∗ dV � Fp .
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Then including gravity,∫
Vt∗

D
Dt∗

(ρu∗i ) + ρu∗i∇x∗u∗ dV �

∫
Vt∗

−(∇x∗p∗)i dV,

⇒
∂
∂t∗

(ρu∗i ) + ∇x∗ (ρu∗i u
∗) � −(∇x∗p∗)i +




0 for i � 1, 3

−ρg for i � 2,
(A.1)

where the last equation follows using the monotone convergence theorem or

similar argument.

A.1.1 Conservation of mass

∫
Vt∗

D
Dt∗

(ρ) + ρ∇x∗u∗ dV � 0,

⇒
∂ρ

∂t∗
+ ∇x∗ (ρu∗) � 0.

If ρ is constant, i.e. the flow is incompressible, then this simplifies to

∇x∗u∗ � 0. (A.2)

A.1.2 Irrotational flow

Irrotational flow is defined as flow for which the curl of the velocity field is zero;(
∂
∂x∗

,
∂
∂y∗

,
∂
∂z∗

)
×

(
u∗1, u

∗

2, u
∗

3

)
� 0,

⇒
∂u∗3
∂y∗
−
∂u∗2
∂z∗

�
∂u∗3
∂x∗
−
∂u∗1
∂z∗

�
∂u∗2
∂x∗
−
∂u∗1
∂y∗

� 0. (A.3)

From here on, it is assumed that the flow is irrotational, and that the flow is

invariant in the z∗ direction, so all partial derivatives with respect to z∗ vanish,

and the velocity and pressure are now functions of x∗, y∗ and t∗.
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A.1.3 No-penetration kinematic boundary condition

The material derivative of a quantity f on either the bottom topography or the

free surface must be zero. Applying this condition to the quantity f � y∗ − [H +

η∗(x∗, t∗)] on the free surface, where it is assumed for the moment that the location

of the free surface may vary over time, gives the kinematic condition

ηt∗ + u∗ · (−η∗x∗ , 1) � 0 for y∗ � H + η∗(x∗, t∗). (A.4)

Similarly, applying the zero material derivative condition to f � y∗ − σ∗(x∗) on the

channel floor gives another kinematic boundary condition,

u∗ · (−σ∗x∗ , 1) � 0 for y∗ � σ∗(x∗). (A.5)

A.2 The two-dimensional potential flow model

Now using the non-dimensional variables from §2.1.1, the conservation of mass

(A.2) states that

∂u
∂x

+
∂v
∂y

� 0. (A.6)

Let the streamfunction ψ(x , y , t) be given by∫ x

0
v(x̂ , y , t) dx̂ � −ψ(x , y , t).

By the fundamental theorem of calculus −∂∂xψ(x , y , t) � v(x , y , t). Then∫ x

0

∂
∂x̂

u(x̂ , y , t) dx̂ � −

∫ x

0
−
∂
∂y

∂ψ

∂x̂
dx̂ ,

⇒ u(x , y , t) − u(0, y , t) �
∂
∂y

[
ψ(x̂ , y) + F(y , t)

] x
0 ,

�
∂
∂y
ψ(x , y , t) −

∂
∂y
ψ(0, y , t).
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Thus the function ψ satisfies

u �
∂ψ

∂y
and v � −

∂ψ

∂x
,

and any u , v given by such a function ψ describes incompressible flow. It can also

be observed that the streamfunction is everywhere orthogonal to the velocity, and

thus a streamlines (for a fixed moment in time) are given by the streamfunction ψ

being equal to a constant.

The irrotational flow condition (A.3) in non-dimensional form is

∂v
∂x
−
∂u
∂y

� 0.

Let the velocity potential φ(x , y , t) be given by∫ x

0
u(x̂ , y , t) dx̂ � φ(x , y , t),

then via a similar argument the function φ satisfies

u �
∂φ

∂x
and v �

∂φ

∂y
.

Together, the velocity and streamfunction satisfy the following two equations,
∂φ

∂x
�
∂ψ

∂y
and

∂φ

∂y
� −

∂ψ

∂x
.

These are the Cauchy-Riemann equations [5], and so the complex potential function

ft (z) � ft (x + iy) � φ(x , y , t) + iψ(x , y , t) (A.7)

is analytic for ft : C→ C for all t ∈ R.

A.3 The dynamic boundary condition

Now assuming the irrotational flow of an incompressible fluid, the equations for

the conservation of momentum (A.1) in non-dimensional variables are;

ut + uux + vvx +
1
F2 px � 0, and

vt + uuy + vvy +
1
F2 py +

1
F2 � 0.
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By integrating the two equations in x and y, the Bernoulli principle for this flow is

∂φ

∂t
+

1
2

(u2
+ v2) +

1
F2 (y + p) �

[
∂φ

∂t
+

1
2

(u2
+ v2) +

p
F2

]

(0,0,t)

throughout the flow domain.

Take the pressure on the free surface to be 0 far downstream, and as x → ∞,

the uniform stream is given by

(u , v) → (1, 0) and η→ 0. (A.8)

Using this condition in Bernoulli’s equation it follows that throughout the flow

∂φ

∂t
+

1
2

(u2
+ v2) +

1
F2 (y + p) � lim

X→∞

∂φ

∂t

�����(X,1,t)
+

1
2
+

1
F2 . (A.9)

This equation is used as a dynamic boundary condition in order to close the

problem of solving for the unknown free surface.



Appendix B

Trapezoidal rule error with removal

of singularity

B.1 Error term for a class of Cauchy P.V. integrals

Noble & Beighton [48] prove the error in using the trapezoidal rule for a class of

principal value integrals is second order in the width of the subintervals and is

bounded. This proof is reproduced here, and then the extension to the case where

a transform of variables is used, as in equation (2.2.22) or (2.2.24), is presented.

Consider the numerical evaluation of the following integral for some x with

a < x < b,

−

∫ b

a

f (y)
y − x

dy.

To ‘remove’ the singularity, we first note that

−

∫ b

a

f (y)
y − x

dy �

∫ b

a

f (y) − f (x)
y − x

dy + f (x) ln
�����
b − x
x − a

�����
. (B.1)

Define

F(y; x) �
f (y) − f (x)

y − x
,
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then the trapezoidal rule, using n subintervals, applied to the principal-value

integral above is

−

∫ b

a

f (y)
y − x

dy � f (x) ln
�����
b − x
x − a

�����
+ h

[ 1
2

F0 + F1 + . . . + Fn−1 +
1
2

Fn

]
+ E, (B.2)

where h is the subinterval width, nh � b − a, yi � a + ih, and Fi � F(yi ; x). To

avoid issues with the limit as x → yi , we assume that yi , x. From Krylov [34],

the error term E(x) is given by

E(x) �
∞∑

n�1

B2n

(2n)!
h2n

[
∂2n−1

∂y2n−1 F(y; x)
] y�a

y�b
, (B.3)

where the B2n are the Bernoulli numbers which are explicitly given by

B2n �

2n∑
k�0

k∑
j�0

(−1) j
(
k
j

)
j2n

k + 1

for n ≥ 1.

The following theorem by Noble & Beighton [48] shows that, even though

there are singularities in F(y; x), the error term E is bounded for all x ∈ (a , b) and

is second order in the grid spacing h.

Theorem 3. If f (y) ∈ C∞(a , b), then the error term (B.3) for the trapezoidal rule as

applied in (B.2), is given by

E(x) �
h2

24
[

f ′′(α) − f ′′(β)
]
+ O

(
h4

)
,

for some α, β where a ≤ α ≤ x ≤ β ≤ b.

Proof. Let δnk be the Kronecker delta, the derivatives of F(y; x) from (B.3) are

evaluated as follows;

∂n

∂yn F(y; x) �
∂n

∂yn

(
f (y) − f (x)

y − x

)
�

n∑
k�0

(−1)k n!
(n − k)!

f (n−k) (y) − δnk f (x)
(y − x)k+1

,

�
1

(y − x)n+1

∫ y

x
(t − x)n f (n+1) (t) dt ,

�
f (n+1) (c)

n + 1
(B.4)
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for some c ∈ R such that x < c < y, given by the mean value theorem for integrals.

This result is sufficient to prove the theorem. �

B.2 Extension to integrals with a change of variables

A similar proof follows that the error E is of the same order in h and is bounded

when a change of variables in the integral is considered; let

G(y; x) �
( f ◦ g)(y) − f (x)

g(y) − x
g′(y)

where y → g(y) is a smooth monotonic change of variables.

The trapezoidal rule applied to a integral with the change of variables y → g(y)

is

−

∫ g−1(b)

g−1(a)

( f ◦ g)(y)
g(y) − x

g′(y) dy �

f (x)
�����
b − x
x − a

�����
+ h

[ 1
2

G0 + G1 + . . . + Gn−1 +
1
2

Gn

]
+ E, (B.5)

where nh � g−1(b) − g−1(a), and yi � g−1(a) + ih and Gi � G(yi ; x). Here E is

given by (B.3) with F replaced by G, and with evaluation at a and b replaced by

g−1(a) and g−1(b) respectively.

Corollary 2 (Change of variables in theorem 3). If f (y) and g(y) ∈ C∞(a , b), the

error in the trapezoidal rule (B.5) is given by

E(x) �
h2

12
*.
,

f ′′(α) · g′(g−1(a))2
+



f̂ (y) − f (x)
g(y) − x

g′′(y)


������y�g−1(a)

− f ′′(β) · g′(g−1(b))2
−



f̂ (y) − f (x)
g(y) − x

g′′(y)


������y�g−1(b)

+/
-
+ O

(
h4

)
. (B.6)

for f̂ (y) � ( f ◦ g)(y), and some α and β which vary with x obeying a < α < x < β < b.
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Proof. By the product rule;

∂n

∂yn G(y; x) �
n∑

k�0

(
n
k

) [
∂k

∂yk

( f ◦ g)(y) − f (x)
g(y) − x

] [
∂n−k

∂yn−k
g′(y)

]
.

Using the chain rule on the first term in the product inside the sum we obtain

∂k

∂yk

[
( f ◦ g)(y) − f (x)

g(y) − x

]
�

k∑
j�0

ak , j (g′, g′′, . . .)(y)
[
∂ j

∂g j

(
f (g) − f (x)

g − x

) ] �����g�g(y)

for some functions ak , j (g′, g′′, . . .)(y) which depend only on the derivatives (with

respect to y) of g, as given by Faá di Bruno’s formula [31].

Each ak , j is bounded on the interval (g−1(a), g−1(b)) as g is chosen to be smooth

and continuous there, while terms containing the partial derivatives with respect to

g are bounded on (a , b) following from the result given by (B.4). This is sufficient

to prove that the coefficient of each hn term is bounded. The expression for the

error term given by (B.6) follows by using the chain rule to replace derivatives

with respect to g with derivatives with respect to y. �

It can be easily shown that the limit as x → a and x → b is well defined in

equation (B.6) provided f and g satisfy the conditions in Corollary 2. This confirms

that the error is bounded on the interval from y � g−1(a) up to y � g−1(b). Note

also that substituting the identity g(y) � y gives the expected result of Theorem 3.



Appendix C

Derivation of the time dependent

fKdV equation

C.1 Long wavelength asymptotics

The variables are rescaled according to long-wavelength asymptotics. Akylas [2]

was the first to derive the fKdV as a model equation for these kinds of flow with

a pressure disturbance. In order to balance nonlinear growth with dispersion,

we assume that the waves are relatively long. For the long-wavelength regime,

we consider the flow to have a characteristic length L (e.g. a length related to

wavelength) such that (H/L)1/α � ε � 1, where α > 0.

We wish to re-write the equations of fluid motion derived in Appendix A

in terms of scaled quantities which are ∼ 1, which we will denote with a hat .̂

Following Akylas [2], the rescaled time is ε−3α t̂ � t. Assuming that y ∼ 1, it

follows that O(1) spatial variables are given by (ε−α x̂ , ŷ) � (x , y).

Define a velocity potential ϕ which is the perturbation potential of a perturbed

uniform flow, so ϕ � φ − x. Being a perturbation, it is assumed small, so let the

associated O(1) quantity be given by εβϕ̂ � ϕ with β > 0. The remaining variables
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are rescaled arbitrarily for now, let

εγ η̂ � η, ελ p̂ � p and εκ σ̂ � σ.

Bernoulli’s equation (A.9) in the rescaled variables is;

ε3α+βϕ̂ t̂︸   ︷︷   ︸
(a)

+
1
2
ε2α+2β (ϕ̂x̂)2︸        ︷︷        ︸

(b)

+
1
2
ε2β (ϕ̂ ŷ)2

+ εα+βϕ̂x̂ +
1
F2 (εγ η̂ + ελ p̂︸︷︷︸

(c)

) � 0.

Assume the set of leading order terms in the above equation does not include

(c). It follows from the assumption that α, β > 0 that the set of leading order

terms in the dynamic boundary condition cannot include (a) and (b) either. If we

balance out the remaining terms, then;

α � β � γ/2.

By arbitrarily choosing γ � 1 (so the free surface height is assumed small), it

follows that (ε−1/2x̂ , ŷ) � (x , y). As the pressure term is to be considered relatively

small, we let λ � κ � 2. Thus the other rescaled variables are;

ε1/2ϕ̂ � ϕ, εη̂ � η, ε2p̂ � p , ε2σ̂ � σ and ε−3/2 t̂ � t .

The next step is to re-write the equations of the fluid flow in the rescalred

variables: Bernoulli’s equation is

2εϕ̂ t̂ + ε(ϕ̂x̂)2
+ (ϕ̂ ŷ)2

+ 2ϕ̂x̂ +
2
F2 (η̂ + εp̂) � 0 for y � 1 + εη̂;

Laplace’s equation is

εϕ̂x̂ x̂ + ϕ̂ ŷ ŷ � 0 for ε2σ̂ < ŷ < 1 + εη̂;

The kinematic conditions are

ε2η̂t̂ + ε
2ϕ̂x̂ η̂x̂ + εη̂x̂ � ϕ̂ ŷ for ŷ � 1 + εη̂ and

ε3ϕ̂x̂ σ̂x̂ + ε
2σ̂x̂ � ϕ̂ ŷ for ŷ � ε2σ̂;
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Finally the far field conditions are;

εϕ̂ + x̂ ∼ x̂ and εη̂→ 0 as x̂ →∞ and

εϕ̂ + x̂ ∼ µx̂ and εη̂→
1
µ
− 1 as x̂ → −∞.

We now apply Taylor series expansions to Bernoulli’s equation to allow us to

determine asymptotic solutions. On ŷ � 1 we have

F2
(
2εϕ̂ t̂ + εϕ̂

2
x̂ + ϕ̂

2
ŷ + 2εϕ̂ ŷ η̂ϕ̂ ŷ ŷ + 2ϕ̂x̂ + 2εη̂ϕ̂x̂ ŷ

)
+ 2η̂ + 2εp̂ + O

(
ε2

)
� 0.

The following asymptotic expansions are now assumed,

F � F0 + εF1 + . . .

η̂ � η̂0 + εη̂1 + ε
2η̂2 + . . . ,

ϕ̂ � ϕ̂0 + εϕ̂1 + ε
2ϕ̂2 + . . . ,

p̂ � p̂0 + εp̂1 + . . . .

Comparing the powers of ε on ŷ � 1, we obtain a system of equations that if

satisfied, will approximate solutions to Bernoulli’s equation up to a certain order

of accuracy;

ε0
⇒ 0 � F2

0 ϕ̂
2
0 ŷ + 2F2

0 ϕ̂0x̂ + 2η̂0

ε1
⇒ 0 � F2

0

(
2ϕ̂0t̂ + ϕ̂

2
0x̂ + 2ϕ̂0 ŷ ϕ̂1 ŷ + 2ϕ̂0 ŷ η̂0ϕ̂0 ŷ ŷ + 2ϕ̂1x̂ + 2η̂0ϕ̂0x̂ ŷ

)
+

2F0F1

(
ϕ̂2

0 ŷ + 2ϕ̂0x̂
)
+ 2η̂1 + 2p̂0.

C.1.1 Leading order approximation

Gathering all the leading order expressions gives;

0 � ϕ̂0 ŷ ŷ for 0 < ŷ < 1; (C.1)

0 � ϕ̂0 ŷ on ŷ � 1; (C.2)

0 � ϕ̂0 ŷ on ŷ � 0; and (C.3)

0 � F0
2ϕ̂2

0 ŷ + 2F0
2ϕ̂0x̂ + 2η̂0 on ŷ � 1; (C.4)
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with far field conditions

ϕ̂0 → 0 and η̂0 → 0 as x̂ →∞.

By integrating
∫ ŷ

0 d ŷ twice (C.1) and incorporating (C.3),

ϕ̂0 � f (x̂ , t̂) (C.5)

for some twice differentiable function f (x̂ , t̂). Clearly, any partial derivative of φ̂0

with respect to ŷ is zero. By differentiation and substitution into (C.4)

φ̂0x̂ � fx̂ (x̂ , t̂) � −
η̂0

F0
2 . (C.6)

C.1.2 First order terms

Without using the information gained from the ε0 level of approximation, the

system of equations at order ε is;

0 � ϕ̂0x̂ x̂ + ϕ̂1 ŷ ŷ for 0 < ŷ < 1;

η̂0x̂ � ϕ̂1 ŷ + η̂0ϕ̂0 ŷ ŷ on ŷ � 1;

0 � ϕ̂1 ŷ on ŷ � 0; and

0 � 2F0
2ϕ̂0t̂ + F0

2ϕ̂2
0x̂ + 2F0

2
(
ϕ̂0 ŷ ϕ̂1 ŷ + ϕ̂0 ŷ η̂0ϕ̂0 ŷ ŷ

)
+ 2F0F1ϕ̂

2
0 ŷ +

2F0
2
(
ϕ̂1x̂ + η̂0ϕ̂0x̂ ŷ

)
+ 4F0F1ϕ̂0x̂ + 2η̂1 + 2p̂0 on ŷ � 1.

Incorporating the information gained from the order ε0 level of approximation,

the order ε equations are;

0 � −
η̂0x̂

F0
2 + ϕ̂1 ŷ ŷ for 0 < ŷ < 1; (C.7)

η̂0x̂ � ϕ̂1 ŷ on ŷ � 1; (C.8)

0 � ϕ̂1 ŷ on ŷ � 0; and (C.9)

0 � 2F0
2ϕ̂0t̂ +

η̂2
0

F0
2 + 2F0

2ϕ̂1x̂ − 4F0F1
η̂0

F0
2 + 2η̂1 + 2p̂0 on ŷ � 1. (C.10)
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Apply
∫ ŷ

0 d ŷ to (C.7), and incorporate the condition (C.9) and the result is

ϕ̂1 ŷ � ŷ
η̂0x̂

F0
2 .

Using this result in (C.8) implies that either η0 ≡ 0 or F0 � ±1. The case that

η ≡ 0 is trivial, so we assume the positive solution F0 � 1 (so that the downstream

velocity is positive). Applying
∫ ŷ

0 d ŷ to ϕ̂1 ŷ ;

ϕ̂1 �
1
2

ŷ2η̂0x̂ + G(x̂ , t̂) (C.11)

for some twice differentiable function G.

Use (C.10) to obtain an expression for Gx̂ ,

Gx̂ � 2F1η̂0 −
1
2

(
η̂2

0 + η̂0x̂ x̂
)
−

(
η̂1 + p̂0 + ϕ̂0t̂

)
. (C.12)

C.1.3 Second order terms

Laplace’s equation at second order, by substituting in (C.11), is

1
2

ŷ2η̂0x̂ x̂ x̂ + Gx̂ x̂ + ϕ2 ŷ ŷ � 0 (C.13)

for 0 < ŷ < 1. Applying
∫ 1

0 d ŷ, we get

1
6
η̂0x̂ x̂ x̂ + Gx̂ x̂ +

[
ϕ̂2 ŷ

] x̂ ,1, t̂

x̂ ,0, t̂
� 0. (C.14)

The kinematic conditions at order ε2 with (C.5), (C.6), and (C.11) are used to

find an expression for the ϕ̂2 ŷ term in (C.14);

[
ϕ̂2 ŷ

] x̂ ,1, t̂

x̂ ,0, t̂
� η̂0t̂ + η̂1x̂ − 2η̂0η̂0x̂ − σ̂0x̂ .

Then substituting Gx̂ x̂ from (C.12) and the previous equation into (C.14) and collect

the terms together to get the fKdV equation

6η̂0t̂ − η̂0x̂ x̂ x̂ + 6F1η̂0x̂ − 9η̂0η̂0x̂ � 3
(
p̂0x̂ + σ̂0x̂

)
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Undoing the scalings to retrieve an equation in the original fully nonlinear

variables gives the same equation,

6ηt − ηxxx − 9ηηx + 6(F − 1)ηx � 3
(
px + σx

)

C.2 Forcing terms in non-dimensional variables

The forcing terms considered in this thesis are either Gaussian, such as the pressure

disturbance (2.1.2), or based on a sum of hyperbolic tangent functions such as for

a topographical disturbance (2.1.3). To determine the scale of the parameters, for

these forcings, we examine the condition that as ε → 0,∫
∞

−∞

σ̂(x̂) dx̂ ∼ 1. (C.15)

The same condition, where σ is replaced by p, applies to a pressure disturbance,

and as the results for the scale of the variables are the same, we only perform

the analysis using the topographical function σ, and so the hyperbolic tangent

function type of forcing is examined.

By integrating σ(x) � ε2σ̂(x̂) over the whole domain∫
∞

−∞

σ̂(x̂) dx̂ � ε−3/2
∫
∞

−∞

σ(x) dx. (C.16)

For the smoothed disturbance using hyperbolic tangent functions,

σ(x) ≈
A
2l

[tanh B(x + l/2) − tanh B(x − l/2)] ,

⇒

∫
∞

−∞

σ(x) dx �
A

2Bl
lim

R→∞
[ln cosh B(x + l/2) − ln cosh B(x − l/2)]R

−R ,

�
A

2Bl
lim

R→∞

[
ln

cosh B(x + l/2)
cosh B(x − l/2)

] R

−R
.

The limits can be evaluated by letting a � ln cosh B(±R+l/2)
cosh B(±R−l/2) , then from the expo-
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nential of a (using continuity),

ea
�

cosh B(±R + l/2)
cosh B(±R − l/2)

,

⇒ e∓Bl/2+a
+ e−2BR±Bl/2+a

� e±Bl/2
+ e−2BR∓Bl/2.

It is clear that a → ±Bl when taking the limit R →∞. Therefore

lim
R→∞

[
ln

cosh B(x + l/2)
cosh B(x − l/2)

] R

−R
� 2Bl.

So ∫
∞

−∞

σ(x) dx � A.

Now if σ̂(x̂) � Âδ(x), then by (C.16)∫
∞

−∞

σ̂(x̂) dx̂ �

∫
∞

−∞

Âδ(x̂) dx̂ � ε−3/2A.

Using the value of the integral of (or the convolution with) a delta function, the

previous equation implies that Â � ε−3/2A. The condition (C.15) informs us that

A ∼ ε3/2. Recalling that the height/depth of the disturbance is A
l ∼ ε

2, it follows

that l ∼ ε−1/2. l ∼ ε−1/2 is consistent with the long wavelength scaling, thus the

bump/trench needs to be on the scale of a wavelength.

Repeating this same work for a Gaussian function, the result that A ∼ ε3/2 is

found to apply to the Gaussian disturbances as well. Then given the scaling for

either type of disturbance, then AB/
√
π ∼ ε2, and it follows that B/

√
π ∼ ε1/2.
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Appendix D

Linearisation of flow in the far field

For this derivation we again consider a perturbation potential given by ϕ � φ − x.

Then we have the following governing equations and boundary conditions to

satisfy from Appendix A;

0 � ϕxx + ϕy y for σ < y < 1 + η; (D.1)

ϕy � ϕxηx + ηx on y � 1 + η; (D.2)

ϕy � ϕxσx + σx on y � σ; and (D.3)

0 � F2(ϕx
2
+ ϕy

2) + 2F2ϕx + 2(y + p − 1) on y � 1 + η. (D.4)

As an expression for the flow in the far field is desired, we also consider that as

x →∞, the radiation condition must be satisfied as well as the following;

ϕ + x ∼ x and η→ 0 as x →∞. (D.5)

Let there be some small parameter ε � 1 such that ϕ � εϕ1, η � εη1, σ � εσ1

and p � εp1 are all of the same order. By substituting these scaled quantities

into the system (D.1) – (D.4), expanding about y � 1 and y � 0 in the boundary

conditions, and equating the highest order terms, then to first order the unscaled
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variables must satisfy;

F2ϕx + η + p � 0 on y � 1;

ϕxx + ϕy y � 0 for 0 < y < 1;

ηx − ϕy � 0 on y � 1, and

σx − ϕy � 0 on y � 0.

Let p � σ ≡ 0, and assume that the solution for ϕ can be expressed as a (real)

linear combination of real valued eigenfunctions Xλ (x)Yλ (x) given eigenvalues

λ ∈ Λ ⊆ C. The eigenfunctions and eigenvalues are found by satisfying the

following equations;

X′′λ (x) � λXλ (x) for 0 < y < 1; (D.6)

Y′′λ (y) � −λYλ (y) on 0 < y < 1; (D.7)

−F2Y′′λ (1) + Y′λ (1) � 0 for y � 1; and (D.8)

Y′λ (0) � 0 for y � 0. (D.9)

Suppose Yλ � exp(kλy), and substitute this into (D.7) and incorporate the

boundary conditions (D.8) and (D.9). These are all satisfied by,

Yλ � ekλ y
+ e−kλ y

for λ , 0, where kλ �
√
−λ (using the positive branch) and

tanh(kλ)
kλ

− F2
� 0. (D.10)

A solution for λ � 0 is given (without loss of generality) by

Y0(y) � 1.

Equating the imaginary component of equation (D.10), then either Re (kλ) � 0
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or Im (kλ) � 0. Let kλ � aλ + ibλ, then either

tanh aλ
aλ

− F2
� 0 for bλ � 0 or

tan bλ
bλ

− F2
� 0 for aλ � 0,

thus there are a countable number of solutions for λ when F > 1. The radiation

condition is not satisfied in the far field for the case of bλ � 0, as the corresponding

solutions for Xλ are oscillatory, thus only the case aλ � 0 is required for a solution

in the far field.

In the case that aλ � 0 we have purely imaginary eigenvalues and Yλ is given

(for λ , 0) by

Yλ � cos(bλy).

From the differential equation for Xλ (for λ , 0) and given the requirement that

solutions decay as x →∞ due to (D.5), it follows that

Xλ � Dλe−bλx

and for the particular case of λ � 0 using the same conditions on the solutions it

follows that X0 � 0.

Substitute these into the definition of the complex velocity w and

w �
d f
dz

�
∂φ

∂x
− i
∂φ

∂y
,

� 1 +
∂ϕ

∂x
− i
∂ϕ

∂y
� u − iv.

� 1 +

∑
λ∈Λ

Dλe−bλx (cos(bλy) + i sin(bλy).

Using φ ∼ x and y → 1 as x →∞, an approximation as φ →∞ is given by

u − iv ≈ 1 + Dde−λ0φ (cos λ0 − i sin λ0) (D.11)
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for some real Dd, and λ0 being the smallest positive solution of

tan λ0 � F2λ0.

In the case of flow which satisfies the radiation condition and that y → 1 and

φ ∼ x as x → −∞, then

u − iv ≈ 1 + Dueλ0φ (cos λ0 + i sin λ0) (D.12)

as φ →∞, for some real Du.



Appendix E

Calculation of interior streamlines

using boundary integrals

The streamlines and equipotential lines can be evaluated using a boundary-integral

approach derived using the conformal mapping ζ � eπ(φ+iψ) from (2.2.8). Stream-

lines are calculated by fixing a value of ψ and evaluating x(ζ) and y(ζ) at discrete

values of φ. An expression for x(ζ) and y(ζ) is found by using the transformed

velocity variables τ and θ given by (2.2.23), and integrating the expression for the

complex velocity given by (2.2.9), giving

x(ζ) �
∫ φ

0
exp

(
−τ(e φ̂+iψ)

)
cos

(
θ(e φ̂+iψ)

)
dφ̂ and

y(ζ) � ψ +

∫ φ

−∞

exp
(
−τ(e φ̂+iψ)

)
sin

(
θ(e φ̂+iψ)

)
dφ̂.

(E.1)

The two integrals above are evaluated numerically using adaptive integration

supplied by the quad() routine in MATLAB. A boundary-integral method is used

to determine τ(ζ) and θ(ζ) in the integrands on the right hand side of (E.1). The

boundary integrals are evaluated using τs (φ) and θs (φ) from the solution to the

free-surface problem, as well as the known function θb (φ).

Consider a contour Γ in the ζ � α + iβ plane, shown schematically in figure
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α

Γ

R

iβ

ζ
ε

upstreamupstream downstreamdownstream

Figure E.1: Sketch of the contour Γ in the α + iβ plane used to evaluate τ and θ

via the Cauchy integral formula.

E.1. The contour Γ is composed of a semi-circle of radius R in the β > 0 half-plane,

centred at the origin, and the line segment from −R to R along the the α axis.

Cauchy’s integral theorem [5] is applied to the function τ(ζ) − iθ(ζ) using this

contour, and thus for any point ζ enclosed by Γwe have

τ(ζ) − iθ(ζ) �
1

2πi
lim

R→∞

∫
Γ

τ(ζ̂) − iθ(ζ̂)
ζ̂ − ζ

dζ̂.

Now, applying Lemma 1 from §2.2.1 to the semi-circular segment of the contour

gives

τ(ζ) − iθ(ζ) �
1

2πi
lim

R→∞

∫ R

−R

τ(α̂) − iθ(α̂)
α̂ − ζ

dα̂. (E.2)

To evaluate (E.2) numerically, the real and imaginary parts are separated, thus

τ(ζ) �
1

2π

∫
∞

−∞

τ(α̂)eπφ sin πψ − θ(α̂)(α̂ − eπφ cos πψ)
|α̂ − eπ(φ+iψ) |2

dα̂ and (E.3)

θ(ζ) �
1

2π

∫
∞

−∞

τ(α̂)(α̂ − eπφ cos πψ) + θ(α̂)eπφ sin πψ

|α̂ − eπ(φ+iψ) |2
dα̂ (E.4)

where ζ � eπ(φ+iψ). The domain corresponding to integration over the free surface,
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α̂ < 0, is then evaluated separately from the integration over the topography,

where α̂ > 0.

For integration over the free surface, the integral is broken up into three further

sub-domains. The first being the interval −eπφm < α̂ < −e−πφm which corresponds

to where the free-surface variables τ and θ are known from the boundary-integral

calculations for the free-surface. The contribution in this domain is evaluated by

fitting a spline, using MATLAB’s spline() function, to the known values of τs

and θs from the discrete grid, and integrating the resulting piece-wise polynomial.

The other domains correspond to the far upstream and far downstream regions of

the flow, where the variables τs and θs are approximately known via the linearised

solution, given by equations (D.11) and (D.12) derived in Appendix D. The values

for the parameters D and λ in the linearised solution are obtained from the free-

surface calculations. These contributions are evaluated using the same mappings

from §4.2 and MATLAB’s adaptive Gauss-Kronrod numerical integration routine,

quadgk().

The integral over the channel topography, where α̂ > 0, is evaluated by trun-

cating the domain and ignoring the contributions from the far field, as the contri-

bution is negligible outside of the domain e−2πφm < α̂ < e2πφm . The value of τ in

this interval can be calculated using the same approach outlined in §4.2.1, while

the angle of the topography, θ(α > 0), is given by (4.2.9). The integral over this

truncated domain is evaluated using MATLAB’s quadgk() function.

Using this procedure, equations (E.3) and (E.4) can be numerically evaluated

for any value of φ and any value of ψ ∈ (0, 1). The numerical integration functions

supplied by MATLAB were called with a requested relative error tolerance of

10−6. This was sufficient to ensure that the streamlines x(ζ) and y(ζ) found by

numerically integrating (E.1) were accurate to the order of 10−3 in terms of the

absolute error.
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