An Investigation of Automatic Feature Extraction for Clustered Microcalcifications on Digital Mammograms

by

Aqilah Baseri Huddin

B. E. (Electrical & Electronic Engineering, First Class Honours) The University of Adelaide, 2007

Thesis submitted for the degree of

Doctor of Philosophy

in

Electrical and Electronic Engineering The University of Adelaide

2015

© 2015 Aqilah Baseri Huddin All Rights Reserved

Heading	Page
Contents	iii
Abstract	ix
Statement of Originality	xi
Acknowledgement	xiii
Thesis Conventions	xv
List of Publications	xvii
List of Figures	xix
List of Tables	xxv
Chapter 1. Introduction	1
1.1 Mammography	2
1.1.1 Abnormalities in Mammograms	4
1.1.2 Breast Cancer Screening by Radiologists	9
1.2 Computer-Aided Diagnostic System	10
1.3 Aims of Thesis	12
1.4 Contributions of Thesis	13
1.5 Organisation of Thesis	13

Chapte	er 2. Previous Work in CAD System for Mammograms	15
2.1	CAD Detection of Microcalcification (CADe)	16
	2.1.1 Pre-processing Stage	17
	2.1.2 Segmentation	23
	2.1.3 Feature Analysis	23
2.2	CAD Diagnosis of Microcalcification (CADx)	26
	2.2.1 Feature Extraction	27
	2.2.2 Classification	30
2.3	Neural Network in Biomedical Applications	33
2.4	Summary	35
Chapter	er 3. Mathematical Background	37
3.1	Fourier Series and Fourier Transform	38
	3.1.1 Short Time Fourier Transform	41
3.2	Multi-resolution Analysis	44
3.3	Wavelet Analysis	47
3.4	Steerable Pyramid Filtering Analysis	50
	3.4.1 Steerable Filters	52
	3.4.2 Steerable Pyramid Filtering	57
3.5	Summary	63
Chapte	er 4. Classifiers	65
4.1	General Paradigm of Classification	66
4.2	Support Vector Machine	67
	4.2.1 Linear SVM	68
	4.2.2 Support Vectors and Optimizing Hyperplane	70

	4.2.3	Non-Linear SVM Classification	73
4.3	Neura	l Network	74
1.0	121	Food Forward Noural Natural	75
	4.5.1		75
	4.3.2	Back-Propagation Neural Network	77
4.4	Summ	nary	79
Chapte	r 5. De	eep Belief Networks	81
5.1	Deep	Network	82
5.2	Restri	cted Boltzmann Machine (RBM)	84
5.3	DBN A	Architectures	87
	5.3.1	DBN Parameters Tuning	89
5.4	Previc	ous Work in DBN	91
	5.4.1	Autoencoder	92
5.5	Summ	nary	96
Chapte	r 6. Fe	eature Extraction Experiments	97
6.1	Pre-pr	rocessing and Data Acquisition	98
	6.1.1	Data Acquisition	98
	6.1.2	Image Format Conversion	101
	6.1.3	Segmentation of Region of Interest (ROI)	102
	6.1.4	Data Scaling	104
	6.1.5	Training and Testing Datasets	105
	6.1.6	System Evaluation	106
6.2	Featur	re Extraction using Steerable Pyramid Filtering	107
	6.2.1	Experiment 1: Steerable Pyramid Topology Selection	108
	6.2.2	Experiment 2: Steerable Pyramid Feature Extraction with SVM	
		Classifier for Microcalcification Classification	114

		6.2.3	Experiment 3: Data Dimensions Reduction using Principal Com-	
			ponent Analysis (PCA)	120
		6.2.4	Experiment 4: PCA-SP Features with SVM Classifier	124
	6.3	Auton	natic Feature Extraction using DBN	138
		6.3.1	Experiment 5: DBN Architecture Selection	140
		6.3.2	Experiment 6: Feed-Forward DBN Feature Extraction for Micro-	
			calcification Classification	148
		6.3.3	Experiment 7: Microcalcification Classification using Multiple	
			Orientation and Multiple Resolution DBN	156
	6.4	Summ	ary	163
Ch	aptei	7. Co	onclusion	165
	7.1	Summ	ary of Findings	166
	7.2	Sugge	stions for Future Work	169
	7.3	Conclu	ading Remark	170
Ap	pend	ix A. C	Database	171
	A.1	Benigr	Microcalcification Clusters	172
	A.2	Malig	nant Microcalcification Clusters	174
Ap	pend	ix B. C	Detailed DBN experiment results	185
	B.1	Pre-Tra	aining Error in Layer One DBN	186
	B.2	Pre-Tra	aining Error in Layer Two DBN	188
	B.3	Pre-Tra	aining Error in Layer Three DBN	190
Bi	bliogr	aphy		193
Lis	st of A	Acrony	ms	201

Index	203
Biography	205

Abstract

Mammography is a common imaging modality used for breast screening. The limitations in reading mammogram images manually by radiologists have motivated an interest to the use of computerised systems to aid the process. Computer-aided diagnosis (CAD) systems have been widely used to assist radiologists in making decision; either for detection, CADe, or for diagnosis, CADx, of the anomalies in mammograms. This thesis aims to improve the sensitivity of the CADx system by proposing novel feature extraction techniques. Previous works have shown that multiple resolution images provide useful information for classification. The wavelet transform is one of the techniques that is commonly used to produce multiple resolution images, and is used to extract features from the produced sub-images for classification of microcalcification clusters in mammograms. However, the fixed directionality produced by the transform limit the opportunity to extract further useful features that may contain information associated with the malignancy of the clusters. This has driven the thesis to experiment on multiple orientation and multiple resolution images for providing features for microcalcification classification purposes. Extensive and original experiments are conducted to seek whether the multiple orientation and multiple resolution analysis of microcalcification clusters features are useful for classification. Results show that the proposed method achieves an accuracy of 78.3%, and outperforms the conventional wavelet transform, which achieves an accuracy of 64.9%. A feature selection step using Principal Component Analysis (PCA) is employed to reduce the number of the features as well as the complexity of the system. The overall result shows that the accuracy of the system when 2-features from steerable pyramid filtering are used as input achieved 85.5% as opposed to 2-features from conventional wavelet transform, which achieves an accuracy of 69.9%. In addition, the effectiveness of the diagnosis system also depends on the classifier. Deep belief networks have demonstrated to be able to extract high-level of input representations. The ability of greedy learning in deep networks

Abstract

provide a highly non-linear mapping of the input and the output. The advantage of DBN in being able to analyse complex patterns, in this thesis, is exploited for classification of microcalcification clusters into benign or malignant sets. An extensive research experiment is conducted to use DBN in extracting features for microcalcification classification. The experiment of using DBN solely as a feature extractor and classifier of raw pixel microcalcification images shows no significant improvement. Therefore, a novel technique using filtered images is proposed, so that a DBN will extract features from the filtered images. The analysis result shows an improvement in accuracy from 47.9% to 60.8% when the technique is applied. With these new findings, it may contribute to the identification of the microcalcification clusters in mammograms.

Statement of Originality

This work contains no material that has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published written by another person, except where due reference has been made in the text.

I give consent to this copy of the thesis, when deposited in the University Library, being available for loan, photocopying, and dissemination through the library digital thesis collection, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue, the Australasian Digital Thesis Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

8th December 2015

Signed

Date

Acknowledgement

I would like to express my deepest gratitude and appreciation to my supervisors, Dr Brian Ng and Professor Derek Abbott for their guidance and support during the course of the work reported in this thesis. During the years I spent my living in Adelaide away from family, I received plenty of advice and motivation from my supervisors that encouraged me to keep going through a number of difficulties faced in living throughout the journey. Their contribution of valuable ideas and advice has inspired my enthusiasm to explore more in my study. Without them, the completion of this thesis would not have been possible.

I also would like to extend my gratitude to all academic and supporting staff at various centers in the University of Adelaide. I convey many thanks to the staff of the School of Electrical and Electronic Engineering for providing me a comfortable environment to stay in the department and the access to the use of various facilities during my study. Thank you for the warm reception by the International Student Centre (ISC), especially to Ms Jane Copeland and Mr Soufiane Rboub for their great concern in taking care of my candidature and also, to the Adelaide Graduate Centre (AGC) for the precious help in solving a number of administrative requirements for my study in Adelaide. My sincere thanks also go to the Ministry of Education Malaysia (MOHE) and the National University of Malaysia (UKM) for their financial support to this PhD study.

Special thanks to my family for their limitless support and sacrifices. To my father, Dr Hj Baseri Huddin and my mother, Hjh Zaharah, words cannot describe my gratitude for your prayers and support. Not to forget to my father-in-law, Hj Ibrahim, my mother-in-law, Hjh Jahani and all my siblings, thanks for your support. I also like to thank to all my friends, both in Malaysia and Australia.

Acknowledgement

I deliver very special words to my beloved husband, Mohd. Faisal; I thank you so much for always being by my side and for being unbelievingly supportive and understanding throughout our PhD journeys. The continuous encouragement that you gave, has kept me going striving to achieve this accomplishment. Last but not least, to my beautiful daughter, Aliya, you are the source of my strength and my unending joy and love. Thank you.

In all, I express Alhamdulillah.

Aqilah Baseri Huddin

Thesis Conventions

The following conventions have been adopted in this thesis:

1. **Notation.** The acronyms used in this thesis are defined in the List of Acronyms on page 201.

2. **Spelling.** Australian English spelling conventions have been used, as defined in the Macquarie English Dictionary (A. Delbridge (Ed.), Macquarie Library, North Ryde, NSW, Australia, 2001).

3. **Typesetting.** This document was compiled using LATEX2e. TeXworks was used as text editor interfaced to LATEX2e. Inkscape 0.91 was used to produce vector graphics of the figures.

4. Mathematics. MATLAB code was written using MATLAB Version R2009a.

5. **Referencing.** The Harvard style has been adopted for referencing.

6. **Punctuation.** The Oxford convention for commas has been used for punctuation.

List of Publications

 Baseri Huddin, A., Ng, B. W.-H., Abbott, D. (2011). Investigation of multiorientation and multiresolution features for microcalcification classification in mammograms. *Proceedings of the 7th International Conference on Intelligent Sensors, Sensor Networks and Information Processing* (ISSNIP 2011), Adelaide, Australia, December 6–9 2011: pp.52–57.

Figure

Page

1.1	The mammograms images acquired from the MIAS database	3
1.2	Mammograms views; mediolateral-oblique and cranio-caudal	4
1.3	Types of masses based on their opacities.	5
1.4	Terminal ductal lobular unit (TDLU) in the breast tissue	6
1.5	Types of calcifications.	7
1.6	Lobular microcalcification.	8
1.7	Ductal microcalcification.	8
1.8	Framework of a complete CAD system.	12
2.1	Flowchart of CAD detection system.	16
2.2	Matched Gaussian filter by Heinlein <i>et al.</i>	21
2.3	Flowchart of CAD diagnosis system.	26
3 1	Fourier series for square wave approximation	30
5.1		57
3.2	Fourier transform of non-stationary sinusoid wave with different fre-	
	quencies	40
3.3	STFT frequency-time joint tiling.	43
3.4	Wavelet transform frequency-time joint tiling.	44
3.5	Nested vector spaces spanned by scaling function	46
3.6	Image decomposition using 2D wavelet transform filterbanks	50

3.7	Image decomposition using wavelet at two levels of resolutions	51
3.8	Two-dimensional Gaussian function.	53
3.9	Derivative filters derived from Gaussian function.	55
3.10	Filtered images using filters derived from Gaussian function	56
3.11	Image decomposition using steerable pyramids.	58
3.12	Decomposition subimages of the circle image using steerable pyramid	
	filtering.	59
3.13	Basis filters: sp1Filters	60
3.14	Basis filters: sp3Filters	61
3.15	Basis filters: sp5Filters	62
4.1	An illustrative 3-dimensional linear decision surface	69
4.2	Hyperplanes.	70
4.3	Optimal hyperplane margin in SVM	71
4.4	Non-linear SVM.	73
4.5	Neurons and neural network	75
4.6	Three-layer feed-forward neural network	76
4.7	Three-layer back-propagation neural network.	78
5.1	Deep belief network.	84
5.2	Restricted Boltzmann machine	85
5.3	Gibbs sampling in Markov chain for learning in RBM	87
5.4	A <i>d</i> -layer DBN	88
5.5	A <i>d</i> -layer back-propagation DBN	89

90

5.7 Random sample of MNIST handwritten digits. The images were ge		
	ated from MNIST database (Lee <i>et al.</i> 1998)	93
5.8	Autoencoder DBN for MNIST digits reconstruction procedure	93
5.9	The sum squared errors of pre-training in the autoencoder's layers	95
5.10	Original and reconstructed MNIST images	95

6.1	Flow chart of data acquisition and segmentation process
6.2	A sample of <i>overlay</i> file in DDSM database
6.3	Ground truth marked by the radiologists on the mammogram in DDSM
	database
6.4	Segmentation of ROI using the chain code
6.5	Histogram of sizes of the segmented ROIs
6.6	Boxplot of ROIs' sizes showing the median of 138112 pixels 104
6.7	Images of the original, the reconstructed and the calculated loss after
	filtering is performed
6.8	Signal to noise ratio (SNR)
6.9	Losses images from 2 randomly chosen ROIs
6.10	Boxplot of SNR at 3-level of decomposition (image size 256 \times 256). 112
6.11	Boxplot of SNR at 4-level of decomposition (image size 256 \times 256). 112
6.12	Boxplot of SNR at 3-level of decomposition using sp3Filters (image size
	128×128)
6.13	The topology of steerable pyramid
6.14	An example of ROI containing microcalcification cluster
6.15	Detailed subimages of microcalcification cluster produced from the
	steerable pyramid filtering
6.16	Detailed subimages of microcalcification cluster produced from the
	wavelet transform filtering

6.17	Boxplot of classifier accuracy with combination of energy and entropy	
	as input features.	118
6.18	Boxplot of classifier accuracy with energy as input features	118
6.19	Boxplot of classifier accuracy with entropy as input features	119
6.20	Eigenvalues plot obtained from PCA; combination of energy and en-	
	tropy features.	123
6.21	Eigenvalues plot obtained from PCA; energy features	124
6.22	Eigenvalues plot obtained from PCA; entropy features	124
6.23	Boxplot of classifier accuracy with PCA transformed energy features	
	(image size 256 × 256)	126
6.24	Boxplot of classifier accuracy with PCA transformed energy features	
	(image size 128×128)	127
6.25	Boxplot of classifier accuracy with PCA transformed entropy features	
	(image size 256 × 256)	129
6.26	Boxplot of classifier accuracy with PCA transformed entropy features	
	(image size 128×128)	130
6.27	Boxplot of classifier accuracy with 2 PCA transformed energy entropy	
	features.	131
6.28	Boxplot of classifier accuracy with 3 PCA transformed energy and en-	
	tropy features.	132
6.29	Boxplot of classifier accuracy with 4 PCA transformed energy and en-	
	tropy features.	134
6.30	Boxplot of classifier accuracy with 5 PCA transformed energy and en-	
	tropy features.	135
6.31	Comparison chart of classifier accuracy with different type of single in-	
	put features.	136
6.32	Comparison chart of classifier accuracy with different type of combina-	
	tion input features.	137

6.33	Sum squared errors in pre-training the first layer RBM after 200 epochs.	143
6.34	Sum squared errors in pre-training the second layer RBM after 200 epochs	.145
6.35	Sum squared errors in pre-training the third layer RBM after 200 epochs.	146
6.36	The architecture of the DBN with 3 hidden layers	148
6.37	ROC curve of feed-forward unsupervised DBN	151
6.38	DBN as automatic feature extractor and unsupervised classifier	151
6.39	DBN as feature extractor and SVM for classifier.	153
6.40	Flowchart of the DBN-SVM training and testing phase	153
6.41	Boxplot of accuracy for feature extraction using DBN directly from the raw pixels of segmented ROI with SVM classfier	155
6.42	Boxplot of accuracy for feature extraction using hybrid SP-DBN at reso- lution 1 with SVM classifier.	158
6.43	Boxplot of accuracy for feature extraction using hybrid SP-DBN at reso- lution 2 with SVM classifier.	158
6.44	Boxplot of accuracy for feature extraction using hybrid SP-DBN at resolution 3 with SVM classifier.	159
6.45	Multiple resolution and multiple orientation DBN with SVM classifier for microcalcification classification.	160
6.46	Boxplot of accuracy for feature extraction using hybrid SP-DBN at resolution 1, 2 and 3, with SVM classifier.	162
6.47	Comparison graph of accuracies achieved using different feature extrac- tion approaches	163

List of Tables

Table Page 1.1 Morphology and distributions features of microcalcification on mammograms..... 8 3.1 Properties comparison between steerable pyramid with wavelet. . . . 52 6.1 Number of cases for each type normal, benign and malignant mammogram in DDSM database. 99 6.2 Chain code values and their direction in x and y coordinate 100 6.3 6.4 Mean SNR for three different sets of basis filters at 3 and 4 levels decom-6.5 Comparison of mean and median accuracy for microcalcification diagnosis between features measured from steerable pyramid filtering and wavelet transform. 6.6 Statistical analysis: mean, median and standard deviation of accuracies obtained when using PCA energy features as input for microcalcification 6.7 Statistical analysis: mean, median and standard deviation of accuracies obtained when using PCA energy features as input for microcalcification Statistical analysis: mean, median and standard deviation of accuracies 6.8 obtained when using PCA entropy features as input for microcalcifica-

List of Tables

6.9	Statistical analysis: mean, median and standard deviation of accuracies	
	obtained when using PCA entropy features as input for microcalcifica-	
	tion classification (image size 128×128)	30
6.10	T-test analysis between steerable pyramid and wavelet transform, for	
	image 256 \times 256, with two PCA entropy and two PCA energy features 13 $$	31
6.11	T-test analysis between steerable pyramid and wavelet transform, for	
	image 128 \times 128, with two PCA entropy and two PCA energy features 13	32
6.12	T-test analysis between steerable pyramid and wavelet transform, for	
	image 256 \times 256, with three PCA entropy and three PCA energy features. 13	33
6.13	T-test analysis between steerable pyramid and wavelet transform, for	
	image 128 \times 128, with three PCA entropy and three PCA energy features. 13	33
6.14	T-test analysis between steerable pyramid and wavelet transform, for	
	image 256 \times 256, with four PCA entropy and four PCA energy features. 13	33
6.15	T-test analysis between steerable pyramid and wavelet transform, for	
	image 128 \times 128, with four PCA entropy and four PCA energy features. 13	34
6.16	T-test analysis between steerable pyramid and wavelet transform, for	
	image 256 \times 256, with five PCA entropy and five PCA energy features 13	34
6.17	T-test analysis between steerable pyramid and wavelet transform, for	
	image 128 \times 128, with five PCA entropy and five PCA energy features 13	35
6.18	Pre-training error in the first layer up to epoch 100 in step of 5 epochs 14	43
6.19	Execution time for pre-training Layer 1 RBM after 200 epochs 14	44
6.20	Execution time for pre-training Layer 2 RBM after 200 epochs 14	45
6.21	Execution time for pre-training Layer 3 RBM after 200 epochs 14	46
6.22	Summarised results using different number of code layer nodes 15	50
6.23	Summary results to compare the accuracy achieved with different input	
	images to the DBN	59
6.24	T-test analysis between different type of images at the input of the DBN	
	features extractor	62