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Abstract

Mammography is a common imaging modality used for breast screening. The limi-
tations in reading mammogram images manually by radiologists have motivated an
interest to the use of computerised systems to aid the process. Computer-aided diag-
nosis (CAD) systems have been widely used to assist radiologists in making decision;
either for detection, CADe, or for diagnosis, CADX, of the anomalies in mammograms.
This thesis aims to improve the sensitivity of the CADx system by proposing novel
feature extraction techniques. Previous works have shown that multiple resolution
images provide useful information for classification. The wavelet transform is one of
the techniques that is commonly used to produce multiple resolution images, and is
used to extract features from the produced sub-images for classification of microcalci-
fication clusters in mammograms. However, the fixed directionality produced by the
transform limit the opportunity to extract further useful features that may contain in-
formation associated with the malignancy of the clusters. This has driven the thesis to
experiment on multiple orientation and multiple resolution images for providing fea-
tures for microcalcification classification purposes. Extensive and original experiments
are conducted to seek whether the multiple orientation and multiple resolution analy-
sis of microcalcification clusters features are useful for classification. Results show that
the proposed method achieves an accuracy of 78.3%, and outperforms the conventional
wavelet transform, which achieves an accuracy of 64.9%. A feature selection step using
Principal Component Analysis (PCA) is employed to reduce the number of the features
as well as the complexity of the system. The overall result shows that the accuracy of
the system when 2-features from steerable pyramid filtering are used as input achieved
85.5% as opposed to 2-features from conventional wavelet transform, which achieves
an accuracy of 69.9%. In addition, the effectiveness of the diagnosis system also de-
pends on the classifier. Deep belief networks have demonstrated to be able to extract

high-level of input representations. The ability of greedy learning in deep networks

ix



Abstract

provide a highly non-linear mapping of the input and the output. The advantage of
DBN in being able to analyse complex patterns, in this thesis, is exploited for classifica-
tion of microcalcification clusters into benign or malignant sets. An extensive research
experiment is conducted to use DBN in extracting features for microcalcification classi-
fication. The experiment of using DBN solely as a feature extractor and classifier of raw
pixel microcalcification images shows no significant improvement. Therefore, a novel
technique using filtered images is proposed, so that a DBN will extract features from
the filtered images. The analysis result shows an improvement in accuracy from 47.9%
to 60.8% when the technique is applied. With these new findings, it may contribute to

the identification of the microcalcification clusters in mammograms.
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