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Abstract

Mammography is a common imaging modality used for breast screening. The limi-

tations in reading mammogram images manually by radiologists have motivated an

interest to the use of computerised systems to aid the process. Computer-aided diag-

nosis (CAD) systems have been widely used to assist radiologists in making decision;

either for detection, CADe, or for diagnosis, CADx, of the anomalies in mammograms.

This thesis aims to improve the sensitivity of the CADx system by proposing novel

feature extraction techniques. Previous works have shown that multiple resolution

images provide useful information for classification. The wavelet transform is one of

the techniques that is commonly used to produce multiple resolution images, and is

used to extract features from the produced sub-images for classification of microcalci-

fication clusters in mammograms. However, the fixed directionality produced by the

transform limit the opportunity to extract further useful features that may contain in-

formation associated with the malignancy of the clusters. This has driven the thesis to

experiment on multiple orientation and multiple resolution images for providing fea-

tures for microcalcification classification purposes. Extensive and original experiments

are conducted to seek whether the multiple orientation and multiple resolution analy-

sis of microcalcification clusters features are useful for classification. Results show that

the proposed method achieves an accuracy of 78.3%, and outperforms the conventional

wavelet transform, which achieves an accuracy of 64.9%. A feature selection step using

Principal Component Analysis (PCA) is employed to reduce the number of the features

as well as the complexity of the system. The overall result shows that the accuracy of

the system when 2-features from steerable pyramid filtering are used as input achieved

85.5% as opposed to 2-features from conventional wavelet transform, which achieves

an accuracy of 69.9%. In addition, the effectiveness of the diagnosis system also de-

pends on the classifier. Deep belief networks have demonstrated to be able to extract

high-level of input representations. The ability of greedy learning in deep networks
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Abstract

provide a highly non-linear mapping of the input and the output. The advantage of

DBN in being able to analyse complex patterns, in this thesis, is exploited for classifica-

tion of microcalcification clusters into benign or malignant sets. An extensive research

experiment is conducted to use DBN in extracting features for microcalcification classi-

fication. The experiment of using DBN solely as a feature extractor and classifier of raw

pixel microcalcification images shows no significant improvement. Therefore, a novel

technique using filtered images is proposed, so that a DBN will extract features from

the filtered images. The analysis result shows an improvement in accuracy from 47.9%

to 60.8% when the technique is applied. With these new findings, it may contribute to

the identification of the microcalcification clusters in mammograms.

x



Statement of Originality

This work contains no material that has been accepted for the award of any other

degree or diploma in any university or other tertiary institution and, to the best of my

knowledge and belief, contains no material previously published written by another

person, except where due reference has been made in the text.

I give consent to this copy of the thesis, when deposited in the University Li-

brary, being available for loan, photocopying, and dissemination through the library

digital thesis collection, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available

on the web, via the University’s digital research repository, the Library catalogue, the

Australasian Digital Thesis Program (ADTP) and also through web search engines,

unless permission has been granted by the University to restrict access for a period of

time.

8th December 2015

Signed Date

xi



This page is blank.

xii



Acknowledgement

I would like to express my deepest gratitude and appreciation to my supervisors,

Dr Brian Ng and Professor Derek Abbott for their guidance and support during the

course of the work reported in this thesis. During the years I spent my living in Ade-

laide away from family, I received plenty of advice and motivation from my supervi-

sors that encouraged me to keep going through a number of difficulties faced in living

throughout the journey. Their contribution of valuable ideas and advice has inspired

my enthusiasm to explore more in my study. Without them, the completion of this

thesis would not have been possible.

I also would like to extend my gratitude to all academic and supporting staff at various

centers in the University of Adelaide. I convey many thanks to the staff of the School of

Electrical and Electronic Engineering for providing me a comfortable environment to

stay in the department and the access to the use of various facilities during my study.

Thank you for the warm reception by the International Student Centre (ISC), especially

to Ms Jane Copeland and Mr Soufiane Rboub for their great concern in taking care

of my candidature and also, to the Adelaide Graduate Centre (AGC) for the precious

help in solving a number of administrative requirements for my study in Adelaide. My

sincere thanks also go to the Ministry of Education Malaysia (MOHE) and the National

University of Malaysia (UKM) for their financial support to this PhD study.

Special thanks to my family for their limitless support and sacrifices. To my father,

Dr Hj Baseri Huddin and my mother, Hjh Zaharah, words cannot describe my grati-

tude for your prayers and support. Not to forget to my father-in-law, Hj Ibrahim, my

mother-in-law, Hjh Jahani and all my siblings, thanks for your support. I also like to

thank to all my friends, both in Malaysia and Australia.

xiii



Acknowledgement

I deliver very special words to my beloved husband, Mohd. Faisal; I thank you so

much for always being by my side and for being unbelievingly supportive and under-

standing throughout our PhD journeys. The continuous encouragement that you gave,

has kept me going striving to achieve this accomplishment. Last but not least, to my

beautiful daughter, Aliya, you are the source of my strength and my unending joy and

love. Thank you.

In all, I express Alhamdulillah.

Aqilah Baseri Huddin

xiv



Thesis Conventions

The following conventions have been adopted in this thesis:

1. Notation. The acronyms used in this thesis are defined in the List of Acronyms on

page 201.

2. Spelling. Australian English spelling conventions have been used, as defined

in the Macquarie English Dictionary (A. Delbridge (Ed.), Macquarie Library, North

Ryde, NSW, Australia, 2001).

3. Typesetting. This document was compiled using LATEX2e. TeXworks was used

as text editor interfaced to LATEX2e. Inkscape 0.91 was used to produce vector graphics

of the figures.

4. Mathematics. MATLAB code was written using MATLAB Version R2009a.

5. Referencing. The Harvard style has been adopted for referencing.

6. Punctuation. The Oxford convention for commas has been used for punctua-

tion.

xv



This page is blank.

xvi



List of Publications

1. Baseri Huddin, A., Ng, B. W.-H., Abbott, D. (2011). Investigation of multiorienta-

tion and multiresolution features for microcalcification classification in mammo-

grams. Proceedings of the 7th International Conference on Intelligent Sensors, Sensor

Networks and Information Processing (ISSNIP 2011), Adelaide, Australia, December

6–9 2011: pp.52–57.

xvii



This page is blank.

xviii



List of Figures

Figure Page

1.1 The mammograms images acquired from the MIAS database. . . . . . . 3

1.2 Mammograms views; mediolateral-oblique and cranio-caudal. . . . . . . 4

1.3 Types of masses based on their opacities. . . . . . . . . . . . . . . . . . . 5

1.4 Terminal ductal lobular unit (TDLU) in the breast tissue. . . . . . . . . . 6

1.5 Types of calcifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.6 Lobular microcalcification. . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.7 Ductal microcalcification. . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.8 Framework of a complete CAD system. . . . . . . . . . . . . . . . . . . . 12

2.1 Flowchart of CAD detection system. . . . . . . . . . . . . . . . . . . . . . 16

2.2 Matched Gaussian filter by Heinlein et al. . . . . . . . . . . . . . . . . . . 21

2.3 Flowchart of CAD diagnosis system. . . . . . . . . . . . . . . . . . . . . . 26

3.1 Fourier series for square wave approximation. . . . . . . . . . . . . . . . 39

3.2 Fourier transform of non-stationary sinusoid wave with different fre-

quencies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 STFT frequency-time joint tiling. . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 Wavelet transform frequency-time joint tiling. . . . . . . . . . . . . . . . 44

3.5 Nested vector spaces spanned by scaling function. . . . . . . . . . . . . . 46

3.6 Image decomposition using 2D wavelet transform filterbanks. . . . . . . 50

xix



List of Figures

3.7 Image decomposition using wavelet at two levels of resolutions. . . . . . 51

3.8 Two-dimensional Gaussian function. . . . . . . . . . . . . . . . . . . . . . 53

3.9 Derivative filters derived from Gaussian function. . . . . . . . . . . . . . 55

3.10 Filtered images using filters derived from Gaussian function. . . . . . . . 56

3.11 Image decomposition using steerable pyramids. . . . . . . . . . . . . . . 58

3.12 Decomposition subimages of the circle image using steerable pyramid

filtering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.13 Basis filters: sp1Filters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.14 Basis filters: sp3Filters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.15 Basis filters: sp5Filters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.1 An illustrative 3-dimensional linear decision surface. . . . . . . . . . . . 69

4.2 Hyperplanes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3 Optimal hyperplane margin in SVM. . . . . . . . . . . . . . . . . . . . . . 71

4.4 Non-linear SVM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.5 Neurons and neural network. . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.6 Three-layer feed-forward neural network. . . . . . . . . . . . . . . . . . . 76

4.7 Three-layer back-propagation neural network. . . . . . . . . . . . . . . . 78

5.1 Deep belief network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2 Restricted Boltzmann machine. . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3 Gibbs sampling in Markov chain for learning in RBM. . . . . . . . . . . . 87

5.4 A d-layer DBN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.5 A d-layer back-propagation DBN. . . . . . . . . . . . . . . . . . . . . . . . 89

5.6 A d-layer associative memory DBN. . . . . . . . . . . . . . . . . . . . . . 90

xx



List of Figures

5.7 Random sample of MNIST handwritten digits. The images were gener-

ated from MNIST database (Lee et al. 1998). . . . . . . . . . . . . . . . . . 93

5.8 Autoencoder DBN for MNIST digits reconstruction procedure. . . . . . . 93

5.9 The sum squared errors of pre-training in the autoencoder’s layers. . . . 95

5.10 Original and reconstructed MNIST images. . . . . . . . . . . . . . . . . . 95

6.1 Flow chart of data acquisition and segmentation process. . . . . . . . . . 98

6.2 A sample of overlay file in DDSM database. . . . . . . . . . . . . . . . . . 100

6.3 Ground truth marked by the radiologists on the mammogram in DDSM

database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.4 Segmentation of ROI using the chain code. . . . . . . . . . . . . . . . . . 103

6.5 Histogram of sizes of the segmented ROIs. . . . . . . . . . . . . . . . . . 104

6.6 Boxplot of ROIs’ sizes showing the median of 138112 pixels. . . . . . . . 104

6.7 Images of the original, the reconstructed and the calculated loss after

filtering is performed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.8 Signal to noise ratio (SNR). . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.9 Losses images from 2 randomly chosen ROIs. . . . . . . . . . . . . . . . . 111

6.10 Boxplot of SNR at 3-level of decomposition (image size 256 × 256). . . . 112

6.11 Boxplot of SNR at 4-level of decomposition (image size 256 × 256). . . . 112

6.12 Boxplot of SNR at 3-level of decomposition using sp3Filters (image size

128 × 128). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.13 The topology of steerable pyramid. . . . . . . . . . . . . . . . . . . . . . . 115

6.14 An example of ROI containing microcalcification cluster. . . . . . . . . . 115

6.15 Detailed subimages of microcalcification cluster produced from the

steerable pyramid filtering. . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.16 Detailed subimages of microcalcification cluster produced from the

wavelet transform filtering. . . . . . . . . . . . . . . . . . . . . . . . . . . 117

xxi



List of Figures

6.17 Boxplot of classifier accuracy with combination of energy and entropy

as input features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.18 Boxplot of classifier accuracy with energy as input features. . . . . . . . 118

6.19 Boxplot of classifier accuracy with entropy as input features. . . . . . . . 119

6.20 Eigenvalues plot obtained from PCA; combination of energy and en-

tropy features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.21 Eigenvalues plot obtained from PCA; energy features. . . . . . . . . . . . 124

6.22 Eigenvalues plot obtained from PCA; entropy features. . . . . . . . . . . 124

6.23 Boxplot of classifier accuracy with PCA transformed energy features

(image size 256× 256). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.24 Boxplot of classifier accuracy with PCA transformed energy features

(image size 128× 128). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.25 Boxplot of classifier accuracy with PCA transformed entropy features

(image size 256× 256). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.26 Boxplot of classifier accuracy with PCA transformed entropy features

(image size 128× 128). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.27 Boxplot of classifier accuracy with 2 PCA transformed energy entropy

features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.28 Boxplot of classifier accuracy with 3 PCA transformed energy and en-

tropy features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.29 Boxplot of classifier accuracy with 4 PCA transformed energy and en-

tropy features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.30 Boxplot of classifier accuracy with 5 PCA transformed energy and en-

tropy features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.31 Comparison chart of classifier accuracy with different type of single in-

put features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.32 Comparison chart of classifier accuracy with different type of combina-

tion input features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

xxii



List of Figures

6.33 Sum squared errors in pre-training the first layer RBM after 200 epochs. 143

6.34 Sum squared errors in pre-training the second layer RBM after 200 epochs.145

6.35 Sum squared errors in pre-training the third layer RBM after 200 epochs. 146

6.36 The architecture of the DBN with 3 hidden layers. . . . . . . . . . . . . . 148

6.37 ROC curve of feed-forward unsupervised DBN. . . . . . . . . . . . . . . 151

6.38 DBN as automatic feature extractor and unsupervised classifier. . . . . . 151

6.39 DBN as feature extractor and SVM for classifier. . . . . . . . . . . . . . . 153

6.40 Flowchart of the DBN-SVM training and testing phase. . . . . . . . . . . 153

6.41 Boxplot of accuracy for feature extraction using DBN directly from the

raw pixels of segmented ROI with SVM classfier. . . . . . . . . . . . . . . 155

6.42 Boxplot of accuracy for feature extraction using hybrid SP-DBN at reso-

lution 1 with SVM classifier. . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.43 Boxplot of accuracy for feature extraction using hybrid SP-DBN at reso-

lution 2 with SVM classifier. . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.44 Boxplot of accuracy for feature extraction using hybrid SP-DBN at reso-

lution 3 with SVM classifier. . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.45 Multiple resolution and multiple orientation DBN with SVM classifier

for microcalcification classification. . . . . . . . . . . . . . . . . . . . . . . 160

6.46 Boxplot of accuracy for feature extraction using hybrid SP-DBN at reso-

lution 1, 2 and 3, with SVM classifier. . . . . . . . . . . . . . . . . . . . . . 162

6.47 Comparison graph of accuracies achieved using different feature extrac-

tion approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

xxiii



This page is blank.

xxiv



List of Tables

Table Page

1.1 Morphology and distributions features of microcalcification on mam-

mograms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 Properties comparison between steerable pyramid with wavelet. . . . . 52

6.1 Number of cases for each type normal, benign and malignant mammo-

gram in DDSM database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2 Chain code values and their direction in x and y coordinate . . . . . . . . 100

6.3 Confusion matrix of the classifier’s outcomes. . . . . . . . . . . . . . . . . 107

6.4 Mean SNR for three different sets of basis filters at 3 and 4 levels decom-

position. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.5 Comparison of mean and median accuracy for microcalcification diag-

nosis between features measured from steerable pyramid filtering and

wavelet transform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.6 Statistical analysis: mean, median and standard deviation of accuracies

obtained when using PCA energy features as input for microcalcification

classification (image size 256 × 256). . . . . . . . . . . . . . . . . . . . . . 128

6.7 Statistical analysis: mean, median and standard deviation of accuracies

obtained when using PCA energy features as input for microcalcification

classification (image size 128 × 128). . . . . . . . . . . . . . . . . . . . . . 128

6.8 Statistical analysis: mean, median and standard deviation of accuracies

obtained when using PCA entropy features as input for microcalcifica-

tion classification (image size 256 × 256). . . . . . . . . . . . . . . . . . . 129

xxv



List of Tables

6.9 Statistical analysis: mean, median and standard deviation of accuracies

obtained when using PCA entropy features as input for microcalcifica-

tion classification (image size 128 × 128). . . . . . . . . . . . . . . . . . . 130

6.10 T-test analysis between steerable pyramid and wavelet transform, for

image 256 × 256, with two PCA entropy and two PCA energy features. . 131

6.11 T-test analysis between steerable pyramid and wavelet transform, for

image 128 × 128, with two PCA entropy and two PCA energy features. . 132

6.12 T-test analysis between steerable pyramid and wavelet transform, for

image 256 × 256, with three PCA entropy and three PCA energy features. 133

6.13 T-test analysis between steerable pyramid and wavelet transform, for

image 128 × 128, with three PCA entropy and three PCA energy features. 133

6.14 T-test analysis between steerable pyramid and wavelet transform, for

image 256 × 256, with four PCA entropy and four PCA energy features. 133

6.15 T-test analysis between steerable pyramid and wavelet transform, for

image 128 × 128, with four PCA entropy and four PCA energy features. 134

6.16 T-test analysis between steerable pyramid and wavelet transform, for

image 256 × 256, with five PCA entropy and five PCA energy features. . 134

6.17 T-test analysis between steerable pyramid and wavelet transform, for

image 128 × 128, with five PCA entropy and five PCA energy features. . 135

6.18 Pre-training error in the first layer up to epoch 100 in step of 5 epochs. . 143

6.19 Execution time for pre-training Layer 1 RBM after 200 epochs . . . . . . 144

6.20 Execution time for pre-training Layer 2 RBM after 200 epochs . . . . . . 145

6.21 Execution time for pre-training Layer 3 RBM after 200 epochs . . . . . . 146

6.22 Summarised results using different number of code layer nodes. . . . . . 150

6.23 Summary results to compare the accuracy achieved with different input

images to the DBN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.24 T-test analysis between different type of images at the input of the DBN

features extractor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

xxvi



Chapter 1

Introduction

B
REAST cancer is a common threat to women’s lives world-

wide. The World Health Organization (WHO) has estimated

521 000 died from breast cancer in 2012 (WHO Cancer Fact

Sheet 2014). The disease is known to cause death but with proper diagnosis

at the early stage, the chance of survival increases dramatically. Although

some risk factors such as gender, age, family history, genetics and lifestyle

have been linked to breast cancer, the main general causes of breast cancer

are still to be determined. It is likely that the incidences occur naturally.

Early detection can lead to proper treatments before the cancer spreads and

becomes much worse that can potentially be fatal. Thus, it is important to

raise awareness among women to have an early breast detection by screen-

ing. The statistic of declining death rate in the United States since 1989

shows the positive impact by raising awareness among women regarding

the disease.
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1.1 Mammography

1.1 Mammography

The main clinical technique for breast cancer diagnosis in current use is the use of

mammography. Many programmes and campaigns have been introduced to raise

awareness to undergo mammographic screening for the purpose of early detection. A

study has shown that mammographic screening can help to reduce the number of fa-

talities and improve the success rate of treatments by 30–70% (Rangayyan et al. 2007).

Australian Institute of Health and Welfare also reported that women undergone the

diagnosis has 89% chance of surviving in 5 years (Breast Screen Australia Monitoring

Report 2009-2010 2012).

Mammography is a low amplitude X-ray procedure to examine human breast tis-

sue. The mammography is classified into two according to the types of mammo-

grams it produces; standard mammograms and the digitally acquired mammograms

(Tang et al. 2009b). The mammography was first invented in late 1960s which used

standard radiographic X-ray systems. Here, the black and white image of breast tis-

sue is printed on a photographic film. The major drawback of this system is the poor

quality of the acquired images.

Digital mammography was then introduced, that produced images with improved dy-

namic ranges. With the digitized system, the images are recorded digitally on the com-

puter and advanced imaging techniques can be applied to the images. Recently, the

demand to use a full-field digital mammography (FFDM) is increasing. FFDM uses an

improved image detector technology that improves the detection in the denser breasts

compared to the conventional mammography. The performance of mammography is

measured by its sensitivity; the percentage of the machine that correctly diagnoses pos-

itive cases. Current mammography technology is reported to have a sensitivity of 76%

(Bevers et al. 2009). However the sensitivity varies depending on the breast density. In

a denser breast, it is reported to have as low as 48% of sensitivity (Robson 2010).

The result from the procedure is used to detect any abnormality in breast tissue (The

Radiology Information Resource For Patients: Mammography 2011). This process is
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Chapter 1 Introduction

also called a screening process. During the process, an image of breast tissue is created

using doses of ionizing radiation. Figure 1.1 shows example of a normal and an abnor-

mal mammograms images acquired from the Mammographic Image Analysis Society

Digital Mammogram Database (MIAS).

(a) (b)

Figure 1.1: The mammograms images acquired from the MIAS database; (a) normal breast tis-
sue, and (b) an abnormality in breast tissue that has been diagnosed to be cancerous.
Image source: J. Suckling et al., The Mammographic Image Analysis Society Digital Mam-
mogram Database, 1994

Normally, two views of a breast will be captured separately, mediolateral-oblique

(MLO) and cranio-caudal (CC) views as shown in Figure 1.2(a) and Figure 1.2(b), re-

spectively. The MLO view captures the side-to-side, whilst the CC view captures the

top-to-down of breast tissue.

Mammography has become a useful breast screening technique in medical practice.

This technique has contributed to a reduction in breast cancer fatalities among women.

Mainly because the early symptoms of breast cancer are not noticeable, until the tumor

becomes larger and palpable. Thus the early screening by mammography plays an

important role in screening and detecting any abnormality in human breast tissue. The

Impact of BreastScreen SA reported that, the chances of diagnosed patients surviving

an additional of 5 years is 98.4% and 10 years is 95.3% when the sizes of tumor detected

is less than 10 mm. In contrast, when the tumor detected is larger than 40 mm, the rate

of survival decreases dramatically to only 67.0% for 5 years and 54.4% for 10 years.
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1.1 Mammography

(a) (b)

Figure 1.2: Two views of mammograms acquired from DDSM database of normal tissue, vol-
ume Normal 01 and Case A 0002; (a) mediolateral-oblique (MLO) view, and (b)
cranio-caudal (CC) view. MThe MLO view captures the side-to-side, whilst the CC
view captures the top-to-down of breast tissue.
Image source: Breast - Heath M. et al., The Digital Database for Screening Mammography,
2001

This shows that an early detection of these cancerous tissues is crucial for breast cancer

treatment to be successful.

1.1.1 Abnormalities in Mammograms

There are several types of abnormalities found on mammograms by the radiologists.

These abnormalities include asymmetric breast tissue and density, architectural distor-

tions and appearance of masses or microcalcification clusters. A brief description of

masses and microcalcification will be discussed in the following sections. The masses

and microcalcification commonly can be categorised as either benign or malignant. A

benign abnormality is normally a non-cancerous tumour, whilst a malignant is a can-

cerous tumour.
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Masses

Masses or lumps are growths of tissue in breast. However, not all masses in breast

tissue are malignant or cancerous. Masses are classified as either circumscribed, stellate

or diffused. A circumscribed mass has well-defined morphology. It has curved shape,

either round or oval. A stellate mass has irregular margins and a diffuse mass has a

very poorly defined margin.

(a) (b) (c)

Figure 1.3: Types of masses based on their opacities; (a) circumscribed opacity, (b) stellate opac-
ity, and (c) diffuse opacity.
Image source: Mammograpy, Guide to interpreting, reporting and auditing mammographic
images, Lattanzio and Simonetti, 2010

Commonly, masses that have smooth, round margins are associated with benign

masses and masses that has poorly defined margin are associated with malignant

masses. Figure 1.3 shows three different type of masses commonly found in mam-

mograms. Figure 1.3(a) shows mass with oval shape and is classified as circumscribed

mass. Typically this type of mass is associated with benign mass. Figure 1.3(b) shows

the stellate type of mass that has irregular margin. Stellate type of mass can be either

benign or malignant depending on their other diagnosis features. Figure 1.3(c) shows

a mass with poorly defined margin and commonly associated with malignant tumour.
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1.1 Mammography

Microcalcification

Microcalcification are tiny deposits of calcium that are formed in breast tissues. There

are two types of calcifications based on their origins. The calcifications can originate

from either within the ducts or within the lobules (Lattanzio and Simonetti 2010).

Briefly, the terminal ductal lobular unit (TDLU) is illustrated in Figure 1.4, adapted

from Smithuis and Pijnappel (2008).

Figure 1.4: Terminal ductal lobular unit (TDLU) in the breast tissue. In TDLU, acinis are con-
nected to the nipple through terminal duct.
Image source: Breast - Calcification Differential Diagnosis, Robin Smithuis and Ruud Pij-
nappel, 2008

Calcifications that originate within the lobules are mostly diagnosed as benign. These

calcifications fill in the acini and often result in acini dilation. The shapes of the calci-

fications in this case are often uniform, homogeneous and sharply outlined. Calcifica-

tions that originate within the ductal often has irregular contours. This type of calci-

fications vary significantly in size and shape. Commonly they are diagnosed as being

highly suspicious of malignancy. The differences between these two calcifications can

be seen in Figure 1.5.

On mammograms, microcalcification are seen as bright spots. This is due to the

higher X-rays absorption by the calcifications than by the tissues surrounding them

(Spiesberger 1979). Often, the microcalcification on the mammogram appear in a

group–at least 5 microcalcification per square centimeter (Nishikawa 2002). The sizes
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(a) (b)

Figure 1.5: Two types of calcifications originate from; (a) lobular, and (b) ductal.
Image source: Breast - Calcifications Differential Diagnosis, Robin Smithuis and Ruud
Pijnappel, 2008

of individual microcalcification that form diagnostic images so far recorded by radi-

ologists vary greatly from about 10 µm to up to a few millimeters. By examining the

mammograms, the shapes of microcalcification can also be observed. Their shapes

vary from spherical to elongated forms.

Clusters of microcalcification caused more clinical concern than individual isolated

coarser calcification. An individual isolated calcification, also known as a macrocalci-

fication, is normally caused by the degenerative changes in breast tissue, such as the

aging of breast arteries, the inflammation in breast tissue or former breast injury. The

macrocalcification normally does not multiply and therefore it is less likely to be malig-

nant. For the microcalcification which exist in clustered form, they might be associated

with different diagnosis results, ie. either benign or malignant.

Similarly with masses, not all detected microcalcification are malignant. Features such

as shape, size, number of calcifications and their distribution are the common features

used in identifying their natures. Table 1.1 summarises the above mentioned features

and their corresponding nature ie. most probably benign, intermediate or probably

malignant. Most probably benign has defined and regular shapes, such as round and

rod-shapes. On the other hand, most probably malignant calcifications have irregular

shapes and have casting or granular shapes. Figure 1.6 shows two samples of benign

cases, where the calcifications originate from lobes. Whilst, Figure 1.7 shows two sam-

ples of malignant cases, where the calcifications originate from the ducts.

7



1.1 Mammography

Benign Immediate Concern Malignant
Morphology Round Powdery Casting

Round lucent-centered Rounded Granular
Rod-shaped or tubular Granular type Mixed
Coarse
Skin
”milk-of-calcium”
”egg-shell”

Distributions Diffuse regional Clustered Linear segmental

Table 1.1: Morphology and distributions features of 3 different cases; probably benign, inter-
mediate or immediate concern and probably malignant.

(a) (b)

Figure 1.6: Two types of calcification originate from the lobe; (a) egg-shell, and (b) milk of
calcium, which has been diagnosed as benign.
Image source: Mammograpy, Guide to interpreting, reporting and auditing mammographic
images, Lattanzio and Simonetti, 2010

(a) (b)

Figure 1.7: Two types of calcification originate from the duct; (a) ”casting” type, and (b) gran-
ular, which has been diagnosed as malignant.
Image source: Mammograpy, Guide to interpreting, reporting and auditing mammographic
images, Lattanzio and Simonetti, 2010

The detection of an early sign of breast cancer is important to reduce the fatalities

in women caused by breast cancer. The detection and diagnosis of microcalcification
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in mammograms are crucial tasks. The challenge is to detect microcalcification that

vary in size and shape. Due to their variable nature, it is often difficult to identify

and distinguish the class of microcalcification even for trained specialists. Thus, it

has become an interest in this thesis to implement a novel computer-aided diagnostic

(CAD) system to improve mammogram diagnostic specifically on microcalcification.

1.1.2 Breast Cancer Screening by Radiologists

The images resulting from screening procedure will be interpreted by the experts or

radiologists for further diagnostic purposes. The screening process confronting radiol-

ogists is very challenging. A study in 2002 has found that in 1000 screening cases, only

5 cases were detected to have breast cancer developed in the tissue (Rita E. Sohlich

and Dee 2002). More than 50,000 screening data collected between 1997 and 2001 were

used in their study. The task of finding a small number of cases from a large database

is challenging and induces fatigue in the radiologists that can lead to an unacceptably

high rate of false-negatives. In contrast, to increase the efficiency and reduce the false-

negative rate, double reading has been advocated. Here, two radiologists will read

the same mammograms. Warren and Duffy showed that this approach improves the

sensitivity and effectiveness of the screening (Warren and Duffy 1995). However, this

approach drastically increases the workload and is not cost effective.

Due to the manual nature of the task, low dynamic range and low contrast of film,

together with the fuzziness shapes and sizes of microcalcification appeared on mam-

mograms, radiologists often make inaccurate diagnosis of microcalcification clusters.

Any subtle calcification in the mammograms are often imperceptible to human eyes.

It has been reported that the mammograms can only display about 3% of the informa-

tion they detected at normal view (Laine et al. 1995a). This contributes to the statistics

of 10% to 30% of women being misdiagnosed and reported to be safe but actually

they have breast cancer (Chen and Lee 1997, Ren et al. 2011). A recent work also has
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showed that a double reading technique has a sensitivity of 88% compared to the detec-

tion technique with CAD assistance that achieved a sensitivity of 90.4% (Gromet 2008).

This work has showed that CAD system has improved the sensitivity of detection on

mammograms, and also reducing the cost in advocating two radiologists for double

reading technique.

1.2 Computer-Aided Diagnostic System

Although there are highly trained and skilled radiologists, the incidences of human

errors are unavoidable and may contribute to the misdiagnosis. Factors such as fatigue,

boredom, and the changeable working environment may possibly indirectly affect the

accuracy of the analysis. These factors are magnified if the task involves thousands of

mammograms in the screening.

Historically, the first study to use computer for analysing mammograms was by Wins-

berg in 1967 (Winsberg et al. 1967, Nishikawa 2010). In their work, the mammograms

films were digitised using facsimile machine with pixel size of 0.14 mm and produced

image with grayscale of 32 levels. The digitised image was divided into 64 square

blocks. These blocks were aligned and normalised in a standardised manner, so that

each block was located at the same position of breast tissue for both breasts. This was to

ensure the comparison between the two breasts are carried out consistently. Each of the

square blocks were then measured for 4 different density features. Then, these features

were compared between two breasts. This technique was rather primitive with the use

of an unsophisticated digital scanner that allows 32 levels of grayscale as opposed to

256 or more levels of grayscale in more recent technology (Winsberg et al. 1967).

In 1987, Doi et al. proposed the concept of CAD system to assist radiologists in mak-

ing decision. This technique differs from the earlier attempts because the CAD sys-

tem diagnoses mammograms automatically. The findings by Getty et al. (1988) and

Chan et al. (1990) were the major breakthroughs and initiated many new researchers to
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develop CAD algorithm in mammogram diagnosis (Getty et al. 1988, Chan et al. 1990,

Nishikawa 2007).

Getty et al. (1988) proposed a checklist from the radiologists as an input to the CAD

system for malignancy classification. The checklist catalogs characterisation features

of a lesion that the radiologists use to classify the cases into benign or malignant.

Hence, the proposed CAD system has assisted radiologists to predict the malignancy

of the lesion (Getty et al. 1988). On the other hand, Chan et al. (1990) introduced CAD

system to detect clusters of microcalcification of mammogram. The study showed

that with CAD assistance, many additional clusters were found on the mammograms

(Chan et al. 1990). With these two earlier studies, many algorithms were developed by

other researchers to improve the performance of the CAD system. Furthermore, with

the emerging technology and an expanding knowledge in digital image processing,

CAD has been proven to be able to contribute as an assistance to the radiologists in

diagnosing breast cancer (Freer and Ulissey 2001).

The common approaches in CAD system are divided into two categories; CAD detec-

tion (CADe) and CAD diagnosis (CADx). The aim of CADe is to detect or identify any

suspicious microcalcification revealed from the image in the mammograms. While the

CADx aims to assist radiologists in the characterisation of the detected microcalcifica-

tion clusters, which may be classified as benign or malignant. An overview framework

of a CAD system in breast cancer diagnosis is illustrated in Figure 1.8.

Both the detection and diagnosis by CAD systems are not aimed to take over the role

and the expertise of the radiologists but CAD systems can potentially provide a com-

plimentary effort in resolving some of the medical challenges related to breast cancer

diagnostic issues. As quoted by Nishikawa 2002, CAD systems are aimed to act as a

second opinion to the radiologists (Nishikawa 2002).
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Digital Mammogram

Pre-processing

Enhancement

Segmentation

Feature Analysis

Detected Microcalcifications

Feature Analysis
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Classification
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Microcalcifications

CADx 

System

CADe 

System

Figure 1.8: Overview framework of a complete CAD system in mammograms diagnosis.

1.3 Aims of Thesis

The main focus in this research is to implement a novel approach in improving CADx

system, which is a part of the CAD system. As discussed earlier, CADx is designed

to be able to recognise microcalcification clusters, hence the system is able to classify

the microcalcification into benign and malignant classes. A study has reported that

only 34% from the total microcalcification cases involved are actually malignant and

required further biopsy (Knutzen and Gisvold 1993). By conventional practices, the

radiologists have to screen all cases regardless benign or malignant classes. However,

the recognition of microcalcification classes by CADx system ought to help the radi-

ologists in classifying them. Hence, the improvement of CADx system is essential in

improving the diagnosis of breast cancer.

Common steps involved in CADx include feature extraction and classification. In fea-

ture extraction, the aim is to extract dense features from the large images that will

represent the pattern or characteristic of the detected clusters. These features necessar-

ily contain useful information to be used next in classification steps. Commonly, there

will be a features selection step in between feature extraction and classification steps.
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The aim is to reduce the number of features into an acceptable number, and to reduce

the complexity of the system. In classification step, the classifier will learn the pattern

of these known samples for both benign and malignant cases. The system now has a

supervised training pattern that can be used to classify the unknown sample based on

the features extracted.

1.4 Contributions of Thesis

The contributions and findings of the thesis can be summarised as follows:

1. A multiple resolution and multiple orientation approach to extract features for

microcalcification clusters classification. The work shows an improvement in

classifying microcalcification into benign and malignant classes when multiple

resolution and multiple orientation features were used.

2. An investigation on new techniques in deep belief networks for fully and semi

automated feature extraction for mammogram diagnosis. Deep belief networks

have proven to be able to extract features for classification. However, the network

appears to face difficulties in extracting features directly from the raw images of

microcalcification in mammograms. Hence, a novel technique such as in the next

point is implemented for improvement.

3. Development of a multiple resolution and multiple orientation deep network to

improve feature extraction of microcalcification clusters in mammograms. With

this approach, the accuracy of the diagnosis is shown to be significantly im-

proved.

1.5 Organisation of Thesis

This thesis consists of seven chapters including this introductory chapter as Chapter 1.

Chapter 2 reviews the previous work in mammogram diagnosis that leads to the aim of
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the thesis. Chapter 3 discusses the mathematical background of the filters commonly

used in feature extraction and also introduces the steerable pyramid filtering that will

be used to extract multiple resolution and multiple orientation features of microcalci-

fication clusters. In Chapter 4, types of classifiers are reviewed. The new technique

based on a deep belief network (DBN) is introduced in Chapter 5. The experiments

conducted and the results of proposed approach of feature extraction to classify micro-

calcification in mammogram is presented in Chapter 6. Finally, conclusion and sug-

gestions for future work are summarised in Chapter 7.
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Chapter 2

Previous Work in CAD

System for Mammograms

T
HIS chapter extensively reviews several previous work in CAD

system for mammograms diagnosis. Due to the broad area of

the field, it is customary to categorise the existing work into 2

streams of work, CAD detection (CADe) and CAD diagnosis (CADx). As

its name suggests, CADe is for the detection purposes, whilst CADx is for

the diagnosis or malignancy analysis purposes.

The following sections will discuss the chronological research development

of each system, CADe in Section 2.1 and CADx in Section 2.2 for breast

cancer diagnosis, specifically in detection and diagnosis of clusters of mi-

crocalcification in mammograms. Section 2.3 briefly reviews few work in

biomedical applications that use neural network as part of their CAD sys-

tem.
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2.1 CAD Detection of Microcalcification (CADe)

The first stage in CAD system for mammography diagnosis is called detection or

CADe. The aim of this stage is to detect or identify the appearances of microcalcifi-

cation in mammograms. It does not classify the microcalcification as benign or ma-

lignant. The decision is made at a latter stage. The CADe acts as second reader to

radiologists to spot any appearance that might be constituted with microcalcification.

Some may called the system as screening tools (Nishikawa 2010). Work in automated

microcalcification detection using computer analysis has attracted researchers from as

early as in 1970s (Spiesberger 1979). Now, there are probably more than a hundred

research groups taking part in developing method for automated clustered microcalci-

fication detection.

Pre-processing

Detected

Microcalcification

Cluster

Digital

Mammogram

Images

Segmentation Feature Analysis

Figure 2.1: Flowchart of a CADe system commonly used for detection of microcalcification
clusters. The system starts with the image acquisition from the mammograms.
Typically the images are pre-processed to remove noise, suppress background and
enhance the features on the mammograms. Next, the suspicious areas or features
are segmented to reduce the computational cost. Features in the segmented area
are extracted and analysed. The analysis is performed to reduce the false alarm by
identifying the suspicious features as either microcalcification clusters or artifacts
on the mammograms.

Most of the approaches in CADe systems follow the same scheme, as illustrated in

Figure 2.1. After acquiring a digital mammogram, the first step to be taken is the pre-

processing of the image. In this stage, the purpose is to make subtle microcalcification

more visible by reducing the effects of normal tissues that act as camouflaging back-

ground to the clusters of microcalcification. The techniques include contrast enhance-

ment, features enhancement and background noise reduction. The next stage is to

segment an area in mammogram, which potentially has the microcalcification clusters

in it. In the features analysis, the potential area that has been segmented is analysed
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to reduce the false alarm by identifying the suspicious features as either microcalcifi-

cation clusters or artifacts on the mammograms. At the final stage of the system, the

area with clustered microcalcification is detected.

2.1.1 Pre-processing Stage

Different approaches have been proposed in the pre-processing stage of CADe, either

by the enhancement of microcalcification on mammogram or the reduction of the back-

ground. Some of the work may integrate both approaches for the pre-processing pur-

poses. The next subsections briefly discuss each method for pre-processing stage in the

CADe system.

Enhancement of Microcalcification

The idea of microcalcification enhancement is to make their small structures to be

more visible and thus can either help the radiologists to make decision or can be

further analysed at the next stage in the CADe system. In previous work, some of

the enhancement techniques in this area include the conventional enhancement tech-

niques (Cheng et al. 2003), the region-based techniques (Chan et al. 1990, Morrow et al.

1992, Cheng et al. 2003) and the multi-scale-based techniques (Laine et al. 1994, Hein-

lein et al. 2003, Cheng et al. 2003, Scharcanski and Jung 2006, Tang et al. 2009a).

Conventional enhancement techniques The conventional techniques for enhance-

ment, as described in Cheng et al. (2003) are contrast stretching, histogram equalisa-

tion, convolution mask and fixed or adaptive-neighbourhood statistical enhancement

(Cheng et al. 2003). The first two techniques are performed by image intensity manipu-

lation. This can be conducted since the graylevel histogram of an image gives a global

impression of different image intensity over the dynamic range of the image. Thus, the

simplest contrast enhancement can be performed by stretching the distribution of the
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graylevel to achieve a higher separation between the foreground and the background.

This technique is usually employed when an image has narrow graylevel distribution.

Another simple image intensity manipulation technique is called histogram equalisa-

tion. In this technique, the histogram of the image’s graylevel distribution is trans-

formed into a better histogram distribution (Rangayyan 2005). By distributing the im-

age’s histogram, it allows the low contrast area to achieve higher contrast and thus an

enhancement of an image is obtained. For an example, a uniform graylevel distribu-

tion in mammogram is said to contain more information and the maximum entropy

can be obtained (Cheng et al. 2003). However, these conventional techniques also en-

hance some normal tissues and noise, which may contribute to the false detection.

One of the convolution mask enhancements, the unsharp mask, was reported in work

by McSweeney and Sprawls (1983) and Chan et al. (1987). By applying unsharp mask,

the low-frequency details are reduced and the high-frequency details are amplified.

This was achieved by subtracting the original image with its blurred version of image.

Thus, the technique can only be employed on images with high density or overexposed

mammograms. This limits the efficiency when applying the technique to the mammo-

gram image with lower density (McSweeney and Sprawls 1983, Chan et al. 1987).

The previously applied conventional enhancement techniques use spatial information.

Statistical enhancement methods extract local statistical information such as local mean

and local standard deviation to estimate the background and suppress it to increase the

contrast. This is useful especially when the mammogram has an inhomogenous back-

ground (Gordon and Rangayyan 1984, Cheng et al. 2003). The contrast is enhanced

by finding the differences between the neighbouring pixels. The technique can either

be performed by finding the differences in fixed or adaptive neighbourhood. A fixed-

neighbourhood or standard-neighbour in image processing has a center of one pixel

surrounded by eight pixels in the 3 × 3 configurations (Gordon and Rangayyan 1984).

On the other hand, adaptive-neighbourhood gives more flexibility of the local area.

The adaptive-neighbourhood has m × m center and surrounds of 3m × 3m pixels,
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where m is an odd number. This means, the contrast enhancement function can be

applied accordingly to the size of the object on the image, ie. in this case, the clusters

of microcalcification in mammograms. However, since the contrast function used in

the technique was the square-root function, it also enhanced the noise and the back-

ground. As a result, the enhanced microcalcification were not distinguishable from the

noise and the background.

Region-based enhancement technique The region-based enhancement technique

for mammograms has been used by Rangayyan et al. in 1992 (Rangayyan 2005). Here,

a method called growing seed was used to enhance the mammograms adaptively. One

pixel, or they called a seed is used to grow a region by measuring the neighbourhood

intensity. This produced an overlapping region of neighbourhood that had similar

pixel values. The advantage of an overlapping region over the non-overlapping region

is that it would not introduce an artifact at the edge of disjoints regions. An enhance-

ment function is then applied to the grown region. This resulted in the enhancement

of the region that contained the seed while other regions remained the same values.

The region-based enhancement technique has shown an improvement in microcalci-

fication visibility in the denser breast tissue on mammograms. Using this technique,

the region’s contrast can be enhanced without significantly enhancing other artifacts

in the mammograms. However, the selection of seeds in the image is a crucial task and

needed to be carefully chosen so that the region seed will contain only microcalcifica-

tion and not the noises or artifacts.

Features-based enhancement technique Conventional enhancement has the disad-

vantage of indiscriminately enhancing microcalcification along with other artifacts in

the mammograms. One method to overcome this disadvantage is by enhancing the

microcalcification adapted to its features in mammograms. This can be conducted by

using multi-scale analysis where the analysis of the mammogram is performed in the
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frequency-domain. The aim is to enhance the high-frequency contents of the mammo-

grams. Frequency-content analysis using wavelet-based techniques has attracted sev-

eral researchers in improving the contrast of the mammograms (Laine et al. 1994, Strick-

land and Hee Il 1996, Sakellaropoulos et al. 2003, Heinlein et al. 2003, Salvado and

Roque 2005, Tang et al. 2009a).

A similarity among these works is that they decomposed the mammograms using

wavelet transform and then modified the coefficients of the decomposed images by

applying enhancement operators. The enhancement operators can be either non-linear

(Laine et al. 1994) or linear (Sakellaropoulos et al. 2003, Tang et al. 2009a) functions.

The modified decomposed images with enhanced coefficients were then reconstructed

to produce an image that has better visualisation of microcalcification clusters on the

mammograms.

The first reported work that used multi-scale technique for contrast enhancement of

mammograms was the work by Laine et al. in 1994. They used dyadic wavelet trans-

form and Deslauriers-Dubuc interpolation wavelets to compute a multi-scale represen-

tation of the mammograms. The mammograms were then enhanced by reconstructing

the image from the transform coefficients, which has been modified at each level by

a non-linear operator. This technique has shown good contrast enhancement results.

However, the levels of analysis, threshold values and the gain parameter values used

in this technique must be determined before applying enhancement processing tech-

nique and it can be challenging to obtain the desired results (Laine et al. 1994).

The multi-scale-based enhancement was also adopted by Heinlein et al. in 2003. In his

work, he introduced a novel technique for construction of filterbanks that produced

wavelet decomposition called integrated wavelet. The interesting aspect of this work

is that they have introduced a new algorithm to construct wavelet to adaptively fit var-

ious sizes and shapes of microcalcification (Heinlein et al. 2003). Figure 2.2 illustrates

the adaptive-filter to model various microcalcification for enhancement purposes. This

gives an extra flexibility in scale when compared to the conventional dyadic wavelet
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transform in enhancing the microcalcification (Heinlein et al. 2003). However, this tech-

nique only considers an empirical specification of size range of the features to be en-

hanced. Thus, it is not appropriate for most general mammograms images, since the

sizes and shapes of microcalcification in mammograms can vary significantly and are

not known a priori.

MC

MCproj

Figure 2.2: Matched Gaussian filter for modelling microcalcification proposed by Heinlein et
al.

Another recent study that employed the multi-scale analysis for microcalcification en-

hancement is by Tang et al., who proposed an application of wavelet transforms to

CAD detection system. Their work has shown progressive results when the contrast

of the images was enhanced in the wavelet domain (Tang et al. 2009a). They applied

a uniform enhancement factor to the different scales in the mammograms using an

image contrast measure as proposed by Pu and Ni (2000). The advantage of this tech-

nique is that only one parameter is needed to be modified by the radiologists when

they need to perform the contrast enhancement of the mammograms. However, suit-

able parameter values must be carefully chosen as the visual quality of the enhanced

images will be affected. If the parameter values exceeded a certain threshold, the noise

and background variations will possibly be enhanced, both of which are undesirable.

Moreover, different scales and different regions of the mammograms might need a dif-

ferent enhancement factor. This direct contrast enhancement technique only allows

one fixed parameter for the enhancement factor. The method was evaluated by calcu-

lating its region contrast value (RCV) and by using this method, they have achieved
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a better RCV compared to other conventional methods, ie. the histogram equalisation

and unsharp masking, for contrast enhancement.

De-noising method

Jacob Scharcanski et al. addressed the contrast problem on mammograms by proposing

a new detection system with a combination of de-noising and enhancement methods.

In this work, redundant wavelet transform was employed. By applying redundant

wavelet transform to the image, it produced horizontal and vertical detailed images

with the same dimensions of the original image. For the de-noising purposes, wavelet

shrinkage method was applied. Wavelet shrinkage is the noise reduction method

which retains the high magnitude coefficient values and suppresses the low magnitude

ones. At each resolution of mammograms, the coefficients represented the edge were

modeled by Laplacian random variables, while the coefficients represented the noise

were modeled by Gaussian random variables. Edge associated coefficients were then

linearly enhanced (Scharcanski and Jung 2006). However, they claimed this as prelim-

inary work and no quantitative result was reported apart from the figures showing the

improvement in image contrast of microcalcification in mammograms.

Work by Gorgel et al. improved the work by Scharcanski by combining their noise re-

duction method with a homomorphic filtering (Gorgel et al. 2009). In this method, the

images were pre-processed by the wavelet transform decomposition to produce the

detailed coefficients of the images. These detailed coefficients revealed the horizontal,

vertical and diagonal patterns. Next, the decomposed approximation coefficients were

passed through a homomorphic filter to distinguish between the coefficients associ-

ated with the edges and the coefficients associated with noise. Similar to the work by

Scharcanski et al., noise and edges in mammograms were modeled by an additive zero-

mean Gaussian noise and Laplacian random variables, respectively (Gorgel et al. 2009),

(Scharcanski and Jung 2006). The modified coefficients were next adaptively thresh-

olded to separate them from the background. The local threshold was chosen instead

of the global threshold because it can locally determine the threshold value for each

22



Chapter 2 Previous Work in CAD System for Mammograms

pixel, which contributed to improved mass detection. The experimental result showed

that this method greatly improved the contrast of the mammograms.

2.1.2 Segmentation

After the pre-processing has been made to the mammograms, a better visualisation

of mammogram features is achieved. Next, the enhanced area in the mammograms

is segmented. In general, the purpose of the segmentation stage is to extract an ob-

ject or region of interest (ROI) from the image. The robustness of the segmented area

depends on how well the structure is separated from the background by the chosen

pre-processing techniques. In CADe system, the term segmentation carries multiple

definitions. Several ways of segmentation of a mammogram image include the seg-

mentation of an area containing microcalcification and the segmentation of an indi-

vidual microcalcification. One of the simplest conventional methods is thresholding.

This method is most suitable for cases with images that have uniform background. By

observing their histograms, the image will show two distinct peaks that represent the

object and the background. A threshold value between the two distinct peaks can be

determined, which separates the object from the background.

However, the choice of the segmentation method depends on the type of features that

will used for the detection purposes. Hence, the work in segmentation can also be

described in the features analysis step that will be discussed in Section 2.1.3.

2.1.3 Feature Analysis

After the segmentation step is carried out, the next stage is to analyse the features from

the segmented region. This analysis determines whether the segmented area contains

individual microcalcification or clusters of microcalcification, or may be possibly some

noises or artifacts. Hence, the aim of the analysis stage is to confirm the appearance of

microcalcification in the mammograms. One of the analysing methods is by utilising
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the machine learning method. Generally, several sets of features extracted from the

images are presented as an input to the learning machine, such as a classifier. The

features extracted are useful and contain information that are used to detect the clusters

of microcalcification in mammograms. Two common features that are extracted for

detection are the individual microcalcification features (Veldkamp and Karssemeijer

1999) and the texture-based features.

Individual Microcalcification Features

Features of individual microcalcification are normally segmented directly from the

mammograms. In work by Veldkamp et al., statistical measures of the extracted in-

dividual features were calculated (Veldkamp and Karssemeijer 1999). The parameters

were: perimeter, area, compactness, elongation, eccentricity, thickness, orientation, di-

rection, the mean of line/edge detector, mean intensity of the background, mean inten-

sity of the detected microcalcification, distance of each microcalcification in a cluster

and contrast measure. In addition to the individual microcalcification features, clus-

ter features were also been extracted. The statistical measures of the cluster features

include: mean, median, standard deviation, minimum and maximum value of local

features in the clusters. They also added the size of cluster’s area and the number of

microcalcification in the clusters as the features. These features were then classified

using a k-nearest neighbour (kNN) classifier. However, the downside of the technique

is that the microcalcification clusters needed to be accurately segmented. The task is

challenging since the microcalcification clusters in mammogram are subtle and vari-

able.

Region-based Features

To effectively extract features of the individual microcalcification, it is necessary to

have a robust segmentation method to ensure high accuracy of the measurements.

However, to avoid this requirement, the techniques that extract the features from

the textures of regions containing microcalcification, such as their statistical-texture
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features and multi-scale-texture features can be performed. One of the most com-

mon statistical-texture feature extraction is called the surrounding region-dependence

method (SRDM). It is based on the second order histogram in the two surrounding

regions. In the SRDM, the regions were transformed into a surrounding dependent

matrix. The coarseness or fineness of an image can be interpreted as a distribution of

elements in the matrix. The graylevel will be similar between pixel and its surrounding

if the images were smooth and vice versa. If the area has a matrix that was distributed

diagonally or in other means there is difference between pixel and surrounding, then

the area is considered to potentially contain suspected microcalcification. The method

was tested on 140 regions of interest and achieved sensitivity of more than 90%. This

method outperformed the individual feature extraction method as it does not need to

carefully segment the microcalcification individually. However, because the method

depends on the graylevel of mammograms images, it is sometimes hard to distinguish

microcalcification in the denser breast tissues.

Another method to extract texture-based features is by using multi-scale method.

Wavelet-based approaches have shown promising results in assisting the radiologists

in the overall system’s performance (Laine et al. 1994, Laine et al. 1995b). This is due to

the multi-resolution property of wavelet transforms that enables zooming into any ir-

regularities of an image and thus allows us to characterise them locally. The properties

offered by wavelet transform will be further discussed in Section 3.3.

Although many methods have been proposed in the CADe system, the development

of new algorithms is still an active research topic in the field. The previous proposed

methods in CADe include the basic image or features enhancement, statistical mea-

surements, multi-scale decomposition methods and machine learning methods. There

are also some of the research that integrate two or more of the methods for CADe

purposes. For example, Yu et al. combined the method of multi-scale decomposition

for feature extraction and also statistical measurements features with neural network

machine learning for the detection classification (Songyang and Ling 2000).
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Section 2.2 extensively reviews the previous work conducted for malignancy analysis

of the microcalcification clusters. Most of the approaches in the CADx system however,

adapt almost similar techniques as in the CADe system.

2.2 CAD Diagnosis of Microcalcification (CADx)

Computer-aided diagnosis or CADx systems aim to assist radiologists in the charac-

terisation of the detected microcalcification clusters into benign or malignant classes.

The CADx acts as a diagnostic tool. The input of the CADx is normally obtained from

the output of the CADe system, ie. the detected microcalcification clusters. The CADe

systems will only detect or enhance the abnormalities in mammograms without clas-

sifying them into benign or malignant cases. This is because the CADx task is to assist

radiologists in classifying them.

Feature

Analysis

Benign

or

Malignant

Feature

Selection
Classification

Detected

Microcalcification

Cluster

Figure 2.3: Flowchart of a CADx system commonly used for malignancy diagnosis of micro-
calcification clusters. Most of previous work adapted the same process. Firstly,
the input of detected clusters is obtained from CADe system or from the experts.
The features are then extracted from the area. If the number of features extracted
are enormously high, the feature selection process is carried out for dimensionality
reduction, thus the dashed box represents an optional process. These features are
then fed into a classifier for classification and malignancy analysis purposes.

Figure 2.3 illustrates the common steps used by CADx systems for malignancy diag-

nosis. Given the input from the CADe system, the next stage is to extract features that

can be used to represent the malignancy type of the microcalcification clusters. The

features extracted by the CADx system are used to classify the clusters into benign or

malignant classes. The final stage is that the classification of the extracted features is

performed by the classifier.
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This section reviews methods used in previous work for microcalcification diagnosis.

Some of the methods especially for feature extraction are almost similar with the meth-

ods in the CADe system as presented in Section 2.1.3. However, the features extracted

in the CADx system are now used for malignancy analysis. Since the feature extrac-

tion techniques have been described extensively in Section 2.1.3, the following subsec-

tions briefly summarise the previous work in CADx system and the performance of

the methods for microcalcification diagnosis. The effectiveness of the feature extrac-

tion techniques can be evaluated by the results obtained from the classification step.

Commonly, the performance evaluation is made based on the true positive rate (TPR)

and the false positive rate (FPR). The true positive rate is the rate of correctly diagnosed

case to be malignant. Whilst, the false positive rate is the rate of incorrectly diagnosed

case to be malignant cases. This will further be discussed in Section 6.1.6. Another way

to evaluate the classifier performance is by determining the accuracy obtained by the

classifier, ie. the rate of correct classification of the microcalcification clusters into their

respectively classes.

2.2.1 Feature Extraction

Before diagnosis or classification can be performed, a useful set of features that repre-

sents the characteristics of the clustered microcalcification needs to be extracted. Sev-

eral methods, such as multi-scale, neural network and morphology-based are among

the most useful feature extraction methods for microcalcification classification pur-

poses. These features are then fed into a classifier. The following subsections discuss

in detail the previous work in feature extraction and classification methods that have

been implemented and tested by previous researchers in this field.
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Individual Features

The features of individual microcalcification are directly extracted from their shapes.

The features include the size, area, compactness, and the number of microcalcifica-

tion in a cluster. Zadeh et al. extracted 17 shape features from each mammogram to

characterise the clusters of microcalcification, including the physical features such as

the number of microcalcification in the cluster and the maximum size of the calcifi-

cations, as well as the statistical features such as the average, standard deviation and

the compactness of the individual microcalcification. A feature selection experiment

was conducted using genetic algorithm, GA-based global search method and then a

kNN classifier is used to obtain the performance of the overall system. The highest

performance achieved by the classifier is recorded with sensitivity of 0.82 (Soltanian-

Zadeh et al. 2001). Again, this approach requires higher accuracy of segmentation of

microcalcification from the background to ensure the robustness of the features clas-

sifications step. Region-based feature extraction offers an advantage by reducing the

demand to have a very accurate segmentation of microcalcification. This is particu-

larly significant because the microcalcification are small and subtle and due to the low

contrast of mammography, it is possible to have inaccuracies when segmenting the

microcalcification individually.

Region-based Texture

Features extracted from the region-based techniques can reduce the demand of highly

accurate segmentation. Two of the approaches in region-based are statistical texture

features and multi-scale texture features. Statistical texture features measure the sta-

tistical calculations based on the pixel information of the images. One of the methods

that can be used to extract the statistical texture features is the surrounding region

dependence method (SRDM). This method also has been explained in Section 2.1.3,

where the SRDM features were used to detect the microcalcification clusters on the

mammograms.
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On the other hand, multi-scale texture features are extracted from the spatial informa-

tion of the images. The information was obtained by transforming images into sets of

coefficients that contain the information of the images. Multi-scale analysis has shown

to be advantageous for texture analysis, because of this framework’s ability to anal-

yse an image at different resolutions. This is known as a zooming property, and has

advantage in analysing mammograms, due to the fuzzy shapes and small sizes of mi-

crocalcification. One of the methods that can be used to perform multi-scale analysis

is the wavelet transform. An image is decomposed using discrete wavelet transform

into set of detailed images at different resolutions (refer to Section 3.3 for more details).

Common features that are extracted from these detailed images are the energy and

entropy of the coefficients.

Dhawan et al. used two features, energy and entropy, extracted from the multiple res-

olution images as the local texture features to discriminate between malignant and

benign cases. The images were decomposed using wavelet transform. Together with

other global texture features, the performance of the method yields a sensitivity of 0.83

(Dhawan et al. 1996).

The work by Soltanian-Zadeh et al. (2004) has shown that features extracted from the

wavelet and multiwavelet achieved the highest classification sensitivity rate when

compared to the other features, including shape features and statistical features. In

this work, images were decomposed using three wavelet packets, ie., Daebuchies 6, 10

and 12. Energy and entropy of each of the decomposed subband images were calcu-

lated and used as the features to determine the malignancy class of the microcalcifi-

cation. Comparative study showed that classification by using wavelet-based features

achieved the sensitivity rate of 0.85, which was higher than the shape and statistical

features techniques that achieved sensitivity rates of 0.82 and 0.77 respectively.
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2.2.2 Classification

The classifier plays an important role in categorising the microcalcification clusters into

benign or malignant classes. A set of features that represent the clusters was used as

the input patterns to the classifier. The aim is to generate a pattern recognition algo-

rithm that can differentiate between these two classes. Some of the classifiers that have

been used in classifying microcalcification include support vector machine (SVM) and

artificial neural network (ANN). The topic of classifiers will be discussed separately in

Chapter 4.

In 2005, Wei et al. compared the performance of several machine learning methods that

have been used in classification of microcalcification (Wei et al. 2005). The machine

learning methods were the support vector machine, relevance vector machine and the

kernel Fisher discriminant. These supervised classifiers learn the patterns of the clus-

ters of microcalcification in order to develop the classification algorithm. The set of

features in this study were the 8 shapes features: 1. the number of microcalcification

in the cluster, 2. the mean effective volume (area times effective thickness) of individ-

ual microcalcification, 3. the area of the cluster, 4. the circularity of the cluster, 5. the

relative standard deviation of the effective thickness, 6. the relative standard deviation

of the effective volume, 7. the mean area of microcalcification, and 8. the second high-

est microcalcification-shape-irregularity measure. These features were extracted from

the dataset collected by the Department of Radiology at the University of Chicago.

There were 386 cases with 75 being malignant and 311 benign. This study considered

the problem of learning the patterns from the multiple views of mammograms, MLO

and CC of each breast. Three different methods were used for these multiple views;

direct, averaging and joint methods. In this work, it was shown that kernel-based

method for supervised classifier outperformed the feed-forward neural network, FF-

NN (Wei et al. 2005). The outcome of this research motivated us to investigate the

kernel-based supervised classifier, ie. SVM for microcalcification classification. The
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advantage of the SVM is that the machine is relatively well understood and has fast

implementations.

Meanwhile, the use of artificial neural networks (ANNs) also has attracted many re-

searchers in the area of microcalcification diagnosis. ANN has the ability to model the

complex relationship in classifying microcalcification clusters given the set of features

as input. Thus, the ANN has become one of the most frequently used as a classifier.

These include the previous work by Tsujii et al. (1999), Verma (1998), Verma and Zakos

(2001) and De Melo et al. (2010).

In the work by Verma (1998), a feed-forward neural network (FF-NN) with single hid-

den layer was used to classify the microcalcification clusters. Two types of training

methods were tested: error backpropagation with momentum and the direct solution

method. The Nijmigen database was used with 105 areas containing the suspected

microcalcification (76 malignant and 29 benign). The database was divided into 90

data cases for training and 15 data cases for testing. The parameters that needed to

be adjusted during the training and testing were the number of hidden units, learning

rate, momentum and the number of iterations. The result obtained was 87% of correct

recognition (Verma 1998).

The work by Tsujii et al. (1999) also adopted FF-NN with a single hidden layer as the

classifier. The paper reported that the aim was to overcome the overfitting problem

in the radial-basis function neural network (RBF-NN). This problem arises due to the

selection of three parameters in the radial-basis function neuron. The overfitting oc-

curred when these parameters were chosen by each set of data. Therefore the number

of degrees of freedom in the network was equal to the number of the data points. Thus,

the network will learn all the details, including the unrepresentative peculiarities of in-

dividual data instead of the patterns in the data. Hence, to overcome this problem, a

method named trend-oriented RBF-NN was proposed. The modification was made

upon the cost function where in this function, the approximation of the center yj and

width σj were found and at the same time to reduce the number of degrees of freedom.
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The mini-MIAS database was used with 128 areas contain suspected microcalcification

(47 benign and 81 malignant). Before putting the ROIs into the neural network clas-

sifier, feature extraction and feature selection procedures were conducted. Features

selection was carried out using Karhunen-Loeve transform. The training and testing

were performed using the round-robin method. In round-robin method, one data was

tested on the remaining data as training dataset. The result compared the performance

obtained from the proposed RBF-NN with the unmodified RBF-NN (Tsujii et al. 1999).

It was shown that the proposed system achieved higher sensitivity with the true pos-

itive rate against the false positive rate of 0.76, whilst unmodified system achieved a

lower rate of 0.73.

There was also work proposed to improve the mammography diagnosis by improv-

ing the method for features selection before putting into a FF-NN classifier. Melo et

al. ranked features of both individual and clusters of microcalcification using Fishers

Discriminant Ratio (FDR). The neural network with a single hidden layer was used

as classifier in this work. Eight different sets of features; each consisted of 5, 6, 7 or

8 higher ranked individual and cluster features were fed into the neural network as

inputs. The hidden layer was varied to have two nodes for microcalcification cluster

features or three nodes for individual microcalcification features. The highest accuracy

achieved by the classifier when the microcalcification cluster features were ranked by

FDR was 86.19% (De Melo et al. 2010). Whilst the highest accuracy achieved when us-

ing individual microcalcification as input features was 72.81%. From this work, it was

observed that the cluster features provide more malignancy information compared to

the individual microcalcification features, hence the better accuracy rate.

Most of the previous work that used neural network for microcalcification classifica-

tion focus on improving the input vectors and the parameters of the learning algorithm

in neural networks. However, the architecture of neural network is flexible, ie. the

number of hidden nodes and the number of hidden layers in the neural network is not

fixed and can be manipulated to increase the efficiency of the network. Yet, the con-

ventional neural network training algorithms are known for a propensity to get stuck
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at poor local minima, commonly when the networks have more than two hidden lay-

ers. This decreases its overall performance. Nevertheless, a deep network is claimed

to have the ability to extract more features of a complex structure, and this will further

discussed in Chapter 5.

2.3 Neural Network in Biomedical Applications

Sections 2.1 and 2.2 discuss extensively the previous work in CAD systems for micro-

calcification detection and diagnosis. From the discussion, it emerged that neural net-

works are one of the common methods used for features extraction and classification.

In recognition of their prominence, this section reviews the use of neural networks in

related applications in the biomedical field.

One application of neural networks is in segmentation of brain magnetic resonance

(MR) images (Demirhan et al. 2015). Brain MR images were segmented into several

classes such as tumor, edema, white matter (WM), gray matter (GM and cerebrospinal

fluid (CSF). A neural network is used to learn the segmentation process using self-

organizing map (SOM) and fine-tuning the weight vectors with the labeled data for

classification. Shen et al. (2005) used neural networks to determine the parameters in

segmenting brain MR images. The main technique in segmenting the images was fuzzy

c-means clustering (FCM). The work improved the FCM by considering the neighbor-

ing pixels intensities, and the degree of neighbourhood attraction is determined using a

neural network. The proposed method has shown to have the lowest incorrect segmen-

tation percentage of 0.025% when compared to the conventional FCM that achieved an

incorrect segmentation percentage of 14.24%.

In work by Neofytou et al. (2015), a neural network is used for early detection of en-

dometrial cancer. Texture features, such as the statistical features (SFs), spatial gray-

level dependence matrices (SGLDM) and gray- level difference statistics (GLDS) were

extracted from the images. A probabilistic neural network with RBF kernel is used to

classify the features. The work also compares the performance when the SVM is used
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as the classifier. However, it was found out that SVM performs better than neural net-

work in diagnosing endometrial cancer with extracted texture features as the input for

classification.

Neural network also has been used to detect and classify masses in mammograms

(Azevedol et al. 2015, Wong et al. 2012, Islam et al. 2010). In Azevedol et al. (2015), an

algorithm that is called Morphological Extreme Learning Machines (mELMs) is devel-

oped for this purpose. This algorithm is based on an artificial neural network but with

improved characteristic such as training speed and data prediction. To overcome the

problem of being stuck in local minima, the learning in the algorithm is based on the

Moore-Penrose generalised inverse, where the learning is performed by batch and the

output weights are calculated. To validate the performance of the developed classifier,

four different features were used as input to the network, ie. Haralick, wavelet and

Haralick, Zernike, and wavelet dan Zernike. Three different kernels in the network

were used for comparison, ie. sigmoid, dilation and erosion kernels. It was shown that

the morphological kernels, ie. dilation and erosion kernels improved the accuracy of

masses classification rate in mammograms.

In Wong et al. (2012), 12 features from the gray level co-occurrence matrix (GLCM)

were extracted before neural network is used to classify the masses and achieved a

classification accuracy of 86%. In Islam et al. (2010), the statistical texture features of

the mammograms images were used as the input to a multi-layer perceptron (MLP).

The neural network that used to classify each mass as benign or malignant has 3 layers:

an input layer, a hidden layer with 5 units and an output layer. The neural network-

based system achieved a classification accuracy of 83.87% and 90.91% for benign and

malignant, respectively (Islam et al. 2010).

Another diagnosis of disease that has applied neural network is cardiovascular dis-

eases (Karabulut and Ibrikci 2012). This work used a neural network with Levenberg-

Marquardt back propogation algorithm as the classifier. The neural network used in
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Chapter 2 Previous Work in CAD System for Mammograms

this work consists of three layers; one input, one hidden and one output layer with sig-

moid transfer function as the activation function. The work by Karabulut and Ibrikci

(2012) achieved an accuracy of 91.2% in diagnosing the disease. Other than cardiovas-

cular disease, heart valve defect has also been diagnosis with the use of neural network

(Uguz 2012). Neural network is used to classify the features of the heart sound to de-

tect the defectiveness in the heart valve. The heart sounds were captured using the

stethoscope. The features of the signals were then extracted by applying the discrete

Fourier transform to the signal. Neural network was then used to classify them into

three different states of the heart diseases, ie. mitral stenosis, aortic stenosis and ven-

tricular septal defect. It was shown that the method achieved an accuracy rate of 92%

(Ghwanmeh 2012).

The reviewed works above are some of applications in biomedical field that relied on

neural networks for crucial functions in their systems. Neural networks can accom-

modate highly non-linear relationships between the inputs and output, which partly

explains why they have been popular for modelling complex images, especially for

biomedical applications. Details of neural networks, along with more recent advances

in this area, will be the subject of Chapter 4.

2.4 Summary

This chapter discusses the previous work in both CADe and CADx systems for mam-

mograms diagnosis, specifically for diagnosing microcalcification clusters. Works in

CADe system have made great progress and many approaches have shown promis-

ing results to detect microcalcification within mammograms. On the other hand, re-

sults from previous work in CADx revealed that there is room for improvement that

is needed in the system for classifying microcalcification clusters. The complex struc-

tures of microcalcification clusters require a robust feature extraction method and an

intelligent learning algorithm in order to successfully classify their classes.
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Multi-scale analysis approaches have shown promising results to produce useful fea-

tures for classification. However, multiple orientation features have not yet been fully

exploited for classification purposes. Hence, the work in this thesis will further inves-

tigate the usefulness of multiple orientation features together with the multiple reso-

lution features, to classify the microcalcification clusters. The method proposed is a

natural extension of wavelet-based techniques which offers an improved sensitivity

to orientations. Thus, the technique may possibly extract more useful features from

multiple orientation that are associated with malignancy analysis. In Chapter 3, the

properties of commonly used multi-scale method, the wavelet transform and the com-

bination of multiple resolution with multiple orientation method, called the steerable

pyramid filtering will be further discussed.

The other focus in the study of the CADx system is to investigate the best classifier for

microcalcification clusters classification. The support vector machine (SVM) is one of

the classifiers that has shown an improvement in diagnosis compared to neural net-

works (Wei et al. 2005). The neural network (NN) is one of the machine learning algo-

rithms that is based on the multilayer perceptron with many hidden layers. However,

conventional NNs failed to perform with an increasing number of hidden layers. It

was shown that NN can only work with small number of hidden layers. The NN effi-

ciency degrades when performing a deep learning of complex structures, such as the

structure of microcalcification clusters. Recently, Hinton et al. (2006) has introduced

the deep learning architectures that can be used as a classifier. Hence, the deep neural

network for the improvement of the microcalcification diagnosis will be further inves-

tigated in Chapter 5.
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Chapter 3

Mathematical Background

T
HIS chapter provides the mathematical background that com-

monly serves as the backbone in most signal processing applica-

tions. Signal processing is any activity that involves the acquisi-

tion, representation and analysis of a signal. Some of the examples of signal

include audio, video, image, and speech. Many of the real-world applica-

tions deal with signals. Thus, signal processing has assumed central im-

portance to various applications in several fields such as communications,

biomedical engineering, echolocation technologies and image processing.

The rest of this chapter is organised as follows: Section 3.1 briefly describes

the history of Fourier analysis, which remains the most often used analyti-

cal framework in signal processing. Section 3.2 describes the multiple reso-

lution analysis and how the wavelet transform achieves multiple resolution

analysis is described in Section 3.3. Steerable pyramid filtering is an exten-

sion of wavelet analysis with an improved directionality for image analysis

and is described in Section 3.4.
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3.1 Fourier Series and Fourier Transform

3.1 Fourier Series and Fourier Transform

In early 1800s, Fourier analysis was discovered by a French mathematician, Joseph

Fourier, and has been widely used as one of the important tools in various signal pro-

cessing applications. He has discovered that every periodic signals can be decomposed

into sinusoidal components with different harmonic frequencies. The Fourier series of

the periodic signal f (t) is defined as (Bracewell 1999):

f (t) = a0 +
∞

∑
n=1

(

an cos
nπt

T
+ bn sin

nπt

T

)

, (3.1)

where T is the function period and the coefficients an and bn determine the relatively

weight of each sinusoidal component.

A function is approximated by a truncated Fourier series with a finite number of N

terms in the function. As expressed in the Equation 3.1, the sine and cosine functions

in the Fourier expansion form the bases for the space of periodic functions. Figure 3.1

illustrates how the sinusoids are used in approximating a square wave using Fourier

series expansion. From the figure it was observed that as the number of coefficients,

N, increases, the Fourier series approximates the square wave with an ever greater

accuracy.

Fourier transform was later formulated as a generalisation of Fourier series for non-

periodic functions. By Euler’s formula of ej2πθ = cos(2πθ) + j sin(2πθ), the bases of

Fourier, ie. the sine and cosine functions can be written in term of complex exponential,

ej2πθ. The Fourier transform, which transforms the time domain signal f (t) into the

frequency domain F(ω), is defined as:

F(ω) =
∫ ∞

−∞
f (t)e−jωtdt, (3.2)

and the inverse Fourier transform is

f (t) =
1

2π

∫ ∞

−∞
F(ω)ejωtdω, (3.3)
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Figure 3.1: Fourier series for square wave approximation with number of coefficients (a) N = 1,
(b) N = 5, (c) N = 15 and (d) N = 49, respectively.

where ω is the angular frequency.

By applying Fourier transform to a signal, the result gives information of the power

distribution across frequencies, or the spectral density Sx(ω) of the signal f (t). The

power spectral density is defined as:

Sx(ω) = |F(ω)|2 . (3.4)

The main drawback of Fourier transform stems from its use of smooth periodic sinu-

soids in the analysis, which gives rise to inaccuracies in the vicinity of signal discon-

tinuities, a phenomenon known as the Gibbs phenomenon. Referring to Figure 3.1,
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3.1 Fourier Series and Fourier Transform

Fourier series well approximates a square wave with N = 49 coefficients. However, at

the edge of the square wave there is an overshoot in the approximation function. The

phenomenon is attributed to the poor time localisation of the sinusoidal basis func-

tions. Thus Fourier transform is unsuitable for representing signals that contain dis-

continuities which often occur in many real-world signals.
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Figure 3.2: (a)-(b) Non-stationary signals with different frequency that change after 500 sec-
onds. (c)-(d) Fourier transforms of the signals in (a) and (b) respectively. The Fourier
transforms of both signals produce the same magnitude spectrum, without giving
the time information when the change in frequency occurred.

Viewed in another way, the Fourier transform provides localisation in the frequency

domain only. Hence, for any signal whose characteristics change with time, known

generally as a non-stationary signal, its Fourier transform embeds such changes in its

phase only. This implies that, Fourier transforms are not ideally suited to applications
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that need both time and frequency localisations (Cohen and Kovacevic 1996). An il-

lustrative example is shown in Figure 3.2. In the Figure 3.2(a), the signal has higher

frequency in the first 500 seconds, and changing to lower frequency afterwards. Hence

the magnitude spectrum in Figure 3.2(c) shows two distinct peaks that represent the

frequencies of the signal. In Figure 3.2(b), the signal starts with lower frequency, and

after 500 seconds, the signal changed to have higher frequency. However, the magni-

tude spectrum in Figure 3.2(d) shows the similar result. The Fourier transform unable

to give the time information of each frequency of the signal. Thus, Fourier transform

is said to be lack in time localisation.

With the shortcoming of the Fourier transform, it results an inefficiency in representing

functions that contain spikes and discontinuities. The Fourier transform also lacks time

localisation and so is unsuitable for non-stationary signals. This makes this tool less

powerful for certain applications analysis such as signal compression.

3.1.1 Short Time Fourier Transform

A method known as time-frequency representation describes the signal represented

over both time and frequency axes. The time localisation function, δt(ψ) of a time-

varying function ψ(t) is defined as:

δt(ψ) =

∫ ∞

−∞
(t − t̄)2|ψ(t)|2dt

E
, (3.5)

and the frequency localisation function, δω(ψ) of its Fourier transform Ψ(ω) is defined

as:

δω(ψ) =

∫ ∞

−∞
(ω − ω̄)2|Ψ(ω)|2dω

E
, (3.6)
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where t̄ and ω̄ are the time and frequency central values respectively. They are defined

as:

t̄ =

∫ ∞

−∞
t|ψ(t)|2dt

E
(3.7)

ω̄ =

∫ ∞

−∞
ω|Ψ(ω)|2dω

E
, (3.8)

where

E =
∫ ∞

−∞
|ψ(t)|2dt =

∫ ∞

−∞
|Ψ(ω)|2dω. (3.9)

Qualitatively, δt measures the degrees of spread of the function ψ(t) at time axis, whilst

δω measures the spread of its spectrum at frequency axis.

The time-frequency localisation property is subjected to the uncertainty principle. The

principle limits the product of time and frequency uncertainties by:

δt(ψ)δω(ψ) ≥ 1

4π
. (3.10)

The short time Fourier transform (STFT) was introduced to overcome the drawbacks

of the conventional Fourier transform. It modifies the Fourier transform such that it

can be used to represent signal with localisation in both time and frequency.

Continuous-time STFT in 1-dimension is defined as:

STFT{x(t)}(τ, ω) ≡ X(τ, ω) =
∫ ∞

−∞
x(t)W(t − τ)e−jωtdt, (3.11)

where W(t) is a window function centered on t = 0.

In STFT, a window function W(t) is used to divide the signal function f (t) into (over-

lapping) sections and is concentrated over a finite time range of t. The signal division

is carried out by sliding the window function W(t) along the time axis of the signal.
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Figure 3.3: STFT frequency-time joint tiling; (a) shows narrow STFT window has good time
resolution but poor frequency resolution, and (b) shows wide STFT window has
good frequency resolution but poor time resolution.

Next, the frequency content of each section is analysed individually with a Fourier

transform. The STFT thus provides localisation in both frequency and time domains.

However, the limitation of STFT is the size choice of the window function W(t). The

size choice of window function W(t) is crucial, since once the window function has

been chosen, the time-frequency localisation is fixed. With these limitations, STFT

analysis can either possesses good time resolution or good frequency resolution, but

not both (Cohen and Kovacevic 1996). Thus, the resolutions of different basis func-

tions are the same at all frequencies and times (Graps 1995, Rioul and Vetterli 1991).

Figure 3.3 illustrates how the window function has either good frequency localisation

or good time localisation. In Figure 3.3(a), the window is narrower, thus it provides

excellent time resolution but poor frequency resolution. Whilst, in Figure 3.3(b), the

window is wider, thus it has excellent frequency resolution but poor time resolution.

For function that has steady-state response, the wider window would suit, whilst func-

tion with spike or transient response, the narrower window would suit. However, if a

function has both steady and transient response, the analysis using STFT with single

window may not be carried out appropriately. This problem can be addressed by an

analysis that can performed with variety of window widths. This is called multiple

resolution analysis and will be discussed in Section 3.2.
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Figure 3.4: Wavelet frequency-time joint tiling shows that wavelet can provide both good time
and frequency resolution.

3.2 Multi-resolution Analysis

Motivated from the drawbacks in Fourier transform and STFT, multiple resolution

analysis (MRA) has been introduced to provide an alternative analysis that addresses

these shortcomings. This section discusses the theory of MRA, which provides the

main framework for constructing compactly supported wavelets. This idea was origi-

nally proposed by Meyer and Mallat in 1986.

The idea behind MRA is to provide a transform that produces both varying time and

frequency resolutions through the MRA framework depending on the signal charac-

teristics. Figure 3.4 illustrates the joint frequency-time tiling provided by MRA. The

joint frequency-time tiling shows that the MRA can provide good time resolution but

poor frequency resolution at high frequencies and good frequency resolution but poor

time resolution at low frequencies. This characteristic proves to be beneficial for appli-

cations where the signals often contain both high frequency components for short du-

rations (transient response) and low frequency components for long durations (steady-

state response).

A MRA on the space of finite energy functions, L2(R) can be illustrated as in Fig-

ure 3.5. The basic requirement of MRA is to achieve nested spanned spaces such that

the space containing the high resolution signals will also contain all the lower reso-

lutions (Burrus et al. 1998). This is mathematically expressed as a sequence of nested
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subspaces, Vj, j ∈ Z to satisfy

. . . V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ V−2 . . . (3.12)

where Z is the set of integers (Graps 1995, Vetterli and Kovacevic 1995, Burrus et al.

1998). The set of subspaces is subjected to the following conditions:

1. Upward completeness

∪Vj = L2(R). (3.13)

2. Downward completeness

∩Vj = {0} (3.14)

3. Self-similarity

x(t) ∈ Vj ⇐⇒ x(2t) ∈ Vj−1. (3.15)

4. Translation invariance

x(t) ∈ V0 ⇐⇒ x(t − n) ∈ V0 , ∀n ∈ Z. (3.16)

Equation 3.16 implies that V0 has an orthonormal basis consisting of all integral trans-

lates of a single function φ0,n(t) : φ(t − n)∀n ∈ Z.

Illustration of the above mathematical expression is shown in Figure 3.5. The figure

shows that the space V2 is a proper subspace of V1, and V1 is a proper subspace of V0

and so on. This also means that the hierarchical structure of multiple resolution analy-

sis approximates a function at different scales or resolutions. As the term j decreases,

the finer the approximation to a function f ∈ L2R.

Notice also there are orthogonal complement components in the space labelled W1

and W2 in the Figure 3.5. The complement components are the error spaces between
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V

1

V0
V1

Figure 3.5: Nested vector spaces spanned by scaling function.

different resolutions.

Vj−1 = Vj ⊕ Wj (3.17)

These are the orthonormal basis subspace in the MRA structure. The Wj exists with the

same conditions of Vj holds, which are:

1. Completeness

⊕Wj = L2(R). (3.18)

2. Self-similarity

x(t) ∈ Wj ⇐⇒ x(2t) ∈ Wj−1. (3.19)

3. Translation invariance

x(t) ∈ W0 ⇐⇒ x(t − n) ∈ Wj , ∀n ∈ Z. (3.20)

Similarly in the previous paragraph, Equation 3.20 implies that W0 has orthonormal

wavelet basis consisting of all integral translations of a single function ψ0,n(t) : ψ(t −
n)∀n ∈ Z.

Thus, from the MRA analysis, the scaling and wavelet bases which are equivalent with

the orthornormal basis for subspace in Vj and Wj can be obtained. Section 3.3 discuses
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the wavelet analysis that was constructed in multiple resolution analysis and its re-

lationship with iterated filterbanks, which can be used to decompose an image into

multiple resolution subbands.

3.3 Wavelet Analysis

Previous section has discussed how wavelet and scaling functions are related to MRA.

In this section, a further discussion on analysis using wavelet transform, mainly for

image decomposition, is provided (Graps 1995, Vetterli and Kovacevic 1995, Bur-

rus et al. 1998). A wavelet analysis uses a family of functions made up of the dilations

and translations of a template function called the mother wavelet, ψ(t). The (dyadic)

dilated and translated version of ψ(t) are its wavelet basis, which is expressed mathe-

matically as:

ψk,n(t) = 2
n
2 ψ(2−nt − k) (3.21)

where the variable k and n in Equation 3.21 represent the wavelet location index and

width of the wavelet basis, respectively.

To further explain Equation 3.21, refer back to the nested vector spaces in previous

section (as in Figure 3.5). Let V0 be a base scale space. This space is spanned by a

scaling function φ(t) and its translated versions φ(t − n) for integers n. The scaling

function at this scale has a given width; by convention, this is defined to be the scale

in which the set of all integer shifts of φ(t) is a basis for V0. Thus, the space describes

signals of a particular resolution, or is labeled as at resolution 0.

In contrast, V−1 is space spanned by scaling function φ(2t). The signals in this space

has twice as fine a resolution as V0. Similar as in previous paragraph, the functions

φ(2t) and its translation version φ(2t − k) form a basis for V1 . This pattern applies

as the scaling function changes the time scale, φ(2jt), for all integers j. In conclusion,

for j < 0, the space spanned is larger and the resolution is higher, while for j > 1, the

space spanned is smaller and the resolution is lower.
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Since, each of the vector space Vj can be expanded by changing the time scale of scaling

function, the scaling function, φ(t) now can be written as a sum of weighted shifted

φ(2t):

φ(t) = ∑
k

h0(k)2
1
2 φ(2t − k). (3.22)

The characteristic of a signal function is not only determined by the set of dilations

and shifts of the scaling function. It is also described by a different set of function

ψ(t). This set of function is called the wavelet function. The wavelet functions span

the difference between the two successive resolutions. That is, the wavelet functions of

V1 are the functions that are included in V0 but not in V1, thus containing the missing

details between the successive scales. These are the wavelet functions that span a space

W1.

V0 = W1 ⊕ V1. (3.23)

For the case where wavelet function ψ(t) is orthogonal with the scaling function, the

wavelet function, ψ(t) can be written as a sum of weighted shifted of scaling function

φ(2t) with appropriate coefficients h1(n) as in Equation 3.24:

ψ(t) = ∑
k

h1(k)2
1
2 φ(2t − k). (3.24)

As the requirement for wavelet is to span the orthogonal spaces to the scaling function

spaces, the coefficient h1(n) must be related to h0(n) by h1(n) = (−1)nh0(1 − n). From

this equation, the prototype mother wavelet is generated as in Equation 3.21. Using

this analysis, a function set g(t), can be written as a series of combination of scaling

and wavelet function as:

g(t) = ∑
n

ck0(n)φk0,n(t) + ∑
n

∑
k=k0

dj(n)ψk,n(t), (3.25)

where ck0(n) and dj(n) are the inner product between g(t) and the various scaling and

wavelet functions, respectively.
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Conceptually, the signal is iteratively decomposed into approximation (scaling func-

tion) and detailed (wavelet function) components. The relationship of coefficients

h1(n) and h0(n) shows that h1(n) corresponds to a discrete time high-pass filter whilst

h0(n) corresponds to a discrete time low-pass filter.

For a two-dimensional signal such as image, the scaling function is defined as:

φm,i,j(x, y) = 2−mφ
(

2−mx − i
)

φ
(

2−my − j
)

. (3.26)

Similar with one-dimensional wavelet transform, the wavelet function for two dimen-

sional signal must satisfy the orthogonal basis, which can be expressed as:

ψk
m,i,j(x, y) = 2−mψk

(

2−mx − i
)

ψk
(

2−my − j
)

, for 1 ≤ k ≤ 3. (3.27)

Since the signal is two-dimensional (x, y), the wavelet transform is achieved by per-

forming row transform followed by column transform. In other words, the signal

function is described to being decomposed into approximation component by apply-

ing scaling function or low-pass filter, G and wavelet function or detailed components

by high-pass filters, H. This two-dimension wavelet transform by filterbanks is illus-

trated in Figure 3.6.

The scaling function φ(x, y) and three wavelet functions ψ1(x, y), ψ2(x, y) and ψ3(x, y)

produce four separable bases functions of:

φ(x, y) = φ(x)φ(y),

ψ1(x, y) = ψ(x)φ(y),

ψ2(x, y) = φ(x)ψ(y),

ψ3(x, y) = ψ(x)ψ(y).

(3.28)
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Figure 3.6: Image decomposition using 2D wavelet transform filterbanks, where G is a low-
pass filter and H is a high-pass filter.

Since these functions are separable, this add up the appropriate values of wavelet

transform that have separability property. As a result of this property, a wavelet trans-

form is able to decompose images into three different orientations of detailed images,

which are; horizontal, vertical and diagonal. To achieve multiple resolution, the ap-

proximation version of the detailed image is further decomposed by applying the same

high-pass filter to obtain the detailed components, and the same low-pass filter to ob-

tain the approximation detailed for the next resolutions.

One of the examples of two-dimensional wavelet transform for image decomposition

is illustrated in Figure 3.7. In this example, an image of a circle is decomposed using

Daubechies wavelet, db4, and is decomposed at two level of resolutions.

3.4 Steerable Pyramid Filtering Analysis

As described in previous section, it has shown that wavelet analysis is able to overcome

the lack of time-frequency localisation of conventional Fourier transform.. However,
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Figure 3.7: Image decomposition using wavelet at two level of resolutions. (a) Each of subband
contains details components, for next resolution, the approximation component is
further apply to the filterbanks to get the details components at the next sequence
resolution. (b) Decomposition of circle image into two level of resolution using
Daubechies wavelet, db4.

there is one distinctive disadvantage of wavelet analysis when applied to image pro-

cessing; the two-dimensional subbands exhibit three preferred orientations only. This

is shown in Figure 3.7, where the image is decomposed into horizontal, vertical or di-

agonal orientations only. This implies that two-dimensional wavelet transforms are

unable to differentiate between other orientations. As such, in this thesis, an approach

towards multiple resolution decomposition paradigm by addressing a steerable pyra-

mid filtering analysis will be explored.

One of the great advantages of steerable pyramid filtering is its ability to combine mul-

tiple resolution decompositions with multiple orientation differential measurements to

increase the sensitivity to arbitrary orientations. However, steerable pyramid has over-

completeness of 4k
3 whilst wavelet has over-completeness of 1. Table 3.1 summarises

the main advantages of steerable pyramid decomposition over wavelet transform and

several other approaches for texture feature extraction.
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3.4 Steerable Pyramid Filtering Analysis

Steerable pyramid Wavelet Laplacian pyramid Gabor
Self-inverting Yes Yes No No

Overcompleteness 4k
3 1 4

3 1 N/A
Aliasing in subbands No Yes No Yes
Rotated orientation bands Yes No N/A No

Table 3.1: Properties comparison between steerable pyramid with wavelet.

Historically, in 1994, Simoncelli designed a flexible architecture called steerable pyra-

mid that decomposes an image into multiple resolution and multiple orientation sub-

bands (Simoncelli and Freeman 1995). The combination of multiple resolution decom-

position with multiple orientation decomposition eliminates the aliasing problem in

the wavelet decomposition (Simoncelli 1994) and, crucially, also allows users to spec-

ify their preferred orientations. The term steerable filter refers to a class of filters that

are steerable at arbitrary orientations which are formed by a linear combinations of

basis filters (Freeman and Adelson 1991). The detailed work of steerable pyramid is

discussed in the next section.

3.4.1 Steerable Filters

The simplest example of designing the filters of steerable pyramid can be discussed

using a two-dimensional Gaussian function, G as in Equation 3.29:

G(x, y) = e−(x2+y2). (3.29)

It is well-known that the directional derivative operators of the two-dimensional Gaus-

sian function are steerable (Freeman and Adelson 1991). Thus, the basis filters used in

this steerable pyramid are the directional derivative operators of the Gaussian func-

tions. The first x derivative of a Gaussian, G0◦
1 is

G0◦
1 =

∂

∂(x)
e−(x2+y2) = −2xe−(x2+y2), (3.30)
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and the first derivative Gaussian function with respect to y is the function rotated by

90 degrees:

G90◦
1 =

∂

∂(x)
e−(x2+y2) = −2ye−(x2+y2). (3.31)

The Gaussian function and its derivatives are illustrated in Figure 3.8. Figure 3.8(a)

shows the two-dimensional Gaussian function, G(x, y). Figure 3.8(b) and Figure 3.8(c)

are the first derivatives of Gaussian function with respect to x and y, respectively.
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Figure 3.8: (a) Two-dimensional Gaussian function, G(x, y); (b) basis function of first deriva-
tive of Gaussian function G0◦

1 , and (c) basis function of first derivative of Gaussian

function G90◦
1 .
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3.4 Steerable Pyramid Filtering Analysis

Linear combination of basis filters as shown in Equation 3.30 and Equation 3.31 can

form a filter G1 that has arbitrary rotation, θ. The linear combination function now can

be written as:

Gθ
1 = cos(θ)G0◦

1 + sin(θ)G90◦
1 . (3.32)

From Equation 3.32, the basis filters that form steerable filters, Gθ
1 are G0◦

1 and G90◦
1 .

Whilst cos(θ) and sin(θ) are their interpolation functions, respectively. The filter with

preferred orientation can be implemented by changing the θ to the desired orientation

in Equation 3.32. As an example, Figure 3.9 shows the filter that has orientation of 60◦

implemented with linear combination of basis filters. As the convolution is a linear

operation, the image, I filtered at arbitrary orientation can be obtained by combining

image filtered at both basis functions:

R0◦
1 = G0◦

1 ∗ I,

R90◦
1 = G90◦

1 ∗ I,
(3.33)

By combining the resultant filtered images from both basis filters:

Rθ
1 = cos(θ)R0◦

1 + sin(θ)R90◦
1 . (3.34)

The result of the image convolution is illustrated in Figure 3.9(f), where the resultant

filtered image at orientation of 60◦ is obtained by combination of filtered images by

basis functions.

With the implementation of steerable filter from the derivatives of Gaussian function,

an image filtered at arbitrary orientations as shown in Figure 3.10 can be obtained,

where the image of a circle is filtered at multiple orientation, ranging from 10◦ to 90◦.

The above steerable filter is formed from the derivatives of Gaussian function, where

its derivatives are known to be steerable. To generalised the result in designing variety

of filters, Simoncelli et al. has outlined few guidelines. A set of functions is defined as
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(a) (b) (c)

(d) (e) (f)

Figure 3.9: (a) Derivative filter at 0◦. (b) Derivative filter at 90◦. (c) Derivative filter at 60◦ that
was form by linear combination of basis in (a) and (b). (d-e) The filtered image of
circle from the filter in (a-b) respectively, and (f) The filtered image synthesised of
image in (d) and (e).

steerable filters when it can be written as a linear sum of its rotated version. To design

a steerable filter, the number of basis filters that sufficient to form a steerable filter

needed to be found. The interpolation function of each basis function also needs to be

determined. Thus, the steering constraint is used as a guideline to find the minimum

number of basis functions:

f θ(x, y) =
M

∑
j=1

kj(θ) f (θ)j(x, y), (3.35)

where M is the number of basis filters and kj(θ) are the interpolation functions.

The equation can be solved by working in polar coordinates, where r =
√

x2 + y2 and

φ = arg(x, y). The function f (x, y) is expandable in Fourier series in polar angle, φ:

f (r, φ) =
N

∑
n=−N

an(r)e
inφ. (3.36)
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(a) 10◦ (b) 20◦ (c) 30◦

(d) 40◦ (e) 50◦ (f) 60◦

(g) 70◦ (h) 80◦ (i) 90◦

Figure 3.10: Filtered image at 10◦ to 90◦, using steerable filters derived from derivative of Gaus-
sian function.

The interpolation function of each basis function can be determined from the solution

of:







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

1

eiθ
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
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
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






















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k1(θ)

k2(θ)
...

kM(θ)



















. (3.37)

The solution of Equation 3.37 can be illustrated by steering the first derivative of the

Gaussian function, as given in Equation 3.30. In polar coordinates, the equation is
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written as:

G0◦
1 (r, φ) = −2re−r2

cos(φ)

= −re−r2
(eiφ + e−iφ).

(3.38)

From the polar coordinate form, and by the constrain sets in Equation 3.35 the first

derivative of the Gaussian function has at least two nonzero coefficients. Hence, the

minimum number of basis function is two. Thus, to find the interpolation function

associated with the basis function, the Equation 3.39 below is solved:

(eiθ) =

(

eiθ1 eiθ2

)







k1(θ)

k2(θ)






. (3.39)

The interpolation functions are then found to be:

k1(θ) = cos(θ),

k2(θ) = sin(θ).

The steerable filter is then formed from the linear combination of these two basis filters

and their respective interpolation functions, which matches Equation 3.32.

3.4.2 Steerable Pyramid Filtering

Steerable filtering has shown to be useful in image analysis. Due to the very limited

orientation sensitivity of wavelet transform, steerable filtering has the advantage of

being able to analyse image at various orientations. On the other hand, pyramid filter-

ing has an ability to analyse image at multiple resolution. The combination of multiple

resolution and multiple orientation to decompose and analyse images will then be ben-

eficial for extracting more useful features from the produced subimages. The multiple

resolution and multiple orientation architecture is shown in Figure 3.11.
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Figure 3.11: Image decomposition using steerable pyramids. In steerable pyramid filtering,
the image is decomposed into highpass, H and lowpass, L0 subbands. The low-
pass filtered image is further decomposed by several sets of bandpass filters Bk
to produce multiple orientation images. To achieve the next resolution, the image
from lowpass subband is downsampled and the result will undergo the same set
of bandpass filtering.

In steerable pyramid filtering, an image is first decomposed into low-pass and

high-pass subbands by low-pass filter L0 and high-pass filter H. The image from

low-pass subband is further decomposed by several sets of bandpass filters BK to

produce sub-images at different orientations. The image from the low-pass subband

will be further downsampled and the resultant image will undergo the same set of

bandpass to produce multiple orientation subimages at finer resolution. The recursive

algorithm is continued until the desired number of resolutions is reached.

Figure 3.12 shows the resultant subimages after an image of a circle is filtered by steer-

able pyramid at 3 resolutions and 4 orientations at each resolution. It is observed that

the sizes of the filtered images are reduced to half as the resolution decreases. This is
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because of the downsampling process, represented by a down arrow in Figure 3.11; to

produce the next resolution of the image.

Figure 3.12: Decomposition subimages of the circle image using steerable pyramid filtering.

To reduce the computational load in designing steerable pyramid filters, the filters

designed by Simoncelli et al. will be used. Based on the guidelines in designing set

of low-pass, high-pass and band-pass filters, Simoncelli has designed 3 different set of

steerable filters, where the steerable filter is made up from 2, 4 and 6 separable basis

filters. These filters are also widely used in many other applications, such as speech

recognition and classifications (El Aroussi et al. 2009, Benjelil et al. 2009).

Figures 3.13, 3.14 and 3.15 show the filters designed by Simocelli et al. Figure 3.13(a) il-

lustrates the low-pass, high-pass and the set of the band-pass filters of the sp1Filters.

The sp1Filters is formed by 2 separable basis filters. The frequency responses of

these basis filters are shown in Figure 3.13(b). Figures 3.14(a) and 3.14(b) show the

low-pass, high-pass and band-pass filters in sp3Filters, and their basis filters’ fre-

quency responses, respectively. The sp3Filters is formed by 4 separable basis filters.
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3.4 Steerable Pyramid Filtering Analysis

Figures 3.15(a) shows the sp5Filters, consisting of the low-pass, high-pass and band-

pass filters. In Figure 3.15(b), the plots of the frequency responses are obtained from

the 6 separable basis filters.
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Figure 3.13: sp1Filters. (a) First row, left to right: Low-pass filter L0, high-pass filter. Second
row, left to right: Low-pass filter L1, Set of band-pass filters, (b) Frequency re-
sponse of two basis filters of sp1Filters steerable filter.
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Figure 3.14: sp3Filters. (a) First row, left to right: Low-pass filter L0, high-pass filter. Second
row, left to right: Low-pass filter L1, Set of band-pass filters, (b) Frequency re-
sponse of four basis filters of sp3Filters steerable filter.

Since, the microcalcification clusters in mammogram vary in sizes, shapes and orien-

tations, the information from arbitrary orientations may contain information that can

be extracted and represented as features for the diagnosis. Thus, the concern raised
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Figure 3.15: (a) First row, left to right, low-pass filter L0, high-pass filter. Second row, left to
right, low-pass filter L1, set of band-pass filters. (b) Frequency response of six
basis filters of sp5Filters steerable filter.

is to have a method that is capable of decomposing an image into multiple resolution

and multiple orientation. The steerable pyramid filtering is an approach that offers

both multiple resolution and multiple orientation decomposition of an image. For that
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reason, steerable pyramid filtering technique is chosen to be the primary method for

the feature extraction in this thesis.

3.5 Summary

This chapter discusses the commonly used methods for multiple resolution image de-

composition. The relatively new technique, the wavelet transform has been adapted to

many engineering application. However, wavelet transform lacks orientation sensitiv-

ity. This thesis proposes a method that has both resolutions and orientations flexibility

in decomposing an image, that is the steerable pyramid filtering technique.

The steerable pyramid filtering technique has an ability to decompose images at multi-

ple resolution and multiple orientation. The information from arbitrary orientations of

microcalcification images may contain useful features that can be used for malignancy

analysis. However, the analysis can only be carried out by integrating the feature ex-

traction technique with a classifier. In Chapter 4, several types of classifiers that are

commonly used for microcalcification diagnosis will be discussed.
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Chapter 4

Classifiers

T
HIS chapter discusses two types of classifiers that are commonly

used as part of a CADx system. In the system, the classifier plays

the role of assigning a class label to a mammogram. The classifi-

cation is performed with the presentation of a set of features that have been

extracted from the image into the classifier. Usually, the extracted measured

features are organised into the form of a vector, and can be interpreted as

a point in a multi-dimensional feature space. The classifier divides the fea-

ture space into regions corresponding to different classes by specifying the

decision boundary between classes.

The rest of this chapter is organised as follows: Section 4.1 describes a gen-

eral paradigm of classification steps commonly adopted in most pattern

recognition systems. In the following sections, the two types of classifiers

that have been used to classify the microcalcification clusters in mammo-

grams are discussed, ie. support vector machine (SVM) in Section 4.2 and

artificial neural network (ANN) in Section 4.3.
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4.1 General Paradigm of Classification

Classification is a part of pattern recognition systems. Commonly, a complete pattern

recognition system consists of pre-processing of the data samples, feature extraction,

feature selection and lastly, classification. Classification is conducted to classify sam-

ples into different classes based on the pattern or the features measured from the sam-

ples.

Pre-processing is an essential step prior to classification to reduce the great variability

in the input data. Common pre-processing steps include data scaling and segmenta-

tion processes. In data scaling step, an image is scaled to have pixels values between

[0, 1]. Next, the image is cropped or segmented into one standard size. Feature extrac-

tion is then carried out to transform input data into new features space variable, with

expectation that the new features space lends to easier categorisation of samples into

associated classes. Classification step at the end of the pattern recognition system uses

the extracted features to classify them into classes.

In this work, the features extracted from the microcalcification clusters as proposed in

Section 3.4.2 are used for classification. The classification in CADx system assigns a de-

tected ROI containing microcalcification clusters into two classes, benign or malignant.

Since there are only two target classes, the task is called binary classification, where the

classification has the target of yi = ±1, ∀1 ≤ i ≤ N.

The terms and notations that will be used from this point onwards will be briefly de-

scribed. The collection of samples used for training is called training set and their

associated classes are collected as target vector. Assume there is N number of sam-

ples, the training set is a large matrix x1, x2, ..., xN, and the target vector is y1, y2, ..., yN.

Hence, for the case discussed in this thesis, the collection of samples are the feature

vector extracted and the target vector is their diagnosis of benign or malignant.

Normally, a classifier can be categorised as supervised or unsupervised learning ma-

chine. A machine is called supervised machine when the training data samples are

provided and used to adjust the parameters in the machine. Whilst, an unsupervised
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machine does not use labeled training data, and the clustering is usually based on the

patterns of the features extracted.

In this work, there are a finite number of training samples with unknown probability

function describing the distribution of the features for each class. There are two ways

to do the classification. First, these density functions can be estimated by using the

training samples; an example of this approach would be the construction of paramet-

ric classifier such as the Bayesian Decision Theory. Alternatively, the second classifi-

cation technique requires direct estimation of the density function; examples of this

approach include the linear discriminant analysis or support vector machine (SVM),

the k-nearest neighbour (kNN) and the back-propagation neural network (BP-NN).

However, since non-parametric classifiers do not involve the estimation of parameters

of statistics, it has an advantage of relatively lower computation requirements. Thus,

non-parametric classifiers are chosen as the classifier in this work; ie. the SVM.

In this thesis, SVM will be used as the main classifier to evaluate the features that have

been extracted by the method proposed in Section 3.4.2. Thus, the concept of SVM

as a supervised classifier will be further discussed. In addition, the other commonly

used classifier in this particular problem such as the neural network (NN) will also be

discussed to serve as an illustrative comparison.

4.2 Support Vector Machine

Support vector machine (SVM) has been widely used in many classification applica-

tions. The SVM is an example of a supervised classifier; the machine is called super-

vised as it takes input data and their associated label to learn the pattern of the model,

which is used to obtain the model for classification purposes. The SVM algorithm

constructs a hyperplane or set of hyperplanes to separate data into their associative

categories. The algorithm is first introduced in Vapnik’s work on statistical learning

theory (Vapnik 1995).
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4.2.1 Linear SVM

Consider a simple case where the two dimensional training data D is to be classified

into two classes, y = ±1, in region Rn (O.Duda et al. 2000),

D = {(x1, y1), . . . , (xl, yl)}, x ∈ Rn, y = ±1, (4.1)

with a straight line separating function, g(x),

g(x) = wTx + w0 (4.2)

where w is the weight vector, the superscript T represents the transpose operator and

w0 is the bias or threshold weight.

For the classifier with separation function of g(x) as in Equation 4.2, the data is sepa-

rated by thresholding the inner product of the input, x with the weight, w. If the inner

product wTx exceeds the threshold, the data is assigned to one class and to the another

class if does not exceed the threshold. For an example, if g(x) > 0, the data falls into

region, R1. Otherwise, if g(x) < 0, the data falls into region, R2. However, if g(x) = 0,

the data can be assigned to either class. The g(x) = 0 then defines the decision surface

that separates the classes. If g(x) is linear, the decision surface is a hyperplane. This is

as illustrated in Figure 4.1, where the hyperplane separates the features space into two

regions, R1 for g(x) > 0 and R2 for g(x) < 0.

From the discriminant function g(x), the distance of x from the hyperplane can be

found. The distance from x to the hyperplane can be expressed as:

x = xp + r
w

‖w‖ , (4.3)

where xp is the normal projection of x onto the hyperplane and r is the distance between

the two classes.
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Figure 4.1: An illustrative 3-dimensional linear decision surface to separate features into two
regions, R1 for g(x) > 0 and R2 for g(x) < 0.

Since the g(xp) = 0, and for x to be on the desired regions, ie. R1 for g(x) > 0 and R2

for g(x) < 0, the distance, r can then be expressed as:

r =
g(x)

‖w‖ . (4.4)

The above example is applied for the simplest case where the data is separated into two

classes. The classifier is also able to separate data into multiple classes by employing

linear discriminant functions. However, this may not be part of interest in this work,

as the main focus is to classify the cases into two classes, benign or malignant.

The separation function g(x) can be generalised as:

g(x) =
d̂

∑
i=1

aiyi(x) (4.5)

or

g(x) = aTy, (4.6)
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where a is d̂ dimensional weight vector and yi(x) can be any arbitrary functions of x.

With the generalised function of g(x), the polynomial discriminant function that will

suit any other application of practical interests can be obtained. This generalisation

offers an approach to accommodate broader classification problems including multi-

category cases and also non-separable cases.

4.2.2 Support Vectors and Optimizing Hyperplane

In previous subsection, the hyperplane that separates the features space into two re-

gions is discussed. In general, assuming the dataset is separable, there can be an infi-

nite number of possible hyperplanes as illustrated in Figure 4.2. In this simple illustra-

tion, the data of two classes, red and blue dots can possibly be separated by hyperplane

a, hyperplane b or hyperplane c. Thus, the main concern here is to find a hyperplane

that separates the two classes optimally.

hyperplane a

hyperplane b

hyperplane c

Figure 4.2: Example of three possible hyperplanes; hyperplane a, hyperplabe b and hyperplane
c, to separate the data into two classes, red and blue dots.

The goal in SVM training is to find the optimum hyperplane with the largest margin;

where the margin is the distance from any hyperplane to any pattern. The input data
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is defined as pattern, since the SVM uses a pre-processing transformation prior to the

training; where the data is mapped into higher dimensional space using appropriate

non-linear mapping function, ϕ(x). Hence, yk = ϕ(xk), for each k = 1, 2, · · · , n. The

non-linear mapping function, ϕ(x) will be further discussed in Section 4.2.3.

The objective of the SVM training is to find a hyperplane that separates the two classes

optimally. The first step in the SVM training is identifying the support vectors. Support

vectors are the critical elements in the SVM training, which are the training patterns

that are closest to the hyperplane. Margin b is defined as the Euclidean distance of

the support vectors from hyperplane, and mathematically expressed as (O.Duda et al.

2000):

b =
g(yk)

‖ a ‖ . (4.7)

Figure 4.3 illustrates the margin b that is the perpendicular distance of the hyperplane

to the support vectors.

Maximum

margin b

a imum

margin b

O
ptim

al
perplane

Figure 4.3: Finding optimal hyperplane margin b by training support vector machines. The
support vectors are the elements drawn in solid line. The distance of support vec-
tors in both regions is equally close to the hyperplane.

71



4.2 Support Vector Machine

During the training, these support vectors will change the position of the hyperplane

until the optimum or maximum margin is obtained. To briefly describe the training

process in SVM, let us suppose to have data of xi = {x1, · · · , xn} and the labels for the

two classes are y ∈ {1,−1}. The decision boundary that ought to classify all the data

points correctly is:

yi(w
Txi + b) ≥ 1, ∀i. (4.8)

In finding optimum hyperplane that separates between the two classes, the goal is

to find weight vector w that obtains the greatest margin b. In order to maximise the

margin, the optimisation problem can be solved by taking the Lagrangian formulation

which seeks to minimise the following:

L =
1

2
||w||2 −

n

∑
i=1

αiyi(xi · (w) + b) +
l

∑
k=n

αi (4.9)

where αi ≥ 0, i = 1, 2 · · · n.

The solution for the above formulation can be solved subject to Kuhn-Tucker construc-

tion constraints:

w =
l

∑
i=1

αiyixi (4.10)

l

∑
i=1

wixi = 0 (4.11)

αi(yi(xi · w)− 1) = 0, ∀i. (4.12)

The hyperplane obtained from the Lagrangian formulation is the optimum hyper-

plane. The larger the margin, the better the generalisability of the classifier. In other

words, the support vectors are the most informative elements in finding the optimal

hyperplane for classification task. The SVM algorithm generates weight vector in such
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Figure 4.4: Mapping non-linearly separable data into higher dimensional features space by ker-
nel function ϕ(·) so that they can be linearly separable.

a way that the weights are only affected by the support vectors. The non-support vec-

tors do not affect the decision boundary even when they are removed. Hence, the

machine is named as the support vector machine.

4.2.3 Non-Linear SVM Classification

In the above discussion, the input is assumed to be linearly separable. Because of

the input can be separated linearly, then the weight vector obtained from the SVM

algorithm can successfully classify the data by error-correcting procedure. However,

for input which is linearly non-separable, there is no linear weight vector that can

classify all input vectors correctly.

The input can be transformed by applying non-linear mapping function, φ(x) to each

of training input. This will create features space for the training input. Then it may

become possible to separate the input data by SVM in features space. Figure 4.4 il-

lustrates how a kernel can be applied to map the input data into higher dimensional

space to allow for classification. In the figure, φ(x) is the non-linear mapping func-

tion, where the input vectors are mapped into a new high dimensional space by the

function. However, the features space now have very high dimensions. Hence, it is

inefficient to calculate each of the φ(x).
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By using kernel functions to directly compute the inner products in the features space,

it is possible to avoid explicit mapping computations. This is also known as the kernel

trick. Common kernel functions K(x,y) include:

• linear K(x, y) = xTy,

• polynomial K(x, y) = (xTy + 1)p,

• Gaussian RBF K(x, y) = exp(− ||x−y||2
2σ2 ).

By applying the kernel trick, the linearly non-separable data in a dimension space,

R
N is possibly transformed into separable data in higher dimension space R

M, where

M > N and N is the dimension of original features space. The kernel function K(x, y)

computes the inner product of the transformed SVM inputs x and y in the higher di-

mensional space R
M. Hence, the computational cost is reduced as the SVM work in

higher dimension space, without explicitly creating a higher dimension representation.

The result is a non-linear decision boundary in dimension R
N corresponds to the linear

decision in higher dimension R
M.

4.3 Neural Network

The neural network (NN) is another commonly used learning machine in this particu-

lar area of interest. Historically, neural networks were inspired by human information

processing systems, ie. neurons in the brain. In neural network system, the neurons

are interconnected by weights, similar to the mechanism in brain system where these

weights are known as synaptic weights. Figure 4.5(a) and Figure 4.5(b) show the con-

nection of input to the node connected by weights in brain and neural network, respec-

tively.

74



Chapter 4 Classifiers

�������

�����	
��

��
�

�������

(a)

��������	
�

�
��
����	
�

���������	
�

(b)

Figure 4.5: (a) Neurons in brain are connected by synaptic weights in order to process the in-
formation received at dendrites. (b) Three layers neural network consists of in-
put layer, one hidden layer and output layer. Each layer is connected by modified
weights that are learned from training process.

4.3.1 Feed-Forward Neural Network

The minimum network architecture for neural network consists of three layers which

are input layer, hidden layer and output layer. These three layers are interconnected

by modified weights as shown in Figure 4.6. Each node in the input layer is connected

with every node in the hidden layer. This connection also applies to the next layer,

the nodes in a layer are fully connected with every node in the next layer. In addition,

there is also a single bias unit that is connected to each node in the network except for

input nodes.

By appending features value x0 = 1, and also the weight factor w0, when feeding an

input at the ith layer of the network, each neuron in the next hidden layer computes the

weighted wij, sums up of its input and forms net activation netj (O.Duda et al. 2000).

netj =
d

∑
i=1

xiwji + wj0 =
d

∑
i=0

xiwij ≡ wt
jx, (4.13)

where xi is the input at ith node and wji is weight that connects the ith node to the jth

node in next layer.
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output k

hidden j

input i

x1 x2

bias

wkj

wji

Figure 4.6: Three-layer feed-forward neural network. The first layer is directly connected to the
input data. Each of input node, i is connected to every hidden node j in the hidden
layer by the weights wji. These nodes are activated and connected to the output
node k by the weights wkj. The output node is activated by the activation function
at the top of the network, to give the output of the network.

The term hidden is used because the output of the layer is not observable. The output

of a hidden layer will be passed as an input to the next hidden layer. An output at

a node yj will be a function of a net activation, netj, ie. yj = f (netj). The function

f (netj) is the activation function. There are several types of activation function. One

of the commonly used activation functions is the sigmoid, σ(x), which is written as in

Equation 4.14:

f (net) = σ(net) ≡ 1

(1 + e−net)
. (4.14)

The top layer of the network is the output layer. The nodes at the output layer repre-

sent the overall output of the network. For binary pattern classification or two-class

classification problem, there is usually one node at the output layer. The node will be

activated to produce an output of the network. Each of the output nodes will calculate

its net activation similar to the hidden unit’s net activation, which is mathematically

expressed in general as (O.Duda et al. 2000):

netk =
nH

∑
j=1

yjwkj + wj0 =
nH

∑
j=0

yjwkj ≡ wt
ky (4.15)
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where yk is the output at kth node and wkj is weight that connects the node at jth node

to the kth node in output layer. nH denotes the number of hidden units. For k = 0, y0 is

the bias unit. Similarly, this equation is applied for the case where the bias unit always

has a value of y0 = 1.

4.3.2 Back-Propagation Neural Network

Neural network with back-propagation learning scheme (BP-NN) is categorised as one

of the supervised classifiers. The back-propagation algorithm is employed to train the

network. The back-propagation procedure involved in the training is briefly described

as follows; an input vector is presented at the input layer, and the weights of each

connected node are normally set randomly at initial, and the output at the output layer

is determined. The squared difference between the actual output and the desired target

is the sum squared error. During the learning process, the weights will be adjusted to

minimise this error. This process is iterated until the minimum error is achieved. When

the error is minimised, the output is said to approximately match the desired output.

Hence, the network is now trained and ready for classification task. Figure 4.7 briefly

illustrate the process of BP-NN.

Since the error is used to adjust the weights, the error criterion can be expressed as

a function of weight. Thus, the error criterion to be minimised, J(w) is the sum of

the squared difference between the output and the desired target, and mathematically

J(w) is expressed as (O.Duda et al. 2000):

J(w) ≡ 1

2

c

∑
k=1

(tk − zk)
2 =

1

2
||t − z||2, (4.16)

where t is the desired target and z is the actual output; w is the weights in c-layer

network.

Commonly, gradient descent algorithm is used for error correction criterion. Using

this algorithm, the weights are changed in a direction towards the error reduction. The
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Error back propagation

 Error calculation

hidden layer

output

input

Figure 4.7: Three-layer neural network with back-propagation learning, an input is presented
at the input layer, and pass through the hidden layer to determine the output. The
error between the output and the target is calculated and is back-propagated to
adjust the weight by minimizing the error.

change in weights is given by:

∆w = −η
δJ

δw
, (4.17)

where η is the learning rate.

The learning rate η must be carefully chosen so that the error continues to reduce.

Moreover, since the error criterion in Equation 4.16 is never negative, the learning rate

guarantees that the learning will stop when a pre-specified requirement is met. The

learning is an iterative process by updating the weights at each loop in m iteration,

expressed as:

w(m + 1) = w(m) + ∆w(m). (4.18)

However, the use of gradient descent algorithm in back-propagation has a limitation

because it has a tendency to converge to local minima. This means that the result of

the network depends on the initialization of the weights. Since the initial weights in

neural network are set randomly, the gradient descent may get stuck at local minima
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which could lead to a sub-optimal network performance. The training using back-

propagation is also computationally expensive as the convergence process in the net-

work is slow and is often sensitive to the choice of learning rate.

4.4 Summary

This chapter discusses the two most common classifiers used for classifications of mi-

crocalcification in mammograms; ie. SVM and ANN. Both classifiers are parametric,

and use supervised learning algorithm. SVM is chosen to be the main classifier in the

thesis because of its powerful properties that able to adapt itself to suit most of the

problems of practical interest.

On the other hand, ANN has been used in a wide range of applications. However,

the implementation of ANN architecture is a heuristic process. Their parameters such

as number of hidden layers, number of nodes in each layers and initial weights have

to be properly chosen and adjusted to ensure optimal result. This requires experience

and skills to predict an appropriate ANN architecture that is applicable to solve the

problem of the practical interests. However, relatively new approach called deep be-

lief networks has been discovered. This approach offers property to overcome some

shortcomings in conventional ANNs and will be discussed in Chapter 5.
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Chapter 5

Deep Belief Networks

T
HIS chapter discusses one of the relatively recent developments

in pattern recognition, deep learning networks. This approach is

attractive due to its deep architecture that is capable of extract-

ing high-level representations of complex structures. Furthermore, most

conventional machine learning techniques such as multi-layer perceptron

(MLP) contain only single or few layers of non-linear features transforma-

tion. However, for example, in human sense processing mechanism such as

vision and speech, multiple layers transformation information are required

to extract the complex structures for cognitive purposes. In this context, a

deep learning is acknowledged as the state of the art for machine learning.

Thus, this motivates us to introduce the new method in the CADx system in

mammography diagnosis specifically for classification of microcalcification

clusters.

The rest of this chapter is organised as follows: Section 5.1 describes an

overview of learning a deep belief network (DBN), followed by the main

building block of DBN, called the restricted Boltzmann machine (RBM).

The learning structures of DBN and RBM are discussed in Section 5.2. In

Section 5.3, different types of DBN architecture and their functions are de-

scribed. Finally, in Section 5.4, several applications of DBN in pattern recog-

nition field are discussed.
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5.1 Deep Network

5.1 Deep Network

The deep learning network concept emerged from the research work on the conven-

tional artificial neural network, ANN. An example of architecture for the deep learning

network is the multi-layer perceptron (MLP) with many hidden layers for the transfor-

mation of input layer to produce a result in the output layer. A more natural exam-

ple with similar mechanism is the human visual system. For an example, to classify a

physical object into classes visually, the underlying causes of the image, such as surface

depth, orientation, boundary and reflectance must be identified first (Hinton 2010).

The visual classification can be achieved since the cortex of the eyes contain an ex-

tremely complicated non-linear system. Hence the idea is to replicate such physical

object using a computational network with non-linear transformations requires a hier-

archical structure. At each hidden layer in the hierarchical structure, the activations of

the lower layer become the input for the next sequence higher layer. The nodes in ev-

ery layer also act as features detectors that capture features from lower level and pass

them onto the higher level.

However, a concern over deep learning networks quickly arose in the way they learned

the networks for solving pattern recognition task. A technique of back-propagation

was introduced in 1980s. The technique of back-propagating error derivatives was in-

troduced and became popular to solve the problem of learning multi-layers network.

MLP is an example of this technique. In the back-propagating error derivatives learn-

ing, the weights between the layers of nodes are optimised by minimizing the error

between the output of the network with the desired output. The error derivatives are

then propagated backwards using the computed weights between the hidden layers.

The weights are then updated to reduce the error. This process is performed recur-

sively. However, the learning algorithm generally failed for networks with more than

three layers, ie. network with more than one hidden layer (Hinton 2007, Bengio 2009).

When the number of hidden layers increases, the network would often get stuck at

local minima that decreases its performance. This may possibly be contributed from
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the randomly initialisation weights in the gradient descent method in the recursive

network.

An efficient learning algorithm for deep network was introduced in 2006 by Hinton et

al. The network is named as deep belief network (DBN). This network is a probabilis-

tic generative model that composed of multiple layers of stochastic binary nodes. The

generative model network of DBN overcomes the limitations that occurred in the con-

ventional discriminative neural network (eg. feed-forward neural network, FF-NN). In

FF-NN, the weights are trained so that the network directly models the probability of

the output and estimates p(y|x) right away.

On the other hand, the weights in generative model network of DBN are trained so

that the networks model the joint probability distribution between the input and the

output. Hence, for a given input x that is used to predict an output y, the generative

model network learns p(x, y), from which it can further be used to estimate p(y|x) and

p(x|y). With these properties, the efficiency and simplicity of gradient method in back-

propagation technique can be retained for the use of modelling the joint relationship

between the input and output (Hinton 2007).

In DBN, the top two layers are connected in an undirected and symmetric way. Whilst,

the lower layers are connected in a directed sigmoid. The lowest layer represents an

input data vector. In DBN learning, the training begins with the layer that is directly

connected to the input vector. The activation nodes or the output of this layer are then

act as the input to the next sequence layer. An illustrative of the connections in DBN is

shown in Figure 5.1.

The learning algorithm of the network is based on greedy layer-by-layer training,

which means the layers are learned one at the time. Using this approach, the weights

in DBN are optimised with a time complexity that varies linearly with the depth of

the network (Yu and Deng 2011). A DBN architecture is achieved by stacking up its

constituents, called restricted Boltzmann machines (RBM) which will be discussed in

Section 5.2.
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Input

h1

h2

h3

Figure 5.1: Deep belief network.

DBN with top two layers that has undirected connections, whilst lower layers are con-
nected in a directed sigmoid that are represented by the solid top-down. The dashed
bottom-up is not part of generative model in training DBN. The dashed bottom-up are
used for inference.

5.2 Restricted Boltzmann Machine (RBM)

The main building block of DBN is a two-layer architecture called the restricted Boltz-

mann machine (RBM). The RBM is one of the Markov random field (MRF) networks.

The RBM network is a structure of bipartite graph that consists of 2 layers of variables,

the visible stochastic units, V = {vi}, which are connected to the hidden stochastic

units, H = {hj}.

The connection of the network is illustrated in Figure 5.2. Normally, all visible units

are connected to all hidden units. However, intra-layer connections are forbidden in

this structure, ie. no connection between visible-visible units and hidden-hidden units,

and hence the structure is named restricted Boltzmann machine. The visible units are

observable and commonly represent the pixels of an image, which may be possibly

have binary (Bernoulli) or real-valued (Gaussian) data.

The joint connections between each visible and hidden units are based on energy-based

undirected generative model. The energy is represented by a probability distribution

of the visible units and hidden units. The probability distribution over the visible units
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h0 h1 hjh2

v0 v3v2v1 vi

Figure 5.2: Structure of RBM, top layer of RBM consists of hidden variables H = {hj} and the
bottom layer consists of visible variables V = {vi}

and the hidden units are defined by the weights and biases via energy function given

by (Hinton et al. 2006):

E(v, h) = − ∑
i∈visible

aivi − ∑
j∈hidden

bjhj − ∑
i,j

vihjwij, (5.1)

where vi, hj are binary state of visible unit i and hidden unit j, and wij is the weight

between them. ai and bj are their biases.

In the case of real-value data, the binary visible unit can be replaced with linear Gaus-

sian unit. The energy is now defined as (Hinton 2012):

E(v, h) = − ∑
i∈visible

(vi − ai)
2

2σ2
i

− ∑
j∈hidden

bjhj − ∑
i,j

vi

σi
hjwij, (5.2)

where vi, hj are linear Gaussian state of visible unit i, and binary state of hidden unit

j, respectively. wij is the weight between them, and ai, bj are their biases. σi is the

standard deviation of Gaussian for visible unit i.

The joint distribution that the model assigns over visible vector v and hidden vector h

with a given parameter θ is:

p(v, h; θ) =
∑h e−E(v,h;θ)

∑u ∑h e−E(u,h;θ)
. (5.3)
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The conditional probabilities over visible units can be directly calculated as follow:

p(vi = 1|h) = σ

(

∑
i

wijhj + bj

)

(5.4)

p(hj = 1|v) = σ

(

∑
j

wijvi + ai

)

(5.5)

where σ(x) = 1/(1 + exp(x)).

The probability expression in Equation 5.4 shows that to activate one visible unit given

the states of hidden units is independent of other visible units. Likewise, the proba-

bility expression in Equation 5.4 shows that to activate one hidden unit given some

states of visible units is independent of other hidden units. With these properties, the

sampling in RBM is efficient as all hidden units can be sampled simultaneously fol-

lowed by sampling all visible units simultaneously. This is known as an alternating

Gibbs sampling, where the state of the units in one layer is updated in parallel with a

given state of the units in another layer (Hinton et al. 2006). A one full step of Gibbs

sampling is equivalent to an updating a hidden layer, h, with a given input layer v,

then by similar steps, updating v with given h.

To achieve maximum likelihood learning in RBM, the correlation 〈v0
i h0

j 〉 is calculated

for each weight wij. Here the data vector is clamped on visible units and the hid-

den states are sampled from their conditional distribution. By using Gibbs sampling

and Markov chain, the correlation 〈v∞
i h∞

j 〉 can be determined once an equilibrium is

reached. This is the correlation defined by the model. By performing this learning, the

update rule for weight can be obtained from the derivative of the log-likelihood, ie. the

difference between two correlations obtained from the training data and defined by

the model:

∂ log P(v; θ)

∂W
= 〈vihj〉0 − 〈vihj〉1 (5.6)
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where 〈vihj〉0 is the expectation distribution in training data and 〈vihj〉1 is the expecta-

tion distribution defined by the model.

During the learning, the expectation distribution can be calculated by clamping the

visible units at the data vector, then sampling the hidden units, and then sampling the

visible units again. This procedure is repeated many times by running a Markov chain.

This is illustrated as in Figure 5.3. This procedure is known as contrastive divergence

(CD).

i i i

j j j

<vihj>
0 <vihj>

inf

t=0 t=infinity

Figure 5.3: Alternating Gibbs sampling in Markov chain for maximum log-likelihood learning
in RBM. During the learning, all the hidden units are updated simultaneously given
the input vector in the lower layer. Then all the visible units (directly connected
to the input vector) are updated simultaneously given the current hidden units.
This is equivalent to one full step of Gibbs sampling. By run the Markov chain,
the sampling can be performed until the equilibrium condition is achieved. The
difference of the correlations at the beginning and the end of the chain is measured.
This is the learning signal for weights updating in the network.

The use of CD learning in RBM has shown to be practically efficient. Other researchers

have reported successful results using CD in RBM for applications such as modelling

formation of topographic maps by Welling et al. in 2003, de-noising natural images by

Roth and Black in 2005, and also rapid document retrieval by Welling et al. in 2005

(Hinton et al. 2006).

5.3 DBN Architectures

By stacking the layer-by-layer learning RBMs from bottom-up, a deep network is built.

The learning procedure in DBN started with the learning in the first layer that is di-

rectly connected to the vector input, eg. pixels of an image. After the first layer is

learned, the activation probabilities of its hidden layer will be the visible layer for the
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second RBM layer. With these visible layers, the RBM is learned using the previously

described CD procedure and the activation probabilities at its hidden layer will be the

visible layer for the third RBM layer, and so on. This is as shown in Figure 5.4.

h0 h
1

hjh
2

v0 v
2

v
1

vi

RBM 2}

h0 h1
hjh2

v0 v2v1 vi

RBM d}

h0 h1
hjh2

v0 v2v1 vi

RBM 1}
Figure 5.4: A d-layer DBN, made up from stacking d number of RBMs, with the first visible

layer directly connected to the input vectors. The activation of hidden units in hid-
den layer of RBM 1 will be the visible layer for RBM 2 and so on.

A DBN can act as a generative learning model or discriminative learning model or

combination of both models. The lattermost is commonly known as hybrid training.

Generally, the type of DBN is defined by the top layer of the DBN. To act as a discrim-

inative learning model, a DBN is learned to predict an output given the output. Thus,

the top layer of the model is the output. For a supervised learning, the output of the

DBN is compared with the desired output, and perform a back-propagation to update

the weights and minimise the error. This is similar with the conventional neural net-

work as supervised classifier except for the weights being obtained from CD procedure

in DBN. Thus, the limitation in conventional neural networks where the network is al-

ways stuck at poor local minima can be prevented, especially for deeper network. This
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is because the initial weights in DBN network are not randomly set as in conventional

neural networks. Using gradient descent to update weights in the network will work

well if the initial weights are close to good solution. Hence, the generative weights in

DBN that are produced by greedy layer by layer training are able to overcome such

limitation. This architecture of DBN is known as back-propagation DBN (BP-DBN)

which as illustrated in Figure 5.5.

Input Vector

h1

h2

hd

w2

wd-1

wd

w1

Figure 5.5: A d-layer back-propagation DBN. RBMs are stacked to build a DBN and learned
layer-by-layer. The top layer is the output layer, which is then compared with the
desired output. The error derivative is calculated, and weights are updated to min-
imise the error. The mechanism is similar with the conventional neural network,
except for the weights are obtained from CD procedure instead of randomly ini-
tialised.

A hybrid training is a combination of generative and discriminative DBN. One of the

example is called associative memory DBN (AM-DBN). This type of DBN has top RBM

layers that defines a joint distribution of between hidden units and visible and class

labels. In addition to that, in hybrid training, the weights are also fine-tuned in the

network by back-propagation algorithm. The architecture of AM-DBN is illustrated as

in Figure 5.6.

5.3.1 DBN Parameters Tuning

In training model using RBM, one of the parameters that needs to be carefully chosen

is the number of nodes in the hidden layer. Hinton has written extensive guidelines
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Figure 5.6: A d-layer associative memory DBN. The RBMs are connected and learned greedily.
The first layer of the first RBM is directly connected to the input vectors. The acti-
vation of hidden layer of the first RBM is connected and act as visible layer to the
next sequence RBM. In addition, the top two RBM will perform associative-memory
DBN. The layer of class labels, it is cascaded with the first RBM of the top two layer
of DBN. The top two layer of DBN models the joint probability of the activation
of hidden units of previous RBM, which are their visible units together with class
labels.

for choosing the number of hidden nodes based on a variety of factors, including the

number of bits of the data vector of a grayscale image, which may be estimated using

entropy measurements,

H = −
2n−1

∑
i=0

P(ai)I(ai) = −
2n−1

∑
i=0

P(ai) log2 P(ai), (5.7)

where P(ai) is the probabilities of pixel ai occurs in the image. In the guidelines, the

estimation number of hidden nodes is a smaller order of number of bits multiply by

number of training cases (Hinton 2012).

With these provided guidelines, the number of hidden nodes that will used for micro-

calcification classification can be estimated. However, other factor such as computer’s

memory limits the algorithm to have huge number of hidden nodes. Hence, the num-

ber of hidden nodes at the first layer is first estimated using the equation but subject to

the capability provided by the computer machine.
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5.4 Previous Work in DBN

A deep network has attracted many researcher in various applications in pattern recog-

nition area such as classification task in vision, audio and language. One of the suc-

cesses of DBN is in handwritten character recognition (Hinton et al. 2006). In this work,

Hinton used 44,000 training MNIST (Mixed National Institute of Standards and Tech-

nology) (Lee et al. 1998) images and divided them into 440 batches. Each batch contains

ten examples of each digit, hence each batch has 100 training images. Associative-

memory DBN is used for the training, where the class of each image is attached as part

of the input at the top layer of the DBN. The validation test on the trained network had

an error rate of 1.39%. The work proves that a deep, densely connected belief network

can be trained one layer at a time.

Shusen et al. used a semi-supervised learning algorithm called discriminative DBN

(DDBN) in image classification problems. The database used in this paper is a set

of handwritten digits images obtained from MNIST dataset. However in this paper

only subset of 10,000 random images are used. Similarly, layers of RBM were used

as building blocks to construct DDBN. At the top layer, the weights parameter is fine

tuned to maximise separability among labelled data using an exponential loss function.

The results for the work show that DDBN obtained the lowest classification error-rate

when compared to other classifiers (Shusen et al. 2010), where the lowest error rate

is 14.13% compared to conventional neural network of 22.68% and SVM of 23% error

rate.

In another application, DBN is used for dimensionality reduction. In this work, an

encoder is created to transform a high dimensional data into a low dimensional code.

And in similar way, a decoder to encode and recover the low dimensional code into

the full data was implemented (Hinton and Salakhutdinov 2006). The whole system

consisting of an encoder and a decoder is called an autoencoder. In this work, two

types of input, binary and gray scales were used. For the binary images, MNIST hand-

written images were used. The images were encode by five layers DBN encoder with
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layer size of 784-1000-500-250-30 network. For grayscale images, Olivetti face data set

were used and were encoded with a 625-2000-1000-500-30 network. The results from

both datasets showed better reconstruction in terms of visualisation compared to when

reducing the dimension using principal component analysis (PCA) method.

These previous work shown promising results in using DBN for either classification or

dimensionality reduction. Thus, in this thesis, the use of DBN in classifying microcalci-

fication clusters in mammogram will be further explored. Since the microcalcification

clusters images are complex structures, the ability of DBN to train deep networks to

extract more features might be useful. In addition, by using DBN, the dimension of the

microcalcification clusters images can be reduced to obtain a low dimensional code,

that presumed to contain the compressed information of the clusters for classification.

5.4.1 Autoencoder

An autoencoder consists of two processes, encode and decode. From the original im-

age, an encoder will encode the image into a set of code. This code can later be decoded

by a decoder to retrieve the original image. An autoencoder is an interesting technique

as it can compress data, which are useful for dimensionality reduction purposes. Work

by Hinton et al. has shown that DBN can build an autoencoder. In the next section,

the experiment by Hinton et al. to autoencode binary images of MNIST handwritten

digits is recreated. The purpose is to illustrate how this approach can be modified to

the classification of microcalcification clusters.

The set of database is hand-written digits obtained from MNIST database. This

database is also used in the Hinton’s original experiment. The database contains 6000

training samples and 1000 testing samples of each 10 digits (0–9). The image is binary

and centered, with a size of 28 × 28 pixels. Figure 5.7 displays few handwritten digit

samples randomly selected from the MNIST database.

The autoencoder used three layers to encode the image, one code layer and three layers

to decode with the transpose weights. Since the MNIST images are binary, the visible
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Figure 5.7: Random sample of MNIST handwritten digits. The images were generated from
MNIST database (Lee et al. 1998).

Digit Image

Layer 1

Layer 2

Layer 3

w2

w3

w1

Code Layer

2000 Units

1000 Units

w4

30 Units

500 Units

Input Layer

Figure 5.8: Autoencoder DBN for MNIST digits reconstruction procedure. The DBN contains
3 RBM layers and 1 code layer. All 3 layers are Bernoulli-Bernoulli RBM and a code
layer is Bernoulli-Gaussian RBM. The procedure involves pre-training each RBM
layer separately before stacking them up to build a DBN. The fine tuning using
back-propagation algorithm is to optimise the weights between the layers.
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units of the layer are also binary. The binary-visible and binary-hidden RBM is also

known as Bernoulli-Bernoulli RBM. Each and every image is aligned to be in one vector

with dimension of 784 × 1. Each visible unit is connected to every binary hidden unit.

Imitating Hinton’s work (Hinton et al. 2006), this first hidden layer contains 2000 units.

The second and third RBM layers are both Bernoulli-Bernoulli RBM with visible units

obtain the input for hidden units from the immediate previous layer. The second and

third layer has 1000 and 500 units, respectively. The fourth layer of DBN is called

code layer. This layer is a linear RBM, which is different from the previous layers.

The hidden layer of this RBM is not in binary state, it is linear which has 30 units

of real value. After pre-training each RBM layer separately for 50 epochs each, these

RBMs are stacked to build up a DBN. To get the reconstructed images, the network is

then fine-tuned using back-propagation algorithm for 200 epochs. The flow diagram

of the procedure is illustrated in Figure 5.8. Due to the large database involved in

the procedure, the time taken to complete the procedure is long ie. approximately 70

hours.

The sum squared errors in each pre-training layer in the decoder process is observed

and plotted as in Figure 5.9 (a)–(d). The sum squared errors in all pre-training layer

showed a decay after 50 epochs. This means the CD learning in RBM has successfully

modeled the distribution from the training data and achieved equilibrium condition in

each layer.

To reconstruct the original image, a decoder process is carried out. The decoder process

includes decoding the code layer and using the transpose weights between each layer

in the encode process. The image is successfully decoded from the code layer and is

shown in Figure 5.10.

The results obtained from Hinton’s work shows than DBN is capable to learn and de-

code features from digit images, and store them in one code layer. The features in this

code layer can then be encoded to retrieve the original digit images. This experiment
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Figure 5.9: The sum squared errors of pre-training in the autoencoder’s layers after 50 epochs
in (a) first layer, (b) second layer, (c) third layer, and (d) code layer.
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Figure 5.10: The first row represents the original MNIST digits images. The bottom row are the
reconstructed images from the DBN autoencoder. The images were obtained from
MNIST database (Lee et al. 1998).

motivates us to use deep network to extract features that were decoded from the micro-

calcification images, and then to use them for malignancy analysis. It is assumed that

the features extracted contained most of useful information for the analysis. In addi-

tion, it also can be used to compress the images into one code layer and thus reducing

the number of features for classification.
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5.5 Summary

It is known that DBNs have proved to be successful in a number of pattern recognition

tasks that have stubbornly challenged older techniques. With the ability to suitably and

effectively train very deep networks, the DBN has attracted many researchers in solv-

ing particular classification tasks. The inherent limitations in conventional neural net-

work training schemes, researchers have been unable to get networks with sufficient

depth to take on challenges such as classifying microcalcification clusters in mammo-

grams. Greedily training layer-by-layer in DBN has shown to has an advantage to be

able to train deeper network, and thus provide more non-linear transformation, which

is able to analyse more complex patterns. Thus, in this thesis, the application of DBN

for improving classification of microcalcification in mammogram is experimented with

and analysed through extensive experiments presented in Chapter 6.
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Chapter 6

Feature Extraction

Experiments

T
HIS chapter discusses the experiments undertaken in this

thesis. The experiments were performed in two parts. First

part is the novel feature extraction for microcalcification clusters

diagnosis. The experiments include the features that are extracted from the

decomposed images and then are classified using a SVM classifier.

Second part of experiment is the novel automatic feature extraction and fea-

ture selection using deep belief network (DBN). Different DBN topologies

were experimented with, to investigate their effects on overall classification

performance. The motivation behind these experiments are based on the

successful applications of DBN in other areas that required judicious selec-

tion of parameters, and there are no prior work using DBN for breast cancer

diagnosis.
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6.1 Pre-processing and Data Acquisition

Prior to the running of the experiments, a collection of images is gathered and pre-

processed to ensure the format compatibility with the software used. Thus, in this

section, the steps involved in data acquisition are briefly described as preparation for

use in training and testing of the method implemented. The overall process in data

acquisition and ROI segmentation is shown in Figure 6.1.

Figure 6.1: Flow chart of data acquisition and segmentation process.

6.1.1 Data Acquisition

The mammograms images in this research are acquired from the

digitally stored database named Digital Database for Screening

Mammography (DDSM) which can be obtained from the website

http://marathon.csee.usf.edu/Mammography/Database.html. The database is

a collaboration project by several institutes mainly Massachusetts General Hos-

pital, the University of South Florida and Sandia National Laboratories, and is

maintained by University of Florida. There are several research work in this area

that use the images from DDSM database, hence the images are reliable to use

(Dehghan et al. 2008, Ren 2012, Andreadis et al. 2015).

DDSM database

The film-screen mammograms in the DDSM database were digitised at 42, 43.5

and 50 micron resolution, using 4 different types of digitisers; DBA M2100 Image-

Clear, Howtek 960, Lumisys 200 Laser and Howtek MultiRad850 (Heath et al. 1998,
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Number of Cases
Total

Normal Benign Malignant
695 1011 914 2620

Table 6.1: Number of cases for each type normal, benign and malignant mammogram in
DDSM database.

Heath et al. 2001). The DBA M2100 ImageClear produces digitised mammogram with

16-bit grayscale whilst the other 3 digitisers produce digitised mammogram with 12-

bits grayscale. Although the number of bits per sample varies from 12 to 16 bits, the

images used have all been reduced to 8-bits per sample. This implies that the images

have 256 levels of gray. This number is convenient for computation programming

specifically for image processing since each pixel occupies a single byte.

The database contains a total of 2620 normal, benign and malignant cases. Table 6.1

summarises the number of cases per type; normal, benign and malignant in DDSM

database. The classes of each were determined according to the results obtained from

the screening examinations. Thus, the database also provides ground truth for each

mammogram in the database. A mammogram is categorised as normal if the screening

examination result does not show any abnormality. Cases are considered benign if the

results showed suspicious appearances but was decided that it is not malignant by the

pathologists. Meanwhile, cases are considered malignant if the suspicious appearances

on the results are decided to be cancerous by at least one pathology (Heath et al. 1998,

Heath et al. 2001).

In the DDSM database, each case consists of a minimum of 6 files and maximum of 10

files. In a normal case, it consists of 1 header file, 2 images from views MLO and CC

(see Figure 1.2(a) and Figure 1.2(b)) of both left and right breasts, and 1 small thumbnail

image file. These gave a total of 6 files with 4 images per case. A header file contains the

patient’s information such as the patient’s age, as well as the study information such as

date of the study, date of film digitation and the type of digitiser used. It also contains

the list of images in the case directory tagged with its resolution and size of the image

pixels. For benign and malignant cases, an extra file called overlay is provided. This
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Chain code value 0 1 2 3 4 5 6 7

x-coordinate 0 1 1 1 0 -1 -1 -1
y-coordinate -1 -1 0 1 1 1 0 -1

Table 6.2: Chain code values and their direction in x and y coordinate

file contains specific information of lesion type, the assessment, the boundary outline

of the lesion, the abnormalities’ subtlety and also pathology. With these information,

the ground truth of each case containing abnormalities can be retrieved.

The outline for the boundary of the suspected lesion is given as a chain code in its

overlay file. The chain code values and their corresponding directions in x and y co-

ordinates are shown as in Table 6.2. An example of an overlay file is illustrated in

Figure 6.2. The steps for using these information to segment the region of interest will

be further discussed in Section 6.1.3.

Figure 6.2: An example of the contents in the overlay file. The file is from case B 3024 1.RIGHT -
CC.OVERLAY adapted from the DDSM website.

The images in the DDSM database are stored using lossless JPEG encoding. Each image

has a total size of roughly 10 MB, which makes a total of 265 GB for storing all images

on the database.

In this thesis, the aim is to classify the microcalcification clusters detected on the mam-

mograms into benign and malignant cases. Thus, the images in the DDSM database

that contain only the clusters of microcalcification of both benign and malignant cases

are selected. The images are chosen from the first three volumes containing benign
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cases and the first three volumes containing cancer cases, ie. volume benign_01 (80

cases), benign_02 (69 cases), benign_03 (64 cases), cancer_01 (69 cases), cancer_02 (88

cases) and cancer_03 (66 cases). However, due to space limitation on computer disk, a

subset of 118 from 436 images, 66 benign and 52 malignant cases are used for the study.

The detail procedure of how these 118 images were chosen is described in Section 6.1.3.

A complete list of names and details for all the 118 cases used is shown in Appendix

A.

6.1.2 Image Format Conversion

In this research, Matlab is the main platform for building algorithm and running the

code. Matlab is built for numerical computing and thus suitable for the image pro-

cessing purposes. The lossless JPEG (.LJPEG) image format of DDSM database is not

supported by Matlab, so it is necessary to convert a .LJPEG mammogram image to a

lossless portable graymap format (.PGM) image. The process consists of two steps, as

required by the limitation of the software tools available:

1. uncompress the compressed .LJPEG image to give the raw image in .LJPEG.1

format.

2. convert the uncompressed raw .LJPEG.1 image to portable graymap (.PGM) for-

mat.

The first process, which is to produce a raw image is performed by using existing

program code in C-language. The source code is provided in the DDSM database.

The simulation is carried out in Linux environment platform. After a raw image is

obtained, the image is converted to .PGM format in the Matlab.
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(a) (b)

Figure 6.3: (a) Thumbnail image of mammogram for case 1002 RIGHT CC from volume CAN-
CER 3 together with marked ground truth obtained from DDSM website. (b) The
processed image of the same mammogram case. The blue line marks the boundary
obtained from the Matlab simulation using chaincode provided by the overlay file.

6.1.3 Segmentation of Region of Interest (ROI)

As mentioned in Section 6.1.1, each case in the DDSM database provides an overlay

file that describes the area that contains abnormal tissues. These areas were marked

by radiologists and were used as the ground truth of each case. The perimeters of the

areas are stored as a chain code. Thus, the segmentation of the ROI can be carried out

based on the chain code. The chain code is shown in Table 6.2.

The purpose of segmenting the ROI is to reduce the size of the input and thus to reduce

the computational time. It is also feasible to use smaller size of breast region compared

with using the whole image, as the main purpose of the technique is to classify the

class of the detected microcalcification into benign or malignant cases. Based on the

extensive preview on previous work, it is assumed that the problem in the detection

of microcalcification technique has been solved and is outside the scope of this thesis.

In this thesis, the focus is on the diagnosis of the detected microcalcification clusters.
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Figure 6.4: Segmented ROI from the same mammogram case in 6.3(b) using implemented Mat-
lab routine.

Hence, to use an area of ROI that contains only the detected microcalcification clusters

instead of the whole mammogram is justified in this study.

In this thesis, three volumes of each case of benign and malignant from the DDSM

database are chosen. The benign images are from volume benign_01, benign_02 and

benign_03. Whilst the malignant images are from volume cancer_01, cancer_02 and

cancer_03. From these six volumes, only cases that contain abnormalities of cluster

of microcalcification are chosen. This selection produces 403 mammograms with each

contains at least one cluster of microcalcification. The segmentation process is per-

formed on all selected mammograms. Since the clusters are vary in sizes, the sizes of

the segmented ROIs obtained from the process are also varies. Figure 6.5 shows the

histogram of the sizes (in pixels) of the segmented ROIs.

However, for consistency, segmented ROIs are required to be of the same size. The

boxplot of the segmented ROIs sizes is illustrated in Figure 6.6. The median of the ROI

sizes is approximately 371 × 371 pixels, which is in the range of 28 × 28 and 29 × 29

pixel size. Hence, in this thesis, the ROI with sizes within 28 × 28 or 256 × 256 pixels

are selected. After the ROIs selection, a total of 118 images are obtained and used for

all subsequent experiments.
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Figure 6.5: Histogram of ROI sizes from 6 volumes in DDSM; for benign cases: benign 01, be-
nign 02 and benign 03, and for malignant cases: cancer 01, cancer 02 and cancer 03.
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Figure 6.6: Boxplot of ROIs’ sizes showing the median of 138112 pixels, or approximately 371×
371 pixels. This range is between 28 × 28 and 29 × 29 pixel size. Thus, the ROI with
sizes within 28 × 28 or 256 × 256 pixels are selected.

6.1.4 Data Scaling

Data scaling is necessary before the classification is carried out. This process over-

comes the inconsistency in the data values. In this process, the data value, xp is scaled

by changing the range of the data intensity, [tmin, tmax], so that its dynamic range is

condensed to new range [tnewmin, tnewmax], ie. in this work, the new dynamic range is

chosen to be in [0, 1]. The data scaling process follows the equation:

xp(new) =
(xp − min(xp))

xrange
× xnew range, (6.1)
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where min(xp) is the minimum value of the original data, xrange is the range of the

original data:

xrange = tmax − tmin, (6.2)

and xnew range is the new range of [0, 1]

xnewrange = tnewmax − tnewmin. (6.3)

The new scaled data value xp(scaled) can be obtained by adding up the calculated

xp(new) with the new minimum, tnewmin, or mathematically expressed as:

xp(scaled) = xp(new) + tnewmin. (6.4)

6.1.5 Training and Testing Datasets

For all experiments conducted in this thesis, the 118 ROI images are randomly divided

into training and testing datasets. Very often, datasets are divided into training and

testing of 70:30 ratio. Therefore, 80 images are randomly chosen as training set with

40 images from each case. The remaining 38 images are the testing dataset that will be

used to validate the accuracy of the proposed system.

The next step before the proposed method for feature extraction can be evaluated is the

integration with the classification step. The classifier chosen in this thesis is SVM with

radial basis function, RBF. Parameters that require tuning are the penalty parameter C

and sigma, σ in the Equation 6.5

K(x, y) = exp(−||x − y||2
2σ2

), (6.5)

where σ > 0 defines the kernel width.
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These two parameters are tuned by a grid-search with 5-fold cross validation. In 5-

fold cross validation method, the dataset is divided into five equal subsets. One of

the subsets is used as testing set on the remaining subsets as training set. A pair of

parameters C and σ are tuned by grid-search in the classifier to find the average of the

percentage that accurately classifies the class of microcalcification clusters. The pair of

parameters that achieved the highest accuracy rates is then used for classification using

SVM throughout this thesis. This is valid for the experiments where SVM is used as a

classifier.

6.1.6 System Evaluation

The efficiency of the system can be evaluated based on the accuracy of the system in

classifying the clusters. Receiver operating characteristic curve is commonly used to

visualize the classifier performance. There are four possible outcomes of the classi-

fier and these are defined as follows. These outcomes also can be summarised in the

confusion matrix shown in Table 6.3.

• True positive (TP), when the classifier makes a correct hit, the patient has malig-

nant tumour.

• True negative (TN), when the classifier makes a correct rejection, the patient has

benign tumour.

• False positive (FP), when the classifier makes an Error Type I, the patient with

benign tumour is diagnosed to have malignant tumour.

• False negative (FN), when the classifier makes an Error Type II, the patient with

malignant tumour is diagnosed to have benign tumour.

The sensitivity or true positive rate (TPR) indicates the number of accurately identify

a positive condition. It measures the rate of correctly diagnosing a condition. In an-

other words, it measures the probability of correctly diagnosing positive (malignant)
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True Class
P N

Predicted Class
P True Positive False Positive
N False Negative True Negative

Table 6.3: Confusion matrix illustrated the four possible outcomes of the diagnose using a clas-
sifier, TP, TN, FP and FN, given the True Class condition.

conditions, and is complementary to the falsely diagnosing them. Mathematically,

TPR =
TP

TP + FN
. (6.6)

On the other hand, the specificity or true negative rate (TNR) indicates the number

of accurately identify negative condition. Thus, in contrast to TPR, it measures the

probability of correctly diagnosing negative (benign) conditions, complement to falsely

identifying them as positive or malignant.

TNR =
TN

TN + FP
. (6.7)

Both sensitivity and specificity measures are significant and commonly used in the

field to indicate the performance of the diagnosis system. These outcomes can then be

used as an input to plot a receiving operating characteristic, ROC curve. This curve

represents the relationship between the TPR and the false positive rate (FPR). It is de-

sirable to have a system with high accuracy or high TPR with an acceptable of FPR.

6.2 Feature Extraction using Steerable Pyramid Filtering

A novel technique for feature extraction using steerable pyramid is proposed to im-

prove the classification rate of microcalcification diagnosis in mammograms. The ori-

entation of clusters of microcalcification in mammograms may also contain informa-

tion for malignancy analysis. Hence, the aim is to extract more features at multiple ori-

entation and multiple resolution. Steerable pyramid filtering technique offers multiple
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resolution and orientation decomposition. This property makes this filtering technique

to be selected for microcalcification feature extraction.

The experiments are organised as follows:

1. In Section 6.2.1, experiments on several basic parameters are conducted. The

parameters that need to be determined are: a) basis filters sets and b) number of

levels and orientations.

2. In Section 6.2.2, the steerable pyramid filtering is used to decompose microcal-

cification cluster images into multiple orientation and multiple resolution, and

extracting features from the images for malignancy analysis.

3. In Section 6.2.3, the principle component analysis (PCA) is used to reduce the

number of features. The aim is to have same number of features from different

techniques for fair comparison.

4. In Section 6.2.4, different sets of features that have been reduced by PCA are used

for microcalcification classification.

6.2.1 Experiment 1: Steerable Pyramid Topology Selection

The purpose of this experiment is to choose a set of basis filters for image decom-

position and examine the features that has been extracted. To reduce the computa-

tional complexity, three sets of basis filters proposed by Simoncelli were adapted for

this experiment. Plots of these filters’ responses are shown in Figures 3.13(a)–3.15(b)

(Simoncelli and Freeman 1995).

It is also aimed to find the appropriate level of resolution to decompose mammogram

images for feature extraction purposes. The images are decomposed using three dif-

ferent sets of basis filters ie. sp1Filters, sp3Filters and sp5Filters. A sp1Filters

consists of two oriented basis band-pass that can be linearly combined together with its

interpolation functions to produce filters at arbitrary orientations. A sp3Filters has
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four oriented basis filters, and sp5Filters has six oriented basis filters. These filters

were described in Section 3.4.

In multiple resolution analysis, the frequency contained in the signal can be analysed

at different scales. The number of resolutions is chosen based on some initial explo-

rations that show the common number of resolution levels for decomposing DDSM

mammograms is at three-level. Here, only the maximally decimated filterbanks for

steerable pyramid filtering is considered. Hence, the images are decimated by two to

produce next scale of resolution. The largest possible decomposition level is 4 since the

pixel size of the experimental images is 256 × 256. Thus, the experiment is performed

when the number of resolution is at resolution levels 3 and 4.

For each experiment, images were decomposed into eight orientations at angles of;

0◦, 11.25◦, 22.5◦, 33.75◦, 45◦, 56.25◦, 67.5◦, 78.75◦, and 90◦ using different sets of oriented

basis filters. In each resolution, the approximated image is down-sampled by a scale of

two, producing the approximation images at a coarser resolution, with half size of the

original images. The down-sampled approximate image is further decomposed into

eight orientations using the same set of basis filters. This iteration process is repeated

to produce multiple resolutions. With these, a direct comparison of the output with

the conventional dyadic wavelet transform decomposition can be performed.

The decomposition produces 24 and 32 images composing of eight different orienta-

tions at three and four different resolutions, respectively. After obtaining these decom-

posed images, the decomposed images are reconstructed to obtain the original image.

The difference between the original and the reconstructed images can be measured to

assess their performances. This is to measure any information loss occurred during the

decomposition process. One of the measurements is by calculating the signal to noise

ratio (SNR) of the noise in the reconstructed images. SNR is defined as power, P ratio

of the signal, Psignal and its noise, Pnoise. The calculation for SNR is as follows:

SNR =
Psignal

Pnoise
. (6.8)
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Figure 6.7(a) shows one of the ROI image and its reconstructed image in Figure 6.7(b).

In this example, the ROI image is decomposed by sp1Filters into eight orientations

and three resolutions. After the decomposition process, the filtered images were then

reconstructed. Figure 6.7(c) shows the difference between the original and the recon-

structed image.

Original Image

(a)

Reconstructed Image

(b)

Noise (Original − Reconstructed)

(c)

Figure 6.7: (a) Original image of segmented ROI, (b) its reconstructed images obtained after
filtering the original image using set of bandpass filters, and (c) the loss measured
by calculating the difference between the original and the reconstructed image.

The proposed method for calculating the SNR is illustrated in Figure 6.8.
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Figure 6.8: To calculate the SNR, the difference between the reconstructed and the original im-
age is measured. This difference is use to find the SNR by finding the ratio of the
original image to the difference.

From Equation 6.8, when the image difference between the original and the recon-

structed is small, the reconstructed image is closely similar to the original image.
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Hence, the smaller the image difference, the larger the SNR of the difference and the

original. Figure 6.9 shows the difference images and their SNR, respectively. From the

figure, it is observed that when the SNR is larger, the difference image has less noise

compared to the difference image with lower SNR.

Losses  (sp1Filter Image 1)

(a) SNR: 37.01 dB

Losses  (sp3Filter Image 1)

(b) SNR: 37.26 dB

Losses  (sp5Filter Image 1)

(c) SNR: 35.79 dB

Losses  (sp1Filter Image 4)

(d) SNR: 39.04 dB

Losses  (sp3Filter Image 4)

(e) SNR: 39.24 dB

Losses  (sp5Filter Image 4)

(f) SNR: 37.69 dB

Figure 6.9: Losses images from 2 randomly chosen ROIs. The losses were obtained by mea-
sured the difference between the original image and its reconstructed image. From
left to right: losses from reconstructing images after decomposing them using 3
different set of basis filters, sp1Filters, sp3Filters and sp5Filters.

The set of basis filters that produces higher SNR between the original image and its

difference with reconstructed image shows that the image is reconstructed to higher

fidelity than the others. The reason for this measurement is to choose a basis filters

set and suitable level of decomposition that can decompose the images in the datasets

without losing much information by measuring the reconstruction error. This is to

preserve as much information as possible in each of the decomposed images. Thus,

the result from this experiment will be used as an indication of choice of steerable

pyramid parameters used in the entire experiments.
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Figure 6.10: Boxplot of data from SNR calculation between the original image and its recon-
struction image using 3 different set of bandpass filters at 3-level of decomposition.
Each of the image has pixels size of 256 × 256.
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Figure 6.11: Boxplot of data from SNR calculation between the original image and its recon-
struction image using 3 different set of bandpass filters at 4-level of decomposition.
Each of the image has pixels size of 256 × 256.

From the boxplot in Figure 6.11, it shows that the median SNR value for sp3Filters

is higher than sp1Filters and sp5Filters. Hence, the reconstructed images using

this filter has lower losses compared with those decomposed using sp1Filters and

sp5Filters.
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The average and standard deviation results are also recorded in Table 6.4. From these

results, sp3Filters has higher median SNR compared to other two basis filters sets,

when the images were decomposed and reconstructed using 3-level decomposition.

Hence, sp3Filters basis filters are said to be better at decomposing the ROI images

with lower losses incurred during the process. This is also true when images decom-

posed at 4-level. However, the combination of using sp3Filters basis filters and at

3-level decomposition yields the highest SNR. Thus these parameters are chosen to be

used for decomposing ROI containing microcalcification clusters image using steerable

pyramid for the related experiment in this thesis.

3-level 4-level
Basis filter Mean SNR (dB) Mean SNR (dB)
sp1Filters 37.61 32.06
sp3Filters 37.80 32.20
sp5Filters 36.21 31.25

Table 6.4: Mean SNR for three different sets of basis filters at 3 and 4 levels decomposition.

An experiment to calculate SNR of the reconstructed images when the input images’

sizes are reduced to half; (128× 128 pixels), is also conducted. The reason to reduce the

size of the input image is to lessen the computational complexity, and also to provide

consistency in later experiments. The boxplot is illustrated in Figure 6.12.

From the result, the highest mean SNR obtained when the basis set sp3Filters is used

to decompose the images at 3 resolution levels. However, the mean SNR is reduced

from 37.80dB to 32.83dB, when the sizes of the input images are reduced. This implies

greater information loss has occurred during the reduction in the number of pixels.

Summary

From the experiments performed, the parameters for steerable pyramid filtering were

decided. The four basis filters set gave a slightly better in terms of reconstruction error

when compared to the basis filters of two and six. Thus, the basis filters sp3Filters

will be used set to produce multiple orientation of the microcalcification cluster im-

ages. Moreover, three levels of pyramid steerable pyramid filtering showed higher
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Figure 6.12: Boxplot of data from SNR calculation between the original image and its recon-
struction image using set of sp3Filters bandpass filters at 3-level of decomposition,
with reduced size of input images.

SNR compared to four levels of resolutions. With these results, three levels of decom-

position are chosen for the subsequent classification experiments. Figure 6.13 illus-

trates the framework of the proposed feature extraction for microcalcification classifi-

cation in this thesis.

6.2.2 Experiment 2: Steerable Pyramid Feature Extraction with

SVM Classifier for Microcalcification Classification

In Section 6.2.1 the framework that will be used for image decomposition has been

identified. The basis filters that will be used is a set of sp3Filters and the pyramid

consists of three levels of resolutions at eight different angles of orientation as illus-

trated in Figure 6.13. In this section, the steerable pyramid filtering is proposed for

feature extraction to classify the microcalcification clusters. Earlier in Section 6.1.3, a

subset of 118 from over 2000 mammograms from the DDSM that contain benign and

malignant microcalcification has been identified. Figure 6.14 is a sample of one of be-

nign cases of microcalcification that has been segmented.
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Figure 6.13: The topology of steerable pyramid consists of three level of resolutions and eight
orientations at each resolution will be used for the rest of the experiment for steer-
able pyramid feature extraction.

Figure 6.14: Cluster of microcalcification from Digital Database of Screening Mammography.

The proposed method is applied to the images. The resultant subband images are

illustrated in Figure 6.15. In the figure, it is observed that 24 subband images were

produced from the steerable pyramid decomposition method. The orientation of the

filters is varied from 0 to 90 degrees of angle producing eight filtered images at different

orientations.
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Figure 6.15: Detailed subimages of microcalcification cluster in Figure 6.14 using steerable
pyramid filters for image decomposition at 8 orientations and 3 levels of resolu-
tions.

On the other hand, the same image is decomposed with conventional wavelet trans-

form for comparison. The resultant subband images produced from wavelet decompo-

sition is shown in Figure 6.16. Using the conventional 2-D wavelet decomposition, the

filtered images were produced at three fixed angles; 0 degree (horizontal), 45 degree

(diagonal) and 90 degree (vertical).

By observing filtered images obtained from both methods of decomposition, a qualita-

tive evidence showing clustering in the subband images is produced by the steerable

filtering pyramid is obtained. In contrast, the filtered images from wavelet filtering do

not exhibit the same degree of clustering.

For quantitative comparison of the two methods, their performances are evaluated

using SVM classifier. Two statistical measures were calculated and used as features for

classification measures.

Energy =
∑i,j x2

N2
(6.9)
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Figure 6.16: Detail subimages of microcalcification cluster image in Figure 6.14 using tradi-
tional daubechies wavelet transform for image decomposition at 3 levels of reso-
lutions.

Entropy = − 1

log2 N2 ∑
i,j





x2
ij

norm2



 log2





x2
ij

norm2



 (6.10)

where xij is the ijth pixel value of detail images with N × N image.

In pyramid filtering, energy and entropy of each sub image decomposed from three

levels of resolution at eight orientations were calculated. This gave a total of 48 features

extracted from steerable pyramid filtering (24 energy and 24 entropy features). While

in wavelet transform, the images is decomposed into three levels of resolution at three

orientations, ie. horizontal, vertical and diagonal. These gave a total of nine extracted

features from wavelet filtering. All features are scaled to have a range between [0, 1],

which has been described in earlier Section 6.1.4. These scaled features are then used

as input data for classification using SVM classifier. The input images are in 256 ×
256 pixels. In addition, the features of the reduced pixels of 128 × 128 are also been

extracted and classified.
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For the classification step, a SVM with radial-basis kernel is used. The reason to use

this kernel is because the feature space is highly non-linear. The parameters were set,

using grid-search and pair of parameter C and σ of 4 and 4.0313, respectively.
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Figure 6.17: Boxplot of accuracy for both wavelet and steerable pyramid with combination of
energy and entropy measures as the features for classification for image size of (a)
256 × 256 and (b) 128 × 128 pixels. Both classifications were run for 50 times with
randomly chosen different set of training and testing.
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Figure 6.18: Boxplot of accuracy for both wavelet and steerable pyramid with energy measures
as single features for classification for image size of (a) 256 × 256 and (b) 128 × 128
pixels. Both classifications were run for 50 times with randomly chosen different
set of training and testing.

Figure 6.17, Figure 6.18 and Figure 6.19 show the accuracy of the SVM classifier when

using three different sets of input features; ie. combination of energy and entropy, en-

ergy alone and entropy alone respectively. These boxplots compare the accuracy of the
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Figure 6.19: Boxplot of accuracy for both wavelet and steerable pyramid with entropy mea-
sures as single features for classification for image size of (a) 256 × 256 and (b)
128 × 128 pixels. Both classifications were run for 50 times with randomly chosen
different set of training and testing.

system when the features were extracted from proposed steerable pyramid filtering

with wavelet decomposition. The results are presented in Table 6.5.

Pixels size 256× 256 128 × 128

Decomposition method
Features Accuracy, % Accuracy, %

Energy Entropy Mean Median Mean Median

Steerable pyramid

√ √
78.26 78.28 65.00 65.79√
78.26 78.28 61.90 60.53√
67.34 67.56 62.05 63.16

Wavelet transform

√ √
64.91 65.78 61.39 63.16√
63.26 63.33 56.79 55.26√
63.22 63.27 61.42 60.53

Table 6.5: Comparison of mean and median accuracy for microcalcification diagnosis between
features measured from steerable pyramid filtering and wavelet transform.

Summary

The mean accuracies achieved by the two methods were compared. The proposed

steerable pyramid with combination of energy and entropy features achieved mean

accuracies of 78.26% for the 256 × 256 pixels and 65.00% for the 128 × 128 pixels.

Whilst the wavelet transform method with the same combination (energy and entropy
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features), the mean accuracies achieved were 64.91% for the original image size and

61.39% for the reduced size.

Similar trend was observed when the two methods used entropy features as a single

input. The proposed steerable pyramid achieved mean accuracies of 78.26% for the

256 × 256 pixels and 61.90% for the 128 × 128 pixels. Whilst the wavelet transform

method achieved the mean accuracies of 63.26% for the original image size and 56.79%

for the reduced size.

With energy features as a single input, the proposed steerable pyramid achieved mean

accuracies of 67.34% for the 256 × 256 pixels and 63.22 for the 128 × 128 pixels. Whilst

the wavelet transform method achieved the mean accuracies of 63.22% for the original

image size and 61.42% for the reduced size.

These results clearly showed that the steerable pyramid filtering offers better accura-

cies in all the types of features arrangement. However, the mean accuracies degraded

as the pixel size is reduced to half from the original. This observation is consistent with

the result of the experiments discussed in Section 6.2.1.

6.2.3 Experiment 3: Data Dimensions Reduction using Principal

Component Analysis (PCA)

In previous experiments in Section 6.2.2, the number of features input for each decom-

position method is different. If energy or entropy is used as a single feature input,

the total number of 24 and 9 features is obtained from steerable pyramid filtering and

wavelet transform, respectively. When the combination of both features is used as in-

put features for the classifications, the total number of 48 and 18 features from steerable

pyramid filtering and wavelet transform, respectively, is obtained. The inconsistency

in features number may lead to an unfair comparison. To have a fair comparison be-

tween two methods, the number of features input is reduced so that both will produce

features with the same dimensionality for presentation to the classifier. In addition, the
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dimensionality reduction of the features vector reduces the computational burden and

of the classification process. This is practically important especially when dealing with

large datasets.

One method to reduce the dimensionality of the features vector is by applying the prin-

cipal component analysis method (PCA). The method was first introduced by Pearson

in 1901 and has been commonly used especially to reduce the data dimension using

linear technique (Van Der Maaten et al. 2008). In this linear technique, the data is trans-

formed by calculating the covariance matrix to obtain an orthogonal data projection

basis. With this technique, the principal directions of which the data varies can be

identified. The PCA technique also has been applied in other fields such as face recog-

nition (Venkatarajan and Braun 2004) and seismic series analysis (Raytchev et al. 2004).

The first step in PCA is normalizing the dataset, to produce zero mean and a unit

standard deviation. The mean X̄ can be calculated by adding up the dataset across

dimension and divide by dataset size, n,

mean, X =
∑

n
i=1 Xi

n
. (6.11)

The standard deviation, σ measures the spread of the data,

σ =

√

∑
n
i=1(Xi − X)2

n − 1
. (6.12)

Using Equation 6.11 and Equation 6.12, the normalised data, X is obtained as:

Xnormalized =
X − X

σ
. (6.13)

The next step is to calculate the covariance of the data. Covariance measures the re-

lationship between the dimensions in the datasets. Similar to the standard deviation,

variance measures the spread of data in the set. When the covariance between one di-

mension and itself is calculated, it is called variance. However, for higher dimension,
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eg. n-dimensional data (X1, X2, ..., Xn), the covariance is calculated between X1 and X2,

X2 and X3 and so on until between Xn−1 and Xn, where n is dimension of the data.

cov(X, Y) =
∑

n
i=1(Xi − X̄)(Yi − Ȳ)

n
. (6.14)

From Equation 6.14, the covariance matrix, C is obtained in form of:

C =



















cov(X1, X1) cov(X1, X2) · · · cov(X1, Xn)

cov(X2, X1) cov(X2, X2) · · · cov(X2, Xn)
...

...
. . .

...

cov(Xn, X1) cov(Xn, X2) · · · cov(Xn, Xn)



















. (6.15)

Eigenvectors and eigenvalues were then calculated from the covariance matrix. The

eigenvectors of the covariance matrix C, v can be found by finding the solution of:

Cv = λv (6.16)

where λ is the eigenvalue corresponds to eigenvector, v.

The PCA transformed values are the product of eigenvectors and the original features

vector. By finding the eigenvectors and eigenvalues of the data matrix, the data can be

mapped to the dimension that preserved the most significant directions,

XPCA projected = vTX, (6.17)

where vT is the transpose of matrix v.

The eigenvalues for both features; energy and entropy are calculated for each decom-

position technique. These values are then plotted to observe the number of most sig-

nificant eigenvalue in both energy and entropy features. Figure 6.20 illustrates the
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number of eigenvalues and their corresponding values for both energy and entropy

statistical measures from each decomposition method.
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Figure 6.20: (a) Eigenvalues plot obtained from PCA method for energy and entropy statistical
features extracted from decomposition using steerable pyramid (SP) and wavelet
transform (WT). (b) The close up graph of the rectangular region in (a).

The eigenvalues and its corresponding values for each energy and entropy are plotted

separately for a better close up view. Figure 6.21 is the eigenvalue plot for energy

features and its close up view in Figure 6.21(b). From both Figures 6.21(a) and 6.21(b), it

is observed that a knee occurs at eigenvalues 2 for wavelet transform and 5 for steerable

pyramid decomposition.

The eigenvalues plot for entropy features is plotted as in Figure 6.22. From the close up

Figure 6.22(b), the knee occurs at eigenvalues 2 both wavelet transform and steerable

pyramid decomposition.

From the obtained results, an extension to this experiment is performed next using

the reduced number of features that varies from 2 to 5, for both energy and entropy

features as well as the combination of both features for the presentation to the classifier.
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Figure 6.21: (a) Eigenvalues plot obtained from PCA method for energy extracted from decom-
position using steerable pyramid (SP) and wavelet transform (WT). (b) The close
up graph of the rectangular region in (a).
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Figure 6.22: (a) Eigenvalues plot obtained from PCA method for entropy extracted from de-
composition using steerable pyramid (SP) and wavelet transform (WT). (b) The
close up graph of the rectangular region in (a).

6.2.4 Experiment 4: PCA-SP Features with SVM Classifier

Based on the previous results in Section 6.2.3, experiments with several number of

PCA transformed features from both energy and entropy features are performed. The

number is chosen to be in the range of 2 to 5 of each statistical measure, since the eigen-

values obtained from previous experiment shows knee at eigenvalues 2 from entropy
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feature and 5 from energy feature. The features that will be experimenting with are the

PCA transformed features extracted from both 256× 256 and 128 × 128 pixels images.

In the first experiment, the PCA transformed energy features are used as a single fea-

ture for microcalcification classification. The accuracy obtained are plotted as boxplot

and performed the t-test for each pair of features. For an example, the accuracy of the

classifier of using 2 PCA energy features from wavelet transform is compared with the

accuracy of the classifier of using 2 PCA energy features from steerable pyramid. The

reason for the use of the same number of features is to avoid an unfair comparison

between both decomposition techniques.

Figure 6.23 and Figure 6.24 illustrate the boxplot obtained when using PCA trans-

formed from energy as single feature with different number of these features as input

for microcalcification classification for image pixels 256 × 256 and 128 × 128, respec-

tively.

The statistical analysis of each experiment is summarised and presented as in Table 6.6

and Table 6.7. From the results of the analysis, most of the experiments with PCA en-

ergy feature as a single feature show wavelet transform decomposition leads to higher

accuracy compared to steerable pyramid decomposition. This is mostly true when the

features are extracted from input images of 256 × 256 pixels, with the p-value < 0.05.

However, for the features that are extracted from input image of 128 × 128 pixels, the

t-test for the number of 2, 3, 4 and 5 show the p-values of 0.0522, 0.5018, 0.8118 and

0.6189, respectively. The result of p-value > 0.05 shows that the improvement in accu-

racy achieved is not statistically significant.

The results of the classification rates in this experiment show that the energy of the

images are giving less information for malignancy analysis. In the next part, the PCA

transformed entropy features are used as a single input features. Similarly, different

number of these features is used as input for classification. The number also range

from 2 to 5. Figure 6.25 and Figure 6.26 are the boxplot obtained when using PCA

transformed from entropy as a single feature with different number of these features as
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Figure 6.23: Boxplot of accuracy for both wavelet and steerable pyramid with PCA trans-
formed from energy measures as the single features for classifications; with (a) two
PCA energy features, (b) three PCA energy features, (c) four PCA energy features
and (d) five PCA energy features, for image pixels 256 × 256.

input for microcalcification classification, for features that are extracted from 256× 256

and 128 × 128, respectively.

The summary of the analysis obtained from the experiment is also presented in Ta-

ble 6.8 and Table 6.9. The accuracies obtained show that steerable pyramid achieved

better accuracy when the features are extracted from the original image size. Entropy

features extracted from steerable pyramid achieved highest accuracy of 89.58% when

2 PCA transformed features were presented as input to the classifier. The overall re-

sult also shows that steerable pyramid filtering has outperformed features extracted

from the wavelet transform. The p-values from the t-test also show that the observed

differences are significant.
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Figure 6.24: Boxplot of accuracy for both wavelet and steerable pyramid with PCA trans-
formed from energy measures as the single features for classifications; with (a) two
PCA energy features, (b) three PCA energy features, (c) four PCA energy features
and (d) five PCA energy features, for image pixels 128 × 128.

When the images are reduced to half of the original size, the accuracies achieved are

reduced when compared to the result obtain when features were extracted from the

original pixels size. Comparing the performances with features that are extracted from

wavelet transform, the highest accuracy is achieved when the number of PCA entropy

features used are 2 and 3. However, from the t-test analysis, the p-values for both

are 0.6539 and 0.3674, which are more than 0.05, hence the improvement shown are

not significant. When using 4 PCA features, wavelet transform achieved a significant

improvement compared to steerable pyramid as it obtained a p-value of 0.0048. The

accuracy improvement of wavelet transform over steerable pyramid when 5 PCA fea-

tures are used as classification input also not significant with a p-value of 0.0681.
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No of PCA
features

Accuracy t-test
p-valueMean Median SD

Steerable pyramid
2

54.52 56.61 2.95
0.08

Wavelet transform 56.55 56.61 2.78
Steerable pyramid

3
43.98 45.83 5.00

0.00
Wavelet transform 72.46 72.58 2.66
Steerable pyramid

4
44.54 46.74 5.72

0.00
Wavelet transform 70.23 69.49 2.25
Steerable pyramid

5
48.07 50.00 5.68

0.00
Wavelet transform 70.21 70.20 2.39

Table 6.6: Statistical analysis: mean, median and standard deviation of accuracies obtained
when using PCA energy features as input for microcalcification classification, for
image size 256 × 256. A t-test analysis is made between the two decomposition tech-
nique, steerable pyramid and wavelet transform.

No of PCA
features

Accuracy t-test
p-valueMean Median SD

Steerable pyramid
2

49.47 50.00 8.93
0.05

Wavelet transform 45.74 44.74 8.44
Steerable pyramid

3
59.21 60.53 9.27

0.50
Wavelet transform 60.16 57.89 6.40
Steerable pyramid

4
61.05 61.84 9.41

0.81
Wavelet transform 61.42 61.84 6.92
Steerable pyramid

5
59.53 60.53 9.05

0.62
Wavelet transform 60.37 60.53 9.30

Table 6.7: Statistical analysis: mean, median and standard deviation of accuracies obtained
when using PCA energy features as input for microcalcification classification, for
image size 128 × 128. A t-test analysis is made between the two decomposition tech-
nique, steerable pyramid and wavelet transform.

The accuracies obtained when using single feature of energy or entropy as an input for

microcalcification classification show that steerable pyramid features are unable to out-

perform wavelet transform features, specifically when the image sizes were reduced.

In the next experiment, both features are combined as the input for microcalcification

classification. A pair of the same number from energy and entropy PCA features will

be used, ie. 2 energy and 2 entropy, 3 energy and 3 entropy, 4 energy and 4 entropy and

finally 5 energy and 5 entropy PCA features.

128



Chapter 6 Feature Extraction Experiments

WT SP

85

90

95

(a)

2 PCA entropy feature
A

cc
ur

ac
y,

 %

WT SP
75

80

85

90

(b)

3 PCA entropy feature

A
cc

ur
ac

y,
 %

WT SP

60

70

80

(c)

4 PCA entropy feature

A
cc

ur
ac

y,
 %

WT SP
50

60

70

80

90

(d)

5 PCA entropy feature

A
cc

ur
ac

y,
 %

Figure 6.25: Boxplot of accuracy for both wavelet and steerable pyramid with PCA trans-
formed from entropy measures as the single features for classification; with (a)
two PCA entropy features, (b) three PCA entropy features, (c) four PCA entropy
features and (d) five PCA entropy features, for image pixels 256 × 256.

No of PCA
features

Accuracy t-test
p-valueMean Median SD

Steerable pyramid
2

89.58 89.46 1.46
0.00

Wavelet transform 86.60 86.26 1.31
Steerable pyramid

3
89.46 89.50 1.28

0.00
Wavelet transform 77.79 76.98 2.74
Steerable pyramid

4
85.85 86.28 2.05

0.00
Wavelet transform 68.03 68.70 2.57
Steerable pyramid

5
83.92 84.06 2.03

0.00
Wavelet transform 66.65 66.67 3.24

Table 6.8: Statistical analysis: mean, median and standard deviation of accuracies obtained
when using PCA entropy features as input for microcalcification classification, for
image size 256 × 256. A t-test analysis is made between the two decomposition tech-
nique, steerable pyramid and wavelet transform.
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Figure 6.26: Boxplot of accuracy for both wavelet and steerable pyramid with PCA trans-
formed from entropy measures as the single features for classification; with (a)
two PCA entropy features, (b) three PCA entropy features, (c) four PCA entropy
features and (d) five PCA entropy features, for image pixels 128 × 128.

No of PCA
features

Accuracy t-test
p-valueMean Median SD

Steerable pyramid
2

53.11 55.26 6.88
0.65

Wavelet transform 52.37 55.26 8.17
Steerable pyramid

3
54.16 53.95 6.58

0.36
Wavelet transform 53.05 55.26 7.47
Steerable pyramid

4
53.89 55.26 6.81

0.00
Wavelet transform 57.84 57.89 6.59
Steerable pyramid

5
53.84 55.27 7.12

0.07
Wavelet transform 56.63 57.89 7.33

Table 6.9: Statistical analysis: mean, median and standard deviation of accuracies obtained
when using PCA entropy features as input for microcalcification classification, for
image size 128 × 128. A t-test analysis is made between the two decomposition tech-
nique, steerable pyramid and wavelet transform.
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Chapter 6 Feature Extraction Experiments

Similar to the previous experiments of using single feature, the accuracies obtained

when these 2 sets of input features are used for classification are analysed using box-

plot and t-test analysis, to observe if the improvement made by another method is

significant.

Combination of 2 energy and 2 entropy PCA features as input for classification

In this experiment, the combination of two PCA features from each decomposition

technique; two energy and two entropy features are used for classifications. Thus, the

total number of input features is four. This number is chosen from the result obtained

in the previous experiment in Section 6.2.3. The accuracy obtained is plotted using

boxplot as in Figure 6.27. A t-test analysis is summarised as in Table 6.10 and Table 6.11.
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Figure 6.27: Boxplot of accuracy for both wavelet and steerable pyramid with PCA trans-
formed features for both energy and entropy measures as the features for clas-
sification; with two PCA entropy and two PCA energy features, for image size of
(a) 256 × 256 and (b) 128 × 128 pixels.

Decomposition technique N Mean SD DF p
Steerable pyramid 50 85.52 0.88 49 0.00
Wavelet transform 50 69.97 2.30

Table 6.10: T-test analysis between steerable pyramid and wavelet transform, for image 256 ×
256, with two PCA entropy and two PCA energy features.

The result obtained from this set of features shows that steerable pyramid filtering

achieved higher accuracy compared to wavelet transform, with mean of accuracy of
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6.2 Feature Extraction using Steerable Pyramid Filtering

Decomposition technique N Mean SD DF p
Steerable pyramid 50 50.63 7.2812 49 0.12
Wavelet transform 50 52.53 8.5225

Table 6.11: T-test analysis between steerable pyramid and wavelet transform, for image 128 ×
128, with two PCA entropy and two PCA energy features.

85.52% and 69.97% respectively. However, when the image size is halved, the mean

accuracy of both methods reduced to 50.63% and 52.53%. Although the mean accuracy

achieved by the wavelet transform is higher than steerable pyramid, this difference is

not significant, as the p-value obtained from the t-test is greater than 0.05.

Combination of 3 energy and 3 entropy PCA features as input for classification

In this experiment, the number of features is increased to three energy and three en-

tropy, hence the total features input is six features. Similarly as in previous experiment,

the accuracy obtained is plotted using boxplot as in Figure 6.28 and a summary of the

t-test is presented in Table 6.12 and Table 6.13.
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Figure 6.28: Boxplot of accuracy for both wavelet and steerable pyramid with PCA trans-
formed features for both energy and entropy measures as the features for clas-
sification; with three PCA entropy and three PCA energy features, for image size
of (a) 256 × 256 and (b) 128 × 128 pixels.

In Table 6.12, the results show an improvement when using six PCA features, three

energy and three entropy measures for both wavelet and steerable pyramid decom-

position technique; 70.54% and 79.25% respectively. Hence, it shows that steerable
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Chapter 6 Feature Extraction Experiments

pyramid achieved higher mean accuracy compared to wavelet transform when us-

ing six features as input for microcalcification classification. Statistically, the p-value

obtained from the t-test is less than 0.05, therefore the difference achieved when us-

ing features extracted in steerable pyramid filtering is significant compared to wavelet

transform. This result is also consistent when the features are extracted from half im-

age size, where accuracy of steerable pyramid filtering achieved is 63.00% and wavelet

transform is 58.74% as shown in Table 6.13.

Decomposition technique N Mean SD DF p
Steerable pyramid 50 79.25 2.28 49 0.00
Wavelet transform 50 70.54 3.67

Table 6.12: T-test analysis between steerable pyramid and wavelet transform, for image 256 ×
256, with three PCA entropy and three PCA energy features.

Decomposition technique N Mean SD DF p
Steerable pyramid 50 63.00 5.8340 49 0.00
Wavelet transform 50 58.74 6.3006

Table 6.13: T-test analysis between steerable pyramid and wavelet transform, for image 128 ×
128, with three PCA entropy and three PCA energy features.

Combination of 4 energy and 4 entropy PCA features as input for classification

Similar method as in previous experiment is used to compare the overall performance

of classification when using eight PCA features in total, with four features from energy

and four from entropy. The results is presented as in boxplot in Figure 6.29.

The statistical analysis is carried out by performing the t-test analysis and is presented

as in Tables 6.14 and 6.15.

Decomposition technique N Mean SD DF p
Steerable pyramid 50 74.05 5.46 49 0.00
Wavelet transform 50 60.48 3.62

Table 6.14: T-test analysis between steerable pyramid and wavelet transform, for image 256 ×
256, with four PCA entropy and four PCA energy features.
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Figure 6.29: Boxplot of accuracy for both wavelet and steerable pyramid with PCA trans-
formed features for both energy and entropy measures as the features for clas-
sification; with four PCA entropy and four PCA energy features, for image size of
(a) 256 × 256 and (b) 128 × 128 pixels.

Decomposition technique N Mean SD DF p
Steerable pyramid 50 63.95 8.19 49 0.00
Wavelet transform 50 59.58 6.89

Table 6.15: T-test analysis between steerable pyramid and wavelet transform, for image 128 ×
128, with four PCA entropy and four PCA energy features.

From the result presented, it is shown that the accuracy for steerable pyramid is 74.05%,

compared to wavelet transform of 60.48%. It is also shows that steerable pyramid

achieved higher accuracy compared to wavelet transform and the difference is signifi-

cant since the p-value obtained from the t-test analysis is less than 0.05.

Combination of 5 energy and 5 entropy PCA features as input for classification

For the experiment with five PCA energy and five PCA entropy features used for clas-

sification, the results obtained are recorded as in boxplotin Figure 6.30. Similarly, a

t-test analysis is performed to measure the overall performance statistically.

Decomposition technique N Mean SD t DF p
Steerable pyramid 50 66.00 5.33 3.7491 49 0.00
Wavelet transform 50 59.49 1.81

Table 6.16: T-test analysis between steerable pyramid and wavelet transform, for image 256 ×
256, with five PCA entropy and five PCA energy features.
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Figure 6.30: Boxplot of accuracy for both wavelet and steerable pyramid with PCA trans-
formed features for both energy and entropy measures as the features for clas-
sification; with five PCA entropy and five PCA energy features, for image size of
(a) 256 × 256 and (b) 128 × 128 pixels.

Decomposition technique N Mean SD t DF p
Steerable pyramid 50 63.11 6.76 3.7491 49 0.00
Wavelet transform 50 58.32 9.15

Table 6.17: T-test analysis between steerable pyramid and wavelet transform, for image 128 ×
128, with five PCA entropy and five PCA energy features.

The results obtained as in Table 6.16 and Table 6.17, it is shown that steerable pyra-

mid achieved higher mean accuracy of 66.00% compared to wavelet transform which

achieved mean accuracy of 59.49%. This difference is also significant with p-value from

the t-test is less than 0.05. The accuracy performances are decreased for both methods

when compared to the accuracy achieved by 4 PCA transformed from each energy

and entropy features. This shows that the overall performance does not continually

improve as the number of features increases.

Summary

The experiments conducted that used PCA transformed energy or entropy as single

features for microcalcification classification show that the accuracies improvement is

not significant. Hence, the combination of energy and entropy as features is recom-

mended for microcalcification classification.
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6.2 Feature Extraction using Steerable Pyramid Filtering

The results obtained by using reduced number of features found that the best mean

accuracy achieved so far is when four features; two energy and two entropy which

is 85.52% for steerable pyramid filtering and 69.97% for wavelet transform. The per-

formance achieved when all the 48 features are used as input for steerable pyramid,

the mean accuracy obtained is 78.26%. Hence, it is observed that the data dimension

reduction using PCA is able to reduce the number of features as input for microcalci-

fication classification. The question of finding the optimal features combination will

possibly be an area of investigation in the future work.

Figure compares the performance of the accuracies obtained when the PCA trans-

formed energy or entropy is used as a single input features. The results show that

when the entropy features extracted from the steerable pyramid filtering outperform

the classifier’s performance when compare to the wavelet transform extraction tech-

nique. However, the performance when the energy features are used demonstrates

that the energy features contain less malignancy information when the features are

extracted from the steerable pyramid filtering.
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Figure 6.31: Comparison chart of accuracy when single features, either (a) energy or (b) entropy
were used for microcalcification classification for image pixels size 256 × 256.
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In Figure 6.32 shows that the combination of energy and entropy features used to clas-

sify the microcalcification cluster achieve a highest accuracy of 85.2% when the 2-PCA

transformed features are used. Whereas, the wavelet transform extraction of the same

number of features achieve an accuracy of 69.97%. However, when the image pixels

size is reduced to 128× 128, ie. half of the original image size, the accuracies degraded.

This is also consistent with the earlier work where the SNR of the reduced images also

decreases as the pixels decreases. Information loss during the resizing process may

contribute to the degradation. The reason to use the reduced images is to provide

consistency in input size for the following experiments.
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Figure 6.32: Comparison chart of accuracy when energy and entropy features were used for
microcalcification classification for image pixels size (a) 256 × 256 and (b) 128 ×
128.

A work by Dhawan et al. (1991) extracted features from wavelet decomposed images

and yield ROC performance of 0.74. The 191 images were used in the experiment,

and the source of the database was not given. Their work is almost similar to the

conducted experiments. However, instead of using SVM, they used a neural network

as their classifier. A paper in 2010 (Tirtajaya and Santika 2010) reported the dual-tree

complex wavelet technique was used to decompose and extract features from mammo-

grams images, with 57 images from MIAS database were chosen. The SVM classifier
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6.3 Automatic Feature Extraction using DBN

was adapted and they achieved an accuracy of 88.64%. Although the dataset used are

different, comparing with these two almost similar works, the result obtained from the

conducted experiment has achieved comparable levels of accuracy. In addition, it is

also showed that multiple orientation features have contributed useful information for

microcalcification classification.

The experiments conducted so far are manually extracted the features; ie. manually

computes and limits the features to be either energy, entropy or a combination of both.

This limits the potential of other features contain in the ROIs that may contribute to the

malignancy analysis. In the next section, a method that be able to extract and reduced

the data dimension automatically, using deep belief network, DBN is conducted.

6.3 Automatic Feature Extraction using DBN

In the second part of the chapter, a novel method using deep belief network (DBN)

as an automatic feature extractor and data reduction for microcalcification in mammo-

grams diagnosis is investigated. In principle, DBNs enable the automatic extraction of

useful features for classifications instead of heuristically chosen one. The use of DBN

will possibly reduce the need to select the features from the data, and instead learns

from the presented data. As reviewed in Chapter 5, the ability of DBN to map the re-

lationship between the input and output in a highly complex non-linear relationship

makes it interesting for classification of microcalfication in mammogram, since there

are a variety of shapes and sizes of cluster of microcalcification, which make it difficult

to linearly classified them. Therefore, the aim of this section is to seek an automatic

model to extract the useful high-level features; such as orientations of the cluster of

microcalcification for the classification purposes. It is hoped that these extracted fea-

tures will possibly be more useful to the classifier compared to the use of raw pixels in

the malignancy analysis.

As explained in Chapter 5, the mammogram images have real-valued pixels, thus, the

DBN network with Gaussian-Bernoulli RBM at the first layer was implemented. In

138



Chapter 6 Feature Extraction Experiments

this experiment, the DBN is used as feature extractor to determine a suitable features

dimension. The DBN can be used as a fully automated classifier by implementing a

discriminative DBN, ie. the microcalcification features are extracted by the network

and at the final layer of the network is a single node that represents the class of the

features. For a DBN to act only as feature extractor, the top layer of RBM is connected

to the supervised classifier, chosen to be the SVM classifier. This choice is made to

enable comparison with previous technique of feature extraction using steerable pyra-

mid filtering. Moreover, the choice of the network shape is based on the decision to

have DBN act as data dimension reducer. Hence, the width of the layer decreases as

the layer level increases.

For the work in this thesis, four layers DBN network is chosen to be used for further

investigation of extracting features in the microcalcification images. As reviewed in

Chapter 2, the use of conventional neural network with at most three layers has gained

most interest of researchers in the field. Here, deeper networks for classification of the

microcalcification in mammogram are explored. In deep network, it is possible to have

multiple hidden layers. In each hidden layer, it will transforms its inputs; that come

from previous layer’s outputs, by a non-linear transformation. Hence, this allows the

deep network to compute much more complex features of the input as the number of

the layers in the network increases. As for a start, a network that is slightly deeper that

the conventional network, ie. a 4-layer network is developed.

For complex images such as clusters of microcalcification, deep network allows the

decomposition of the images to be learn at each layer one at a time. For example, the

first layer of the network might learns the image to detect edges. The second layer will

learns more complex structure, such as part of the objects. As the network gets deeper,

the higher layers will learn much more structures of increasing complexity. It is inter-

esting to explore this property to extract meaningful features from the mammograms,

with the eventual goal is to improve the classification accuracy.

The experiments are organised as follows:
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6.3 Automatic Feature Extraction using DBN

1. In Section 6.3.1, experiment with the topology of the network by choosing differ-

ent number of hidden nodes in each layer of the network is performed. The aim

is to build the network by using the sum squared errors in the CD learning as a

selection criterion.

2. In Section 6.3.2, the deep network with the chosen topology obtained from ex-

periment in Section 6.3.1 is used to extract features from the microcalcification

images and used them as the input for malignancy analysis.

3. In Section 6.3.3, a novel approach for the microcalcification classification using

multiple orientations and multiple resolutions DBN is performed.

6.3.1 Experiment 5: DBN Architecture Selection

Similar to experiment in the Section 6.2.1, the initial step is to experiment with few

parameters to find the most feasible architecture for the system, particularly for classi-

fication of the microcalcification in mammogram. One of the parameters is the number

of hidden nodes in each layer of the network. In addition, since the aim of this exper-

iment is to use deep network for microcalcification feature extraction and dimension-

ality reduction, it is expected that the number of hidden nodes in the layer decreases

as the number of layer in the network increases. It is observed the sum squared errors

between the original data with the reconstructed data in each network and the time

taken to complete the CD learning procedure. Network with the smallest error and

converged quickly implies that the network has learnt the features better in a shorter

time. The time taken is also observed to ensure the feasibility of the system to complete

the task on the machine with the 64-bit core i5 processor, at 1.60 GHz. The reduced size

of images that have pixels size of 128× 128 are used throughout the DBN experiments,

due to the high computational and memory costs on the machine to compute a larger

data size.
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Number of hidden nodes per layer

In this subsection, the experiment was aimed at choosing the optimal number of hid-

den nodes at each layer in the DBN autoencoder. The number of hidden nodes at

each layer is chosen heuristically by running few experiments and observing the sum

squared error. The sum squared error observed is the difference between the original

data with the reconstructed data after the CD procedure learning.

Consistent with greedy training in DBN, Consistent with greedy training in DBN, an

empirical comparison between several different numbers of hidden nodes at each layer

is conducted. The experiments will be carried out individually per layer. The reason

for running each layer individually is that the computational cost to run the whole

pre-training in DBN is expensive, which would render the approach infeasible to run

the whole DBN. This training scheme is also faster. The number of hidden nodes that

produces the smallest error and converged quickly, will be chosen as the number of

nodes in the visible layer for RBM for the next consequence layer.

Layer 1 The first layer of DBN is directly connected to the image pixels. In this ex-

periment, the size of image is 128× 128 pixels. The image is flattened into a horizontal

vector, thus, the size of the vector is 16 384, which is also the same size as the visible

units in the visible layer. Several number of experiments are performed individually

with different number of hidden nodes in the hidden layer of the first layer DBN. There

are four different hidden nodes numbers, ie. 5000, 2500, 1500 and 200 connected to all

the visible nodes. Since the aim is to extract useful features and at the same time to

reduce the data dimensions for classification, the number of hidden nodes must not be

higher that then number of the nodes in input layer, and hence the choice of the num-

ber of nodes to be experimented. Furthermore, hidden nodes with more than 5000 are

computationally expensive.

Hinton et al. have provided guidelines in choosing this parameters of DBN. In the

guidelines, Hinton mentioned that the number of hidden nodes can be estimated by
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finding number of bits that would take to describe the data in the best model. The

bits is then multiply with the number of training nodes (Hinton 2012). However, the

decision of the parameters choice must be based on the empirical evidence. Hence,

the next conducted experiment is to decide the number of hidden nodes that would be

suitable in representing the data; ie. microcalcification cluster data images.

In each experiment, the sum squared errors of the original and the reconstructed data

are observed. This is to ensure the learning is successfully carried out by observing the

errors to decrease monotonically as the epochs progress.

Since the input or the visible layer is not binary, ie. the real value of the pixel images,

the energy function used for the first layer of DBN is defined by the Gaussian-Bernoulli

connection.

E(v, h) = − ∑
i∈visible

(vi − ai)
2

2σ2
i

− ∑
j∈hidden

bjhj − ∑
i,j

vi

σi
hjwij, (6.18)

where vi, hj are linear Gaussian state of visible unit i and binary state of hidden unit

j respectively, and wij is the weight between them; ai, bj are their biases and σi is the

standard deviation of Gaussian for visible unit i.

The layer is pre-trained for 200 epochs using the 80 training sets of images as described

in Section 6.1.5. This number of training sets is also consistent with the previous exper-

iments in Section 6.2. The sum squared error, SSE for each epoch is calculated using

Equation 6.19:

SSE = ∑ 〈data〉2 − 〈model〉2. (6.19)

The errors are plotted in Figure 6.33. In the figure, the errors are plotted for the first 100

epochs. It is observable that the errors continue to decrease until the final 200 epochs.

The errors are presented in Table 6.18, in steps of five epochs since there are no changes

in the trend of error. For reference, the complete table of each error is presented in

Appendix B.
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Figure 6.33: Sum squared errors in pre-training the first layer RBM after 200 epochs with 5000,
2500, 1500 and 200 hidden nodes. The visible layer of the RBM is connected to the
pixels of the microcalcification images.

It is observed that from the result as shown in Figure 6.33, the sum squared errors of all

experiments showed a monotonic decay after at least 30 epochs. Hence, it is sensible

to stop the training at 200 epochs since the error will not rise up again. From the result,

it is also observed that when 1500 hidden nodes are used in the first layer, the sum

squared errors showed the lowest error after 70 epochs.

Hidden nodes 5000 2500 1500 200 Hidden nodes 5000 2500 1500 200
Epoch 1.0e+ 06 * 1.0e+ 06 * 1.0e+ 06 * 1.0e+ 06 * Epoch 1.0e+ 06 * 1.0e+ 06 * 1.0e+ 06 * 1.0e+ 06 *

5 16.2534 10.3748 7.6277 2.4275 55 6.3546 3.1859 2.1193 1.1251
10 13.7639 6.9028 4.9115 2.2852 60 6.1546 3.0617 2.0406 1.0868
15 11.0566 6.7831 4.2703 2.0345 65 6.0081 2.9381 1.9788 1.0521
20 10.1166 5.0290 3.9672 1.7644 70 5.8816 2.8407 1.9140 1.0218
25 8.8350 4.5512 3.0274 1.5475 75 5.7782 2.7490 1.8535 0.9957
30 8.2715 4.1921 2.6889 1.4036 80 5.7182 2.6572 1.7939 0.9725
35 7.6439 3.8324 2.5912 1.3180 85 5.6740 2.5990 1.7419 0.9527
40 7.1991 3.7066 2.3868 1.2588 90 5.6099 2.5216 1.6900 0.9349
45 6.8503 3.4727 2.2724 1.2120 95 5.5886 2.4676 1.6464 0.9197
50 6.5677 3.3347 2.2075 1.1681 100 5.5594 2.4079 1.6046 0.9053

Table 6.18: Pre-training error in the first layer up to epoch 100 in step of 5 epochs.

The execution times for each network are also been recorded. From Table 6.19, it is

observed that as the number of hidden nodes increases, the time taken for the RBM

learning also increases. 5000 hidden nodes shows the most expensive computational

time as it took nearly 8 hours to complete the pre-training procedure. The 200 hid-

den nodes shows the least time taken to complete the procedure. From Table 6.19, it

is observed that the time taken to complete the procedure is approximately linearly

proportional with number of hidden nodes.
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Number of hidden nodes 5000 2500 1500 200
Time taken (s) 31351.45 11841.92 5122.68 486.70

Table 6.19: Execution time for pre-training Layer 1 RBM after 200 epochs

From this experiment, the first layer is chosen to have 1500 nodes. This is based on the

lowest error achieved compared to the other 3 numbers of hidden nodes. Furthermore,

the time taken to complete the procedure is acceptable, ie. 85 minutes. Although 200

hidden nodes shows the least time taken, ie. 8 minutes to complete the procedure, the

number of hidden nodes from visible nodes is drastically reduced. This can potentially

lead to a lot of information lost from that layer. In addition, the training time taken to

complete 200 epochs does not affect the overall performance of the DBN during the

testing phase.

Layer 2 Next, the output from these 1500 nodes is used as an input to the next RBM

layer. At this stage, the architecture of the DBN is 16 384 (input) - 1500 (layer 1) - layer

2. Again, four different numbers of hidden nodes were experimented. The number of

hidden nodes are 1500, 1000, 500 and 200. These numbers are chosen to be no greater

than the number of hidden nodes in the previous layer, ie. 1500 nodes. This is because

the aim of the network is to reduce the dimension of the data, which the nodes at the

top of network will be presented as the input features for the classification. Since the

output from the previous layer is in a binary state, hence the energy connection of the

layers now is Bernoulli-Bernoulli. Therefore, the Equation 6.20 is used to define the

weights between the two layers:

E(v, h) = − ∑
i∈visible

aivi − ∑
j∈hidden

bjhj −∑
i,j

vihjwij, (6.20)

where vi, hj are binary state of visible unit i and hidden unit j, and wij is the weight

between them. ai, bj are their biases.

Similarly, the sum squared errors are observed and the execution time for each run of

experiment is recorded. Figure 6.34 shows that the sum squared errors for these four
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experiments converged towards zero at around 40 epochs. The result shows there is

not much difference in the total error for four different set of RBM. The detailed results

of the pre-training errors are also provided in Appendix B.
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Figure 6.34: Sum squared errors in pre-training the second layer RBM after 200 epochs. The
visible layer of the second RBM is the output of the 1500 hidden nodes from pre-
vious layer. The number of hidden nodes experimented are 1500, 1000, 500 and
200.

Number of hidden nodes 1500 1000 500 200
Time taken (s) 208.12 142.18 77.28 43.65

Table 6.20: Execution time for pre-training Layer 2 RBM after 200 epochs

The execution times for each network are also recorded. From Table 6.20, it is observed

that the results are similar to the experiment conducted in the first layer. It is also

observable that as the number of hidden nodes increases, the time taken for the RBM

learning also increases. 1500 hidden nodes shows the most expensive computational

time as it took the longest to complete the pre-training layer 2 procedure, ie. 3.46 min-

utes. Likewise, the layer with 200 hidden nodes shows the least time taken to complete

the procedure, ie. 43.65 seconds. However, the time taken for all different experiments

is not as crucial as in pre-training the first layer, which is directly connected to the

visible input.

Hence, unlike in the first layer, the error may no longer be useful as a criterion in

choosing the number of hidden nodes in layer two, since the error for all four different

RBMs converged to zero, at least after 40 epochs. To avoid a drastic drop in number of
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6.3 Automatic Feature Extraction using DBN

hidden nodes between layer, which may lead to some information loss, the number of

hidden node chosen for layer two is 1000. Thus, up to this point, the second layer of

the DBN is chosen to have an 16 384 (input) - 1500 (layer 1) - 1000 (layer 2) architecture.

Since the aim is to have a deeper network, the similar procedures for the following

layer, ie. third layer is performed.

Layer 3 For the third layer in DBN, the pre-training procedure is similar to the pro-

cedure in the second layer. The visible and hidden nodes of the RBM is in binary state,

thus the energy function as in Equation 6.20 is used to define the weights connection.

The result for the sum squared errors are recorded as well as the execution time for

each experiment with different number of hidden nodes in the third layer ie. 1000, 500

and 200. Again, the numbers are chosen to be no greater than the number of nodes in

the previous layer, ie. second layer. As in Figure 6.35, it is observed that the total error

converged quickly to zero at around 20 epochs.
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Figure 6.35: Sum squared errors in pre-training the third layer RBM after 200 epochs. The visi-
ble layer of the second RBM is the output of the 1000 hidden nodes from previous
layer. The number of hidden nodes experimented are 1000, 500 and 200.

Number of hidden nodes 1000 500 200
Time taken (s) 95.94 69.22 51.57

Table 6.21: Execution time for pre-training Layer 3 RBM after 200 epochs

The result obtained from this experiment shows that 500 hidden nodes has the lowest

error after 5 epochs. However, after 10 epochs, the pre-training error from all three
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hidden nodes shows almost similar result, ie. 0.5 × 103. For the third layer analysis,

the time taken to complete the layer pre-training procedure is also proportional to the

number of hidden nodes in the layer. 1000 hidden nodes took the longest amongst

them, 95.94 seconds. 500 and 200 hidden nodes took 69.22 and 51.57 seconds to com-

plete the procedure respectively, which are not as crucial as time taken for pre-training

the first layer of DBN. The time taken is summarised in Table 6.21.

The errors obtained were similar to the errors in the second layer experiment, hence,

may no longer be useful in choosing the number of hidden nodes. Furthermore, the

errors converged so quickly may suggest that the three layers architecture may not be

very important to the overall DBN routine. However, to explore a deep network, the

number of hidden nodes is chosen to be 500 nodes, so that the difference between this

third layer and the second layer is consistent with the difference between the second

layer and the first layer.

Final DBN architecture There are many possible of combinations of number of nodes

per hidden layer in DBN as well as number of hidden layer in the DBN. The experi-

ments conducted earlier is one of several sensible methods to choose the appropriate

number of hidden nodes in each layer in DBN. Previous works as reviewed in Chap-

ter 2 have shown that conventional neural network with one hidden layer is amongst

the common feature extractor and classifier in the classification of microcalcification in

mammogram. Hence, a slightly deeper network with three hidden layers DBN will be

used as the feature extraction technique.

Summary

From these experiments, the final architecture of the DBN with three hidden layers is

chosen to be 1500-1000-500, as illustrated in Figure 6.36. The code layer contains the

features that are extracted and is used as an input for the classification. The number of

code layer will be experimenting in the following Section 6.3.2.
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128 x 128 pixels

1500 hidden nodes

1000 hidden nodes

500 hidden nodes

Visible layer

Layer 1

Layer 2

Layer 3

Code layer Layer 4

Figure 6.36: The first 3 hidden layers of DBN architecture that will be used in the thesis. The
code layer contains the features that are extracted and is used as an input for the
classification of microcalcification clusters in mammogram.

6.3.2 Experiment 6: Feed-Forward DBN Feature Extraction for Mi-

crocalcification Classification

Following the previous work in Section 6.3.1 that establishes a DBN architecture, which

can learn patterns through greedy pre-training of the layers, this section of the thesis

discusses attempts to fully utilize the DBN as an automatic feature extractor. To clas-

sify the extracted features, two techniques are proposed. One technique is to stack

one layer containing single node at the top of the features or code layer. This single

node will activate and predict the class of the microcalcification cluster without the

information of their class. Hence, the DBN will act as an unsupervised DBN. Another

technique is to use SVM as a classifier, and classifies the features that had been ex-

tracted by the code layer. This will produce a supervised DBN. It is assumed that the

code layer contains the compressed information of the features. The compression will

reduce the gigantic size of the data to be presented as the input to the SVM classifier.
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Feed Forward DBN as automatic features extractor and unsupervised classifier

In this experiment, DBN is used to extract features directly from the images of the ROI.

Each layer in the DBN extracts features that will be the input to the next layer. The

method to extract the features is part of autoencoder DBN. The ROI images were de-

coded at the first three layers. The subsequent layer contains the features extracted or

decoded from these layers, hence the layer is named code layer. For a full autoencoder,

these features were then encoded at the next following three layers. The weights in

the encoder part for these layers are the transpose of the weights in the decoder part.

To complete the process, the top layer of DBN reconstructs the original images at the

input.

However, in this work, the interest is to use the features that had been extracted in the

code layer for the classification. The code layer contains the compressed information

obtained from the ROI images at the input. This reduces the data dimensions from

raw pixel images, which is also act as to reduce the dimension of the data. Thus, in

this experiment, only the decoder part is performed and the features extracted from

the decoder part is used to classify the images.

The aim in this experiment is to investigate the ability of DBN to act as an automatic

feature extractor and unsupervised classifier. In the first layer, the features are ex-

tracted directly by the DBN from the raw image pixels. In the following layers in

DBN, the number of nodes is reduced as passing through to the next stacked layer in

DBN. The features are said to be automatically extracted. Moreover, since the class

information is not included during the pre-training, the classification made by DBN is

performed in an unsupervised manner. The advantage of using this method is that the

whole image pixel is used for feature extraction purposes. In contrast, conventional

feature extraction methods require the measures to be predetermined, instead of data

driven.

Several different number of code layer nodes are investigated in the experiment. The

numbers of nodes used in this experiment are 10, 30, 50, 100, 300 and 500. The aim is to
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Code layer nodes TP TN FP FN Execution time (s) TPR TNR
10 23 45 29 21 3777.34 0.4423 0.6818
30 34 34 32 18 3551.31 0.6538 0.5151
50 14 33 38 33 4625.46 0.2692 0.5000

100 20 35 32 31 7209.79 0.3846 0.5303
300 34 32 18 34 16619.62 0.6538 0.4848
500 32 29 20 37 23898.76 0.6154 0.4394

Table 6.22: Summarised results using different number of code layer nodes. The number of
code layer nodes represent the number of extracted features for classification pro-
cess using unsupervised feed forward DBN.

reduce the dimension of the features, hence the number of the nodes in the code layer

is smaller than the number of nodes in the previous immediate layer, ie. 500 nodes in

layer 3 of the DBN. The summary of total condition output from the DBN; true positive

(TP), true negative (TN), false positive (FP) and false negative (FN) is presented in the

Table 6.22. Using Equation 6.6 and Equation 6.7, the TPR and TNR are calculated.

The sensitivity (TPR) and the specificity (TNR) of the system for each experiment are

compared.

The results are shown in Table 6.22. The highest TPR is achieved when the code layer

is 300 nodes, ie. 0.6538, which is also the same when 30 nodes is used in the code layer.

Other number of code layer that achieved TPR higher than 0.5 is 500. The curves of the

TPR vs TNR for nodes achieved TPR more than 0.5 are plotted in Figure 6.37.

The results from the ROC curve shows that a DBN with 300 nodes in the code layer

achieved the best performance compared to the 30 and 500 nodes in the code layer.

However, the costs of computation time for completing the task using the larger num-

ber,ie. 300 and 500 nodes are greatly increased. Therefore, it is feasible and sensible to

choose 30 nodes in the code layer.

The parameters for the first three hidden layers architecture are defined in Section 6.3.1.

In addition to these parameters, another parameter at the top of the DBN that contains

one node is attached. This node is activated by the features in the code layer and

will giving the output of 0 or 1. The architecture of DBN as feature extractor and

unsupervised classifier is illustrated in Figure 6.38.
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Figure 6.37: ROC curve of feed-forward unsupervised DBN with 30, 300 and 500 number of
nodes in the code layer.
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Figure 6.38: DBN as feature extractor and classifier. The code layer contains the extracted fea-
tures and is used for classification of microcalcification in mammogram, and the
final layer has one hidden node for class prediction.

The procedures in this experiment that uses DBN as feature extractor and as an unsu-

pervised classifier are as follows: 1. The images of microcalcification clusters in mam-

mogram are directly connected to nodes in the first layer. The nodes are the input of

the DBN, without giving any information of the cluster class, either benign or malig-

nant. 2. These features are passing through to the sequence of layers. At each layer,
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more complex features are extracted. 3. At the final layer of the DBN, there is a single

node that clusters and classifies the extracted features in the code layer to give the final

class label. The result of the classifier above assign the value 0 for benign and 1 for

malignant for sensitivity and specificity calculation.

From this experiment, it is found that the unsupervised classification is unable to clas-

sify the microcalcification clusters in mammograms. However, the result from this ex-

periment can be used to determine the structure of the DBN that is suitable and feasible

to use for future experiments. Continuing to the next experiment, a four layers DBN

attached with a supervised classifier, SVM is proposed for microcalcification cluster

classifications. This structure is illustrated as in Figure 6.39. The reason to choose SVM

as the classifier is to provide a consistency for the classification process throughout the

thesis.

Feed-forward DBN as features extractor with SVM classifier

In feed-forward DBN experiment, a supervised classifier, SVM is attached at the top of

the DBN to learn the features for classification. The aim is to investigate whether the

features that are extracted from the raw images using DBN contain useful information

to differentiate between benign and malignant cases, by using a supervised classifier.

The architecture of the DBN is identical to the previous experiment in Section 6.3.2.

The DBN has 1500, 1000 and 500 number of hidden nodes at the first, second and the

third hidden layers, respectively. The result obtained from the previous experiment

in Section 6.3.2 shows that there is no distinct trend for the relationship between the

number of hidden nodes and the accuracy achieved. However, only 30 nodes are used

for the code layer. The main reason is to provide an acceptable number of features

as input to the classifier, SVM and to prevent the curse of dimensionality. Although

this number of features is still large, it has been reduced from 16384 number of pixels,

which made it reasonably acceptable for presentation to the classifier. The 4-layer DBN

architecture is illustrated in Figure 6.39.
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Figure 6.39: DBN as feature extractor and SVM for classifier. The code layer contains the ex-
tracted features and is used for classification of microcalcification in mammogram
by a SVM classifier.
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Figure 6.40: Flowchart of the DBN-SVM training and testing phase.

The flowchart in Figure 6.40 illustrates the overall process of this experiment. The 118

images in the database will be randomly divided into two sets, training and testing

sets. Ten different sets are generated, hence this produces ten different sets of training
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images, and ten different sets of testing images. In training phase, the first training will

be pre-trained by the proposed four layer DBN, where its architecture is as follows:

1500 nodes in the first hidden layer, 1000 nodes in the second hidden layer, 500 nodes

in the third hidden layer and 30 nodes in the code layer. The 30 nodes in the code layer

are the features that are extracted and assumed to contain the compressed data of the

original images. These are the features that will be presented as the input for the SVM

classifier. Next, in SVM, these features will be trained, and using the 5-fold validations

method to set the parameters in the SVM. In testing phase, the testing datasets are used,

and these images will use the learned network in DBN and SVM to predict the output.

The accuracy from the output is then calculated. These training and testing phases will

be repeated for the next nine random set of training and testing datasets. At the end of

the process, the performance of the system is then validated by the statistical analysis.

The summary of the process of the classification is as follow:

Input database The raw pixels of 118 ROIs that contain microcalcification clusters that

have been segmented as described in Section 6.1.3 are used as the input for the

system.

Training input 80 of 118 images are randomly chosen with 40 benign and 40 malig-

nant cases for training sets. This is repeated 10 times, with different training sets

of 80 generated each time.

Training phase 80 training images are attached to the lowest layer of DBN, ie. the

visible layer. The CD learning is used to learn the weights between this layer and

the next hidden layer, which has 1500 nodes. The output of this hidden layer will

be the input to the next 1000 nodes hidden layer. Similar process for the third

and fourth layers which has 500 and 30 nodes, respectively. The final output of

the DBN, ie. 30 features will be the input to train the SVM classifier for tuning the

parameters using 5-fold validation method.
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Testing input The remaining 38 images for each run will be the testing set used to

measure the sensitivity and the specificity of the proposed system.

Testing phase The learned network is tested with the 38 testing images, repeated 10

times with different testing sets.

The accuracy of correct classification from each network is recorded. To visualise the

result obtained, a boxplot is generated and presented in Figure 6.41. From the analysis,

it is observed that the variance in the result is high, where the standard deviation of

the 10 results is 17.28. The median of the accuracy achieved is 51.32% and the mean

accuracy is 47.90%.
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Figure 6.41: Boxplot of accuracy for feature extraction using DBN directly from the raw pixels
of segmented ROI with SVM classfier.

Summary

From these experiments, it can be concluded that the extracted features from raw im-

age pixels using DBN are not significant to differentiate between benign and malig-

nant classes. Although in the second experiment, a supervised classifier, SVM is used

to classify the DBN extracted features, the classification rate has not been significantly

improved. The raw images of mammogram that are low contrast and the appear-

ances of cluster of microcalcification in mammogram are vague and not well defined
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may possibly contribute to this unsatisfactory result. Hence, to further investigate the

use of DBN for microcalcification classification, a novel approach that combines multi-

orientation and multi-resolution filtered images of cluster with a deep network for

classifications is proposed and to be experimented next.

6.3.3 Experiment 7: Microcalcification Classification using Multiple

Orientation and Multiple Resolution DBN

The results obtained from the experiments in Section 6.3.2 show that the features ex-

tracted directly from raw images using DBN are not significantly able to distinguish the

microcalcification cluster features and classify them into benign or malignant classes.

Hence, in this experiment, an image filtering process is performed before the DBN is

used to extract the features. The proposed filtering method, ie. the steerable pyramid,

is used to produce filtered images at different orientation and resolution. The idea is

to extract more features at multiple resolution and multiple orientation that can po-

tentially contribute towards the improvement of the system sensitivity. Although the

filtered images are used instead of raw images, this experiment does not entirely defeat

the initial goal of automatic features learning, as it still automatically extracted features

from the filtered images.

The process in the proposed system follows the flowchart shown in Figure 6.40. How-

ever, a pre-processing step where the images are filtered using steerable pyramid fil-

tering is added before the extraction using DBN is performed.

Using steerable pyramid method, the images were filtered at three different levels of

resolution and eight orientations at each level. Thus, the total filtered images are 24

images. Since the filtered images produced are at different resolutions, the sizes of the

images vary for each resolution. At resolution 1, the size of the filtered images are

128 × 128 pixels, whilst at resolution 2 and 3, the filtered images has size of 64 × 64

and 32 × 32 pixels, respectively. Thus, the number of hidden nodes is adjusted to be

proportionally with the size of the input image at the first visible layer of DBN.
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For images with size of 128× 128, the same DBN architecture is adapted, ie. four-layers

DBN with 1500-1000-500-30 nodes. As the size of the image is reduced, the number of

hidden nodes is also reduced. Hence, for the 64 × 64 pixels images, the four-layers

DBN has 750-500-250-15 nodes. To approximately preserve the layer size ratio, the 4-

layer DBN has 375-250-125-8 hidden nodes for the 32 × 32 pixels images. The reason

for the different number of hidden nodes to be scaled down accordingly with respect

to the image sizes is to reduce the possibility of extracting redundant features if the

number of nodes is much larger than the number of pixels. Furthermore, if the number

of hidden nodes are too much smaller than the input layer, there will be information

loss due to the abrupt changes.

For each resolution, the DBN network is trained separately because the number of the

hidden nodes in the hidden layers are different. For the first resolution, eight filtered

images are trained using 1500-1000-500-30 DBN. This produces 30 features to be in-

put to the SVM classifier. The process is repeated 10 times with 10 different randomly

selected sets of training and testing data. The accuracies obtained after 10 sets of clas-

sification process were recorded and presented as in boxplot shown in Figure 6.42. The

mean accuracy achieved is 64.47% with median of 67.11%. The results have shown im-

provement in the accuracy when compared to the previous experiment in Section 6.3.2,

when the input of the network is directly connected to the raw pixels of images.

The process is also repeated for images filtered at resolution two. Similarly, 10 different

randomly chosen set of training and testing data are used to analyze and validate the

results. However, the difference is the size of the DBN, where the nodes in this four-

layer DBN has 750-500-250-15 number of nodes. Hence, the number of features that are

extracted from resolution two of the images is 15. The boxplot is shown in Figure 6.43.

The mean of accuracy achieved is 57.63% with the median of 56.58%.

For images filtered at resolution three, the size of network in DBN is reduced to 375-

250-125-8 nodes, as reason mentioned before. Hence the number of features extracted

is 8. Again, the process is repeated for ten times and the accuracy is plotted and shown
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Figure 6.42: Boxplot of accuracy achieved in a hybrid system of steerable pyramid filtering,
DBN and SVM for microcalcification classification. The input images are the fil-
tered images at resolution 1.
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Figure 6.43: Boxplot of accuracy achieved in a hybrid system of steerable pyramid filtering,
DBN and SVM for microcalcification classification. The input images are the fil-
tered images at resolution 2.
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in Figure 6.44. The mean and median of accuracy achieved are 54.33% and 55.63%

respectively.
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Autonomous features extraction using SP−DBN−SVM: Resolution 03

Figure 6.44: Boxplot of accuracy achieved in a hybrid system of steerable pyramid filtering,
DBN and SVM for microcalcification classification. The input images are the fil-
tered images at resolution 3.

The results are summarised as shown in Table 6.23. From the results, it is observed that

higher accuracy is achieved when the input for classification are the filtered images

using steerable pyramid filtering at first resolution. As the resolution increases, the

accuracy achieved is slightly decreased. At the smaller resolutions, the images will be

more compressed and contained less information which lead to the deteriorating in

classifications accuracy.

Image input
Features
nodes

Accuracy, %
Mean Median

Raw pixels 30 51.32 47.90
Filtered images at resolution 1 30 64.47 67.11
Filtered images at resolution 2 15 57.63 56.58
Filtered images at resolution 3 8 54.33 55.63

Table 6.23: Summary results to compare the accuracy achieved with different input images to
the DBN.

159



6.3 Automatic Feature Extraction using DBN

Next, all three resolutions are combined to obtain features to use for classification.

However, the total features will then be 53 nodes for one orientation. Since there are

eight different orientations, the total features would be 424 features. To reduce the

number of features, one layer DBN will be use with hidden nodes of 30. The architec-

ture of this DBN is illustrated in Figure 6.45.

Filtered image 
resolution 1

(128 x 128 pixel)

Filtered image 
resolution 2

(64 x 64 pixel)

Filtered image 
resolution 3

(32 x 32 pixel)

1500 hidden nodes 375  hidden nodes750 hidden nodes

1000 hidden nodes 500 hidden nodes 250 hidden nodes

500 hidden 
nodes

250 hidden 
nodes

125 hidden 
nodes

30 nodes 15 nodes 8 nodes

SVM classifier

Figure 6.45: Multiple resolution and multiple orientation DBN with SVM classifier for micro-
calcification classification.

The summary of the process of the proposed classification system is as follow:
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Input database The 118 images are filtered using set of steerable pyramid filters as in

experiment in Section 6.2.2. However, instead of computing statistical measure-

ments, ie. energy and entropy of the filtered images, the DBN is used to extract

features from the filtered images.

Training input 80 of 118 images are randomly chosen with 40 benign and 40 malig-

nant cases for training set. Since the images are filtered using steerable pyramid

filtering, 24 filtered images are obtained from each image; ie. filtered at 3 levels

of resolutions and 8 orientations.

Training phase The DBN pre-training will be carried out separately for each resolu-

tion and each orientation. This means that the pre-training process will use 24

different sets of input at the visible layer. The top layer of each process will then

be combined before putting into the SVM for classification. The output of the

final RBM will be the input features to the SVM.

Testing input The remaining 38 images will be the testing set used to validate the

sensitivity and the specificity of the proposed system.

Testing phase The learned DBN and SVM network is validated with the 38 testing

images. The process is repeated 10 times with different sets of training and testing

and the statistical analysis is performed to validate the results.

The result is presented in a boxplot shown in Figure 6.46. The mean accuracy achieved

is 60.79% and the median is 63.16% for the filtered images at all resolutions are com-

bined at the input of DBN. This result is compared with the experiment using the raw

image pixels as input of DBN as in experiments in Section 6.3.2. A t-test analysis is per-

formed with p-value obtained is ≤ 0.05 which shows the difference in mean accuracies

between both methods is significant. The t-test result is presented in Table 6.24.
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Figure 6.46: Boxplot analysis of accuracies achieved in a hybrid system of steerable pyramid
filtering, DBN and SVM for microcalcification classification. The input images are
the combination filtered images at resolution 1, 2 and 3.

Input image N Mean SD t DF p
Raw pixel images 10 47.91 17.2781 16.7345 19 7.9143e-13
Filtered images 10 60.79 7.3866

Table 6.24: T-test analysis between different type of images at the input of the DBN features
extractor.

Summary

The summary of the accuracy achieved by different method is presented in Figure 6.47.

The graph shows that the feature extraction method (raw-DBN) as described in Sec-

tion 6.3.2 has not performed well in automatically extracting features from raw images

of microcalcification.

Therefore, in this experiment of Section 6.3.3, an extra process to produce multiple ori-

entation and resolutions of the images is conducted. DBN is used to extract features

from these filtered images and used them as input to the classifier. In Figure 6.46, the

result has shown that the hybrid approach of multiple resolution and multiple orien-

tation DBN (SP-DBN) for microcalcification diagnosis has contributed in improving
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the performance of the classification. The experiments conducted so far are using low

resolution images of 128 × 128 pixels due to the computational constraint. From the

comparison graph as shown in Figure 6.47, it also shows that the result obtained by the

method is comparable to the result obtained using other methods, as conducted in ex-

periments in Section 6.2.4. This shows that DBN holds a promising result in extracting

features for microcalcification classification. The accuracy may be further improved by

using higher resolution images, suggested to be carried out in the future work related

to this topic.
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Figure 6.47: Comparison graph of mean accuracies achieved using different feature extraction
approaches. The features used are either raw image pixels (raw), extracted from
steerable pyramid filtering (SP) or extracted from wavelet transform (WT). The
features are selected using principal component analysis (PCA) or automatically
by DBN. These features are then classified using SVM classifier for malignancy
analysis.

6.4 Summary

The first part of chapter summarised the potential application of the steerable pyramid

filtering to extract more useful information features, specifically for microcalcification
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diagnosis on mammograms. The features extracted were chosen to be the energy, en-

tropy or the combination of both. However, with this approach, the features for the

images were not optimally extracted. The successes of DBN in other applications, mo-

tivate us to investigate the ability of DBNs to automatically extract useful information

from the raw images. Despite the promises of DBNs to have the ability in analysing

the highly complex structure, the conducted experiments showed that DBNs are not

sufficient for learning large size of data. Therefore, it is proposed to use DBN to extract

features from filtered steerable pyramid images. With this guidance introduced at the

input of DBN, it shows the use of hybrid method of steerable pyramid filtering and

DBN possesses better potential for microcalcification classification on mammograms.
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Chapter 7

Conclusion

T
HIS thesis addresses potential advantages of the feature extrac-

tion techniques for medical applications; mammograms, in which

novel techniques for feature extraction for malignancy analysis of

microcalcification clusters are proposed. In addition, this thesis promises to

be useful by providing relevant supporting evidences of the work. Thus,

the accuracy and the reliability of the techniques used to extract features

are the main outcomes that were achieved.

Section 7.1 provides the summary of the thesis, along with the original find-

ings and contributions of the thesis. In Section 7.2, few suggestions for

improvement and further investigation will be provided for future explo-

rations, and a concluding remark at the end of the chapter, in Section 7.3.
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7.1 Summary of Findings

The practical application of CAD systems have been widely used to assist radiolo-

gists in making decisions; either for detection or for diagnosis of the abnormalities.

Problems took place in interpreting mammogram images manually. Alternatively, the

mammogram can be digitised so a computerised system can be used as an aid to ra-

diologists. The advantages of using computerised systems to assist the radiologists to

interpret mammograms have been extensively described in Chapter 1. However, com-

puterised systems require the know-how skill to link the theory of computation with

the practical interpretation of the mammogram. The advancement of this skill is new,

hence this is the gap that this thesis seeks for solution.

Previous works in this field of study have been discussed and summarised in Chap-

ter 2. The citations provide deeper and extensive background of the subject matter.

The strong foundation of background knowledge enables a proposed method to be

developed, which contribute solutions for the CAD system.

Many earlier researchers reported detection schemes of the CAD system for mammo-

gram analysis which provided promising results. However, the result of mammogram

analysis obtained from the diagnosis scheme of the CAD system is still somewhat be-

low clinical requirements. There were suggestions proposed by earlier researchers to

either improve the feature extraction or improve the technique for classification. These

views informed the focus on the development of a novel method in CAD system for

mammogram analysis, particularly the malignancy analysis of microcalcification clus-

ters formed in breast tissues.

Previous studies also reported that multiple resolution analysis approaches for images

provide useful information for classification of microcalcification in mammograms.

The particular type of multi-resolution analysis that is offered by the wavelet trans-

form has prompted us to use this technique for extracting features for the classifica-

tion. Hence, the mathematical theory of the wavelet transforms is explored, starting

from the motivation behind it, ie. Fourier analysis which has been introduced by a
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mathematician, Joseph Fourier in 1800s, and the analysis is extensively described in

Chapter 3.

Further exploration on the method that inherits the properties of the wavelet trans-

form is performed. This method offers an additional property, which is able to analyse

mammograms with multiple orientations. A method that offers the combination of

multiple resolution and multiple orientation is the steerable pyramid filtering. The

ability of steerable pyramid filtering technique to provide multiple of both resolutions

and orientations has promoted interest to apply the technique to improve on the ma-

lignancy analysis of microcalcification clusters.

Hence, this has driven the thesis to proceed with the experiments using the steerable

pyramid filtering technique in screening mammograms. Original experiments are con-

ducted extensively to seek whether the features extracted from multiple orientation

and multiple resolution analysis of microcalcification clusters are useful for classifica-

tion.

The first part of Chapter 6 contains the detail results of these experiments. The experi-

ments in the first part of Chapter 6 is divided into two main parts. The first experiment

uses all features extracted from the steerable pyramid filtering as the input for clas-

sification. Whilst, the second experiment combines the feature extraction technique

with a feature selection technique, the principal component analysis (PCA) method.

The feature selection step is performed to reduce the dimension of the input vector to

the classifier. A comparative study is made between the features extracted from the

proposed technique, steerable pyramid with the commonly technique used for mul-

tiple resolution decomposition technique, wavelet transform. The results show that

the extra features measured from multiple orientations obtained useful information

for malignancy analysis. The comparison of the accuracy achieved between the two

techniques is analysed by t-test, and is observed that the improvement is significant.

The effectiveness of the diagnosis system depends on the classifier used. Chapter 4

provides an overview of the commonly used classifiers in the area. Two types of most
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commonly used classifiers are the support vector machine (SVM) and neural network

(NN). The SVM has been used in many research problems due to its practicality in its

implementation and they are able to adapt themselves to suit most of the problems of

the practical interest. On the other hand, NN are intelligent machines that are able to

map an input to an output through highly non-linear relationship. This makes NN to

be one of the favored classification technique when dealing with input data that has

complex structure, such as microcalcification cluster. However, due to the common

practice of randomly initialising the weights, the trained networks have a tendency to

be stuck at poor local minima and decreases the performance of the network, especially

when the network is deeper than three layers.

Recent advances in deep network research has demonstrated an ability to extract high-

level of representations of the input. This prompted the interest to further explore the

use of deep networks in diagnosis of microcalcification clusters in mammograms. Re-

cently new method named as deep belief network, DBN, has been proposed by Hinton

et al., that uses a greedy learning scheme to train the network. Chapter 5 of the the-

sis describes the details of the algorithm of the network, and demonstrates the use of

DBN for MNIST handwritten digits classifications. The use of DBN to extract high

level features has attracted many researchers to apply it in many fields of studies, such

as audio classification (Ballan et al. 2009), medical application (Tamilselvan et al. 2012)

and transportation (Huang et al. 2014).

The ability of greedy learning in deep network provides a highly non-linear mapping

of the input and the output. Hence, this gives an advantage of DBN to analyse complex

patterns; in this thesis DBN is applied to classify each microcalcification cluster into ei-

ther benign or malignant case. In the second part of Chapter 6, extensive sets of original

experiments were conducted where DBNs are used in extracting features for microcal-

cification classifications. The experiment using DBN solely as feature extractor and

classifier of raw pixel microcalcification images showed no significant improvement.

Therefore, a novel technique is proposed to use filtered images as the input to the DBN.

The DBN will extract features from the filtered images instead of the raw pixels. The
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result of analysis shows a significant improvement when the technique is applied, al-

though the overall performance was still inferior to using steerable pyramids features.

The initial findings in this thesis offer a platform to conduct further research on the use

of DBNs for microcalcification clusters analysis.

7.2 Suggestions for Future Work

The research work reported in this thesis provides a basis for other emerging CADx

system, specifically in feature extraction method for medical imaging applications. The

findings presented in this thesis have demonstrated potential contributions in the field.

However, much room remains for enhancing the capabilities of the CADx system in the

proposed microcalcification diagnosis system.

Some of the suggested future work, which are in line with this thesis include:

1. Future work in the integration of the proposed texture features with other fea-

tures, such as conventional shape features, edge features would be a promising

task. A CADx system that can include as much informative features for malig-

nancy analysis can be developed if more features to describe the microcalcifica-

tion malignancy cases are extracted.

2. The work presented in this thesis has demonstrated the capability of DBN to

extract useful microcalcification features for malignancy analysis. Despite the

low resolution images used in the experiments, the results showed that DBN

has potential future in this field. Therefore, the DBN is suggested for feature

extraction from high resolution images, which may contribute in improving the

classification rate of accuracy in the next investigation.

3. The optimal design of DBN architecture is another potential area of research in

the future work. The number of hidden layers in the DBN contributes on the

effectiveness of using the network for extracting useful features. It has demon-

strated in other work that a deeper network is able to extract many features at
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high level. In future work, deeper networks with more hidden layers can be con-

sidered for microcalcification malignancy analysis.

7.3 Concluding Remark

The motivation of thesis is to develop a robust feature extraction technique for the au-

tomatic classification for microcalcification clusters in mammograms. Steerable pyra-

mid filtering technique combines the multiresolution property of wavelet transform

with the crucial multi-orientation property, which makes it a useful technique for im-

proving microcalcification malignancy analysis. This work also investigates a recently

discovered technique in the field of artificial intelligence called deep belief network.

Both approaches are evaluated through extensive computer experiments using a pub-

licly available dataset. Knowledge contained in this thesis contribute to the greater

pursuit of achieving rapid and reliable computer aided diagnosis of breast cancer.
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Appendix A

Database

This chapter lists the name of the 118 images obtained from Digital Database of Screen-

ing Mammogram (DDSM) that were used as dataset in the experiments conducted in

the thesis. For each case, there is also the descriptions of the abnormality type.
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A.1 Benign Microcalcification Clusters

No. Volume Case Left/Right View Abnormality type
1 benign\_01 B\_3104 Left CC Pleomorphic
2 benign\_01 B\_3104 Left MLO Pleomorphic
3 benign\_01 B\_3117 Right CC Pleomorphic
4 benign\_01 B\_3117 Right MLO Pleomorphic
5 benign\_01 B\_3127 Right CC Pleomorphic
6 benign\_01 B\_3127 Right MLO Pleomorphic
7 benign\_01 B\_3130 Right CC Pleomorphic
8 benign\_01 B\_3130 Right MLO Pleomorphic
9 benign\_01 B\_3148 Right CC Amorphous-Pleomorphic
10 benign\_01 B\_3148 Right CC Amorphous-Pleomorphic
11 benign\_01 B\_3148 Right MLO Amorphous-Pleomorphic
12 benign\_01 B\_3148 Right MLO Amorphous-Pleomorphic
13 benign\_01 B\_3159 Left CC Lucent-centered
14 benign\_01 B\_3159 Left MLO Lucent-centered
15 benign\_01 B\_3160 Left CC Lucent-centered
16 benign\_01 B\_3160 Left MLO Lucent-centered
17 benign\_01 B\_3162 Left CC Lucent-centered
18 benign\_01 B\_3162 Left MLO Lucent-centered
19 benign\_01 B\_3162 Right CC Round and regular lucent-

centered
20 benign\_01 B\_3162 Right CC Round and regular lucent-

centered
21 benign\_01 B\_3162 Right MLO Round and regular lucent-

centered
22 benign\_01 B\_3162 Right MLO Round and regular lucent-

centered
23 benign\_01 B\_3165 Left CC Lucent-centered
24 benign\_01 B\_3165 Left CC Lucent-centered
25 benign\_01 B\_3165 Left MLO Lucent-centered
26 benign\_01 B\_3165 Left MLO Lucent-centered
27 benign\_01 B\_3165 Right MLO Lucent-centered
28 benign\_01 B\_3166 Left CC Lucent-centered
29 benign\_01 B\_3166 Left MLO Lucent-centered
30 benign\_01 B\_3169 Right CC Lucent-centered
31 benign\_01 B\_3169 Right MLO Lucent-centered
32 benign\_01 B\_3175 Right CC Lucent-centered
33 benign\_01 B\_3175 Right MLO Lucent-centered
34 benign\_01 B\_3184 Right CC Lucent-centered
35 benign\_01 B\_3184 Right MLO Lucent-centered
36 benign\_01 B\_3185 Left CC Lucent-centered
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No. Volume Case Left/Right View Abnormality type
37 benign\_01 B\_3185 Left MLO Lucent-centered
38 benign\_01 B\_3186 Right CC Lucent-centered
39 benign\_01 B\_3186 Right MLO Lucent-centered
40 benign\_02 A\_1265 Right CC Pleomorphic
41 benign\_02 A\_1265 Right MLO Pleomorphic
42 benign\_02 A\_1268 Left CC Pleomorphic
43 benign\_02 A\_1268 Left MLO Pleomorphic
44 benign\_02 A\_1269 Right CC Pleomorphic
45 benign\_02 A\_1269 Right MLO Pleomorphic
46 benign\_02 A\_1270 Right MLO Pleomorphic
47 benign\_02 A\_1275 Left CC Pleomorphic
48 benign\_02 A\_1275 Left MLO Pleomorphic
49 benign\_02 A\_1278 Left CC Punctate
50 benign\_02 A\_1278 Left MLO Punctate
51 benign\_02 A\_1280 Left CC Pleomorphic
52 benign\_02 A\_1280 Left MLO Pleomorphic
53 benign\_02 A\_1281 Left MLO Pleomorphic
54 benign\_02 A\_1285 Left CC Pleomorphic
55 benign\_02 A\_1285 Left MLO Pleomorphic
56 benign\_02 A\_1310 Right MLO Pleomorphic
57 benign\_02 A\_1328 Right CC Pleomorphic
58 benign\_02 A\_1328 Right MLO Pleomorphic
59 benign\_02 A\_1331 Right CC Pleomorphic
60 benign\_02 A\_1331 Right MLO Pleomorphic
61 benign\_02 A\_1333 Right CC Pleomorphic
62 benign\_02 A\_1333 Right MLO Pleomorphic
63 benign\_02 A\_1349 Right MLO Pleomorphic
64 benign\_03 A\_1332 Left CC Pleomorphic
65 benign\_03 A\_1374 Right CC Pleomorphic
66 benign\_03 A\_1374 Right MLO Pleomorphic
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A.2 Malignant Microcalcification Clusters

No. Volume Case Left/Right View Abnormality type
67 cancer\_01 B\_3005 Left MLO Pleomorphic
68 cancer\_01 B\_3005 Left MLO Pleomorphic
69 cancer\_01 B\_3005 Left MLO Punctate-Amorphous
70 cancer\_01 B\_3019 Left CC Pleomorphic
71 cancer\_01 B\_3019 Left MLO Pleomorphic
72 cancer\_01 B\_3025 Right CC Fine-linear branching
73 cancer\_01 B\_3025 Right CC Fine-linear branching
74 cancer\_01 B\_3025 Right MLO Fine-linear branching
75 cancer\_01 B\_3025 Right MLO Fine-linear branching
76 cancer\_01 B\_3025 Right MLO Fine-linear branching
77 cancer\_01 B\_3026 Right CC Pleomorphic
78 cancer\_01 B\_3026 Right CC Pleomorphic
79 cancer\_01 B\_3026 Right CC Pleomorphic
80 cancer\_01 B\_3026 Right MLO Pleomorphic
81 cancer\_01 B\_3026 Right MLO Pleomorphic
82 cancer\_01 B\_3026 Right MLO Pleomorphic
83 cancer\_01 B\_3037 Left CC Punctate-Pleomorphic
84 cancer\_01 B\_3037 Left MLO Punctate-Pleomorphic
85 cancer\_01 B\_3044 Left MLO Pleomorphic
86 cancer\_01 B\_3045 Left CC Fine-linear branching
87 cancer\_01 B\_3045 Left CC Fine-linear branching
88 cancer\_01 B\_3045 Left CC Fine-linear branching
89 cancer\_01 B\_3045 Left MLO Fine-linear branching
90 cancer\_01 B\_3045 Left MLO Fine-linear branching
91 cancer\_01 B\_3045 Left MLO Fine-linear branching
92 cancer\_01 B\_3049 Right CC Pleomorphic
93 cancer\_01 B\_3059 Right CC Fine-linear branching
94 cancer\_01 B\_3059 Right MLO Fine-linear branching
95 cancer\_01 B\_3059 Right MLO Fine-linear branching
96 cancer\_01 B\_3076 Left CC Amorphous round and regu-

lar
97 cancer\_01 B\_3076 Left MLO Amorphous round and regu-

lar
98 cancer\_01 B\_3076 Left MLO Amorphous round and regu-

lar
99 cancer\_01 B\_3079 Right MLO Pleomorphic
100 cancer\_03 A\_1000 Left MLO Pleomorphic
101 cancer\_03 A\_1003 Left MLO Pleomorphic
102 cancer\_03 A\_1005 Right MLO Punctate
103 cancer\_03 A\_1024 Right MLO Pleomorphic
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No. Volume Case Left/Right View Abnormality type
104 cancer\_03 A\_1031 Left CC Pleomorphic
105 cancer\_03 A\_1031 Left MLO Pleomorphic
106 cancer\_03 A\_1037 Right CC Pleomorphic
107 cancer\_03 A\_1037 Right MLO Pleomorphic
108 cancer\_03 A\_1041 Right CC Pleomorphic
109 cancer\_03 A\_1043 Left CC Amorphous
110 cancer\_03 A\_1043 Left MLO Amorphous
111 cancer\_03 A\_1047 Left CC Pleomorphic
112 cancer\_03 A\_1047 Left MLO Pleomorphic
113 cancer\_03 A\_1051 Right MLO Punctate
114 cancer\_03 A\_1052 Right MLO Fine-linear branching
115 cancer\_03 A\_1084 Right CC Pleomorphic
116 cancer\_03 A\_1084 Right MLO Pleomorphic
117 cancer\_03 A\_1085 Right CC Round and regular
118 cancer\_03 A\_1085 Right MLO Round and regular
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Appendix B

Detailed DBN experiment

results

This chapter provides the detailed results on pretraining error obtained from the ex-

periments conducted in section 6.3.1.
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B.1 Pre-Training Error in Layer One DBN

Hidden nodes 5000 2500 1500 200 Hidden nodes 5000 2500 1500 200
Epoch 1.0e+ 06 * 1.0e+ 06 * 1.0e+ 06 * 1.0e+ 06 * Epoch 1.0e+ 06 * 1.0e+ 06 * 1.0e+ 06 * 1.0e+ 06 *

1 33.2945 16.4695 10.2234 2.4797 62 6.1042 3.0139 2.0171 1.0726
2 27.3891 14.9529 9.6610 2.4664 63 6.0667 2.9819 2.0047 1.0657
3 21.8551 13.1329 8.9351 2.4643 64 6.0304 2.9623 1.9948 1.0586
4 18.2450 11.5847 8.2341 2.4454 65 6.0081 2.9381 1.9788 1.0521
5 16.2534 10.3748 7.6277 2.4275 66 5.9889 2.9166 1.9696 1.0458
6 15.1743 9.4684 7.1222 2.4137 67 5.9418 2.8896 1.9574 1.0390
7 14.4243 8.5434 6.5342 2.3863 68 5.9290 2.8761 1.9443 1.0331
8 14.0324 7.7574 5.9174 2.3574 69 5.9125 2.8541 1.9271 1.0271
9 13.8739 7.1931 5.3621 2.3249 70 5.8816 2.8407 1.9140 1.0218

10 13.7639 6.9028 4.9115 2.2852 71 5.8846 2.8173 1.9004 1.0162
11 13.5149 6.8292 4.5803 2.2392 72 5.8458 2.7980 1.8886 1.0104
12 12.9828 6.8663 4.3719 2.1951 73 5.8157 2.7828 1.8726 1.0059
13 12.3205 6.9284 4.2846 2.1400 74 5.8126 2.7578 1.8637 1.0004
14 11.6111 6.9096 4.2618 2.0872 75 5.7782 2.7490 1.8535 0.9957
15 11.0566 6.7831 4.2703 2.0345 76 5.7531 2.7277 1.8420 0.9908
16 10.6908 6.5231 4.2883 1.9763 77 5.7576 2.7069 1.8262 0.9859
17 10.4975 6.1632 4.2739 1.9248 78 5.7513 2.6933 1.8145 0.9815
18 10.4195 5.7490 4.2283 1.8697 79 5.7334 2.6732 1.8079 0.9769
19 10.3238 5.3619 4.1149 1.8158 80 5.7182 2.6572 1.7939 0.9725
20 10.1166 5.0290 3.9672 1.7644 81 5.6973 2.6478 1.7830 0.9685
21 9.8478 4.8009 3.7802 1.7151 82 5.6842 2.6332 1.7715 0.9641
22 9.5434 4.6473 3.5765 1.6682 83 5.6635 2.6198 1.7612 0.9602
23 9.2448 4.5878 3.3738 1.6239 84 5.6761 2.6119 1.7488 0.9559
24 9.0079 4.5577 3.1876 1.5839 85 5.6740 2.5990 1.7419 0.9527
25 8.8350 4.5512 3.0274 1.5475 86 5.6511 2.5761 1.7283 0.9487
26 8.7433 4.5281 2.9076 1.5130 87 5.6350 2.5633 1.7216 0.9447
27 8.6736 4.4863 2.8137 1.4817 88 5.6311 2.5498 1.7079 0.9415
28 8.5730 4.4049 2.7490 1.4533 89 5.6175 2.5341 1.7047 0.9386
29 8.4234 4.3111 2.7125 1.4277 90 5.6099 2.5216 1.6900 0.9349
30 8.2715 4.1921 2.6889 1.4036 91 5.6073 2.5061 1.6830 0.9312
31 8.1119 4.0772 2.6815 1.3837 92 5.5989 2.5011 1.6772 0.9282
32 7.9418 3.9820 2.6658 1.3643 93 5.5880 2.4900 1.6641 0.9251
33 7.8283 3.9101 2.6431 1.3467 94 5.5980 2.4787 1.6560 0.9220
34 7.7341 3.8567 2.6246 1.3311 95 5.5886 2.4676 1.6464 0.9197
35 7.6439 3.8324 2.5912 1.3180 96 5.5701 2.4538 1.6411 0.9159
36 7.5579 3.8133 2.5502 1.3046 97 5.5736 2.4388 1.6281 0.9137
37 7.4861 3.7909 2.5076 1.2915 98 5.5718 2.4320 1.6228 0.9106
38 7.4173 3.7701 2.4670 1.2804 99 5.5541 2.4215 1.6141 0.9078
39 7.3018 3.7420 2.4251 1.2707 100 5.5594 2.4079 1.6046 0.9053
40 7.1991 3.7066 2.3868 1.2588 101 5.5402 2.4074 1.5950 0.9028
41 7.1285 3.6599 2.3514 1.2497 102 5.5414 2.3918 1.5899 0.9003
42 7.0295 3.6059 2.3218 1.2388 103 5.5477 2.3834 1.5785 0.8972
43 6.9840 3.5616 2.3031 1.2307 104 5.5475 2.3686 1.5727 0.8952
44 6.9430 3.5069 2.2866 1.2217 105 5.5361 2.3589 1.5609 0.8928
45 6.8503 3.4727 2.2724 1.2120 106 5.5410 2.3519 1.5566 0.8903
46 6.8286 3.4338 2.2627 1.2039 107 5.5420 2.3463 1.5466 0.8885
47 6.7371 3.3985 2.2457 1.1946 108 5.5237 2.3444 1.5395 0.8859
48 6.6944 3.3850 2.2360 1.1856 109 5.5346 2.3280 1.5330 0.8836
49 6.6210 3.3516 2.2252 1.1766 110 5.5319 2.3227 1.5204 0.8811
50 6.5677 3.3347 2.2075 1.1681 111 5.5266 2.3056 1.5180 0.8794
51 6.5182 3.3103 2.1940 1.1591 112 5.5095 2.3008 1.5111 0.8775
52 6.5004 3.2865 2.1762 1.1506 113 5.5202 2.2962 1.5017 0.8756
53 6.4187 3.2429 2.1587 1.1416 114 5.5152 2.2825 1.4990 0.8737
54 6.4008 3.2205 2.1368 1.1338 115 5.5136 2.2765 1.4887 0.8715
55 6.3546 3.1859 2.1193 1.1251 116 5.5213 2.2770 1.4767 0.8699
56 6.3068 3.1553 2.1028 1.1173 117 5.5158 2.2669 1.4741 0.8677
57 6.2643 3.1223 2.0828 1.1100 118 5.5159 2.2588 1.4675 0.8657
58 6.2167 3.0987 2.0720 1.1018 119 5.5263 2.2544 1.4592 0.8644
59 6.1950 3.0737 2.0572 1.0940 120 5.5008 2.2365 1.4527 0.8624
60 6.1546 3.0617 2.0406 1.0868 121 5.5208 2.2316 1.4443 0.8607
61 6.1246 3.0273 2.0293 1.0796 122 5.5216 2.2296 1.4414 0.8590
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Hidden nodes 5000 2500 1500 200 Hidden nodes 5000 2500 1500 200
Epoch 1.0e+ 06 * 1.0e+ 06 * 1.0e+ 06 * 1.0e+ 06 * Epoch 1.0e+ 06 * 1.0e+ 06 * 1.0e+ 06 * 1.0e+ 06 *

123 5.5076 2.2275 1.4304 0.8576 162 5.4380 2.0333 1.2195 0.8089
124 5.5182 2.2125 1.4272 0.8554 163 5.4498 2.0286 1.2131 0.8080
125 5.5164 2.2135 1.4236 0.8538 164 5.4302 2.0410 1.2116 0.8072
126 5.5088 2.1997 1.4139 0.8522 165 5.4256 2.0276 1.2054 0.8061
127 5.5061 2.2002 1.4108 0.8510 166 5.4300 2.0252 1.1975 0.8052
128 5.5063 2.1905 1.4021 0.8493 167 5.4243 2.0164 1.1953 0.8044
129 5.5029 2.1850 1.3939 0.8478 168 5.4371 2.0161 1.1895 0.8036
130 5.5079 2.1788 1.3867 0.8461 169 5.4243 2.0152 1.1833 0.8025
131 5.4980 2.1692 1.3816 0.8446 170 5.4236 2.0152 1.1814 0.8014
132 5.4938 2.1680 1.3770 0.8433 171 5.4225 2.0072 1.1781 0.8007
133 5.4958 2.1712 1.3693 0.8420 172 5.4148 2.0049 1.1692 0.7997
134 5.4962 2.1534 1.3675 0.8408 173 5.4143 2.0015 1.1695 0.7989
135 5.4852 2.1459 1.3572 0.8390 174 5.4237 1.9981 1.1658 0.7981
136 5.4815 2.1413 1.3529 0.8377 175 5.4189 1.9995 1.1589 0.7973
137 5.4957 2.1336 1.3477 0.8366 176 5.4129 2.0054 1.1597 0.7962
138 5.4719 2.1335 1.3414 0.8353 177 5.4013 1.9874 1.1524 0.7957
139 5.4733 2.1250 1.3357 0.8344 178 5.4103 1.9947 1.1472 0.7949
140 5.4836 2.1241 1.3335 0.8327 179 5.4075 1.9946 1.1431 0.7940
141 5.4616 2.1218 1.3261 0.8317 180 5.4160 1.9902 1.1395 0.7930
142 5.4651 2.1171 1.3215 0.8304 181 5.4040 1.9868 1.1347 0.7925
143 5.4893 2.1137 1.3127 0.8290 182 5.4094 1.9855 1.1300 0.7915
144 5.4640 2.1019 1.3084 0.8280 183 5.4020 1.9848 1.1284 0.7910
145 5.4635 2.1011 1.3037 0.8267 184 5.3968 1.9782 1.1214 0.7902
146 5.4757 2.0956 1.2996 0.8256 185 5.3880 1.9788 1.1170 0.7893
147 5.4596 2.0884 1.2914 0.8244 186 5.3945 1.9740 1.1151 0.7884
148 5.4692 2.0830 1.2840 0.8234 187 5.3910 1.9738 1.1104 0.7875
149 5.4767 2.0903 1.2809 0.8222 188 5.4041 1.9791 1.1075 0.7869
150 5.4626 2.0691 1.2810 0.8209 189 5.3787 1.9744 1.1037 0.7863
151 5.4601 2.0764 1.2718 0.8200 190 5.3680 1.9709 1.1040 0.7852
152 5.4523 2.0706 1.2688 0.8189 191 5.3713 1.9684 1.0961 0.7847
153 5.4557 2.0680 1.2616 0.8177 192 5.3678 1.9664 1.0939 0.7838
154 5.4584 2.0576 1.2541 0.8165 193 5.3840 1.9648 1.0902 0.7831
155 5.4419 2.0579 1.2492 0.8159 194 5.3749 1.9689 1.0840 0.7824
156 5.4521 2.0547 1.2490 0.8149 195 5.3867 1.9565 1.0851 0.7818
157 5.4401 2.0539 1.2426 0.8136 196 5.3752 1.9585 1.0787 0.7808
158 5.4530 2.0536 1.2400 0.8130 197 5.3722 1.9605 1.0704 0.7804
159 5.4359 2.0539 1.2299 0.8119 198 5.3665 1.9560 1.0720 0.7797
160 5.4495 2.0463 1.2277 0.8107 199 5.3599 1.9643 1.0658 0.7790
161 5.4374 2.0447 1.2216 0.8098 200 5.3673 1.9564 1.0610 0.7781
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B.2 Pre-Training Error in Layer Two DBN

Hidden nodes 1500 1000 500 200 Hidden nodes 1500 1000 500 200
Epoch 1.0e+ 04 * 1.0e+ 04 * 1.0e+ 04 * 1.0e+ 04 * Epoch 1.0e+ 04 * 1.0e+ 04 * 1.0e+ 04 * 1.0e+ 04 *

1 3.3010 3.3032 3.3409 3.1520 62 0.0679 0.1023 0.1667 0.2975
2 3.2699 3.1483 2.8245 2.7274 63 0.0648 0.0976 0.1594 0.2891
3 2.8699 2.5581 2.4789 2.4846 64 0.0616 0.0929 0.1536 0.2816
4 2.2008 2.2051 2.2343 2.2800 65 0.0593 0.0890 0.1472 0.2732
5 1.9478 1.9324 2.0309 2.1093 66 0.0566 0.0862 0.1414 0.2659
6 1.7918 1.7804 1.8544 1.9684 67 0.0541 0.0828 0.1364 0.2591
7 1.6564 1.6767 1.7259 1.8187 68 0.0522 0.0790 0.1323 0.2511
8 1.5906 1.6287 1.6511 1.7055 69 0.0501 0.0756 0.1271 0.2446
9 1.5346 1.5839 1.6060 1.6349 70 0.0477 0.0727 0.1229 0.2380

10 1.4738 1.5392 1.5752 1.5877 71 0.0461 0.0702 0.1178 0.2322
11 1.3970 1.4742 1.5325 1.5493 72 0.0444 0.0676 0.1144 0.2256
12 1.3147 1.4089 1.4827 1.5134 73 0.0428 0.0649 0.1104 0.2201
13 1.2332 1.3409 1.4205 1.4720 74 0.0410 0.0626 0.1057 0.2150
14 1.1660 1.2703 1.3545 1.4261 75 0.0398 0.0603 0.1035 0.2102
15 1.0956 1.2085 1.2916 1.3717 76 0.0387 0.0583 0.0996 0.2042
16 1.0352 1.1411 1.2275 1.3164 77 0.0365 0.0565 0.0952 0.1995
17 0.9792 1.0830 1.1698 1.2577 78 0.0352 0.0547 0.0927 0.1948
18 0.9227 1.0276 1.1128 1.2075 79 0.0341 0.0524 0.0893 0.1902
19 0.8735 0.9740 1.0681 1.1618 80 0.0332 0.0502 0.0864 0.1862
20 0.8280 0.9266 1.0181 1.1179 81 0.0320 0.0490 0.0840 0.1816
21 0.7888 0.8791 0.9704 1.0793 82 0.0307 0.0477 0.0815 0.1776
22 0.7395 0.8398 0.9323 1.0435 83 0.0298 0.0460 0.0787 0.1729
23 0.7003 0.7980 0.8939 1.0039 84 0.0286 0.0445 0.0764 0.1695
24 0.6627 0.7599 0.8604 0.9707 85 0.0281 0.0436 0.0736 0.1660
25 0.6276 0.7248 0.8264 0.9396 86 0.0269 0.0421 0.0715 0.1619
26 0.5899 0.6921 0.7969 0.9084 87 0.0261 0.0412 0.0699 0.1585
27 0.5549 0.6548 0.7619 0.8816 88 0.0254 0.0396 0.0674 0.1551
28 0.5219 0.6235 0.7311 0.8575 89 0.0246 0.0385 0.0658 0.1519
29 0.4916 0.5947 0.7006 0.8325 90 0.0242 0.0372 0.0636 0.1486
30 0.4622 0.5616 0.6723 0.8041 91 0.0236 0.0362 0.0618 0.1451
31 0.4339 0.5323 0.6418 0.7793 92 0.0229 0.0353 0.0602 0.1428
32 0.4066 0.5045 0.6179 0.7558 93 0.0224 0.0343 0.0587 0.1396
33 0.3797 0.4766 0.5908 0.7332 94 0.0216 0.0339 0.0570 0.1369
34 0.3573 0.4518 0.5635 0.7111 95 0.0209 0.0324 0.0556 0.1341
35 0.3335 0.4268 0.5386 0.6866 96 0.0202 0.0317 0.0542 0.1316
36 0.3122 0.4008 0.5168 0.6656 97 0.0197 0.0305 0.0522 0.1290
37 0.2925 0.3774 0.4953 0.6430 98 0.0195 0.0301 0.0515 0.1260
38 0.2742 0.3571 0.4734 0.6229 99 0.0187 0.0291 0.0496 0.1233
39 0.2568 0.3383 0.4537 0.6028 100 0.0183 0.0284 0.0484 0.1213
40 0.2413 0.3196 0.4330 0.5841 101 0.0177 0.0278 0.0475 0.1191
41 0.2272 0.3010 0.4133 0.5637 102 0.0173 0.0266 0.0460 0.1180
42 0.2117 0.2843 0.3958 0.5446 103 0.0171 0.0261 0.0449 0.1156
43 0.1993 0.2681 0.3768 0.5303 104 0.0165 0.0255 0.0438 0.1129
44 0.1869 0.2535 0.3603 0.5145 105 0.0162 0.0247 0.0433 0.1106
45 0.1742 0.2403 0.3455 0.4973 106 0.0155 0.0241 0.0420 0.1089
46 0.1648 0.2267 0.3317 0.4805 107 0.0154 0.0236 0.0416 0.1070
47 0.1541 0.2139 0.3168 0.4657 108 0.0151 0.0236 0.0405 0.1045
48 0.1446 0.2033 0.3019 0.4530 109 0.0146 0.0226 0.0401 0.1027
49 0.1363 0.1940 0.2893 0.4387 110 0.0145 0.0222 0.0391 0.1022
50 0.1282 0.1827 0.2768 0.4248 111 0.0140 0.0218 0.0380 0.0996
51 0.1219 0.1739 0.2650 0.4126 112 0.0138 0.0209 0.0369 0.0983
52 0.1158 0.1638 0.2535 0.4002 113 0.0134 0.0206 0.0363 0.0961
53 0.1089 0.1566 0.2423 0.3874 114 0.0130 0.0201 0.0353 0.0946
54 0.1030 0.1492 0.2316 0.3747 115 0.0130 0.0196 0.0348 0.0933
55 0.0970 0.1419 0.2220 0.3648 116 0.0125 0.0190 0.0340 0.0914
56 0.0920 0.1349 0.2123 0.3543 117 0.0122 0.0186 0.0330 0.0894
57 0.0875 0.1290 0.2032 0.3435 118 0.0124 0.0184 0.0325 0.0887
58 0.0829 0.1221 0.1951 0.3345 119 0.0118 0.0179 0.0318 0.0871
59 0.0783 0.1162 0.1869 0.3252 120 0.0115 0.0174 0.0315 0.0864
60 0.0751 0.1115 0.1798 0.3150 121 0.0114 0.0172 0.0307 0.0848
61 0.0709 0.1073 0.1721 0.3056 122 0.0113 0.0169 0.0299 0.0831
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Appendix B Detailed DBN experiment results

Hidden nodes 1500 1000 500 200 Hidden nodes 1500 1000 500 200
Epoch 1.0e+ 04 * 1.0e+ 04 * 1.0e+ 04 * 1.0e+ 04 * Epoch 1.0e+ 04 * 1.0e+ 04 * 1.0e+ 04 * 1.0e+ 04 *

123 0.0110 0.0167 0.0298 0.0818 162 0.0059 0.0084 0.0153 0.0483
124 0.0109 0.0161 0.0289 0.0810 163 0.0057 0.0084 0.0149 0.0472
125 0.0105 0.0158 0.0281 0.0799 164 0.0057 0.0082 0.0150 0.0478
126 0.0103 0.0154 0.0277 0.0784 165 0.0057 0.0081 0.0147 0.0462
127 0.0102 0.0154 0.0275 0.0775 166 0.0056 0.0081 0.0150 0.0458
128 0.0101 0.0147 0.0266 0.0754 167 0.0055 0.0077 0.0146 0.0457
129 0.0098 0.0146 0.0264 0.0749 168 0.0054 0.0077 0.0143 0.0451
130 0.0097 0.0142 0.0262 0.0736 169 0.0055 0.0078 0.0140 0.0444
131 0.0095 0.0140 0.0253 0.0720 170 0.0052 0.0075 0.0140 0.0436
132 0.0093 0.0136 0.0248 0.0708 171 0.0052 0.0075 0.0134 0.0434
133 0.0091 0.0135 0.0244 0.0696 172 0.0053 0.0073 0.0133 0.0428
134 0.0089 0.0134 0.0240 0.0700 173 0.0051 0.0073 0.0132 0.0422
135 0.0089 0.0132 0.0237 0.0673 174 0.0050 0.0072 0.0131 0.0422
136 0.0087 0.0129 0.0232 0.0669 175 0.0049 0.0072 0.0128 0.0414
137 0.0086 0.0129 0.0227 0.0657 176 0.0049 0.0071 0.0126 0.0414
138 0.0086 0.0122 0.0221 0.0648 177 0.0049 0.0071 0.0125 0.0403
139 0.0082 0.0122 0.0221 0.0642 178 0.0047 0.0071 0.0123 0.0398
140 0.0081 0.0120 0.0217 0.0627 179 0.0048 0.0069 0.0121 0.0387
141 0.0080 0.0117 0.0211 0.0623 180 0.0046 0.0066 0.0122 0.0384
142 0.0079 0.0115 0.0208 0.0617 181 0.0046 0.0067 0.0120 0.0381
143 0.0078 0.0115 0.0206 0.0605 182 0.0045 0.0065 0.0117 0.0378
144 0.0078 0.0113 0.0200 0.0613 183 0.0045 0.0067 0.0116 0.0375
145 0.0076 0.0111 0.0197 0.0590 184 0.0043 0.0065 0.0116 0.0366
146 0.0078 0.0108 0.0196 0.0585 185 0.0045 0.0064 0.0116 0.0361
147 0.0072 0.0107 0.0192 0.0573 186 0.0043 0.0063 0.0113 0.0359
148 0.0074 0.0105 0.0191 0.0563 187 0.0042 0.0062 0.0116 0.0356
149 0.0071 0.0102 0.0186 0.0562 188 0.0044 0.0060 0.0110 0.0349
150 0.0069 0.0100 0.0183 0.0553 189 0.0044 0.0061 0.0111 0.0346
151 0.0070 0.0098 0.0179 0.0547 190 0.0041 0.0060 0.0107 0.0342
152 0.0067 0.0096 0.0176 0.0540 191 0.0040 0.0058 0.0109 0.0338
153 0.0066 0.0096 0.0176 0.0536 192 0.0041 0.0058 0.0106 0.0334
154 0.0065 0.0095 0.0173 0.0529 193 0.0040 0.0057 0.0105 0.0330
155 0.0064 0.0092 0.0169 0.0518 194 0.0040 0.0056 0.0103 0.0326
156 0.0064 0.0093 0.0166 0.0520 195 0.0039 0.0055 0.0103 0.0329
157 0.0064 0.0091 0.0167 0.0513 196 0.0039 0.0054 0.0100 0.0322
158 0.0065 0.0089 0.0162 0.0507 197 0.0038 0.0055 0.0100 0.0322
159 0.0062 0.0088 0.0160 0.0505 198 0.0038 0.0054 0.0102 0.0312
160 0.0061 0.0088 0.0157 0.0493 199 0.0039 0.0053 0.0099 0.0313
161 0.0059 0.0088 0.0155 0.0483 200 0.0037 0.0053 0.0098 0.0310
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B.3 Pre-Training Error in Layer Three DBN

Hidden nodes 1000 500 200 Hidden nodes 1000 500 200
Epoch 1.0e+ 04 * 1.0e+ 04 * 1.0e+ 04 * Epoch 1.0e+ 04 * 1.0e+ 04 * 1.0e+ 04 *

1 2.6752 2.5138 2.3492 53 0.0073 0.0106 0.0227
2 0.3870 0.3797 0.4488 54 0.0069 0.0110 0.0221
3 0.3707 0.3199 0.3550 55 0.0059 0.0091 0.0203
4 0.2886 0.2871 0.3027 56 0.0058 0.0079 0.0200
5 0.2200 0.2364 0.2696 57 0.0063 0.0080 0.0183
6 0.1875 0.2111 0.2372 58 0.0050 0.0079 0.0177
7 0.1800 0.1934 0.2140 59 0.0051 0.0069 0.0181
8 0.1558 0.1781 0.1958 60 0.0049 0.0069 0.0172
9 0.1472 0.1630 0.1826 61 0.0046 0.0067 0.0159

10 0.1303 0.1500 0.1687 62 0.0049 0.0060 0.0155
11 0.1252 0.1437 0.1565 63 0.0040 0.0059 0.0150
12 0.1162 0.1359 0.1508 64 0.0042 0.0049 0.0142
13 0.1090 0.1272 0.1465 65 0.0036 0.0051 0.0127
14 0.0983 0.1166 0.1403 66 0.0034 0.0044 0.0132
15 0.0883 0.1049 0.1372 67 0.0033 0.0049 0.0130
16 0.0840 0.1021 0.1286 68 0.0030 0.0047 0.0119
17 0.0747 0.0944 0.1209 69 0.0034 0.0050 0.0115
18 0.0708 0.0893 0.1138 70 0.0029 0.0042 0.0118
19 0.0659 0.0821 0.1078 71 0.0032 0.0042 0.0104
20 0.0642 0.0805 0.1039 72 0.0029 0.0043 0.0107
21 0.0589 0.0717 0.0970 73 0.0036 0.0036 0.0105
22 0.0532 0.0709 0.0898 74 0.0027 0.0031 0.0097
23 0.0503 0.0655 0.0868 75 0.0025 0.0035 0.0092
24 0.0457 0.0601 0.0836 76 0.0024 0.0031 0.0086
25 0.0424 0.0573 0.0805 77 0.0027 0.0032 0.0087
26 0.0406 0.0551 0.0755 78 0.0028 0.0028 0.0081
27 0.0380 0.0510 0.0721 79 0.0027 0.0028 0.0081
28 0.0337 0.0478 0.0695 80 0.0024 0.0029 0.0076
29 0.0319 0.0438 0.0657 81 0.0016 0.0026 0.0074
30 0.0310 0.0433 0.0635 82 0.0023 0.0027 0.0074
31 0.0288 0.0405 0.0599 83 0.0024 0.0026 0.0072
32 0.0258 0.0370 0.0570 84 0.0018 0.0029 0.0071
33 0.0239 0.0357 0.0556 85 0.0023 0.0026 0.0066
34 0.0228 0.0332 0.0537 86 0.0019 0.0019 0.0069
35 0.0211 0.0289 0.0504 87 0.0017 0.0025 0.0057
36 0.0195 0.0313 0.0485 88 0.0018 0.0021 0.0056
37 0.0175 0.0270 0.0470 89 0.0019 0.0021 0.0051
38 0.0168 0.0253 0.0456 90 0.0017 0.0021 0.0052
39 0.0173 0.0248 0.0435 91 0.0019 0.0019 0.0051
40 0.0147 0.0224 0.0417 92 0.0018 0.0020 0.0057
41 0.0142 0.0221 0.0393 93 0.0016 0.0021 0.0047
42 0.0133 0.0207 0.0371 94 0.0019 0.0018 0.0043
43 0.0118 0.0181 0.0362 95 0.0014 0.0016 0.0049
44 0.0115 0.0172 0.0346 96 0.0016 0.0016 0.0049
45 0.0103 0.0170 0.0330 97 0.0016 0.0015 0.0045
46 0.0104 0.0164 0.0313 98 0.0012 0.0018 0.0043
47 0.0108 0.0146 0.0303 99 0.0014 0.0016 0.0044
48 0.0099 0.0139 0.0284 100 0.0017 0.0017 0.0040
49 0.0084 0.0122 0.0280 101 0.0012 0.0015 0.0038
50 0.0082 0.0132 0.0271 102 0.0015 0.0014 0.0040
51 0.0079 0.0116 0.0245 103 0.0015 0.0017 0.0038
52 0.0068 0.0101 0.0241 104 0.0012 0.0013 0.0034
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Appendix B Detailed DBN experiment results

Hidden nodes 1000 500 200 Hidden nodes 1000 500 200
Epoch 1.0e+ 04 * 1.0e+ 04 * 1.0e+ 04 * Epoch 1.0e+ 04 * 1.0e+ 04 * 1.0e+ 04 *

105 0.0013 0.0012 0.0035 153 0.0008 0.0006 0.0012
106 0.0015 0.0014 0.0034 154 0.0009 0.0007 0.0014
107 0.0012 0.0011 0.0039 155 0.0008 0.0007 0.0014
108 0.0013 0.0015 0.0035 156 0.0007 0.0008 0.0014
109 0.0012 0.0010 0.0034 157 0.0008 0.0006 0.0012
110 0.0011 0.0012 0.0035 158 0.0007 0.0006 0.0013
111 0.0012 0.0012 0.0029 159 0.0008 0.0007 0.0011
112 0.0014 0.0013 0.0032 160 0.0006 0.0006 0.0013
113 0.0015 0.0013 0.0027 161 0.0006 0.0006 0.0011
114 0.0009 0.0012 0.0031 162 0.0007 0.0006 0.0010
115 0.0010 0.0012 0.0026 163 0.0006 0.0008 0.0014
116 0.0012 0.0009 0.0024 164 0.0006 0.0007 0.0012
117 0.0009 0.0012 0.0028 165 0.0007 0.0006 0.0013
118 0.0011 0.0011 0.0027 166 0.0006 0.0007 0.0011
119 0.0009 0.0010 0.0027 167 0.0007 0.0006 0.0012
120 0.0011 0.0012 0.0028 168 0.0008 0.0006 0.0011
121 0.0010 0.0009 0.0025 169 0.0007 0.0006 0.0009
122 0.0011 0.0011 0.0026 170 0.0007 0.0005 0.0010
123 0.0011 0.0010 0.0025 171 0.0006 0.0005 0.0011
124 0.0009 0.0010 0.0022 172 0.0005 0.0006 0.0012
125 0.0011 0.0011 0.0022 173 0.0006 0.0007 0.0009
126 0.0010 0.0008 0.0021 174 0.0006 0.0006 0.0009
127 0.0008 0.0009 0.0026 175 0.0007 0.0006 0.0010
128 0.0010 0.0009 0.0021 176 0.0007 0.0005 0.0008
129 0.0011 0.0011 0.0021 177 0.0005 0.0005 0.0011
130 0.0009 0.0009 0.0022 178 0.0006 0.0006 0.0012
131 0.0008 0.0009 0.0017 179 0.0006 0.0004 0.0010
132 0.0008 0.0008 0.0020 180 0.0008 0.0007 0.0009
133 0.0011 0.0009 0.0022 181 0.0006 0.0005 0.0010
134 0.0009 0.0009 0.0021 182 0.0007 0.0005 0.0009
135 0.0010 0.0008 0.0018 183 0.0005 0.0005 0.0011
136 0.0011 0.0007 0.0020 184 0.0005 0.0007 0.0009
137 0.0010 0.0009 0.0019 185 0.0005 0.0005 0.0008
138 0.0008 0.0008 0.0019 186 0.0005 0.0005 0.0008
139 0.0010 0.0007 0.0020 187 0.0005 0.0004 0.0009
140 0.0010 0.0007 0.0015 188 0.0006 0.0005 0.0007
141 0.0008 0.0008 0.0018 189 0.0006 0.0005 0.0009
142 0.0007 0.0008 0.0015 190 0.0006 0.0004 0.0008
143 0.0011 0.0009 0.0015 191 0.0005 0.0005 0.0008
144 0.0007 0.0008 0.0016 192 0.0006 0.0004 0.0008
145 0.0007 0.0007 0.0014 193 0.0007 0.0005 0.0007
146 0.0007 0.0008 0.0016 194 0.0009 0.0004 0.0008
147 0.0007 0.0008 0.0014 195 0.0006 0.0004 0.0008
148 0.0007 0.0007 0.0013 196 0.0005 0.0006 0.0007
149 0.0009 0.0008 0.0015 197 0.0005 0.0005 0.0007
150 0.0008 0.0007 0.0014 198 0.0005 0.0005 0.0007
151 0.0007 0.0007 0.0013 199 0.0005 0.0005 0.0008
152 0.0007 0.0006 0.0015 200 0.0005 0.0005 0.0008
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