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Abstract

The underlying theme of this thesis is an investigation of the equation of state of
strongly interacting matter and the modelling of cold neutron stars. Particular em-
phasis is placed on the influence of quark degrees of freedom, which we investigate by
using relativistic quark level models. More precisely, we study the equation of state for
QCD matter in the zero temperature limit, from the confined hadronic phase to the
deconfined quark phase.

We begin by exploring the equation of state for nuclear matter in the quark-meson
coupling model, including full Fock terms. The comparison with phenomenological
constraints can be used to restrict the few additional parameters appearing in the Fock
terms which are not present at Hartree level. Because the model is based upon the
in-medium modification of the quark structure of the bound hadrons, it can be readily
extended to include hyperons and to calculate the equation of state of dense matter
in beta-equilibrium. This leads naturally to a study of the properties of neutron stars,
including their maximum mass, their radii and density profiles.

Next, we study deconfined quark matter using the three flavour Nambu–Jona-
Lasinio model based on one-gluon exchange. The model is implemented by employing
Schwinger’s covariant method of proper time regularisation. Comparisons are made
with the more commonly used three momentum regularised model with the t’ Hooft
determinant term. Hybrid equations of state are constructed using the developed
Hartree-Fock quark-meson coupling and Nambu–Jona-Lasinio models. We consider
the possibility that deconfinement may be a crossover transition. Using the resulting
hybrid equations of state, the properties of hybrid stars are then calculated.
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