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by Fayao Liu

Most of the real world applications can be formulated as structured learning problems,
in which the output domain can be arbitrary, e.g., a sequence or a graph. By modelling
the structures (constraints and correlations) of the output variables, structured learning
provides a more general learning scheme than simple binary classification or regression
models. This thesis is dedicated to learning such structured prediction models, i.e.,
conditional random fields (CRFs) and their applications in computer vision. CRFs are
popular probabilistic graphical models, which model the conditional distribution of the
output variables given the observations. They play an essential role in the computer
vision community and have found wide applications in various vision tasks—semantic
labelling, object detection, pose estimation, to name a few. Specifically, we here focus
on two challenging tasks in this thesis: image segmentation (also referred as semantic
labelling) and depth estimation from single monocular images, which represent two types
of CRFs models—discrete and continuous. In summary, we made three contributions in

this thesis.

First, we present a new approach to exploit tree potentials in CRFs for the task of
image segmentation. This method combines the advantages of both CRF's and decision
trees. Different from traditional methods, in which the potential functions of CRFs are
defined as a linear combination of some pre-defined parametric models, we formulate
the unary and the pairwise potentials as nonparametric forests—ensembles of decision
trees, and learn the ensemble parameters and the trees in a unified optimization problem
within the large-margin framework. In this fashion, we easily achieve nonlinear learning
of potential functions on both unary and pairwise terms in CRFs. Moreover, we learn
class-wise decision trees for each object that appears in the image. We further show
that this challenging optimization can be efficiently solved by combining a modified
column generation and cutting-planes techniques. Experimental results on both binary
and multi-class segmentation datasets demonstrate the power of the learned nonlinear

nonparametric potentials.
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Second, we propose to model the unary potentials of the CRFs using a convolutional
neural network (CNN). The deep CNN is trained on the large-scale ImageNet dataset
and transferred to image segmentation here for constructing unary potentials of super-
pixels. The CRFs parameters are then learned within the max-margin framework using
structured support vector machines (SSVM). To fully exploit context information in in-
ference, we construct spatially related co-occurrence pairwise potentials and incorporate
them into the energy function. This prefers labellings of object pairs that frequently
co-occur in a certain spatial layout and at the same time avoids implausible labellings
during the inference. Extensive experiments on binary and multi-class segmentation

benchmarks demonstrate the potentials of the proposed method.

Third, different from the previous two works, we address the problem of continuous CRF's
learning, applied to the task of depth estimation from single images. Specifically, we
formulate and learn the unary and pairwise potentials of a continuous CRFs model with
CNN networks in a unified framework. We term this new method as deep convolutional
neural fields, abbreviated as DCNF. It jointly explores the capacity of deep CNN and
continuous CRFs. The proposed method can be used for depth estimation of general
scenes with no geometric priors nor any extra information injected. Specifically, in our
case, the integral of the partition function can be calculated in a closed form such that
we can exactly solve the log-likelihood maximization. Moreover, solving the inference
problem for predicting depths of a test image is highly efficient as closed-form solutions
exist. We then further propose an equally effective model based on fully convolutional
networks and a novel superpixel pooling method, which is ~ 10 times faster, to speedup
the patch-wise convolutions in the deep model. With this more efficient model, we are
able to design very deep networks to pursue further performance gain. Experiments
on both indoor and outdoor scene datasets demonstrate that the proposed method
significantly outperforms state-of-the-art depth estimation approaches. We also show
experimentally that the proposed method generalizes well to depth estimations of images
unrelated to the training data. This indicates the potential of our method for benefiting

other vision tasks.
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Notation

Symbol Description

1 Column vector with all elements being 1.
0 Column vector with all elements being 0.
I Identity matrix.

R Domain of real numbers.

i.1.d. Abbreviation of independent and identically distributed.
<> Inner product operation.

® Stacking two vectors.

® Kronecker tensor.

Tr(-) Trace of a matrix.

RIS Ly norm.

Superscript T Transpose.

5(+) Indicator function which equals 1 if the input is true and 0 otherwise.
C Trade-off parameter.

m Number of examples.

I3 Vector of slack variables.

w Vector of model parameters.

X Input observation.

y Structured output label.

Y Scalar output label.

X Input domain.

Y Output domain.

N Set of nodes.

S Set of edges.

W Working set.

H Domain of weak learners/decision trees.
g:X—Y Structured prediction function.
fXxY—=R Scoring function.

l:YxY—-R General loss function.

A:YxY =R Structured loss function.
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E Energy function.
U Unary potential function.
|4 Pairwise potential function.
U Feature mapping function.
ASY Unary feature mapping function.
U@ Pairwise feature mapping function.
Pr Probability function.
Z Partition function.
sgn Sign function.
h A weak learner.
s A unary decision tree.
h2) A pairwise decision tree.
HD A group of unary decision trees.
H® A group of pairwise decision trees.
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