
Learning Structured Prediction Models in

Computer Vision

by

Fayao Liu

A thesis submitted in fulfillment for the

degree of Doctor of Philosophy

in the

Faculty of Engineering, Computer and Mathematical Sciences

School of Computer Science

November 2015

http://www.adelaide.edu.au
http://sites.google.com/site/fayaoliu/
http://cs.adelaide.edu.au/
http://cs.adelaide.edu.au

Declaration

I certify that this work contains no material which has been accepted for the award of

any other degree or diploma in any university or other tertiary institution and, to the

best of my knowledge and belief, contains no material previously published or written

by another person, except where due reference has been made in the text. In addition,

I certify that no part of this work will, in the future, be used in a submission for any

other degree or diploma in any university or other tertiary institution without the prior

approval of the University of Adelaide and where applicable, any partner institution

responsible for the joint-award of this degree.

I give consent to this copy of my thesis when deposited in the University Library, being

made available for loan and photocopying, subject to the provisions of the Copyright

Act 1968.

I also give permission for the digital version of my thesis to be made available on the web,

via the Universitys digital research repository, the Library catalogue and also through

web search engines, unless permission has been granted by the University to restrict

access for a period of time.

Signed:

Date:

iii

Acknowledgements

First and foremost, I would like to express my sincere gratitudes to my principle super-

visor, Prof. Chunhua Shen. I would have never been able to finish this thesis without

his guidance. During the course of my PhD study, he has always been an encouraging,

inspiring and patient mentor, from whom I’ve learned not only methodologies, but the

way to look at problems. His intelligence, creativity and keen perceptions in cutting-

edge research topics have deeply impressed me. He has also set me a good example

by his diligence and continuous efforts, as well as rigorous scientific attitudes. There

are numerous other things I’ve learned from him, which will continue guiding me in my

future career.

I would like to thank my co-supervisors, Prof. Anton van den Hengel and Prof. David

Suter. They have showed generous patience and continuous support throughout my

PhD candidature. As the director of the Australian Centre for Visual Technologies

(ACVT), Anton has provided me a good platform as well as opportunities to commu-

nicate and collaborate with many talented researchers. He has also given me a lot of

help on improving my language skills. I appreciate his generosity, encouragement and

enlightenment.

I would like to thank Prof. Ian Reid, who showed me in person how to organize and write

a research paper by telling a story. His innovative perspectives and insightful advices

have helped me to improve my understandings and paper writing. It has always been

pleasant and inspiring discussing with him.

I owe special thanks to Dr. Guosheng Lin, who taught me structured learning and

many other things. He impressed me by his profound professional expertise and his

extraordinary persistence. I’m deeply grateful for his unselfish sharing and constant

supporting throughout my PhD life.

My sincere thanks go to ACVT researchers, especially Dr. Qinfeng (Javen) Shi, Dr.

Peng Wang and Dr. Sakrapee (Paul) Paisitkriangkrai, for their kindness and valuable

suggestions. Talking and discussing with them have always benefited me a lot.

Many thanks to all my current and previous lab mates, with whom I spent the most

important years of my life together. Especially, I would like to mention Quoc-Huy Tran,

Zhen Zhang, Yongrui Qin, Lina Yao, Lei Luo, Chao Zhang. I will always treasure those

days spent with them. I also owe thanks to my friends I do not list here, with whom I

share excitements and frustrations.

Finally, special gratitudes are attributed to my family, to whom this thesis is dedicated

to.

v

vi

Publications

This thesis is based on the content of the following peer-reviewed conference and journal

papers:

1. Fayao Liu, Chunhua Shen, Guosheng Lin; “Deep Convolutional Neural Fields for

Depth Estimation from a Single Images”; In proceedings of IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2015.

2. Fayao Liu, Chunhua Shen, Guosheng Lin, Ian D. Reid; “Learning Depth from

Single Monocular Images Using Deep Convolutional Neural Fields”; Submitted to

IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2015.

3. Fayao Liu, Guosheng Lin, Chunhua Shen; “CRF Learning with CNN Features for

Image Segmentation”; Pattern Recognition (PR), 2015.

4. Fayao Liu, Guosheng Lin, Chunhua Shen; “Structured Learning of Tree Potentials

in CRF for Image Segmentation”; Submitted to IEEE Transactions on Neural

Networks and Learning Systems (TNNLS); Major Revision.

In addition, I have published or submitted the following papers:

1. Fayao Liu, Luping Zhou, Chunhua Shen, Jianping Yin; “Multiple Kernel Learning

in the Primal for Multimodal Alzheimer’s Disease Classification”; In IEEE Journal

of Biomedical and Health Informatics (JBHI), 2014.

2. Fayao Liu, Guosheng Lin, Chunhua Shen; “Discriminative Training of Deep Fully-

connected Continuous CRFs with Task-specific Loss”; Submitted to IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR), 2016.

3. Fayao Liu, Ruizhi Qiao, Chunhua Shen, Lei Luo; “From Kernel Machines to En-

semble Learning”; Submitted to Pattern Recognition (PR).

4. Fayao Liu, Chunhua Shen, Ian Reid, Anton van den Hengel; “Online Unsupervised

Feature Learning for Visual Tracking”; Submitted to Computer Vision and Image

Understanding (CVIU).

5. Chunhua Shen, Junae Kim, Fayao Liu, Lei Wang, Anton van den Hengel; “Ef-

ficient Dual Approach to Distance Metric Learning”; In IEEE Transactions on

Neural Networks and Learning Systems (TNNLS), 2014.

vii

THE UNIVERSITY OF ADELAIDE

Abstract

Faculty of Engineering, Computer and Mathematical Sciences

School of Computer Science

Doctor of Philosophy

by Fayao Liu

Most of the real world applications can be formulated as structured learning problems,

in which the output domain can be arbitrary, e.g ., a sequence or a graph. By modelling

the structures (constraints and correlations) of the output variables, structured learning

provides a more general learning scheme than simple binary classification or regression

models. This thesis is dedicated to learning such structured prediction models, i.e.,

conditional random fields (CRFs) and their applications in computer vision. CRFs are

popular probabilistic graphical models, which model the conditional distribution of the

output variables given the observations. They play an essential role in the computer

vision community and have found wide applications in various vision tasks—semantic

labelling, object detection, pose estimation, to name a few. Specifically, we here focus

on two challenging tasks in this thesis: image segmentation (also referred as semantic

labelling) and depth estimation from single monocular images, which represent two types

of CRFs models—discrete and continuous. In summary, we made three contributions in

this thesis.

First, we present a new approach to exploit tree potentials in CRFs for the task of

image segmentation. This method combines the advantages of both CRFs and decision

trees. Different from traditional methods, in which the potential functions of CRFs are

defined as a linear combination of some pre-defined parametric models, we formulate

the unary and the pairwise potentials as nonparametric forests—ensembles of decision

trees, and learn the ensemble parameters and the trees in a unified optimization problem

within the large-margin framework. In this fashion, we easily achieve nonlinear learning

of potential functions on both unary and pairwise terms in CRFs. Moreover, we learn

class-wise decision trees for each object that appears in the image. We further show

that this challenging optimization can be efficiently solved by combining a modified

column generation and cutting-planes techniques. Experimental results on both binary

and multi-class segmentation datasets demonstrate the power of the learned nonlinear

nonparametric potentials.

ix

http://www.adelaide.edu.au
http://cs.adelaide.edu.au/
http://cs.adelaide.edu.au
http://sites.google.com/site/fayaoliu/

x

Second, we propose to model the unary potentials of the CRFs using a convolutional

neural network (CNN). The deep CNN is trained on the large-scale ImageNet dataset

and transferred to image segmentation here for constructing unary potentials of super-

pixels. The CRFs parameters are then learned within the max-margin framework using

structured support vector machines (SSVM). To fully exploit context information in in-

ference, we construct spatially related co-occurrence pairwise potentials and incorporate

them into the energy function. This prefers labellings of object pairs that frequently

co-occur in a certain spatial layout and at the same time avoids implausible labellings

during the inference. Extensive experiments on binary and multi-class segmentation

benchmarks demonstrate the potentials of the proposed method.

Third, different from the previous two works, we address the problem of continuous CRFs

learning, applied to the task of depth estimation from single images. Specifically, we

formulate and learn the unary and pairwise potentials of a continuous CRFs model with

CNN networks in a unified framework. We term this new method as deep convolutional

neural fields, abbreviated as DCNF. It jointly explores the capacity of deep CNN and

continuous CRFs. The proposed method can be used for depth estimation of general

scenes with no geometric priors nor any extra information injected. Specifically, in our

case, the integral of the partition function can be calculated in a closed form such that

we can exactly solve the log-likelihood maximization. Moreover, solving the inference

problem for predicting depths of a test image is highly efficient as closed-form solutions

exist. We then further propose an equally effective model based on fully convolutional

networks and a novel superpixel pooling method, which is ∼ 10 times faster, to speedup

the patch-wise convolutions in the deep model. With this more efficient model, we are

able to design very deep networks to pursue further performance gain. Experiments

on both indoor and outdoor scene datasets demonstrate that the proposed method

significantly outperforms state-of-the-art depth estimation approaches. We also show

experimentally that the proposed method generalizes well to depth estimations of images

unrelated to the training data. This indicates the potential of our method for benefiting

other vision tasks.

Dedicated to my family.

xi

Contents

Declaration iii

Acknowledgements v

Publications vii

Abstract ix

Contents xiii

List of Figures xvii

List of Tables xxi

Notations xxiii

1 Introduction 1

1.1 Structured Learning . 2

1.2 Conditional Random Fields . 2

1.2.1 Limitations of Current CRF Models 3

1.3 Contributions . 4

2 Background Literature 7

2.1 Supervised Learning . 7

2.1.1 Support Vector Machines . 9

2.1.2 Logistic Regression . 11

2.2 Structured Learning . 12

2.2.1 Structured SVM . 14

2.2.2 Conditional Random Fields . 16

2.2.2.1 Continuous Conditional Random Fields 17

2.3 Ensemble Learning . 17

2.3.1 Column Generation Boosting . 18

xiii

xiv CONTENTS

2.4 Convolutional Neural Networks . 20

2.4.1 CNN for Structured Predictions 21

3 CRF Learning with Tree Potentials for Image Segmentation 25

3.1 Introduction . 26

3.1.1 Related Work . 27

3.2 Segmentation Using CRF Models . 29

3.3 Learning Tree Potentials in CRF . 29

3.3.1 Energy Formulation . 29

3.3.2 Learning CRF in the Max-Margin Framework 30

3.3.3 Learning Tree Potentials Using Column Generation 32

3.3.4 Speeding up Optimization Using Cutting-Plane 35

3.3.4.1 Implementation Details 36

3.3.4.2 Discussions on the Submodularity 37

3.4 Experiments . 37

3.4.1 Experimental Setup . 37

3.4.2 Comparing with Baseline Methods 38

3.4.2.1 Graz-02 . 38

3.4.2.2 MSRC-21 . 39

3.4.3 Comparing with State-of-the-art Methods 39

3.4.3.1 Weizmann Horse . 40

3.4.3.2 Oxford Flower . 40

3.4.3.3 Graz-02 . 41

3.4.3.4 MSRC-21 . 41

3.4.4 Object-aware vs. Non-object-aware 41

3.5 Conclusion . 42

4 CRF Learning with CNN Potentials for Image Segmentation 49

4.1 Introduction . 49

4.1.1 Related Work . 51

4.2 Proposed Method . 52

4.2.1 Deep Convolutional Neural Networks 52

4.2.2 Segmentation with CRF Models 53

4.2.3 Learning CRF in the Max-Margin Framework 54

4.2.3.1 Implementation Details 55

4.2.4 Inference with Co-Occurrence Pairwise Potentials 56

4.3 Experiments . 57

4.3.1 Experimental Setup . 57

4.3.2 Baseline Comparison . 58

4.3.2.1 Weizmann Horse . 59

4.3.2.2 Graz-02 . 59

4.3.2.3 MSRC-21 . 60

4.3.3 State-of-the-art Comparison . 61

4.3.3.1 Binary Datasets . 61

4.3.3.2 Multi-class Datasets . 61

4.4 Conclusion . 63

CONTENTS xv

5 Joint Learning of Continuous CRF and CNN for Single Image Depth
Estimation 71

5.1 Introduction . 72

5.2 Related Work . 74

5.2.1 Depth Perception in Vision . 75

5.2.1.1 Depth Estimation from Single Monocular Images 75

5.2.2 Combining CNN and CRF . 78

5.2.3 Fully Convolutional Networks . 79

5.3 Deep Convolutional Neural Fields . 80

5.3.1 Overview . 80

5.3.2 Potential Functions . 81

5.3.2.1 Unary potential . 81

5.3.2.2 Pairwise Potential . 82

5.3.3 Learning . 83

5.3.3.1 Optimization . 85

5.3.3.2 Depth Prediction . 87

5.3.4 Speeding up Training Using Fully Convolutional Networks and
Superpixel Pooling . 88

5.3.4.1 DCNF-FCSP Overview 89

5.3.4.2 Fully Convolutional Networks 89

5.3.4.3 Superpixel Pooling . 90

5.3.5 Implementation Details . 91

5.4 Experiments . 93

5.4.1 Baseline Comparisons . 97

5.4.1.1 NYU v2 Dataset . 98

5.4.1.2 Make3D Dataset . 99

5.4.2 DCNF vs. DCNF-FCSP . 100

5.4.3 State-of-the-art Comparisons . 100

5.4.3.1 NYU v2 Dataset . 100

5.4.3.2 Make3D Dataset . 101

5.4.3.3 KITTI data . 101

5.4.4 Generalization to Depth Estimations of General Scene Images . . . 102

5.5 Conclusion . 102

6 Conclusion 105

6.1 Future Work . 106

6.1.1 Deep Structured Learning . 106

6.1.2 Semi-supervised Structured Learning 107

Bibliography 109

List of Figures

2.1 An illustration of the 0/1 loss upper bounded by the hinge loss and the log
loss. The horizontal axis shows w>Ψ(x, y) − maxy′ 6=yw

>Ψ(x, y′), where
y is the correct label for the example x, while the vertical axis quantifies
the loss. As shown, the 0/1 loss is discontinuous, while the hinge loss
is continuous; the log-loss is continuous and smooth. Figure reproduced
from [1]. 9

2.2 An illustration of the LeNet [2] for handwritten character recognition.
Figure reproduced from [2]. 20

2.3 (a) An illustration of a single convolutional layer followed by a pooling
layer with pooling size being 2; (b) An illustration of a fully connected
layer with 3 hidden neurons. 21

2.4 An illustration of the (a) low-level, (b) mid-level and (c) high-level features
learned from different layers of CNN models. Figure reproduced from [3]. 23

3.1 Segmentation examples produced by our model on images from the Oxford
17 Flower dataset with different column generation iterations. From left
to right: Test images, 2nd, 4th, 6th, and 10th iteration. 26

3.2 Segmentation examples on the Weizmann horse dataset. 1st and 4th
columns: Test images; 2nd and 5th columns: Ground truth; 3rd and 6th
columns: Predictions produced by our CRFTree method. 43

3.3 Segmentation examples on MSRC. 1st column: Test images; 2nd column:
Ground truth; 3rd column: Predictions of AdaBoost; 4th column: Predic-
tions of SVM; 5th column: Predictions of SSVM; 6th column: Predictions
of CRFTree with unsupervised feature learning. 44

3.4 Qualitative comparison on the Graz-02 dataset. 1st column: Test im-
ages; 2nd column: Ground truth; 3rd column: Predictions of AdaBoost;
4th column: Predictions of SVM; 5th column: Predictions of SSVM; 6th
column: Predictions of CRFTree. SSVM and CRFTree present more
smooth boundary than AdaBoost and SVM due to the introduce of pair-
wise terms. Compared to SSVM, our CRFTree yields more accurate
segmentation because of the non-linearity property. 45

3.5 Examples of qualitative evaluations on the Oxford flower dataset. 1st
and 4th columns: Test images; 2nd and 5th columns: Ground truth; 3rd
and 6th columns: Predictions produced by our method CRFTree. Our
predictions well preserve the boundaries. 46

3.6 Confusion matrices of the predictions of different models using bag-of-
words feature and color histogram features on the MSRC dataset. (a)
SSVM; (b) CRFTree. 47

xvii

xviii LIST OF FIGURES

4.1 An illustration of the proposed segmentation pipeline. We first over-
segment the image into superpixels and then compute deep convolutional
features of the patch around each superpixel centroid using a pre-trained
deep CNN. The learned features are then used to learn a CRF for seg-
mentation. 52

4.2 An illustration of the deep CNN architecture used for ImageNet classifi-
cation by Krizhevsky et al. [4]. The first convolutional layer filters the
input image with 96 kernels of size 11 × 11 × 3 with a stride of 4 pixels;
the second convolutional layer takes the output of the first layer as input
and filters it with 256 kernels of size 5× 5× 96; each of the 3rd and 4th
layer has 384 kernels of size 3 × 3 × 256 and 3 × 3 × 384 respectively;
the 5th convolutional layer has 256 kernels of size 3 × 3 × 384; the fully
connected layers have 4096 kernels each and the last soft-max layer has
1000 neurons. A max-pooling layer follows the first, second and fifth layer. 54

4.3 Segmentation examples on Weizmann horse. 1st column: Test images;
2nd column: Ground truth; 3rd column: Predictions produced by SSVM
based CRF learning with bag-of-words feature; 4th column: Predictions
produced by SSVM based CRF learning with unsupervised feature learn-
ing; 5th column: Predictions produced by SSVM based CRF learning
with the 6th layer CNN features. 65

4.4 Segmentation examples on the Graz-02 dataset. 1st column: Test images;
2nd column: Ground truth; 3rd column: Segmentation results produced
by SSVM based CRF learning with bag-of-words feature; 4th column:
Segmentation results produced by SSVM based CRF learning with unsu-
pervised feature learning; 5th column: Segmentation results produced by
SSVM based CRF learning with the 6th layer CNN features. 66

4.5 Segmentation examples on the MSRC-21 dataset. 1st column: Test im-
ages; 2nd column: Ground truth; 3rd column: Predictions produced by
SSVM based CRF learning with bag-of-words feature; 4th column: Pre-
dictions produced by SSVM based CRF learning with unsupervised fea-
ture learning; 5th column: Predictions results produced by our method
with co-occurrence pairwise potentials. 67

4.6 Segmentation examples on the Stanford Background dataset. 1st and
4th columns: Test images; 2nd and 5th columns: Ground truth; 3rd and
6th columns: Predictions produced by our method with co-occurrence
pairwise potentials. 68

4.7 Segmentation examples on the PASCAL VOC 2011 dataset. 1st and 4th
columns: Test images; 2nd and 5th columns: Ground truth; 3rd and
6th columns: Predictions produced by our method with co-occurrence
pairwise potentials. 68

4.8 Failure examples on the VOC 2011 dataset. 1st row: Test images; 2nd
row: Ground truth; 3rd row: Segmentation results produced by our
method with co-occurrence pairwise potentials. 69

4.9 Confusion matrix of the predictions produced by our method for a single
run on the StanfordBackground dataset. 69

4.10 Occurrence frequencies of different categories in the training data of the
StanfordBackground dataset. 69

4.11 Confusion matrix of the predictions made by our method on the MSRC
dataset. 70

LIST OF FIGURES xix

4.12 Confusion matrix of the predictions produced by our method on the Pascal
VOC 2011 dataset. 70

5.1 Examples of depth estimation results using the proposed deep convo-
lutional neural fields model. First row: NYU v2 dataset; second row:
Make3D dataset. From left to right: input image, ground-truth, our pre-
diction. 72

5.2 An illustration of the box model based methods for room layout estima-
tion. Figure reproduced from [5]. 75

5.3 An illustration of the block model based methods for outdoor 3D scene
understanding. Left: examples of extracted blocks; Right: examples of
super-pixel based density estimation. Figure reproduced from [6]. 75

5.4 An illustration of the non-parametric methods for depth estimation. Fig-
ure reproduced from [7]. 77

5.5 An illustration of the probabilistic model based methods for depth esti-
mation. Left: input image; Right: superpixels overlaid with an MRF.
Figure reproduced from [8]. 77

5.6 An illustration of our DCNF model for depth estimation. The input
image is first over-segmented into superpixels. In the unary part, for a
superpixel p, we crop the image patch centred around its centroid, then
resize and feed it to a CNN which is composed of 5 convolutional and 4
fully-connected layers (details refer to Fig. 5.7). In the pairwise part, for a
pair of neighboring superpixels (p, q), we consider K types of similarities,
and feed them into a fully-connected layer. The outputs of unary part
and the pairwise part are then fed to the CRF structured loss layer,
which minimizes the negative log-likelihood. Predicting the depths of a
new image x is to maximize the conditional probability Pr(y|x), which
has closed-form solutions (see Sec. 5.3.3 for details). 79

5.7 Detailed network architecture of the unary part in Fig. 5.6. 80

5.8 An overview of the unary part of the DCNF-FCSP model. For the unary
part, the input image is fed into a fully-convolutional network to produce
convolution maps (d is the number of filters of the last fully-convolutional
layer). The obtained convolution maps, together with the superpixel seg-
mentation over the original input image, are fed to a superpixel pooling
layer. The outputs are n × 1 d dimensional feature vectors for each of
the n superpixels, which are then followed by 3 fully-connected layers to
produce the unary output z. The pairwise part are omitted here since we
use the same network architecture as in the DCNF model (Fig. 5.6). The
unary output z and the pairwise output R are used as input to the CRF
loss layer, which minimizes the negative log-likelihood (See Sec. 5.3.4 for
details) . 85

5.9 The fully convolutional network architecture used in Fig. 5.8. The net-
work takes input images of arbitrary size and output convolution maps. . 85

5.10 An illustration of the superpixel pooling method, which mainly consists
of convolution maps upsampling and superpixel pooling. The convolu-
tion maps are upsampled to the original image size by nearest neighbor
interpolations, over which the superpixel masking is applied. Then aver-
age pooling is performed within each superpixel region, to produce the n
convolution features. n is the number of superpixels in the image. d is
the number of channels of the convolution maps. 88

xx LIST OF FIGURES

5.11 Examples of qualitative comparisons on the NYUD2 dataset (Best viewed
on screen). Color indicates depths (red is far, blue is close). Our method
yields visually better predictions with sharper transitions, aligning to local
details. 93

5.12 Comparison of the whole model training time (network forward + back-
ward) in seconds (in log scale) for one image on the NYU v2 dataset with
respect to different numbers of superpixels per image. The DCNF-FCSP
model is orders of magnitude faster than the DCNF model. 94

5.13 Comparison of the network forward time of the whole model during depth
prediction (in seconds) for one image on the NYU v2 dataset with respect
to different numbers of superpixels per image. The DCNF-FCSP model
is significantly faster than the DCNF model. 94

5.14 Examples of depth predictions on the Make3D dataset (Best viewed on
screen). Depths are shown in log scale and in color (red is far, blue is
close). 96

5.15 Examples of depth predictions on the KITTI dataset (Best viewed on
screen). Depths are shown in log scale and in color (red is far, blue is
close). 97

5.16 Examples of depth predictions on general indoor scene images obtained
from the Internet (First row: test images; second row: our depth predic-
tions. Best viewed on screen). Depths are shown in log scale and in color
(red indicates far and blue indicates close). 97

5.17 An illustration of the absolute error maps and the pixel-wise error his-
tograms of our predictions (Left: NYU v2; Right: Make3D). The absolute
error maps are shown in meters, with the color bar shown in the last row.
For the error histogram plot, the horizontal axis shows the prediction er-
ror in meters (quantized into 20 bins), and the vertical axis shows the
percentage of pixels in each bin. 98

5.18 Examples of depth predictions on general outdoor scene images obtained
from the Internet (First row: test images; second row: our depth predic-
tions. Best viewed on screen). Depths are shown in log scale and in color
(red indicates far and blue indicates close). 99

List of Tables

3.1 The average intersection-over-union score and average pixel accuracy com-
parison on the Graz-02 dataset. We include the foreground and back-
ground results in the brackets. Our method CRFTree with nonlinear and
class-wise potentials learning performs better than all the baseline methods. 39

3.2 Performance of different methods on the Weizmann Horse dataset. 39

3.3 Performance of different methods on the Oxford Flower dataset. Our
method CRFTree performs better than the compared methods. 40

3.4 The average intersection-over-union score and average pixel accuracy of
CRFTree by incorporating unsupervised feature learning method. We
include the foreground and background results in the brackets. 40

3.5 Comparing with state-of-the-art methods on the Graz-02 dataset. We
report the F-score (%) for each class and the average over classes. Our
method CRFTree outperforms all the compared methods with a large
margin. 41

3.6 Segmentation results on the MSRC dataset. We report the pixel-wise
accuracy for each category as well as the average per-category scores and
the global pixel-wise accuracy. (1) The upper part presents the com-
parison with baseline methods, which all use bag-of-words and color his-
togram features. Our method CRFTree gains impressive improvements
over SSVM while far better than simple linear models. (2) The lower
part shows the results of our method incorporated with unsupervised fea-
ture learning (denoted as CRFTree (FL)) compared to state-of-the-art
methods on this dataset. 42

3.7 Compared results of the object-aware (denoted as CRFTree (OA)) and
the non-object-aware (denoted as CRFTree (NOA)) models on the MSRC
dataset. Using object-aware potentials learning yields better results,
which demonstrates the strength of the proposed method. 42

4.1 Performance of different methods on the Weizmann horse dataset. CNN
features perform significantly better than the traditional BoW feature
and the unsupervised feature learning method, with features of the 6th
layer performing marginally better than other compared layers. SSVM
based CRF learning performs far better than SVM. 59

4.2 Compared results of the average intersection-over-union score and average
pixel accuracy on the Graz-02 dataset. We include the foreground and
background results in the brackets. CNN features perform significantly
better than the traditional BoW feature and the unsupervised feature
learning, with features of the 6th layer performing the best among the
compared layers in both SVM and SSVM. SSVM based CRF learning
performs far better than SVM. 60

xxi

xxii LIST OF TABLES

4.3 Segmentation results on the MSRC-21 dataset. We report the pixel-wise
accuracy for each category as well as the average per-category scores and
the global pixel-wise accuracy (%). Deep learning performs significantly
better than the BoW feature and the unsupervised feature learning, with
SSVM based CRF learning using features of the 7th layer of the deep
CNN achieving the best results. SSVM based CRF learning performs far
better than SVM. 60

4.4 State-of-the-art comparison of segmentation performance (%) on the Weiz-
mann horse dataset. 61

4.5 State-of-the-art comparison of segmentation performance (%) on the Graz-
02 (right) dataset. 61

4.6 State-of-the-art comparison of global and average per-category pixel ac-
curacy on the MSRC-21 dataset. 63

4.7 State-of-the-art comparison of global and average per-category pixel ac-
curacy on the Stanford Background dataset. 63

4.8 Results of per-category and mean intersection-over-union score (%) on
the PASCAL VOC 2011 validation dataset. Best results are bold faced. . 63

4.9 Comparison of the mean intersection-over-union score (%) on the PAS-
CAL VOC 2011 validation dataset. 63

5.1 Baseline comparisons on the NYU v2 dataset. Our method with the whole
network training performs the best. 92

5.2 Baseline comparisons on the Make3D dataset. Our method with the whole
network training performs the best. 92

5.3 Performance comparisons of DCNF and DCNF-FCSP on the NYU v2
dataset. The two models show comparable performance. 92

5.4 Performance comparisons of DCNF and DCNF-FCSP on the Make3D
dataset. The two models perform on par in general. 92

5.5 State-of-the-art comparisons on the NYU v2 dataset. Our method per-
forms the best in most cases. Note that the results of Eigen et al. [9] are
obtained by using extra training data (in the millions in total) while ours
are obtained using the standard training set. 95

5.6 State-of-the-art comparisons on the Make3D dataset. Our method per-
forms the best. Note that the C2 errors of the Discrete-continuous CRF
[10] are reported with an ad-hoc post-processing step (train a classifier to
label sky pixels and set the corresponding regions to the maximum depth). 95

5.7 State-of-the-art comparisons on the KITTI dataset. Our method achieves
the best RMS error. Note that the results of Eigen et al. [9] are obtained
by using extra training data (in the millions in total) while ours are ob-
tained using 700 training images. The results of Saxena et al. [8] are
reproduced from [9] . 95

Notation

Symbol Description

1 Column vector with all elements being 1.

0 Column vector with all elements being 0.

I Identity matrix.

R Domain of real numbers.

i.i.d. Abbreviation of independent and identically distributed.

< ·, · > Inner product operation.

� Stacking two vectors.

⊗ Kronecker tensor.

Tr(·) Trace of a matrix.

‖·‖2 L2 norm.

Superscript> Transpose.

δ(·) Indicator function which equals 1 if the input is true and 0 otherwise.

C Trade-off parameter.

m Number of examples.

ξ Vector of slack variables.

w Vector of model parameters.

x Input observation.

y Structured output label.

y Scalar output label.

X Input domain.

Y Output domain.

N Set of nodes.

S Set of edges.

W Working set.

H Domain of weak learners/decision trees.

g : X→ Y Structured prediction function.

f : X× Y→ R Scoring function.

l : Y× Y→ R General loss function.

∆ : Y× Y→ R Structured loss function.

xxiii

xxiv LIST OF TABLES

E Energy function.

U Unary potential function.

V Pairwise potential function.

Ψ Feature mapping function.

Ψ(1) Unary feature mapping function.

Ψ(2) Pairwise feature mapping function.

Pr Probability function.

Z Partition function.

sgn Sign function.

~ A weak learner.

~(1) A unary decision tree.

~(2) A pairwise decision tree.

H(1) A group of unary decision trees.

H(2) A group of pairwise decision trees.

Chapter 1

Introduction

In recent decades, advances in the artificial intelligence (AI) have been changing people’s

daily lives. Smart phones, intelligent homes, autonomous vehicles (though far from being

mature), all of which are revealing that we are entering an intelligent era. In the center

of the various progresses stands the driving horse—machine learning. The ultimate

goal of machine learning is to enable computers to learn like human beings. Towards

this goal, great endeavors have been made in the past few years. Among them, two

of the most notable achievements are structured learning and deep learning, with the

former solving complex prediction problems, and the latter learning hierarchical feature

representations. In this thesis, we focus on the structured learning topic since most of

the real world applications can be formulated as structured learning problems. We also

exploit deep structured learning methods that combine the benefits of both.

As an important branch of machine learning related applications, computer vision has

been constantly drawing a lot of attentions from researchers. Typical computer vision

tasks include image classification, semantic segmentation, object detection, 3D recon-

struction, visual tracking etc.. We here focus on two particular vision applications: im-

age semantic segmentation and depth estimation from single monocular images. Both of

these two tasks can be regarded as the pixel map labelling problem, namely, to predict

a pixel-wise label map from a given input image, which can be naturally formulated as

a structured learning problem. One of the major differences between the two tasks is

that the label domain of the former is discrete high level semantics and the latter is

continuous low level depths. Both of them can be approached by learning (discrete or

continuous) conditional random fields (CRF) models, which we will detail in this thesis.

We first introduce some general notation rules.

1

2 Chapter 1 Introduction

Notations A “≥” or “≤” between two vectors denotes element-wise inequality. Unless

otherwise stated, we use boldfaced uppercase and lowercase letters to denote matrices

and column vectors respectively.

1.1 Structured Learning

In the real world applications, most of the computer vision tasks can be formulated

as structured output prediction problems. Unlike in the conventional classification and

regression models, where the output of one input is represented as a single value (dis-

crete in the classification case and continuous in the regression case), the terminology

structured here indicates that the output is a complex multivariate object and can not

be represented as a single value. Furthermore, the components of each output object

are interdependent and correlated, e.g ., a sequence, a parsing tree or a graph. In this

circumstance, to obtain the optimal prediction, we need to learn a mapping function

from the given input to the structured output domain: g : X → Y, which takes the

following form:

ŷ = g(x) = argmax
y

f(y,x). (1.1)

Here x ∈ X and y ∈ Y; f : X × Y → R is a scoring function that measures the

compatibility between the input and the output. Typical structured learning tasks

include speech tagging in natural language processing, protein structure prediction in

bioinformatics, pixel map labelling in vision etc.. We in this thesis focus on applications

in computer vision, specifically, image segmentation and single image depth estimation.

1.2 Conditional Random Fields

As one of the most popular structured learning models, conditional random fields (CRF)

[11] model the outputs as random variables in an undirected graphical G = (N, S). Here

N, S are the sets of nodes and edges respectively. We here take the image segmentation

task as an example to illustrate how CRF work. For an image x, each (super-)pixel is

regarded as a node, with an edge connecting each neighbouring node pair1. Each node p

is associated with a random variable yp depicting its semantic label, which takes values

from {1, 2, . . . ,K}. Here K is the total number of categories. The labelling of the image

x is denoted as y, which is composed of all yp. CRF model the conditional probability

1We here consider locally-connected graphs. In the case of fully-connected graphs, there exits an
edge between each pair of nodes.

Chapter 1 Introduction 3

distribution of the image through an energy function E:

Pr(y|x) =
1

Z(x)
exp

(
− E(y,x;w)

)
, (1.2a)

with Z(x) =
∑
y

exp
(
− E(y,x;w)

)
. (1.2b)

Here Z(x) is the normalization term, i.e., partition function; w is a vector of model

parameters.

The energy can be interpreted as the cost of assigning label y to the image x. Typically,

E is composed of unary potentials of all nodes and pairwise potentials of all edges2,

which takes the following form:

E(y,x;w) =
∑
p∈N

U(yp,x;w) +
∑

(p,q)∈S

V (yp, yq,x;w). (1.3)

Here U , V denotes the unary and pairwise potential function respectively, both of which

depend on observations x and the model parameters w. Intuitively, the unary potential

encodes the negative log likelihood of the p-th node taking label yp, while the pairwise

term enforces local smoothness by encouraging neighbouring nodes to take similar labels.

Generally, E is constructed as a linear form of w, i.e., E(y,x;w) = w>Ψ(y,x), which

implies that the potential functions in Eq. (1.3) can be represented as:

U(yp,x;w) =
〈
w(1),Ψ(1)(yp,x)

〉
, (1.4)

V (yp, yq,x;w) =
〈
w(2),Ψ(2)(yp, yq,x)

〉
, (1.5)

where w = w(1) �w(2); Ψ = Ψ(1) �Ψ(2), with Ψ(1), Ψ(2) being the unary and pairwise

feature mapping functions respectively.

Learning the model parameters w can be performed in a standard way of minimizing

the negative log-likelihood of the training data. During prediction, one performs the

Maximum a Posterior (MAP) inference to find an optimum labelling ŷ:

ŷ = argmax
y

Pr(y|x) = argmin
y

E(y,x;w). (1.6)

1.2.1 Limitations of Current CRF Models

As stated in Sec. 1.2, most of the current CRF models rely on a linear energy func-

tion E(y,x;w) = w>Ψ(y,x), which is a linear combination of a series of parametric

2In more complicated cases, higher order potentials can be incorporated.

4 Chapter 1 Introduction

feature mappings (usually pre-defined). While nonlinear models typically yield more

favorable performance, it is generally hard to conduct nonlinear potential learning in

CRF. Although it is possible to train kernel CRF [12], the resulted optimization is typ-

ically expensive to solve. Moreover, kernel methods are well known to be not scalable.

Nevertheless, a linear energy function formulation is intrinsically limiting CRF, which

calls for more efficient non-linear CRF learning methods.

1.3 Contributions

The contributions of this thesis are on the fields of learning structured prediction models

and their applications in computer vision. In Chapter 2, we review the literature back-

ground of several related topics, i.e., supervised learning, structured learning, ensemble

learning and deep convolutional neural networks. We present two discrete CRF learning

methods for image segmentation in chapter 3 and chapter 4. We next propose a deep

continuous CRF learning model for depth estimations from single monocular images.

Finally in Chapter 6, we conclude the thesis and discuss directions for future work. We

describe the contributions in more detail as follows:

Chapter 3

In this chapter, we present a nonlinear CRF learning method for image segmentation

(semantic labelling). The unary and the pairwise potential functions are respectively

composed of an ensemble of decision trees. We jointly learn the trees and the ensemble

parameters in the large margin framework. This is achieved by inspecting the KKT

conditions of the SSVM formulation and then applying the column generation tech-

nique. The resulted optimization problem is then efficiently solved by the cutting-plane

algorithm. Our formulation also enables learning of class-wise potentials for each of the

objects that appear in the image. Experimental results demonstrate that the proposed

nonlinear learning of CRF potentials outperforms traditional linear and parametric mod-

els.

Chapter 4

In this chapter, we propose to incorporate CNN potentials in CRF learning for image

segmentation [13]. The CNN model is pre-trained on the ImageNet dataset and trans-

ferred here to construct the unary potential for image segmentation. For the pairwise

potential, we model spatially related co-occurrence correlations for better capturing

Chapter 1 Introduction 5

the contextual information. The CRF parameters are then learned using an SSVM.

Additional contributions include that we conduct comprehensive comparisons between

traditional hand-crafted features and CNN features. Extensive experiments demonstrate

the effectiveness and strength of the proposed method.

Chapter 5

In this chapter, we present a novel deep structured learning method, referred as deep

convolutional neural field (DCNF), for depth estimations from single monocular images

[14, 15]. Different from the previous two chapters, which explore discrete CRF, this

chapter addresses the continuous CRF learning problem for the task of depth estimation.

By jointly exploiting the capacity of continuous CRF and deep CNN, DCNF aims to

estimate depths from single images without incorporating any geometric priors or extra

information. We further propose a more efficient while equally effective model DCNF-

FCSP based on fully convolutional networks and a novel superpixel pooling method.

With this new model, we are able to design deeper CNN networks to pursue further

performance gain. We experimentally demonstrate that our method outperforms state-

of-the-art methods and generalizes well to general scene image depth estimations.

Chapter 2

Background Literature

This chapter reviews some background literature on the supervised learning, structured

learning, ensemble learning and convolutional neural networks. These are the founda-

tions of the following chapters. We also introduce some popular existing methods that

are related to the focus of this thesis. Note that we present the conventional supervised

learning methods in a way different from the standard presentation in the community, in

order to give unified knowledge and facilitate the generalization to the more complicated

structured learning cases. Specifically, the structured support vector machines (SSVM)

introduced in Sec. 2.2.1 is a generalization of the support vector machines (SVM) de-

scribed in Sec. 2.1.1 to structured learning cases. Likewise, the conditional random

fields (CRF) in Sec. 2.2.2 is a generalization of the logistic regression presented in Sec.

2.1.2 to structured learning cases.

2.1 Supervised Learning

Supervised learning is the task of learning a prediction function from a set of i.i.d

training instances, with typical examples being classification and regression. Without

loss of generality, we here consider the multi-class classification problem where the output

domain is Y = {1, 2, . . . ,K}, with K being the number of classes. Given m labelling pairs

{(x(i), y(i))}mi=1, where x(i) ∈ X, y(i) ∈ Y, we aim to learn a prediction function g : X→ Y

of the following form:

ŷ = g(x) = argmax
y

f(x, y), (2.1)

where f : X × Y → R is a compatibility score function which measures the consistency

between the input x and the label y. The argmax operation then chooses the prediction

7

8 Chapter 2 Background Literature

y that gives the highest score as the final prediction ŷ. Typically, f takes a linear form

of the model parameters w and a joint feature mapping Ψ:

f(x, y) = w>Ψ(x, y). (2.2)

This class-dependent joint feature mapping Ψ captures the attributes on which the

input-output pair compatibility may depends. The design of Ψ depends on applications.

Although in the linear form as defined in Eq. (2.2), it enables the use of the kernel trick

[16] to yield a non-linear classifier.

To learn the model parameters w, one generally seeks to minimize a regularized risk

minimization functional:

min
w

J(w) := CΩ(w) +Remp(w),

where Remp(w) :=
1

m

m∑
i=1

l(y(i), g(x(i))). (2.3)

Here, Remp is the empirical risk defined by a convex loss function l; CΩ(w) is a regular-

ization term that controls the model complexity with the pre-defined trade-off parameter

C > 0. The regularizer Ω(w) can be L1, L2 or any other types of regularizations, which

lead to sparse Lasso-type, non-sparse solutions respectively.

The loss function l measures the discrepancy between the true label y(i) and the predicted

label ŷ = g(x(i)). The most common type of loss function for classification is the 0/1

loss:

l0/1(y(i), ŷ) = δ(y(i) 6= ŷ), (2.4)

where δ(·) is an indicator function which equals 1 if the input is true and 0 otherwise.

Directly optimizing the 0/1 loss is generally difficult partly due to its discontinuity,

therefore many approaches propose to optimize an upper bound, e.g ., hinge loss in

support vector machines (SVM) [17] and log-loss in logistic regression. See Fig. 2.1 for

an intuitive illustration. Both of these two methods lead to efficient optimization of Eq.

(2.3). More importantly, they provide some new perspectives on the learning problems

in that the former leads to the notion of margins while the latter enables an probabilistic

interpretation of the classifier. We will detail these two methods in Sec. 2.1.1 and Sec

.2.1.2 respectively. One more disadvantage of the 0/1 loss in Eq. (2.4) is that it treats

all mis-classifications equivalently. A more reasonable way to deal with this is to assign

different costs to different labelling pairs, which calls for more general loss functions.

Chapter 2 Background Literature 9

Figure 2.1: An illustration of the 0/1 loss upper bounded by the hinge loss and the log loss.
The horizontal axis shows w>Ψ(x, y)−maxy′ 6=y w

>Ψ(x, y′), where y is the correct label for the
example x, while the vertical axis quantifies the loss. As shown, the 0/1 loss is discontinuous,
while the hinge loss is continuous; the log-loss is continuous and smooth. Figure reproduced
from [1].

In general, different choices of l and Ω leads to different machine learning methods. For

example, SVM optimizes a combination of the hinge loss and L2 regularization, while

the logistic regression optimizes the log-loss with L2 regularization. For the case of

regression, the least square loss with L1 regularization leads to the Lasso algorithm [18].

When the label is no longer a single value y, but a multi-variate object y, and l is a

structured loss function, it leads to a structured model, which we will detail in Sec. 2.2.

2.1.1 Support Vector Machines

Support Vector Machines (SVM) [17] are popular max-margin based machine learning

methods. Intuitively, the “margin” of an example is positive if and only if the example

is correctly classified, with its magnitude measuring the prediction confidence.

Let g be the prediction function defined in Eq. (2.1) and Eq. (2.2), which we repeat

here as:

ŷ = g(x) = argmax
y

f(x, y) = argmax
y

w>Ψ(x, y). (2.5)

Hard-margin Formulation To learn the prediction function, or more specifically

w, ideally, we want the score of the correct label to be larger than the score of any

other incorrect labels. In other words, we want to maximize the margin γ, i.e., the

smallest score difference between the correct label y(i) and the closest runner-up y =

10 Chapter 2 Background Literature

argmax y∈Y\y(i) w
>Ψ(x, y). Adding L2 regularization to w, we can obtain the following

hard-margin optimization problem:

max
w,γ

γ (2.6a)

s.t. : w>Ψ(x(i), y(i))−w>Ψ(x(i), y) ≥ γ,∀i,∀y ∈ Y\y(i), (2.6b)

‖w‖2 = 1. (2.6c)

The optimization problem in Eq. (2.6) is equivalent to:

min
w

1

2
‖w‖2 (2.7a)

s.t. : w>Ψ(x(i), y(i))−w>Ψ(x(i), y) ≥ 1,∀i,∀y ∈ Y\y(i). (2.7b)

Soft-margin Formulation In practical, the constraints in Eq. (2.7b) can not be all

perfectly satisfied. In this case, slack variables ξi(i = 1, . . . ,m) are introduced for each

example x(i) to allow violations of the constraints [19]:

min
w,ξ

1

2
‖w‖2 +

C

m

∑
i

ξi (2.8a)

s.t. : w>Ψ(x(i), y(i))−w>Ψ(x(i), y)

≥ 1− ξi, ∀y ∈ Y\y(i) and ∀i = 1, . . . ,m, (2.8b)

ξ ≥ 0. (2.8c)

The constraints in Eq. (2.8) can be simplified as

w>Ψ(x(i), y(i))−w>Ψ(x(i), y) ≥ l0/1(y(i), ŷ)− ξi,∀i,∀y, (2.9)

where l0/1(y(i), ŷ) is the 0/1 loss defined in Eq. (2.4). We therefore can write Eq. (2.8)

into the following equivalent form:

min
w

1

2
‖w‖2 +

C

m

∑
i

lhinge(y(i), ŷ), (2.10)

with lhinge(y(i), ŷ) being the multi-class hinge loss introduced by Crammer and Singer

[19]:

lhinge(y(i), ŷ) = max
y

[
l0/1(y(i), y) + w>Ψ(x(i), y)

]
−w>Ψ(x(i), y(i)). (2.11)

If the score of the correct label is larger by at least 1 than the maximum score of

the wrong labels, the hinge loss equals 0. Otherwise, it scales linearly with this score

Chapter 2 Background Literature 11

difference, as illustrated in Fig. 2.1. From the above equations Eq. (2.10), Eq. (2.11),

we can clearly see that SVM is optimizing the regularized risk minimization functional

in Eq. (2.3) with the hinge loss and L2 regularization.

Next, we show that the hinge loss defined in Eq. (2.11) is an upper-bound of the 0/1

loss in Eq. (2.4). From Eq. (2.5), we have:

ŷ = argmax
y

w>Ψ(x(i), y)

=⇒ w>Ψ(x(i), ŷ) ≥ w>Ψ(x(i), y(i)). (2.12)

Therefore the following derivation holds:

lhinge(y(i), ŷ) = max
y

[
l0/1(y(i), y) + w>Ψ(x(i), y)

]
−w>Ψ(x(i), y(i))

≥ l0/1(y(i), ŷ) + w>Ψ(x(i), ŷ)−w>Ψ(x(i), y(i))

≥ l0/1(y(i), ŷ). (2.13)

This accomplishes the proof. This relation is also shown in Fig. 2.1.

2.1.2 Logistic Regression

Different from the max-margin based SVM method, logistic regression takes a prob-

abilistic perspective by defining the score function f in Eq. (2.2) as the conditional

probability distribution:

Pr(y|x;w) =
1

Z(x)
exp(w>Ψ(x, y)), (2.14a)

with Z(x) =
∑
y

exp(w>Ψ(x, y)), (2.14b)

where Z(x) is the normalization term, i.e., partition function. By defining such a proba-

bility distribution, the outputs of different candidate labels can be regarded as confidence

scores and become readily comparable. The prediction is then performed by maximizing

the confidence score as:

ŷ = g(x) = argmax
y

f(x, y) = argmax
y

Pr(y|x;w). (2.15)

The model parameters w are generally learned by maximizing the conditional (log-

)likelihood (or minimizing the negative (log-)likelihood) of the training data. Adding

L2 regularization, we then arrive at the optimization problem of the logistic regression

12 Chapter 2 Background Literature

method:

min
w

1

2
‖w‖2 +

C

m

∑
i

log Z(x(i))−w>Ψ(x(i), y(i)). (2.16)

It can be easily observed that Eq. (2.16) is optimizing the regularized risk minimization

in Eq. (2.3) with L2 regularization and the log loss defined as:

llog(y(i), ŷ) = − log Pr(ŷ|x(i);w) = log Z(x(i))−w>Ψ(x(i), ŷ). (2.17)

As shown in Fig. 2.1, the log loss is also an upper bound of the 0/1 loss.

For the multi-class classification problem we consider here, the joint feature mapping Ψ

can be constructed as:

Ψ(x, y) = [δ(y = 1)f>, . . . , δ(y = K)f>]>, (2.18)

where f is the feature vector associated with the example x and δ(·) is the indicator

function which equals 1 if the input is true and 0 otherwise. With this definition in

Eq. (2.18), we can denote Ψ as Ψ = Ψ1 � . . . � ΨK , where � stacks two column

vectors and Ψk(x, y) = δ(y = k)f>, k = 1, . . . ,K. Accordingly w can be decomposed as

w = w1 � . . .�wK . Then the conditional probability distribution in Eq. (2.14) can be

written as:

Pr(y|x;w) =
1

Z(x)

∏
k

exp(w>kΨk(x, y)), (2.19a)

with Z(x) =
∑
y

∏
k

exp(w>kΨk(x, y)). (2.19b)

We present this new form in Eq. (2.19) so as to show the connection between the logistic

regression and the conditional random fields (CRF) introduced later in Sec. 2.2.2.

2.2 Structured Learning

In the case of structured learning, the label of an example x can not be represented as

a single value y as in the classification and regression cases, but a multi-variate complex

object y, e.g ., a sequence, a parsing tree or an image. Structured learning then aims to

learn a structured output function y = g(x), where x ∈ X and y ∈ Y. The prediction

function takes a similar form as in Eq. (2.1):

ŷ = g(x) = argmax
y∈Y

f(x,y). (2.20)

Chapter 2 Background Literature 13

Likewise, f is a score function measuring the consistency or compatibility between the

input x and the output y. During the course of learning, two issues need to be solved:

learning the model parameters of f from the training data; inferring the optimal la-

bellings given the current learned model.

For the learning task, existing methods can be categorized into two veins: probabilistic

methods and max-margin based methods. Probabilistic methods model the underline

data probability distribution, and are typically solved by maximizing the likelihood of

the training data. These methods require an expensive normalization calculation step

to ensure a valid probability distribution. For example, the Markov Random Fields

(MRF) [20] model the joint probability distribution of the input and the output vari-

ables Pr(x,y). While the Conditional Random Fields (CRF) [11] model the conditional

probability distribution given the input observations:

Pr(y|x) ≥ 0, (2.21a)

with
∑
y∈Y

Pr(y|x) = 1,∀x ∈ X. (2.21b)

Compared to the generative MRF models, CRF do not need to model the data distri-

bution Pr(x) as involved in the joint probability Pr(x,y). This can be advantageous

since modelling Pr(x) can be difficult. By directly focusing on the discriminative prob-

lem, CRF can yield more accurate solutions. In most of the cases, the normalizations

in both the generative model and the discriminative model are intractable. Hence ap-

proximations are generally required. Nevertheless, one of the primary benefits of the

probabilistic methods is that they can naturally incorporate latent variables through

marginalization.

In contrast to the probabilistic methods, max-margin based methods directly focus on

the margin or decision boundary instead of learning a normalized data distribution.

This kind of methods therefore do not need to perform the expensive calculation of

the partition function or the marginal distribution. Typical methods belonging to this

category are Structured SVM (SSVM) [21], Max-Margin Markov Networks [22] etc.. One

more benefit of such methods is that kernels can be naturally incorporated as analogous

in SVM, e.g ., kernel CRF in [12].

For the inference task, i.e., solving the argmax problem in Eq. (2.20) , applied methods

generally depend on different applications. For instance, the GraphCut [23] and its “α-

expansions” have been generally applied to solve the inference problem in the task of

image segmentation [24–26]. Note that exact inference in general graphs is intractable.

Hence endeavors have been devoted to approximate inference approaches, which can be

roughly categorized into two veins: deterministic methods and sampling methods. In

14 Chapter 2 Background Literature

the survey of [27], Nowozin et al . provide a detailed investigation of structured learning,

inference and their applications in computer vision.

In this thesis, we focus on the learning task and apply off-the-shelf methods to solve

the inference task according to different applications. In more detail, for learning, we

learn discrete CRF with non-linear potentials in the max-margin framework for image

segmentation in Chapter 3 and Chapter 4. Specifically, in Chapter 3, we learn CRF with

tree potentials while in Chapter 4, we learn CRF with CNN potentials. In Chapter 5, we

propose a deep structured model to jointly learn continuous CRF with CNN potentials

for depth estimation, with the optimization solved by the Stochastic Gradient Descent

(SGD) algorithm. For inference, in Chapter 3, we apply GraphCut [23] since the energy

function is submodular. In Chapter 4, we adopt the method of [28] to solve the MAP

inference. While in Chapter 5, we solve a linear equation system for the MAP inference

since we have closed form solution.

Next, we will introduce two important structured learning methods, namely, SSVM and

CRF in the following sections.

2.2.1 Structured SVM

Structured SVM (SSVM) [21] is a well-known max-margin based structured learning

method, which generalizes the classification SVM model presented in Sec. 2.1.1 to

structured output predictions. Similarly, it learns a linear score function of the form:

f(x,y) = w>Ψ(x,y), (2.22)

where w are the model parameters; Ψ(·, ·) is a joint feature mapping function, which is

typically constructed based on different applications. Then the optimal labelling can be

found by solving:

ŷ = g(x) = argmax
y∈Y

f(x,y) = argmax
y∈Y

w>Ψ(x,y). (2.23)

In the case of structured learning, the loss can not be simply quantified as 0/1 loss defined

in Eq. (2.4) for classifications. In contrast, it considers a more general structured loss

∆(y, ŷ), whose design depends on applications. For instance, Hamming loss or weighted

Hamming loss is typically used in the image segmentation task. In general, we have

∆(y,y) = 0 and ∆(y, ŷ) > 0 for any ŷ 6= y.

Chapter 2 Background Literature 15

Given a set of i.i.d. training examples {(x(i),y(i))}mi=1, the margin-rescaling SSVM [29]

learns the model parameters w by solving the following optimization problem:

min
w,ξ

1

2
‖w‖2 +

C

m

∑
i

ξi (2.24a)

s.t. : w>
[
Ψ(x(i),y(i))−Ψ(x(i),y)

]
≥ ∆(y(i),y)− ξi, ∀y ∈ Y and ∀i = 1, . . . ,m, (2.24b)

ξ ≥ 0, (2.24c)

where C is the trade-off parameter; ξ are the slack variables; ∆(·, ·) : Y× Y → R is the

structured loss function associated with the predicted label and the ground-truth label.

The constraints in Eq. (2.24b) ensures that for each training example (x(i),y(i)), the

score w>Ψ(x(i),y(i)) of the correct labelling y(i) be greater than the score of all other

labellings w>Ψ(x(i),y) by a required margin. We can see that Eq. 2.24 is a natural

generalization of Eq. 2.8 to structured labels y(i) and structured loss ∆(·, ·).

Cutting-Plane Training The optimization problem in Eq. (2.24) generally involves

exponentially-sized or even infinite number of constraints, i.e., O(m|Y|), which is typi-

cally hard to solve. For the case of linearly decomposable loss function ∆, Taskar et al .

[22] proposed a quadratic program formulation with only a polynomial number of con-

straints and variables. Tsochantaridis et al . [29] presented a cutting-plane [30] algorithm

to solve Eq. (2.24) in polynomial time for general loss functions. In [31], Joachims et al .

further proposed an 1-slack formulation of Eq. (2.24) solved by cutting-plane methods,

which is of linear time complexity in the number of training examples. The 1-slack

formulation is written as:

min
w,ξ

1

2
‖w‖2 + Cξ (2.25)

s.t. :
1

m
w>
[m∑
i=1

ri

[
Ψ(x(i),y(i))−Ψ(x(i),y)

]]

≥ 1

m

m∑
i=1

ri∆(y(i),y)− ξ,∀y ∈ Y and ∀r ∈ {0, 1}m. (2.26)

Starting from an empty working set, the cutting-plane algorithm iteratively constructs

a working set of constraints. In each iteration, the algorithm calculates the solution

w, ξ over the current working set, and finds the constraint that is most violated by the

current solution for each example:

y(i)? = argmax
y∈Y

w>Ψ(x(i),y) + ∆(y(i),y). (2.27)

16 Chapter 2 Background Literature

This procedure terminates when no more violated constraints can be found within the

desired precision. We show in Chapter 3 that a cutting-plane algorithm can be applied

to speedup training of our CRF model with tree potentials.

2.2.2 Conditional Random Fields

As one of the most popular probabilistic structured learning methods, Conditional Ran-

dom Fields (CRF) model the input and the output variables through an undirected

graph G = (N, S) with cliques c ∈ C. Here N denotes the set of nodes N = {1, 2, . . . , n};
S is the set of edges with S ⊂ N × N; C is the set of cliques in G. In the case of image

segmentation, N is the node set composed of n (super-)pixels. Each node p is associated

with a random variable yp.

CRF model the conditional probability distribution in the following log-linear form:

Pr(y|x;w) =
1

Z(x)
exp

(∑
c

w>c Ψc(x,y)
)

=
1

Z(x)

∏
c

exp
(
w>c Ψc(x,y)

)
, (2.28a)

with Z(x) =
∑
y

∏
c

exp
(
w>c Ψc(x,y)

)
, (2.28b)

where w is composed of all wc, which are model parameters; Ψc is the joint feature

mapping function defined on the clique c; Z(x) is the normalization term, i.e., the

partition function. The prediction is then performed by solving the Maximum a Posterior

(MAP) inference:

ŷ = argmax
y∈Y

Pr(y|x;w). (2.29)

Comparing Eq. (2.28) with Eq. (2.19), we can see that CRF can be naturally regarded

as generalization of logistic regression to more general graphs. Analogous to logistic

regression, the model parameters can be learned by maximizing the conditional log-

likelihood (or minimizing the negative log-likelihood) of the training data:

min
w

1

2
‖w‖2 +

C

m

∑
i

log Z(x(i))−w>Ψ(x(i),y(i)). (2.30)

One can refer to the comprehensive survey of [32], which provides a broad review on

CRF and its applications.

Chapter 2 Background Literature 17

2.2.2.1 Continuous Conditional Random Fields

Thus far, all we have been dealing with are discrete problems. There exist some vi-

sion applications of which the output domain is structured and continuous, e.g ., image

denoising, depth estimation, etc.. For such kind of problems, continuous CRF can be

naturally applied. In the community, CRF have been extensively studied for classifica-

tion (discrete) problems, while less explored for regression (continuous) problems. One

of the pioneering work on continuous CRF can be attributed to [33], in which it was

proposed for global ranking in document retrieval. They show that the maximum likeli-

hood optimization can be directly solved under certain constraints, in that the partition

function can be analytically calculated.

Compared to the traditional discrete CRF models, since the label domain Y is continuous,

the partition function in Eq. (2.28) therefore becomes an integral:

Z(x) =

∫
y

∏
c

exp(w>c Ψc(x,y))dy. (2.31)

Under certain circumstances, the integral in Eq. (2.31) can be analytically calculated.

This can give rise to some benefits in the course of optimization, which we will show

in Chapter 5. Specifically, we jointly train continuous CRF with CNN in a unified

framework to yield state-of-the-art depth estimation performance.

2.3 Ensemble Learning

Ensemble learning [34] has been extensively studied and applied in the machine learning

community. The idea is to combine multiple weak hypotheses to form the final predictor

for classification or regression problems. The weak hypotheses to be combined can be

any weak models, e.g ., decision stumps, decision trees, or models trained using different

subsets of features. As for the ensemble techniques, Bayesian modelling, bootstrapping,

boosting are the most commonly applied methods. The simplest ensemble method is

average voting, which is to averagely combine the weak hypotheses. It has been used

as a general rule to boost the performance. Though widely applied in classification/re-

gression models, ensemble learning is less explored for structured learning problems. In

the case of classification or regression problems, it is straightforward to combine scalar

outputs. However, it is less clear how to combine structured predictions, e.g ., seman-

tic labelling masks in the image segmentation task through ensemble techniques. In

the recent work of [35], Cortes et al . present a broad analysis of the problem of en-

semble structured prediction, including a series of algorithms with learning guarantees.

18 Chapter 2 Background Literature

We show in Chapter 3 how to apply ensemble learning of decision trees in structured

learning scenario for image segmentation. Specifically, we model the CRF potentials as

ensembles of decision trees, and jointly learn the trees and the ensemble parameters in

the max-margin framework. The resulted optimization problem can be efficiently solved

by combining a modified column generation and cutting-plane algorithms.

2.3.1 Column Generation Boosting

Column generation (CG) is an efficient algorithm for solving large-scale linear program

(LP) problems. In [36], the authors proposed an LP formulation for boosting methods

solved by CG, termed as LPBoost, which can also be applied to general LP formulated

ensemble learning. This is relevant to our work in Chapter 3, which addresses a struc-

tured ensemble learning problem using CG. Therefore we here introduce LPBoost [36]

in detail.

LPBoost targets at the binary classification problem, in which a training example is

denoted by x with its label being y ∈ {−1,+1}. A weak learner/hypothesis is denoted

as ~, which performs the following mapping:

~ : x→ {−1,+1}, (2.32)

with each ~(·) ∈ H, i.e., the domain of all weak learners’ output is H. We use H(x(i))

to denote the output column vector of all possible ~(x(i)):

H(x(i)) = [~1(x(i)), ~2(x(i)), . . . , ~J(x(i))]>, (2.33)

with J being the total number of weak learners, i.e., the size of the domain H.

To perform the binary classification, LPBoost aims to learn a hyperplane that separates

the positive from the negative examples. The hyperplane is represented by a normal

vector w. Then the discriminative function is written as:

f(x) = sgn
[
w>H(x)

]
= sgn

[J∑
j=1

wj~j(x)

]
. (2.34)

From Eq. (2.34), we can see that LPBoost attempts to learn a set of weak learners and

their linear combination coefficients w to perform the final prediction.

Chapter 2 Background Literature 19

To learn the discriminative function defined in Eq. (2.34), LPBoost solves the following

LP optimization problem with soft margin:

min
w,ξ

1>w +
C

m

∑
i

ξi (2.35a)

s.t. : y(i)w>H(x(i)) + ξi ≥ 1,∀i = 1, . . . ,m, (2.35b)

w ≥ 0, ξ ≥ 0. (2.35c)

Here C is the trade-off parameter; ξ are slack variables. The L1 regularization on w

enforces sparsity, which selects a small number of weak learners.

Since the size of the domain H can be infinitely large, which means that the dimension

of w can be infinitely large, it is therefore intractable to solve the optimization in Eq.

(2.35) using standard LP techniques. The basic idea of CG is to maintain a working set

WH of the weak learners, and restrict the primal problem by only considering a subset

of all the possible labellings based on the current working set, which is referred as the

restricted master problem. Initially, the working set is empty and no weak learner is

generated. Then during each iteration, CG selects a new weak learner and adds it to

the working set WH, and then solve the restricted master problem based on the current

working set. To speedup convergence, the new weak learner is selected by finding the

most violated constraint in the dual. The dual of Eq. (2.35) written as:

max
λ

∑
i

λi (2.36a)

s.t. :
∑
i

λiy
(i)~j(x(i)) ≤ 1, ∀j = 1, . . . , J, (2.36b)

0 ≤ λi ≤
C

m
, ∀i = 1, . . . ,m, (2.36c)

where λ are dual variables, with each λi associated with a constraint in Eq. (2.35b).

Then the protocol for selecting a new weak learner is to find the ~ that most violates

the constraint in Eq. (2.36b):

~?(·) = argmax
~(·)∈H

∑
i

λiy
(i)~(x(i)). (2.37)

If no weak learner violates the dual constraint Eq. (2.36b), then an optimal solution is

obtained. This is the main idea of the LPBoost [36] and its extension [37]. Different

from the generally considered LP problem for the binary classification, we will show in

Chapter 3 that how we can apply a CG algorithm to solve a quadratic program (QP)

problem in the structured learning scenario for image segmentation.

20 Chapter 2 Background Literature

Figure 2.2: An illustration of the LeNet [2] for handwritten character recognition. Figure repro-
duced from [2].

2.4 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) [38] are special types of multi-layer neural net-

works, which were inspired by the locally sensitive property of the biological processes.

Fig. 2.3 shows an illustration of the notable LeNet [2] for handwritten character recogni-

tions. As shown, a CNN is typically composed of multiple convolutional layers, pooling

(subsampling) layers and fully connected layers.

• Convolution A convolutional layer performs convolutions over the input feature

maps. It ensures local connectivity—neurons are connected to a small local region

of the input, which is referred as the receptive field. This is intuitively originated

from the fact that neighbouring image pixels are generally highly correlated. Net-

work parameters are shared among all the receptive fields. A convolutional layer

is typically followed by a nonlinear activation function for non-linearities, e.g .,

sigmoid function (f(x) = tanh(x)), rectified linear units abbreviated as ReLU

(f(x) = max{0, x}).

• Pooling A pooling (or subsampling) layer takes blocks from the input feature

maps and outputs a single value for each block. Typically used are max pooling

and sum/mean pooling. It down-samples the feature maps and provides spatial

invariance.

• Fully connect A fully-connected layer connects each of its neurons to all units

in the input feature maps. Note that it can be regarded as a special case of the

convolutional layer, with the receptive field size being the full size of the input

feature maps. As there is only one receptive field (the whole input feature map

region), there is no weight sharing in the fully connected layer, i.e., each unit is

connected to its own neurons.

Chapter 2 Background Literature 21

...

...
... Pooling size

... ...Feature
maps

Receptive
field size

Conv

Pooling

(a) (b)

Figure 2.3: (a) An illustration of a single convolutional layer followed by a pooling layer with
pooling size being 2; (b) An illustration of a fully connected layer with 3 hidden neurons.

Fig. 2.4 shows an illustration of the low-level, mid-level and high-level features learned

from different layers of CNNs. As we can see, the low-level convolutional layer captures

oriented edges and color patterns, while higher level layers capture component patterns

or more high-level abstractions.

CNNs provide a general learning scheme for extracting hierarchical features from raw

RGB image and have demonstrated huge potentials in various applications. However,

they had been restricted to relatively small datasets in the past decades, which is mainly

due to the limited computational resources and the unresolved overfitting dilemma. Until

recently, the rapid development of high capacity computation power, especially GPU,

makes it possible to train deep networks for large scale datasets. Moreover, the invention

of the dropout [39] method provides an effective way for preventing overfittings. In [4],

Krizhevsky et al . published the breakthrough work of training deep CNNs for ImageNet

classifications. Since then, CNNs have been setting new records for diverse vision tasks,

ranging from image classification [4], object detection [40] to scene labelling [41]. For

more recent astounding results of CNNs related applications, one can refer to [42].

2.4.1 CNN for Structured Predictions

Though CNNs have been applied to a variety of classification problems and achieved

huge success, they have been less explored for structured prediction problems. Combin-

ing CNNs training with structured learning has become an appealing direction. However,

several challenges exit in this kind of combined learning models. First, training CNNs

generally requires large amounts of training data to perform stochastic gradient de-

scent (SGD). However, most of the current structured learning methods are not scalable

enough. Second, the SGD based maximum likelihood learning involves calculating the

gradients of the partition function, which is generally intractable. Therefore efficient

22 Chapter 2 Background Literature

approximation methods such as psudo-likelihood training or piecewise training need to

be applied. Moreover, learning deep structured models calls for more efficient inference

algorithms, since typically inference needs to be performed during each SGD iteration.

Existing methods of applying CNNs for structured learning typically use CNNs to model

the potential functions of a CRF. A simple way is to incorporate structured information

to a trained unary model as a post-processing step. These methods first train a CNN

model or generate CNN features for constructing the unary potential, then incorporate

spatial pairwise constraints to optimize the CRF loss. In [43], Chen et al . first train a

fully convolutional CNN for pixel classification and then separately apply a dense CRF

to refine the semantic labellings. In the work of [44], Tompson et al . present a hybrid

architecture for combining CNNs and MRF for human pose estimation by first training

a unary model and a spatial model separately and then fine-tuning them in a post-

processing step. Our work in Chapter 4 also belongs to this category. Specifically, we

transfer a pre-trained CNN model to extract features for constructing unary potentials,

and then perform CRF learning for predicting semantic labels of images.

Recently, more endeavours are made towards joint learning of CNNs and graphical mod-

els [44–48]. Joint learning means that all the parameters of the CNNs potentials func-

tions are learned simultaneously to optimize the CRF loss. These methods generally

enable end-to-end learning, which typically produce better results than the separate

learning methods. In [46], Zheng et al . propose to implement the mean field inference

in CRF as Recurrent Neural Networks (RNNs) to facilitate the end-to-end joint learning.

The work in [45] explores joint learning of MRF and deep models for predicting words

from noisy images and tagging photographs. In [47], Lin et al . propose an efficient

piecewise learning approach to jointly learn the unary and pairwise CNNs potentials in

CRF for semantic segmentation. They further propose in [48] to directly learn CNNs

message estimators in the message passing inference rather than learning potential func-

tions. One of the benefits of this method is that it explicitly incorporates the expected

number of inference iterations into the learning procedure, which reveals a new direc-

tion for scalable learning of deep structured models. Our work in Chapter 5 belongs to

one of these early attempts. In more detail, we propose a general framework for joint

training of CNNs and continuous CRF, which has the benefits of exact learning and

closed-form inference solutions. The proposed method is applied for the task of depth

estimations from single monocular images, and demonstrates superior performance over

state-of-the-art methods.

Chapter 2 Background Literature 23

(a) (b) (c)

Figure 2.4: An illustration of the (a) low-level, (b) mid-level and (c) high-level features learned
from different layers of CNN models. Figure reproduced from [3].

Chapter 3

CRF Learning with Tree

Potentials for Image

Segmentation

In this chapter, we propose a new approach for image segmentation, which exploits the

advantages of both conditional random fields (CRF) and decision trees. In the literature,

the potential functions of CRF are mostly defined as a linear combination of some pre-

defined parametric models, and then methods like SSVM are applied to learn those linear

coefficients. We instead formulate the unary and pairwise potentials as nonparametric

forests—ensembles of decision trees, and learn the ensemble parameters and the trees in

a unified optimization problem within the max-margin framework. In this fashion, we

easily achieve nonlinear learning of potential functions on both unary and pairwise terms

in CRF. Moreover, our method enables learning class-wise decision trees for each object

that appears in the image, which we call object-aware potentials learning. Due to the

rich structure and flexibility of decision trees, our approach is more powerful in modelling

complex data likelihoods and label relationships. The resulting optimization problem is

very challenging because it can have exponentially many variables and constraints. We

show that this challenging optimization can be efficiently solved by combining a modified

column generation and cutting-planes techniques. Experimental results on both binary

(Graz-02, Weizmann horse, Oxford flower) and multi-class (MSRC-21) segmentation

datasets demonstrate the power of the learned nonlinear nonparametric potentials.

25

26 Chapter 3 CRF Learning with Tree Potentials for Image Segmentation

Figure 3.1: Segmentation examples produced by our model on images from the Oxford 17 Flower
dataset with different column generation iterations. From left to right: Test images, 2nd, 4th,
6th, and 10th iteration.

3.1 Introduction

The goal of object segmentation is to produce a pixel level segmentation of different

object categories. It is challenging as the objects may appear in various backgrounds

and in different visual conditions. Early attempts have been made in geometric based

methods, or use simple statistical learning models to seek an optimal labelling for each

pixel (or super-pixels). Instead of looking at each pixel or its neighbourhood, looking

for a joint optimal assignment for all pixels (or superpixels) has become increasingly

popular via minimizing energy functions or maximizing some potential functions. As

one of these methods, CRFs [49] model the conditional distribution of labels given

observations, and represents the state-of-the-art in image/object segmentation [24, 26,

50–52]. The max-margin principle has also been applied to predict structured outputs,

including SSVM [29], and max-margin Markov networks [22]. These three methods

share similarities when viewed as optimisation problems using different loss functions.

Szummer et al . [24] proposed to learn linear coefficients of CRF potentials using SSVM

and graph cuts. To date, most of these methods assume a pre-defined parametric model

for the potential functions, and typically only the linear coefficients of the parametric

model are learned. This can greatly limit the flexibility of model capability of CRF,

and thus calls for effective methods to incorporate nonlinear nonparametric models for

learning the potential functions in CRF.

As in standard SVM, nonlinearity can be achieved by introducing nonlinear kernels for

SSVM. The time complexity of nonlinear SVM is roughly O(n3.5) with n being the

number of training data examples. This time complexity is problematic for SSVM,

where the number of constraints grows exponentially in the description length of the

label y. Moreover, nonlinear functions can significantly slow down the test time in most

cases. Because of these reasons, currently most SSVM applications use linear kernels (or

linear parametric potential functions in CRF), despite the fact that nonlinear functions

Chapter 3 CRF Learning with Tree Potentials for Image Segmentation 27

usually deliver more promising prediction accuracy. In this work, we address this issue

by combining CRF with nonparametric decision trees. Both CRF and decision trees have

gained tremendous success in computer vision. Decision trees are capable of modelling

complex relations and generalise well on test data. Unlike kernel methods, decision trees

are fast to evaluate and can be used to select informative features.

In this work, we propose to use ensembles of decision trees to map the image content

to both the data terms and the pairwise interaction values in CRFs. The proposed

method is termed CRFTree. We formulate both the unary and pairwise potentials as

nonparametric forests—ensembles of decision trees, and learn the ensemble parameters

and the trees in a single framework. In this way, nonlinearity is easily introduced into

CRF learning without confronting the kernel dilemma. Furthermore, we can learn class-

wise decision trees for each object, which can be called object-aware potentials learning.

Due to the rich structure and flexibility of decision trees, our approach is more powerful in

modelling complex data likelihoods and label relationships. The resulting optimization

problem is very challenging in the sense that it can have exponentially or even infinitely

many variables and constraints. Our main contributions are thus as follows.

1. We formulate the unary and pairwise potentials as ensembles of decision trees, and

show how to jointly learn the ensemble parameters and the trees in a unified opti-

mization problem within the max-margin framework. In this fashion, we achieve

nonlinear potentials learning both on the unary and pairwise terms.

2. We learn class-wise decision trees (potentials) for each object that appears in the

image. In other words, our potential learning is object-aware.

3. We show how the training of the proposed CRFTree can be performed efficiently.

In particular, we combine column generation and cutting-planes techniques to

approximately solve the resulting optimization problem, which can involve expo-

nentially many variables and constraints.

4. We empirically demonstrate that CRFTree outperforms existing methods for im-

age segmentation. On both binary and multi-class segmentation datasets we show

the advantages of the learned nonlinear nonparametric potentials of decision trees.

3.1.1 Related Work

We briefly review some work that is relevant to ours. A few attempts have been made to

apply nonlinear kernels in SSVM. The authors of [53] and [54] developed sampled cuts

based methods for training SSVM with kernels. Sampled cuts methods were originally

proposed for standard kernel SVM. When applied to SSVM, performance is compromised

28 Chapter 3 CRF Learning with Tree Potentials for Image Segmentation

[26]. In [25], image-mask pair kernels are designed to exploit image-level structural infor-

mation for object segmentation (their kernels are restricted to the unary term). Although

not in the max-margin framework, the kernel CRF proposed in [12] incorporates kernels

into the CRF learning. The authors only demonstrated the efficacy of their method on a

synthetic and a small scale protein dataset. To sum up, these approaches are hampered

by the heavy computation complexity. Furthermore, it is not a trivial task to design

appropriate kernels for structured problems. Recently, Lucchi et al. [26] proposed a

two-step solution to tackle this problem. They train a linear SSVM by using kernelized

feature vectors that are obtained from training a standard non-linear kernel SVM. They

experimentally demonstrated that the kernel transferred linear SVM achieved similar

performance as the Gaussian SVM. However, this approach is heuristic and it cannot

be shown theoretically that their formulation approximates a nonlinear SSVM. Besides,

their method consumes extra usage of memory and training time since the dimension of

the transformed features equals the number of support vectors, while the latter is lin-

early proportional to the size of the training data [55]. Moreover, compared to the above

mentioned works of [25] and [26], we achieve nonlinear learning both on the unary and

the pairwise terms while theirs are limited to nonlinear unary potential learning. The

recent work of [56] generalizes standard boosting methods to structured learning, which

shares similarities with our work here. However, our method bears critical differences

from theirs: 1) We design a column generation method for non-linear potentials learning

in CRF directly from the SSVM formulation. It enables the use of specialized SVM QP

solvers, which is in practice faster than solving an LP problem. In contrast, [56] needs

to solve an LP problem during each column generation iteration, which is generally not

scalable. 2) We develop a CRF learning method for multi-class image segmentation,

while [13] only shows CRF learning for binary foreground/background segmentation. 3)

We learn class-wise decision trees (potentials) for each object that appears in the image.

This is different from [56]. The work of decision tree fields [57] is close to ours in that

they also use decision trees to model the pairwise potentials. The major difference is

that in [57] the learning is implemented by optimizing the pseudo-likelihood objective

function of CRF. By contrast, in our CRFTree, we learn the nonparametric poten-

tials (represented by ensembles of trees) in the max-margin structured output learning

framework, which can be seen as a generalization of SSVM.

Chapter 3 CRF Learning with Tree Potentials for Image Segmentation 29

3.2 Segmentation Using CRF Models

Given an image instance x and its corresponding labelling y, CRF [49] models the

conditional distribution of the form

Pr(y|x;w) =
1

Z(x)
exp(−E(y,x;w)). (3.1)

where w are parameters and Z the partition function. The energy E of an image x with

segmentation labels y over the nodes (superpixels) N and edges S, takes the following

form:

E(y,x;w) =
∑
p∈N

U(yp,x;w) +
∑

(p,q)∈S

V (yp, yq,x;w). (3.2)

Here x ∈ X,y ∈ Y; U and V are the unary and pairwise potentials, both of which depend

on the observations as well as the parameter w. CRF seeks an optimal labeling that

achieves maximum a posterior (MAP), which mainly involves a two-step process [24]: 1)

Learning the model parameters from the training data; 2) Inferring a most likely label

for the test data given the learned parameters. The segmentation problem thus reduced

to minimizing the energy (or cost) over y by the learned parameters w, which is written

as:

y∗ = argmin
y∈Y

E(y,x;w). (3.3)

When the energy function is submodular, this inference problem can be efficiently solved

via graph cuts [24].

3.3 Learning Tree Potentials in CRF

We present the details of our method in this section by first formulating the energy

functions and then showing how to learn decision tree potentials in the max-margin

framework.

3.3.1 Energy Formulation

Given the energy function in Eq. (3.2), we show how to construct the unary and pairwise

potentials using decision trees. We denote xp as the features of superpixel p (p =

1, . . . , n), with its label yp ∈ {1, . . . ,K}, where K is the number of classes. Let H be

a set of decision trees, which can be infinite. Each ~(1)j (·) ∈ H takes xp as input, and

30 Chapter 3 CRF Learning with Tree Potentials for Image Segmentation

~(2)j (·, ·) ∈ H takes a pair (xp,xq) as input to output {0, 1}. We introduce (K + 1)

groups of decision trees, in which K groups are for the unary potential and one group

for the pairwise potential. For the unary potential, the K groups of decision trees

are denoted by H
(1)
c (c = 1, . . . ,K), which correspond to K categories. Each H

(1)
c is

associated with the c-th class. In other words, for each class, we maintain its own unary

feature mappings. Each group of decision trees for the unary potential can be written

as: H
(1)
c = [~(1)c1 , ~

(1)
c2 , . . .]

>, which are the output of decision trees: ~(1)cj . All decision

trees of the unary potential are denoted by H(1) = [H
(1)
1 ,H

(1)
2 , . . . ,H

(1)
K]. Accordingly,

for the pairwise potential, the group of decision trees is denoted by H(2), and H(2) =

[~(2)1 , ~(2)2 , . . .]> being the output of all ~(2)j . The whole set of decision trees is denoted

by H = [H(1),H(2)]. We then construct the unary and pairwise potentials as

U(y(p),x) = w(1)>
yp H(1)

yp (xp). (3.4)

V (y(p), y(q),x) = w(2)>H(2)(xp,xq)δ(yp 6= yq). (3.5)

where δ(·) is an indicator function which equals 1 if the input is true and 0 otherwise.

Then the energy function in Eq. (3.2) can be written as:

E(y,x;w,H) =
∑
p∈N

w(1)>
yp H(1)

yp (xp)

+
∑

(p,q)∈S

w(2)>H(2)(xp,xq)δ(yp 6= yq). (3.6)

Next we show how to learn these decision tree potentials in the max-margin framework.

3.3.2 Learning CRF in the Max-Margin Framework

Applying the max-margin based CRF learning is to solve the following optimization:

min
w,ξ

1

2
‖w‖22 + C

m

∑
i

ξi

s.t. : E(y,xi;w,H)− E(yi,xi;w,H) ≥ ∆(yi,y)− ξi,

∀i = 1, . . . ,m, and ∀y ∈ Y;

ξ ≥ 0. (3.7)

where ∆ : Y×Y 7→ R is a loss function associated with the prediction and the true label

mask. In general, we have ∆(y,y) = 0 and ∆(y,y′) > 0 for any y′ 6= y. Intuitively,

the optimization in Eq. (3.7) is to encourage the energy of the ground truth label

E(yi,xi;w) to be lower than any other incorrect labels E(y,xi;w) by at least a margin

∆(yi,y).

Chapter 3 CRF Learning with Tree Potentials for Image Segmentation 31

To learn the potential functions we proposed in Sec. 3.3.1 in the max-margin framework,

we introduce the following definitions. For the unary part, we define w(1) = w
(1)
1 �w

(1)
2 �

. . .�w
(1)
K , where � stacks two vectors, and

Ψ(1)(y,x;H(1)) =
∑
p∈N

H(1)
yp (xp)⊗ yp. (3.8)

where ⊗ denotes the tensor operation (e.g ., xp ⊗ yp = [δ(yp = 1)xp>, . . . , δ(yp =

K)xp>]>). Recall that xp denotes the p-th superpixel of the image x. Here, Ψ(1) acts as

the unary feature mapping. Clearly we have:

w(1)>Ψ(1)(y,x;H(1)) =
∑
p∈N

U(yp,x). (3.9)

For the pairwise part, we define the pairwise feature mapping as:

Ψ(2)(y,x;H(2)) =
∑

(p,q)∈S

H(2)(xp,xq)δ(yp 6= yq). (3.10)

Then we have the following relation:

w(2)>Ψ(2)(y,x;H(2)) =
∑

(p,q)∈S

V (yp, yq,x). (3.11)

We further define w = w(1) �w(2), and the joint feature mapping as

Ψ(y,x;H) = Ψ(1)(y,x;H(1))�Ψ(2)(y,x;H(2)). (3.12)

With the definitions of w and Ψ, the energy function can then be written as:

E(y,x;w,H) =
∑
p∈N

U(yp,x;w,H(1))

+
∑

(p,q)∈S

V (yp, yq,x;w,H(2))

= w>Ψ(y,x;H). (3.13)

32 Chapter 3 CRF Learning with Tree Potentials for Image Segmentation

Now we can apply the max-margin framework to learn CRF using the proposed energy

functions by rewriting the optimization problem in Eq. (3.7) as:

min
w,ξ

1

2
‖w‖22 + C

m

∑
i

ξi

s.t. : w> [Ψ(y,xi;H)−Ψ(yi,xi;H)] ≥ ∆(yi,y)− ξi,

∀i = 1, . . . ,m, and ∀y ∈ Y;

w ≥ 0, ξ ≥ 0. (3.14)

Note that we add the w ≥ 0 constraint to ensure submodular property of our energy

functions, which we will discuss the details later in Sec. 3.3.3. Up until now, we are

ready to learn w and Ψ (or H) in a single optimization problem formulated in Eq. (3.14),

but it is not clear how. Next we demonstrate how to solve the optimization problem in

Eq. (3.14) by using column generation and cutting-plane.

3.3.3 Learning Tree Potentials Using Column Generation

We aim to learn a set of decision trees H and the potential parameter w by solving the

optimization problem in Eq. (3.14). However, jointly learning H and w is generally

difficult. One reason for this difficulty is that the number of constraints grows exponen-

tially with the CRF size, and another reason is that there are infinitely many decision

trees. We here propose to apply column generation techniques [36, 37] to alternatively

construct the set of decision trees and solve for w. From the point of view of column

generation, the dimension of primal variable w is infinitely large; column generation is to

iteratively select (generate) variables for solving the optimization. In our case, infinitely

many dimension of w corresponds to infinitely many decision trees, thus we iteratively

generate decision trees to solve the optimization.

Basically, we construct a working set of decision trees (denoted as WH). For each column

generation iteration we perform two steps. In the first step, we generate new decision

trees and add to WH. In the second step, we solve a restricted optimization problem

in Eq. (3.14) on the current working set WH to obtain the solution of w. We repeat

these two steps until convergence. Next we describe how to generate decision trees in

a principal way by using the dual solution of the optimization in Eq. (3.14), which is

similar to the conventional column generation technique. First we derive the Lagrange

Chapter 3 CRF Learning with Tree Potentials for Image Segmentation 33

dual problem of Eq. (3.14). The Lagrangian of Eq. (3.14) can be written as:

L =
1

2
‖w‖22 + C

m

∑
i

ξi −
∑
i,y

λ(i,y) ·
{
w> [Ψ(y,xi;H)−Ψ(yi,xi;H)]

−∆(yi,y) + ξi

}
− θ>w − β>ξ, (3.15)

where λ,θ,β are Lagrange multipliers: λ ≥ 0,θ ≥ 0,β ≥ 0. For ease of notation, we

give the following definition:

δΨi(y) ≡ Ψ(y,xi;H)−Ψ(yi,xi;H). (3.16)

At optimum, the first derivative of the Lagrangian w.r.t the primal variables must vanish,

∂L

∂ξi
= 0 =⇒ C

m
−
∑
y

λ(i,y) − βi = 0

=⇒ 0 ≤
∑
y

λ(i,y) ≤
C

m
; (3.17)

and,

∂L

∂w
= 0 =⇒ w −

∑
i,y

λ(i,y)δΨi(y)− θ = 0

=⇒ w =
∑
i,y

λ(i,y)δΨi(y) + θ,

=⇒ w ≥
∑
i,y

λ(i,y)δΨi(y) (3.18)

By substituting them into Eq. (3.15), the dual problem of Eq. (3.14) can be written as:

max
λ

∑
i,y

λ(i,y)∆(yi,y)− 1

2

[∑
i,y

λ(i,y) [Ψ(y,xi;H)−Ψ(yi,xi;H)]− θ
]2

s.t. : 0 ≤
∑

y λ(i,y) ≤
C
m , ∀i = 1, . . . ,m;

θ ≥ 0,λ ≥ 0.

Here θ,λ are the dual variables. When using column generation technique, one need

to find the most violated constraint in the dual. However, the constraints of the dual

problem do not involve decision trees H. Instead of examining the dual constraint,

we inspect the KKT condition, which is an important difference compared to existing

column generation techniques. According to the KKT condition, when at optimal, the

34 Chapter 3 CRF Learning with Tree Potentials for Image Segmentation

following condition holds for the primal solution w and the current working set WH:

w ≥
∑
i,y

λ(i,y)[Ψ(y,x;H)−Ψ(yi,x;H)]. (3.19)

All of those generated H ∈ WH satisfy the above condition. Obviously, generating

new decision trees which most violate the above condition would contribute the most

to optimization of Eq. (3.14). Hence the strategy of generating new decision trees is to

solve the following problem:

H? = argmax
H

∑
i,y

λ(i,y)[Ψ(xi,y;H)−Ψ(xi,yi;H)]. (3.20)

Then H? is added to the current working set WH. If H? still satisfy the condition in

Eq. (3.19), the current solution of H and w are already the globally optimal one.

The optimization in Eq. (3.20) for generating new decision trees can be independently

decomposed into solving the unary part and the pairwise part. Hence H? can be written

as: H? = [H(1)?,H(2)?]. For the unary part, we learn class-wise decision trees, namely,

we generate K decision trees corresponding to K categories at each column generation

iteration. Hence H(1)? is composed of K decision trees: H(1)? = [~(1)?1 , . . . , ~(1)?K]. More

specifically, according to the definition of Ψ(y,x) in Eq. (3.12), we solve the following

K problems:

∀c =1, . . . ,K :

~(1)?c (·) = argmax
~∈H

∑
i,y

λ(i,y)

[∑
p∈N,
yp=c

~(1)yp (xpi)−
∑
p∈N,

y
p
i
=c

~(1)
ypi

(xpi)

]

= argmax
~∈H

∑
i,y

[∑
p∈N,
yp=c

λ(i,y)~(1)yp (xpi)︸ ︷︷ ︸
positive

−
∑
p∈N,

y
p
i
=c

λ(i,y)~
(1)

ypi
(xpi)︸ ︷︷ ︸

negative

]
. (3.21)

To solve the above optimization problems, we here train K weighted decision tree clas-

sifiers. Specifically, when training decision trees for the c-th class, the training data is

composed of those superpixels whose ground truth label or predicted label is equal to

the category label c. Since the output of the decision tree is in {0, 1} and λ(i,y) ≥ 0, the

maximization in Eq. (3.21) is achieved if ~(1)c outputs 1 for each of the superpixel p with

yp = c, and outputs 0 for each of the superpixel p with ypi = c. Therefore, as indicated

by the horizontal curly braces in Eq. (3.21), superpixels with the predicted labels of

category c are used as positive training examples, while superpixels with ground truth

labels of category c are used as negative training examples. The dual solution λ serve

as weightings of the training data. It is also worth noting that if we search over all the

c categories to get the most violated constraint (by adding c under the argmax), we

Chapter 3 CRF Learning with Tree Potentials for Image Segmentation 35

are learning non-object-aware decision trees, which is commonly done in most boosting

methods, e.g ., [37], for solving multi-class problems. We will show the advantages of

learning object-aware potentials in the experiment part.

For the pairwise part, we generate one decision tree in each column generation iteration,

hence H(2)? can be written as H(2)? = [~(2)?], the new decision tree for the pairwise part

is generated as:

~(2)?(·, ·) = argmax
~∈H

∑
i,y

λ(i,y)

[∑
(p,q)∈S

~(2)(xp,xq)δ(yp 6= yq)︸ ︷︷ ︸
positive

−
∑

(p,q)∈S

~(2)(xp,xq)δ(ypi 6= yqi)︸ ︷︷ ︸
negative

]
. (3.22)

Similar to the unary case, we train a weighted decision tree classifier with λ as train-

ing example weightings. The positive and negative training data are indicated by the

horizontal curly braces in Eq. (3.22). ~(2) is the response of a decision tree applied on

the pairwise features constructed by two neighbouring superpixels (xp, xq), e.g ., color

differences or shared boundary lengths.

With the above analysis, we can now apply column generation to jointly learn the

decision trees H(1),H(2) and w. The column generation (CG) procedure iterates the

following two steps:

1) Solve Eq. (3.21), Eq. (3.22) to generate decision trees H(1)?, H(2)?;

2) Add H(1)? and H(2)? to working set WH and resolve for the primal solution w and

dual solution λ.

We show some segmentation examples on the Oxford flower dataset produced by our

method with different CG iterations in Fig. 3.1. As can be seen, our method refines the

segmentation with the increase of CG iterations. Since this dataset is relatively simple,

a few CG iterations are enough to get satisfactory results.

For solving the primal problem in the second step, it involves a large number of con-

straints due to the large output space {y ∈ Y}. We next show how to apply the cutting-

plane technique [58] to efficiently solve this problem.

3.3.4 Speeding up Optimization Using Cutting-Plane

To apply cutting-plane for solving the optimization in Eq. (3.14), we first derive its

1-slack formulation. The 1-slack SSVM formulation was first introduced by [58]. The

36 Chapter 3 CRF Learning with Tree Potentials for Image Segmentation

Algorithm 1: CRFTree using column generation

1 1. Input: training examples (x1;y1), (x2;y2), · · · ; maximum iteration number.
2 2. Initialize (λ, y), and decision tree working set WH ← ∅
3 3. Repeat
4 4. − Find decision trees H? by solving Eq. (3.21), Eq. (3.22). Add H? to working set WH.
5 5. − Call Alg. 11 using working set WH to solve for w and λ.
6 6. Until the maximum iteration is reached.
7 7. Output: w, H ∈WH.

Algorithm 2: Cutting-planes for solving the 1-slack primal

1 1: Input: cutting-plane termination threshold εcp, and inputs from Alg. 7.
2 2: Initialize: working set W← ∅; r.
3 3: Repeat
4 4: − W←W ∪ {(r1, . . . , rm,y?

1 , . . . ,y
?
m)}.

5 5: − Obtain primal and dual solutions w, ξ; λ by solving Eq. (3.23) on W.
6 6: − For i = 1, . . . ,m
7 7: Solve the inference problem in Eq. (3.24) using Graph-Cut to find the most violated y?

i .
8 9: − End for
9 10: Until

10
1
m
w>
[

m∑
i=1

ri [Ψ(y?
i ,xi)−Ψ(yi,xi)]

]
≥ 1

m

m∑
i=1

ri∆(yi,y
′
i)− ξ − εcp.

11 11: Output: w, ξ; λ,W.

1-slack formulation of our method can be written as:

min
w,ξ

1
2 ‖w‖

2
2 + Cξ

s.t. :
1

m
w>
[m∑
i=1

ri · [Ψ(y,xi;H)−Ψ(yi,xi;H)]

]

≥ 1

m

m∑
i=1

ri∆(yi,y)− ξ,∀r ∈ {0, 1}m, ∀y ∈ Y,

w ≥ 0, ξ ≥ 0. (3.23)

Cutting-plane methods work by finding the most violated constraint for each example i

y?i = argmin w>Ψ(y,x;H)−∆(yi,y) (3.24)

at every iteration and add it to the constraint working set. The sketch of our method is

summarized in Algorithm 7, which calls Algorithm 11 to solve the 1-slack optimization.

3.3.4.1 Implementation Details

To deal with the unbalanced appearance of different categories in the dataset, we define

∆(yi,y) as weighted Hamming loss, which weighs errors for a given class inversely

proportional to the frequency it appears in the training data, similar to [26]. In the

inference problem in Eq. (3.24), when using the hamming loss as the label cost ∆,

Chapter 3 CRF Learning with Tree Potentials for Image Segmentation 37

the label cost term can be absorbed into the unary part. We can apply Graph-cut to

efficiently solve the inference in Eq. (3.24).

3.3.4.2 Discussions on the Submodularity

It is known that if graph cuts are to be applied to achieve globally optimum labelling

in segmentation, the energy function must be submodular. For foreground/background

segmentation in which a (super-)pixel label takes value in {0, 1}, we show that our

method keeps this submodular property. It is commonly known that an energy function

is submodular if its pairwise term satisfies: ηpq(0, 0) + ηpq(1, 1) ≤ ηpq(0, 1) + ηpq(1, 0).

Recall that our pairwise energy is written as ηpq(yp, yq) = w(2)>H(2)(xp,xq)δ(yp 6= yq).

Clearly we have (ηpq(0, 0) = ηpq(1, 1) = 0) because of the indicator function δ(yp 6= yq).

The second thing is to ensure ηpq(1, 0) + ηpq(0, 1) ≥ 0. Given the non-negativeness

constraint we impose on w in our model, and the output of decision trees in our method

taking values from {0, 1}, we have ηpq(1, 0) ≥ 0 and ηpq(0, 1) ≥ 0. We thus accomplish

the proof of the submodularity of our model. In the case of multi-object segmentation,

the inference is done by the α-expansion of graph cuts.

3.4 Experiments

To demonstrate the effectiveness of the proposed method, we first compare our model

with some most related baseline methods, which are SVM, AdaBoost and SSVM. In

Sec. 3.4.3, we show that state-of-the-art results can be achieved by incorporating the

recent unsupervised feature learning method [59].

3.4.1 Experimental Setup

The datasets evaluated here include three binary (Weizmann horse, Oxford flower and

Graz-02) and one multi-class dataset (MSRC-21). The Weizmann horse dataset1 consists

of 328 horse images from various backgrounds, with groundtruth masks available for each

image. We use the same data split as in [25] and [60]. The Oxford 17 category flower

dataset [61] is composed of 849 flower images. Those with too small foreground are

removed, which leaves 753 for segmentation purpose [61]. The data split stated in [61]

is used to perform the evaluation. During our experiment, images of the Weizmann

horse and the Oxford flower datasets are resized to 256×256. The Graz-02 dataset2

1http://www.msri.org/people/members/eranb/
2http://www.emt.tugraz.at/~pinz/

 http://www.msri.org/people/members/eranb/
http://www.emt.tugraz.at/~pinz/

38 Chapter 3 CRF Learning with Tree Potentials for Image Segmentation

contains 3 categories (bike, car and people). This dataset is considered challenging

as the objects appear at various background and with different poses. We follow the

evaluation protocol in [62] to use 150 for training and 150 for testing for each category.

The MSRC-21 dataset [50] is a popular multi-class segmentation benchmark with 591

images containing objects from 21 categories. We follow the standard split to divide the

dataset into training/validation/test subsets.

We start with over-segmenting the images into superpixels using SLIC [63], with ∼ 700

superpixels generated per image. We then extract dense SIFT descriptors and color

histograms around each superpixel centroid with different block sizes (12×12, 24×24,

36×36). The dense SIFT descriptors are then quantized into bag-of-words feature using

nearest neighbor search with a codebook size of 400. We construct four types of pairwise

features also using different block sizes to enforce spatial smoothness, which are color

difference in LUV space, color histogram difference, texture difference in terms of LBP

operators as well as shared boundary length [51]. The column generation iteration

number of our CRFTree is set to 50 based on a validation set. We learn tree potentials

with tree depth 2. Training on the MSRC dataset takes around 16 hours on a standard

PC desktop.

3.4.2 Comparing with Baseline Methods

We first compare CRFTree with some conventional methods, which are linear SVM,

AdaBoost and SSVM to demonstrate the superiority of our method. For SVM and Ad-

aBoost, each superpixel is classified independently without CRF. We mainly evaluate on

the more challenging Graz-02 and MSRC dataset in this part. The regularization param-

eter C of SVM, SSVM and our CRFTree are selected from {1, 10, 100, 1000} based on a

validation set. We use depth-2 decision trees for training AdaBoost and our CRFTree.

The maximum iteration number of AdaBoost is chosen from {50, 100, 200}. For our

method, we treat the foreground and background as two categories in the binary case

to learn class-wise potentials.

3.4.2.1 Graz-02

For a comprehensive evaluation, we use two measurements to quantify the performance

on the Graz-02 dataset, which are intersection over union score and the pixel accuracy

(including foreground and background). We report the results in Table 3.1. As can be

observed, AdaBoost based on a depth-2 decision tree performs better than the linear

SVM. On the other hand, structured methods which jointly consider local information

and spatial consistency are able to significantly outperform the simple binary models.

Chapter 3 CRF Learning with Tree Potentials for Image Segmentation 39

Category bike car people

intersection/union (foreground, background)(%)

SVM 67.8 (51.9, 83.8) 69.7 (46.8, 92.6) 65.0 (44.5, 85.5)
AdaBoost 71.2 (57.6, 84.9) 71.0 (49.4, 92.6) 67.7 (48.7, 86.7)

SSVM 72.2 (58.6, 85.8) 76.9 (60.0, 94.2) 70.9 (53.8, 87.9)
CRFTree 76.4 (65.0, 87.8) 79.5 (64.0, 95.0) 74.2 (58.7, 89.7)

pixel accuracy (foreground, background)(%)

SVM 79.5 (67.4, 91.5) 77.3 (57.2, 97.3) 77.7 (63.8, 91.6)
AdaBoost 83.8 (77.3, 90.3) 80.1 (63.5, 96.6) 80.5 (69.0, 91.9)

SSVM 83.8 (76.1, 91.6) 85.5 (73.8, 97.2) 83.9 (75.8, 92.1)
CRFTree 87.8 (83.9, 91.8) 87.0 (76.4, 97.7) 85.9 (78.4, 93.4)

Table 3.1: The average intersection-over-union score and average pixel accuracy comparison on
the Graz-02 dataset. We include the foreground and background results in the brackets. Our
method CRFTree with nonlinear and class-wise potentials learning performs better than all the
baseline methods.

Method Sa So

Levin & Weiss [64] 95.5 -
Cosegmentation [65] 80.1 -
Bertelli et al . [25] 94.6 80.1
Kuttel et al . [60] 94.7 -

CRFTree (FL) 94.6 80.4

Table 3.2: Performance of different methods on the Weizmann Horse dataset.

By introducing nonlinear as well as class-wise potentials learning, our method is able to

gain further improvement over SSVM. We show some qualitative evaluation examples

of AdaBoost, SVM, SSVM and our CRFTree on Graz-02 dataset in Fig. 3.4.

3.4.2.2 MSRC-21

We learn class-wise potentials using our CRFTree for each of the 21 classes on the

MSRC dataset. The compared results are summarized in Table 3.6 (upper part). Similar

conclusions can be drawn as on the Graz-02 dataset and our CRFTree again outperforms

all its baseline competitors. In Fig. 3.6, we show the confusion matrices of the predictions

from SSVM and our CRFTree. The diagonal entries show the true positive predictions.

As we can see, our CRFTree model performs generally better than SSVM.

3.4.3 Comparing with State-of-the-art Methods

To compare with state-of-the-art methods, we add features learned from the unsuper-

vised feature learning [59] into our method. Specifically, we first learn a dictionary B of

size 400 and patch size 6×6 based on the evaluated image dataset using Kmeans, and

then use the soft threshold coding [59] to encode patches extracted from each super-

pixel block. The final feature vectors (we call it encoding feature here) are obtained by

performing a three-level max pooling over the superpixel block.

40 Chapter 3 CRF Learning with Tree Potentials for Image Segmentation

Method Sa So

Nilsback et al . [61] - 94.0
Bertelli et al . [25] 97.7 92.3

CRFTree (FL) 98.0 94.2

Table 3.3: Performance of different methods on the Oxford Flower dataset. Our method
CRFTree performs better than the compared methods.

Category bike car people

intersection/union (foreground, background)(%)

CRFTree (FL) 78.3 (67.7, 88.9) 83.0 (70.1, 95.9) 75.7 (61.0, 90.5)

pixel accuracy (foreground, background)(%)

CRFTree (FL) 89.1 (85.8, 92.4) 90.0 (82.1, 98.0) 86.9(80.0, 94.0)

Table 3.4: The average intersection-over-union score and average pixel accuracy of CRFTree by
incorporating unsupervised feature learning method. We include the foreground and background
results in the brackets.

3.4.3.1 Weizmann Horse

We quantify the performance by the global pixel-wise accuracy Sa and the foreground

intersection over union score So, as did in [25]. Sa measures the percentage of pixels

correctly classified while So directly reflects the segmentation quality of the foreground.

The results are reported in Table 3.2. Our method performs better than the kernel struc-

tural learning method of [25], which may result from the fact that they only introduced

nonlinearity into the unary part while our method achieves nonlinearity on both unary

and pairwise terms. The best Sa score is obtained by [64]. However their method relies

on an assumption that a perfect bounding box of the horse is available for each test

image, which is not practically applicable. On the contrary, we provide a principal and

general way of nonlinearly learning CRF parameters. We show some segmentation ex-

amples of our method in Fig. 3.2. As can be observed, our method produces predictions

quite close to the ground-truths.

3.4.3.2 Oxford Flower

As in [25], we also use Sa and So to measure the performance on the Oxford flower

dataset, and report the results in Table 3.3. Our method performs comparable to the

original work of [61] on this dataset in terms of So while again outperforms the closely

related state-of-the-art work of [25]. It is also worth noting that the method in [61] is

very domain specific, which relies on modelling the flower’s shape (center and petal),

while ours is generally applicable. Examples of segmentation results on Oxford flower

dataset are shown in Fig. 3.5.

Chapter 3 CRF Learning with Tree Potentials for Image Segmentation 41

Method bike car people average

Marszalek & Schimid [62] 61.8 53.8 44.1 53.2
Fulkerson et al . [66] 66.4 54.7 51.4 57.5
Aldavert et al . [67] 71.9 62.9 58.6 64.5
Kuettel et al . [60] 63.2 74.8 66.4 68.1

CRFTree (FL) 80.7 82.4 75.8 79.5

Table 3.5: Comparing with state-of-the-art methods on the Graz-02 dataset. We report the
F-score (%) for each class and the average over classes. Our method CRFTree outperforms all
the compared methods with a large margin.

3.4.3.3 Graz-02

As in the work of [62], [66], [67], [60], we also evaluate the F-score on the Graz-02 dataset

besides the above mentioned intersection over union score and pixel accuracy. The F-

score is defined as F = 2pr/(p + r), where p is the precision and r is the recall. We

summarize the results in Table 3.5 and Table 3.4. From Table 3.5, it can be seen that our

method significantly outperforms all the compared methods, which fully demonstrate the

power of nonlinear and class-wise potentials learning. Furthermore, compared with the

results in Table 3.1, adding more features help to improve the performance.

3.4.3.4 MSRC-21

For efficient training on the MSRC dataset, we first train a linear SVM on each of the

three groups of feature (bag-of-words, color histogram and encoding features) and use

the per-class scores as the feature vectors to train our model by using depth-2 decision

trees. The compared results with state-of-the-art work are reported in the lower part

of Table 3.6. By incorporating features learned from the unsupervised feature learning

method, our CRFTree gains significant improvement over the previous results which only

use bag-of-words and color histogram features. Moreover, our method performs better

than the related work of Lucchi et al . [26] which uses kernel transformed features.

It has to be pointed out that we did not employ any global potentials (while in [26],

they improve the global and average per-category accuracy to 82 and 76 when adding

global information). If global or higher potentials are incorporated into our model,

further performance promotion can be expected. We show some qualitative evaluation

examples in Fig. 3.3.

3.4.4 Object-aware vs. Non-object-aware

To further demonstrate the power of the proposed method by learning object-aware

potentials, we add an experiment to compare the object-aware and the non-object-aware

42 Chapter 3 CRF Learning with Tree Potentials for Image Segmentation

b
u
il
d
in

g

g
ra

ss

tr
ee

co
w

sh
ee

p

sk
y

a
er

o
p
la

n
e

w
a
te

r

fa
ce

ca
r

b
ic

y
cl

e

fl
ow

er

si
g
n

b
ir

d

b
o
o
k

ch
a
ir

ro
a
d

ca
t

d
og

b
o
d
y

b
oa

t

A
v
e
ra

g
e

G
lo
b
a
l

SVM 54 92 73 41 54 80 51 67 51 41 59 41 28 8 64 17 75 41 23 20 7 47.0 63.7
AdaBoost 68 92 83 48 58 87 43 69 58 43 64 41 32 14 70 28 79 47 22 41 6 52.0 68.6

SSVM 65 92 81 42 76 84 65 70 75 54 87 62 31 14 76 31 78 61 30 25 2 57.2 70.8
CRFTree 53 87 85 59 84 90 77 82 81 54 90 57 62 22 81 59 80 71 26 49 15 64.9 73.9

CRFTree (FL) 64 94 89 80 89 91 93 81 81 74 89 78 74 50 86 79 88 85 48 69 20 76.3 82.2
Shotton et al . [50] 49 88 79 97 97 78 82 54 87 74 72 74 36 24 93 51 78 75 35 66 18 67 72
Ladicky et al . [68] 80 96 86 74 87 99 74 87 86 87 82 97 95 30 86 31 95 51 69 66 9 75 86
Gonfaus et al . [69] 60 78 77 91 68 88 87 76 73 77 93 97 73 57 95 81 76 81 46 56 46 75 77
Lucchi et al . [26] 41 77 79 87 91 86 92 65 86 65 89 61 76 48 77 91 77 82 32 48 39 70 73
Lucchi et al . [70] 67 89 85 93 79 93 84 75 79 87 89 92 71 46 96 79 86 76 64 77 50 78.9 83.7

Table 3.6: Segmentation results on the MSRC dataset. We report the pixel-wise accuracy for
each category as well as the average per-category scores and the global pixel-wise accuracy. (1)
The upper part presents the comparison with baseline methods, which all use bag-of-words and
color histogram features. Our method CRFTree gains impressive improvements over SSVM
while far better than simple linear models. (2) The lower part shows the results of our method
incorporated with unsupervised feature learning (denoted as CRFTree (FL)) compared to state-
of-the-art methods on this dataset.

b
u

il
d

in
g

g
ra

ss

tr
ee

co
w

sh
ee

p

sk
y

ae
ro

p
la

n
e

w
a
te

r

fa
ce

ca
r

b
ic

y
cl

e

fl
ow

er

si
g
n

b
ir

d

b
o
ok

ch
a
ir

ro
a
d

ca
t

d
og

b
o
d
y

b
oa

t

A
v
e
ra

g
e

G
lo
b
a
l

CRFTree (NOA) 59 86 84 56 81 83 74 71 74 49 82 51 62 13 82 66 77 75 25 41 11 62.1 71.3
CRFTree (OA) 53 87 85 59 84 90 77 82 81 54 90 57 62 22 81 59 80 71 26 49 15 64.9 73.9

Table 3.7: Compared results of the object-aware (denoted as CRFTree (OA)) and the non-object-
aware (denoted as CRFTree (NOA)) models on the MSRC dataset. Using object-aware potentials
learning yields better results, which demonstrates the strength of the proposed method.

models (details in Sec. 3.3.3). We use simple bag-of-words and color histogram features

as in Sec. 3.4.2 and report the results in Table 3.7. As expected, our object-aware

potentials learning outperforms its non-object-aware counterpart, which validates our

claim and shows promising prospects in the application of multi-object segmentation.

3.5 Conclusion

In this work, we have proposed a structured learning of tree potentials method for im-

age segmentation. The unary and pairwise potentials are ensembles of class-wise trees,

with the ensemble parameters and the trees jointly learned in a unified max-margin

framework. In this way, nonlinearity is easily introduced into CRF learning. We have

exemplified the superiority of the proposed nonlinear potentials learning method by com-

paring with state-of-the-art methods on both binary and multi-class object segmentation

datasets.

Chapter 3 CRF Learning with Tree Potentials for Image Segmentation 43

Figure 3.2: Segmentation examples on the Weizmann horse dataset. 1st and 4th columns: Test
images; 2nd and 5th columns: Ground truth; 3rd and 6th columns: Predictions produced by our
CRFTree method.

44 Chapter 3 CRF Learning with Tree Potentials for Image Segmentation

Figure 3.3: Segmentation examples on MSRC. 1st column: Test images; 2nd column: Ground
truth; 3rd column: Predictions of AdaBoost; 4th column: Predictions of SVM; 5th column:
Predictions of SSVM; 6th column: Predictions of CRFTree with unsupervised feature learning.

Chapter 3 CRF Learning with Tree Potentials for Image Segmentation 45

Figure 3.4: Qualitative comparison on the Graz-02 dataset. 1st column: Test images; 2nd
column: Ground truth; 3rd column: Predictions of AdaBoost; 4th column: Predictions of
SVM; 5th column: Predictions of SSVM; 6th column: Predictions of CRFTree. SSVM and
CRFTree present more smooth boundary than AdaBoost and SVM due to the introduce of pair-
wise terms. Compared to SSVM, our CRFTree yields more accurate segmentation because of
the non-linearity property.

46 Chapter 3 CRF Learning with Tree Potentials for Image Segmentation

Figure 3.5: Examples of qualitative evaluations on the Oxford flower dataset. 1st and 4th
columns: Test images; 2nd and 5th columns: Ground truth; 3rd and 6th columns: Predictions
produced by our method CRFTree. Our predictions well preserve the boundaries.

Chapter 3 CRF Learning with Tree Potentials for Image Segmentation 47

0.65

0.00

0.01

0.00

0.00

0.00

0.11

0.01

0.02

0.10

0.05

0.01

0.28

0.01

0.05

0.14

0.02

0.02

0.00

0.05

0.26

0.01

0.92

0.07

0.11

0.18

0.00

0.03

0.02

0.00

0.00

0.00

0.01

0.00

0.11

0.00

0.06

0.01

0.00

0.02

0.03

0.00

0.06

0.01

0.81

0.04

0.01

0.01

0.01

0.06

0.02

0.02

0.03

0.10

0.03

0.07

0.02

0.10

0.00

0.01

0.02

0.03

0.04

0.00

0.00

0.00

0.42

0.03

0.00

0.00

0.00

0.01

0.00

0.00

0.02

0.00

0.00

0.01

0.01

0.00

0.06

0.13

0.03

0.00

0.00

0.03

0.00

0.21

0.76

0.00

0.00

0.00

0.01

0.00

0.00

0.00

0.00

0.01

0.01

0.00

0.00

0.05

0.16

0.04

0.00

0.05

0.01

0.02

0.01

0.00

0.84

0.01

0.07

0.01

0.01

0.00

0.00

0.04

0.12

0.00

0.00

0.04

0.02

0.03

0.03

0.05

0.00

0.00

0.01

0.00

0.00

0.00

0.65

0.03

0.00

0.13

0.00

0.01

0.01

0.08

0.00

0.01

0.00

0.00

0.00

0.01

0.23

0.02

0.01

0.00

0.00

0.00

0.02

0.00

0.70

0.00

0.04

0.00

0.01

0.06

0.14

0.01

0.03

0.11

0.03

0.00

0.05

0.25

0.01

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.75

0.00

0.00

0.00

0.00

0.02

0.01

0.00

0.00

0.00

0.07

0.10

0.00

0.01

0.00

0.00

0.00

0.00

0.00

0.17

0.01

0.01

0.54

0.00

0.02

0.01

0.01

0.03

0.01

0.01

0.04

0.00

0.01

0.06

0.03

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.03

0.09

0.87

0.06

0.02

0.06

0.00

0.08

0.01

0.01

0.02

0.14

0.06

0.01

0.00

0.05

0.14

0.01

0.00

0.00

0.00

0.08

0.00

0.00

0.62

0.01

0.00

0.01

0.01

0.00

0.00

0.03

0.07

0.01

0.01

0.00

0.00

0.00

0.00

0.00

0.01

0.00

0.00

0.00

0.00

0.01

0.31

0.02

0.01

0.00

0.00

0.00

0.00

0.00

0.01

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.08

0.00

0.14

0.00

0.00

0.00

0.02

0.03

0.01

0.00

0.07

0.00

0.02

0.00

0.01

0.01

0.00

0.00

0.02

0.00

0.01

0.00

0.10

0.00

0.76

0.16

0.00

0.00

0.01

0.02

0.02

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.01

0.31

0.00

0.00

0.00

0.02

0.00

0.04

0.02

0.00

0.00

0.00

0.10

0.00

0.06

0.02

0.03

0.05

0.02

0.09

0.01

0.04

0.07

0.78

0.07

0.04

0.05

0.01

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.01

0.00

0.00

0.00

0.00

0.15

0.01

0.00

0.00

0.61

0.07

0.00

0.00

0.00

0.00

0.00

0.05

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.02

0.00

0.00

0.00

0.05

0.30

0.06

0.00

0.00

0.00

0.00

0.02

0.00

0.00

0.00

0.01

0.00

0.02

0.00

0.03

0.02

0.04

0.01

0.00

0.00

0.01

0.07

0.25

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.02

0.00

0.02

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00
building

grass
tree

cow
sheep

sky
aeroplane

water

face
car

bicycle

flower

sign
bird

book
chair

road
cat

dog
body

boat

building
grass

tree
cow

sheep
sky

aeroplane
water
face
car

bicycle
flower

sign
bird

book
chair
road

cat
dog

body
boat

(a)

0.53

0.02
0.02

0.00

0.00
0.03

0.03

0.00

0.02
0.04

0.02

0.01
0.11

0.00

0.06

0.05
0.04

0.01

0.00
0.03

0.15

0.01

0.87
0.03

0.05

0.06
0.00

0.01

0.02

0.00
0.00

0.00

0.01
0.00

0.03

0.00

0.02
0.01

0.00

0.00
0.01

0.00

0.05

0.01
0.85

0.01

0.01
0.01

0.00

0.00

0.02
0.01

0.00

0.00
0.01

0.11

0.00

0.05
0.02

0.00

0.02
0.01

0.06

0.01

0.01
0.01

0.59

0.05
0.00

0.00

0.00

0.02
0.00

0.00

0.04
0.01

0.02

0.01

0.00
0.00

0.00

0.05
0.08

0.00

0.01

0.04
0.01

0.19

0.84
0.00

0.00

0.00

0.04
0.00

0.00

0.02
0.00

0.06

0.00

0.00
0.00

0.05

0.17
0.06

0.00

0.01

0.00
0.01

0.00

0.00
0.90

0.02

0.02

0.00
0.00

0.00

0.00
0.01

0.03

0.00

0.00
0.01

0.00

0.00
0.00

0.01

0.02

0.00
0.01

0.00

0.00
0.00

0.77

0.02

0.00
0.13

0.01

0.00
0.04

0.05

0.01

0.00
0.01

0.00

0.00
0.01

0.17

0.03

0.01
0.00

0.01

0.00
0.02

0.00

0.82

0.00
0.00

0.00

0.00
0.02

0.16

0.00

0.00
0.05

0.01

0.00
0.00

0.11

0.01

0.00
0.00

0.01

0.00
0.00

0.00

0.00

0.81
0.01

0.00

0.03
0.01

0.01

0.01

0.01
0.00

0.04

0.20
0.12

0.00

0.05

0.00
0.00

0.00

0.00
0.00

0.04

0.01

0.01
0.54

0.00

0.01
0.02

0.02

0.02

0.02
0.01

0.01

0.00
0.04

0.19

0.03

0.00
0.01

0.01

0.00
0.00

0.01

0.00

0.00
0.04

0.90

0.00
0.00

0.02

0.00

0.06
0.01

0.01

0.02
0.02

0.09

0.00

0.00
0.00

0.04

0.00
0.00

0.00

0.00

0.00
0.00

0.00

0.57
0.03

0.01

0.01

0.01
0.00

0.00

0.02
0.03

0.00

0.03

0.00
0.00

0.00

0.00
0.01

0.01

0.00

0.00
0.00

0.00

0.02
0.62

0.02

0.02

0.00
0.00

0.00

0.00
0.01

0.00

0.00

0.00
0.01

0.01

0.01
0.01

0.00

0.00

0.00
0.01

0.00

0.05
0.00

0.22

0.00

0.00
0.01

0.05

0.05
0.01

0.00

0.04

0.00
0.00

0.00

0.00
0.00

0.00

0.00

0.00
0.01

0.00

0.00
0.07

0.00

0.81

0.12
0.00

0.00

0.00
0.00

0.01

0.02

0.00
0.00

0.00

0.00
0.00

0.00

0.01

0.01
0.03

0.01

0.01
0.00

0.03

0.01

0.59
0.01

0.02

0.01
0.02

0.03

0.05

0.02
0.01

0.00

0.00
0.00

0.00

0.06

0.00
0.02

0.02

0.00
0.01

0.00

0.00

0.03
0.80

0.03

0.04
0.01

0.02

0.01

0.00
0.01

0.03

0.02
0.00

0.00

0.00

0.02
0.01

0.00

0.19
0.01

0.13

0.00

0.00
0.00

0.71

0.13
0.04

0.01

0.00

0.00
0.00

0.04

0.00
0.00

0.00

0.01

0.00
0.00

0.00

0.01
0.00

0.05

0.00

0.00
0.00

0.05

0.26
0.01

0.00

0.05

0.01
0.01

0.01

0.00
0.00

0.00

0.01

0.02
0.04

0.01

0.04
0.02

0.03

0.01

0.01
0.02

0.02

0.01
0.49

0.01

0.02

0.00
0.00

0.00

0.00
0.00

0.09

0.02

0.01
0.10

0.02

0.00
0.01

0.02

0.02

0.01
0.01

0.00

0.00
0.00

0.15
building

grass
tree

cow
sheep

sky
aeroplane

water

face
car

bicycle

flower

sign
bird

book
chair

road
cat

dog
body

boat

building
grass

tree
cow

sheep
sky

aeroplane
water
face
car

bicycle
flower

sign
bird

book
chair
road

cat
dog

body
boat

(b)

Figure 3.6: Confusion matrices of the predictions of different models using bag-of-words feature
and color histogram features on the MSRC dataset. (a) SSVM; (b) CRFTree.

Chapter 4

CRF Learning with CNN

Potentials for Image

Segmentation

In this chapter, we propose to exploit a pre-trained large convolutional neural network

(CNN) to construct unary potentials for CRF learning. The deep CNN is trained on

the ImageNet dataset and transferred to image segmentations here for constructing po-

tentials of superpixels. Then the CRF parameters are learnt using a structured support

vector machine (SSVM). To fully exploit context information in inference, we construct

spatially related co-occurrence pairwise potentials and incorporate them into the energy

function. This prefers labelling of object pairs that frequently co-occur in a certain

spatial layout and at the same time avoids implausible labellings during the inference.

Extensive experiments on binary and multi-class segmentation benchmarks demonstrate

the promise of the proposed method. We thus provide new baselines for the segmen-

tation performance on the Weizmann horse, Graz-02, MSRC-21, Stanford Background

and PASCAL VOC 2011 datasets.

4.1 Introduction

The task of image segmentation is to produce a pixel level labelling of different ob-

ject categories, with wide variety of applications ranging from image retrieval to object

recognition. It is challenging as the objects may appear in various backgrounds and

different visual conditions. CRFs [49] model the conditional distribution of labels given

observations, representing the state-of-the-art in image/object segmentation [24, 26, 50–

52]. In [24], Szummer et al . proposed to learn the coefficients of CRF potentials using

49

50 Chapter 4 CRF Learning with CNN Potentials for Image Segmentation

structured support vector machines (SSVM) and graph cuts. Since then, SSVM has

been widely applied for CRF learning in segmentation tasks.

In the pipeline of CRF learning based image segmentation, finding a good feature repre-

sentation is of great significance, and can have a profound impact on the segmentation

accuracy. Most previous studies rely on hand-crafted features, e.g ., using color his-

tograms, HOG or SIFT descriptors to construct bag-of-words features [26, 51, 66, 70, 71].

Recently, feature learning and especially deep learning methods have gained great pop-

ularity in machine learning and related fields. This type of methods typically take raw

images as input and learn a (deep) representation of the images, and have found phenom-

enal success in various tasks such as speech recognition [72], image classification [4, 73],

object detection [40] etc.See Bengio et al . [74] for a detailed review. Deep learning meth-

ods attempt to model high-level abstractions in data at multiple layers, inspired from

the cognitive processes of human brains, which generally starts from simpler concepts

to more abstract ones. The learning is achieved by using deep architectures, e.g ., deep

belief networks (DBNs) [72], stacked autoassociator networks [75], deep convolutional

neural networks (CNNs) [2, 4, 76], etc.Among them, CNNs are high-capacity machine

learning models with a very large number of (typically a few million) parameters that are

optimized from labelled training examples. The success of CNNs in various vision tasks

[2, 4] is mainly due to their ability to learn rich mid-level features that accommodate

within-class variance and at the same time possess discriminative information. This is

in contrast to low-level hand-crafted features.

On the other hand, prior work [77–79] has demonstrated that holistic reasoning about the

occurrences of all classes helps to improve segmentation performance. These are based

on the considerations that neighbouring image regions may be occupied by frequently co-

occurring objects, and object pairs of mutual exclusion are less likely to appear together.

For example, a cow is more likely to show up together with grass rather than a monitor,

and grass is less likely to appear above sky. Therefore, we here propose to construct

spatially related co-occurrence pairwise potentials to exploit the context information

during inference.

In summary, we highlight the main contributions of this work as follows.

• We show that cross-domain image features learned by CNNs with labelled data

from ImageNet1 can be successfully transferred for segmentation purpose. By

thoroughly evaluating the performance of the CNN features of different depths

and comparing with the traditional bag-of-words and unsupervised feature learning

methods, we demonstrate the power of CNN features in image segmentation.

1http://image-net.org

http://image-net.org

Chapter 4 CRF Learning with CNN Potentials for Image Segmentation 51

• We illustrate that SSVM based CRF learning with CNN features yields astounding

results and thus provide new baselines for segmentation performance on the Weiz-

mann horse, Graz02, MSRC-21, Stanford Background and PASCAL VOC 2011

datasets.

• We incorporate spatially related co-occurrence pairwise potentials into the infer-

ence and gain further performance boost.

4.1.1 Related Work

We briefly review some work that is relevant to ours. The first work on using con-

volutional networks for scene parsing is [80]. In [80], they train a deep CNN using a

supervised greedy learning strategy taking pixels as input to yield a pixel-wise labelling

of an image. While somewhat preliminary, they achieved marginal improvement over

CRF learning based segmentation methods. We show in this paper that deep CNN fea-

tures transferred from ImageNet (ImageNet is an image dataset organized according to

the WordNet hierarchy, containing millions of labelled images.) combined with SSVM

based CRF learning outperforms most state-of-the-art methods. Schulz et al . [81] pro-

pose to predict the segmentation mask by adding a pairwise class location filter to the

conventional CNN architecture of [2]. In the work of [41], the authors use a multiscale

convolutional network trained from raw pixels to extract dense feature vectors that en-

code regions of multiple sizes centered on each pixel and present impressive results on

several datasets. Our work differs from [41] in two aspects. First, we transfer a deep

CNN trained on the ImageNet [4] dataset to segmentation while [41] trains a 3-stage

convolutional network [2] on the current training data of the segmentation dataset, and

we demonstrate experimentally that better performance can be achieved by our method.

Secondly, our method uses SSVM to learn CRF potentials while no learning is involved

in [41]. Figure 4.1 shows a sketch of our segmentation pipeline.

Most recently, Girshick et al . [40] demonstrate that a deep CNN trained on ImageNet can

be successfully transferred to object detection and great performance boost is achieved

on the PASCAL VOC 2012 dataset. As an extension of their statement, they also

conduct a scene labelling experiment on the PASCAL VOC segmentation dataset to

validate the power of deep CNN features on the segmentation task. Our work is mainly

inspired from theirs, but differs in that we combine deep CNN features with SSVM based

CRF learning in contrast to their region proposals and support vector regression based

method. Furthermore, we thoroughly evaluate the performance of deep CNN features

compared to the bag-of-words features and unsupervised learned features, and provides

new baselines for labelling performance on various segmentation benchmarks.

52 Chapter 4 CRF Learning with CNN Potentials for Image Segmentation

Input image Superpixels

CRF
learning
using SSVM

Deep
convolutional
features

Prediction

Figure 4.1: An illustration of the proposed segmentation pipeline. We first over-segment the
image into superpixels and then compute deep convolutional features of the patch around each
superpixel centroid using a pre-trained deep CNN. The learned features are then used to learn
a CRF for segmentation.

Co-occurrence statistics have been exploited and demonstrated its strength in the com-

munity. In [77], the authors incorporate semantic object context as a post-processing

step by considering the co-occurrence counts of label pairs. Ladicky et al . [78] explores

the inference methods for CRF with co-occurrence statistics by considering a class of

global potentials. Different from their methods that ignore spatial relations of the co-

occurrences, we propose to construct spatially related co-occurrence pairwise potentials,

which favor labellings of object pairs that frequently co-occur in a certain spatial lay-

out while at the same time prevents unreasonable labellings. Our method is inspired

from [79] but differs in that they incorporate the mutex information by adding a mutex

constraint to the inference problem while we simply construct co-occurrence pairwise

potentials, and most importantly, we explore CNN features combined with SSVM based

CRF learning.

4.2 Proposed Method

4.2.1 Deep Convolutional Neural Networks

Deep neural networks consist of multiple hidden layers and are typically trained in a

supervised fashion. As stated in Section 4.1, there are several architectures currently

employed for deep learning. Among them, deep convolutional neural networks (CNN) [2]

have shown superior performance on various computer vision problems. A deep CNN is

typically composed of multiple convolutional layers, pooling layers and fully-connected

layers. Convolutional networks are variants of multi-layer perceptrons (MLP) which

are inspired from biological processes. Given an image I, convolutional networks learn

multi-layer feature maps. Neurons of each layer are sensitive to a small sub-regions of the

input image, which are called receptive fields (RF). A sigmoid function (f(x) = tanh(x))

or rectified linear units (abbreviated as ReLUs: f(x) = max(0, x)) are usually applied to

each feature map to introduce nonlinearity. In general, a convolutional layer is followed

by a subsampling or pooling layer, with each map being max pooled over p×p continuous

regions.

Chapter 4 CRF Learning with CNN Potentials for Image Segmentation 53

We here introduce in detail a notable deep CNN architecture for image classification

on the ImageNet dataset, introduced by Krizhevsky et al . [4], which consists of 5

convolutional layers and 2 fully connected layers together with a soft-max layer. Each

convolutional layer takes as input the output of its previous layer, and do convolution

and optional max pooling. The first convolutional layer takes as input the image of

size m × m × r, where m is the height and width of the image and r is the number

of channels, e.g ., r = 3 for an RGB image. The image is then filtered by k kernels

of size n × n × q where n < m and q ≤ r at a stride of s. Each of the n × n locally

connected regions in the image (RF), are convolved with the kernels to produce k feature

maps of size (dm−ns e + 1) × (dm−ns e + 1). ReLUs are applied to each feature map

to introduce nonlinearity. For the subsequent convolutional layers, each layer takes

the output of its previous layer as input, and do similar operations. An overlapping

max-pooling which operates over 3 × 3 continuous regions at a step size 2 follows the

1st, 2nd and 5th convolutional layer. The final convolutional layers are then followed

by two fully connected layers, each with 4096 neurons. The output of the last fully

connected layer is fed to a 1000-class soft-max layer which is used as the predictor.

During training, the parameters of each layer are initialized and then learned by back

propagation using stochastic gradient descent. Figure 4.2 shows an illustration of the

network’s architecture.

We use the CNN implementation, named Caffe [82], which implements the network of

[4]. The network is trained using the LSVRC-2010 dataset, consisting of 1.2 million

labelled data with 1000 different classes. It is a subset of the ImageNet dataset. As

demonstrated by Girshick et al . [40], the pre-trained CNN on ImageNet generalizes well

to object detection and semantic segmentation. We then here further explore its power

when combined with SSVM based CRF learning.

4.2.2 Segmentation with CRF Models

Before presenting our method, we first revisit how to use the CRF models to perform

image segmentation. Given an image instance x and its corresponding labelling y, CRF

[49] models the conditional distribution of the form

Pr(y|x;w) =
1

Z(x)
exp(−E(y,x;w)). (4.1)

where w are parameters and Z the partition function. The energy E of an image x with

segmentation labels y over the nodes (superpixels) N and edges S, takes the following

54 Chapter 4 CRF Learning with CNN Potentials for Image Segmentation

224

224

11

3 96

55

55

55

4096 4096

dense dense

1000

L1

Max
pooling

5

11

256

27

27

3

3

3

3

3

3

384

13

13 13

13

384 256

13

13

Max
pooling

Max
pooling

L2 L3 L4 L5 L6 L7 L8

dense

Stride
of 4

Input
image

Figure 4.2: An illustration of the deep CNN architecture used for ImageNet classification by
Krizhevsky et al . [4]. The first convolutional layer filters the input image with 96 kernels of size
11× 11× 3 with a stride of 4 pixels; the second convolutional layer takes the output of the first
layer as input and filters it with 256 kernels of size 5 × 5 × 96; each of the 3rd and 4th layer
has 384 kernels of size 3× 3× 256 and 3× 3× 384 respectively; the 5th convolutional layer has
256 kernels of size 3 × 3 × 384; the fully connected layers have 4096 kernels each and the last
soft-max layer has 1000 neurons. A max-pooling layer follows the first, second and fifth layer.

form:

E(y,x;w) =
∑
p∈N

U(yp,x;w) +
∑

(p,q)∈S

V (yp, yq,x;w). (4.2)

Here x ∈ X,y ∈ Y; U and V are the unary and pairwise potentials, both of which depend

on the observations as well as the parameter w. CRF seeks an optimal labelling that

achieves maximum a posterior (MAP), which mainly involves a two-step process [24]: 1)

Learning the model parameters from the training data; 2) Inferring a most likely label

for the test data given the learned parameters. The segmentation problem thus reduced

to minimizing the energy (or cost) over y by the learned parameters w, which is:

y∗ = argmin
y∈Y

E(y,x;w). (4.3)

4.2.3 Learning CRF in the Max-Margin Framework

Applying the max-margin based CRF learning is to solve the following optimization:

min
w,ξ

1

2
‖w‖22 + C

m

∑
i

ξi

s.t. : E(y,xi;w)− E(yi,xi;w) ≥ ∆(yi,y)− ξi,

∀i = 1, . . . ,m, and ∀y ∈ Y,

ξ ≥ 0, (4.4)

where ∆ : Y×Y 7→ R is a loss function associated with the prediction and the true label

mask. In general, we have ∆(y,y) = 0 and ∆(y,y′) > 0 for any y′ 6= y. Intuitively,

Chapter 4 CRF Learning with CNN Potentials for Image Segmentation 55

the optimization in Eq. (4.4) is to encourage the energy of the ground truth label

E(yi,xi;w) to be lower than any other incorrect labels E(y,xi;w) by at least a margin

∆(yi,y). The SSVM solves (4.4) by iteratively finding the most violated constraint for

each example i:

y∗i = argmin
y∈Y

E(y,x;w)−∆(yi,y). (4.5)

To learn CRF in the max-margin framework, we consider energy functions that are linear

in the parameter w, which indicates that the unary and the pairwise potentials in Eq.

(4.2) can be written as:

U(yp,x;w) =
〈
w(1),Ψ(1)(yp,x)

〉
, (4.6)

and

V (yp, yq,x;w) =
〈
w(2),Ψ(2)(yp, yq,x)

〉
, (4.7)

where Ψ(1),Ψ(2) are the unary and pairwise feature mappings respectively and 〈·, ·〉
denotes inner products. Clearly we have w = w(1) � w(2) (� stacks two vectors).

We will show how to construct unary potentials over the learned deep features in the

following.

4.2.3.1 Implementation Details

After obtaining the learned deep features, we define feature mappings upon them to

construct the unary potential. Consider the image x with label y, let fp be the feature

vector associated with the p-th superpixel, and K is the number of classes (possible

labels). Then we define the unary feature mappings as

Ψ(1)(yp,x) = [δ(yp = 1)f>p , . . . , δ(yp = K)f>p]>, (4.8)

where δ(·) is an indicator function which equals 1 if the input is true and 0 otherwise.

In the case of multi-class, the dimension of Ψ(1)(yp,x) can be too large when fp is high

dimensional. To address this issue, we first train an one-vs-all multi-class linear SVM

over the features of superpixels, and then use the output confidence scores of the p-th

superpixel as fp to construct the unary potential. Similar strategy is used in [26, 51].

Accordingly, the pairwise feature mapping is constructed as

Ψ(2)(yp, yq,x) = Lpq · δ(yp 6= yq), (4.9)

56 Chapter 4 CRF Learning with CNN Potentials for Image Segmentation

where Lpq can be the shared boundary length or inversed color difference between neigh-

bouring superpixels.

The energy function in Eq. (4.2) can then be written as

E(y,x;w) =

〈
w(1),

∑
p∈N

Ψ(1)(yp,x)

〉
+

〈
w(2),

∑
(p,q)∈S

Ψ(2)(yp, yq,x)

〉
. (4.10)

To deal with the unbalanced appearance of different categories in the dataset, we define

∆(yi,y) as the weighted Hamming loss, which weighs errors for a given class inversely

proportional to the frequency it appears in the training data, similar to [26]. We use

the method of [28] to solve the inference in Eq. (4.5).

4.2.4 Inference with Co-Occurrence Pairwise Potentials

To fully exploit context information, we consider the frequency of co-occurred object

pairs in different spatial layouts during the inference. On one hand, this prefers labelling

of frequently co-occurred label pairs in a certain spatial relation; while on the other

hand, it excludes unreasonable labellings of co-occurrences (mutex constraint, similar

as [79]), such as grass, water or road appearing above sky. Different from the mutex

constraint used in [79], we incorporate the co-occurrence constraint into the pairwise

term by devising spatially related co-occurrence pairwise potentials. We consider four

spatial relations of the adjacent superpixel pairs: p is above q, p is below q, p is left to

q and p is right to q. Then the feature mapping for the pairwise potential in Eq. (4.10)

is written as:

∑
(p,q)∈S

Ψ(2)(yp, yq,x) =
∑

(p,q)∈S1

Ψ
(2)
1 (yp, yq,x) +

∑
(p,q)∈S2

Ψ
(2)
2 (yp, yq,x)

+
∑

(p,q)∈S3

Ψ
(2)
3 (yp, yq,x) +

∑
(p,q)∈S4

Ψ
(2)
4 (yp, yq,x). (4.11)

where S1, S2, S3, S4 are the sets of edges where p and q are in the spatial relations

“above”, “below”, “left” and “right” respectively, and S = S1∪S2∪S3∪S4, and Si∩Sj = ∅
for i 6= j, i, j = 1, 2, 3, 4.

To construct the co-occurrence pairwise potentials, we assume that the training data is

sufficiently large. The pairwise potentials in Eq. (4.11) can then be written as:

Ψ
(2)
i (yp, yq,x) = Lpq · δ(yp 6= yq) · gi(yp, yq), i = 1, 2, 3, 4. (4.12)

Chapter 4 CRF Learning with CNN Potentials for Image Segmentation 57

where gi(yp, yq) = 1
f ico−occur(yp,yq)

with f ico−occur(yp, yq) =
N i

pq

Npq
. Here, Npq is the number

of training images in which yp and yq co-exist, and N i
pq (i = 1, 2, 3, 4) are the numbers

of training images in which yp and yq appear in the four spatially related neighbouring

superpixels respectively. If N i
pq = 0, meaning that yp and yq never appear in the ith

spatial relation, then gi(yp, yq) = inf , preventing the inference to yield such pair la-

bellings. Intuitively, this would prefer labellings that frequently co-occurred in certain

spatial relations in the training data, and avoid those mutual exclusion labellings, such

as grass appear above sky.

Note that the mutex constraint used in [79] can be seen a special case of our co-

occurrence pairwise potentials, as it is equivalent to ours when we set gi(yp, yq) = inf

for f ico−occur(yp, yq) = 0 and gi(yp, yq) = 1 for f ico−occur(yp, yq) 6= 0. We will provide

experimental comparison with this case in Section 4.3.3. After learning the CRF using

SSVM, we construct co-occurrence pairwise potentials for prediction. We add a trade-off

parameter α multiplied to the pairwise term and tune it from 0.5 to 2 based on validation

sets.

4.3 Experiments

To demonstrate the effectiveness of the proposed method, we first compare the CNN

features with the traditional bag-of-words feature and an unsupervised feature learning

method [59] as well as evaluate the impact of depths to the performance of the CNN

features in Sec. 4.3.2. We then compare with state-of-the-art methods on several image

segmentation datasets in Sec. 4.3.3.

4.3.1 Experimental Setup

For the CNN features, we use the model trained on ImageNet provided by Caffe [82].

The network follows the famous AlexNet [4], and is composed of 5 convolutional layers

and 2 fully connected layers together with a soft-max layer.

We evaluate the performance of the proposed method on Weizmann horse, Graz-02,

MSRC-21, Standford Background and PASCAL VOC 2011 segmentation challenge dataset.

The Weizmann horse dataset2 consists of 328 horse images from various backgrounds,

with groundtruth masks available for each image. We use the same data split as in

[25], [60], and we simply resize the images to 256× 256. The Graz-02 dataset3 contains

2http://www.msri.org/people/members/eranb/
3http://www.emt.tugraz.at/~pinz/

 http://www.msri.org/people/members/eranb/
http://www.emt.tugraz.at/~pinz/

58 Chapter 4 CRF Learning with CNN Potentials for Image Segmentation

3 categories (bike, car and people). This dataset is considered challenging as the ob-

jects appear at various background and with different poses. We follow the evaluation

protocol in [62] to use 150 for training and 150 for testing for each category.

The MSRC-21 dataset [50] is a popular multi-class segmentation benchmark with 591

images containing objects from 21 categories. We follow the standard split to divide the

dataset into training/validation/test subsets. The Standford Background dataset [83]

is a collection of outdoor scene images from several publicly available datasets, which

consists of 715 images coming from 8 categories. Each image is approximately 320×240

pixels and contains at least one foreground object. We use the same evaluation protocol

as in [83] to report 5-fold cross validation accuracy (global and per-category). The

VOC 2011 dataset consists of images from 20 objects and background. We train on the

training set and test on the validation images. The performance are quantified by the

standard VOC measure [84].

We start with over-segmenting the images into superpixels using SLIC [63] (∼ 700 su-

perpixels per image) and then compute features within regions around each superpixel

centroid with different block sizes (36×36, 48×48, 64×64, 72×72). We construct four

types of pairwise features also using different block sizes to enforce spatial smoothness,

which are color difference in LUV space, color histogram difference, texture difference in

terms of LBP operators as well as shared boundary length [51]. Training our model on

the MSRC-21 dataset takes around 2 hours. During prediction, the inference is rather

efficient (less than 1 sec per image).

4.3.2 Baseline Comparison

To show the superiority of the deep CNN over the unsupervised feature learning, we

compare with the traditional bag-of-word (BoW) feature and features learned from a

popular unsupervised feature learning method [59]. Specifically, we first extract dense

SIFT descriptors within each superpixel block and then quantize them into BoW feature

using nearest neighbour search with a codebook size of 400. For the unsupervised feature

learning, we first learn a dictionary of size 400 and patch size 6×6 based on the evaluated

image dataset using Kmeans, and then use the soft threshold coding [59] to encode

patches extracted from each superpixel block. The final feature vectors are obtained by

performing a three-level max pooling over the superpixel block.

To investigate the roles of different layers in the proposed segmentation method, we

evaluate the performance of features from the last three layers of the CNN model (5th,

6th and 7th layers). The 5th layer (with dimension 9216) is the last convolutional layer

of the CNN. The 6th layer (with dimension 4096) is a fully connected layer follows the

Chapter 4 CRF Learning with CNN Potentials for Image Segmentation 59

Metric
SVM SSVM

BoW UFL L5 L6 L7 BoW UFL L5 L6 L7

Sa 87.5 89.3 90.1 92.7 91.1 92.3 94.6 95.2 95.7 95.1
So 58.7 63.6 68.9 74.6 72.9 72.5 80.1 82.4 84.0 82.3

Table 4.1: Performance of different methods on the Weizmann horse dataset. CNN features
perform significantly better than the traditional BoW feature and the unsupervised feature
learning method, with features of the 6th layer performing marginally better than other compared
layers. SSVM based CRF learning performs far better than SVM.

5th layer and the 7th (with dimension 4096) is the final layer of the feature learning

pipeline. Using the two types of learned features, we compare the SSVM based CRF

learning with a baseline method, namely, linear SVM, which classifies each superpixel

independently without CRF learning. The datasets used in this section are Weizmann

horse, Graz-02 and MSRC-21. We use BoW to denote the bag-of-words feature, UFL

represent the unsupervised feature learning method, and L5, L6, L7 are CNN features

of the 5th, 6th and 7th layer respectively.

4.3.2.1 Weizmann Horse

We first test on the Weizmann horse dataset. The performance are quantified by the

global pixel-wise accuracy Sa and the foreground intersection over union score So, similar

as in [25]. Sa measures the percentage of pixels correctly classified while So directly

reflects the segmentation quality of the foreground. The compared results are reported

in Table 4.1. We can observe that the CNN features perform consistently better than the

bag-of-words feature and the unsupervised learned feature in both SVM and SSVM. By

enforcing smoothness term, SSVM based CRF learning obtain far better segmentations

than simple binary model as SVM. Furthermore, features of different depths exhibit

almost similar performance with the 6th layer performs marginally better than the other

compared layers in both SVM and SSVM. In Figure 4.3, we show some examples of

qualitative evaluation, which yields conclusions that are in accordance with those from

Table 4.1.

4.3.2.2 Graz-02

For a comprehensive evaluation, we use two measurements to quantify the performance of

our method on the Graz-02 dataset, which are intersection over union score and the pixel

accuracy (including foreground and background). We report the results in Table 4.2.

It can be observed that feature learning methods generally outperform the traditional

bag-of-words feature, with CNN features standing as the best. As for different depths,

feature of the 6th layer consistently outperforms all the other compared layers in both

60 Chapter 4 CRF Learning with CNN Potentials for Image Segmentation

Category bike car people bike car people

intersection/union (foreground, background) (%) pixel accuracy (foreground, background) (%)

SVM

BoW 66.5 (50.4, 82.7) 66.8 (42.2, 91.5) 64.0 (41.9, 86.2) 79.0 (67.9, 90.2) 75.8 (55.2, 96.3) 74.5 (55.4, 93.7)
UFL 69.7 (55.0, 84.5) 73.1 (52.7, 93.4) 61.4 (37.2, 85.6) 81.7 (72.4, 91.1) 80.9 (64.4, 97.4) 71.2 (48.2, 94.3)
L5 74.6 (62.4, 86.8) 76.0 (58.4, 93.7) 65.9 (47.0, 84.9) 86.3 (81.2, 91.4) 86.3 (76.2, 96.4) 80.9 (72.4, 89.4)
L6 77.7 (66.7, 88.6) 78.1 (61.8, 94.5) 68.9 (51.1, 86.6) 88.4 (84.4, 92.5) 87.2 (77.3, 97.0) 83.0 (75.2, 90.8)
L7 77.1 (66.0, 88.2) 77.6 (60.8, 94.3) 68.4 (50.5, 86.3) 88.2(84.1, 92.2) 86.6 (76.3, 97.0) 82.8 (75.1, 90.5)

SSVM

BoW 70.9 (56.6, 85.2) 75.7 (57.2, 94.1) 71.3 (53.5, 89.1) 82.5 (73.5, 91.6) 83.2 (68.9, 97.6) 81.4 (68.2, 94.7)
UFL 74.2 (61.5, 86.9) 77.9 (60.9, 94.9) 70.9 (53.0, 88.8) 85.4 (78.6, 92.1) 83.8 (69.3, 98.4) 81.5 (68.9, 94.2)
L5 81.6 (72.3, 90.8) 84.5 (72.6, 96.4) 75.4 (61.1, 89.7) 91.0 (88.0, 93.9) 90.6 (82.8, 98.3) 88.8 (85.3, 92.3)
L6 82.0 (73.1, 91.0) 85.6 (74.5, 96.6) 79.6 (67.2, 92.1) 91.6 (89.5, 93.7) 91.4 (84.4, 98.4) 90.0 (85.1, 94.8)
L7 81.7 (72.6, 90.8) 85.1 (73.7, 96.5) 76.0 (62.0, 90.0) 91.3 (89.0, 93.6) 91.2 (84.0, 98.4) 89.3 (86.1, 92.4)

Table 4.2: Compared results of the average intersection-over-union score and average pixel accu-
racy on the Graz-02 dataset. We include the foreground and background results in the brackets.
CNN features perform significantly better than the traditional BoW feature and the unsuper-
vised feature learning, with features of the 6th layer performing the best among the compared
layers in both SVM and SSVM. SSVM based CRF learning performs far better than SVM.

b
u

il
d

in
g

gr
as

s

tr
ee

co
w

sh
ee

p

sk
y

ae
ro

p
la

n
e

w
at

er

fa
ce

ca
r

b
ic

y
cl

e

fl
ow

er

si
gn

b
ir

d

b
o
ok

ch
ai

r

ro
ad

ca
t

d
og

b
o
d
y

b
oa

t

A
v
e
ra

g
e

G
lo
b
a
l

SVM

BoW 61 87 60 29 47 83 56 66 60 54 66 53 68 7 61 33 51 27 35 19 29 50.1 62.7
UFL 57 95 77 55 59 96 56 70 61 41 67 65 31 17 67 30 75 52 26 32 6 54.1 69.5
L5 77 91 86 79 83 95 80 85 81 76 84 81 52 55 82 64 83 81 63 68 25 74.8 82.1
L6 78 95 88 81 87 95 83 88 86 75 86 83 55 58 86 69 85 84 67 72 28 77.6 84.9
L7 80 98 89 82 91 96 86 87 89 76 86 86 58 59 87 68 87 85 67 74 31 79.0 86.0

SSVM

BoW 65 89 87 64 74 90 58 75 78 56 85 54 55 6 60 14 66 50 35 38 8 57.4 70.7
UFL 70 97 87 69 77 98 45 75 77 49 86 82 26 12 81 40 79 49 14 47 1 60.1 76.1
L5 71 97 92 86 95 98 94 82 93 80 95 92 76 65 94 72 89 87 71 78 51 83.9 86.9
L6 71 94 93 89 96 96 95 85 92 85 95 90 71 68 94 77 92 93 75 81 54 85.8 87.3
L7 71 95 92 87 98 97 97 89 95 85 96 94 75 76 89 84 88 97 77 87 52 86.7 88.5

Table 4.3: Segmentation results on the MSRC-21 dataset. We report the pixel-wise accuracy
for each category as well as the average per-category scores and the global pixel-wise accuracy
(%). Deep learning performs significantly better than the BoW feature and the unsupervised
feature learning, with SSVM based CRF learning using features of the 7th layer of the deep CNN
achieving the best results. SSVM based CRF learning performs far better than SVM.

SVM and SSVM, which is in accordance with the conclusion of [40]. We show some

segmentation examples in Figure 4.4, from which we can see that SSVM based CRF

learning with CNN features produces segmentation similar to ground truth.

4.3.2.3 MSRC-21

The compared results with features of different layers are summarized in Table 4.3.

Different from the binary cases as Weizmann horse and Graz-02, features of the 7th

layer perform the best, which may results from the fact that MSRC is much more

difficult due to the large number of categories. Figure 4.5 shows some qualitative results

of SSVM based CRF learning with different features, from which similar conclusions can

be drawn.

Chapter 4 CRF Learning with CNN Potentials for Image Segmentation 61

Method Sa So

Levin & Weiss [64] 95.5 -
Cosegmentation [65] 80.1 -
Bertelli et al . [25] 94.6 80.1
Kuttel et al . [60] 94.7 -

Ours 95.7 84.0

Table 4.4: State-of-the-art comparison of segmentation performance (%) on the Weizmann horse
dataset.

Method bike car people average

Marszalek & Schimid [62] 61.8 53.8 44.1 53.2
Fulkerson et al . [66] 66.4 54.7 51.4 57.5
Aldavert et al . [67] 71.9 62.9 58.6 64.5
Kuettel et al . [60] 63.2 74.8 66.4 68.1

Ours 84.5 85.4 80.4 83.4

Table 4.5: State-of-the-art comparison of segmentation performance (%) on the Graz-02 (right)
dataset.

4.3.3 State-of-the-art Comparison

Based on the above evaluation, we choose the best performed 6th layer for the bi-

nary (Weizmann horse and Graz-02) and 7th layer features for the multi-class datasets

(MSRC-21, Stanford Background and VOC 2011) to learn CRF and compare with state-

of-the-art results in this section. For the three multi-class datasets, we add the results of

incorporating the mutex and co-occurrence pairwise potentials introduced in Sec. 4.2.4.

4.3.3.1 Binary Datasets

Table 4.4 and Table 4.5 show the compared segmentation results on the Weizmann horse

and the Graz-02 datasets. We use a different evaluation metric for comparison on the

Graz-02 dataset, which is the F-score (F = 2pr/(p + r), where p is the precision and

r is the recall) for each class and the average over classes. In both cases, our method

outperforms all the compared methods.

4.3.3.2 Multi-class Datasets

The compared global and average per-category pixel accuracies on the MSRC-21 and the

Stanford Background datasets are summarized in Table 4.6 and Table 4.7 respectively.

On the MSRC dataset, our method outperforms all the methods except [79]. When

incorporated with mutex or co-occurrence pairwise potentials in inference, we obtain

further improvements. As expected, the co-occurrence potentials outperform the mutex

potentials. [79] performs slightly better than ours in terms of global accuracy (they did

62 Chapter 4 CRF Learning with CNN Potentials for Image Segmentation

not report average per-category accuracy), which may results from the fact that they

use a fully connected CRF while ours are not. We show the confusion matrix of the

predictions of our method using the co-occurrence pairwise potentials in Fig. 4.11. As

we can see, our method achieves high accuracies on all of the classes.

As for the Stanford Background dataset, we can see that our method performs better

than [41] and outperforming all the others. The work of [41] trains a 3-stage multiscale

convolutional network on the training images while we directly transfer the deep CNN

trained on the ImageNet to here sparing the effort of network training. Adding mutex

potentials to our method do not bring any performance boost. By further investigations,

we found that this is because there is only eight categories (one of which is the ambigu-

ous foreground category) in this dataset, which leads to the fact that the only mutex

information obtained is that grass, water and road can not appear above sky. Instead,

our co-occurrence potentials perform much better, leading to further performance boost.

We show some segmentation examples in Fig. 4.6. In Fig. 4.9, we show the confusion

matrix of our predictions for a single run. As we can see, our method yields accurate

predictions on most of the categories, with the leading confusing predictions are moun-

tain as tree and mountain as grass. The predictions on the “mountain” category is not

so satisfactory. By further investigations, we find out that the reason is due to its highly

scarce occurrence in the training data, as shown in Fig. 4.10.

The segmentation results on the PASCAL VOC 2011 validation dataset are reported

in Table 4.8 as the standard intersection-over-union score [85]. In [40], Girshick et al .

achieved an average score of 47.9 by using augmented training data and extra annotation

set. Here we did not use any extra dataset but only the VOC training set. By introducing

mutex or co-occurrence pairwise potentials, constant improvements are observed on most

of the categories. As expected, our co-occurrence potential again outperforms the mutex

potential. In Table 4.9, we compare with the recent work of Carreira et al . [86], which

performed evaluations with the same settings as ours (using the train/val set). Our

method achieves the same accuracy as [86]. Note that the dimension of the feature

descriptors used in [86] is tens of thousands of (33589) while ours is 4096. In Fig. 4.12,

We show the confusion matrix of the predictions produced by our method with co-

occurrence pairwise potentials. As we can see, most of the wrong predictions are made

towards the background category, with following up confusing categories are predicting

dog as cat, cow as horse, bicycle as motorbike and chair as sofa. These are reasonable

since the appearances of these category pairs are similar, sometimes even confusing to

human observers. We show some qualitative examples and some failure cases in Fig. 4.7

and Fig. 4.8, which validate the conclusions we made from the confusion matrix.

Chapter 4 CRF Learning with CNN Potentials for Image Segmentation 63

Method Global (%) Average (%)

Shotton et al . [50] 72 67
Ladicky et al . [68] 86 75
Munoz et al . [87] 78 71
Gonfaus et al . [69] 77 75
Lucchi et al . [26] 73 70
Yao et al . [71] 86.2 79.3
Lucchi et al . [70] 83.7 78.9
Ladicky et al . [78] 87 77
Roy et al . [79] 91.5 -

Ours 88.5 86.7
Ours (mutex) 90.3 89.2
Ours (co-occur) 91.1 90.5

Table 4.6: State-of-the-art comparison of global and average per-category pixel accuracy on the
MSRC-21 dataset.

Method Global (%) Average (%)

Gould et al . [83] 76.4 -
Munoz et al . [87] 76.9 66.2
Lempitsky et al . [88] 81.9 72.4
Farabet et al . [41] 81.4 76.0
Roy et al . [79] 81.1 -

Ours 82.6 76.2
Ours (mutex) 82.6 76.3
Ours (co-occur) 83.5 76.9

Table 4.7: State-of-the-art comparison of global and average per-category pixel accuracy on the
Stanford Background dataset.

VOC 2011 val mean bg aero bike bird boat bottle bus car cat chair cow table dog house mbike person plant sheep sofa train tv

Ours 31.9 78.3 43.9 20.4 23.2 22.7 24.6 42.2 41.0 36.1 12.6 24.9 19.8 25.0 23.8 38.6 53.3 20.0 36.6 20.2 38.1 24.6
Ours (mutex) 36.3 79.8 53.1 23.8 26.4 28.8 28.6 51.6 48.2 37.8 13.1 29.7 22.3 28.4 29.6 45.2 52.7 21.0 46.2 20.9 46.2 29.6
Ours (co-occur) 38.3 81.5 55.7 23.6 24.0 27.7 27.3 52.8 54.1 37.1 14.9 37.1 28.6 22.9 33.1 49.7 54.2 27.4 49.3 22.3 49.3 30.9

Table 4.8: Results of per-category and mean intersection-over-union score (%) on the PASCAL
VOC 2011 validation dataset. Best results are bold faced.

Method Mean (%)

HOG [86] 14.1
SIFT-PCA-FISHER [86] 31.9
O2P [86] 38.3

Ours (co-occur) 38.3

Table 4.9: Comparison of the mean intersection-over-union score (%) on the PASCAL VOC 2011
validation dataset.

4.4 Conclusion

We propose to learn CRF using SSVM based on features learned from a pre-trained

deep convolutional neural network for image segmentation. The deep CNN is trained on

ImageNet and proved to perform exceptionally well when transferred to object segmen-

tation. We learn the CRF in the max-margin framework by SSVM, and then conduct

inference with co-occurrence pairwise potentials incorporated. Extensive experimental

evaluations on the Weizmann horse, Graz-02, MSRC-21, Stanford Background and the

64 Chapter 4 CRF Learning with CNN Potentials for Image Segmentation

PASCAL VOC 2011 dataset demonstrate the advantages of our method and provide

new baselines for further research.

Chapter 4 CRF Learning with CNN Potentials for Image Segmentation 65

Figure 4.3: Segmentation examples on Weizmann horse. 1st column: Test images; 2nd col-
umn: Ground truth; 3rd column: Predictions produced by SSVM based CRF learning with
bag-of-words feature; 4th column: Predictions produced by SSVM based CRF learning with
unsupervised feature learning; 5th column: Predictions produced by SSVM based CRF learning
with the 6th layer CNN features.

66 Chapter 4 CRF Learning with CNN Potentials for Image Segmentation

Figure 4.4: Segmentation examples on the Graz-02 dataset. 1st column: Test images; 2nd col-
umn: Ground truth; 3rd column: Segmentation results produced by SSVM based CRF learning
with bag-of-words feature; 4th column: Segmentation results produced by SSVM based CRF
learning with unsupervised feature learning; 5th column: Segmentation results produced by
SSVM based CRF learning with the 6th layer CNN features.

Chapter 4 CRF Learning with CNN Potentials for Image Segmentation 67

Figure 4.5: Segmentation examples on the MSRC-21 dataset. 1st column: Test images; 2nd
column: Ground truth; 3rd column: Predictions produced by SSVM based CRF learning with
bag-of-words feature; 4th column: Predictions produced by SSVM based CRF learning with
unsupervised feature learning; 5th column: Predictions results produced by our method with
co-occurrence pairwise potentials.

68 Chapter 4 CRF Learning with CNN Potentials for Image Segmentation

Figure 4.6: Segmentation examples on the Stanford Background dataset. 1st and 4th columns:
Test images; 2nd and 5th columns: Ground truth; 3rd and 6th columns: Predictions produced
by our method with co-occurrence pairwise potentials.

Figure 4.7: Segmentation examples on the PASCAL VOC 2011 dataset. 1st and 4th columns:
Test images; 2nd and 5th columns: Ground truth; 3rd and 6th columns: Predictions produced
by our method with co-occurrence pairwise potentials.

Chapter 4 CRF Learning with CNN Potentials for Image Segmentation 69

Figure 4.8: Failure examples on the VOC 2011 dataset. 1st row: Test images; 2nd row: Ground
truth; 3rd row: Segmentation results produced by our method with co-occurrence pairwise
potentials.

0.91

0.03

0.00

0.00

0.01

0.02

0.06

0.01

0.04

0.78

0.01

0.04

0.01

0.06

0.28

0.04

0.00

0.01

0.89

0.12

0.04

0.02

0.06

0.07

0.00

0.02

0.01

0.78

0.01

0.00

0.13

0.01

0.01

0.00

0.02

0.00

0.89

0.01

0.05

0.01

0.02

0.11

0.02

0.01

0.01

0.83

0.02

0.11

0.01

0.02

0.01

0.02

0.01

0.01

0.36

0.01

0.01

0.03

0.04

0.03

0.03

0.06

0.03

0.74

sky
tree

road
grass

water

building

m
ountain

object

sky

tree

road

grass

water

building

mountain

object

Figure 4.9: Confusion matrix of the predictions produced by our method for a single run on the
StanfordBackground dataset.

0

0.05

0.1

0.15

0.2

0.25

sky
tree

road
grass

water

building

m
ountain

object

Figure 4.10: Occurrence frequencies of different categories in the training data of the Stanford-
Background dataset.

70 Chapter 4 CRF Learning with CNN Potentials for Image Segmentation

0.79

0.00
0.01

0.00

0.00

0.01
0.01

0.00

0.01

0.02

0.01
0.00

0.13

0.00

0.03
0.00

0.01

0.00

0.01
0.01

0.09

0.00

0.95
0.03

0.03

0.01

0.00
0.00

0.00

0.00

0.00

0.00
0.00

0.00

0.01

0.00
0.01

0.01

0.00

0.01
0.01

0.00

0.03

0.01
0.90

0.00

0.00

0.01
0.00

0.00

0.01

0.00

0.00
0.02

0.00

0.00

0.00
0.00

0.00

0.00

0.00
0.00

0.01

0.00

0.01
0.00

0.92

0.00

0.00
0.00

0.01

0.00

0.00

0.00
0.00

0.00

0.00

0.00
0.00

0.00

0.00

0.00
0.00

0.00

0.00

0.01
0.00

0.05

0.98

0.00
0.00

0.00

0.00

0.00

0.00
0.00

0.00

0.00

0.00
0.00

0.00

0.00

0.05
0.00

0.00

0.01

0.00
0.01

0.00

0.00

0.94
0.01

0.00

0.00

0.00

0.00
0.00

0.00

0.02

0.00
0.00

0.00

0.00

0.00
0.00

0.00

0.02

0.01
0.01

0.00

0.00

0.01
0.98

0.00

0.00

0.01

0.00
0.00

0.00

0.02

0.00
0.00

0.01

0.00

0.00
0.00

0.05

0.00

0.00
0.01

0.00

0.00

0.00
0.00

0.93

0.00

0.00

0.00
0.00

0.00

0.03

0.00
0.00

0.01

0.00

0.00
0.00

0.06

0.01

0.00
0.00

0.00

0.00

0.00
0.00

0.00

0.93

0.00

0.00
0.00

0.00

0.00

0.00
0.00

0.00

0.00

0.00
0.05

0.00

0.02

0.00
0.00

0.00

0.00

0.00
0.00

0.00

0.00

0.96

0.00
0.00

0.00

0.00

0.00
0.00

0.02

0.00

0.00
0.00

0.00

0.03

0.00
0.00

0.00

0.00

0.00
0.00

0.00

0.00

0.00

0.97
0.00

0.00

0.00

0.00
0.07

0.01

0.01

0.00
0.00

0.00

0.00

0.00
0.00

0.00

0.00

0.00
0.00

0.00

0.00

0.00

0.00
0.95

0.00

0.00

0.00
0.00

0.00

0.00

0.00
0.00

0.00

0.01

0.00
0.01

0.00

0.00

0.02
0.00

0.00

0.00

0.00

0.00
0.00

0.80

0.00

0.00
0.00

0.00

0.00

0.00
0.00

0.00

0.00

0.00
0.01

0.00

0.00

0.00
0.00

0.01

0.00

0.00

0.00
0.03

0.00

0.82

0.00
0.00

0.00

0.00

0.00
0.00

0.01

0.04

0.00
0.00

0.00

0.00

0.00
0.00

0.00

0.00

0.00

0.00
0.00

0.05

0.00

0.97
0.00

0.00

0.00

0.00
0.00

0.00

0.01

0.00
0.00

0.00

0.00

0.00
0.00

0.00

0.00

0.00

0.00
0.00

0.00

0.00

0.00
0.88

0.00

0.00

0.00
0.00

0.00

0.01

0.00
0.00

0.00

0.00

0.00
0.00

0.02

0.00

0.01

0.01
0.00

0.01

0.01

0.00
0.03

0.90

0.03

0.02
0.01

0.06

0.00

0.00
0.00

0.00

0.00

0.00
0.00

0.00

0.00

0.00

0.00
0.00

0.00

0.10

0.00
0.00

0.00

0.97

0.07
0.00

0.00

0.01

0.00
0.00

0.00

0.00

0.00
0.00

0.01

0.01

0.00

0.00
0.00

0.00

0.00

0.00
0.00

0.01

0.00

0.85
0.02

0.00

0.00

0.00
0.00

0.00

0.00

0.00
0.00

0.00

0.03

0.00

0.00
0.00

0.01

0.00

0.00
0.00

0.01

0.00

0.00
0.90

0.00

0.01

0.00
0.00

0.00

0.00

0.00
0.00

0.01

0.00

0.00

0.00
0.00

0.00

0.00

0.00
0.00

0.00

0.00

0.00
0.01

0.72
building

grass
tree

cow
sheep

sky
aeroplane

water

face
car

bicycle

flower

sign
bird

book
chair

road
cat

dog
body

boat

building
grass

tree
cow

sheep
sky

aeroplane
water
face
car

bicycle
flower

sign
bird

book
chair
road

cat
dog

body
boat

Figure 4.11: Confusion matrix of the predictions made by our method on the MSRC dataset.

0.88

0.21
0.28

0.32

0.43

0.42
0.21

0.20

0.10

0.43

0.23
0.32

0.08

0.27

0.15
0.11

0.31

0.15

0.47
0.22

0.38

0.00

0.76
0.01

0.02

0.02

0.00
0.01

0.00

0.00

0.00

0.00
0.00

0.00

0.00

0.00
0.00

0.00

0.00

0.00
0.00

0.00

0.00

0.00
0.54

0.00

0.00

0.00
0.01

0.01

0.00

0.00

0.00
0.00

0.00

0.00

0.01
0.00

0.01

0.00

0.00
0.00

0.00

0.00

0.00
0.00

0.41

0.00

0.00
0.00

0.00

0.01

0.00

0.07
0.00

0.01

0.04

0.00
0.00

0.00

0.02

0.00
0.00

0.00

0.00

0.01
0.00

0.00

0.45

0.02
0.00

0.00

0.00

0.00

0.00
0.01

0.00

0.00

0.00
0.00

0.01

0.00

0.00
0.01

0.00

0.00

0.00
0.01

0.00

0.00

0.38
0.00

0.00

0.00

0.00

0.00
0.00

0.00

0.00

0.00
0.00

0.00

0.00

0.00
0.00

0.01

0.00

0.00
0.00

0.00

0.00

0.00
0.69

0.06

0.00

0.01

0.00
0.00

0.00

0.00

0.00
0.00

0.00

0.00

0.00
0.08

0.01

0.00

0.01
0.00

0.00

0.00

0.00
0.02

0.67

0.00

0.00

0.00
0.01

0.00

0.00

0.04
0.01

0.00

0.00

0.00
0.00

0.00

0.02

0.00
0.00

0.07

0.00

0.00
0.00

0.00

0.77

0.00

0.03
0.00

0.50

0.02

0.00
0.01

0.00

0.03

0.06
0.00

0.00

0.01

0.00
0.00

0.01

0.00

0.00
0.00

0.00

0.00

0.25

0.00
0.02

0.00

0.00

0.03
0.01

0.00

0.00

0.02
0.00

0.00

0.00

0.00
0.00

0.03

0.00

0.00
0.00

0.00

0.00

0.00

0.38
0.00

0.01

0.03

0.00
0.00

0.01

0.01

0.00
0.00

0.00

0.01

0.00
0.00

0.01

0.00

0.05
0.00

0.00

0.00

0.04

0.00
0.51

0.00

0.00

0.02
0.02

0.00

0.00

0.02
0.00

0.00

0.00

0.00
0.00

0.02

0.00

0.00
0.00

0.00

0.04

0.00

0.02
0.03

0.29

0.07

0.00
0.00

0.00

0.02

0.02
0.00

0.00

0.00

0.00
0.00

0.08

0.00

0.01
0.00

0.00

0.00

0.00

0.18
0.00

0.02

0.54

0.00
0.01

0.01

0.05

0.00
0.00

0.02

0.00

0.00
0.11

0.00

0.01

0.00
0.00

0.03

0.00

0.00

0.00
0.01

0.00

0.00

0.73
0.02

0.00

0.00

0.00
0.01

0.01

0.02

0.00
0.04

0.01

0.03

0.09
0.01

0.01

0.05

0.11

0.02
0.06

0.02

0.02

0.02
0.79

0.02

0.00

0.05
0.00

0.00

0.01

0.00
0.00

0.02

0.00

0.01
0.00

0.00

0.00

0.00

0.00
0.00

0.01

0.00

0.00
0.00

0.63

0.00

0.00
0.00

0.00

0.00

0.00
0.00

0.00

0.00

0.00
0.00

0.00

0.02

0.00

0.07
0.00

0.03

0.01

0.00
0.00

0.00

0.72

0.00
0.00

0.00

0.01

0.00
0.01

0.00

0.04

0.00
0.00

0.00

0.00

0.11

0.00
0.00

0.02

0.00

0.00
0.01

0.00

0.00

0.33
0.01

0.00

0.00

0.00
0.01

0.00

0.02

0.00
0.05

0.01

0.00

0.01

0.00
0.00

0.00

0.00

0.00
0.00

0.00

0.00

0.02
0.66

0.01

0.01

0.01
0.00

0.00

0.00

0.00
0.01

0.01

0.00

0.02

0.00
0.02

0.00

0.00

0.00
0.00

0.00

0.00

0.00
0.01

0.57
background

aeroplane

bicycle

bird
boat

bottle
bus

car
cat

chair
cow

diningtable

dog
horse

m
otorbike

person

pottedplant

sheep

sofa
train

tvm
onitor

background
aeroplane

bicycle
bird
boat

bottle
bus
car
cat

chair
cow

diningtable
dog

horse
motorbike

person
pottedplant

sheep
sofa
train

tvmonitor

Figure 4.12: Confusion matrix of the predictions produced by our method on the Pascal VOC
2011 dataset.

Chapter 5

Joint Learning of Continuous

CRF and CNN for Single Image

Depth Estimation

In this chapter, we propose to jointly learn a continuous CRF and CNN for the problem

of depth estimation from single monocular images. Compared with depth estimation

using multiple images such as stereo depth perception, depth from monocular images is

much more challenging. Prior work typically focuses on exploiting geometric priors or

additional sources of information, most using hand-crafted features. Recently, there is

mounting evidence that features from deep convolutional neural networks (CNN) set new

records for various vision applications. On the other hand, considering the continuous

characteristic of the depth values, depth estimations can be naturally formulated as a

continuous conditional random field (CRF) learning problem. Therefore, here we present

a deep convolutional neural field model for estimating depths from single monocular

images, aiming to jointly explore the capacity of deep CNN and continuous CRF. In

particular, we propose a deep structured learning scheme which learns the unary and

pairwise potentials of continuous CRF in a unified deep CNN framework. We then

further propose an equally effective model based on fully convolutional networks and a

novel superpixel pooling method, which is ∼ 10 times faster, to speedup the patch-wise

convolutions in the deep model. With this more efficient model, we are able to design

deeper networks to pursue better performance.

Our proposed method can be used for depth estimation of general scenes with no geomet-

ric priors nor any extra information injected. In our case, the integral of the partition

function can be calculated in a closed form such that we can exactly solve the log-

likelihood maximization. Moreover, solving the inference problem for predicting depths

71

72 Chapter 5 Joint Learning of Continuous CRF and CNN for Single Image Depth Estimation

Figure 5.1: Examples of depth estimation results using the proposed deep convolutional neural
fields model. First row: NYU v2 dataset; second row: Make3D dataset. From left to right:
input image, ground-truth, our prediction.

of a test image is highly efficient as closed-form solutions exist. Experiments on both

indoor and outdoor scene datasets demonstrate that the proposed method outperforms

state-of-the-art depth estimation approaches.

5.1 Introduction

Estimating depth information from single monocular images depicting general scenes is

an important problem in computer vision. Many challenging computer vision problems

have proven to benefit from the incorporation of depth information, to name a few,

semantic labellings [89], pose estimations [90]. Although the highly developed depth

sensors such as Microsoft Kinect nowadays have made the acquisition of RGBD images

affordable, most of the vision datasets commonly evaluated among the vision community

are still RGB images. Moreover, outdoor applications still rely on LiDAR or other laser

sensors due to the fact that strong sunlight can cause infrared interference and make

depth information extremely noisy. This has led to wide research interest on the topic of

estimating depths from single RGB images. Unfortunately, it is a notoriously ill-posed

problem, as one captured image scene may correspond to numerous real world scenarios

[9].

Whereas for humans, inferring the underlying 3D structure from a single image is ef-

fortless, it remains a challenging task for automated computer vision systems to do so

since no reliable cues can be exploited, such as temporal information in videos, stereo

Chapter 5 Joint Learning of Continuous CRF and CNN for Single Image Depth Estimation 73

correspondences, etc. Previous work mainly focuses on enforcing geometric assump-

tions, e.g ., box models, to infer the spatial layout of a room [5, 91] or outdoor scenes

[6]. These models come with innate restrictions, which are limitations to model only

particular scene structures and therefore are not applicable for general scene depth es-

timations. More recently, non-parametric methods [7] are explored, which consists of

candidate images retrieval, scene alignment and then depth inference using optimiza-

tions with smoothness constraints. This is based on the assumption that scenes with

semantically similar appearances should have similar depth distributions when densely

aligned. However, this method is prone to propagate errors through the different decou-

pled stages and relies heavily on building a reasonable sized image database to perform

the candidate retrieval. In recent years, efforts have been made towards incorporating

additional sources of information, e.g ., user annotations [92], semantic labellings [89, 93].

In the recent work of [89], Ladicky et al . have shown that jointly performing depth es-

timation and semantic labelling can benefit each other. Nevertheless, all these methods

use hand-crafted features.

In contrast to previous efforts, here we propose to formulate the depth estimation as a

deep continuous Conditional Random Fields (CRF) learning problem, without relying

on any geometric priors or any extra information. CRF [11] is a popular graphical model

for structured output predictions. While extensively studied in classification (discrete)

domains, CRF has been less explored for regression (continuous) problems. One of the

pioneer work on continuous CRF can be attributed to [33], in which it was proposed

for global ranking in document retrieval. Under certain constraints, they can directly

solve the maximum likelihood optimization as the partition function can be analyti-

cally calculated. Since then, continuous CRF has been successfully applied for solving

various structured regression problems, e.g ., remote sensing [94, 95], image denoising

[95]. Motivated by these successes, we here propose to use it for depth estimation, given

the continuous nature of the depth values, and learn the potential functions in a deep

convolutional neural network (CNN).

Recent years have witnessed the prosperity of the deep CNN [38] since the breakthrough

work of Krizhevsky et al . [96]. CNN features have been setting new records for a wide

variety of vision applications [42]. Despite all the successes in classification problems,

deep CNN has been less explored for structured learning problems, i.e., joint training

of a deep CNN and a graphical model, which is a relatively new and not well addressed

problem. To our knowledge, no such model has been successfully used for depth estima-

tions. Here, we bridge this gap by jointly exploring CNN and continuous CRF, denoting

this new method as a deep convolutional neural field (DCNF).

74 Chapter 5 Joint Learning of Continuous CRF and CNN for Single Image Depth Estimation

Fully convolutional networks have recently been studied for dense prediction problems,

e.g ., semantic labelling [97, 98]. Models based on fully convolutional networks have the

advantage of highly efficient training and prediction. We here exploit this advance to

speedup the training and prediction of our DCNF model. However, the feature maps

produced by the fully convolutional models are typically much smaller than the input

image size. This can cause problems for both training and prediction. During training,

one needs to downsample the ground-truth maps, which may lead to information loss

since small objects might disappear. In prediction, the upsampling operation will prob-

ably bring in degraded performance at the object boundaries. We therefore propose a

novel superpixel pooling method to address this issue. It jointly exploits the strengths of

highly efficient fully convolutional networks and the benefits of superpixels at preserving

object boundaries.

To sum up, we highlight the main contributions of this work as follows.

• We propose a deep convolutional neural field (DCNF) model for depth estimations

by exploring CNN and continuous CRF. Given the continuous nature of the depth

values, the partition function in the probability density function can be analytically

calculated, therefore we can directly solve the log-likelihood optimization without

any approximations. The gradients can be exactly calculated in the back propa-

gation training. Moreover, solving the MAP problem for predicting the depth of

a new image is highly efficient since closed form solutions exist.

• We jointly learn the unary and pairwise potentials of the CRF in a unified deep

CNN framework, which is trained using back propagation.

• We propose a faster model based on fully convolutional networks and a novel

superpixel pooling method, which results in ∼ 10 times speedup while producing

similar prediction accuracy. With this more efficient model, which we refer as

DCNF-FCSP, we are able to design very deep networks for better performance.

• We demonstrate that the proposed method outperforms state-of-the-art results of

depth estimation on both indoor and outdoor scene datasets.

5.2 Related Work

Our method exploits the recent advances of deep nets in image classification [96, 99],

object detection [100] and semantic segmentation [97, 98], for single view image depth

estimations. In the following, we give a detailed literature review of the work that closely

related to ours.

Chapter 5 Joint Learning of Continuous CRF and CNN for Single Image Depth Estimation 75

Figure 5.2: An illustration of the box model based methods for room layout estimation. Figure
reproduced from [5].

Figure 5.3: An illustration of the block model based methods for outdoor 3D scene understanding.
Left: examples of extracted blocks; Right: examples of super-pixel based density estimation.
Figure reproduced from [6].

5.2.1 Depth Perception in Vision

Traditional methods for recovering pixel-wise depths from RGB images generally focus

on binocular vision, i.e., stereopsis. In the work of [101], Scharstein et al . provide a

comprehensive survey of popular dense two-frame stereo algorithms. Another vein of

efforts rely on multiple images, including structure-from-motion [102] and depth from

defocus [103]. These kinds of methods generally work by making use of the geometric

or triangulation differences. When such cues are not available, i.e., in the single image

scenario, estimating depths based solely on monocular cues becomes more challenging.

Next we focus on reviewing methods for estimating depths from single monocular images.

5.2.1.1 Depth Estimation from Single Monocular Images

In the literature, there exits a range of methods for the single image depth estimation

problem, which we here roughly group into three categories and detail in the following.

76 Chapter 5 Joint Learning of Continuous CRF and CNN for Single Image Depth Estimation

Geometric methods Traditional methods generally rely on geometry transformations

by considering texture or luminance variations. Examples include shape from texture

[104, 105], shape from shading [106]. However, these methods are restricted to those

scenes with relatively uniform texture or luminance variations, and not applicable to

general scene images. Other efforts rely on known and fixed objects [107], e.g ., human

faces, cars, for depth inference. This strategy requires parsing the image into constituent

elements, which remains challenging and unreliable. Another type of geometric methods

work by enforcing ad hoc assumptions, e.g ., parametric modelling such as box models, on

the scene structure [5, 6, 91]. In [91] and [5], the authors employ 3D oriented box models

to obtain estimates of the room layout. The work of [91] incorporates prior constraints,

e.g ., objects are supported by floor and can not stick through the walls. While Lee et al .

[5] incorporate volumetric constraints, e.g ., finite volume, spatial exclusion, containment,

etc.. Fig. 5.2 shows a sketch of their method [5]. In the work of [6], Gupta et al . utilize

a similar block model to facilitate the outdoor 3D scene understanding. Specifically,

they incorporate global geometric constraints such as support force constraints, volume

constraints and depth ordering constraints. An illustration of this method [6] is shown

in Fig. 5.3. Likewise, these kinds of methods impose great restrictions on the scenarios

to which they can be applied.

Non-parametric methods Non-parametric methods [7, 108] avoid explicitly defining

a parametric model and require fewer assumptions as in traditional methods. The

motivation behind these methods is that images with similar semantic scenes should

have similar depth distributions when densely aligned. Therefore, the procedures of

these approaches typically consist of building an image database for candidate retrieval,

scene alignment and then depth transfer. Specifically, for a given RGBD image, they first

find similar images from a pre-constructed image database, and then apply a warping

algorithm, i.e., SIFT flow, to align the input image with its retrieved candidates. Finally,

an optimization procedure is used to interpolate and smooth the warped candidate depth

values to obtain the inferred depth maps. Fig. 5.4 provides an illustration of the non-

parametric method proposed in [7] for single image depth estimation. Benefits of these

methods are that they scale well with respect to the training data size, and can be

applied to depth estimation of general scene images. However, the three decoupled

stages are prone to propagate errors. Furthermore, they rely on building a proper-sized

image database and effective image retrieval algorithms.

Probabilistic methods Recently, supervised learning methods based on probabilistic

graphical models have been investigated for tackling this problem, e.g ., [8, 89, 93, 109].

This kind of methods assume that an image is composed of homogeneous regions, i.e.,

superpixels, with each region being a plane having similar properties. Depths of neigh-

bouring regions should be closely related. Therefore probabilistic graphical models can

Chapter 5 Joint Learning of Continuous CRF and CNN for Single Image Depth Estimation 77

Figure 5.4: An illustration of the non-parametric methods for depth estimation. Figure repro-
duced from [7].

Figure 5.5: An illustration of the probabilistic model based methods for depth estimation. Left:
input image; Right: superpixels overlaid with an MRF. Figure reproduced from [8].

be applied to capture these relationships. Specifically, most of these methods formulate

the depth estimation as a Markov Random Field (MRF) learning problem. As exact

MRF learning and inference are intractable in general, these approaches typically employ

approximation methods, e.g ., multi-conditional learning (MCL) or particle belief prop-

agation (PBP) for depth inference. Predicting the depths of a new image is inefficient,

which takes around 4-5s in [8] and even longer (30s) in [93]. To make things worse, these

methods suffer from lacking of flexibility in that [8, 109] rely on horizontal alignment of

images. More recently, Liu et al . [10] propose a discrete-continuous CRF model to take

into consideration the relations between adjacent superpixels, e.g ., occlusions. They

also need to use approximation methods for learning and the maximum a posteriori

(MAP) inference. Besides, their method relies on an image retrieval procedure to obtain

a reasonable initialization. In contrast, here we present a deep continuous CRF model in

which we can directly solve the log-likelihood optimization without any approximations,

since the partition function can be analytically calculated. Predicting the depth of a

new image is highly efficient since a closed form solution exists. Moreover, we do not

inject any geometric priors nor any extra information.

Note that the above categorized methods are not completely isolated. Instead, they can

78 Chapter 5 Joint Learning of Continuous CRF and CNN for Single Image Depth Estimation

be combined to yield a more robust depth estimation model. For instance, the geometric

method in [91] and the non-parametric method in [7] also rely on probabilistic models for

depth optimization; the MRF based probabilistic model presented in [8] also incorporates

geometry constraints, e.g ., co-planarity and co-linearity.

Besides these methods, recent efforts have been focusing on incorporating additional

information to assist the task of depth estimation, e.g ., user annotations [92], semantic

labellings [89, 93]. In [89], Ladicky et al . have shown that jointly performing depth

estimation and semantic labelling can benefit each other. Nevertheless, they all require

additional efforts. To summarize, all of the previous methods [7, 8, 10, 89, 93] use hand-

crafted features in their work, e.g ., texton, GIST, SIFT, PHOG, object bank, etc.. In

contrast, we learn deep CNN for constructing the unary and pairwise potentials of a

continuous CRF.

Most recently, Eigen et al . [9] proposed a multi-scale CNN approach for depth estima-

tion, which bears similarity to our work here. However, our method differs critically

from theirs: they use the CNN as a black-box by directly regressing the depth map from

an input image through convolutions; in contrast we use a continuous CRF to explicitly

model the relations of neighboring superpixels, and learn the potentials (both unary and

binary) in a unified CNN framework.

5.2.2 Combining CNN and CRF

In [41], Farabet et al . propose a multi-scale CNN framework for scene labelling, which

uses CRF as a post-processing step for local refinement. In the most recent work of

[44], Tompson et al . present a hybrid architecture for jointly training a deep CNN

and an MRF for human pose estimation. They first train a unary term and a spatial

model separately, then jointly learn them as a fine tuning step. During fine tuning of

the whole model, they simply remove the partition function in the likelihood to have a

loose approximation. In contrast, our model performs continuous variable prediction.

We can directly solve the log-likelihood optimization without using approximations as

the partition function is integrable and can be analytically calculated. Moreover, during

prediction, we have closed-form solutions to the MAP inference problem. Although no

convolutional layers are involved, the work of [110] shares similarity with ours in that

both continuous CRF’s use neural networks to model the potentials. Note that the

model in [110] is not deep and only one hidden is used, while ours is much deeper. It is

unclear how the method of [110] performs on the challenging depth estimation problem

that we consider here, which usually needs many convolutional layers to accommodate

the complexity.

Chapter 5 Joint Learning of Continuous CRF and CNN for Single Image Depth Estimation 79

CRF loss layer

Input image

224x224

Shared network
parameters

Predicted depth map Shared network
parameters

1 fc

1 fc

1 fc

(unary)

(pairwise)

Neighbouring superpixel
pairwise similarities:

.
..

... ...
.

..

Negative log-likelihood:

Supperpixel
image patch

where

5 conv + 4 fc

5 conv + 4 fc

5 conv + 4 fc

224x224

224x224

1x1

1x1

1x1

1x1

1x1

1x1

Kx1

Kx1

Kx1

Figure 5.6: An illustration of our DCNF model for depth estimation. The input image is first
over-segmented into superpixels. In the unary part, for a superpixel p, we crop the image
patch centred around its centroid, then resize and feed it to a CNN which is composed of 5
convolutional and 4 fully-connected layers (details refer to Fig. 5.7). In the pairwise part, for a
pair of neighboring superpixels (p, q), we consider K types of similarities, and feed them into a
fully-connected layer. The outputs of unary part and the pairwise part are then fed to the CRF
structured loss layer, which minimizes the negative log-likelihood. Predicting the depths of a
new image x is to maximize the conditional probability Pr(y|x), which has closed-form solutions
(see Sec. 5.3.3 for details).

5.2.3 Fully Convolutional Networks

Fully convolutional networks are recently been actively studied for dense prediction

problems, e.g ., semantic segmentation [97, 98], image restoration [111], image super-

resolution [112], depth estimations [9]. To deal with the downsampled output issue,

interpolations are generally applied [9, 98]. In [113], Sermanet et al . propose an input

shifting and output interlacing trick to produce dense predictions from coarse outputs

without interpolations. Later on, Long et al . [97] present a deconvolution approach to

put the upsampling into the training regime instead of applying it as a post-processing

step. The CNN model presented in Eigen et al . [9] for depth estimations also suffers from

this upsampling problem, i.e., the predicted depth maps of [9] is 1/4-resolution of the

original input image with some border areas lost. They simply use bilinear interpolations

to upsample the predictions to the input image size. Unlike these existing methods, we

propose a novel superpixel pooling method to address this issue. It jointly exploits the

strengths of highly efficient fully convolutional networks and the benefits of superpixels

at preserving object boundaries.

80 Chapter 5 Joint Learning of Continuous CRF and CNN for Single Image Depth Estimation

2x2 pooling

5x5 conv fc3x3 conv 3x3 conv 3x3 conv

2x2 pooling

fc fc

256 256 256 256
4096 128 16

ReLU ReLU ReLU ReLU ReLU ReLU Logistic

1

fc11x11 conv

2x2 pooling
ReLU

64224

224

Figure 5.7: Detailed network architecture of the unary part in Fig. 5.6.

5.3 Deep Convolutional Neural Fields

We present the details of our deep convolutional neural field (DCNF) model for depth

estimation in this section. Unless otherwise stated, we use boldfaced uppercase and

lowercase letters to denote matrices and column vectors respectively.

5.3.1 Overview

The goal here is to infer the depth of each pixel in a single image depicting a general scene.

Following the work of [8, 10, 93], we make the common assumption that an image is

composed of small homogeneous regions (superpixels) and consider the graphical model

composed of nodes defined on superpixels. Each superpixel is portrayed by the depth

of its centroid. Let x be an image and y = [y1, . . . , yn]> ∈ Rn be a vector of continuous

depth values corresponding to all n superpixels in x. Similar to conventional CRFs,

we model the conditional probability distribution of the data with the following density

function:

Pr(y|x) =
1

Z(x)
exp(−E(y,x)), (5.1)

where E is the energy function; Z is the partition function defined as:

Z(x) =

∫
y

exp{−E(y,x)}dy. (5.2)

Here, because y is continuous, the integral in Eq. (5.1) can be analytically calculated

under certain circumstances, which we will show in Sec. 5.3.3. This is different from

the discrete case, in which approximation methods need to be applied. To predict the

depth of a new image, we solve the following MAP inference problem:

y? = argmax
y

Pr(y|x). (5.3)

We formulate the energy function as a typical combination of unary potentials U and

pairwise potentials V over the nodes (superpixels) N and edges S of the image x:

E(y,x) =
∑
p∈N

U(yp,x) +
∑

(p,q)∈S

V (yp, yq,x). (5.4)

Chapter 5 Joint Learning of Continuous CRF and CNN for Single Image Depth Estimation 81

The unary term U aims to regress the depth value for a single superpixel. The pairwise

term V encourages neighboring superpixels with similar appearances to take similar

depths. We aim to jointly learn U and V in a unified CNN framework.

Fig. 5.6 sketches our deep convolutional neural field model for depth estimation. The

whole network comprises a unary part, a pairwise part and a continuous CRF loss layer.

For an input image, which has been over-segmented into n superpixels, we consider

image patches centred around each superpixel centroid. The unary part then takes an

image patch as input and feeds it to a CNN whose outputs is a single number, the

regressed depth value of the superpixel.

The network for the unary part is composed of 5 convolutional and 4 fully-connected

layers with details in Fig. 5.7. Note that the CNN parameters are shared across all the

superpixels. The pairwise part takes similarity vectors (each with K components) of all

neighboring superpixel pairs as input and feeds each of them to a fully-connected layer

(parameters are shared among different pairs), then outputs a vector containing all the

1-dimensional similarities for each of the neighboring superpixel pairs. The continuous

CRF loss layer takes the outputs from the unary and the pairwise terms to minimize

the negative log-likelihood. Compared to the direct regression method in [9], our model

possesses two potential advantages:

• We achieve translation invariance as we construct unary potentials irrespective of

the superpixel’s coordinate (shown in Sec. 5.3.2);

• We explicitly model the relations of neighboring superpixels through pairwise po-

tentials.

In the following, we describe the details of potential functions involved in the energy

function in Eq. (5.4).

5.3.2 Potential Functions

We present the details of the potential functions used in our model, which consists of a

unary potential and a pairwise potential.

5.3.2.1 Unary potential

The unary potential is constructed from the output of a CNN by considering the least

square loss:

U(yp,x;θ) = (yp − zp(θ))2, ∀p = 1, ..., n. (5.5)

82 Chapter 5 Joint Learning of Continuous CRF and CNN for Single Image Depth Estimation

Here zp is the regressed depth of the superpixel p parametrized by the CNN parameters

θ.

The network architecture for the unary part is depicted in Fig. 5.7. Our CNN model

in Fig. 5.7 is mainly inspired by the well-known network architecture of Krizhevsky

et al . [96] with modifications. It is composed of 5 convolutional layers and 4 fully-

connected layers. The input image is first over-segmented into superpixels, then for

each superpixel, we consider the image patch centred around its centroid. Each of the

image patches is resized to 224×224 pixels (other resolutions also work) and then fed to

the convolutional neural network. Note that the convolutional and the fully-connected

layers are shared across all the image patches of different superpixels. Rectified linear

units (ReLU) are used as activation functions for the five convolutional layers and the

first two fully connected layers. For the third fully-connected layer, we use the logistic

function f(x) = (1 + e−x)−1 as the activation function. The last fully-connected layer

plays the role of model ensemble with no activation function followed. The output is

an 1-dimensional real-valued depth for a single superpixel.

5.3.2.2 Pairwise Potential

We construct the pairwise potential from K types of similarity observations, each of

which enforces smoothness by exploiting consistency information of neighboring super-

pixels:

V (yp, yq,x;β) =
1

2
Rpq(yp − yq)2, ∀p, q = 1, ..., n. (5.6)

Here Rpq is the output of the network in the pairwise part (see Fig. 5.6) from a neigh-

boring superpixel pair (p, q). We use a fully-connected layer here:

Rpq = β>[S(1)
pq , . . . , S

(K)
pq]> =

K∑
k=1

βkS
(k)
pq , (5.7)

where S(k) is the k-th similarity matrix whose elements are S
(k)
pq (S(k) is symmetric);

β = [β1, . . . , βk]
> are the network parameters. From Eq. (5.7), we can see that we do

not use any activation function. However, as our framework is general, more complicated

networks may be seamlessly incorporated for the pairwise part. In Sec. 5.3.3, we will

show that we can derive a general form for calculating the gradients with respect to β

(see Eq. (5.18)). To ensure that Z(x) in Eq. (5.2) is integrable, we require βk ≥ 0 as in

[33]. Note that this is a sufficient but not necessary condition.

Chapter 5 Joint Learning of Continuous CRF and CNN for Single Image Depth Estimation 83

Here we consider 3 types of pairwise similarities, measured by the colour difference,

colour histogram difference and texture disparity in terms of local binary patterns (LBP)

[114], which take the conventional form:

S(k)
pq = e

−γ
∥∥∥s(k)p −s

(k)
q

∥∥∥
, k = 1, 2, 3;

where s
(k)
p , s

(k)
q are the observation values of the superpixel p, q calculated from colour,

colour histogram and LBP within the bounding box of the superpixel; ‖·‖ denotes the

`2 norm of a vector and γ is a constant. It may be possible to learn features for the

pairwise term too. For example, the pairwise term can be a deep CNN with raw pixels

as the input. A more sophisticated pairwise energy may further improve the estimation,

especially for complex discrete labelling problems, with the price of increased computa-

tion complexity. For depth estimation, we find that our current pairwise energy already

works very well.

5.3.3 Learning

With the unary and the pairwise potentials defined in Eq. (5.5), (5.6), we can now write

the energy function as:

E(y,x) =
∑
p∈N

(yp − zp)2 +
∑

(p,q)∈S

1

2
Rpq(yp − yq)2. (5.8)

For ease of expression, we introduce the following notation:

A = I + D−R, (5.9)

where I is the n × n identity matrix; R is the affinity matrix composed of Rpq; D is a

diagonal matrix with Dpp =
∑

q Rpq. We see that D−R is the graph Laplacian matrix.

Thus A is the regularized Laplacian matrix. Expanding Eq. (5.8), we have:

E(y,x) =
∑
p

y2p − 2
∑
p

ypzp +
∑
p

z2p +
1

2

∑
pq

Rpqy
2
p −

∑
pq

Rpqypyq +
1

2

∑
pq

Rpqy
2
q

= y>y − 2z>y + z>z + y>Dy − y>Ry

= y>(I + D−R)y − 2z>y + z>z

= y>Ay − 2z>y + z>z. (5.10)

Due to the quadratic terms of y in the energy function in Eq. (5.10) and the positive

definiteness of A (with all positive edges of the graph, the Laplacian matrix must be

positive semidefinite and therefore A must be positive definite), we can analytically

84 Chapter 5 Joint Learning of Continuous CRF and CNN for Single Image Depth Estimation

calculate the integral in the partition function (Eq. (5.2)) as:

Z(x) =

∫
y

exp
{
− E(y,x)

}
dy

=

∫
y

exp
{
− y>Ay + 2z>y − z>z

}
dy

= exp{−z>z}
∫
y

exp
{
− y>Ay + 2z>y

}
dy

= exp{−z>z}

√
(2π)n

|2A|
exp{z>A−1z}

=
(π)

n
2

|A|
1
2

exp{z>A−1z− z>z}, (5.11)

From Eqs. (5.1), (5.10), (5.11), we can now write the probability distribution function

as:

Pr(y|x) =
1

Z(x)
exp(−E(y,x))

=
exp

{
− y>Ay + 2z>y − z>z

}
(π)

n
2

|A|
1
2

exp{z>A−1z− z>z}

=
|A|

1
2

π
n
2

exp
{
− y>Ay + 2z>y − z>A−1z

}
, (5.12)

where z = [z1, . . . , zn]>; | · | denotes the determinant of a matrix, and A−1 the inverse

of A. Then the negative log-likelihood can be written as:

− log Pr(y|x) = y>Ay − 2z>y + z>A−1z (5.13)

− 1

2
log(|A|) +

n

2
log(π).

During learning, we minimize the negative conditional log-likelihood of the training data.

Adding regularization to θ, β, we then arrive at the final optimization:

min
θ,β≥0

λ1
2
‖θ‖2 +

λ2
2
‖β‖2 (5.14)

−
N∑
i=1

log Pr(y(i)|x(i);θ,β),

where x(i), y(i) denote the i-th training image and the corresponding depth map; N is

the number of training images; λ1 and λ2 are weight decay parameters.

Chapter 5 Joint Learning of Continuous CRF and CNN for Single Image Depth Estimation 85

Fully-conv
Superpixel
pooling

d 128 16 1

fc
ReLU

fc
Logistic

fc

n n nn

d

Convolution mapsInput image Unary output

Figure 5.8: An overview of the unary part of the DCNF-FCSP model. For the unary part,
the input image is fed into a fully-convolutional network to produce convolution maps (d is the
number of filters of the last fully-convolutional layer). The obtained convolution maps, together
with the superpixel segmentation over the original input image, are fed to a superpixel pooling
layer. The outputs are n× 1 d dimensional feature vectors for each of the n superpixels, which
are then followed by 3 fully-connected layers to produce the unary output z. The pairwise part
are omitted here since we use the same network architecture as in the DCNF model (Fig. 5.6).
The unary output z and the pairwise output R are used as input to the CRF loss layer, which
minimizes the negative log-likelihood (See Sec. 5.3.4 for details) .

2x2 pooling

5x5 conv 3x3 conv 3x3 conv 3x3 conv

2x2 pooling

256 256 256 256

ReLU ReLU ReLU ReLU
11x11 conv

2x2 pooling
ReLU

64
Input image Convolution maps

3x3 conv
ReLU

512

3x3 conv
ReLU

512

Figure 5.9: The fully convolutional network architecture used in Fig. 5.8. The network takes
input images of arbitrary size and output convolution maps.

5.3.3.1 Optimization

We use stochastic gradient descent (SGD) based back propagation to solve the optimiza-

tion problem in Eq. (5.14) for learning all parameters of the whole network. We project

the solutions to the feasible set when the bounded constraints βk ≥ 0 is violated. In

the following, we calculate the partial derivatives of − log Pr(y|x) with respect to the

network parameters θ and β.

For the unary part, here we calculate the partial derivatives of − log Pr(y|x) with respect

to θl (one element of θ). Recall that A = I+D−R (Eq. (5.9)); A> = A; (A−1)> = A−1;

86 Chapter 5 Joint Learning of Continuous CRF and CNN for Single Image Depth Estimation

|A−1| = 1
|A| , we have:

∂{− log Pr(y|x)}
∂θl

=
∂{−2z>y + z>A−1z}

∂θl

=
∂{−2z>y}

∂θl
+
∂{z>A−1z}

∂θl

= −2
∂{
∑

p zpyp}
∂θl

+
∂{
∑

pq zpzqA
−1
pq }

∂θl

= −2
∑
p

(
yp
∂zp
∂θl

)
+
∑
pq

(
zp
∂zq
∂θl

+ zq
∂zp
∂θl

)
A−1pq

= −2y>
∂z

∂θl
+ 2z>A−1

∂z

∂θl

= 2(A−1z− y)>
∂z

∂θl
. (5.15)

For the pairwise part, we calculate the partial derivatives of − log Pr(y|x) with respect

to βk as:

∂{− log Pr(y|x)}
∂βk

=
∂{y>Ay + z>A−1z− 1

2 log(|A|)}
∂βk

=
∂{y>Ay}
∂βk

+
∂{z>A−1z}

∂βk
− 1

2

∂ log(|A|)
∂βk

,

= y>
∂A

∂βk
y − z>A−1

∂A

∂βk
A−1z− 1

2

1

|A|
∂{|A|}
∂βk

,

= y>
∂A

∂βk
y − z>A−1

∂A

∂βk
A−1z− 1

2
Tr
(
A−1

∂A

∂βk

)
. (5.16)

where Tr(·) denotes the trace of a matrix. We here introduce matrix J to denote ∂A
∂βk

.

Each element of J is:

Jpq =
∂Apq
∂βk

=
∂{Dpq −Rpq}

∂βk

=
∂Dpq

∂βk
− ∂Rpq

∂βk

= −∂Rpq
∂βk

+ δ(p = q)
∑
q

∂Rpq
∂βk

, (5.17)

where δ(·) is the indicator function, which equals 1 if p = q is true and 0 otherwise.

According to Eq. (5.16) and the definition of J in (5.17), we can now write the partial

Chapter 5 Joint Learning of Continuous CRF and CNN for Single Image Depth Estimation 87

derivative of − log Pr(y|x) with respect to βk as:

∂{− log Pr(y|x)}
∂βk

= y>Jy − z>A−1JA−1z− 1

2
Tr
(
A−1J

)
. (5.18)

From Eqs. (5.18), (5.17), we can see that our framework is general and more complicated

networks for the pairwise part can be seamlessly incorporated. Here, in our case, with

the definition of Rpq in Eq. (5.7), we have
∂Rpq

∂βk
= S

(k)
pq .

5.3.3.2 Depth Prediction

Predicting the depths of a new image is to solve the MAP inference in Eq. (5.3), which

writes as:

y? = argmax
y

Pr(y|x)

= argmax
y

log Pr(y|x)

= argmax
y

−y>Ay + 2z>y. (5.19)

With the definition of A in Eq. (5.9), A is symmetric. Then by setting the partial

derivative of −y>Ay + 2z>y with respect to y to 0, we have

∂{−y>Ay + 2z>y}
∂y

= 0

⇒ − (A + A>)y + 2z = 0

⇒ − 2Ay + 2z = 0

⇒ y = A−1z. (5.20)

It shows that closed-form solutions exist for the MAP inference in Eq. (5.19):

y? = A−1z (5.21)

If we discard the pairwise terms, namely Rpq = 0, then Eq. (5.21) degenerates to y? = z,

which is a plain CNN regression model (we will report the results of this method as a

baseline in the experiment). Note that we do not need to explicitly compute the matrix

inverse A−1 which can be expensive (cubic in the number of nodes). Instead we can

obtain the value of A−1z by solving a linear system.

88 Chapter 5 Joint Learning of Continuous CRF and CNN for Single Image Depth Estimation

Convolution
maps upsampling

1 2

3 4

1 1

1 1

2 2

2 2

3 3

3 3

4 4

4 4

Superpixel
over-segmentation

Superpixel
pooling

d

n

d

d d

1
Input image

...

Superpixel
masking

Fully
convolution

1 1

1 1

2 2

2 2

3 3

3 3

4 4

4 4

Figure 5.10: An illustration of the superpixel pooling method, which mainly consists of con-
volution maps upsampling and superpixel pooling. The convolution maps are upsampled to
the original image size by nearest neighbor interpolations, over which the superpixel masking
is applied. Then average pooling is performed within each superpixel region, to produce the n
convolution features. n is the number of superpixels in the image. d is the number of channels
of the convolution maps.

5.3.4 Speeding up Training Using Fully Convolutional Networks and

Superpixel Pooling

Thus far, we have presented our DCNF model for depth estimations based on image

superpixels. From Fig. 5.6, we can see that for constructing the unary potentials, we are

essentially performing patchwise convolutions (similar operations are performed in the

R-CNN [100]). A major concern of the proposed method is its computational efficiency

and memory consumption, since we need to perform convolutions over hundreds or even

thousands (number of superpixels) of image patches for a single input image. Many of

those convolutions are redundant due to significant image patch overlaps.

Naturally, a promising direction for reducing the computation burden is to perform

convolutions over the entire image once, and then obtain convolutional features for each

superpixel. However, to find the convolutional features of the image superpixels from

the obtained convolution maps, one needs to establish associations between these two.

Therefore, we here propose an improved model, which we term as DCNF-FCSP, based

on fully convolutional networks and a novel superpixel pooling method, to address this

issue. As we will show in Sec. 5.4.2, this new model significantly speeds up the training

and prediction while producing almost the same prediction accuracy. Most importantly,

with this more efficient model, we are able to design deeper networks to achieve better

performance.

Chapter 5 Joint Learning of Continuous CRF and CNN for Single Image Depth Estimation 89

5.3.4.1 DCNF-FCSP Overview

In comparison to the DCNF model, our new DCNF-FCSP model mainly improves the

unary part while keeping the same pairwise network architecture as in Fig. 5.6. We

show the model architecture of the unary part in Fig. 5.8. Specifically, the input

image is fed to a fully convolutional network (introduced in the sequel). The outputs

are convolutional feature maps of size h × w × d (d is the dimension of the obtained

convolutional feature vector, i.e., the number of channels of the last convolutional layer).

The size of the convolution maps h×w are typically smaller than the input image size.

Each convolutional feature vector in the output convolution maps corresponds to a patch

in the input image. We propose a novel superpixel pooling method (described in the

following) to associate these outputs back to the superpixels in the input image. Namely,

the convolutional feature maps are used as inputs to a superpixel pooling layer to obtain

n superpixel feature vectors with d dimensions (n is the number of superpixels). The

n superpixel feature vectors are then fed to 3 fully-connected layers to produce the

unary output z. We use the same pairwise network architecture as depicted in Fig. 5.6,

which we do not show here. With the unary output z and the pairwise output R, we

construct potential functions according to Eqs. (5.5) and (5.6) and optimize the negative

log-likelihood.

Compared to the original proposed DCNF method, this improved DCNF-FCSP model

only needs to perform convolutions over the entire image once, rather than hundreds of

superpixel image patches. This significantly reduces the computation and GPU memory

burden, bringing around 10 times training speedup while producing almost the same

prediction accuracy, as we demonstrate later in Sec. 5.4.2. We next introduce the fully

convolutional networks and the superpixel pooling method in detail.

5.3.4.2 Fully Convolutional Networks

Typical CNN models, including AlexNet [96], vggNet [99, 115], etc., are composed of

convolution layers and fully connected layers. They usually take standard sized images

as inputs, e.g ., 224 × 224 pixels, to produce nonspatial outputs. In contrast, a fully

convolutional network can take as inputs arbitrarily sized images, and outputs convolu-

tional spatial maps. It has therefore been actively studied for dense prediction problems

[9, 97, 98, 112] in very recently. We here exploit this new development trend in CNN

to speedup the patch-wise convolutions in the DCNF model. We illustrate the fully

convolutional network architecture that we use in Fig. 5.9. As shown, the network is

composed of 7 convolution layers, with the first 5 layers transferred from the AlexNet

[96]. We then add 2 more convolution layers with 3×3 filter size and 512 channels each.

90 Chapter 5 Joint Learning of Continuous CRF and CNN for Single Image Depth Estimation

The network takes as input images of arbitrary size and outputs convolution maps of

channel d = 512. Note that we can design deeper networks here for pursuing better

performance. We will demonstrate in Sec. 5.4.3 the benefits of using deeper models.

5.3.4.3 Superpixel Pooling

After the input images go through the fully convolutional networks, we acquire convo-

lution maps. To obtain superpixel features, we need to associate these convolutional

feature maps back to the image superpixels. Thus we here propose a novel superpixel

pooling method. An illustration of this method is shown in Fig. 5.10, which mainly con-

sists of the convolution maps upsampling and superpixel average pooling. In general,

this superpixel pooling layer takes the convolution maps as input and output superpixel

features. Specifically, the obtained convolution maps are first upsampled to the original

image size by nearest neighbor interpolation. Note that other interpolation methods

such as linear interpolation may be applicable too. However, as discussed below, nearest

neighbor interpolation makes the implementation much easier and computation faster.

Then the superpixel masking is applied and average pooling is performed within each

superpixel region. The outputs are pooled superpixel features, which are used for con-

structing the unary potentials. In the sequel, we describe this method in detail.

In practice there is no need to explicitly upsample the convolution maps. Instead, we

count the frequencies of the convolutional feature vectors that fall into each superpixel

region. We denote the convolution maps as C ∈ Rh×w×d, with each element being Cijk

(i = 1, . . . , h; j = 1, . . . , w; k = 1, . . . , d). We represent the t-th superpixel feature as a

d-dimensional column vector ht (t = 1, . . . , n), with elements htk (k = 1, . . . , d). Wt ∈
Rh×w is a frequency weighting matrix associated to the t-th superpixel, with elements

being Wijt. Wijt represents the weight of (i, j)-th feature vector in the convolution maps

that associated to the t-th superpixel. To calculate Wijt, we simply count the occurrences

of the (i, j)-th convolutional feature vector that appear in the t-th superpixel region, and

do L1 normalization for each Wt. By constructing this frequency matrix Wt, we avoid

the explicit upsampling operation. Then the superpixel pooling can be represented as:

htk =
∑

(i,j)∈Rt

Wijt · Cijk, (5.22)

where (i, j) ∈ Rt denotes the (i, j)-th convolutional feature vector in the convolution

maps being associated to the t-th superpixel.

During the network forward pass, the superpixel pooling layer performs a linear trans-

formation in Eq. 5.22 to output ht from the input C. For the network backward, the

Chapter 5 Joint Learning of Continuous CRF and CNN for Single Image Depth Estimation 91

gradients can be easily calculated since we have:

∂htk
∂Cijk

=

{
Wijt if (i, j) ∈ Rt

0 otherwise.
(5.23)

Thus far, we have successfully established the associations between the convolutional

feature maps and the image superpixels. It should be noted that although simple as it

is, the proposed superpixel pooling method jointly exploits the benefits of fully convolu-

tional networks and superpixels. It provides an efficient yet equally effective approach to

the patchwise convolutions used in the DCNF model, as we demonstrate in Sec. 5.4.2.

5.3.5 Implementation Details

We implement the network training based on the CNN toolbox: VLFeat MatConvNet1

with our own modifications. Training is done on a standard desktop with an NVIDIA

GTX 780 GPU with 6GB memory. We present the implementation details of the two

proposed models in the following.

DCNF We initialize the first 6 layers of the unary part in Fig. 5.7 using a CNN

model trained on the ImageNet from [115]. First, we do not back propagate through

the previous 6 layers by keeping them fixed and train the rest of the network (we refer

this process as pre-train) with the following settings: momentum is set to 0.9, and

weight decay parameters λ1, λ2 are set to 0.0005. During pre-train, the learning rate is

initialized at 0.0001, and decreased by 40% every 20 epoches. We then run 60 epoches to

report the results of pre-train (with learning rate decreased twice). During pre-training,

it takes less than 0.1s for one network forward pass to do depth predictions. Then we

train the whole network with the same momentum and weight decay. We apply dropout

with ratio 0.5 in the first two fully-connected layers of Fig. 5.7. Training the whole

network takes around 16.5 hours on the Make3D dataset, and around 33 hours on the

NYU v2 dataset.

DCNF-FCSP We initialize the first 5 layers in Fig. 5.9 with the same model trained

on the ImageNet from [115]. The momentum and weight decay parameters are set the

same as in the DCNF model. We also use the same training protocol as in the DCNF

model, i.e., first pre-train and then fine-tune the whole model.

1VLFeat MatConvNet: http://www.vlfeat.org/matconvnet/

92 Chapter 5 Joint Learning of Continuous CRF and CNN for Single Image Depth Estimation

Table 5.1: Baseline comparisons on the NYU v2 dataset. Our method with the whole network
training performs the best.

Method
Error Accuracy

(lower is better) (higher is better)
rel log10 rms δ < 1.25 δ < 1.252 δ < 1.253

SVR 0.313 0.128 1.068 0.490 0.787 0.921
SVR (smooth) 0.290 0.116 0.993 0.514 0.821 0.943
Unary only 0.295 0.117 0.985 0.516 0.815 0.938
Unary only (smooth) 0.287 0.112 0.956 0.535 0.828 0.943
DCNF (pre-train) 0.257 0.101 0.843 0.588 0.868 0.961
DCNF (fine-tune) 0.230 0.095 0.824 0.614 0.883 0.971

Table 5.2: Baseline comparisons on the Make3D dataset. Our method with the whole network
training performs the best.

Method
Error (C1) Error (C2)

(lower is better) (lower is better)
rel log10 rms rel log10 rms

SVR 0.433 0.158 8.93 0.429 0.170 15.29
SVR (smooth) 0.380 0.140 8.12 0.384 0.155 15.10
Unary only 0.366 0.137 8.63 0.363 0.148 14.41
Unary only (smooth) 0.341 0.131 8.49 0.349 0.144 14.37
DCNF (pre-train) 0.331 0.127 8.82 0.324 0.134 13.29
DCNF (fine-tune) 0.314 0.119 8.60 0.307 0.125 12.89

Table 5.3: Performance comparisons of DCNF and DCNF-FCSP on the NYU v2 dataset. The
two models show comparable performance.

Method
Error Accuracy

(lower is better) (higher is better)
rel log10 rms δ < 1.25 δ < 1.252 δ < 1.253

DCNF (pre-train) 0.257 0.101 0.843 0.588 0.868 0.961
DCNF (fine-tune) 0.230 0.095 0.824 0.614 0.883 0.971
DCNF-FCSP (pre-train) 0.261 0.100 0.842 0.583 0.869 0.964
DCNF-FCSP (fine-tune) 0.237 0.082 0.822 0.608 0.889 0.969

Table 5.4: Performance comparisons of DCNF and DCNF-FCSP on the Make3D dataset. The
two models perform on par in general.

Method
Error (C1) Error (C2)

(lower is better) (lower is better)
rel log10 rms rel log10 rms

DCNF (pre-train) 0.331 0.127 8.82 0.324 0.134 13.29
DCNF (fine-tune) 0.314 0.119 8.60 0.307 0.125 12.89
DCNF-FCSP (pre-train) 0.323 0.127 9.01 0.318 0.136 13.89
DCNF-FCSP (fine-tune) 0.312 0.113 9.10 0.305 0.120 13.24

Chapter 5 Joint Learning of Continuous CRF and CNN for Single Image Depth Estimation 93

Test image Ground-truth Eigen et al . [9] DCNF-FCSP

Figure 5.11: Examples of qualitative comparisons on the NYUD2 dataset (Best viewed on screen).
Color indicates depths (red is far, blue is close). Our method yields visually better predictions
with sharper transitions, aligning to local details.

5.4 Experiments

We organize our experiments into the following three parts: 1) We compare our DCNF

model with several baseline methods to show the benefits of jointly learning CNN and

CRF; 2) We perform comparisons between the two proposed models, i.e., DCNF and

DCNF-FCSP, to show that the DCNF-FCSP model is equally effective while generally

94 Chapter 5 Joint Learning of Continuous CRF and CNN for Single Image Depth Estimation

0 200 400 600 800 1000 1200 1400
10

−1

10
0

10
1

10
2

Number of superpixels per image

T
ra

in
in

g
tim

e
in

 s
ec

on
ds

 (
in

 lo
g

sc
al

e)

DCNF

DCNF−FCSP

Figure 5.12: Comparison of the whole model training time (network forward + backward) in
seconds (in log scale) for one image on the NYU v2 dataset with respect to different numbers of
superpixels per image. The DCNF-FCSP model is orders of magnitude faster than the DCNF
model.

0 200 400 600 800 1000 1200 1400
0

0.5

1

1.5

2

2.5

3

Number of superpixels per image

N
et

w
or

k
fo

rw
ar

d
tim

e
in

 s
ec

on
ds

DCNF

DCNF−FCSP

Figure 5.13: Comparison of the network forward time of the whole model during depth prediction
(in seconds) for one image on the NYU v2 dataset with respect to different numbers of superpixels
per image. The DCNF-FCSP model is significantly faster than the DCNF model.

being ∼ 10 times faster; 3) We compare our DCNF-FCSP model using deeper network

design with state-of-the-art methods to show that our model performs significantly bet-

ter. We evaluate on two popular datasets which are available online: the indoor NYU v2

Kinect dataset [116] and the outdoor Make3D range image dataset [8]. Several measures

commonly used in prior works are applied here for quantitative evaluations:

• average relative error (rel): 1
T

∑
p
|dgtp −dp|
dgtp

;

• root mean squared error (rms):
√

1
T

∑
p(d

gt
p − dp)2;

Chapter 5 Joint Learning of Continuous CRF and CNN for Single Image Depth Estimation 95

Table 5.5: State-of-the-art comparisons on the NYU v2 dataset. Our method performs the best
in most cases. Note that the results of Eigen et al . [9] are obtained by using extra training data
(in the millions in total) while ours are obtained using the standard training set.

Method
Error Accuracy

(lower is better) (higher is better)
rel log10 rms δ < 1.25 δ < 1.252 δ < 1.253

Make3d [8] 0.349 - 1.214 0.447 0.745 0.897
DepthTransfer [7] 0.35 0.131 1.2 - - -
Discrete-continuous CRF [10] 0.335 0.127 1.06 - - -
Ladicky et al . [89] - - - 0.542 0.829 0.941
Eigen et al . [9] 0.215 - 0.907 0.611 0.887 0.971

DCNF-FCSP (pre-train) 0.234 0.095 0.842 0.604 0.885 0.973
DCNF-FCSP (fine-tune) 0.213 0.087 0.759 0.650 0.906 0.976

Table 5.6: State-of-the-art comparisons on the Make3D dataset. Our method performs the best.
Note that the C2 errors of the Discrete-continuous CRF [10] are reported with an ad-hoc post-
processing step (train a classifier to label sky pixels and set the corresponding regions to the
maximum depth).

Method
Error (C1) Error (C2)

(lower is better) (lower is better)
rel log10 rms rel log10 rms

Make3d [8] - - - 0.370 0.187 -
Semantic Labelling [93] - - - 0.379 0.148 -
DepthTransfer [7] 0.355 0.127 9.20 0.361 0.148 15.10
Discrete-continuous CRF [10] 0.335 0.137 9.49 0.338 0.134 12.60

DCNF-FCSP (pre-train) 0.331 0.119 7.77 0.330 0.133 14.46
DCNF-FCSP (fine-tune) 0.287 0.109 7.36 0.287 0.122 14.09

Table 5.7: State-of-the-art comparisons on the KITTI dataset. Our method achieves the best
RMS error. Note that the results of Eigen et al . [9] are obtained by using extra training data (in
the millions in total) while ours are obtained using 700 training images. The results of Saxena
et al . [8] are reproduced from [9]

Method
Error Accuracy

(lower is better) (higher is better)
rel log10 rms δ < 1.25 δ < 1.252 δ < 1.253

Saxena et al . [8] 0.280 - 8.734 0.601 0.820 0.926
Eigen et al . [9] 0.190 - 7.156 0.692 0.899 0.967

DCNF-FCSP (pre-train) 0.236 0.101 7.421 0.613 0.858 0.949
DCNF-FCSP (fine-tune) 0.217 0.092 7.046 0.656 0.881 0.958

• average log10 error (log10):
1
T

∑
p | log10 d

gt
p − log10 dp|;

• accuracy with threshold thr:

percentage (%) of dp s.t. : max(
dgtp
dp
,
dp

dgtp
) = δ < thr;

where dgtp and dp are the ground-truth and predicted depths respectively at pixel indexed

by p, and T is the total number of pixels in all the evaluated images.

96 Chapter 5 Joint Learning of Continuous CRF and CNN for Single Image Depth Estimation

Test image Ground-truth DCNF-FCSP Test image Ground-truth DCNF-FCSP

Figure 5.14: Examples of depth predictions on the Make3D dataset (Best viewed on screen).
Depths are shown in log scale and in color (red is far, blue is close).

We use SLIC [117] to segment the images into a set of non-overlapping superpixels. For

the DCNF model, we consider the image patch within a rectangular box centred on the

centroid of each of the superpixels, which contains a large portion of its background

surroundings. More specifically, we use a box size of 168×168 pixels for the NYU v2 and

120× 120 pixels for the Make3D dataset. Following [8, 9, 93], we transform the depths

into log-scale before training. For better visualizations, we apply a cross-bilateral filter

[118] for inpainting using the provided toolbox [116] after obtaining the superpixel depth

predictions. Our experiments empirically show that this post-processing has negligibly

Chapter 5 Joint Learning of Continuous CRF and CNN for Single Image Depth Estimation 97

Test image Ground-truth DCNF-FCSP

Figure 5.15: Examples of depth predictions on the KITTI dataset (Best viewed on screen).
Depths are shown in log scale and in color (red is far, blue is close).

Figure 5.16: Examples of depth predictions on general indoor scene images obtained from the
Internet (First row: test images; second row: our depth predictions. Best viewed on screen).
Depths are shown in log scale and in color (red indicates far and blue indicates close).

impact on the evaluation performance.

5.4.1 Baseline Comparisons

To demonstrate the effectiveness of the proposed method, we first conduct experimental

comparisons against several baseline methods:

• SVR: We train a support vector regressor using the CNN representations from the

first 6 layers of Fig. 5.7;

98 Chapter 5 Joint Learning of Continuous CRF and CNN for Single Image Depth Estimation

−1.5 −1 −0.5 0 0.5 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Error in meters

Pe
rc

en
ta

ge
 o

f p
ix

el
s

−80 −60 −40 −20 0 20 40
0

0.1

0.2

0.3

0.4

0.5

Error in meters

Pe
rc

en
ta

ge
 o

f p
ix

el
s

−1 −0.5 0 0.5 1 1.5
0

0.05

0.1

0.15

0.2

Error in meters

P
er

ce
nt

ag
e

of
 p

ix
el

s

−100 −50 0 50 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Error in meters

P
er

ce
nt

ag
e

of
 p

ix
el

s

−2 −1 0 1 2 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Error in meters

Pe
rc

en
ta

ge
 o

f p
ix

el
s

−100 −50 0 50 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Error in meters

P
er

ce
nt

ag
e

of
 p

ix
el

s

−2 −1 0 1 2
0

0.05

0.1

0.15

0.2

Error in meters

Pe
rc

en
ta

ge
 o

f p
ix

el
s

−100 −50 0 50 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Error in meters

P
er

ce
nt

ag
e

of
 p

ix
el

s

−3 −2 −1 0 1 2 3
0

0.05

0.1

0.15

0.2

0.25

Error in meters

Pe
rc

en
ta

ge
 o

f p
ix

el
s

−100 −50 0 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Error in meters

Pe
rc

en
ta

ge
 o

f p
ix

el
s

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9
1

0 0.5

1 1.5

2 2.5

3

0 30.5 1 1.5 2 2.5

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1
0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0 10 20 30 40 50 60 70

0 10 20 30 40 50 60 70

Test image Absolute error map Error histogram Test image Absolute error map Error histogram

Figure 5.17: An illustration of the absolute error maps and the pixel-wise error histograms of our
predictions (Left: NYU v2; Right: Make3D). The absolute error maps are shown in meters, with
the color bar shown in the last row. For the error histogram plot, the horizontal axis shows the
prediction error in meters (quantized into 20 bins), and the vertical axis shows the percentage
of pixels in each bin.

• SVR (smooth): We add a smoothness term to the trained SVR during prediction

by solving the inference problem in Eq. (5.21). As tuning multiple pairwise param-

eters is not straightforward, we only use color difference as the pairwise potential

and choose the parameter β by hand-tuning on a validation set;

• Unary only: We replace the CRF loss layer in Fig. 5.6 with a least-square re-

gression layer (by setting the pairwise outputs Rpq = 0, p, q = 1, ..., n), which

degenerates to a deep regression model trained by SGD.

• Unary only (smooth): We add similar smoothness term to our unary only model,

as did in the SVR (smooth) case.

5.4.1.1 NYU v2 Dataset

The NYU v2 dataset consists of 1449 RGBD images of indoor scenes, among which 795

are used for training and 654 for test (we use the standard training/test split provided

with the dataset). We report the baseline comparisons in Table 5.1. From the table,

several conclusions can be made: 1) When trained with only unary term, deeper network

is beneficial for better performance, which is demonstrated by the fact that our unary

only model outperforms the SVR model; 2) Adding smoothness term to the SVR or our

Chapter 5 Joint Learning of Continuous CRF and CNN for Single Image Depth Estimation 99

Figure 5.18: Examples of depth predictions on general outdoor scene images obtained from the
Internet (First row: test images; second row: our depth predictions. Best viewed on screen).
Depths are shown in log scale and in color (red indicates far and blue indicates close).

unary only model helps improve the prediction accuracy; 3) Our DCNF model achieves

the best performance by jointly learning the unary and the pairwise parameters in a

unified deep CNN framework. Moreover, fine-tuning the whole network yields further

performance gain. These well demonstrate the efficacy of our model.

5.4.1.2 Make3D Dataset

The Make3D dataset contains 534 images depicting outdoor scenes, with 400 for training

and 134 images for test. As pointed out in [8, 10], this dataset is with limitations: the

maximum value of depths is 81m with far-away objects are all mapped to the one distance

of 81 meters. As a remedy, two criteria are used in [10] to report the prediction errors:

(C1) Errors are calculated only in the regions with the ground-truth depth less than

70 meters; (C2) Errors are calculated over the entire image. We follow this protocol

to report the evaluation results in Table 5.2. As we can see, our full DCNF model

with the whole network training performs the best among all the compared baseline

methods. Using deeper networks and adding smoothness terms generally help improve

the performance.

100Chapter 5 Joint Learning of Continuous CRF and CNN for Single Image Depth Estimation

5.4.2 DCNF vs. DCNF-FCSP

In this section, we compare the performance of the proposed DCNF and DCNF-FCSP in

terms of both prediction accuracy and computational efficiency. The compared predic-

tion performance are reported in Table 5.3 and Table 5.4. We can see that the proposed

DCNF-FCSP model performs very close to the DCNF model. Next, we compare the

computational efficiency of these two models. Specifically, we report the training time

(network forward + backward) of one image for both whole models in terms of different

numbers of superpixels we use per image. The comparison is conducted on the NYU v2

dataset and is shown in Fig. 5.12. As demonstrated, the DCNF-FCSP model is gener-

ally orders of magnitude faster than the DCNF model. Moreover, the speedup becomes

more significant with the increase of superpixels. We also compare the network forward

time of whole models during depth predictions, and plot the results in Fig. 5.13. The

shown time is for processing one image. We can see that the DCNF-FCSP model is much

faster as well as more scalable than the DCNF model. Most importantly, with this more

efficient DCNF-FCSP model, we can design deeper network for better performance, as

we will show in the sequel in Sec. 5.4.3.

5.4.3 State-of-the-art Comparisons

Recent studies have shown that very deep networks can significantly improve the image

classifications performance [99, 119]. Thanks to the speedup brought by the superpixel

pooling method, we are now able to design deeper networks in our framework. We

transfer the popular VGG-16 net trained on the ImageNet from [99]. Specifically, we

replace the AlexNet part (the first 5 convolutional layers in Fig. 5.9) with all the

convolutional layers (including the 5-th pooling layer) in VGG-16. These layers are

followed by the 2 newly added convolutional layers with 512 channels each, and then the

3 fully connected layer to construct the unary potentials. We follow the same training

protocol, i.e., first pre-train the remaining layers by fixing the transferred layers (the

VGG-16 net part) and then fine-tune the whole network.

5.4.3.1 NYU v2 Dataset

In Table 5.5, we report the results compared to several popular state-of-the-art methods

on the NYU v2 dataset. As can be observed, our method outperforms classic methods

like Make3d [8], DepthTransfer [7] with large margins. Most notably, our results are sig-

nificantly better than that of [89], which jointly exploits depth estimation and semantic

labelling. Compared to the recent work of Eigen et al . [9], our method also exhibits

Chapter 5 Joint Learning of Continuous CRF and CNN for Single Image Depth Estimation101

better performance in terms of all metrics. Note that, to overcome overfit, they [9] have

to collect millions of additional labelled images to train their model. In contrast, we

only use the standard training sets (795) without any extra data, yet we achieve better

performance. Fig. 5.11 illustrates some qualitative evaluations of our method compared

against Eigen et al . [9] (We download the predictions of [9] from the authors’ website.).

Compared to the coarse predictions of [9], our method yields better visualizations with

sharper transitions, aligning to local details. To better illustrate how our predictions

deviate from the ground-truth depths, we plot the absolute depth error maps and the

pixel-wise error histograms in Fig. 5.17. Specifically, the absolute error maps are shown

in meters, with the color bar shown in the last row. For the error histogram plot, the

horizontal axis shows the prediction error in meters (quantized into 20 bins), and the

vertical axis shows the percentage of pixels in each bin. As we can see, our predictions

are mostly well aligned to the ground truth depth maps.

5.4.3.2 Make3D Dataset

We show the compared results on the Make3D dataset in Table 5.6. We can see that our

DCNF-FCSP model with the whole network training ranks the first in overall perfor-

mance, outperforming the compared methods by large margins. Note that the C2 errors

of [10] are reported with an ad-hoc post-processing step, which trains a classifier to label

sky pixels and set the corresponding regions to the maximum depth. In contrast, we do

not employ any of those heuristics to refine our results, yet we achieve better results in

terms of relative error. Compared to the results of the DCNF-FCSP model using smaller

net in Table 5.4, we get better C1 error but degraded C2 error. This can be explained

from the limitations of this dataset that the depths of all far away objects are all set to

one maximum depth value. Some examples of qualitative evaluations are shown in Fig.

5.14. By jointly learning the unary and pairwise potentials, our DCNF-FCSP model

produce predictions that well capture local details. The absolute depth error maps and

the pixel-wise error histograms are shown in the right part of Fig. 5.17. As can be

observed, our predictions are mostly well aligned to the ground truth depth maps, with

most of the prediction errors are on the boundary regions which show extremely large

depth jumps. In these cases, our predictions exhibit relatively mild depth transitions.

5.4.3.3 KITTI dataset

We further perform depth estimation on the KITTI dataset [120], which consists of

videos taken from a driving vehicle with depths captured by a LiDaR sensor. We use

the same test set, i.e., 697 images from 28 scenes, as provided by Eigen [9]. As for

102Chapter 5 Joint Learning of Continuous CRF and CNN for Single Image Depth Estimation

the training set, we use the same 700 images that Eigen et al . [9] used to train the

method of Saxena et al . [8]. Since the ground-truth depths of the KITTI dataset are

scattered at irregularly spaced points, which only consists of ∼ 5% pixels of each image,

we extract the ground-truth depth closest to each superpixel centroid as the superpixel

depth label. We then construct our CRF graph only on those superpixels that have

ground-truth labels. The compared results are presented in Table 5.7. In summary,

Eigen et al . [9] have achieved better performance on this dataset by leveraging large

amounts of training data (in the millions). This can be explained by the fact that the

highly sparse ground-truth depth maps lessened the benefits of the pairwise term in our

model. Fig. 5.15 shows some prediction examples.

5.4.4 Generalization to Depth Estimations of General Scene Images

As stated, our model aims to predict depths from single monocular images depicting

general scenes. We thus demonstrate the generalization ability of our trained models

(indoor and outdoor) on random images that irrelevant to the training data. Fig. 5.16

shows some prediction examples of our trained indoor model on general indoor scene

images obtained from the Internet. Similarly, Fig. 5.18 shows some prediction examples

of our trained outdoor model on general outdoor scene images obtained from the Inter-

net. As we can see, the predictions are generally reasonable, well preserving the space

hierarchy. It is worth noting that this generalization works well at capturing relative

depths, but not absolute depths, since our trained model relies solely on appearance

information. Despite this drawback, our depth predictions can still benefit other vision

tasks, e.g ., semantic labelling, scene recognition etc.. In [121], the authors incorporated

the predicted depths of our model for place recognition and demonstrate its benefits.

5.5 Conclusion

We have presented a deep convolutional neural field model for depth estimation from

a single image. The proposed method combines the strength of deep CNN and contin-

uous CRF in a unified CNN framework. We show that the log-likelihood optimization

in our method can be directly solved using back propagation without any approxima-

tions required. Predicting the depths of a new image by solving the MAP inference

can be efficiently performed as closed-form solutions exist. We further propose an im-

proved model that based on fully convolutional networks and a novel superpixel pooling

method. We experimentally demonstrate that it is equally effective while brings orders

of magnitude faster training speedup, which enables the use of deeper networks for bet-

ter performance. Given the general learning framework of our method, it is also possible

Chapter 5 Joint Learning of Continuous CRF and CNN for Single Image Depth Estimation103

to be applied to other vision applications with minimum modification, e.g ., image de-

noising, and deblurring. Experimental results demonstrate that the proposed method

outperforms state-of-the-art methods on both indoor and outdoor scene datasets.

Chapter 6

Conclusion

This thesis makes practical contributions in learning structured prediction models for

computer vision applications. Specifically, our efforts are towards nonlinear CRFs learn-

ing, which typically yields better performance than linear CRFs models. We experi-

mentally demonstrate that our proposed methods achieve state-of-the-art results on the

image segmentation and single image depth estimation tasks.

In Chapter 3, we exploit the power of decision trees for constructing potentials in CRFs

models for image segmentation. Specifically, we model the unary and the pairwise po-

tentials of CRFs as two groups of ensembled decision trees. We then jointly learn the

decision trees and the ensemble parameters in a unified optimization framework. We

therefore achieve nonlinear learning of both the unary potential and the pairwise poten-

tial, which distinguishes our method from most of the existing methods. Furthermore,

our method enables learning class-specific decision trees for each category of objects

that appear in the image, which we refer as object-aware CRFs learning. This can

bring additional performance gain. We show that the resulted optimization problem

can be efficiently solved by combining a modified column generation technique and a

cutting-plane algorithm.

In Chapter 4, we leverage a CNN model pre-trained on a large image dataset, i.e., Im-

ageNet, for CRFs learning for the task of image segmentation. Namely, we transfer a

CNN model trained for image classification to semantic segmentation. The trained CNN

model is used for generating deep features for constructing unary potentials of superpix-

els. For the pairwise potential, we incorporate co-occurrence information by constructing

spatial related concurrence potential functions. It injects prior knowledge into learning

and brings the benefit of encouraging reasonable labellings while preventing implausible

labellings. With the constructed unary and pairwise potentials, we then learn the CRFs

parameters within the max-margin framework. We conduct extensive experiments on

105

106 Chapter 6 Conclusion

binary as well as multi-class segmentation datasets and demonstrate state-of-the-art

performance. Additional contributions include that we perform considerable compar-

isons among traditional hand-crafted features, unsupervised learned features and CNN

features, and make valuable conclusions.

In Chapter 5, we propose a joint CNN and continuous CRFs learning framework, i.e.,

deep convolutional neural fields (DCNF), for depth estimation from single images. In

more detail, we propose to model the depth estimation task as continuous CRFs learning

problem. We then design CNN networks for constructing the unary and the pairwise

potentials of the CRFs model. Due to the continuous property of the output depth

values, the partition function in the CRFs model can be explicitly calculated without

approximations. We therefore can directly solve the log-likelihood maximization through

back-propagations. Predicting the depth of a new image is efficient since we have closed-

form solution for the MAP inference problem. Furthermore, we propose an improved

model based on fully convolutional networks and a novel superpixel pooling method,

termed as DCNF-FCSP, to speedup the patch-wise convolutions in the originally pro-

posed model. We experimentally demonstrate that this new model is equally effective

while being orders of magnitude faster. Comprehensive evaluations on both indoor and

outdoor datasets show that our method significantly outperform state-of-the-art meth-

ods. We also show that our trained models can be used for depth estimation of general

scene images, which indicates potentials for benefiting other vision tasks.

6.1 Future Work

We have been focusing on the specific problem of structured learning for computer

vision applications in this thesis. Next, we discussion several potential directions for

future work.

6.1.1 Deep Structured Learning

In the most recent years, deep learning methods have been setting new records in various

aspects of machine learning related applications, e.g ., computer vision, natural language

processing, bioinformatics, etc.. While most of these successes have been focusing on

relatively simple tasks, e.g ., classification, regression, less progress has been made in

more complicated applications. Hence learning deep models for structured prediction

problems becomes a promising working direction.

Deep structured learning puts the hierarchical representation learning and modelling the

dependencies among the variables of interest in a unified framework, which is potentially

Chapter 6 Conclusion 107

promising to benefiting both. However, training deep models typically requires huge

amounts of data, which poses challenges for structured learning in this scenario. This is

because current structured learning methods are generally not able to scale to such large

datasets. A simple solution is to rely on a two-step process, which first trains a unary

model using deep features and then incorporate spatial terms as a post-processing step,

as did in [43, 44]. This learning scheme is suboptimal since the two decoupled steps

are agnostic about each other. In contrast, joint learning can be expected to achieve

better performance, since all the parameters are learned within a unified framework to

optimize a single objective.

Moreover, learning deep structured models calls for more efficient inference methods,

which can also be a potential direction for future work.

6.1.2 Semi-supervised Structured Learning

One of the practical obstacles in applying structured learning is that training requires

obtaining a considerable number of labelled data. Manually annotating large amounts

of data can be expensive while plentiful of unlabelled data are readily available. Fur-

thermore, training structured models on large scale fully annotated datasets is generally

inefficient. This makes semi-supervised structured learning an appealing direction.

By leveraging large amounts of unlabelled data, semi-supervised learning enables struc-

tured training on a limited number of annotated data. In the case of generative models,

unlablled data can be naturally incorporated through the expectation maximization

[122]. However, it remains an open problem how to make use of the large quantities of

unlabelled data in the discriminative models. This can be explored in the future work.

Bibliography

[1] B. Taskar. Learning structured prediction models: A large margin approach. http:

//www.seas.upenn.edu/~taskar/pubs/thesis.pdf, 2004. PhD thesis, Stanford

University.

[2] Yann LeCun, Lon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based

learning applied to document recognition. Proceedings of the IEEE, 1998.

[3] Matthew D. Zeiler and Rob Fergus. Visualizing and understanding convolutional

networks. In Proceedings of European Conference on Computer Vision, 2014.

[4] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification

with deep convolutional neural networks. In Proceedings of Advances in Neural

Information Processing Systems, 2012.

[5] David C. Lee, Abhinav Gupta, Martial Hebert, and Takeo Kanade. Estimating

spatial layout of rooms using volumetric reasoning about objects and surfaces. In

Proceedings of Advances in Neural Information Processing Systems, 2010.

[6] Abhinav Gupta, Alexei A. Efros, and Martial Hebert. Blocks world revisited:

Image understanding using qualitative geometry and mechanics. In Proceedings of

European Conference on Computer Vision, 2010.

[7] Kevin Karsch, Ce Liu, and Sing Bing Kang. Depthtransfer: Depth extraction from

video using non-parametric sampling. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 2014.

[8] Ashutosh Saxena, Min Sun, and Andrew Y. Ng. Make3D: Learning 3d scene

structure from a single still image. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 2009.

[9] David Eigen, Christian Puhrsch, and Rob Fergus. Depth map prediction from

a single image using a multi-scale deep network. In Proceedings of Advances in

Neural Information Processing Systems, 2014.

109

http://www.seas.upenn.edu/~taskar/pubs/thesis.pdf
http://www.seas.upenn.edu/~taskar/pubs/thesis.pdf

110 BIBLIOGRAPHY

[10] Miaomiao Liu, Mathieu Salzmann, and Xuming He. Discrete-continuous depth es-

timation from a single image. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2014.

[11] John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. Conditional

random fields: Probabilistic models for segmenting and labeling sequence data. In

Proceedings of the International Conference on Machine Learning, 2001.

[12] John Lafferty, Xiaojin Zhu, and Yan Liu. Kernel conditional random fields: Rep-

resentation and clique selection. In Proceedings of the International Conference

on Machine Learning, 2004.

[13] Fayao Liu, Guosheng Lin, and Chunhua Shen. CRF learning with CNN features

for image segmentation. Pattern Recognition, 2015.

[14] Fayao Liu, Chunhua Shen, and Guosheng Lin. Deep convolutional neural fields

for depth estimation from a single image. Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2015.

[15] Fayao Liu, Chunhua Shen, Guosheng Lin, and Ian D. Reid. Learning depth

from single monocular images using deep convolutional neural fields. CoRR,

abs/1502.07411, 2015.

[16] Bernhard Scholkopf and Alexander J. Smola. Learning with Kernels: Support Vec-

tor Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge,

MA, USA, 2001.

[17] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning,

1995.

[18] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of

the Royal Statistical Society, 1994.

[19] K. Crammer and Y. Singer. On the algorithmic implementation of multiclass

kernel-based vector mchines. The Journal of Machine Learning Research, 2001.

[20] Ross Kindermann, J. Laurie James Laurie Snell, and American mathematical so-

ciety. Markov random fields and their applications. Contemporary mathematics.

Providence, R.I. American Mathematical Society, 1980.

[21] I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Support vector ma-

chine learning for interdependent and structured output spaces. In Proceedings of

the International Conference on Machine Learning, 2004.

BIBLIOGRAPHY 111

[22] B. Taskar, C. Guestrin, and D. Koller. Max-margin Markov networks. In Proceed-

ings of Advances in Neural Information Processing Systems, 2004.

[23] Yuri Boykov and Vladimir Kolmogorov. An experimental comparison of min-

cut/max-flow algorithms for energy minimization in vision. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 2004.

[24] M. Szummer, P. Kohli, and D. Hoiem. Learning CRFs using graph cuts. In

Proceedings of European Conference on Computer Vision, 2008.

[25] L. Bertelli, T. Yu, D. Vu, and B. Gokturk. Kernelized structural SVM learning

for supervised object segmentation. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2011.

[26] A. Lucchi, Y. Li, K. Smith, and P. Fua. Structured image segmentation using

kernelized features. In Proceedings of European Conference on Computer Vision,

2012.

[27] S. Nowozin and C. H. Lampert. Structured learning and prediction in computer

vision. Foundations and Trends in Computer Graphics and Vision, 2011.

[28] Zhen Zhang, Qinfeng Shi, Yanning Zhang, Chunhua Shen, and Anton van den

Hengel. Constraint reduction using marginal polytope diagrams for map lp relax-

ations. CoRR, 2013. URL http://arxiv.org/abs/1312.4637.

[29] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin meth-

ods for structured and interdependent output variables. The Journal of Machine

Learning Research, 2005.

[30] J. E. Kelley, Jr. The cutting-plane method for solving convex programs. Journal

of the Society for Industrial and Applied Mathematics, 1960.

[31] Thorsten Joachims, Thomas Finley, and Chun-Nam John Yu. Cutting-plane train-

ing of structural svms. Machine Learning, 2009.

[32] Charles Sutton and Andrew McCallum. An introduction to conditional random

fields. Foundations and Trends in Machine Learning, 2012.

[33] Tao Qin, Tie-Yan Liu, Xu-Dong Zhang, De-Sheng Wang, and Hang Li. Global

ranking using continuous conditional random fields. In Proceedings of Advances in

Neural Information Processing Systems, 2008.

[34] Thomas G. Dietterich. Ensemble methods in machine learning. In First Interna-

tional Workshop on Multiple Classifier Systems, 2000.

[35] Ensemble Methods for Structured Prediction, 2014.

http://arxiv.org/abs/1312.4637

112 BIBLIOGRAPHY

[36] Ayhan Demiriz, Kristin P. Bennett, and John Shawe-Taylor. Linear programming

boosting via column generation. Machine Learning, 2002.

[37] C. Shen and Z. Hao. A direct formulation for totally-corrective multi-class boost-

ing. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2011.

[38] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard,

and L. D. Jackel. Backpropagation applied to handwritten zip code recognition.

Neural Computation, 1989.

[39] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. Dropout: A simple way to prevent neural networks from overfit-

ting. The Journal of Machine Learning Research, 2014.

[40] Ross B. Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature

hierarchies for accurate object detection and semantic segmentation. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014.

[41] Clément Farabet, Camille Couprie, Laurent Najman, and Yann LeCun. Learning

hierarchical features for scene labeling. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 2013.

[42] Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson.

CNN features off-the-shelf: An astounding baseline for recognition. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition Workshops,

June 2014.

[43] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and

Alan L. Yuille. Semantic image segmentation with deep convolutional nets and

fully connected crfs. CoRR, 2014. URL http://arxiv.org/abs/1412.7062.

[44] Jonathan Tompson, Arjun Jain, Yann LeCun, and Christoph Bregler. Joint train-

ing of a convolutional network and a graphical model for human pose estimation.

In Proceedings of Advances in Neural Information Processing Systems, 2014.

[45] Liang-Chieh Chen, Alexander G. Schwing, Alan L. Yuille, and Raquel Urtasun.

Learning deep structured models. In Proceedings of the International Conference

on Machine Learning, 2015.

[46] Shuai Zheng, Sadeep Jayasumana, Bernardino Romera-Paredes, Vibhav Vineet,

Zhizhong Su, Dalong Du, Chang Huang, and Philip H. S. Torr. Conditional ran-

dom fields as recurrent neural networks. CoRR, abs/1502.03240, 2015.

http://arxiv.org/abs/1412.7062

BIBLIOGRAPHY 113

[47] Guosheng Lin, Chunhua Shen, Ian D. Reid, and Anton van den Hengel. Efficient

piecewise training of deep structured models for semantic segmentation. CoRR,

abs/1504.01013, 2015.

[48] Guosheng Lin, Chunhua Shen, Ian D. Reid, and Anton van den Hengel. Deeply

learning the messages in message passing inference. CoRR, abs/1506.02108, 2015.

[49] J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Proba-

bilistic models for segmenting and labeling sequence data. In Proceedings of the

International Conference on Machine Learning, 2001.

[50] Jamie Shotton, Matthew Johnson, and Roberto Cipolla. Semantic texton forests

for image categorization and segmentation. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, 2008.

[51] Brian Fulkerson, Andrea Vedaldi, and Stefano Soatto. Class segmentation and

object localization with superpixel neighborhoods. In Proceedings of the Interna-

tional Conference on Computer Vision, 2009.

[52] S. Nowozin, P. Gehler, and C. H. Lampert. On parameter learning in CRF-

based approaches to object class image segmentation. In Proceedings of European

Conference on Computer Vision, 2010.

[53] C.-N. Yu and T. Joachims. Training structural SVMs with kernels using sampled

cuts. In Proceedings of the ACM SIGKDD Conference on Knowledge Discovery

and Data Mining, 2008.

[54] A. Severyn and A. Moschitti. Fast support vector machines for structural kernels.

In Proceedings of the European Conference on Machine Learning and Principles

and Practice of Knowledge Discovery in Databases, 2011.

[55] I. Steinwart. Sparseness of support vector machines. The Journal of Machine

Learning Research, 2003.

[56] Chunhua Shen, Guosheng Lin, and Anton van den Hengel. Structboost: Boosting

methods for predicting structured output variables. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 2014.

[57] Sebastian Nowozin, Carsten Rother, Shai Bagon, Toby Sharp, Bangpeng Yao,

and Pushmeet Kohli. Decision tree fields. In Proceedings of the International

Conference on Computer Vision, 2011.

[58] Thorsten Joachims. Training linear SVMs in linear time. In Proceedings of the

ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2006.

114 BIBLIOGRAPHY

[59] Adam Coates and Andrew Y. Ng. The importance of encoding versus training

with sparse coding and vector quantization. In Proceedings of the International

Conference on Machine Learning, 2011.

[60] Daniel Kuettel and Vittorio Ferrari. Figure-ground segmentation by transferring

window masks. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2012.

[61] Maria-Elena Nilsback and Andrew Zisserman. Delving deeper into the whorl of

flower segmentation. Image and Vision Computing, 2010.

[62] Marcin Marszalek and Cordelia Schmid. Accurate object localization with shape

masks. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2007.

[63] Radhakrishna Achanta, Kevin Smith, Aurelien Lucchi, Pascal Fua, and Sabine

Ssstrunk. Slic superpixels compared to state-of-the-art superpixel methods. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 2012.

[64] Anat Levin and Yair Weiss. Learning to combine bottom-up and top-down seg-

mentation. In Proceedings of European Conference on Computer Vision, 2006.

[65] Armand Joulin, Francis R. Bach, and Jean Ponce. Discriminative clustering for im-

age co-segmentation. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2010.

[66] Brian Fulkerson, Andrea Vedaldi, and Stefano Soatto. Localizing objects with

smart dictionaries. In Proceedings of European Conference on Computer Vision,

2008.

[67] David Aldavert, Arnau Ramisa, Ramon Lpez de Mntaras, and Ricardo Toledo.

Fast and robust object segmentation with the integral linear classifier. In Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

2010.

[68] Lubor Ladicky, Christopher Russell, Pushmeet Kohli, and Philip H. S. Torr. As-

sociative hierarchical crfs for object class image segmentation. In Proceedings of

the International Conference on Computer Vision, 2009.

[69] Josep M. Gonfaus, Xavier Boix Bosch, Joost van de Weijer, Andrew D. Bagdanov,

Joan Serrat Gual, and Jordi Gonzàlez Sabaté. Harmony potentials for joint clas-

sification and segmentation. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2010.

BIBLIOGRAPHY 115

[70] Aurelien Lucchi, Yunpeng Li, and Pascal Fua. Learning for structured prediction

using approximate subgradient descent with working sets. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, 2013.

[71] Jian Yao, Sanja Fidler, and Raquel Urtasun. Describing the scene as a whole: Joint

object detection, scene classification and semantic segmentation. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, 2012.

[72] Geoffrey E. Hinton, Simon Osindero, and Yee Whye Teh. A fast learning algorithm

for deep belief nets. Neural Computation, 2006.

[73] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric

Tzeng, and Trevor Darrell. DeCAF: A deep convolutional activation feature for

generic visual recognition. In Proceedings of the International Conference on Ma-

chine Learning, 2014.

[74] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A

review and new perspectives. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 2013.

[75] Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy layer-

wise training of deep networks. In Proceedings of Advances in Neural Information

Processing Systems, 2007.

[76] F. Liu, C. Shen, and G. Lin. Deep convolutional neural fields for depth estimation

from a single image. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2015.

[77] Andrew Rabinovich, Andrea Vedaldi, Carolina Galleguillos, Eric Wiewiora, and

Serge Belongie. Objects in context. In Proceedings of the International Conference

on Computer Vision, 2007.

[78] Lubor Ladicky, Christopher Russell, Pushmeet Kohli, and Philip H. S. Torr. In-

ference methods for crfs with co-occurrence statistics. International Journal of

Computer Vision, 2013.

[79] Anirban Roy and Sinisa Todorovic. Scene labeling using beam search under mutex

constraints. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2014.

[80] David Grangier, Lon Bottou, and Ronan Collobert. Deep convolutional networks

for scene parsing. In Proceedings of the International Conference on Machine

Learning Deep Learning Workshop, 2009.

116 BIBLIOGRAPHY

[81] Hannes Schulz and Sven Behnke. Learning object-class segmentation with convo-

lutional neural networks. In Proceedings of the European Symposium on Artificial

Neural Networks, 2012.

[82] Yangqing Jia. Caffe: An open source convolutional architecture for fast feature

embedding. http://caffe.berkeleyvision.org/, 2013.

[83] Stephen Gould, Richard Fulton, and Daphne Koller. Decomposing a scene into

geometric and semantically consistent regions. In Proceedings of the International

Conference on Computer Vision, 2009.

[84] Mark Everingham, Luc J. Van Gool, Christopher K. I. Williams, John M. Winn,

and Andrew Zisserman. The pascal visual object classes (VOC) challenge. Inter-

national Journal of Computer Vision, 2010.

[85] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The

pascal visual object classes (voc) challenge. International Journal of Computer

Vision, 2010.

[86] Joao Carreira, Rui Caseiro, Jorge Batista, and Cristian Sminchisescu. Free-form

region description with second-order pooling. IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence, 2014.

[87] Daniel Munoz, J. Andrew Bagnell, and Martial Hebert. Stacked hierarchical la-

beling. In Proceedings of European Conference on Computer Vision, 2010.

[88] Victor S. Lempitsky, Andrea Vedaldi, and Andrew Zisserman. Pylon model for

semantic segmentation. In Proceedings of Advances in Neural Information Pro-

cessing Systems, 2011.

[89] Lubor Ladick, Jianbo Shi, and Marc Pollefeys. Pulling things out of perspective. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

2014.

[90] Jamie Shotton, Ross B. Girshick, Andrew W. Fitzgibbon, Toby Sharp, Mat Cook,

Mark Finocchio, Richard Moore, Pushmeet Kohli, Antonio Criminisi, Alex Kip-

man, and Andrew Blake. Efficient human pose estimation from single depth im-

ages. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013.

[91] Varsha Hedau, Derek Hoiem, and David A. Forsyth. Thinking inside the box:

Using appearance models and context based on room geometry. In Proceedings of

European Conference on Computer Vision, 2010.

http://caffe.berkeleyvision.org/

BIBLIOGRAPHY 117

[92] Bryan C. Russell and Antonio Torralba. Building a database of 3d scenes from

user annotations. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2009.

[93] Beyang Liu, Stephen Gould, and Daphne Koller. Single image depth estimation

from predicted semantic labels. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, 2010.

[94] Vladan Radosavljevic, Slobodan Vucetic, and Zoran Obradovic. Continuous condi-

tional random fields for regression in remote sensing. In Proceedings of the Biennial

European Conference on Artificial Intelligence, 2010.

[95] Kosta Ristovski, Vladan Radosavljevic, Slobodan Vucetic, and Zoran Obradovic.

Continuous conditional random fields for efficient regression in large fully con-

nected graphs. In Proceedings of the AAAI Conference on Artificial Intelligence,

2013.

[96] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet classification

with deep convolutional neural networks. In Proceedings of Advances in Neural

Information Processing Systems, 2012.

[97] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks

for semantic segmentation. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2015.

[98] Michael Cogswell, Xiao Lin, Senthil Purushwalkam, and Dhruv Batra. Combining

the best of graphical models and convnets for semantic segmentation. CoRR, 2014.

URL http://arxiv.org/abs/1412.4313.

[99] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for

large-scale image recognition. In Proceedings of the International Conference on

Learning Representations, 2015.

[100] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hi-

erarchies for accurate object detection and semantic segmentation. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, 2014.

[101] Daniel Scharstein and Richard Szeliski. A taxonomy and evaluation of dense

two-frame stereo correspondence algorithms. International Journal of Computer

Vision, 2002.

[102] David A. Forsyth and Jean Ponce. Computer Vision A Modern Approach. Prentice

Hall, 2003.

http://arxiv.org/abs/1412.4313

118 BIBLIOGRAPHY

[103] Subhodev Das and Narendra Ahuja. Performance analysis of stereo, vergence, and

focus as depth cues for active vision. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 1995.

[104] Tony Lindeberg and Jonas Garding. Shape from texture from a multi-scale per-

spective. In Proceedings of the International Conference on Computer Vision,

1993.

[105] Jitendra Malik and Ruth Rosenholtz. Computing local surface orientation and

shape from texture for curved surfaces. International Journal of Computer Vision,

1997.

[106] Ruo Zhang, Ping-Sing Tsai, James Edwin Cryer, and Mubarak Shah. Shape

from shading: A survey. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 1999.

[107] Takayuki Nagai, Masaaki Ikehara, and Akira Kurematsu. Hmm-based surface

reconstruction from single images. Proceedings of the International Conference on

Image Processing, 2002.

[108] Janusz Konrad, Meng Wang, and Prakash Ishwar. 2d-to-3d image conversion by

learning depth from examples. In CVPR Workshops, 2012.

[109] Ashutosh Saxena, Sung H. Chung, and Andrew Y. Ng. Learning depth from single

monocular images. In Proceedings of Advances in Neural Information Processing

Systems, 2005.

[110] Tadas Baltrušaitis, Louis-Philippe Morency, and Peter Robinson. Continuous con-

ditional neural fields for structured regression. In Proceedings of European Con-

ference on Computer Vision, 2014.

[111] David Eigen, Dilip Krishnan, and Rob Fergus. Restoring an image taken through

a window covered with dirt or rain. In Proceedings of the International Conference

on Computer Vision, 2013.

[112] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Learning a deep

convolutional network for image super-resolution. In Proceedings of European Con-

ference on Computer Vision, 2014.

[113] Pierre Sermanet, David Eigen, Xiang Zhang, Michaël Mathieu, Rob Fergus, and

Yann LeCun. OverFeat: Integrated recognition, localization and detection using

convolutional networks. In Proceedings of the International Conference on Learn-

ing Representations, 2014.

BIBLIOGRAPHY 119

[114] T. Ojala, M. Pietikainen, and D. Harwood. Performance evaluation of texture

measures with classification based on kullback discrimination of distributions. In

Proceedings of the International Conference on Pattern Recognition, 1994.

[115] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. Return of the devil

in the details: Delving deep into convolutional nets. In Proceedings of the British

Machine Vision Conference, 2014.

[116] Pushmeet Kohli Nathan Silberman, Derek Hoiem and Rob Fergus. Indoor seg-

mentation and support inference from RGBD images. In Proceedings of European

Conference on Computer Vision, 2012.

[117] Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurélien Lucchi, Pascal Fua,

and Sabine Süsstrunk. SLIC superpixels compared to state-of-the-art superpixel

methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012.

[118] Frédo Durand and Julie Dorsey. Fast bilateral filtering for the display of high-

dynamic-range images. ACM Transactions on Graphics, 2002.

[119] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir

Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going

deeper with convolutions. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2014.

[120] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets

robotics: The KITTI dataset. Int. J. Robotics Res., 2013.

[121] M. Milford, C. Shen, S. Lowry, N. Suenderhauf, S. Shirazi, G. Lin, F. Liu, E. Pep-

perell, C. Lerma, B. Upcroft, and I. Reid. Sequence searching with deep-learnt

depth for condition- and viewpoint-invariant route-based place recognition. In 6th

International Workshop on Computer Vision in Vehicle Technology, in conjunction

with IEEE Conference on Computer Vision and Pattern Recognition (CVVT’15),

2015.

[122] Kamal Nigam, Andrew Kachites McCallum, Sebastian Thrun, and Tom Mitchell.

Text classification from labeled and unlabeled documents using em. Machine

Learning, 2000.

	TITLE: Learning Structured Prediction Models in Computer Vision
	Declaration
	Acknowledgements
	Publications
	Abstract
	Contents
	List of Figures
	List of Tables
	Notations

	1 Introduction
	2 Background Literature
	3 CRF Learning with Tree Potentials for Image Segmentation
	4 CRF Learning with CNN Potentials for Image Segmentation
	5 Joint Learning of Continuous CRF and CNN for Single Image Depth Estimation
	6 Conclusion
	Bibliography

