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Abstract

An optical fibre device has been developed for the purpose of detecting ionising radiation

using optically stimulated luminescence. Characterisation of glass materials has been

performed, after which optical fibres were fabricated for experiments to demonstrate

sensing of ionising radiation.

Fluoride phosphate glass was tested for its capability to sense ionising radiation, pri-

marily using the mechanism of optically stimulated luminescence. The characteristics

of the material were determined using a combination of spectroscopy, and thermally

and optically stimulated luminescence tests. The sensitivity to ionising radiation was

improved by introducing dopant ions into the glass; doping of fluoride phosphate glass

with Tb3+ was found to increase the intensity of the optically stimulated lumines-

cence response by an order of magnitude, from 7.56 × 106 counts/g/Gy to 100.7 × 106

counts/g/Gy.

Optical fibres were fabricated from fluoride phosphate glass using the extrusion method

for fibre preform manufacture. The fabrication process was optimised in each of the

extrusion, preform processing and fibre drawing stages to achieve optical fibres with

loss of between 0.5 - 1 dB/m for undoped fibres, and between 1 - 4 dB/m for Tb3+-

doped fibres. Optical fibres were used for ionising radiation sensing experiments, where

the optically stimulated luminescence response was measured following both beta and

X-ray irradiation. Following a dose of 14.6± 0.5 Gy, optically stimulated luminescence

signals were observable using optical fibre lengths of up to 2.6 m, with an integrated

OSL intensity of 44.1± 13.0 counts.

Silica glass was also tested as an alternative material to perform optical fibre measure-

ments using optically stimulated luminescence. The material was characterised and

optical fibres were fabricated with a loss of 0.5 dB/m. Following a dose of 15.5 ± 0.5

Gy, optically stimulated luminescence signals were observable using optical fibre lengths

of up to 8.6 m, with an integrated OSL intensity of 385.7 ± 43.4 counts.
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Summary

This thesis contains a study of the feasibility of detecting ionising radiation with an

optical fibre, specifically using the mechanism of optically stimulated luminescence.

This work addresses the particular case where the radiation sensing occurs within the

optical fibre material, and not in a separate material otherwise spliced to a fibre. The

optical fibre therefore acts as both the sensing component of the device, and the wave-

guiding component which carries a signal to the detector. This work fills a void in

the already-established range of optical fibre dosimetry technologies, and provides an

alternative method for performing optical fibre dosimetry.

To achieve the project goals, glass materials were studied for their optical, luminescence

and radiation detecting properties. These glasses were then fabricated into optical fi-

bres, and these fibres tested in a variety of radiation environments. Work was initially

performed with fluoride phosphate glasses, where the glass was characterised and then

altered by the addition of various dopant ions to improve its radiation detecting sensi-

tivity. Silica glasses were later studied as a comparison to fluoride phosphate glasses.

Also presented is the fabrication of these glass materials into optical fibres of suit-

able quality to perform distributed sensing measurements of ionising radiation. The

performance of the optical fibres are studied under both beta and X-ray irradiation

conditions, and their usefulness as dosimeter devices is assessed.

Chapter 1 outlines the context and motivation behind the presented work, and provides

a short introduction to the theory behind the experimental work. Chapter 2 explores

the various properties of the materials used for optical fibre fabrication, primarily focus-

ing on fluoride phosphate glasses. In Chapter 3, the modification of fluoride phosphate

glasses with dopant ions in order to improve the sensitivity as a radiation detecting

material is presented. Chapter 4 presents the fabrication of the radiation sensitive

material into optical fibres of sufficient mechanical strength and optical quality for ra-

diation sensing experiments. The radiation sensing experiments for which these optical

fibres were used are shown in Chapter 5. Chapter 6 presents an alternative material,

silica, and shows how in some areas it can be superior to the materials discussed in pre-

vious chapters. Chapter 7 summarises the experimental work and gives an appraisal on

x



the feasibility of using this novel method of radiation sensing in real-world applications;

this is followed by a summary of future directions for this area of research.
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