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Abstract

Research into sequential effects has a long and rich history spanning almost one hundred years. In

their most general definition sequential effects can simply be considered a dependence of behaviour

on the past sequence of events, and are of the most pervasive phenomena in psychology. Some

form of sequential effects has been observed in multiple perceptual and cognitive tasks, and across

different modalities. In addition, sequential effects have also been observed in electrophysiological

studies, with a great deal of similarity observed between EEG and behavioural results, making this

a relevant topic for both psychology and neuroscience. This gives sequential effects a great deal

of potential as a doorway for elucidating the relationship between human behaviour and neuronal

activity, between the mind and the brain.

Yet perhaps in part because of the great diversity of domains in which sequential effects are

observed, this is an often fragmented field of research, with a multitude of experimental paradigms

used, often leading to some confusion as to how different results are related to each other. One of

the main objectives of this work is therefore to begin to unify the field into one coherent whole,

and to do so at both a computational and process levels. To begin with, Chapter 2 addresses the

computational nature of sequential effects in terms of different types of statistics humans use in

different circumstances. In Chapter 3 it is shown that the most results described before in the

ix



x ABSTRACT

literature can be explained by only three components, including a wealth of individual differences

which had been largely ignored so far.

On a more theoretical level it could be argued that there is a degree of redundancy between the

various mathematical models of sequential effects proposed over the years. Models are usually fit

to isolated datasets, when it is well known that even minor experimental manipulations can lead to

different results, making it unclear how conclusions extend to other settings. Moreover, by virtue

of their common mathematical structure, most models of sequential effects suffer from similar

difficulties in reproducing key empirical observations. This, together with other considerations,

motivates an entirely different approach to modelling sequential effects proposed in Chapter 4.

The framework suggested is based on the physics of oscillatory motion, being continuous-time in

nature and able to incorporate space, reflecting the fact that both time and space have been found

empirically to play a role in sequential effects.

More generally there are two central proposals which unify this dissertation. Firstly that se-

quential effects are the consequence of two main independent components possibly related to the

separate processing of stimuli and responses. Secondly that sequential effects reflect some form of

filtering implemented through interaction with an oscillatory system.
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Introduction

This dissertation is made up of three research chapters, a literature review and a general discussion.

The unifying theme is the structure of sequential effects, both at a computational - Chapter 2 - and

process - Chapters 3 and 4 - levels. Chapters 2 and 3 are manuscripts prepared for publication:

Chapter 2 is an expanded version of a conference proceedings article already published, and a

closely related version of Chapter 3 has been submitted to the Journal of Experimental Psychology

General. Because of this Chapters 2 and 3 are self-sufficient entities and some degree of redun-

dancy may exist in the introduction to the two chapters in what concerns basic concepts about

sequential effects. What follows is a short summary of each chapter and its main conclusions.

Chapter 1: Literature review - A broad scope review of the overall field of research, with par-

ticular emphasis on sequential effects in reaction time, the main focus point of this work. Some

attention will also be given to sequential effects in EEG despite no electrophysiological data having

been collected, the reason being that results throughout are discussed in light of such data acquired

by other researchers. Finally, this section also includes a review of most quantitative models of

sequential effects proposed so far given the focus on mathematical modelling throughout.

Chapter 2: Humans use different statistics depending on the task - A computational level anal-

ysis of the type of statistics humans use in different tasks depending on the number of alternative

1
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stimuli. A statistical model is proposed which is able to differentiate between the use of different

types of statistics in sequential effects. In addition, an experimental paradigm is introduced which

allows for the expansion of the traditional two-alternative forced-choice (2AFC) design to include

any number of alternatives with minimal confounding effects. The main conclusion of this chapter

is that humans use first order transition probabilities in a 2AFC but switch to using zero-th order

statistics - i.e. the relative frequency of the stimuli - in a 3AFC.

Chapter 3: The structure of sequential effects - A principal component analysis of individual

reaction time data from over one-hundred and fifty participants performing different versions of a

2AFC. Three latent variables related to sequential effects are identified, two main and one minor.

A relationship between the two main components and two separate processing stages of sequen-

tial effects identified before is proposed. It is argued that the third minor component is related to

processing delays. The same two main components are found for different values of the response-

stimulus interval, thereby unifying what were previously thought to be qualitatively different re-

sults. Finally, the way in which changes in the relative contribution of the three components

explains different patterns of sequential effects, both collectively and individually, is analysed.

Chapter 4: An oscillator-based framework for sequential effects - A new framework for mod-

elling sequential effects at the process level is proposed, based on the physics of oscillatory motion.

Although no definitive model is proposed, it is argued that overall the framework shows a great

deal of potential for explaining several aspects of sequential effects, some of which are hard to

formalise in the context of any previous model, such as response-stimulus compatibility and indi-

vidual differences. Early successes of the modelling framework include its capacity to naturally

produce patterns of results which have been historically hard to capture. In addition, even a single

oscillator is found to reproduce key aspects of the latent structure of sequential effects with only

minimal assumptions about the nature of individual differences. Some limitations of the general

approach are discussed, and a more nuanced view of sequential effects as some form of spatio-

temporal filtering is first suggested.
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Chapter 5: Discussion - An attempt is made at putting the field of sequential effects into perspec-

tive, in particular on a theoretical level, by drawing a distinction between two different views of

sequential effects: a classical or statistical view and a two independent component view. This dis-

tinction is also useful in putting into context the main results of this dissertation, which overall add

some support for the two-component view. The view of sequential effects as reflecting some form

of spatio-temporal filtering is expanded upon. Future directions are also discussed, with particular

emphasis on how the model proposed in Chapter 4 could be extended. Finally, a short section

outlines an overall principle for how the mind works as a pattern formation/detection device, and

how sequential effects may be a reflection of this principle at work.



1
Literature review

Most tasks in psychology consist of a long sequence of discrete trials differing in the stimuli which

are presented at each time point. Early in the history of psychological research it became evident

that the response on a particular trial could depend on the previous sequence of trials, particularly

if the sequence exhibits a regular pattern, in which case a strong expectation about the nature of the

next trial might develop. These expectations influence responses, often to a greater extent than the

properties of the stimuli themselves, thereby potentially confounding results. So from the outset

the ordering of the trials was made random, and it was thought that by this procedure the influence

4
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of the sequence would, if not altogether disappear, hopefully average out.

It was not long before some researchers turned to the effect of the sequence as a point of interest

in itself, irrespective of any concerns harboured about possible confounding effects. One question

in particular is whether a random sequence of trials retains any capacity to influence behaviour.

Even a random sequence can appear to be regular at times; if such fleeting patterns emerge will

they influence expectations or be dismissed as part of a random process? It turns out that humans

will persistently show a dependence of behaviour on the last few trials even after a long random

sequence. It is this dependence of behaviour on the last few trials of a random sequence which will

be referred to throughout as ‘sequential effects’, by contrast with the influence a perfectly regular

sequence may have.

Sequential effects are observed in different aspects of behaviour such as judgements (Fernberger,

1920), reaction time (Bertelson, 1961) and predictive guesses (Jarvik, 1951). Moreover, they

happen in different modalities (K. C. Squires, Wickens, Squires, & Donchin, 1976), and even

across modalities (Ward, 1979), highlighting the very general nature of the phenomenon. Perhaps

most striking of all is the capacity sequential effects have of influencing what is actually per-

ceived, as manifest in changes induced in the psychophysical point of subject equality (Maloney,

Dal Martello, Sahm, & Spillmann, 2005). Finally, sequential effects are also observed at a neuro-

physiological level: properties such as the amplitude of event related potentials (ERP) measured

with with electroencephalography (EEG) display a dependence on the sequence of events very sim-

ilar to that which is observed behaviourally (K. C. Squires et al., 1976; Sommer, Matt, & Leuthold,

1990).

Historically, sequential effects have been studied in a diverse range of tasks falling under three

main categories:

• Psychophysical tasks: in this case the dependent variable can be any type of judgement made
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about properties of the stimuli presented.

• Prediction tasks: in this case the proportion of times a particular event is predicted forms the

dependent measure

• Speeded decision making tasks: where subjects must react quickly to the next stimulus, in

which case sequential effects are observed in reaction time.

A crucial ingredient in designing experiments where sequential effects occur is uncertainty,

either about the properties of the stimulus itself or what the next stimulus will be. Consider a

psychophysical task: if two stimuli are very distinct any judgement of whether they are different

will essentially be, save for some glitch, always the same; this situation can described as stimulus

determined (Senders & Sowards, 1952), in that no amount of structure in the sequence will influ-

ence the outcome. The opposite situation is one where the stimuli are objectively equal, in which

case uncertainty is maximal by definition; under these circumstances the influence of the sequence

of events is greatest, a situation that can be described as sequence determined. Most tasks lie at

some point between fully stimulus or sequence determined and in these intermediate situations

behaviour can depend on both the properties of the stimuli as well as the sequence. In general,

the more uncertainty there is, the greater the capacity for the sequence to influence behaviour.

This may be considered part of a more general human tendency to use concrete information if it

is available, while switching to an attempt at finding a pattern if little or no information available,

and finally even finding a pattern where there is not one to be found, such as in the case of the

so-called gambler’s fallacy (Nickerson, 2002).

In the beginning this literature review will follow a largely chronological order. As it progresses

there will be more emphasis on specific themes, while still respecting a roughly chronological

order. This is true except in one respect: the empirical and theoretical literatures will be discussed

separately, first the former and in the end the latter. To begin with the early empirical literature,

from 1920 to 1961, will be reviewed, during which time sequential effects were studied largely
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in the context of psychophysical judgement tasks or tasks involving predictions about the next

event. The focus will then turn to sequential effects in reaction time - the main focus of this work

- and the area of choice for research on sequential effects per se. Next the literature on sequential

effects in electroencephalography (EEG) - observed for the first time in 1970 - will be reviewed.

Finally, quantitative models of sequential effects will be given special attention given the focus

on mathematical modelling throughout this work. This literature review is broad in scope and

so, while all of its content is of some relevance, some topics of particular importance towards

understanding this dissertation will be highlighted at the end of this section.

Following the history of research into the subject itself, a somewhat less rigorous approach

will be taken when discussing different experiments as to the type of sequential effects found. As

we progress, and again mimicking the field, more rigour in contrasting experiments will become

necessary, as even seemingly small differences in design have been found to have a strong impact

on sequential effects.

1.1 Early history - 1920 to 1960

In order to ensure experimental results were due to the properties of the stimuli of interest, early

psychophysical experiments strived to remove what were then termed the ‘time error’ and the

‘space error’, i.e. the influence of timing differences between trials or of differences in the move-

ments necessary to perform each trial (e.g. Fernberger, 1920). The time error was removed by

marking the interval between trials with a metronome; the space error was removed by making

sure exactly the same motion was performed on each trial, for instance by having stimuli move

automatically to within reach rather than have subjects extend their arm to different locations. This

tradition is still followed in modern times through the use of computers to time events and complex

contraptions that restrict the number of degrees of freedom in subjects’ movements. However, and
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despite all precautions, subjects do not act in a manner independent of the order of events, even if

this is made random.

Some form of sequential effect was possibly observed in early psychophysical experiments in

the nineteenth century,1 but the first study dedicated specifically to the subject was conducted well

into the twentieth century (Fernberger, 1920) in a task which involved comparing two different

weights in each trial. Fernberger observed that when, on a given trial, the reference weight was

judged to be ‘lighter’, in the next trial the reference weight would be more likely to be judged

‘heavier’, and vice-versa with ‘lighter’ judgements more likely to follow ‘heavier’ ones. In line

with the role of uncertainty in sequential effects, this alternation effect was greater the closer the

two weights being compared were. This was the first description of what would become known as

a general human tendency to alternate judgements across many different types of tasks.

Early on, researchers noticed an important ambiguity about what is driving sequential effects:

is it the physical magnitude of the stimuli or the judgements made about those same stimuli? For

instance, in the example above, does one tend to respond ‘heavier’ after a judgement of ‘lighter’

because of a shift in the point of subjective equality, which makes the current one seem lighter

by contrast, or because of a tendency to avoid making the same judgement? In an attempt to

resolve the ambiguity Turner (1931) studied a serial weight lifting task similar to Fernberger’s and

contrasted two types of situation: one in which judgements were emitted on two consecutive trials

and another in which a judgement trial would follow a trial in which a judgement was omitted.

Turner presents evidence which, on the face of it, would have suggested that the effect of judgement

and stimulus magnitude could go in opposite directions, i.e. the sequence of judgements induces

an alternation bias and the stimulus magnitude a repetition bias2. Despite this, Turner argued that

the tendency to alternate judgements was due to changes in the point of subjective equality (Turner,

1931), and therefore due to purely perceptual effects. Later, a different experiment suggested that

the alternation effect occurs even when the stimuli are equal - an important control overlooked by

1 A great number of works from this era is in German, a language that the author regrettably does not master.
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Turner - demonstrating that sequential effects are at least in part determined by the sequence of

judgements (Arons & Irwin, 1932; Preston, 1936). Interestingly Arons and Irwin (1932), though

secondarily to the main point of their article, reported individual differences in sequential effects

for the first time: some subjects tended to alternate judgements but others actually tended to repeat

them.

During late 1937 and early 1938 a large scale experiment in ‘telepathy’ was performed by the

Zenith radio station in Chicago (Goodfellow, 1938). Every Sunday evening, a radio program was

broadcast in which the audience would have to guess which of two symbols a group of ‘telepathic

senders’ - ten university students locked inside a room - was focussing on, with five symbols to

be guessed in total. There was no feedback about the real symbols being focussed on, merely

a signal from the host indicating that the next trial was on. Participants wrote down their five

guesses, and then mailed these back to the radio station. Over 20000 participants took part in

several versions of the experiment which made this - unless one believes in telepathy - a large

scale experiment in random sequence generation. The results of these experiments are relevant to

sequential effects research in that the only feedback available to the participants was the sequence

that they themselves had generated up to a point. This arguably makes the Zenith radio experiments

a sequential behavioural task, but without any objective stimuli. More generally, random sequence

generation is closely related to sequential effects if one considers a sequence to be generated in

a step-by-step fashion, as opposed to the it being generated previously and then merely written

down. As discussed below there is some debate on this point, with followers of the Gestalt school

preferring the whole sequence at once interpretation, and followers of the behaviourist school

defending a sequential generating process.

The results of the Zenith radio experiments, while providing no evidence for telepathy, did

show that the choices made by the radio listeners were above or below the 50% chance level on

2 Throughout the terms ‘bias’ or simply ‘preference’ will be used to refer to mean differences between repeating
and alternating trials, irrespective of the sequence before them.
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almost every trial of every sequence. This meant that, while insensitive to the ‘senders’ or the

‘true’ sequence, the mechanism used by the audience when generating sequences was clearly not

random. Goodfellow (1938) analysed the data from the Zenith radio experiments in terms of the

frequencies of all the 16 possible types of five-long binary sequences generated by the audience.

This was the first time sequences of stimuli longer than three were taken into consideration when

analysing sequential effects, and also the first time sequences were grouped two-by-two according

to the pattern they represented - e.g. 12111 and 21222. However, Goodfellow, a follower of the

Gestalt school of psychology, performed this analysis in the spirit that the sequence consists of

one whole percept rather than a string of stimuli, and suggested the explanation for the results was

related to the avoidance of symmetry - as per his own and unusual definition3 - in the sequence.

In 1942, B.F. Skinner re-analysed the results of the Zenith radio experiment, but this time

assuming that some form of sequential mechanism was at play (Skinner, 1942). Skinner argued

that the data was more parsimoniously explained by a general tendency to alternate judgements

rather than the symmetry of the sequence as defined by Goodfellow. Skinner was also the first

to rewrite the sequences of stimuli in terms of repetitions and alternations, and recalculated the

raw frequencies of each possible sequence as the proportion of times subjects chose to repeat or

alternate after the same preceding sequence. For instance, if the absolute frequency of ARRA4 is

0.1, and that of ARRR is 0.3, the recalculated frequencies would be 0.25 and 0.75 respectively. A

subset of the Zenith experiments data as calculated by Skinner is shown in Figure 1.1.

Yacorzynski (1941) analysed the production of random binary sequences in a manner similar to

that of the Zenith experiments except that participants were psychotic patients. The author reported

a control group to produce results similar to those of the Zenith experiments and different to those

3 Goodfellow counted the number of symmetries in all subsequences of length 2, 3, 4 and 5, while at the same time
adding extra weight if symmetries were found in the first three stimuli in order to ‘give a little extra weight to
the first three items since they have found them particularly important in psycho-physics’. No reference for the
importance of the first three stimuli is given, and in fact it is now well known that it is the last few stimuli which
carry a greater weight.

4 Here ‘R’ stands for a repetition and ‘A’ for an alternation of the stimuli, with sequences read from left to right.
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FIGURE 1.1: Data from the Zenith radio experiments as reported by Skinner (1942). Sequences should
be read from top to bottom, an ‘R’ standing for a repetition and an ‘A’ for an alternation. Note that the left
side of the plot - the repetition curve - contains all sequences ending with a repetition, and the right side all
those ending in an alternation. The higher order sequences - the sequences up the last event - are ordered the
same way in the left and right sides of the plot. The last event is shown in bold because this is the point at
which a dependent measure is usually being taken - reaction time in most cases throughout this work. In this
particular case the data consists merely of the relative frequency of sequences generated by the participants
in the radio experiment and so the use of bold for the last event is meaningless.

of manic-depressive and schizophrenic patients. Interestingly, he also found the results of the

groups with different types of pathology to be significantly similar to each other. Also a follower

of the Gestalt school of psychology, Yacorzinsky interprets his results in terms of the abandonment

of the principle of symmetry5 in psychotic patients, a concept borrowed directly from Goodfellow

(1938). The study suffers from low sample numbers, making any conclusions doubtful, but it

stands as the first study of the potential relationship between sequential effects and different types

of psychological disorder. Skinner (1942), in a separate analysis, concludes that Yacorzinsky’s

data from psychotic patients is well explained by a tendency to alternate irrespective of stimulus

history, i.e. without being influenced by previous stimuli.

Initially sequential effects were studied in tasks where there was no feedback regarding the

5 Skinner - the father of behaviourism - is quite dismissive of what he quotes as ‘disintegration of perceptual
principles’ prompting a reply from Yacorzinsky (Yacorzynski, 1943) - which never used that exact sentence - and
counter-reply by Skinner (Skinner, 1943).
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outcome of previous trials. However, theories of reinforcement (Hull, 1943) suggested that feed-

back might influence the relative proportion of repetitions and alternations of judgements. For

instance, a successful trial in a prediction task might induce a repetition of the previous guess, with

the influence of negative feedback being less clear.6 Bendig (1951) investigated the effect of re-

inforcement on sequential effects and found the number of alternations to decrease proportionally

with the number of ‘reinforcements’, i.e. successes. Surprisingly though, Bendig does not analyse

data on a trial-by-trial basis, and merely counts the total number of successes and of alternations

during a task, while at the same time analysing correlations between the two. It is worth noting that

there seems to be some confusion in the literature at this point regarding what a ‘reinforcement’ is:

while Bendig takes a successful guess to be a reinforcement, other authors consider it to be simply

the presentation of a given stimulus (e.g. Jarvik, 1951).

Most experiments up to 1950 had found a tendency to avoid repetitions in humans (Fernberger,

1920; Thorndike, 1927; Turner, 1931; Arons & Irwin, 1932; Preston, 1936; Goodfellow, 1938;

Irwin & Preston, 1937; Solomon, 1949) as well as mice (Heathers, 1940). This seemed to fit well

with the popular theory at the time that a refractory period existed after a particular action which

inhibited its performance for a some time, a concept termed ‘reactive inhibition’ (Hull, 1943). This

theory had its roots in the physiological properties of neurons where a refractory period exists after

each impulse during which the production of a second impulse is inhibited. Whether or not these

physiological effects extended to higher cognitive faculties was a matter of debate (Dodge, 1926;

Thorndike, 1927).

One clear prediction of the reactive inhibition hypothesis was that the tendency to avoid repeti-

tions should depend on the interval between the trials. In particular, a shorter interval between trials

should lead to a greater tendency to alternate responses. Solomon (1949) analysed the influence of

the interval between trials in a coin toss guessing task. Solomon used two different intervals - 15

6 Note that, if negative feedback was perfectly symmetrical to positive feedback, the two effects would cancel out
on average. So in order to postulate an effect of positive reinforcement on sequential effects, it is necessary to
assume some degree of asymmetry between both types of reinforcement.
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sec and 8 min - between stimuli and found no evidence of an effect of the inter-stimulus interval

on the tendency to alternate predictions, with both groups displaying an alternation effect. In any

case it soon became obvious that the assumption that humans tended to alternate was not always

true, with some researchers finding the very opposite, i.e. a tendency to repeat guesses (Senders &

Sowards, 1952; Day, 1956).

Whether or not the reactive inhibition theory was true, the question remained of whether se-

quential effects were due to temporary effects and therefore dependent on the interval between

trials. Starting with Senders and Sowards (1952), several authors turned to autocorrelation anal-

ysis in order to analyse sequential effects, a method which allows conclusions to be drawn about

the presence or absence of serial correlations in the data but says little or nothing about what type

of dependence on the sequence may be present (Senders & Sowards, 1952; Abelson, 1953; Day,

1956). Day (1956) in particular analysed the effect of the inter-stimulus interval in a psychophys-

ical task using auditory stimuli at 50% discrimination threshold and found the interval between

stimuli to have a significant impact on autocorrelations. When the interval was short - 1.6 to 2.1

sec - there were significant serial correlations in the data; when it was long - 4.2 to 10.6 sec - there

were no such serial correlations. An almost equal result was obtained by Abelson (1953).

The 1950’s mark a turning point in the history of sequential effects, with the beginning of a dif-

ferentiation between low level physiological and higher level cognitive effects emerging. As early

as 1949 Solomon states sequential effects in a coin tossing task are best explained by ‘subjects’

conception of chance’ rather than ‘basic response mechanisms’ (Solomon, 1949). This is echoed

by Jarvik (1951) in a work often cited as the first in the literature on the perception of randomness.

Jarvik describes what he coins a ‘negative recency effect’: the longer a run of the same stimulus is,

the greater the tendency is for subjects to guess the next rial will alternate (see Figure 1.2). Jarvik

compares this phenomenon to the ‘gambler’s fallacy’ experienced by gamblers who irrationally

expect an alternation to be more likely after a repetition.
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FIGURE 1.2: Data from Jarvik (1951) showing predictions made as a function of position in runs of
5 consecutive equal stimuli. There were two possible symbols - ‘check’ or ‘plus’ - but the proportion of
‘check’ was always greater, with different percentages used - 60, 67 and 75% - and the runs shown are only
of ‘check’ symbols. The task consisted of guessing what the next symbol in a random sequence of the two
possible symbols would be. Each symbol was read out to subjects by the experimenter at approximately 4
sec intervals, each trial commencing with a prediction made by the subject when cued by the experimenter.
Note the overall shift of the curve towards high percentages of ‘check’ due to long-term probability learning
effects since sequences were richer in ‘check’ symbols.

Cognitive effects such as those suggested by Jarvik (1951) were hard to reconcile with a mech-

anistic view of passively decaying traces of activity such as the reactive inhibition theory. Further-

more, it soon became clear that top-down modulation of sequential effects was possible by chang-

ing the verbal instructions given to subjects (Goodnow, 1955), even in reaction time tasks (Kirby,

1976). It was also found that prediction and reaction time tasks could yield very different results

under the same conditions (see below). Overall, this meant that the fields of sequential effects and

randomness perception would remain largely separate, despite some early promising hints that the

way humans perceive randomness was related to a sequential process (Skinner, 1942). Sequen-

tial effects per se would continue to be studied mostly in the context of reaction time tasks, with

randomness perception making use of prediction tasks or tasks in which subjects have to produce

random sequences.
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Many of the early studies in which sequential effects were first observed were primarily con-

cerned with varying the probabilities of the different stimuli (Jarvik, 1951; Hyman, 1953; Ber-

telson, 1961) leading to long-term probability learning effects. For instance, in prediction tasks

subjects adjusted their guessing strategies to match the probabilities of the intervening stimuli

quite closely (e.g. Hake & Hyman, 1953). On the other hand, average reaction times for entire se-

quences were shown to depend on the relative probabilities of the intervening stimuli, i.e. reaction

times were faster for a sequence rich in one particular stimulus, as opposed to one with balanced

probabilities (Hyman, 1953; Bertelson, 1961). Several authors would eventually argue that the

effects of long-term probability and short-term sequential effects are not separable (Laming, 1968;

Falmagne, 1965; Kornblum, 1969; Audley, 1973). In particular, Audley (1973) demonstrated

mathematically that long-term probability learning effects emerge naturally as a consequence of

short-term probability effects in a simple model - a geometric average of the previous sequence of

events - which has since been found to underpin all quantitative models of sequential effects (see

below).

Sequential effects in one form or another would continue to be observed in a wide range of

different experimental paradigms such as: psychophysical tasks within (Verplanck, Collier, &

Cotton, 1952; Day, 1956; Treisman & Williams, 1984; Maloney et al., 2005) and across modal-

ity (Ward, 1979), affective judgements (Willingham, 1959), a Simon task (Notebaert, Soetens,

& Melis, 2001), categorization of diverse stimulus properties such as loudness (Garner, 1953;

Jesteadt, Luce, & Green, 1977; Parducci, 1964; Staddon, King, & Lockhead, 1980), just to cite

a few examples. A review of this extensive literature would be too lengthy and is not the aim

here. Moreover, many of these studies do not go much beyond reporting some form of sequen-

tial dependence, with results seldom analysed in detail or put into wider context.7 Reaction time

studies would eventually emerge as the paradigm of choice when studying sequential effects per

se, and more advanced theories would be developed based largely on these studies. Whether con-

clusions are extensible to other experimental settings is often unclear, and so throughout this work
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the expression ‘sequential effects’ should strictly speaking be taken to refer to sequential effects

in reaction time. Notwithstanding this, strong commonalities have now been observed in the pat-

tern of sequential effects across different experimental settings - including electroencephalographic

(EEG) studies - which points to the universality of at least some of the conclusions from reaction

time studies, which are reviewed next.

1.2 Sequential effects in reaction time

The study of human reaction times in general has a long history extending back well into the 19th

century (H. Johnson, 1923). Despite this, the first mention of sequential effects in such studies

was made with respect to error rates, not reaction times: Hansen (1922) observed that errors in

sequential tasks were higher for the ‘stimulus that was absent the longest’. Beyond this early

superficial observation, the first mention of sequential effects in reaction time was only made in

1953 and only in 1961 was the first dedicated study of the subject conducted (Hyman, 1953;

Bertelson, 1961).

1.2.1 The dominance of information theory

During the 1950’s, in the context of the dominance of information theory (Shannon, 1948), the

trend was towards attempting to explain human reaction time in sequential tasks as a function of

the information content of the sequence of stimuli (Hick, 1952; Hyman, 1953; Grossman, 1953).

This relied on a simplified view of a human subject as a ‘channel’ between a source - the stimuli -

and an output - the responses. Reaction time was assumed to be proportional to the time required

to extract information from a sequence, and therefore proportional to its information content (Hick,

1952). The quantitative and precise nature of the model and its predictions was attractive and it had
7 There are some notable exceptions to this though, such as the work of Maloney et al. (2005)
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the side-effect of turning attention away from the sequence itself. This is perhaps best illustrated by

Hyman’s (1953) statement that ‘the successive stimuli do no alter S’s knowledge of the statistical

properties of the stimulus series as a whole’ and further that one must exclude ‘those situations

wherein S gains new knowledge concerning the statistical structure of the stimulus series as the

series progresses in time’. Therefore, the trade-off for the gains made in mathematical precision

was that entire sequences should be viewed as a whole, a view reminiscent of that held by followers

of the Gestalt school of thought two decades before.

At first the information content of a sequence seemed to provide a good fit to overall reac-

tion time (Hick, 1952; Hyman, 1953). Over time however it became clear that many other fac-

tors affected reaction times, such as stimulus-response compatibility (Bertelson, 1963), response-

stimulus interval (Bertelson & Renkin, 1966; D. J. Hale, 1967), or even if one or two fingers were

used to respond (Hannes, 1968), all of which did not affect the information content of a sequence.

Moreover, several studies started to focus on the role of the sequence of events (e.g. Bertelson,

1961) revealing differences in reaction time to repetitions or alternations of stimuli which pointed

to a dependence of reaction times on the sequence itself. Finally, Kornblum (1967, 1968) demon-

strated that the correlation between the amount of information and reaction time was an artefact:

the way information content was varied in previous experiments meant that the probability of al-

ternations of stimuli varied concomitantly. Kornblum constructed sequences of equal information

content and different proportion of repetitions to alternations and showed it was the latter which

was responsible for changes in overall reaction time.8

Further criticism of the way in which information theory had been used in analysing human re-

action times is provided by Laming (1968). This is a somewhat surprising fact given that Laming’s

dissertation on the subject is titled ‘Information theory of choice reaction times’. The key to this

8 Kornblum uses a response-stimulus interval (RSI) of 140 ms, a value which was known to induce a strong pref-
erence for repetitions. Had he used a longer RSI his results would have likely been inconclusive. Kornblum was
surely aware of this fact, as the effect of the RSI was well known by 1968, but fails to mention it. Nevertheless,
his conclusions stand inasmuch as demonstrating that information content is not determining reaction times.
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conundrum lies with the distinction made by Laming between ‘communication theory’ and ‘in-

formation theory’, the former being Shannon’s version as per his 1948 seminal article (Shannon,

1948), and the latter Laming’s own definition.9 Upon closer inspection the model proposed by

Laming is a sequential sampling random walk model which the author relates to a measure of in-

formation different from that which was used by Shannon (Kullback, 1959), and thus the use of

the term ‘information theory’.

Starting in the 1960’s, researchers would finally turn away from information theory and begin

analysing reaction times as a function of the sequence of events itself, rather than its information

content, which gave rise to the field of research into sequential effects in reaction time.

1.2.2 A repetition effect in reaction time

As mentioned previously, the first observation of any kind of sequential effect in reaction time was

made by Hyman in 1953. Hyman found a repetition effect - i.e. faster reaction time to repetitions

of the same stimulus - in tasks with three or more alternative stimuli (Hyman, 1953). In contrast,

in a task with only two possible stimuli, Hyman found the opposite: a slight alternation effect.

Unfortunately, no quantitative evidence for the effect was given and it would be another eight years

before some form of systematic investigation of sequential effects in reaction time was conducted,

again in part due to the dominance of information theory during those years.

In 1961, Bertelson published what may be considered the inaugural article of the field of se-

quential effects in human reaction time (Bertelson, 1961). Bertelson used for the first time what

would become the standard experimental paradigm in the field: the speeded two-alternative forced

choice task, which he refers to as ‘self-paced 2-choice serial responding task’, and for which an

9 The details of the distinction Laming attempts to make and its validity are beyond the scope of this review.
Detailed critiques of the use of information theory in psychology can can be found in Laming (2001) and Luce
(2003).
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FIGURE 1.3: Repetition effect discovered by Bertelson (1961). Data was adapted from the original
article and shows the decrease in reaction time with increasing length of a run of the same stimulus. Stimuli
consisted of two light bulbs separated by 4.5 cm and a fixed response-stimulus interval of 50 m was used.
However, since Bertelson does not take into account the time spent pressing the key, the true RSI is likely
to be over 100 ms (Vervaeck & Boer, 1980). Bertelson analyses sequences with different proportions of the
two stimuli, but the data shown is only for the 50:50 condition.

electrical apparatus was purposefully built. The task involved a fixed period between the moment a

response is made and the onset of the next stimulus - the response-stimulus interval (RSI) - which

effectively made the interval between stimuli a variable dependent on the reaction time.10 The task

is ‘self-paced’ in the sense that the subject can make it go faster by responding quicker. It is note-

worthy that Bertelson measures the start of the response-stimulus interval from the moment the

response key is lifted, not depressed, arguably making the true RSI longer than the values stated.

Bertelson nonetheless stands out for his rigour in stating that this is the case clearly, with several

authors failing to clarify this point.

One of Bertelson’s objectives was to investigate whether sequential redundancies would im-

prove performance in repetitive tasks. For this purpose the transition probabilities were manip-

ulated while keeping the frequencies of both stimuli constant, allowing for the construction se-

quences rich in repetitions or alternations of events but balanced with respect to the frequency of

the stimuli.11 Bertelson describes for the first time what he coined a ‘repetition effect’: not only are

10 Let RT denote the reaction time, RSI the response-stimulus interval and ISI the inter-stimulus interval. Then for
this type of task ISI = RT + RSI.
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reaction times overall faster to repetitions relative to alternations, but they decrease with increasing

length of a run of the same stimulus (see Figure 1.3).

In order to explain the repetition effect, Bertelson postulates a ‘facilitation’ mechanism: a

response to a particular stimulus would make responding to the same stimulus faster, possibly

due to a residual trace of activity. The obvious implication is that by increasing the response-

stimulus interval - and consequently the average inter-stimulus interval - the repetition effect would

disappear. In order to investigate this possibility, Bertelson varied the RSI systematically and found

a strong repetition effect with a 50 ms RSI which was greatly reduced when a 500 ms RSI was used

instead, thereby lending some support to the idea of a decaying facilitation mechanism. Bertelson

was the first to analyse the effects of the interval between stimuli in the context of a reaction time

task, a type of analysis which was to be repeated afterwards several times in the context of theories

of decaying traces of activation, often with conflicting results (see below).

After Bertelson, several other authors reported sequential effects in a variety of reaction time

tasks (Williams, 1966; D. J. Hale, 1967; Schvaneveldt & Chase, 1969; Remington, 1969; Kirby,

1972). The results of these experiments were often compared with respect to whether a repetition or

alternation effect was found, without due attention to experimental design differences (Kornblum,

1973). This led to some confusion in the field regarding which type of effect was found - repetition

or alternation - and for what values of the interval between trials.12 Differences often overlooked

included a forewarning signal a fixed time before stimulus onset (Williams, 1966; Schvaneveldt

& Chase, 1969), irregular intervals between trials (Welford, 1959; Williams, 1966), differences

in stimulus-response compatibility and even errors in experimental design such as not taking into

account the time spent pressing the response button (Bertelson, 1961; Kirby, 1972).

11 Hyman (1953) also manipulates transition probabilities in a sequence but in a way which resulted in a concomi-
tant variation of the base rates, making results hard if not impossible to interpret.

12 This situation led Kornblum (1973), in his landmark review of the state of the field, to be quite dismissive of the
issue of the dependence of sequential effects on the interval between trials. Kornblum dedicates two paragraphs
to the subject on what is otherwise a very detailed review.
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Despite the confusion generated by the multitude of different experimental designs a pattern

emerged where a repetition effect tended to be found in experiments with a very short interval

between trials - 50 to 100 ms - and an alternation effect when the interval used was longer - more

than 1 sec. In some cases there was no significant alternation effect when a long interval was used

but a repetition effect was consistently found with a short interval, with one notable exception

(Schvaneveldt & Chase, 1969). However, the method section of Schvaneveldt and Chase (1969) is

scant in detail13 and it is not clear if a constant RSI or a fixed interval between stimuli (ISI) was

used since the authors refer to it as ‘inter-trial interval’ and yet it is hardly possible for a human

to respond in serial to stimuli separated by 100 ms. In the ensuing discussion an attempt will be

made to restrict the analysis to experiments where a fixed response-stimulus interval was used.

1.2.3 Reconciling positive and negative recency effects

Despite having been identified in different settings, the negative recency effect - i.e. gambler’s

fallacy - observed in prediction tasks and the repetition effect in reaction time needed reconciling.

When predicting humans tended to alternate whereas when reacting they tended to be faster if the

next event was a repetition. At first sight this would imply humans react faster to events they did

not predict, when intuitively humans should react quicker to events which are predicted. Setting

aside other experimental differences, the prediction tasks in which the negative recency effect was

found and the reaction time tasks in which the repetition effect was identified differed in one crucial

aspect: the interval between trials. Most prediction tasks had intervals of multiple seconds - e.g. 4

sec for Jarvik (1951) - while reaction time tasks had used mostly intervals of less than one second

(e.g. Bertelson, 1961). There was a possibility then that the repetition effect was operating at short

inter-stimulus intervals and the negative recency effect was acting at longer intervals.
13 The authors state that ‘The ITI [inter-trial interval] variable represents the transition from the serial to the discrete

paradigm’, yet fail to define ITI or the difference between a ‘discrete’ and ‘serial’ paradigm. From other sources,
in a discrete paradigm the interval between trials tends to be long and little care is taken in keeping it constant;
by contrast, in a serial paradigm either the interval between trials or the response-stimulus interval is kept fixed.
However, this information does little to resolve the ambiguity.



22 LITERATURE REVIEW

In order to investigate whether a negative recency effect could be obtained in reaction time it

was necessary to increase the inter-stimulus interval to values close to the range used in prediction

tasks, something which could be achieved by increasing the response-stimulus interval. Bertelson

(1961) had already observed that the negative recency effect observed with an RSI of 50 ms was

all but gone with an RSI of 500 ms. Bertelson and Renkin (1966) investigated the effect of varying

the RSI in more detail using four values: 50, 250, 500 and 1000 ms. However, the authors used

an experimental design different from that used by Bertelson in 1961, with overlapping geometric

figures as stimuli. It is now known that this type of stimulus, with its reduced spatial mapping

between stimuli and response buttons, tends to extend the repetition effect into longer RSI values

(see below), and this may have been the reason why Bertelson and Renkin (1966) continued to ob-

serve a repetition effect even with an RSI as high as 1000 ms. Another analysis of the dependence

of sequential effects on the RSI was performed by D. J. Hale (1967), this time using the numbers

‘1’ and ‘2’ as stimuli. While arguably these stimuli also have a reduced spatial compatibility with

responses, the range of RSI values used in this case was extended up to 2000 ms and this allowed

Hale to observe for the first time a transition from a repetition to an alternation effect as the RSI is

increased.

At first sight the transition from a repetition to an alternation effect in reaction time as the RSI

is lengthened seemed to support the theory that a facilitating trace was present only when the RSI

was short and a more cognitive effect was operating when the RSI was long. However, it was not

clear how the alternation effect observed in reaction time was related to that which was observed

in prediction tasks, as both effects had never been observed in the same experiment. In order to

clarify this relationship Hale designed an experiment in which subjects had to predict - as well as

react to - the next stimulus, something which was only possible with an RSI of 2 sec in order to

allow enough time for a prediction to be made (D. J. Hale, 1967). The analysis of predictions as a

function of run length revealed that, as the number of repetitions of the same stimulus increased,

subjects increasingly predicted an alternation (Figure 1.4, left panel). However, reaction times as
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FIGURE 1.4: Data adapted from D. J. Hale (1967) highlighting the seemingly paradoxical results of an
experiment where subjects had to predict, as well as respond to, consecutive stimuli. Stimuli for the task
were the numbers ‘1’ and ‘2’ and a fixed RSI of 2 sec was used in the case of the data shown. Left panel
- percentage of times the number ‘2’ as a function of the length of a run ‘2’. Right panel - Mean reaction
times as a function of the length of the same runs as shown for the prediction data. The results from the
predictions follow the negative recency effect discovered by Jarvik (1951). However, it seems logical that
reaction times should be longer for the predicted stimuli and shorter for the non-predicted stimuli. If this was
the case, reaction times should on average increase with run length, when they in fact stay approximately
constant or even decrease a little.
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FIGURE 1.5: Data from D. Hale (1969) showing a recency effect for both repeating and alternating
runs. Left panel - Reaction times as a function of position in repeating runs. Right panel - the same but for
alternating runs. Stimuli were the numbers ‘1’ and ‘2’ and the response-stimulus interval was 100 ms. Based
on this data, Hale suggests that the mechanism responsible for processing repetitions must be different from
that responsible for processing alternations.

a function of run length did not show a corresponding increase, as expected if we assume humans

respond faster to predicted events, and in fact decreased to some extent (Figure 1.4, right panel).

The implication of this finding was that subjects were responding quicker or at least at the same

speed to stimuli which they are predicting less and less, a seemingly paradoxical result, as pointed

out by Hale himself.
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One of the main pillars of the facilitation theory was the idea that reaction times decreased

with each repetition of the same stimulus because residual activation would somehow quicken the

recruitment of the same neural pathways. However, as first observed by Bertelson (1961), reaction

times also decreased with the length of alternating runs, a fact hard to reconcile at first sight with

a simple facilitation trace. D. Hale (1969) provides the clearest evidence for a decrease in reaction

times as a function of the length of both repetition and alternation runs (Figure 1.5). Hale observed

the two effects in the same task with a 100 ms RSI, a value which tends to induce faster overall

reaction times to repetitions. So it seemed that even when humans strongly prefer repetitions they

are still sensitive to alternations. Based on this, as well as significantly different error rates to

repetition and alternation runs, Hale argues that ‘repeated stimuli are processed differently from

alternated stimuli’.

Other authors after Hale would argue for the need to postulate separate mechanisms for the

detection of alternations and repetitions, based on very different types of analysis but centred on

what is essentially the same idea (Laming, 1968; Maloney et al., 2005). The core of the argument

is simple but compelling and can be summarised as: if there is a positive recency effect making

reaction times faster to repetitions; a negative recency effect making reaction times faster to alter-

nations; and both are operating at the same time, then these have to be separate unless we postulate

a mechanism able to generate an expectancies to two different events at the same time. Bertelson

(1963) also makes the case for separate mechanisms for the processing of responses to the same

stimulus and to different stimuli, albeit from a different perspective. Bertelson studied the effect of

stimulus-response (S-R) compatibility and found it to influence reaction times to alternations only,

not repetitions. Based on this, he postulated that a faster mechanism bypassing stimulus processing

would be used in the case of repetitions, whereas a slower mechanism involving the mapping of

stimuli to responses would be used in alternations.



1.2 SEQUENTIAL EFFECTS IN REACTION TIME 25

1.2.4 Looking at all possible histories of events

Up to 1969 the debate about sequential effects focussed heavily on the impact of the last event

by comparing average reaction times to repeating and alternating trials. If events beyond the last

two were considered, this was usually in the context of the analysis of runs of the same stimulus

(e.g. Bertelson, 1961; D. J. Hale, 1967). Occasionally runs of alternations or even more complex

types of run, such as the length of the interval between two occurrences of the same stimulus, were

also considered (D. Hale, 1969). These analyses were guided more or less explicitly by theoretical

considerations, with any other type of sequence dismissed - sometimes explicitly such as in D. Hale

(1969) - as uninformative.

The inconsistencies in the type of data analysis used in sequential effects research generated

much confusion and ambiguity in the literature. Finally, Remington (1969) suggested a systematic

method14 for analysing and plotting sequential effects data. Instead of focussing only on differ-

ences in reaction time to repetitions and alternations, Remington looked at all possible sequences of

five stimuli including the one being responded to. Amongst other things this allowed for a clearer

realisation that strong effects of the sequence beyond the last event were possible, even when no

difference between repeating and alternating trials was present.15 Another advantage of Reming-

ton’s method is that it provided a model and/or theory free data analysis, allowing researchers to

come back and possibly re-interpret results at a later stage. Given the paucity of data displayed by

researchers before 1969, it will never be know exactly how these experiments fit with more recent

sequential effects research.

To be fair to history, it is worth mentioning that Schvaneveldt and Chase (1969) first looked at

14 Note that a complete and systematic analysis of sequence data had nevertheless been performed as early as
1938 by Goodfellow in the context of a random sequence generation experiment (the Zenith radio telepathy
experiments).

15 The hallmark pattern of sequential effects - discussed below - obtained with a long RSI, the cost-benefit or
inverted ‘v’ pattern discussed throughout this dissertation, would fall into this category. Considering only the
effect of the last event in this case would be an almost literal case of scientific myopia.
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all possible histories of four stimuli16 when investigating sequential effects. However, Remington

provided a clear rationale for his choice of five-long sequences based on significance analysis,

and also proposed a revolutionary new method for plotting data. Unfortunately, Remington’s tree

plots, while presenting all the data, are very hard to read and it would be another eleven years

before Vervaeck and Boer (1980) introduced the type of plot which is still in use today (see Figure

1.1 for an example) and which will be used throughout this work. The development of better data

analysis techniques allowed for the emergence of a more complex theory of the relation between

low-level facilitation and higher-level cognitive effects, which is discussed next.

1.2.5 Subjective expectancy and automatic facilitation

A far back as 1961, Bertelson suggested that two kinds of processes were possibly at play in

sequential effects: the first would be a passive decaying ‘facilitating’ trace responsible for what he

termed the ‘repetition effect’; the second type of process, depending on ‘subjective probability’,

was effectively the expectation from the part of the subject about what the next stimulus would be

(Bertelson, 1961). Despite this early suggestion, the idea of two separate mechanisms does not

take hold until the field abandoned its habit of looking solely at differences between repeating and

alternating trials or specific types of run and started analysing data in more detail (Schvaneveldt &

Chase, 1969; Remington, 1969).

At first the effect of looking at all possible histories of stimuli was to shift the field towards

subjective expectancy - often termed subjective probability - and away from passively decaying

trace theories. Part of the reason for this was the often conflicting results regarding the effects of

varying the interval between trials, upon which the theory of a passively decaying trace hinged (see

above). Another reason was that the new data analysis methods highlighted with greater clarity the

dependence of sequential effects on events as far back as five stimuli, which in turn put the effect

16 Their study was published only a few months before Remington’s.
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FIGURE 1.6: Benefit-only and cost-benefit patterns of sequential effects. Data is from Soetens et al.

(1985). Left panel - Pattern of results obtained with a short - 50 ms - RSI and often referred to as ‘benefit-
only’. Right panel - Pattern of results obtained with a long - 1000 ms - RSI and commonly referred to
as ‘cost-benefit’. The benefit-only and cost-benefit patterns of sequential effects have traditionally been
associated with automatic facilitation and subjective expectancy respectively (see main text).

of repeating and alternating trials into perspective as one facet of a more complex phenomenon.

Together these developments led some researchers to reject the notion of a facilitating trace in

favour of an exclusively expectancy based account (Schvaneveldt & Chase, 1969; Remington,

1969; Keele, 1969; Kirby, 1972).

Thus far the mark of a cognitive expectancy effect had been taken to be simply the alternation

effect observed with long intervals between trials, an effect considered analogous to the ‘gambler’s

fallacy’ (Jarvik, 1951). The more detailed sequence analyses conducted after Remington (1969)

allowed for the development of a more nuanced theory of the effects of expectancy. Kirby (1972)

first observed that, just as reaction times decreased with increasing run length, so did they increase

for interruptions of runs, and that this was true both of repeating and alternating runs. In other

words, reaction times seemed to increase - relative to the average - when a stimulus was expected

and decrease when a stimulus was not expected. This meant that, if one assumes expectations to be

generated by the preceding sequence of events, a particular sequence - say XXXX17 - has a benefit

if the next event turns out to be a particular stimulus - X in this case - and a cost if it turns out to be
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the other stimulus - Y in this case. This led to the traditional pattern of sequential effects observed

with a long RSI to be named as cost-benefit. When plotted the traditional way, a cost-benefit curve

looks like an inverted ‘v’, the hallmark of subjective expectancy (Figure 1.6, right panel).

Eventually it became clear that, when a very short response-stimulus interval was used, a cost-

benefit pattern was no longer observed, and instead a substantially different pattern of sequential

effects was obtained (Kirby, 1976; Vervaeck & Boer, 1980; Soetens et al., 1985). Again, as in the

case of expectancy, what had been previously described simply as a ‘repetition effect’ now revealed

itself to be a far more complex phenomenon. The pattern of sequential effects obtained when the

RSI is short (Figure 1.6, left panel) displays approximately equal slopes18 of the alternation and

repetition curves - i.e. left and right side of the plots shown in Figure it is followed by a repetition

or an alternation, leading to the term benefit-only being coined to describe the pattern in Figure 1.6

(left panel).19

The benefit-only pattern of sequential effects observed when the RSI was short led to the re-

birth of the concept of facilitation, now termed ‘automatic’ facilitation, albeit in a different form

(Kirby, 1976; Vervaeck & Boer, 1980; Soetens et al., 1985). Originally the facilitation mechanism

had been proposed to reduce reaction times to the same stimulus (Bertelson, 1961). However,

some authors now argued that the facilitation mechanism happened irrespective of the next stim-

ulus (Laming, 1968; Vervaeck & Boer, 1980). In other words, some sequences would induce

faster or slower reaction times to the next event no matter what it is. This seemed to fit with the

benefit-only pattern of sequential effects, although it ignored a strong difference in overall reaction

time to repetitions and alternations20 which was not predicted by the theory (see Figure 1.6, left

17 Here X and Y are meant to denote the two possible stimuli.
18 This is only true if the sequence AAAA is excluded. Note how this point constitutes a clear violation of a

linear trend. Soetens et al. (1985) in fact exclude this data point from their analysis and attribute it to a residual
manifestation of subjective expectancy.

19 The absence of a baseline effectively meant that it was unclear whether the pattern was benefit-only or cost-only,
or even something in between.

20 Such differences in overall reaction time are visible in plots as changes in ‘height’ between the left and right
sides of the plot since these include respectively all sequences ending with a repetition and all those ending in an
alternation.
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FIGURE 1.7: The dependence of sequential effects on the response-stimulus interval. Left panel - Results
for different values of RSI of an experiment with compatible stimulus-response (S-R) mapping. Right panel
- Results from an experiment with incompatible S-R mapping. In both panels the RSI values used are: 50,
100, 250, 500 and 100 ms. Both experiments were equal in every respect except for the S-R mapping:
stimuli consisted of two horizontally separate dots and responses were made with the same finger of both
hands. In the compatible mapping the button on the same side as the stimulus was used to respond, and
in the incompatible mapping the opposite side button was used instead. Note the gradual transition from
a benefit-only pattern of results for a short RSI to a cost-benefit pattern with a long RSI. This balance is
shifted in the incompatible case, with a benefit-only pattern observed for longer values of the RSI.

panel). Automatic facilitation in its new form also raised obvious questions regarding what pos-

sible mechanism could affect reaction times irrespective of the next stimulus. Vervaeck and Boer

(1980) suggest a model based on hypothetical neural pathways and their interactions,21 which was

then given a mathematical treatment by Soetens, Deboeck, and Hueting (1984), the merits of which

will not be discussed here.

Soetens et al. (1985) performed what is perhaps the most comprehensive analysis of sequential

effects conducted up to that point and since. The authors define quantitative ways of measuring

automatic facilitation and subjective expectancy and study the effects of varying the RSI in two

different tasks differing solely with respect to stimulus-response compatibility: in one task subjects

responded with by pressing a button positioned on the same side as the corresponding stimulus;
21 Vervaeck and Boer (1980) also created the plot of sequential effects data which has been used ever since. This

ingenious way of plotting data greatly improved visualisation of sequential effects and allowed for a reliance on
visual pattern recognition to compare results.
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FIGURE 1.8: Reaction time results falling outside the typical benefit-only or cost-benefit patterns of
sequential effects. Data from the second experiment of Jentzsch and Sommer (2002) is shown together with
the results of an experiment conduced on an elderly group of subjects included in Melis et al. (2002). Notice
that in both cases there is an almost two-tiered dependence on the second-to-last event and whether it was a
repetition or an alternation.

in the second task subjects had to respond with a button on the opposite side. The results of

both experiments are shown in Figure 1.7. The authors discuss three ‘rules’ for the operation of

sequential effects: first, automatic facilitation dominates at short response-stimulus intervals and

subjective expectancy at long values, the point of transition between the two occurring between

70 and 160 ms; second, making the response-stimulus mapping less compatible shifts the point

of transition between automatic facilitation and subjective expectancy towards higher values of

the RSI; third, practice tends to reduce sequential effects, and this effect is more pronounced for

automatic facilitation. This view of sequential effects has remained influential until recent times,

with several authors using it to frame their results (e.g. Jentzsch & Sommer, 2002; Gao, Wong-Lin,

Holmes, Simen, & Cohen, 2009).
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1.2.6 A different pattern of sequential effects

Most empirical results found in the literature seem to fall somewhere along the continuum be-

tween the benefit-only and cost-benefit patterns described by Soetens et al. (1985). However, a

qualitatively different pattern of sequential effects is sometimes obtained when the RSI used is

short, i.e. 50 ms or less (Melis et al., 2002; Jentzsch & Sommer, 2002). In these cases reaction

time seems to be largely a function of the second-to-last event and whether this was a repetition

or an alternation (see Figure 1.8). Whatever the mechanism responsible for these results it seems

that age is a crucial factor: Melis et al. (2002) contrasted the results of two groups, one of young

and one of elderly participants, when performing the same experiment with a 50 ms RSI. The

young group displayed a typical benefit-only pattern observed in most short-RSI experiments; in

contrast, the elderly group displayed a pattern consistent with a dependence of reaction times on

the second-to-last event. The authors attribute these differences to age-related losses in processing

speed. Jentzsch and Leuthold (2005) further argued that the dependence of reaction time on the

second-to-last event is purely response-related and the product of a conflict between neural signals

associated with the different responses which would occur when the stimuli alternated in the pre-

vious time step. The end result would be that an alternation in the second-to-last trial would inhibit

responses on the last trial. More generally there has been some debate in the literature regarding

the locus of sequential effects, and to which extent these effects are associated with the stimuli or

the corresponding responses.

1.2.7 The locus of sequential effects

As discussed in the beginning of this section, some early attempts were made to clarify whether

sequential effects were due to the properties of the stimuli or the judgements made about those

same stimuli. A closely related question is whether sequential effects are driven by the sequence
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of stimuli, the sequence of responses, or both. Bertelson (1965) was the first to tackle this problem

by designing an experiment in which multiple stimuli were mapped to the same response button.

This resulted in three types of trial: different, in which consecutive stimuli as well as corresponding

responses are different; equivalent, where stimuli are different but the same response is made; and

identical, where both stimuli and responses were the same. Contrasting results from identical

and equivalent trials allowed for some conclusions to be drawn regarding whether stimuli had an

effect independently of responses. Bertelson finds a significant difference between identical and

equivalent trials for some subjects but not for others. While these results provided some support

for an effect of stimuli per se, they are otherwise interesting in that they represent some of the first

evidence for individual differences in sequential effects.

Other attempts were made to identify whether sequential effects, and in particular a repetition

effect, were associated with perceptual, motor or more central stages of processing (Smith, 1968;

Pashler & Baylis, 1991; Soetens, 1998) but these were plagued by difficulties with issues such

as the spatial mapping between stimuli and responses as well as the dependence of sequential ef-

fects on the the RSI, both factors well known to affect whether a repetition effects is observed or

not. Overall it seemed that both stimulus and response related effects were involved in sequential

effects, in which case the difficulties with determining their locus from reaction time data were

somewhat unsurprising: once multiple signals are joined together in order to produce behaviour

it becomes a conceptually difficult problem to disentangle them, and this would be aggravated if

sequential effects also depended on more central processing stages. However, it was soon dis-

covered that sequential effects could also be observed in electroencephalography (EEG), raising

the prospect that questions about the locus of sequential effects could be answered directly by

measuring different neural signals.
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1.3 Sequential effects in EEG

The following is a somewhat more cursory examination of the literature on sequential effects in

EEG when compared to the review of sequential effects in behaviour above. Nevertheless, this

quick summary of the literature has its place here as, despite electrophysiological data not having

been collected for this dissertation, results are extensively discussed in light of such data obtained

by other researchers, in particular Jentzsch and Sommer (2002), in the context of support for the

hypothesis of two separate processing stages involve in sequential effects.

Tueting, Sutton, and Zubin (1970) studied the shape of the event-related potential (ERP)22 in a

task involving a random sequence of high- and low-pitch tones, and where subjects had to predict

the outcome of each trial. The effect of overall stimulus probability, as well as the proportion

of repeating to alternating trials, on the shape of the ERP were examined, with specific focus on

the amplitude of the P300 component.23 In addition to a dependence of the amplitude of P300

on the relative frequency of the stimuli, a significant difference was found between repeating and

alternating trials, the first evidence of some form of sequential effects in EEG.

K. C. Squires et al. (1976) performed the first detailed analysis of sequential effects in the ERP,

focussing on its overall shape rather than just the amplitude of the P300 component. It was known

beforehand that the shape of the ERP depended on how common an event was: in tasks with highly

asymmetric stimulus probabilities a ‘rare’ event elicited an ERP of a particular shape different

from that which was observed when the event was ‘frequent’. One challenge was to see if it was

possible to go the opposite way: to predict whether an event was rare or frequent from an analysis

of the shape of the corresponding ERP. For this purpose the authors had previously developed a

‘discriminant function’ which, after parameter fitting based on a training set, attributed a linear

22 The ERP is a series of positive and negative going shifts in cortical electrical potential occurring after a stimulus
is displayed. A review of of the subject can be found in Luck (2005).

23 P300 is a positive going shift in potential occurring approximately 300 ms after stimulus onset (see Polich (2007)
for a review).
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FIGURE 1.9: Sequential effects in the ERP as per K. C. Squires et al. (1976). The ordinate axis shows
the mean score obtained from a discriminant function developed to distinguish two standard shapes of the
ERP, one related to infrequent and another to frequent events. The task consisted of a sequence of two types
of tone, one high and one low pitch, both occurring with the same frequency. The objective of the task from
the subject’s perspective was to count and report the number of high pitch tones.

score to the ERP of new trials which reflected how close it was to the typical rare or frequent

ERP shapes (K. C. Squires & Donchin, 1976). By making use of this discriminant function it was

possible to predict accurately whether a stimulus was rare or frequent in 81% of cases. The authors

also noted that, in the remaining 19% of cases where the prediction failed this did now appear to

be due to noise but rather to the fact that in some cases a rare event induced a frequent ERP and

vice-versa. Moreover, upon closer inspection, this seemed to depend on the previous sequence of

trials.

K. C. Squires et al. (1976) then studied the shape of the ERP in a task involving a sequence

of high- and low-pitch tones with equal frequencies. The authors analysed discriminant scores as

a function of the sequence of trials in the style of the literature on sequential effects (Remington,

1969). The results, shown in Figure 1.9,24 display clear sequential effects similar to cost-benefit

patterns observed in reaction time. In order to improve the predictions of the discriminant function,

it was necessary to account for the way in which it depended on sequential effects. For this purpose
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the authors proposed a compact model of sequential effects which nonetheless displays many of

the features from other more detailed models discussed below. The model is effectively a linear

combination of three sources of information: (1) a geometric average of the last five stimuli; (2)

an ‘alternation factor’ accounting for alternations, essentially a linear function of the number of

previous alternations; and finally (3) the long-term probability that a stimulus will occur. The best

fitting model explained 78% of the variance in discriminant score.

The study of sequential effects in EEG continued with several studies analysing different as-

pects of the way in which the ERP or one of its components depended on the sequence of events.

Average ERPs as a function of the preceding five stimuli were often shown in tree diagrams anal-

ogous to the plots of Remington (1969). K. Squires, Petuchowski, Wickens, and Donchin (1977)

extended their discriminant score analysis to a visual task and showed the results to be similar to

those obtained with the auditory task described above. Other studies focussed on the detailed effect

of prior probability (Duncan-Johnson & Donchin, 1977); the effect of transitions between blocks

of trials with different prior probabilities (R. Johnson & Donchin, 1980); the specific components -

P3a or P3b - of the ERP related to sequential effects (Munson, Ruchkin, Ritter, Sutton, & Squires,

1984); the effects of age (Ford, Duncan-Johnson, Pfefferbaum, & Kopell, 1982) in P300 latency as

a function of the sequence as well as in schizophrenic patients (Duncan-Johnson, Roth, & Kopell,

1984); and whether or not P300 expectancies were conscious or automatic (Sommer et al., 1990;

Matt, Leuthold, & Sommer, 1992); to name just a few studies.

The similarity between sequential effects in ERP amplitude and those found in reaction time

gave rise to the idea that both were the reflection of a common expectancy mechanism (but see Matt

et al. (1992)). However, most if not all EEG studies were conducted with long intervals between

stimuli, whereas sequential effects in reaction time were known to change considerably when short

intervals were used. Part of the reason why short intervals were avoided were baseline problems:

24 Note that results are plotted in the current style in order to facilitate comparison with other results, but originally
the authors used the tree plots of Remington (1969).
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FIGURE 1.10: Sequential effects in the ERP (P300) when short and long response stimulus intervals
are used. Left panel - P300 amplitude as a function of the previous sequence of stimuli obtained with a
short - 40 ms - RSI. Right panel - Results obtained with a long - 500 ms - RSI. The experiments were the
same in every other respect; stimuli consisted of two LED lights displaced horizontally. Note that a special
procedure was used in order to correct for overlap between adjacent ERPs in the 40 ms case (see main text).

when the interval between successive trials is shortened the ERPs associated with consecutive

events begin to overlap making it difficult to set an initial baseline against which to take amplitude

measurements. Sommer, Leuthold, and Soetens (1999) made use of a procedure to correct for the

overlap between neighbouring ERPs and this allowed the authors to compare sequential effects in

P300 amplitude with a short - 40 ms - and long - 500 ms - RSI. The results, shown in Figure 1.10,

revealed a similar pattern in both cases. So despite clear differences in sequential effects observed

in reaction time when the RSI was long and when it was short, P300 amplitude seemed to show a

similar pattern in both cases.25

Before the experiments of Sommer et al. (1999) some debate existed about whether expectancy

effects were also present when the RSI is short of if they were altogether absent, perhaps due to

lack of time to build up. If expectations were present when the RSI is short, then presumably

25 While the authors consider the results shown in Figure 1.10 to be similar, it might be argued that there are some
non-trivial differences between the two, possibly due to distortion of the 40 ms results induced by the procedure
used to correct for overlap.
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FIGURE 1.11: Evidence for separate processing stages involved in sequential effects according to
Jentzsch and Sommer (2002). Left panel - Time between stimulus onset and the rise of the lateralised
readiness potential as a function of the previous sequence of stimuli (S-LRP). Right panel - Time between
the rise of LRP and the moment a response is made (LRP-R). The behavioural task was a 2AFC with two
vertically displaced dots as stimuli and a 700 ms RSI. S-LRP and LRP-R are though to reflect the separate
processing of stimuli and associated responses respectively.

these were masked in reaction time by the interference of lower-level effects, resulting in a benefit-

only pattern of sequential effects. Soetens et al. (1984, 1985) argued for this hypothesis based

on the fact that reaction times to the sequence AAAA were relatively short even when a 50 ms

response-stimulus interval was used (Figure 1.6, left panel), revealing some degree of sensitivity

to alternations. That a cost-benefit pattern - considered to be the hallmark of expectancy - was

observed in P300 when the RSI was short, despite failing to manifest itself in reaction times,

seemed to vindicate the masking hypothesis. Sommer et al. (1999) suggest that signals related to

expectancy integrate with ‘possibly response-related’ pathways at a late stage; if the RSI is too

short this integration might not have time to occur, in which case reaction times would be fully

determined by response-related effects - i.e. automatic facilitation.

Sequential effects in EEG are not restricted to the ERP and P300: they have also been observed

in the lateralised readiness potential (LRP) (Leuthold & Sommer, 1993; Jentzsch & Sommer,

2002). The LRP consists of a negative shift in potential occurring just before a response is made
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in the pre-motor cortex area contra-lateral to the hand which will be used to respond. The first

observation of sequential effects in the amplitude of the LRP was made by Leuthold and Sommer

(1993) but the most detailed study of the subject was performed by Jentzsch and Sommer (2002).

The authors investigated not only the amplitude of the LRP but also the time between stimulus

onset and the moment the LRP reached a threshold amplitude - S-LRP - and the time between

the LRP and the moment a response is made - LRP-R. The rationale for this decomposition is

that the time before the onset of LRP is thought to index pre-motor processing time, whereas the

time between the onset of LRP and the moment a response is made is thought to measure motor

processing time. S-LRP and LRP-R as measured by Jentzsch and Sommer (2002) are shown in

Figure 1.11.

The fact that one can measure pre-motor and motor processing times separately seems to imply

a serial processing view of sequential effects and of processing in the brain in general, a simplistic

view not shared by the author of this dissertation. An investigation into the validity of S-LRP and

LRP-R as valid measures of different processing stages is nevertheless beyond the scope of this

work. Besides, irrespective of these considerations, there is now substantial evidence pointing to

the fact that S-LRP and LRP-R are meaningful constructs (Maloney et al., 2005; M. H. Wilder,

Jones, Ahmed, Curran, & Mozer, 2013; M. Jones, Curran, Mozer, & Wilder, 2013), and whether or

not these can be conceptualized as motor and pre-motor ‘processing’ times becomes a secondary

consideration if one is careful not to over-interpret results. Therefore, and inasmuch as S-LRP and

LRP-R can be taken to be a manifestation of separate processes involved in sequential effects, the

results of Jentzsch and Sommer (2002) provide the first evidence for a decomposition of sequential

effects into different components. Furthermore, it would seem that these two components are

associated separately with the processing of stimuli and of responses26, providing an answer to

questions regarding the locus of sequential effects: it would appear that both stimuli and responses

contribute towards sequential effects.

26 This point will be discussed in more detail in Chapter 3.
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Interestingly S-LRP and LRP-R are somewhat symmetrical, with S-LRP displaying faster pro-

cessing times to alternations and LRP-R to repetitions (see Figure 1.11). It is only natural to

consider what the role of these two processing stages might be in producing different patterns of

sequential effects such as those observed when the RSI is varied (see Figure 1.7). In addition,

some mentions have been made in the literature of the fact that, under the same experimental

circumstances, individual participants may differ with respect to whether they display faster reac-

tion times to repetitions or alternations. One possibility then is that different contributions from

stimulus and/or response processing may be responsible for the differences observed both across

individuals and when the RSI is varied. Attempting to answer some of these questions is a main

focus point of this dissertation, in particular Chapter 3, where individual differences in sequential

effects are used as a tool in order to infer what independent contributions towards sequential effects

may exist.

1.4 Individual Differences in Sequential Effects

To the author’s best knowledge, there has not been a single study dedicated specifically to the topic

of individual differences in sequential effects. Some passing mentions do exist, often to point

out that different subjects display differences with respect to whether they display a repetition

or alternation effect (Arons & Irwin, 1932; Bertelson, 1965; Kirby, 1976; Kornblum, 1968). In

one case a model was fit to different participants separately but the significance of the individual

differences observed is not analysed in detail (Falmagne, Cohen, & Dwivedi, 1975). The avoidance

of the subject is all the more striking since, foreshadowing some of the results presented here,

individual differences are not only considerable but clearly meaningful in that they mimic the way

sequential effects depend on the RSI.

As mentioned above, it is a difficult problem to infer the contributions of separate stages of
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sequential effects from just a few results obtained under different experimental circumstances. In-

dividual differences, if they are found to be meaningful and not just due to noise, could be useful in

in this respect, in that it may be possible to infer latent components from the patterns of covariance

across multiple subjects, the principle underlying techniques such as principal component analysis

(PCA). In chapter 3 of this work PCA will be conducted on a dataset of over one hundred and fifty

individual participants with the aim of identifying meaningful latent variables and to relate these

to what is already know from the empirical literature about separate processing stages involved in

sequential effects.

1.5 Quantitative models of sequential effects

As far back as the 1960’s attempts were made to formalise ideas about the mechanisms underlying

sequential effects by developing mathematical models. At the core of these models are usually one

or more variables representing the state of expectation of the subject with respect to the the next

stimulus, upon which reaction times are assumed to depend: the more someone expects a particular

event the shorter the reaction time will be. This state of expectation is also referred to by some

authors as ‘preparation’ or ‘subjective probability’, reflecting in the latter case an interpretation

of expectancy as an estimate of the objective probability of occurrence of the next stimulus. This

subjective probability estimate is generally incorrect in the sense that it does not correspond to any

objective measure of the probability of the next stimulus based on the frequency of events.

The focus on expectations means that most models have sought to reproduce the cost-benefit

pattern of sequential effects observed in experiments conducted with a relatively long RSI. There

have been few attempts at explaining sequential effects observed when the RSI is short (but see

Soetens et al., 1984; Jentzsch & Sommer, 2002) - the so-called benefit-only pattern often inter-

preted as the product of lower-level facilitation mechanism. With respect to the more general



1.5 QUANTITATIVE MODELS OF SEQUENTIAL EFFECTS 41

dependence of sequential effects on the RSI, a single attempt was made at tackling this complex

problem (Gao et al., 2009). This means that even the most successful models of sequential effects

discussed below are incapable of reproducing a benefit-only pattern of sequential effects and are,

strictly speaking, models of subjective expectancy. This status quo is maintained by the prevalent

notion that sequential effects observed when the RSI is short are due to a fundamentally different

mechanism (Kirby, 1976; Soetens et al., 1985; M. Wilder, Jones, & Mozer, 2009).

Methodologically, models of sequential effects have traditionally been developed outside more

general reaction time modelling frameworks such as sequential sampling models (Stone, 1960) and

are therefore often unable to produce reaction time distributions (e.g. M. Jones et al., 2013). The

main reason for this is that sequential effects reflect inter-trial differences whereas reaction time

modelling is more often focussed on intra-trial variation and the shape of reaction time distribu-

tions (Ratcliff & Smith, 2004). The two approaches are not necessarily incompatible though: one

can in principle substitute an estimate of the subjective probability for the objective probability in

decision making models, in which case sequential effects would presumably manifest themselves

in a dependence of the mean of reaction time distributions as a function of the sequence, an ap-

proach taken by some authors (Laming, 1968). Generally speaking, even when models are able

to produce reaction time distributions, these are seldom fit to their empirical counterparts (but see

Falmagne, 1965).

Another aspect of empirical results which is usually set aside or otherwise given little consid-

eration is error rates, although there are some exceptions to this rule (e.g. Cho et al., 2002). This is

arguably for relatively benign reasons as error rates have been shown time and time again to follow

a similar trend to reaction times, while at the same time yielding a much noisier measure due to

the very low error rates in many experiments - sometimes as low as 1 or 2% - which means the

number of reaction time data points relative to errors can be in a proportion close to 100:1. Early

studies often mentioned error rates in order to dispel the possibility that sequential effects were the

product of some form of speed-accuracy trade-off, in which case error rates should display some
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form of negative relationship with reaction times. A few models actually predict error rates (e.g.

Cho et al., 2002) which tend to follow closely reaction times. In some cases there are hints of

differences between trends in reaction times and error rates (e.g Soetens et al., 1985; Jentzsch &

Sommer, 2002) which are left unaddressed. Whether it is possible to decouple reaction time and

error rates in sequential effects, and under which circumstances this might happen, is a question

left open.

A careful review of the history of sequential effects modelling reveals some degree of re-

dundancy. Most models consist of combinations of two types of geometric mean over the past

sequence of events: one mean taken over the sequence of stimuli themselves and the other over

the sequence of repetitions and alternations (discussed in detail below). Such a combination was

proposed for the first time more than forty years ago by Laming (1969) in a model which arguably

encapsulates the fundamental properties of all sequential effects models to come.27

1.5.1 The geometric average or exponential filter

In its many incarnations the geometric moving average, geometrically weighted mean, exponen-

tially weighted moving average or simply exponential filter is at the core of every model of se-

quential effects. In the context of discrete time models this would more correctly be referred

to as a ‘geometric’ mean, since it corresponds to a discrete progression28 but it will be referred

to throughout as ‘exponential filter’, in part because a continuous time model will eventually be

proposed here. In discrete time, and in its recursive form, the exponential filter can be written as

x(n+ 1) = (1− α)Sn + αx(n) (1.1)

27 Most recent works fail to cite the work in question despite sharing almost the same mathematical structure.
Part of the reason for this may have been Laming’s 1968 dissertation, misleadingly titled ‘Information theory of
choice reaction times’, which may have turned attention away from his work.

28 The geometric progression can be interpolated by an exponential function so this is a somewhat pedantic point.
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where α is a constant varying between 0 and 1 effectively determining the rate of exponential decay

(implicit in this case) and Sn represents the stimulus at trial n coded as either a 0 or 1 corresponding

to the two possible stimuli. In non-recursive form, the exponential filter can be written as

x(n) =
N∑
i=0

θiSn−i

where θ is a number between 0 and 1 and N is the length of the sequence so far. In this form, one

would need to know all the elements from the beginning of the sequence up to trial n in order to

calculate x(n), a rather wasteful procedure considering that, once i is large enough, θi becomes

negligibly small. In the particular case of sequential effects it seems that stimuli beyond the last

five do not contribute towards reaction times (Remington, 1969) implying that θ is small enough

to make θ5 negligibly small.

While the mathematical form of the exponential filter remains constant it is sometimes applied

to the sequence of stimuli and other times to the sequence of repetitions and alternations, also

coded as 0’s and 1’s. In fact, the most successful models of sequential effects proposed so far

have made use of both at the same time (Laming, 1969; M. Jones et al., 2013). In some models

the exponential filter is not mentioned explicitly, but one can deduce that exponential decay is

occurring due to some form of constant rate leaking (Cho et al., 2002; Gao et al., 2009). In other

models recursion relations of the form in (1.1) apply to distributions and this tends to produce a

similar effect on the respective moments (Falmagne, 1965; Yu & Cohen, 2008; M. Wilder et al.,

2009).

Next a selection of mathematical models of sequential effects is briefly discussed. Part of the

reason for this review is an attempt to highlight the commonalities between the different models

proposed over the years. In fact, most models below produce results which are either equal or at

least well approximated by some combination of two types of exponential filter: one applied to the
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sequence of stimuli and the other to the sequence of repetitions and alternations.29 This equivalence

is sometimes explicit (Laming, 1969; Yu & Cohen, 2008; M. Wilder et al., 2009; M. Jones et al.,

2013) and sometimes left implied (Falmagne, 1965; Cho et al., 2002; Gao et al., 2009). Because

of this common mathematical structure the set of models below can be interpreted as representing

a particular view of sequential effects, one that will be later challenged in this work.

1.5.2 Capturing a repetition effect - Falmagne (1965)

Falmagne (1965) constitutes the first attempt at constructing a formal model specifically addressing

sequential effects. Falmagne draws upon the concept of preparation for the next stimulus, first

suggested by Bertelson (1961), and represents this with a discrete variable Ki,n: on each trial n

the subject is either prepared for stimulus i, in which case Ki,n = 1, or it is not, in which case

Ki,n = 0. A second discrete variable Ei,n represents whether stimulus i was presented at trial n.

The model can accommodate any number of stimuli and so both E and K can be vectors of 0’s

and 1’s of any length. If the complete state of the system at trial n is known, then the reaction time

distribution is defined and is

J(t|Ei,n = 1, Ki,n = 1,Wn−1) = K(t)

J(t|Ei,n = 1, Ki,n = 0,Wn−1) = K̄(t)

whereWn−1 is a vector representing the state of all variables up to trial n−1, K(t) is a distribution

of fast reaction times and K̄(t) is a distribution of slow reaction times. The model itself is a

Markov chain where the state of preparedness is a hidden variable, and where we further assume

29 An analytical proof of this fact not given here for those cases in which the equivalence to some form of exponen-
tial filter is not explicit (e.g. Falmagne, 1965; Cho et al., 2002)



1.5 QUANTITATIVE MODELS OF SEQUENTIAL EFFECTS 45

the previous history of stimuli presentation up to trial n− 1 to be unknown. So in order calculate

the probability Pn,i that the subject is prepared for stimulus i on trial n ones must integrate over all

possible histories Wn−1

Pn,i = P (Ki,n = 1) =
∑
Wn−1

P (Ki,n = 1|Wn−1)P (Wn−1)

If a stimulus i is presented at time n so that En,i = 1 the resulting reaction time distribution at

trial n is

J(t|En,i = 1,Wn−1) = Pn,iK(t) + (1− Pn,i)K̄(t)

which is effectively a linear combination of the fast and slow reaction time distributions. Note that

even though K(t) and K̄(t) are both symmetrical, their combination will be asymmetrical, and

this is meant to account for the asymmetry in empirical reaction time distributions.

The probability that Ki,n = 1 depends on the value of Ki,n−1 and Ei,n−1: if Ki,n−1 = 0 and

Ei,n−1 = 0, i.e. the subject was unprepared and the stimulus was not observed, then P (Ki,n =

1) = 0; if Ki,n−1 = 1 and Ei,n−1 = 1, i.e. the subject was prepared and the stimulus was observed,

then P (Ki,n = 1) = 1. If Ki,n−1 = 1 and Ei,n−1 = 0 then P (Ki,n = 1) = 1 − c′; finally if

Ki,n−1 = 0 and Ei,n−1 = 1 and Ei,n = 1 then P (Ki,n = 1) = c. These transition probabilities

result in the following recursion relations for the Pi,n

If Ei,n−1 = 1

Pi,n = (1− c)Pi,n−1 + c
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and if Ei,n−1 = 0

Pi,n = (1− c′)Pi,n−1

As with the Pi,n, similar recursions can be obtained for the reaction time distributions, so if Ei,n =

1

Ji,n = (1− c)Ji,n−1 + cK(t)

and if Ei,n = 0

Ji,n = (1− c′)Ji,n−1 + c′K̄(t)

Falmagne is particularly interested in how the mean reaction time varies as a function of the length

of runs of the same stimulus in order to reproduce the repetition effect discovered by Bertelson

(1961). According to the model the reaction time distribution after k repetitions of the same

stimulus is given by

Ji,n+k = (1− c)k(Ji,n −K(t)) +K(t)

Falmagne attempts to fit different order moments of this distribution to their empirical equivalents

obtained from a reaction time task with six possible alternatives. The model is successful at cap-

turing a repetition effect, i.e. the decrease in mean reaction time with increase in repetition run

length. However, it is far less successful in capturing higher order moments of the reaction time
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distributions. Laming (1968) criticizes Falmagne’s model on the basis of its incapacity to cap-

ture the decrease in reaction time with increasing length of an alternation run, or put simply its

incapacity to detect alternations.

1.5.3 Two geometric means - Laming (1969)

In Laming’s own words the ‘essence of the model, mathematically speaking, is that subjective

probability relating to the signal to be presented on a given trial can be represented as the sum

of two geometric moving averages over preceding events in the experiment, one moving average

taken over preceding signals, the other over the preceding sequence of repetitions and alternations’

(Laming, 1969). The geometric average over preceding events is given by

xf,n =
∞∑
i=0

θifSn−i

where f is a label to identify this as the ‘frequency’ average, θ is a parameter between 0 and 1, n

is the n-th trial and Sn is the stimulus presented at trial n coded as a 0 or a 1. The second moving

average is given by

xa,n =
∞∑
i=0

θia[Sn−i + Sn−i−1]

where a stands for ‘alternation’ average and [Sn−i + Sn−i−1] is the sum modulo 2 of the values

inside square brackets and is equal to 0 if stimuli are the same and 1 if they are different.

The two geometric means are used as parameters for the posterior distribution of y, the sub-

jective probability taken to be an estimate of the objective probability p, in a manner that will be
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made clear shortly. Laming calculates, based on the information content of the sequence (Kullback,

1959), that the posterior distribution over y after n stimuli is given by

π(y) =
(N + 1)!

(N − x)!x!
(1− y)N−xyx

which is a Beta distribution with parameters (N − x + 1, x + 1). N and x must be bounded in

order to limit accumulation of information. x will be a combination of the exponential averages

shown above and is therefore limited given that θi tends to 0 as i → ∞ . N is limited to a finite

quantity which depends on the θ parameters and reflects a limited storage capacity. The model

also incorporates prior information meant to account for the significant effect of previous blocks

of trials described by Bertelson (1961). When all types of information are considered, N is given

by

N = Nf +Nf,0 +Na +Na,0

where Nf = 1
(1−θf )

and Na = 1
(1−θa) , with Nf,0 and Na,0 representing prior information. x for a

particular trial is given by

xn = xf,n + xf,0 + (1− Sn)(xa,n + xa,0) + Sn(Na − xa,n +Na,0 − xa,0)

Model predictions for reaction times and error rates are then derived by substituting y - the

subjective probability - for p - the objective probability - in the equations of a random walk decision

model developed by Laming (1968) and calculating expectations relative to π(y). Presumably

though, this subjective probability could be substituted for the objective probability in any decision

making model.
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The fit of the model to empirical data is only analysed in terms of reaction times and error rates

as a function of runs of the same stimulus, as well as regression coefficients. This is unfortunate

as the model allows for detailed predictions based on the previous sequences of events, and this

was the year - 1969 - in which sequential effects data began to be analysed in more detail. Based

on current knowledge, and on the similarities with the model of M. Wilder et al. (2009), Laming’s

model is expected to fit well the cost-benefit pattern of sequential effects.

Arguably, Laming’s model encapsulates the essence of all models to come. In particular, it

incorporates key features of the models by Cho et al. (2002), Yu and Cohen (2008), M. Wilder et al.

(2009) and M. Jones et al. (2013). This is all the more remarkable since the model was conceived

at a time when empirical information about sequential effects was still scarce; for instance the cost-

benefit pattern of sequential effects associated with expectancy had not been described yet. In fact,

the decision to incorporate two geometric means in the model seems largely based on the regression

analysis performed by Laming (1968) and the observation therein that regression equations ‘would

have represented the influence of the sequence more accurately if they had contained two sets of

coefficients, one to represent the subjective estimate of signal frequency, the other to represent the

subjective likelihood of an alternation of the signal’.

1.5.4 An ordered memory scanning process - Falmagne (1975)

The model proposed by Falmagne et al. (1975) is an extension of the model proposed by Theios

and Smith (1972), itself an extension of the model by Falmagne (1965) described above. The

difference lies in the fact that the model assumes some form of matching between each stimulus

and an ordered template stored in memory. If there are two stimuli - 1 and 2 - this template can be

in two states: (1,2) and (2,1). The model assumes an ordered memory scanning process, with the

next stimulus - say 1 - first attempting a match to the first item stored in memory and then to the

second. The order of the template can change with a probability which depends on what its order



50 LITERATURE REVIEW

was in the previous trial and on what the current stimulus is. In practice the difference relative to

the model suggested by Falmagne (1965) is essentially the way the new model predicts errors. We

will not go into much detail into this model, but the work in which it is presented stands as the only

example in the literature where a model is fit to individual participant data rather than data pooled

from multiple participants.

1.5.5 The biased leaky accumulator - Cho et al (2002)

The model proposed by Cho et al. (2002) is based on the leaky competitive accumulator decision-

making model of Usher and McLelland (Usher, 2001). The model is described by the following

set of stochastic differential equations

dx1
dt

= −kx1 − βf(x2) + ρ1 + ξ1 + b1

dx2
dt

= −kx2 − βf(x1) + ρ2 + ξ2 + b2

(1.2)

where x1 and x2 are two decision making units each corresponding to a particular stimulus; k

determines the constant rate - i.e. exponential - decay of each unit; β is a mutual inhibition term;

f is an ‘activation function’ given by f(xi) = 1
1+e−G(x−d) where G is the gain and d the offset; ρi

represents whether a particular stimulus i is present or not; ξi are Gaussian random noise terms.

The bi are the key terms making this a model of sequential effects and represent biases induced by

the sequence of stimuli.

Each trial is separated into two stages: a first one during which the stimuli are absent - i.e.

ρ1 = ρ2 = 0 - meant to represent the RSI; and a second stage, modelling the response, in which

the ρi - representing the stimuli - are assigned randomly one of two values with ρ1 = 1 − ρ2.

Reaction time is calculated as the time taken for one of the units to reach a fixed threshold in the
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manner usual in decision making models (Ratcliff & Smith, 2004). Model predictions are therefore

means of ‘reaction time’ distributions, one for each of the sixteen possible sequences of stimuli.

The biasing terms bi are kept fixed throughout each trial and are updated at the end of the

response period. The bi are a function of the history of stimuli, and consist of repetition (R) and al-

ternation (A) detectors. These detectors can be of different types with regard to two factors: firstly,

whether detection of repetitions or alternations is independent for each unit (I) or shared across

both (S); secondly, whether the detector uses the last stimulus - one-back - or the two last stimuli

- two-back when detecting repetitions or alternations. There are eight possible combinations of

detectors which the authors tested systematically for fit to the results of a single experiment. The

combination exhibiting the best fit was found to be IR1-SA2, i.e. a combination of an independent

one-back repetition detector with a shared two-back alternation detector. IR1 determines that the

bi corresponding to a particular decision unit should be incremented depending on whether the

corresponding stimulus was observed in the last trial; SA2 determines that the decision unit corre-

sponding to stimulus opposite of that observed last should be incremented every time an alternation

is detected.

This model is capable of reproducing successfully the cost-benefit pattern of sequential effects

commonly observed with a long RSI, as well as being able to capture variations in preference for

repetitions or alternations. However, like most models suggested here it is unlikely to be able to

explain the benefit-only pattern of sequential effects observed when the RSI is short. In addition,

the model relies on the explicit hard-coding of most of its relevant properties, such as the capacity

to detect alternations, instead of letting these properties emerge naturally, arguably limiting its

informativeness to some extent.
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1.5.6 Dynamic belief model - Yu and Cohen (2008)

The dynamic belief model - DBM - proposed by Yu and Cohen (2008) uses repetitions and alterna-

tions of stimuli as the raw input. In the binary sequence fed into the model a value of 1 represents

a repetition and a 0 an alternation of individual stimuli. Denoting the two possible stimuli as X and

Y, this means that every time an XX or a YY is observed in the sequence, this will be replaced by

a 1; conversely, XY and YX will be replaced by a 0.30

The model itself works by keeping a running distribution - P (γt|xt) - over the range of possible

values of a binomial parameter γ which determines the probability of observing a repetition or an

alternation in the next trial. At each time point t, the posterior distribution from the previous time

step - P (γt−1|xt−1) - is linearly combined with a beta ‘reset’ prior P0(γ) = Beta(a, b) to form an

‘iterative prior’ P (γt|xt−1), according to

P (γt | xt−1) = αP (γt−1 = γ | xt−1) + (1− α)P0(γ) (1.3)

the parameter α determines how much information from the previous time step is carried through

to the next, in effect regulating the rate of exponential decay implied by the recursion in (1.3).

Model predictions are calculated as the expected value of the iterative prior

Pt =

∫
γP (γt|xt−1)dγ

Finally, the posterior distribution for the next time step is calculated in the usual way by taking

into account the likelihood of the current event, according to

30 Note that models in which the sequence represents the individual stimuli also use 0’s and 1’s as the effective
input into the model, in which case they represent the stimuli themselves
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P (γt | xt) = P (xt | γt)P (γt | xt−1)

A prior preference for alternations or repetitions can be introduced in the model by varying

a and b, the parameters of the Beta reset prior. It is worth noting that the authors interpret α as

representing the rate of change in the environment as opposed to the rate at which the observer

forgets the past. In practice the difference in interpretation of α is of no consequence. What

matters is that the model is equivalent to an exponential filter of the sequence of repetitions and

alternations, as demonstrated by the authors.

DBM is operating on a sequence of repetitions or alternations of stimuli. This means the model

never ‘sees’ the raw stimuli, and that consequently it does not have access to information about

base rates, only the relative proportion of repetitions and alternations. This has consequences

in that there is a notable lack of detail when attempting to fit the typical cost-benefit pattern of

sequential effects. On the other hand, a strong point of DBM is its capacity to capture a preference

for either repetitions or alternations, which few other models can.

1.5.7 Adding base rates to DBM - Wilder et al (2009)

DBM2 is an extension of DBM meant to capture a sensitivity to the base rates of stimuli as well

as the relative proportion of repetitions and alternations. Instead of just one binomial parameter -

γ - tracking the relative probability of seeing a repetition or an alternation, the model makes use

of a second binomial parameter - φ - tracking the relative proportion of the two possible stimuli.

So instead of a univariate distribution over one binomial parameter, the model keeps a running

bivariate distribution - P (γ, φ) - over two binomial parameters. Finally, a mixture parameter w

allows for different proportions of both types of information to be combined when calculating the

likelihood of the next stimulus, given by
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P (xt = X|γt, φt, xt−1 = X) = wφt + (1− w)γt

P (xt = X|γt, φt, xt−1 = Y ) = wφt + (1− w)(1− γt)

where X and Y are the two possible stimuli, γt is the probability that the next event will be a

repetition, φt is the probability of the next stimulus and w is a mixture parameter controlling the

proportion of the two types of statistics used. The rest of the model is analogous to its parent DBM:

DBM2 also keeps a running iterative prior, defined as a mixture of the posterior distribution for the

previous step and a reset prior,

P (γt+1, γt+1|Xt) = (1− α)P (φt, γt|Xt) + αP0(φt+1, γt+1)

the posterior for the next step is calculated the usual way as

P (φt, γt|Xt) ∝ P (xt|φt, γt, xt1)P (φt, γt|Xt)

Model predictions are calculated as the expected value of the iterative prior with respect to the

likelihood function, according to

P (xt+1) =

∫
γ

∫
φ

P (xt|φt, γt, xt1)P (γt+1, γt+1|Xt)dφdγ
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DBM2 is in effect equivalent to a linear combination of two exponential filters: one at the

level of individual stimuli and the other at the level of repetitions and alternations. With w set

to 1, the model reduces to an exponential filter of the sequence of stimuli; when it is set to 0 the

model is effectively equivalent to DBM, which again is equivalent to an exponential filter of the

sequence of repetitions and alternations. The model is successful in capturing additional details

in the typical cost-benefit pattern which are thought to reflect a sensitivity to the base rates of

stimuli (M. Wilder et al., 2009). Nevertheless, DBM2 suffers from a problem not discussed by

the authors: γ and φ are not independent. Increasing the proportion of either stimulus above the

usual 50% will clearly have consequences in that repetitions are expected to increase relative to

alternations. Conversely, varying the proportion of repetitions to alternations has consequences for

the base rates: in the limit of a fully alternating sequence the base rates must be equal. This makes

it hard to define a distribution for the reset prior P0(φ, γ) which will introduce a preference of

repetitions or alternations in a manner analogous to DBM. The authors sidestep the issue by using

a uniform reset prior and difficulties encountered when fitting empirical results with alternation

bias are dealt with through the use of a constant added to all alternating trials.

1.5.8 Tackling RSI dependence - Gao et al (2009)

The model proposed by Gao et al. (2009) is an extension of that by Cho et al. (2002) to which

three additional biasing mechanisms were added: a bias due to post-response residual activity, a

bias from expectations, and a bias from response conflict monitoring. The end result is a very

complex model with fourteen parameters of which four were kept free and the rest adopted from

Cho et al. (2002), Usher (2001), or other sources. The mechanics of the model is otherwise the

same as in Cho et al. (2002), the difference being that additional biasing terms similar to bi were

added to equations 1.2.
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Being continuous time in nature, much like Cho et al. (2002), the model allows for a parame-

terisation of the response-stimulus interval. The authors take advantage of this in order to tackle

for the first - and to the best of our knowledge only - time the complex issue of RSI dependence.

Even with the added biases, the success in approximating the dependence on sequential effects

by fitting the data of Soetens et al. (1985) (shown in Figure 1.7) is questionable. Furthermore, it

will be demonstrated here that the effects of the different biasing mechanisms can be explained in

a considerably more parsimonious manner. The choice was therefore made not to go into much

detail about this model here.

1.5.9 Different types of statistics - Gokaydin et al (2011)

This model was created specifically in order to analyse the types of statistics people are tracking

when analysing sequences, and is described in detail in Chapter 2. In essence it is a model allowing

for the analysis of the role of different types of statistics in sequential effects. These different types

of statistics are calculated by attributing exponentially decaying weights to past events in line with

the usual assumptions of sequential effects models.

1.5.10 Joint learning model - Jones et al (2013)

This model builds more explicitly than most on the idea that two separate types of information,

the base rate of stimuli and the rate of repetitions (or equivalently alternations), underlie sequential

effects. The authors contrast two sub-models, one in which the two types of statistics are learned

in ‘parallel’ - i.e. separately - and one in which they are learned in a joint fashion, both models

sharing a common structure. At each time point, the model holds an estimate for the true base and

repetition rates. For the parallel learning model, and depending on the outcome of each trial, the

base rate estimate wbase is updated according to
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∆wbase = εbase(En−1 − wbase)

where ∆wbase is the increment change to wbase; En−1 is the outcome of the previous trial, encoded

in this case as either -1 or 1; and εbase is the ‘learning rate’ and takes a value between 0 and 1.

Successive iteration of the update rule results in an exponentially weighted moving average of the

sequence of stimuli,

wbase =
n−1∑
k=1

εbase(1− εbase)k−1En−k

Model predictions are linearly scaled as usual in order to fit reaction time data according to

RT = β0 − βbasewbaseEn

where β0 and βbase are the parameters of a linear transformation and the negative sign on βbase

reflects the fact that the reaction time should be shorter the larger the probability assigned to the

next event.

The situation for the repetition rate is analogous to that of the base rate. The update rule for

wrep is

∆wrep = εrep(En−1En − wrep)

where the notational convenience of encoding events as ±1 can be seen in that it allows for repe-

titions and alternations to be mapped to the values {−1, 1} simply by writing EnEn−1. Again this



58 LITERATURE REVIEW

update rule results in an exponentially weighted moving average, but this time of the sequence of

repetitions and alternations,

wrep =
n−2∑
k=1

εrep(1− εrep)k−1En−kEn−k−1

Simply combining the two types types of information - wbase and wrep results in a prediction

for reaction times given by

RT = β0 − βbasewbaseEn − βrepwrepEnEn−1 (1.4)

This is the parallel learning model, which is in effect equivalent to DMB2 (see above), and much

like its predecessor suffers from an incapacity to produce an alternation bias which is compensated

for through the use of a constant parameter. Once this parameter - δ - is included the full model is

given by

RT = β0 − βbasewbaseEn − βrepwrepEnEn−1 + δEnEn−1 (1.5)

where, depending on the sign of δ, the last term in (1.5) induces a constant preference for repeti-

tions or alternations.

The authors attempt to equate the two types of statistics to two different processing stages

identified before with EEG and encapsulated in the patterns known as S-LRP and LRP-R (see

Figure 1.11). In this view LRP-R, the motor component of sequential effects, would be responsible

for tracking the base rates of stimuli; S-LRP, the pre-motor element of sequential effects, would be

in charge of keeping track of the repetition rate. In order to demonstrate the equivalence between



1.5 QUANTITATIVE MODELS OF SEQUENTIAL EFFECTS 59

processing stages identified with EEG and different types of statistics, the model is fit to either

LRP-R or S-LRP with only predictions resulting from wbase in the former case and only from wrep

in the latter.

When fitting LRP-R the parameter δ can be set at 0 since an exponential filter exhibits a repe-

tition bias naturally. In contrast it is not possible to fit S-LRP with only the wrep arm of the model

without using δ to account for the alternation bias displayed by S-LRP. This is analogous, though

made clearer, to the problems encountered by M. Wilder et al. (2009) when fitting datasets with an

alternation bias, and serves as the main practical motivation for the joint learning model described

next, in which the arbitrary parameter δ is removed. In the joint learning model wbase and wrep

combine in order to form a single prediction Ên according to

Ên = wbase + wrepEn−1 (1.6)

updating each rate is now done according to the error of this prediction. For wbase this is

∆wbase = εbase(En − Ên)

= εbase(En − wbase − wrepEn−1) (1.7)

and for wrep it is
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∆wrep = εbase(En − Ên)En−1

= εbase(En − wbase − wrepEn−1)En−1

= εbase(EnEn−1 − wrep − wbaseEn−1) (1.8)

Mathematically speaking the joint learning model induces an alternation bias in wrep through

the last term in (1.8) which introduces a negative bias in the updating of wrep in the following man-

ner: since wbase exhibits a repetition bias, i.e. it is shifted towards En−1, it is on average positive

and this induces a negative influence on wrep, biasing it towards alternations. On a conceptual level

the authors base the model on theories of joint error correction when multiple cues are present and

refer to the terms in (1.7) and (1.8) which depend on the opposite rate - wbase or wrep depending

on the case - as the ‘cue-competition’ terms. This relies on an interpretation of the two types of

statistics as cues, when strictly speaking only one type of stimulus is usually present in sequential

effects experiments. The authors acknowledge this by stating that ‘a similar mechanism may be in

play with sequential effects, where the ‘cues’ are aspects of the trial sequence’.

Much like its parallel learning counterpart, the joint learning model suffers from a similar prob-

lem in that the cue competition mechanisms is really only necessary in order to explain S-LRP, not

LRP-R. Moreover, the correspondence between different types of statistics and S-LRP/LRP-R now

rests on the two processing stages depending on each other. Somewhat surprisingly, the authors

still take the joint learning model as providing ‘strong support for the separate-stages hypothesis’.

The model is nevertheless successful at a practical level in that it produces an alternation bias with-

out any extra arbitrary parameters (M. Wilder et al., 2009) or sacrificing the learning of the base

rates of stimuli (Yu & Cohen, 2008). Testing the model on a dataset of 158 individual differences

discussed in Chapter 3 (not shown) revealed it can provide a good fit to results obtained with long

RSI values, including those with a repetition or alternation bias, but is unable to reproduce short
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RSI results.

1.6 Summary

While not all of the content above is of specific relevance to the research presented in the next

three chapters, the choice was made to give an overview of the field as a whole, extending into

arguably more marginal topics such as the relation between sequential effects and the perception

of randomness. Part of the reason for the breadth of this literature review is fact that an entirely

different perspective on sequential effects is suggested in this dissertation which, if found to be true,

will be of consequence to the field as a whole. Nevertheless, some of the topics discussed above

are of particular relevance to understanding the following chapters, of which three are highlighted:

• The dependence of sequential effects on the RSI (see Figures 1.6 and 1.7) and the differences

between the results observed with a long RSI - the ‘cost-benefit’ or inverted ‘v’ pattern - and

those observed with a short RSI - the so-called ‘benefit-only’ pattern. Multiple references

will be made to this topic throughout, but it is of particular relevance for understanding

Chapter 3.

• The decomposition of sequential effects into two separate processing stages and the patterns

thought to be associated with these - S-LRP and LRP-R (see Figure 1.11). These will be

referred to extensively in Chapters 3, 4 and the final discussion in the context of the theory

of two independent components of sequential effects.

• The two types of exponential filter - one over the sequence of stimuli and the other over

the sequence of alternations and repetitions - thought to be of central importance in sequen-

tial effects. This is of particular importance to understanding Chapters 2, 4 and the final

discussion.
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Abstract

Research into sequential effects has almost exclusively been conducted in the context of sequential

tasks with two possible alternatives. Of the few studies that focussed on more complex tasks with a

greater number of alternatives, none has analysed results in detail as a function of all possible stim-

ulus histories in the manner commonly done in binary tasks. Similarly to its empirical counterpart,

the theoretical literature shows the same focus on two-alternative tasks, with few models able to

accommodate more than two elements. With this in mind, the objective here is to begin to bridge

the gap between sequential effects observed in tasks with different numbers of sequence elements

by comparing an experiment with two and one with three alternatives. In order to achieve this goal

a new experimental design is proposed which minimises any confounding effects associated with

increasing the number of alternatives. The main objective of this work is to compare the sequential

effects observed in both experiments from a computational point of view. Significant differences

are found in the nature of the statistics used as the number of alternatives increases from two to

three. These results may be of wider relevance for the understanding of how humans track events

in a sequence.

2.1 Introduction

Most experiments in psychology consist of long series of trials differing in the nature of the stimuli

presented. The objective is usually to compare the effect of different stimuli by taking the mean of

some behavioural measure across all trials where the same stimulus was presented. However, early

on in the history of psychological research it became clear that behaviour does not depend just on

the properties of the stimulus on a particular trial but also on the history of previous trials. One

of the first observations of some form of sequential effect was in a task where a series of pairs of

weights was presented to subjects, which were asked to judge which one was heavier (Fernberger,
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1920; Turner, 1931). It was found that humans tended to alternate their judgements, i.e. if on

a previous trial the reference weight was deemed ‘heavier’ people would tend to judge ‘lighter’

on the current pair. This effect was greatest when the current pair was almost equal in weight,

i.e. near the point of subjective equality, and hardly present when the difference in weight was

considerable, illustrating a general principle: some degree of uncertainty is necessary on order for

sequential effects to occur (Senders & Sowards, 1952).

Sequential effects have been observed in a wide range of tasks (e.g. Jarvik, 1951; Bertelson,

1961; Maloney et al., 2005) but reaction time studies would eventually emerge as the paradigm

of choice when studying these effects per se (Bertelson, 1961; D. J. Hale, 1967; Laming, 1968;

Schvaneveldt & Chase, 1969; Kirby, 1976; Soetens et al., 1985; Jentzsch & Sommer, 2002; Cho et

al., 2002). Experiments usually conform to a two-alternative forced-choice (2AFC) experimental

paradigm with variation in details such as the stimuli used, the response scheme or the response-

stimulus compatibility, or other aspects. In a typical task, subjects are presented with a random

sequence of two possible stimuli, denoted here as X and Y. On any given trial participants are

asked to press a button to indicate which of the two stimuli was presented, as quickly as possible.

Once a response is made the next stimulus appears after a fixed period of time termed the response-

stimulus interval (RSI). The instruction to respond as quickly as possible is crucial since it seems

to induce in subjects an attempt at predicting the next stimulus in order to respond faster. This

anticipation of the next event is reflected in reaction times, which are quicker for expected stimuli

and slower for unexpected ones (Kirby, 1972). In this context we may define sequential effects in

terms of the dependence between the RT to the current stimulus and the past history of stimuli in

the experiment.

A key question to ask is: what is driving expectations about the next event? There is a consen-

sus in the literature that sequential effects reflect people’s tendency to detect patterns, even if those
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patterns exist only across a few trials and are in fact the outcome of a purely random process.1 The

reason for this is that sequential effects seem to be particularly strong when the previous sequence

of events presents a perfectly regular repeating or alternating pattern. For instance if the last four

observations in the experiment were X→X→X→X - denoted XXXX for short2 - participants tend

to respond faster if the next element in the sequence is an X, and slower if it turns out to be a Y.

Similarly, if the last few trials have been purely alternating - XYXY - participants will respond

faster if the next stimulus is an X and slower if it is a Y. What is perhaps more surprising is that

almost any recent sequence of stimuli will tend to produce some response bias. For instance, if the

last four trials in the experiment were XYXX, there would still be a tendency to find significant

differences in RT depending on whether the next stimulus was an X or Y (e.g. Remington, 1969;

Soetens et al., 1985; Cho et al., 2002).

One open question in the literature relates to how sequential effects generalize to a situation

with more than two possible alternatives, and how this compares with the two alternative case. As

we will see, increasing the number of possible alternatives raises experimental as well as theoretical

difficulties which call for both a new experimental design as well as a new modelling approach.

With this in mind, the introduction to this article is structured as follows: firstly, some fundamental

concepts about sequential effects and the way data is usually presented are reviewed; following this

the need for a new experimental paradigm is discussed; finally, the rationale for a new modelling

approach will be presented. Ultimately the goal will be to compare a 2AFC and 3AFC with respect

to the statistical nature of the sequential effects present in both cases, and to do so with minimal

confounding effects.

1 Indeed there are some similarities between the literature on sequential effects and the literature on human ran-
domness perception (see Nickerson (2002) for a review).

2 Sequences are often coded in terms of repetition or alternations of stimuli, in which an ‘R’ will replace every
instance of XX an YY, and an ‘A’ will replace both XY and YX. The individual stimulus X/Y notation will be
preferred here as alternations are not defined for a task with three alternatives.
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2.1.1 Some fundamental concepts

Two different types of sequential effects are traditionally considered: first and higher order. First

order effects relate to the effect of the last stimulus and whether it represents a repetition or an

alternation relative to the stimulus before it. Higher order effects refer to the influence of the higher

order sequence, i.e. the sequence of events before the last stimulus.3 Traditional sequential effects

plots (Vervaeck & Boer, 1980) make visualising both first and higher order effects easy. Note that

the left side of the plot (see Figure 2.4 for example) contains all sequences ending with a repetitions

and the right side all those ending with an alternation. Moreover, all possible eight higher order

sequences are ordered in the same way on both halves of the plot. So first order effects are visible

as differences in ‘height’ between the left and right halves, whereas higher order effects are visible

as differences within each half.4 Recall that sequential effects are thought to be the product of

an expectation-based mechanism and that any sequence - regular or not - produces a degree of

expectancy regarding the next stimulus. This is reflected in both short reaction times to expected

events as well as a relatively long reaction times to unexpected ones (Kirby, 1972). One way to

put it is that any sequence has a benefit or a cost depending on what the next stimulus turns out to

be. When plotted the traditional way, this trade-off results in an inverted ‘v’ shape, often termed

a cost-benefit pattern, usually considered to be the hallmark of an expectation-based mechanism

(Soetens et al., 1985). It is worth mentioning that this pattern of results is only observed when the

response-stimulus interval is relatively long, i.e. 500 ms or more. When the RSI is short sequential

effects tend to be considerably different. This does not pose a problem for our study since short

RSI results are usually not considered to reflect the tracking of the sequence in a statistical sense

(Yu & Cohen, 2008; M. Jones et al., 2013), and all our experiments are conducted with a relatively

long 800 m RSI.

3 The usefulness of this distinction is questionable since both types of effects are not independent but rather part
of a more general dependence on the sequence of stimuli, but it is often useful in describing results.

4 In order to avoid confusion with different order statistics discussed below first order effects will be referred to as
a preference for repetitions or alternations or alternatively as a bias towards either. Henceforth the word ‘order’
will only be used to refer to statistics.
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Early studies of sequential effects in reaction time often focussed on situations where more

than two alternative stimuli are possible (e.g. Falmagne, 1965; Schvaneveldt & Chase, 1969;

Kirby, 1975) but results were usually only analysed in the context of what was then termed a

‘repetition effect’, i.e. the tendency for reaction times to be quicker to repetitions of the same

stimulus (Bertelson, 1961). No systematic analysis, i.e. including all possible sequences of stimuli,

of a task with three possible stimuli has been conducted so far, making it important to clarify

how data will be organised in this case. In a 2AFC data is usually presented as the mean or

median reaction time as a function of the last five stimuli, including the one being responded

to (Remington, 1969). There are 32 different five-long sequences of two possible elements, but

these are usually grouped two-by-two according to the pattern they represent - e.g. the sequence

XYXYX consists of the set {10101, 01010} - so only 16 sequences are usually shown. For a

sequence with three elements there are 243 possible five-long sequences which will also be grouped

according to the pattern displayed, except that each set will now contain six elements, e.g. XYZZY

= {01221, 02112, 10220, 12002, 20110, 21001}. The sole exception to this is the sequence XXXXX

= {00000, 11111, 22222}. Note that this way of organizing data, for both a 2AFC and 3AFC, has

the extra benefit of compensating for any systematic differences in RT to either the different stimuli

or corresponding responses, the reason being that the sequences in each group include all possible

permutations of stimuli, which in turn represent permutations of the corresponding responses.

2.1.2 The need for a new experimental paradigm

Traditional 2AFC paradigms do not generalise well to more than two sequence elements. Issues

arise at the level of the stimuli used, the corresponding responses, or the spatial compatibility

between the two. Some of these issues will be discussed with the final goal of proposing a method-

ology which, by minimizing possible confounding effects, ensures that the differences observed

between a 2AFC and a 3AFC are solely the product of the different number of sequence elements.
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Our first objective is that all responses take approximately the same amount of time to per-

form and no sequence of responses is preferred a priori. Traditional response schemes for a 2AFC

include the use of the index and middle finger of the dominant hand (e.g. Cho et al., 2002) or

responding with the index fingers of both hands (e.g. Soetens et al., 1985). Extending the latter

scheme would require a third hand and is therefore not possible. With respect to using additional

fingers of the same hand, this could potentially induce a preference for left-to-right or right-to-left

sequences of responses, as any person who has tapped their fingers on a table should recognize.

While it is unclear whether these effects will have a significant impact on results, it is preferable

to make sure they cannot happen in the first place. This will be achieved by having all responses

performed with the same finger while at the same time ensuring that the time required to perform

each response is the same. The response scheme is as follows: three response buttons are symmet-

rically positioned around a central resting button and the index finger of the dominant hand will

be used to perform all responses. At the start of each trial the response finger should be resting on

the middle button, otherwise the trial is invalid; following the appearance of a stimulus the central

button is released and a response button pressed; finally, after a response is made, the finger must

return to the middle position before the next stimulus appears. This scheme ensures that the dis-

tance the finger must travel is always the same for each response, and should minimise any purely

response-related effects.

Once we have ensured the response scheme does not induce any systematic biases we must do

the same with our stimuli. Traditional 2AFC tasks make use of a wide range of stimuli such as

spatially separate lights or dots (Bertelson, 1961; Soetens et al., 1985; Jentzsch & Sommer, 2002),

more or less abstract figures occurring in the same location (Bertelson & Renkin, 1966; Cho et al.,

2002), numbers (D. J. Hale, 1967), different coloured dots (Jentzsch & Sommer, 2002), or even

sounds differing in pitch (K. C. Squires et al., 1976). Out goal is to avoid stimuli which induce

a natural preference for any particular ordering, in which case a distinction based on size or even

pitch should be avoided, as well as numbers or letters. Perhaps of even greater importance is to



2.1 INTRODUCTION 69

avoid issues of spatial compatibility between the stimuli and responses, known to have a strong

impact on sequential effects in 2AFCs (Bertelson, 1963; Soetens et al., 1985) as well as tasks

with a larger number of stimuli (Alegria & Bertelson, 1970; Kirby, 1975). So a differentiation

based on spatial location should also be avoided, further narrowing our choice of stimuli. One

possibility would be to use stimuli differing in colour but this has show to affect sequential effects

considerably (Jentzsch & Sommer, 2002). So in the end the decision was made to use abstract

figures as stimuli, all of which are displayed in the same position in the middle of the screen.

2.1.3 The need for a new model

In this section the need for a new modelling approach will be motivated. We start by discussing

what kind of statistical information humans use in order to detect patterns in a sequence. Evidence

for what this information might be is is largely indirect so this discussion will be guided by previous

modelling efforts. Finally, the representation of memory in the model, and how previous events

are forgotten, will also be discussed.

What information do people keep track of?

To the extent that sequential effects can be viewed as a kind of pattern detection, a critical question

to ask relates to what information is used in order to define a pattern. There is a remarkable

consensus in the literature regarding this point for the particular case of a 2AFC, with most models

proposed so far making use of two types of information: the relative frequency of the stimuli on the

one hand; and the relative abundance of repetitions and alternations on the other hand (Falmagne,

1965; Laming, 1969; Cho et al., 2002; Yu & Cohen, 2008; M. Wilder et al., 2009; M. Jones

et al., 2013). Formally these two ratios can be denoted as P (X)/P (Y ) and P (R)/P (A) where

P (R) = P (XX) +P (Y Y ) and P (A) = P (XY ) +P (Y X). Note that there are only two degrees
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of freedom implicit here because usually in a 2AFC P (X) = 1−P (Y ), which further implies that

P (A) = 1 − P (R) in the long run and if the sequence is random. Moreover, the two ratios are

not independent: increasing the frequency of X or Y clearly constrains the relative abundance of

repetitions and alternations, and the reverse is true.5

In attempting to generalise the above pieces of information to the case of three sequence ele-

ments we are faced with the problem that alternations are no longer well defined. One possibility

would be to maintain the definition above where alternations involve only two different stimuli.

However, this would leave out sequences including more than two stimuli such as XYZXY, which

are not defined either as repeating or alternating. Some authors take an alternating sequence to

be one in which the same stimulus does not occur in succession, and according to this definition

XYZXY is alternating (e.g Audley, 1973). However, defining alternations in this way overlooks

the fact that these may no longer form a clear pattern. In addition, it renders the ratio of repetitions

to alternations meaningless. We are therefore left in need of an alternative way to define the nature

of the information used by humans to keep track of a sequence.

One possible way in which predictions could be made about the next event in the case of an

arbitrary number of stimuli is to calculate conditional transition probabilities, i.e. the probability of

the next stimulus given the preceding sequence of stimuli. Depending on the length of the previous

sequence considered we speak of transition probabilities of different order. For instance, zero-th

order transition probabilities are simply the probabilities of the individual stimuli, i.e. P (X), P (Y )

and so on. First order transition probabilities take forms such as P (X|Y ) or P (X|X) for example.

Higher order transition probabilities are possible of course, i.e. P (X|XY ), P (X|XY Z) and so

on, but only zero-th and first order are considered here for two reasons: firstly because it was

found here that second order statistics6 are not useful in describing sequential effects (not shown);

secondly, evidence from linguistics suggests that humans are not able to use statistics beyond first

5 If the frequency of either X or Y is 1 then the sequence must be fully repeating, and the inverse is true for the case
of a fully repeating sequence. Finally, a fully alternating sequence implies that P (X) = P (Y ) = 0.5, except for
perhaps a small difference if the length of the sequence is an odd number.
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order (Newport & Aslin, 2004; Gebhart, Newport, & Aslin, 2009).

The number of different types of events one must keep track of in order to calculate transition

probabilities changes with both the order of the statistics being considered as well as the number

of different stimuli in the sequence. To make matters concrete, we will contrast the four possible

cases defined by a sequence with either two or three possible elements and transition probabilities

of either zero-th or first order. The case of zero-th order statistics is trivial as one must simply

keep track of the base rates of the stimuli, i.e. P (X) and P (Y ) for a sequence with two elements

and P (X), P (Y ) and P (Z) for a sequence with three elements. The case of first order statistics

is more complex since, in addition to the base rates one must also keep track of the probability

of pairs of stimuli, due to the way transition probabilities are calculated, e.g. P (X|Y ) = P (X,Y )
P (Y )

.

So when using first order statistics on a sequence with two elements there are four probabilities

- P (XX), P (XY ), P (Y X) and P (Y Y ) - that must be tracked in addition to the base rates, for

a total of six quantities. When using first order statistics on a sequence with three alternative

elements there are three base rates and nine possible pairs - P (XX), P (XY ), P (XZ) and so on -

for a total of twelve probability values. So it is expected that when using first order statistics the

number of values humans must implicitly calculate doubles for a 3AFC in comparison to a 2AFC7.

This is expected to have consequences with respect to how difficult it is for humans to use higher

order statistics in tasks with larger numbers of stimuli.

The next section will explain how memory is handled in the model. It is intuitive that the

the recent past is more relevant towards predicting the future when compared to the distant past.

Therefore, and in line with all previous models of sequential effects, recent events will be given

more weight when estimating the probability of the next stimulus.

6 We will abbreviate different transition probabilities simply as ‘statistics’ for the sake of brevity.
7 Strictly speaking these numbers depend on whether humans take into account the loss in degrees of freedom

associated with knowing the number of possible stimuli. Taking this into account the number of quantities which
need to be tracked would be reduced by two for statistics of any order except zero.
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X Y Y X Y X
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FIGURE 2.1: Illustration of the exponential decay of the influence past events have on expectations about
the future. Time flows from left to right and the last stimulus is shown on the far right. In this illustration
parameters were chosen so that any stimuli beyond the last five would have little impact on expectations,
much like what is expected to be the case in sequential effects.

What do people remember about the past?

Different lines of argument can be invoked in order to justify giving greater weight to recent events

when attempting to predict the future. One interpretation is that this reflects the rapid decay of

human memory (Wixted & Ebbesen, 1991). Another possibility is that such weighting reflects the

fact that the present is more strongly correlated with the recent past, a view preferred by some

authors (Yu & Cohen, 2008). Finally, more pragmatic considerations dictate that some form of

forgetting is necessary in order to prevent the convergence of all model predictions to fixed val-

ues according the long-term frequencies of events. When transposed to the human case such a

convergence would imply that sequential effects die-out after a long enough sequence, when in

fact humans have been shown to continue to be sensitive to short term variations in the frequency

of events, irrespective of long-term statistics. In order to capture this short-term sensitivity the

weighting of past events will be assumed to decay exponentially, following most models proposed

so far8 (e.g. Laming, 1969; M. Jones et al., 2013). Figure 2.1 shows an illustration of this principle.

8 There is some debate as to whether human memory decay takes the form of an exponential or a power-law
function (Wixted & Ebbesen, 1991) but this is of little practical consequence for our purposes.
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Discounting past events according to an exponential function creates a temporal ‘window’ of

only a few recent elements that can have a significant impact on predictions, since events distant

in past are given a negligible weight. The number of such relevant items depends on the λ, the

rate parameter in the exponential function e−λt: the larger λ is the shorter the ‘memory span’. In

the specific case of sequential effects it seems that only the last five stimuli have any influence

on reaction times (Remington, 1969). A limited memory horizon introduces an issue of sparsity

when seeking to to calculate transition probabilities. Recall that in order to estimate transition

probabilities such as P (X|Y ) one must estimate two quantities - P (X) and P (Y,X) - from the

respective frequencies of both types of event - X and YX - in the previous sequence. However, a

short memory makes it possible that one or both events have not been observed recently, result-

ing in a predictive probability equal to zero. For instance, in a long repeating sequence such as

XXXXX the probability that the next event is a Y will quickly converge to 0 because neither Y

nor XY are observed in the recent past. This problem is made more acute as the number of al-

ternative sequence elements increases since the probability of individual events decreases, making

it less likely that any particular stimulus or pair of stimuli occurred within the memory horizon.

Similarly, using higher order statistics - e.g. P (X|XYX) - will also add to the problem of sparsity

since the longer a string of events is the rarer it tends to be. In short, a finite memory span means

that past events may have been forgotten. The issue of sparsity is analogous to problems encoun-

tered in linguistics when using n-gram models where the number of possible sequences - words

or letters in this case - if often very large (Manning & Schütze, 1999). The solution in linguistics

is often to introduce Laplace smoothing, i.e. to increase the frequency count of all events by one,

ensuring all events will have non-zero probability.
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2.2 Model

In this section we will outline a model capable of incorporating both different order statistics and

an arbitrary number of sequence elements. Two sub-models will be considered, corresponding to

zero-th order and first order statistics. Both models result in different predictions depending on

the number of stimuli and these predictions will be compared to empirical results from the novel

task described above. Assessing the best fitting model for both a 2AFC and a 3AFC will allow

inferences to be made regarding what type of statistics are being used in each case.

2.2.1 Formal details

The model we wish to propose is inspired by n-gram models (Manning & Schütze, 1999) and

consists of a combination of the transition probabilities commonly used in such models with ex-

ponential discounting of past events. In order to formally construct our model we start by defining

transition probabilities in the general case as

P (xt|xt−τ , ..., xt−1) =
P (xt−τ , ..., xt)

P (xt−τ , ..., xt−1)
(2.1)

where t represents discrete time, the xt represent the stimuli and τ > 0 is the order of the statistics

considered. For the zero-th order case predictive probabilities as simply given by P (xt). The terms

on the right side of (2.1) will be estimated from the frequencies of events according to

P (xt−τ , ..., xt) =
C(xt−τ , ..., xt)

N
(2.2)

whereC(.) is the number of occurrences of a particular ordered set stretching back to the beginning
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of time and N is the total sequence length. For the zero-th order model, and letting xt denote the

current sequence element, the predictive probability is simply

P (xt = X) = P (X) (2.3)

whereas for the first order model this is

P (xt = X|xt−1 = Y ) = P (X|Y ) =
P (X, Y )

P (Y )
(2.4)

where P (X, Y ) is the relative frequency of the ordered pair (X, Y ) calculated according to (2.2).

With infinite memory all predictions made by both zero-th and first order models will quickly

converge to constant values depending on the long term frequencies of events. Exponential weight-

ing of past events is therefore introduced in order to prevent the model from losing sensitivity to

local changes, as well as better approximating human behaviour. This is done by explicitly as-

signing weights to all events observed so far and having these weights decrease exponentially with

distance into the past. So in effect probabilities will not be estimated from their relative frequencies

but rather from weighted averages calculated according to

P (xt−τ , ..., xt) =

∑t
i=τ+1 e

−λ(t−i)δ[xi−τ , .., xi = xt−τ , .., xt]∑t
i=τ+1 e

−λ(t−i)
(2.5)

where λ is the the rate of decay of the exponential weighting function; the larger λ is, the quicker

the model forgets past events, and vice-versa. δ[.] is the Kronecker delta function, taking a logical

expression and returning 1 if the argument is true and 0 if false. Equation (2.5) effectively takes

an ordered subsequence of any length and compares it to all sequences of equal length which
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occurred previously, adding the corresponding weight - given by e−λ(t−i) - if a match is found.

The normalising constant is simply the sum of all the weights going back to the beginning of

the sequence and ensures that P (xt−τ , ..., xt) varies between 0 and 1. The probability estimates

calculated according to (2.5) are then introduced in Equation (2.1) which, for the zero-th order

case, results in

P (xt = X) = P (X) =

∑t
i=1 e

−λ(t−i)δ[xi = X]∑t
i=1 e

−λ(t−i)
(2.6)

and, for the first order model,9

P (xt = X|xt−1 = Y ) =
P (X, Y )

P (Y )
=

∑t
i=1 e

−λ(t−i)δ[xi−1, xi = Y,X]∑t
i=1 e

−λ(t−i)δ[xi = Y ]
(2.7)

We are finally left with two models capturing different order statistics and incorporating an

exponentially decaying memory of the sequence. In addition, both models can accommodate an

arbitrary number of sequence elements. Figure 2.2 shows predictions made by both models for

a sequence with two possible elements, such as in a 2AFC. A key point is that the sequences

XYXYX and XYXYY are the most defining in distinguishing between the two models: a first

order model will attribute a higher probability of seeing an X after XYXY, whereas the zero-th

order model will in fact predict a Y in the same situation, thereby predicting a repetition after a

string of alternations. The reason for this ‘erroneous’ prediction is that the zero-th order model will

always be biased towards the last stimulus so it will always display a preference for repetitions.

In fact, a zero-th order model can be interpreted as being sensitive to repetitions only, whereas

a first order model detects both repetitions and alternations. Finally, predictions by both models

will depend on λ, with two extreme cases useful in guiding our intuitions about this dependence:

9 Note that in practice some care must be taken to ensure the normalising constants in (2.5) cancel out since a
sequence of pairs is always one shorter than a sequence of singlets.
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FIGURE 2.2: Model predictions for a 2AFC. Solid blue line - zero-th order model. Dashed red line - first
order model. Predictions of both models are shown in terms of 1 − p(x) in order to facilitate comparison
with empirical data. Results were calculated by running the model on a 3000 long sequence and binning the
probabilities at each time step in a way analogous to reaction time data. λ = 0.22 for both illustrations. Note
the stronger repetition bias of the zero-th order model when compared with the more balanced preference
for repetitions and alternations displayed by the first order model. Moreover, note the difference between
the sequences XYXYX and XYXYY, indicative of the zero-th order model’s insensitivity to alternations
(see main text).

for very high values of λ, corresponding to a very short memory, model predictions reduce to a

trivial dependence on the last event; for values of λ close to zero, corresponding to a near-perfect

memory, model predictions will tend asymptotically to the base rates of events, which for a random

binary sequence with equal stimulus frequencies are all 0.5.

Figure 2.3 shows model predictions for a sequence with three possible elements. Results are far

less intuitive in the three element case, but again a zero-th order model is incapable of detecting

anything other than repetitions of the same event, and so predictions are largely a function of the

length of the preceding run of elements equal to the last. A first order model shows a more complex

pattern depending on the type of transitions present in each five-long sequence, and reveals a

sensitivity to other types of patterns such as alternations of two elements. Note that in Figure 2.3
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FIGURE 2.3: Model predictions for a 3AFC. Solid blue line - zero-th order model. Dashed red line -
first order model. λ = 0.22 for both illustrations. Model predictions are more complex in this case and
harder to interpret. However, there are some crucial differences between both models, which can be again
be observed in the relative predictions for sequences such XYXYX and XYXYY: a zero-th order model
attributes almost the same probability to both but a first order model makes a clear distinction between the
two, indicating a sensitivity to higher order transitions.

the values of λ were chosen not only to highlight differences between the two models but also to

avoid the issues of sparsity described above, particularly in the case of the first order model which,

for small enough λ, results in predictions equal to 0 for several of the five-long sequences.

A negative linear relationship between predictive probabilities and reaction times will be as-

sumed throughout, as is usually the case in the literature (e.g. Falmagne, 1965), soRT ∝ 1−P (xt).

Model predictions will be linearly transformed according a− b(1− P (xt)) in order to to account

for differences in scale and magnitude between probability values and reaction times. Best fitting

parameters will be estimated by minimising the sum of squared deviations between model and data

by varying three parameters: a, b and λ.
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0th order model 1st order model
Experiment 1 -3.34 -0.52
Experiment 2 -7.46 -1.56
Experiment 3 -3.24 -7.08

TABLE 2.1: log-likelihood values for the zero-th and first order models (higher values shown in bold)
on all three datasets estimated by assuming the data is normally distributed. Experiment 1: 2AFC similar
in every respect to Cho et al. (2002); Experiments 2 and 3: 2AFC and 3AFC respectively under the new
experimental paradigm.

2.3 Experiments

The results of three experiments are reported here. The first experiment is a control for the over-

all set-up. The second experiment validates the new experimental protocol as producing results

similar to typical 2AFC designs. The third experiment is a 3AFC also conducted under the new

experimental design. The overall aim of these three experiments is to compare the results of a

2AFC with those of a 3AFC while ensuring that the differences encountered are solely the product

of the different number of sequence elements.

2.3.1 Data analysis and model fits

Experimental results will be presented as median reaction times on all trials in which the subject

did not make an error, organised according to the previous sequence. Similarly, model predictions

are the median of all predictive probabilities calculated from a random sequence the same length

as that which subjects experienced - 1560 stimuli.

Best fitting parameters were obtained in each case by minimising the sum of squared errors be-

tween data and model predictions. The quality of fit of each model for each experiment at best

fitting parameters was calculated assuming the sixteen median RTs are normally distributed. Un-

der these assumptions, the log-likelihood can be calculated as
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LL ∝ −SSE
σ2

(2.8)

where LL is the log-likelihood, SSE is the sum of squared errors between data and model and σ2 is

the variance of the sixteen median RTs. Table 2.1 shows the log-likelihood values for each model

and each experiment, where the preferred model in each case is shown in bold.

2.3.2 Experiment 1

Experiment 1 was a replication of the experiment performed by Cho et al. (2002). That a similar

cost-benefit pattern of results can be obtained validates the overall protocol, ensuring that any

minor differences in set-up such as background colour and the use of a response box are not

important. Moreover, it adds to our confidence that the results obtained by Cho et al. (2002) are

reproducible.

Participants

Five subjects (four female, one male) took part in this experiment. Participants in this and all ex-

periments were volunteers recruited from the University of Adelaide and surrounding community;

all gave their informed consent to participating in the experiment; all had normal or corrected-to-

normal eyesight.

Stimuli

Stimuli consisted of an upper-case and lower-case ‘O’, displayed in the same position in the centre

of the screen.
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Procedure

Subjects sat approximately 60cm away from the computer screen, inside a darkened room. The

stimuli were white (approximately 3 cm tall) and the background was gray. Stimuli were displayed

using Psychophysics Toolbox 3 and Matlab r2008a on a 15” Macintosh MacBook Pro running

MacOSX 10.6. Responses were made using a Cedrus RT-530 response time box, which has one

central round button surrounded by four rectangular buttons. The RT box was placed to the right

of the computer if the subject was right-handed, and to the left if left-handed.

Responses were made using two fingers, the middle and index of the dominant hand, one placed

on the left button and one on the right button of the response box. Subjects were instructed to

respond as quickly and accurately as possible to the stimulus by pressing the button corresponding

to the stimulus shown (left - ’o’, right - ’O’). After pressing the button, the stimulus disappeared

and after a fixed response-stimulus interval (RSI) of 800ms, another one appeared. The only

feedback was a beep whenever a button was pressed. This paradigm closely replicates Cho et al.

(2002), the only differences being that in the present case stimuli were presented on a gray (rather

than black) background and that a response box was used, allowing for near-millisecond precision

in measuring reaction times.

The experiment consisted of 13 blocks of 120 trials each, with a small break in between each

block and a longer break (approximately 10 min) after the seventh block. Each subject was given

one block of training before beginning. Data from training blocks was not used in the analysis.

Sequences were generated for each block by randomly permuting a sequence with an equal number

of both elements. The relative frequencies of both stimuli were equal within each block and so for

the whole experiment.
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FIGURE 2.4: Results of Experiment 1 together with best fitting model predictions. Solid blue line -
median RTs across all participants. Dashed red line - best fitting first order model with parameters a =
0.0816, b = 0.2833 and λ = 0.33. This experiment followed a protocol close to that used by Cho et al.
(2002); stimuli consisted of an upper-case and lower-case ‘o’ and the RSI was 800 ms.

Results

The results of Experiment 1 are shown in Figure 2.4, together with the best fitting first order

model. Results are remarkably similar to that of the original experiment by Cho et al. (2002),

and both are typical examples of a cost-benefit pattern. Log-likelihod values, shown in Table 2.1,

confirm quantitatively that the preferred model was first order. Notice that alternations are clearly

being detected, as subjects show quick reaction times to a perfectly alternating pattern (rightmost

sequence); conversely, very slow reaction times are observed when a repetition ends what had

been so far a perfect alternating run (eighth sequence from left). As discussed before, there is

some variation in the predictions of a first order model depending on λ, but the hallmark of this

model is a sensitivity to alternations as well as repetitions of stimuli.
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Discussion

Despite a few points of divergence between model predictions and data, the best fitting model is

clearly first order as can be seen from the log-likelihood values in Table 2.1. So when performing

a normal 2AFC subjects seem to be using predominantly first order transition probabilities in order

to predict the next event. In addition, our experimental set-up is validated as producing a typical

cost-benefit - i.e. inverted ‘v’ - pattern of sequential effects. These results are important in that,

when we turn to the comparison of a 2AFC with a 3AFC under a new experimental paradigm (see

below), there should be no room for doubt that any differences encountered are the consequence

of the number of possible stimuli and not minor differences in set-up.

While somewhat marginal to the main objectives of this work, it is worth noting that significant

individual differences were found among participants. These differences bear some relevance here

because they indicate that, while as a group participants were using first order statistics, this is

not necessarily the case for each individual. One subject in particular showed a near-perfect fit

to a zero-th order model (see Figure 2.7, right panel) which suggests that individual variation is

not all due to noise, but rather reflects meaningful differences possibly related to differences in the

statistics used by different participants (see below for a discussion of this point). Further research is

necessary to confirm or disprove this hypothesis but it seems likely that individual factors, as well

as experimental conditions, could influence the nature of the statistics being used. Some concern

is also raised regarding averaging practices prevalent in the literature, as they could be masking

important individual differences.

2.3.3 Experiment 2

Experiment 2 is a 2AFC performed under the new experimental paradigm. The aim of this experi-

ment is to confirm that the new experimental design can produce a cost-benefit pattern of sequential
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effects much like other 2AFC tasks.

Participants

Five participants (four female, one male) took part in this experiment. One of these also partici-

pated in Experiment 1 and a different one in Experiment 3.

Stimuli

Stimuli consisted of two geometric shapes, a square and a triangle, displayed in the same position

in the center of the screen.

Procedure

The experimental procedure was the same as with Experiment 1 except that responses were made

using only one finger - the index of the dominant hand. A central button in the RT box was kept

depressed before stimulus onset; shortly after a stimulus appeared subjects moved their finger and

responded by pressing one of two side buttons (left - triangle, right - square); after each response,

the finger returned to the central position; finally, the next stimulus appeared after a 800 ms interval

starting from the moment the response button was pressed. The time between stimulus onset and

middle button release and between middle button release and side button press were recorded with

reaction time taken to be the sum of both. Feedback consisted of a high pitch beep if everything

was all right and one low in pitch as a warning in case the subject forgot to return his/her finger to

the middle position in time for the next stimulus.
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FIGURE 2.5: Results of Experiment 2 together with best fitting model predictions. Solid blue line -
median RTs across all participants. Dashed red line - best fitting first order model with parameters a =
0.0793, b = 0.3367, λ = 0.12. The experiment was conducted according to the new experimental design:
responses were made with one finger and stimuli consisted of a square and a circle and the RSI used was
800 ms.

Results

As with Experiment 1, the reaction time pattern obtained with Experiment 2 was best captured by a

first order model (see Figure 2.5 and Table 2.1), so participants were also using first order transition

probabilities when predicting the next event. Again this is visible in relatively fast reaction times

to alternating sequences and slow to interruptions of such a pattern. However, results differed

from those of Experiment 1 in that subjects displayed a slightly longer RT to interruptions of an

alternating pattern rather than to interruptions of a repeating sequence.
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Discussion

The reason for the longer reaction time to the sequence XYXYY (AAAR), when compared with

XXXXY (RRRA), is made clear upon inspection of individual results: several subjects displayed

an alternation bias, i.e. faster overall reaction times to alternations than to repetitions, implying

a greater sensitivity to alternating patterns relative to repeating ones. The flip-side to being more

sensitive to alternations is that reaction times will also be greater to violations of an alternating

pattern, and this explains the longer RT observed for the sequence XYXYY (AAAR). The reason

some subjects display an alternation bias may be the use of just one finger to perform responses

as this has been shown before to induce a greater preference for alternations when compared to

using two fingers (Hannes, 1968). However, the mean RT pattern across all subjects still displays

a slight repetition preference, and this is the predominant bias in individuals. Sporadic mention of

individual differences in preference for repetitions or alternations do in fact exist in the literature

(e.g. Arons & Irwin, 1932; Bertelson, 1965), though no dedicated study of the subject has been

conducted.

There are two main differences between the new experimental paradigm used in Experiment 2

and the classic design of Experiment 1: firstly, under the new paradigm only one finger is used to

respond to each stimulus whereas before two fingers were used; secondly, geometric figures were

used as stimuli, rather than stimuli differing in size. Although it was designed minimise confound-

ing effects, the new scheme involving just one finger is expected to introduce some additional noise

in the data due to the motor error associated with moving the arm as well as the finger. Otherwise

no significant differences were observed in mean RT to any of the figures, and the same was true

of all responses.
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2.3.4 Experiment 3

Experiment 3 was a 3AFC performed with the new experimental design, and was conducted in

order to investigate the consequences of increasing the number of stimuli.

Participants

Seven participants (six female, one male) took part in Experiment 3. The higher number of partic-

ipants relative to the previous two experiments was due to the fact that there there are now many

more possible five-long sequences of stimuli and that as a consequence each individual quintet is

on average less frequent. Therefore, in order to have a similar number of data points for each se-

quence relative to a 2AFC, a higher number of trials was necessary, either by increasing the number

of participants or the number of trials per participant. Increasing the number of trials could lead to

confounding effects from tiredness and so the choice was made to include more participants.

Stimuli

Stimuli consisted of three geometric shapes: a square, a triangle and a circle displayed in the same

position in the center of the screen.

Procedure

The experimental procedure was the same as in experiment 2 except that a third response button -

top - was now used. The mapping was: left - triangle; right - square; top - circle.
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FIGURE 2.6: Results of Experiment 3 together with best fitting model predictions. Solid blue line -
median RTs across all participants. Dashed red line - best fitting zero-th order model with parameters
a = 0.0969, b = 0.4356, λ = 1.54. The experiment was conducted according to the new experimental
design: responses were made with one finger; stimuli consisted of a square, a triangle and a circle; and the
RSI used was 800 ms. Note the increase in the best fitting λwhen compared to the two previous experiments,
which implies a shorter memory span in a 3AFC and determines that reaction times depend largely on the
last two trials and whether these repeated or alternated.

Results

Figure 2.6 shows results for the 3AFC task together with the best fitting zero-th order model.

Table 2.1 shows log-likelihood values demonstrating that a zero-th order model is preferred. If

subjects were using first order transition probabilities this would be reflected in relatively fast

RTs to sequences such as XYXYX (AAAA), a perfectly alternating sequence, when in fact only

sequences ending in a repetition display short RTs. In fact the overall pattern consists of an almost

two-tiered dependence on the last two stimuli and whether these represented a repetition or an

alternation. The reason for this pattern of results is not only that zero-th order statistics were being

used, but also that the memory span was very short, as reflected in the best fitting value of λ

which was considerably higher in magnitude than those obtained for the previous two experiments

(λ = 1.54 for Experiment 3, compared to λ = 0.33 and λ = 0.12 Experiments 1 and 2). As
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discussed above, λ determines the steepness of the exponential weighting function which in turn

determines how long the effective memory span is.

Discussion

It is apparent from our results that subjects changed the nature of the statistics being used when the

number of possible stimuli increased from two to three. Specifically, subjects were using first order

statistics in a 2AFC and switched to zero-th order statistics in a 3AFC. Results show an almost

binary dependence on the last event being a repetition or not and reveal no sensitivity to patterns

such as alternations which would have indicated the use of first order transition probabilities. Given

that all other experimental factors were held constant between the two tasks, these changes must

have happened as a consequence of the added complexity of a 3AFC.

Another important difference between the model fit to a 3AFC when compared to a 2AFC is the

higher value of λ obtained, which implies a shorter even horizon, with stimuli beyond the last two

having very little impact on reaction times. So it seems that, in addition to changing the nature of

the statistics used, the extra difficulty of the task had the effect of shortening participants’ effective

memory range. A more detailed discussion of the differences between a 2AFC and a 3AFC in

terms of statistics used and memory span can be found in the next section.

2.4 General Discussion

In this work the kind of statistics people use when analysing sequences of events, and whether these

statistics change with increasing sequence complexity, was investigated. Depending on the nature

of the statistics being used, different patterns of sequential effects are expected. Comparing model

predictions with experimental results allowed conclusions to be drawn regarding what statistics
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were being used in two different tasks: a 2AFC and a 3AFC. Care was taken to ensure that the

differences encountered between the two tasks were due to the nature of the sequence and not any

other experimental differences. Results revealed an interesting change: in contrast with a 2AFC,

where subjects were using first order transition probabilities, participants used just the relative

frequency of the stimuli in a 3AFC. This is the first time fundamental differences are reported in

the nature of the statistics used in sequential effects as a function of experimental circumstances.

In principle, and assuming no drastic change in the environment, the past can be used to some

extent in order to predict the future. Once this premise is fulfilled, it is always better to use higher

order transition probabilities, as this leads to more accurate predictions about the future (Manning

& Schütze, 1999), despite the fact that evidence suggests humans are limited to using first order

transition probabilities (Newport & Aslin, 2004; Gebhart et al., 2009). The use of lower order

statistics in a 3AFC is therefore sub-optimal, and in need of explanation. It is only natural to

assume, given the greater complexity of a 3AFC relative to a 2AFC, that the differences observed

between both tasks are due to processing capacity limitations. In order to compute first order

statistics the frequencies of pairs of stimuli, as well as their respective base rates, are necessary. In

a 2AFC, using first order statistics requires tracking four pairs of events as well as the base stimulus

frequencies, for a total of six quantities; in a 3AFC, this number rises to twelve, which is twice

as many as a 2AFC.10 It therefore seems plausible that processing limitations, and in particular

a limited working memory capacity, might play a role in determining the type of statistics being

used in tasks of differing complexity.

In addition to changing the nature of the statistics used to make predictions, increasing the

number of possible stimuli also reduced subjects’ memory span as measured by the best fitting

exponential decay rate λ. So far the processing demands of different tasks have been discussed

in terms of the number of relative frequency values one must implicitly keep track of in order

10 Again, these numbers could be smaller if the loss in degrees of freedom due to mathematical constraints is taken
into account. However, even if this was the case, the quantities to be tracked would be five and ten respectively
for a 2AFC and 3AFC, which is still a considerable difference.
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FIGURE 2.7: Evidence for zero-th order statistics in a 2AFC. Left panel - Data from A. D. Jones et al.
(2002) together with the best fitting zero-th order model with λ = 0.33. Right panel - Data from one of
the participants in Experiment 1 together with the best fit of a zero-th order model with λ = 0.36. The
experiment performed by A. D. Jones et al. (2002) is described as a 2AFC despite the fact that subjects
responded with one button to only one stimulus - an ‘X ’- and with another button to any other stimulus - a
series of upper-case letters - with the frequency of ‘X’ equal to the sum of those of all other stimuli; the RSI
was 1000 ms and the stimuli were displayed for 250 ms.

to calculate different transition probabilities. However, if we assume that what participants keep

track of are individual instances of events, rather than just their frequency, reducing the memory

span would go some way towards alleviating the burden associated with an insufficient memory

capacity. If this is the case the increase in λ observed in a 3AFC might also be explained by

a limited working memory capacity. Whatever the underlying truth is, it is clear that not only do

humans change the statistics they use when faced with added task complexity, but they also shorten

their memory range.

The results presented here show that humans use first order statistics in a 2AFC and zero-th

order in a 3AFC. It is only natural to ask whether there are any circumstances in which humans use

zero-th order statistics in a 2AFC task or, conversely, first order statistics in a 3AFC. These two
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question will be addressed in turn starting with what evidence there is for zero-th order statistics in

a 2AFC. A. D. Jones et al. (2002) performed an experiment with multiple sequence elements which

was nevertheless described as a 2AFC given that there were only two possible responses: one

button was used to respond to a target stimulus and the other to any one of the remaining stimuli.

Interestingly, the pattern of sequential effects obtained was very similar to a zero-th order model

(Figure 2.7, left panel). While not being a typical 2AFC in that there are multiple stimuli involved,

this experiment is nevertheless still informative in that it adds strength to the argument that the

number of stimuli is driving changes in the type of statistics used. More conclusive evidence

that the use of first order statistics is possible in a 2AFC comes from the individual results of a

participant in Experiment 1 which displays a pattern approximating closely that which is predicted

by a zero-th order model (Figure 2.7, right panel). This raises the enticing possibility that different

individuals are using different types of statistics when performing the same task. If this is found

to be the case, it is interesting to speculate whether these individual differences could be due to

variation in processing capacity. Speed of processing has in fact been implicated in changes in

sequential effects, albeit only when the RSI is short (Melis et al., 2002). Finally, it is not known

whether it is possible for humans to use first order statistics in a task with more than three stimuli,

although this is unlikely given the expected increase in processing demands.

The exponentially forgetting function used in our model is clearly a simplification, albeit a

common one in the literature (Falmagne, 1965; Laming, 1969; Yu & Cohen, 2008). Furthermore,

that humans show such a memory decay should be understood from a correlational point of view,

as well as occurring in the face of a random environment. Any monotonically decreasing mem-

ory function would likely break down if humans were presented with a perfectly regular sequence

where the next event is entirely predictable. Under such an input, it would be possible to remem-

ber things about the past far beyond the short time span allowed by an exponentially decaying

memory. Strong correlations with events far into the past would be made possible, and conversely

correlations with recent events could break down. Consider the sequence YYYYYYXXXXXX
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repeating itself into the past: the next element is clearly a Y, and presumably humans would would

be quick to realise this. In this example, the recent past becomes irrelevant towards predicting

the future, and any model of sequential effects developed so far would fail at predicting the next

element. Therefore, a richer view of the significance of a monotonic memory function is that it is

a trace of a more complex mechanism at play. Assuming sequential effects to be the consequence

of an attempt at detecting patterns, then is only natural to speculate that whatever pattern detection

mechanism the brain is employing, it sees its activity decay in an exponential fashion when it fails

to detect a clear pattern. Under this view, sequential effects are the product of presenting the brain,

a highly developed pattern detecting machine, with random input.

The simple framework proposed here was never designed as a complete model of sequential

effects, but rather as a tool to understand the different types of information humans use when

analysing different types of sequence. Sequential effects are a rich and diverse area of study with

many different aspects still in need of explanation. Phenomena such as the dependence of sequen-

tial effects on the RSI are difficult to explain in the context of any previous model. One aspect

in particular which has been left unaddressed so far is individual differences, despite a few pass-

ing mentions that these do exist (Arons & Irwin, 1932; Bertelson, 1965; Kirby, 1976). Finally,

our simple model falls short of what would ideally be a full statistical model allowing for a more

principled model comparison based on inference rather than a comparison of log-likelihood values.

2.5 Conclusion

Sequential effects illustrate how, in dealing with random environments, humans exhibit some strik-

ing regularities. The present work adds to this by highlighting the difficulties faced in increasingly

complex environments. In particular, it was shown here that humans can change the very nature of

the way in which they analyse a sequence in order to cope with the extra complexity. Furthermore,
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it was shown that humans do not look as far into the past when performing a more complex task.

These conclusions are intuitive: the more complex the environment, the harder it is to analyse it,

especially in the absence of a clear pattern.
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Abstract

There is a long history of research into sequential effects, extending more than one hundred years.

Yet despite some passing mentions one aspect of sequential effects has been largely overlooked:

individual differences. Here principal component analysis is performed on a dataset of 158 individ-

ual results from participants performing different experiments with the aim of identifying hidden

variables responsible for sequential effects. We find a latent structure consisting of three compo-

nents related to sequential effects - two main and a minor. A relationship between the two main

components and the separate processing of stimuli and of responses is proposed based on previous

empirical evidence. It is further speculated that the minor component of sequential effects arises

as the consequence of processing delays. Independently of the explanation for the latent variables

encountered, this work provides a unified descriptive model for a wide range of different types

of sequential effects previously identified in the literature. In addition to explaining individual

differences themselves, it is demonstrated how the latent structure uncovered here is useful in un-

derstanding the classical problem of the dependence of sequential effects on the interval between

successive stimuli.

3.1 Introduction

The survival of any intelligent organism depends on its capacity to predict - and adapt to - changes

in its environment. Such predictions are possible because the world is not random but instead

it is full of spatial and temporal regularities. Extending these patterns into the unknown allows

humans to develop a mental picture of what lies beyond their immediate sensory experience and

this induces a state of expectation about what will happen next. This is true in space as well as

time, e.g. we expect the laws of physics to apply tomorrow as well as anywhere on earth. Crucially,

that we can predict the future to some extent allows us to prepare for it, and react faster to those
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events we expect. On the other hand if we are surprised by an unusual event we will take longer to

adapt and respond to the new situation.

But what if there is no pattern to be found? Short-lived regularities sometimes occur in a ran-

dom world, but will they still retain the capacity to influence our expectations or will we recognise

them as the product of a random process and dismiss them as such? It turns out that humans will

persistently shift their expectations based on short-term fluctuations in the environment, as demon-

strated in the context of several different behavioural tasks, all of which involve a sequence of

trials (Fernberger, 1920; Jarvik, 1951; Bertelson, 1961; K. C. Squires et al., 1976; Maloney et al.,

2005). In this context the human tendency to be sensitive to the recent sequence of events mani-

fests itself as a dependence of some measure of performance on the last few trials in the sequence.

This phenomenon - often referred to as sequential effects - has been studied most extensively in

reaction time tasks involving a random sequence of only two possible stimuli (Bertelson, 1961;

Falmagne, 1965; D. J. Hale, 1967; Laming, 1968; D. Hale, 1969; Remington, 1969; Schvaneveldt

& Chase, 1969; Laming, 1969; Kirby, 1972, 1976; Soetens et al., 1985; Cho et al., 2002; Jentzsch

& Sommer, 2002). The effect of the sequence of stimuli has often been found to be stronger than

the properties of the stimuli themselves in accounting for variation in reaction times (Kornblum,

1969). A particularly striking example of the power of sequential effects is that they can alter what

is actually perceived: in an experiment with an ambiguous percept the recent sequence of trials

can determine whether subjects see a pair of stimuli in quick succession as rotating left or right

(Maloney et al., 2005). Sequential effects similar to those observed in reaction time experiments

have also been observed in event-related potentials (ERPs) measured with EEG (K. C. Squires et

al., 1976; Sommer et al., 1990, 1999; Jentzsch & Sommer, 2002) making the overall topic one that

lies at the interface between psychology and neuroscience, and of relevance to both fields.

This work is concerned with uncovering the latent structure of sequential effects by study-

ing what has been so far a largely overlooked source of evidence: individual differences. Latent

variable analysis of the individual results of over one-hundred and fifty participants performing
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different experiments will be conducted. Foreshadowing some of the results of this work, two

main latent components are identified together with a third minor component. An attempt will be

made to relate the two main latent components to previously available evidence for the existence

of two separate processing stages involved in sequential effects. Further, it will be speculated that

the minor component identified is a consequence of processing delays. Independently of its inter-

pretation, the latent structure uncovered here is of value in establishing a common framework for

understanding differences in sequential effects. For instance, it will be shown here that individual

differences are closely related to the way sequential effects depend on the interval between the

successive stimuli.

With all of the above in mind the introduction to this article is structured as follows: firstly

some key concepts related to sequential effects fundamental to understanding this article will be

discussed; secondly, different sources of variation in sequential effects will be reviewed; finally

previous evidence for two processing stages involved in sequential effects will be given particular

attention.

3.1.1 Background

The most common experimental paradigm used to study sequential effects is the sequential two-

alternative forced-choice task (2AFC). In a typical experiment subjects experience a long random

sequence of two possible stimuli - denoted here as X and Y - one at a time, to which they have

to respond with one of two corresponding buttons as quickly and as accurately as possible. When

a response is made the stimulus disappears and, after a fixed period of time termed the response-

stimulus interval (RSI), the next stimulus is shown. The reaction time (RT) is recorded for each

trial and these measurements are then grouped according to the last 5-stimuli - including the one

responded to - in a ‘sliding window’ fashion. The mean or median of each set of reaction times to

all instances of a particular five-long sequence is then calculated. There are 32 possible five-long
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binary sequences but these are usually grouped two-by-two depending on the pattern they represent

(e.g. XXYYX and YYXXY) for a total of 16 pairs which we will refer to simply as ‘sequences’.

Sequential effects are thought to be the product of an attempt at detecting two types of pat-

tern in the sequence: repetitions and alternations (D. Hale, 1969; Maloney et al., 2005). In order

to highlight this fact sequences of stimuli are often rewritten in terms of repetitions or alterna-

tions (denoted A and R respectively) of individual stimuli. For instance, XYYXY corresponds

to ARAA, and the perfectly regular sequences XXXXX and XYXYX will be RRRR and AAAA

respectively. This coding scheme makes it easier to illustrate the way in which sequential effects

depend on the expectations generated by the previous sequence and the pattern it represents. For

instance, consider the incomplete sequences RRR and AAA , i.e. perfectly repeating and alternat-

ing patterns so far, and where the blank space represents the next - as yet unseen - event: subjects

tend to react faster to an R in the first case and an A in the second because these events continue

the local pattern. Conversely, reaction times tend to be slower for violations of the local pattern

such as AAAR and RRRA, where the notation used throughout was used, in which the last event

on the right is the one being responded to.

Sequential effects do not occur exclusively when the sequence of events displays a perfectly

regular pattern. Any sequence - regular or not - will induce a degree of expectation about the next

event and this in turn influences reaction times, which will be faster than average for expected

stimuli and slower for unexpected ones. One way to put it is that any sequence has a benefit if

the next stimulus is expected and a cost if it is not. The benefit of each sequence is a function of

how many events equal to the next it includes. For instance, reaction times tend to be faster to

ARRR than to AARR because more repetitions happened before the last R in the former case. If

the number of events equal to the last is the same in both sequences a recency principle applies,

e.g. reaction times will be shorter to AARR when compared to RAAR.1 In short, one simple way

1 Note that, as pointed out by Maloney et al. (2005), there is some degree of ambiguity regarding the sequences
pairs AARR/RRAR and RRAA/AARA in that it is not clear whether the benefit of one more recent event out-
weighs that of two more distant ones or vice-versa.
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to describe the influence of the sequence is to consider that each event - A or R - primes subjects to

expect the occurrence of the same event, and that this effect is cumulative. If the cost and benefit

effects of each sequence are balanced then overall reaction times to repetitions and alternations

will be similar. More often than not however some difference in overall reaction time to repetitions

and alternations exists, and this will be referred to throughout as a repetition or alternation ‘bias’,

or simply as a ‘preference’ for whichever event displays faster reactions times.2

The priming view of sequential effects predicts an inverted ‘v’ shape of data when plotted the

traditional way.3 A similar shape is in fact often observed in empirical reaction time data (e.g.

Soetens et al., 1985; Cho et al., 2002), a pattern of results commonly referred to as ‘cost-benefit’

due to its similarity to the ideal trade-off in the effects of the preceding sequence described above.

However, considerable deviations to this ideal scenario exist, with many different patterns of se-

quential effects observed in reaction time data. There are two main sources of this variation: firstly,

sequential effects depend on experimental parameters, and in particular the response-stimulus in-

terval; secondly, even for constant experimental conditions substantial individual differences are

observed in the pattern of results. In some cases these differences are relatively small, such as a

slight repetition or alternation bias on what is otherwise a clear cost-benefit pattern of results. In

other cases the sequential effects observed are so different as to no longer be recognisable as a

cost-benefit pattern.

In the next two sections the two main sources of variation in sequential effects will be reviewed

in turn, starting with the dependence on the RSI and the classical mechanistic theories used to

explain this phenomenon. In order to discuss individual differences it will become necessary to

show a sample of the data collected for this work since no previous study of the topic exists.

2 A repetition or alternation bias can easily be visualised as a difference in ‘height’ between the left and right
halves of traditional plots, since all sequences ending in R are to the left and with A to the right.

3 Notice that the sequences excluding the last event are organised by increasing expected cost if the last event is
a repetition, or conversely increasing benefit if it is an alternation. Therefore, monotonically increasing reaction
times in the left half where all sequences end with R, and decreasing in the right half where all end with A, are
predicted by this simple idealisation of the effects of the sequence.
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FIGURE 3.1: The dependence of sequential effects on the RSI. Adapted from Soetens et al. (1985) with
permission. Each line corresponds to a different set of 10 subjects which performed the same experiment
with a different RSI value. Other than the choice of RSI, the experimental protocol was exactly the same,
with two horizontally displaced dots as stimuli, similar to Experiment 3 (see Method section).

3.1.2 Experimental differences

A cost-benefit pattern of sequential effects - the inverted ‘v’ - is often observed in experiments

conducted with a long RSI (see Figure 3.1; 1000, 500 and 250 ms RSI) and, as we have seen, this

is usually considered to reflect an expectation-based mechanism, often referred to as subjective

expectancy (Kirby, 1976; Soetens et al., 1985). In contrast, when a short RSI - under 100 ms -

is used a substantially different pattern of sequential effects, displaying approximately a positive

slope on both the left and right halves of the plot, is observed instead (see Figure 3.1; 50 ms RSI);

this was originally considered to reflect a unidirectional effect of the previous sequence, which

would induce faster or slower reaction times irrespective of what the next event is, which then led

to this pattern of results being coined benefit-only (Laming, 1968; Soetens et al., 1985).4 Given

that it no longer seemed compatible with expectations generated by the pattern in the sequence,
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FIGURE 3.2: Unusual patterns of sequential effects. The results of two experiments are shown: the sec-
ond experiment conducted by Jentzsch and Sommer (2002) and results from an elderly group of subjects
included in Melis et al. (2002). Notice the approximately two-tiered pattern of results depending on whether
the second-to-last event was a repetition or an alternation, irrespective of the last event. Both experiments
were standard 2AFCs with separate dots as stimuli and both were conducted with a 50 ms RSI; the experi-
ment by Jentzsch and Sommer (2002) was considerably longer both in terms of total trials (3960 vs 1560)
and number of trials in one block (330 vs 120). Adapted with permission from the authors.

the benefit-only pattern of sequential effects was ascribed to a low-level effect termed automatic

facilitation (Soetens et al., 1984, 1985). As the RSI is shortened, sequential effects gradually

change from a cost-benefit to a benefit-only pattern (see Figure 3.1), and as the classical theory

goes this reflects a gradual transition between subjective expectancy and automatic facilitation.

Most empirical results fall somewhere along the continuum between the cost-benefit and benefit-

only patterns sequential effects (e.g. Vervaeck & Boer, 1980; Soetens et al., 1985; Cho et al., 2002;

Jentzsch & Sommer, 2002; Gokaydin, Ma-Wyatt, Navarro, & Perfors, 2011). However, there are at

least two experiments in which a qualitatively different pattern of sequential effects was obtained

4 We will not go into much detail about automatic facilitation and how it could have a unidirectional effect on
reaction times. For the purposes of this study ‘benefit-only’ should be taken as a label useful in referring to the
pattern of sequential effects often observed when the RSI short.
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(Jentzsch & Sommer, 2002; Melis et al., 2002). In both cases, shown in Figure 3.2, the pattern of

results points to a dependence of reaction times on the second-to-last event independently of the

last one (Jentzsch & Leuthold, 2005).5 One hint of what may be behind this unusual pattern of

results comes from the work of Melis et al. (2002) in which two groups, one of elderly and one of

young subjects, performed the same experiment. When the RSI was long - 1000 ms - both groups

displayed a typical cost-benefit pattern; when the RSI was short - 50 ms - the young group dis-

played a benefit-only pattern of sequential effects as expected but the elderly group produced the

results shown in Figure 3.2. Melis et al. (2002) suggest that the underlying variable responsible for

the differences observed between age groups is processing speed, of which age is a close correlate.

In addition to the RSI, several other experimental parameters influence sequential effects.

These include stimulus-response compatibility (Bertelson, 1965; Soetens et al., 1985), different

stimuli (e.g. D. J. Hale, 1967; Soetens et al., 1985; Cho et al., 2002) or different response schemes

such as if just one or two fingers are used to respond (Hannes, 1968; Gokaydin et al., 2011), among

others. However, the effects of most of these experimental manipulations again seem to fall along

the continuum between a cost-benefit and benefit-only patterns (e.g. Soetens et al., 1985). So one

simplified way of describing all types of sequential effects is by invoking the spectrum of results

shown in Figure 3.1 together with the unusual results shown in Figure 3.2.

All of the results discussed so far are averages taken across a set of participants. However, as

we will see next, considerable individual differences in sequential effects are usually present for

the same experimental conditions.
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FIGURE 3.3: Individual differences for the same experimental conditions. Top panel (ALL) shows the
average RT pattern of all six subjects which performed Experiment 1 with a 500 ms RSI. The bottom panels
(1-6) show the results of the same six individuals separately. Note that while the average pattern shows a
clear cost-benefit pattern with only a slight repetition bias, the individual subjects that make it up display
marked deviations from the average pattern.
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3.1.3 Individual Differences

Several mentions of individual differences in sequential effects exist in the literature, but these are

usually limited to a passing observation that some individuals display a preference for repetitions

and others to alternations (Arons & Irwin, 1932; Bertelson, 1965; Kirby, 1976), with no single

dedicated study of individual differences in sequential effects conducted before. This work draws

heavily on individual differences but the overarching aim is not to study these per se but rather to

use individual differences as a tool to elucidate the more general structure of sequential effects.

Individual differences in sequential effects are usually hidden from view due to the common

practice of averaging results across a group of participants. Figure 3.3 shows a sample of the

data collected for this work illustrating individual variation for the same experimental conditions

(Experiment 1, 500 ms RSI). Note how the average pattern or results across all subjects (Figure 3.3,

top panel) displays a typical cost-benefit pattern whereas most individual subjects reveal substantial

deviations to such a pattern. This is actually the rule rather than the exception, with similar levels

of variation in all experiments reported here. Notably, the way in which individual subjects differ

from each other for a fixed RSI is similar to the way in which collective average results vary with

RSI (see Figures 3.1 and 3.11). For instance, the pattern of results of subject 4 in Figure 3.3, which

was obtained with an 800 ms RSI, is reminiscent of the benefit-only pattern of sequential effects

usually observed when a short RSI is used (see Figure 3.1; 50 ms data). These similarities indicate

that not only are individual differences unlikely to be due to noise but also that they may be related

to the dependence of sequential effects on the RSI.

If the premise that individual differences are meaningful holds then exploring the patterns of

covariance across multiple subjects may be of use in better understanding sequential effects, and

this is the main purpose of this work. However, before this analysis is conducted, it is important

5 Note that under normal circumstances reaction times depend on the second-to-last event too, but conditional on
the last one. In this case it is as if the last event did not happen.
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FIGURE 3.4: Reaction time decomposition of sequential effects performed by Jentzsch and Sommer
(2002). The time between stimulus onset and the rise of the lateralized readiness potential (LRP) is shown
on the left plot (S-LRP); the right plot shows the time between the rise of LRP and the moment a response
is made (LRP-R). The LRP peaks just before a response is made and is more negative contra-laterally to the
hand which will be use to respond. The time of LRP onset is defined as the moment it reaches a threshold
amplitude. Adapted with permission from the author.

to review what is already know about the possible mechanisms underlying sequential effects. As

discussed next, there is growing evidence for the existence of two separate processing stages re-

sponsible for sequential, and these are likely to play a role in the differences observed in sequential

effects, both across individuals as well as when experimental parameters are varied.

3.1.4 Separate processing stages

Some debate has existed in the literature regarding the locus of sequential effects, and in partic-

ular whether such effects happen because of the sequence of stimuli, the associated responses,

or both (Bertelson, 1965; Soetens, 1998). Overall evidence pointed to the fact that both stimuli

and response related effects are involved in sequential effects, but once different signals are joined

together it is hard to infer what their individual contributions were from just a few experimental

results. A more direct approach was taken by some authors which attempted to observe directly at

a neurophysiological level the relative contributions of stimulus and response processing towards
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sequential effects.

Jentzsch and Sommer (2002) conducted a study of sequential effects in the lateralised readi-

ness potential (LRP) measured with EEG. The LRP is a negative going shift in electrical potential

happening just before a response, and located in the pre-motor cortex area contra-lateral to the

hand which will be used to respond. It is thought that the time after the occurrence of the LRP is

exclusively due to motor processing (Leuthold, Sommer, & Ulrich, 1996). Therefore, by measur-

ing the time between stimulus onset and the rise of LRP - S-LRP - and the time between LRP and

the moment a response is made - LRP-R - the authors sought to measure pre-motor and motor pro-

cessing time respectively.6 Further, by measuring S-LRP and LRP-R as a function of the sequence

of events in a traditional 2AFC, the relative contribution of motor and pre-motor processing stages

towards sequential effects was estimated (see in Figure 3.4).

It is only natural to suppose that the pre-motor stage reflects the processing of stimuli and the

motor stage the processing of responses. In fact, there is some empirical support for this association

from experiments which attempt to selectively remove the influence of stimuli on the one hand,

and of responses on the other hand, from sequential effects. In an experiment where the effect

of responses is removed a pattern of reaction time results is obtained which is very similar to S-

LRP, the pre-motor processing component (Maloney et al., 2005). Conversely, in an experiment

where the effect of the stimuli is removed, a pattern similar to LRP-R is obtained (M. H. Wilder et

al., 2013). That selectively removing the influence of stimuli and of responses produces reaction

time results similar to LRP-R and S-LRP in isolation provides support for an association between

the pre-motor stage and the processing of stimuli on the one hand, and the motor stage and the

processing of responses on the other hand.

If there are separate processing stages involved in sequential effects it is likely that these play

6 Note that S-LRP + LRP-R = RT for each trial. This is not necessarily true for the average S-LRP and LRP-R
calculated from multiple subjects and shown in Figure 3.4, but in practice a sum of the average S-LRP and LRP-R
is very close to the average RT pattern.
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a role in the differences observed in sequential effects. The hypothesis is that changes in the

relative contribution of stimulus and response processing are responsible for different patterns of

sequential effects. However, it is not clear whether the pattern of pre-motor and motor processing,

as measured by S-LRP and LRP-R, will always be the same either for different experimental

conditions or across individuals for fixed experimental parameters. First of all, the experiment

in which S-LRP and LRP-R were originally measured was conducted with a long RSI - 700 ms -

with baseline problems preventing the same measurements when a short RSI was used. Secondly,

there is no data regarding individual differences in S-LRP and LRP-R for different individuals. In

short, these questions amount to asking whether it is only the magnitude of patterns such as S-LRP

and LRP-R that changes or of if their patterns shown in Figure 3.4 change as well.

Here as attempt will be made to infer what discrete factors may be contributing towards sequen-

tial effects from the patterns of covariance present in a large dataset consisting of 158 participants

performing different variations of a 2AFC. In light of the discussion above, the latent structure

obtained will be related to separate processing stages involved in sequential effects. Finally, the

potential of the latent structure encountered in explaining different patterns of sequential effects

will be explored.

3.2 Method

3.2.1 Participants

158 participants performed several experiments which differed in the stimuli used and the response

scheme. For each experimental design, four values of RSI were tested - 50, 250, 500 and 800 ms

- except in the case of Experiment 2 with a 50 ms RSI due to a technical error. The majority

of participants (149/158) were undergraduate students from the University of Adelaide and were
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TABLE 3.1: Number of participants per experiment and RSI
Experiment 50ms 250ms 500ms 800ms Total

1 4 5 6 7 22
2 0 6 6 5 17
3 10 5 5 10 30
4 5 5 5 5 20
5 5 4 6 8 23
6 8 5 5 5 23
7 8 5 5 5 23

Total 40 35 38 45 158

awarded course credit for performing the experiment. A few participants were recruited among

University staff and graduate students as well as the surrounding community (9/158). All partici-

pants gave their informed consent to taking part in the experiments. Table 3.1 shows the number

of participants used per each experiment and RSI. Three participants performed two different ex-

periments. Two of the authors (DG and AP) are among the participants, having taken part in only

one experiment each.

3.2.2 Experiments

Data from nine different variations of a 2AFC was used in this work. These variants were orig-

inally designed in order to test the impact of different experimental factors on sequential effects.

Throughout, we will refer to the variants simply as ‘experiments’, despite the fact that they share a

common procedure (described below). The experiments differ in two main respects: stimuli used

and response scheme. Stimuli consisted either of two separate dots (aligned vertically or horizon-

tally), a lower- or upper-case ‘o’, or two abstract geometric figures (such as a square, circle or

triangle). Response schemes consisted of using the index and middle finger of the dominant hand
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TABLE 3.2: Summary of experimental designs
Experiment Stimuli Response Notes

1 {o,O} Index and middle finger
2 {o,O} Both index fingers
3 Two horizontal dots Both index fingers
4 Two horizontal dots Both index fingers Incompatible mapping
5 Two horizontal dots Index and middle finger
6 Two vertical dots Both index fingers
7 Two vertical dots Both index fingers Stimulus flashes for 50ms

or using both index fingers. Other minor aspects in which experiments differed were response-

stimulus compatibility, i.e. whether response buttons were assigned to the stimuli on the same side

or on the opposite side, and whether a stimulus was quickly flashed or if it remained on screen until

the moment a response was made. Table 2 summarises the differences between the experiments;

for each set-up, different group of subjects performed the experiment with a particular RSI value,

which was held fixed throughout the experiment.

3.2.3 Procedure

Subjects sat approximately 60cm away from the computer screen, inside a darkened room. The

stimuli were white, approximately 3 cm tall, and displayed against a gray background using Psy-

chophysics Toolbox 3 and Matlab r2008a on a 17” Macintosh MacBook Pro. For responses, a

Cedrus RT-530 response time box was used, which has one central round button surrounded by

four rectangular buttons. The RT box was placed to the right of the screen if the subject was

right-handed, to the left if left-handed, and in front of it if the subject was using both hands. In

experiments where only one hand was used the subject was asked to use the dominant hand. Re-

sponses were made by pressing one of two buttons, each corresponding to a particular stimulus.

Subjects were instructed to respond as quickly and accurately as possible by pressing the button

assigned to the stimulus shown. If the stimuli differed in shape (Experiments 1, 2) rather than
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position on the screen (Experiments 3 through 7) the assignment of response button to stimulus

was alternated with each new subject. Experiment 4 differed from the rest in that an incompatible

mapping was used, i.e. the left side button was used to respond to the right side dot and vice-versa.

Stimuli remained on the screen until a response was made, except for Experiment 7 in which

stimuli flashed for 50 ms and then disappeared. In either case, once a response was made the RT

and the button pressed were recorded; after a fixed period of time termed the response-stimulus

interval (RSI), the next stimulus appeared. The only feedback was a beep whenever a button was

pressed. The accuracy and precision of RT measurements were both estimated to be on the order

of one millisecond. Only trials where subjects responded correctly were included in the analysis.

All experiments consisted of 13 blocks of 120 trials each, with a short (approximately 1 min)

break in between each block and a longer break (5 to 10 min) after the seventh block. Subjects were

given one block of training before beginning except in Experiment 4 where the added difficulty

required two such blocks. Data from training blocks was not used in the analysis. Sequences

were generated randomly for each subject, with the constraint that the frequency of both stimuli be

equal.

3.2.4 Data analysis

Variables

For each participant, the RT at each point in the sequence was recorded; trials where an error

was made were discarded, as were the first four trials in each block. The RT values were then

grouped according to preceding sequence of 5 stimuli, including the one being responded to, for a

total of sixteen groups. The logarithm of all values in each bin was taken in order to de-skew the

RT distributions, well known to be asymmetric (Ratcliff, 1993). Outliers beyond three standard
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deviations of the mean were removed. The mean of each group was then transformed back to linear

scale by taking its exponential. Each individual is therefore represented in the analysis by a 16-

long array of mean RT values, each corresponding to one of sixteen possible five-long sequences

of stimuli or, equivalently, four-long histories of repetitions and alternations.

Inferring latent structure

Principal component analysis (PCA) was used in order to identify latent structure. The choice of

PCA over factor analysis is due in part to the unusual nature of the variables used in this work,

which are the product of a decomposition of the same variable - reaction time - according to the

history of stimuli. One effect of this decomposition is that the mean of all sixteen variables will

tend to add to a constant value equal to the overall mean reaction time taken across all trials, with

a resulting loss in one degree of freedom.7 In short, the sixteen variables are not independent,8

a necessary condition for factor analysis to be performed (Gorsuch, 1983). In any case, the total

variance explained by the four first components which will be retained is 96.6%, under which

conditions PCA and factor analysis are expected to yield the same results (Gorsuch, 1983).

The latent variables identified will be referred to simply as ‘components’. Each component

is attributed a set of coefficients, one for each of the sixteen observed variables, which can be

interpreted as correlation coefficients or as the variance of each observed variable explained by

the corresponding latent component. The set of coefficients for a particular component will be

referred to as its ‘coefficient pattern’, by analogy with factor patterns in factor analysis. In addition,

each individual participant is attributed a set of scores, one for each component retained, which

reflect the relative contribution of each component for each individual’s results. Finally, the latent

7 In order to understand why this is true, consider the shortest stimulus history possible, i.e. one-back: we are left
with two possible sequences - A and R - which, save for random fluctuations in their count, will tend to add to
a constant value equal to the mean for all trials. Extending this reasoning to longer histories of stimuli such as
five-back we can see that the last variable will be to a large extent predictable from the previous fifteen.

8 The determinant of the covariance matrix for all data is in fact close to zero (1e-48), indicating a matrix very
close to singular and therefore inappropriate for factor analysis.
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components will be denoted as C1, C2, C3 and so on, the numbering referring to the order in terms

of variance explained. Before rotation, the first four components we chose to retain explain 78%,

12%, 4.9% and 1.25% of variance.

Component rotations

One of the main objectives here is to relate the latent structure encountered to separate stages of

processing of sequential effects. Fortunately, data is available regarding the expected contributions

of the two processing stages towards sequential effects, in the form of S-LRP and LRP-R (see

above). Therefore, targeted procrustes rotations will be used in an attempt to find the best match

possible between latent components and empirical data, instead of more traditional methods such

as varimax which result in a relatively arbitrary solution (Gorsuch, 1983).

Oblique rotations will be used throughout except when estimating the variance explained by

each component, in which case an orthogonal rotation will be used instead. The reason for this is

that estimating the variance explained by correlated components is analytically intractable. In any

case, the orthogonal solution is very similar to the oblique one and so the variance estimates are

expected to be close to the truth.

Four components were retained and so four targets will be necessary for the procrustes rotation,

one for each component - C1 to C4. The targets were were, in order: a constant vector; S-LRP;

LRP-R; and the reaction time results of the second experiment performed by Jentzsch and Sommer

(2002) shown in Figure 3.2. All targets were z-scored in order to scale and centre them. The

rationale for the choice of target patterns is detailed below.
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Recalculating component scores

When discussing individual differences it is be important to know the relative contribution of

each latent component in determining the results of each participant, something which is usually

achieved by analysing component scores. These scores are usually calculated relative to the grand

mean, i.e. the vector of means for all variables across all subjects, which in the present case

looks like a typical cost-benefit pattern. However, and again due to the nature of the variables

used here as a decomposition of reaction time according to the history of stimuli, it would be

more informative to analyse the contribution of each component relative to a baseline equal to

each participant’s overall RT for all trials. Subject scores obtained from PCA will therefore be

recalculated in order to reflect deviations from a constant vector (see supplementary information

for details). The recalculated scores are more readily interpretable as the coefficients of a linear

combination of the form s1C1 + s2C2 + s3C3 + s4C4 where s1-s4 are scalars and C1-C4 vectors

equal to the coefficient patterns of each of the first four latent variables.

Choice of number of components to retain

The choice of number of components to retain was made largely based on the interpretability of

the coefficient patterns extracted with PCA before rotation, both with respect to the presence of

a clear dependence on the sequence as well as their relationship with previous empirical results.

Specifically, in the unrotated solution (see supplementary information), C1 shows a constant co-

efficient pattern, clearly indicating that this component is a consequence of overall differences in

reaction time across subjects. The next two (unrotated) components - C2 and C3 - show a marked

dependence on that last (C2) and second-to-last (C3) events, and are therefore unmistakably part of

sequential effects. Finally, the fourth component - C4 - displays a coefficient pattern very similar

to experimental results falling outside the usual spectrum of results obtained with a long RSI and

shown in Figure 3.2. Post-hoc analysis of individual results (below) reveals C4 to be essential in
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explaining results obtained when the RSI is short, both in isolation and in combination with C2

and C3.

Traditional methods for choosing the number of components to retain lead to the rejection

of C3 and C4, both clearly related to sequential effects. The reason for this is the very large

proportion of the variance explained by C1 (78%) which, given the fact that it reflects differences

in individual overall reaction time, is not related to sequential effects. The effects of the large share

of variance taken by C1 could in fact lead to a underestimation of the total number of relevant

components of sequential effects, so the possibility cannot be excluded that there are additional

relevant components beyond the four studied here.

Estimating the proportion of sequential effects explained by each component

The first component identified is responsible for a considerable proportion of the variance in the

data - 78%. However, this component reflects differences in overall RT, and is therefore not part

of sequential effects. In order to estimate the relative contribution of the remaining components

- C2, C3 and C4 - towards sequential effects, excluding overall RT effects, a separate PCA was

conducted on a dataset where the individual overall reaction time - mean RT for all trials - was

subtracted from each individual’s results. The variance thus estimated was 38.2%, 35.5% and

11.5% respectively for C2, C3 and C4 after an orthogonal rotation with the same targets as used

for the main PCA.



116 THE STRUCTURE OF SEQUENTIAL EFFECTS

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

R

R

R

R

A

R

R

R

R

A

R

R

A

A

R

R

R

R

A

R

A

R

A

R

R

A

A

R

A

A

A

R

R

R

R

A

A

R

R

A

R

A

R

A

A

A

R

A

R

R

A

A

A

R

A

A

R

A

A

A

A

A

A

A

C
o

ef
fi

ci
en

t

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

R

R

R

R

A

R

R

R

R

A

R

R

A

A

R

R

R

R

A

R

A

R

A

R

R

A

A

R

A

A

A

R

R

R

R

A

A

R

R

A

R

A

R

A

A

A

R

A

R

R

A

A

A

R

A

A

R

A

A

A

A

A

A

A

C
o

ef
fi

ci
en

t

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

R

R

R

R

A

R

R

R

R

A

R

R

A

A

R

R

R

R

A

R

A

R

A

R

R

A

A

R

A

A

A

R

R

R

R

A

A

R

R

A

R

A

R

A

A

A

R

A

R

R

A

A

A

R

A

A

R

A

A

A

A

A

A

A

C
o

ef
fi

ci
en

t

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

R

R

R

R

A

R

R

R

R

A

R

R

A

A

R

R

R

R

A

R

A

R

A

R

R

A

A

R

A

A

A

R

R

R

R

A

A

R

R

A

R

A

R

A

A

A

R

A

R

R

A

A

A

R

A

A

R

A

A

A

A

A

A

A

C
o

ef
fi

ci
en

t

FIGURE 3.5: Latent structure of sequential effects. Solid blue lines - coefficient patterns of the first four
components identified with PCA after an oblique targeted rotation (see main text for details). Dashed red
lines - targets used for the rotation of the latent components shown linearly fit (a + bx) to the coefficient
patterns for easy comparison. The target used for C1 was a constant vector and is not shown; this component
is not considered to be a part of sequential effects. The components are ordered from left to right by amount
of variance explained; this was estimated using an orthogonal rotation to be 78%, 8.1%, 8% and 1.9%
respectively for C1 to C4.

3.3 Results

The presentation of results will be separated into two sections: firstly, the latent structure itself

will be discussed by analysing the coefficient patterns of each component; secondly, it will be ex-

plained how changes in the relative contribution of C2, C3 and C4 explain both the dependence of

sequential effects on the RSI, as well as individual differences, by analysing individual component

scores.

3.3.1 Coefficient patterns

Figure 3.5 shows the coefficient patterns of the first four components identified with PCA after

rotation, together with the respective targets. The first component - C1 - displays a constant coeffi-

cient pattern, indicating that it influences all variables in the same proportion. C1 therefore reflects

individual differences in overall reaction time, and so it should not be considered part of sequential

effects. Differences in overall RT are nevertheless considerable and so C1 is responsible for 78%

of variance in the data.
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The next two components retained - C2 and C3 - display coefficient patterns which are ap-

proximately left-right symmetric when plotted, implying that the two components have similar

roles except that one is acting on alternations and the other on repetitions.9 This symmetry is also

observed to some extent in S-LRP and LRP-R, though arguably less clearly in this case. The vari-

ance explained by C2 and C3 was estimated by performing an orthogonal rotation as 8.1%, 8%

respectively.

The last component retained - C4 - exhibits a pattern compatible with a pronounced dependence

on the second-to-last event independently of the last one, and is similar in this respect to the results

of Melis et al. (2002) and Jentzsch and Sommer (2002) shown in Figure 3.2. In fact, the choice

to retain this component was largely based on the similarity between C4 and the said patterns

of results, already visible before rotation. The variance explained by C4 was estimated with an

orthogonal rotation to be 1.9%.

3.3.2 Discussion

The results presented here show that there are two main components related to sequential effects

- C2 and C3 - and a third minor component - C4. The proportion of variance explained by these

components is relatively small: 8.1%, 8% and 1.9% respectively. However, these values are to a

large extent a consequence of the large proportion of the variance taken up by C1 - 78% - which

means that the total variance explained by sequential effects is relatively small. Therefore, in order

to more accurately estimate the proportion of sequential effects explained by C2, C3 and C4 a

separate PCA was conducted in a transformed dataset with overall mean reaction time subtracted

from each participant (see Method section). This resulted in variance estimates of 38.2%, 35.5%

and 11.5% respectively for C2, C3 and C4. These numbers are a better representation of the

9 Note that switching the A and R labels in the five-long sequences as usually ordered results in a mirroring of the
plot across an imaginary vertical axis separating the sequences in the left and right halves.
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FIGURE 3.6: Invariance of the latent structure of sequential effects with RSI. Each panel shows the
coefficient patterns of the equivalent component (from left to right: C2, C3 and C4) identified in four
separate RSI subgroups - 50, 250, 500 and 800 ms - each including all subject which performed a task with
a particular RSI irrespective of other experimental differences. Components significantly similar to C2 and
C3 were identified in all all RSI subgroups, whereas a C4 anlogue was only identified in the 50 and 250 ms
subgroups. The analysis performed in each subgroup was equal in every respect to that performed on the
global pool of participants, i.e. PCA followed by an oblique rotation with the same targets.

contribution of each component towards sequential effects.

An attempt was made to give the latent components a more meaningful psychological inter-

pretation by performing targeted rotations. In the case of C2 and C3 the targets chosen for the

rotation were S-LRP and LRP-R, two EEG measures meant to reflect the relative contributions of

the separate processing of stimuli and responses. S-LRP and LRP-R were nevertheless measured

in an experiment with a long RSI, whereas C2 and C3 were identified in a dataset where a range of

different RSI values was used. One possibility is that C2 and C3 are only present when the RSI is

long, in which case the results of this work would be an artefact of grouping different experimental

conditions. More generally, given that different experiments were grouped together, it becomes

important to analyse how the latent structure varies across different experiments and RSI values.
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Invariance of latent structure with RSI

Assessing if and how the latent structure of sequential effects changes with RSI is of particular

importance since, as classical theories would have it, sequential effects observed when the RSI

is short - i.e. the benefit-only pattern - are fundamentally different from those observed with a

long RSI - i.e. the cost-benefit pattern (Soetens et al., 1985). In order to assess how the latent

structure varies subjects were separated according to RSI, irrespective of experiment. Separate

PCAs, similar in every respect to the global analysis, i.e. using oblique rotations and the same

targets, were then conducted on each subgroup.

Figure 3.6 shows the coefficient patterns of the relevant components identified in the four RSI

subgroups - 50, 250, 500 and 800 ms - excluding C1 which displays a constant coefficient pattern

in all cases. In order to obtain a quantitative estimate of how similar these components are to

the ones obtained globally the coefficient of congruence (Gorsuch, 1983) was calculated between

equivalent components obtained in each subgroup and the global ones shown in Figure 3.5. The

significance of the coefficient of congruence values obtained was then estimated (see supplemen-

tary information for methodology). Components significantly similar to the global C2 and C3

(α = 0.001;p < 0.001) were obtained in all RSI subgroups (see Figure 3.6, left and centre panel),

whereas a component significantly similar to C4 was only found in the 50 and 250 ms subgroups.10

In light of classical theories of sequential effects it is perhaps surprising to find the same two

main components in all RSI subgroups. Moreover, the variance explained by these two components

together remains largely the same across RSI: 70.1%, 73.4%, 58.8% and 76.9% respectively for the

50, 250, 500 and 800 ms subgroups. This begs the question: what is the reason for the differences

observed for a short and long RSI, i.e. the benefit-only and cost-only patterns? At first sight it

might seem that this is due to the presence of an extra component - C4 - when the RSI is short.

10 The 500 ms subgroup did produce a significant C4 for a α = 0.05 significance level, but this component showed
a coefficient pattern visibly distorted relative to the global C4.
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As we will see when discussing individual scores, C4 does play a role in the differences observed

when the RSI is varied, but these differences are also the consequence of changes in the relative

contributions of C2 and C3.

In short, the PCA results indicate that the latent structure of sequential effects consists of two

main components which are present irrespective of RSI - C2 and C3 - with a minor component - C4

- present only when the RSI is short. An analysis of the latent structure for different experiments -

collapsing across RSI - was performed with similar conclusions (see supplementary information).

The analysis of different experiments is nevertheless less relevant than that of different RSI values,

the reason being that experimental differences in the type of stimuli and response scheme are know

to have relatively small effects when compared to the RSI.

What is C4?

C4 exhibits a coefficient pattern similar to previous experimental results shown in Figure 3.2,

displaying approximately equal left and right halves when plotted, an indication of a degree of

independence of the last event,11 with reaction times depending to a large extent on whether the

second-to-last event was a repetition or an alternation. One possibility is that C4 is the product

of an activation taking place at t − 1 influencing reaction times at time t directly. In order to

evaluate this hypothesis, we must consider what the influence of an activation taking place at t− 1

would look like if the event at time t had never happened. This can be achieved in the following

manner: sequences are grouped two-by-two, discarding the first event at t − 3, leaving us with

eight sequences corresponding to the last three events (or four stimuli). These new sequences must

now be reordered as if the event at time t is now the one at time t − 1. Note that this process will

necessarily always result in a plot with equal left and right halves.

11 Note that the left and right halves of the plot, also known as the repetition and alternation curves, differ only with
respect to the last event and whether it was a repetition or an alternation.
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FIGURE 3.7: C4 as the consequence of delayed activation of C2 and C3. Solid blue lines - coefficient
pattern of C4 (left panel) and reaction time data from the second experiment performed by Jentzsch and
Sommer (2002). Dashed red lines - Left panel: best fitting linear combination of the form k + w1C2

∗ +
w2C3

∗, where C2* and C3* are reshuffled versions of C2 and C3 meant to illustrate the direct effect of
activation at time t − 1 on time t (see main text); best fitting parameter values were k = 3.7 × 10−4,
w1 = −0.405 and w2 = 0.448. Right panel: best fitting linear combination k + w1SLRP

∗ + w2LRPR∗
where SLRP* and LRPR* are reshuffled versions of S-LRP and LRP-R; best fitting parameter values were
k = 526.3, w1 = −0.551 and w2 = 0.646. Note that in both cases the best fit is obtained with w2 ≈ −w1.

The natural candidates for activation occurring at t− 1 are C2 and C3 themselves. If we apply

the procedure described above to C2 and C3 we obtain two new patterns - denoted here as C2*

and C3* - neither of which looks very similar to C4 in isolation (not shown). However, if we take

a linear combination of the form w1C2∗+w2C3∗, with w1 ≈ −w2, this produces a pattern similar

to C4 (Figure 3.7, left panel). As we will see below in the context of the analysis of component

scores, this is exactly what is expected since, for a short RSI, individual scores on C2 and C3 are

on average equal in magnitude and opposite in sign. We applied the same transformation to S-LRP

and LRP-R - resulting in S-LRP* and LRP-R* - and fitted a combination of these to the results of

the second experiment of Jentzsch and Sommer (2002) (see Figure 3.7, right panel). As with the

latent components, the best fit of a linear combination w1SLRP
∗ +w2LRPR

∗ was obtained with

w1 ≈ −w2.

If we assume for the time being that C4 is a combination of C2* and C3*, then why do these

two influences show up in the PCA as a single component? One possibility is that C2 and C3
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FIGURE 3.8: Effect of varying the relative balance of C2 and C3, both with positive scores and when
C4 is absent. Solid blue lines - individual participants included in our experiments chosen for illustration
purposes. Dashed red lines - best fitting linear combinations of the form s1C1+s2C2+s3C3+s4C4 where
the si are linear coefficients which we refer to as ‘scores’ (see main text); the Ci are the coefficient patterns
of first four components. The range of results shown is characteristic of individual differences observed in
experiments conducted with a relatively long RSI. Inset plots show the scores on C2, C3 and C4.

integrate at time step t − 1, showing up as a combined non-separable influence at time t. Finally,

while the explanation for C4 is preliminary at this stage, if found to be true it would imply that

sequential effects are in fact the product of two fundamental components rather than three. Next

we turn to the analysis of how the relative contributions of the three components - C2, C3 and C4

- change both as a function of RSI as well as for different individuals.

3.3.3 Component scores

In this section the role of component scores in explaining individual differences, as well as the

dependence of sequential effects on the RSI, will be discussed.
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Individual Differences

Individual differences in sequential effects are now revealed more clearly to be a consequence of

different contributions by C2, C3 and C4. Recall that scores were recalculated so as to make the

model equivalent to a simple linear combination of the form s1C1 + s2C2 + s3C3 + s4C4, where

the s1−4 are linear coefficients - referred to here simply as ‘scores’ - and C1− 4 are the coefficient

patterns of the four first components identified with PCA. Different individuals have different

scores on the three components, and these determine the overall pattern of sequential effects.12 In

other words, any individual is now represented by a point in ‘sequential effects space’, the axes of

which correspond to the scores on C2, C3 and C4. This three-dimensional space has eight octants

corresponding to all possible combinations of sign of the three components. However, only half

of the space is used, since C4 is always positive or close to zero. In order to clarify the effect of

the three components we will analyse three cases separately: firstly we will look at the effects of

varying C2 and C3 both with positive scores, and C4 held at zero; secondly, we will see the effect

of allowing negative scores on C2 and C3 while still holding C4 at zero; finally, the effect of C4

will be illustrated.

A balanced score on both C2 and C3 produces results similar to the cost-benefit pattern of

sequential effects (see Figure 3.8, central panel). A higher score on C2 relative to C3 induces a

preference for alternations (see Figure 3.8, left panel), whereas a higher score on C3 induces a

repetition bias (see Figure 3.8, right panel). Results from experiments conducted with a long RSI

tend to fall along this range of scenarios (Soetens et al., 1985; Cho et al., 2002; A. D. Jones et

al., 2002; Gokaydin et al., 2011), which can be described as a cost-benefit pattern with either a

repetition or alternation bias.

Allowing the sign of the score on either C2 or C3 to go negative - while still holding C4 at

zero - produces results no longer recognisable as a cost-benefit pattern. In particular, when the

12 See supplementary information for a plot of all individual scores.
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FIGURE 3.9: Effect of allowing negative scores on C2 and C3, with C4 absent. Solid blue lines -
individual participants included in our experiments chosen for illustration purposes. Dashed red lines -
best fitting linear combinations of the form s1C1 + s2C2 + s3C3 + s4C4 where the si are are linear
coefficients which we refer to as ‘scores’ (see main text) and the Ci are the coefficient patterns of the four
first components. Note how scores on C2 and C3 similar in magnitude and opposite in sign tend to produce
patterns which may be mistaken for a two-tiered dependence on the last event and whether it was a repetition
or an alternation; whether alternations or repetitions are faster depends on which component has a negative
(or positive) score. Inset plots show scores on C2, C3 and C4.

scores on C2 and C3 are approximately equal in magnitude but opposite in sign the resulting pat-

tern resembles a two-tiered dependence on the last event (see Figure 3.9), with faster reaction time

to repetitions or alternations depending on which component - C2 or C3 - has a higher score. It

is interesting to note that, if viewed in isolation, the patterns shown in Figure 3.9 would likely be

interpreted as a trivial dependence on the last event, when in fact they are the product of a com-

bination of two complex looking patterns. Only one individual participant was found to have a

strong negative score on both C2 and C3, which may point to constraints on the allowed combina-

tions of the two components. However, the good qualitative fit to the said subject indicates that it

may be possible - yet rare - for both C2 and C3 to be negative. Finally it is worth mentioning that

the contribution of a component with a negative score, when looked at in terms of its coefficient

pattern, is an ‘upside-down’ version of what can be seen in Figure 3.5; this raises some conceptual

issues which are discussed in detail below.

The influence of C4 is only felt when the RSI is short, under which conditions it sometimes
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FIGURE 3.10: The effect of C4. Solid blue lines - individual participants included in our experiments
chosen for illustration purposes. Dashed red lines - best fitting linear combinations of the form s1C1 +
s2C2 + s3C3 + s4C4 where the si are are linear coefficients which we refer to as ‘scores’ for short (see
main text); the Ci are the coefficient patterns of the first four latent components. The left panel shows
an individual displaying results similar to C4 in isolation; the middle panel shows a pattern of sequential
effects not described before but which is displayed by several individuals; the right panel shows an individual
exhibiting a typical benefit-only type of result. Inset plots show scores on C2, C3 and C4.

manifests itself in relative isolation, i.e. with little contribution from either C2 or C3 (Figure 3.10,

left panel). However, C4 is also necessary, in combination with C2 and C3, to explain other patterns

of results, some of which were not described before in the literature (Figure 3.10, middle panel).

Perhaps more importantly, C4 is also necessary in order to explain the the benefit-only pattern

of sequential effects, often observed at an individual level when the RSI short (Figure 3.10, right

panel). Note that all three individuals shown in Figure 3.10 come from experiments conducted

with a 50 ms RSI. Finally, no single individual exhibited a strong negative score on C4 so it is not

known whether this component can change sign in the same way as C2 and C3 can.

Dependence on RSI

Just like individuals can display differences in sequential effects as a consequence of different

scores on C2, C3 and C4, the mean RT pattern of a group of individuals depends on the mean

score on each of the three components. This is illustrated in Figure 3.11 which shows the mean
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FIGURE 3.11: Reaction times averaged across all subjects performing a task with a particular RSI - 50,
250, 500 and 800 ms - irrespective of experimental design. Note how reaction time results change from a
cost-benefit pattern when the RSI is long - 500 and 800 ms subgroups - to a benefit-only pattern when the
RSI is very short - 50 ms. With a 250 ms RSI an intermediate pattern of results is observed. These different
results can now be understood in terms of the mean scores on C2, C3 and C4 shown in Figure 3.12.

RT patterns of the four main RSI subgroups - 50, 250, 500 and 800 ms - irrespective of experiment

performed, with corresponding mean scores as a function of RSI shown in Figure 3.12. Note the

similarities between the evolution of the RT pattern as the RSI is varied and the results obtained

previously by Soetens et al. (1985) (Figure 3.1): for a short RSI - 50 ms - a benefit-only pattern

of results is observed; when the RSI is long - 500 and 800 ms - a cost-benefit pattern is observed

instead; an intermediate pattern of results is observed with a 250 ms RSI.

Figure 3.12 shows mean scores on all components for four RSI subgroups - 50, 250, 500 and

800 ms - which are effectively the mean scores which produced the patterns shown in Figure 3.6.

Two main trends are observed: firstly, the mean score on C2 decreases as the RSI is shortened,

switching from a positive value for long RSI to a negative value for a short RSI; secondly, the

mean score on C4 increases as the RSI is decreased. The mean score on C3 is always positive,

increasing a little when the RSI is 250 ms only to decrease again at 50 ms. Note that in all cases

the distribution of scores is fairly wide, except for C4 when the RSI is 500 or 800 ms, reflecting

the fact that this component is absent when the RSI is long.

Putting things into context with the classical view, the cost-benefit pattern observed when the

RSI is long is the product of a balanced mean score on C2 and C3 with no contribution from C4
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FIGURE 3.12: Mean scores on C2, C3 and C4 as a function of RSI. The means are taken across all
participants performing a task with a given RSI irrespective of experimental design. Error bars show the
standard error of the mean. Recall that the component ‘scores’ are not the original scores obtained directly
from PCA but linear coefficients estimated in order to reflect deviations to a zero baseline (see main text and
supplementary information). Also, the coefficient patterns used in estimating component scores were those
of the global analysis shown in Figure 3.5 and not the ones obtained from PCA conducted on separate RSI
subgroups shown in Figure 3.6.

(Figure 3.6, rightmost two panels). The benefit-only pattern can now be seen to be the consequence

of a shift in sign on C2, together with the emergence of C4, when the RSI is short. As for the un-

usual results discussed above and shown in Figure 3.2, these can now be seen to be the consequence

of C4 occurring in relative isolation. The fact that C4 is already manifest in the benefit-only type of

result shows that what were seemingly disparate results are in fact closely related. More generally,

all the different kinds of sequential effects are now seen fall along the same continuum.

3.3.4 Discussion

This work firmly establishes individual differences as structured and not just the product of noise.

Moreover, the similarities between individual differences and the way in which average results
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depend on the RSI are now explained by the fact that both phenomena are the product of variation

in the scores on C2, C3 and C4. It is only natural to suppose that the results of a single individual

will also depend on the RSI, although this has not yet been observed empirically. Conversely, the

RSI is not the sole determinant of the component scores as there are significant individual differ-

ences for a fixed RSI value. Together this evidence points to a common mechanism underlying

all sequential effects which is not only sensitive to the RSI but also exhibits considerable variation

across individuals.

That all types of sequential effects lie on the same continuous space means that the differences

observed are quantitative rather than qualitative in nature. This raises questions regarding the

classical view of sequential effects as the product of two fundamentally different mechanisms,

one operating at a long RSI - subjective expectancy - and the other for a short RSI - automatic

facilitation (Soetens et al., 1985). The mapping, if any, between the two mechanisms and the

components identified here is unclear. The results presented here provide only partial support for a

qualitative transition, inasmuch as one of the sequential effects components - C4 - is only present at

short RSI. However, the greatest portion of the variance is explained by the same two components

irrespective of RSI: together, C2 and C3 explain 70 and 73% of the variance due to sequential

effects in the 50 and 250 ms groups respectively. Finally, if C4 is confirmed to be the product of

residual C2 and C3 activation, this would mean that no qualitative difference exists between short

and long RSI sequential effects.

The analysis of component scores has consequences for the hypothesis that C4 is the product

of residual activation of C2 and C3 at time t− 1 influencing reaction times at time t. It was found

that C4 was best explained by a combination of the activation of C2* and C3* - the expected

patterns of C2 and C3 as if the last event did not happen - with weights similar in magnitude but a

negative sign on C2*. These values match the mean scores on C2 and C3 when the RSI is 50 ms -

the same conditions which tend to produce C4 - which are also approximately equal in magnitude

with a negative score on C2 (see Figure 3.12). However, a C4 component is also found in the



3.4 GENERAL DISCUSSION 129

250 ms subgroup, but in this case the mean scores on C2 and C3 are different, the mean score on

C2 being positive. The explanation for this apparent incoherence may be that it is only in those

subjects within the 250 ms subgroup which have a negative score on C2 that C4 is observed. In

fact, significant negative correlations between scores on C2 and C4 were found for both the 50 and

250 ms subjects (r = −0.64, p < 1e−3; r = −0.44, p = 0.008). This interpretation is compatible

with the view of C4 as the consequence of processing constraints discussed in detail below.

3.4 General Discussion

3.4.1 The nature of sequential effects - C2 and C3

The PCA results indicate the presence of two main components responsible for sequential effects.

On the other hand, previous empirical evidence points to the existence of two separate processing

stages involved in sequential effects, one pre-motor in origin and related to stimuli, and the other

motoric and related to responses. It stands to reason that latent components and processing stages

might be related, and in this spirit an attempt was made to map the coefficient patterns of the two

latent variables - C2 and C3 - to the best evidence available about the relative contributions of

the two processing stages - S-LRP and LRP-R (see Figure 3.5). The similarities encountered are

consistent with the proposed relationship but fall short of providing conclusive evidence that the

latent variables C2 and C3 do in fact reflect the separate processing of stimuli and responses. With

this in mind, the implications of such a relationship, if it did indeed hold true, will be discussed.

Recall that S-LRP and LRP-R are time measurements. One possibility then is that C2 and C3

simply reflect the time that it takes to process stimuli and responses in a serial fashion. However,

this view clashes with the fact that the C2 and C3 can have a negative score, implying a negative

processing time. A more nuanced view would be to consider that C2 and C3 reflect different
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signals related the separate processing of stimuli and responses. Note that while S-LRP and LRP-

R have time units, they were measured with respect to a point defined by a threshold amplitude of

the LRP. What this means is that S-LRP and LRP-R might reflect the amplitude of different signals

rather than simply processing times. If we take this view it becomes easier to accept that C2 and

C3 might become negative, as this may possibly reflect a negative contribution of corresponding

neurological signals towards reaction times.

One recent suggestion in the literature is that S-LRP and LRP-R reflect the tracking of different

statistics about the environment (M. Jones et al., 2013) and, inasmuch a relationship between S-

LRP/LRP-R and C2/C3 holds, this would imply the latent components also reflect different statis-

tics. However, we again stumble on the fact that C2 and C3 can have a negative sign, implying that

under some circumstances subjects would be tracking some form of inverse statistics, something

which makes little sense from a computational point of view. When the RSI is long, both C2 and

C3 are almost always positive, in which case a computational interpretation of the latent compo-

nents may be possible. In fact, it has been argued that the cost-benefit pattern of sequential effects

approximates the computations of an ideal observer (Yu & Cohen, 2008). However, it seems that

the full range of different sequential effects, and in particular those observed with a short RSI,

might only be explainable at a process level. The possible role of processing constraints in the

results observed when the RSI is short, and in particular the emergence of C4, is discussed below.

A final possibility is that C2 and C3 play the role of separate detectors of repeating and alter-

nating patterns in the sequence. Several authors have argued in the past for the need to postulate

independent mechanisms in charge of detecting repetitions and alternations (D. Hale, 1969; Mal-

oney et al., 2005). This theory fits with the symmetry observed in the coefficient patterns of C2

and C3, which implies that C2 and C3 have similar roles but applied to alternations and repetitions

respectively. Finally, since higher coefficient values imply slower reaction times, in this view C2

would play the role of an alternation detector and C3 that of a repetition detector.
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Irrespective of computational interpretations, there are some clues as to the mechanisms un-

derlying sequential effects. In particular, there is considerable evidence for the role of a geometric

weighted average of the previous sequence, also known as exponential filter, in sequential effects

(e.g. Laming, 1969; Yu & Cohen, 2008; M. Jones et al., 2013). Interestingly, an exponential filter

of the sequence of stimuli produces a pattern of results with a remarkable degree of similarity with

LRP-R (not shown), and it has in fact been argued that the two are related (M. Jones et al., 2013).

By proposing a correspondence between LRP-R and C3, it is further implied that this component

might reflect an exponential filter of the sequence.

The mechanism behind S-LRP is less well understood, partly because it displays a strong

alternation bias - i.e. faster RT to alternations - a seemingly simple feature which has nevertheless

been notoriously hard to reproduce (M. Wilder et al., 2009; M. Jones et al., 2013). Some authors

suggest that S-LRP corresponds to a second type of exponential filter, one which is applied to

the sequence of repetitions and alternations rather than individual stimuli (M. Jones et al., 2013).

However, such a filter produces a pattern of results with no alternation or repetition bias (not

shown), and in order to reproduce the alternation bias of S-LRP it has been necessary to postulate

an additional mechanism (M. Jones et al., 2013). So while the role of an exponential filter in

generating a component looking like LRP-R seems well established, the mechanism behind S-

LRP is not as well understood, and the same conclusions apply to the latent components C2 and

C3 insofar as they correspond to S-LRP and LRP-R respectively.

3.4.2 The role of processing speed - C4

Crucial to understanding the nature of C4 is a study which contrasted sequential effects in young

(ages between 19 and 25 years) and elderly (ages between 60 and 75 years) subjects (Melis et

al., 2002). When performing a 2AFC with a long RSI - 1000 ms - there was little difference

between the two groups except that the elderly participants were slower overall. However, when
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performing the same task with a 50 ms RSI, results were markedly different: the young group

produced a benefit-only pattern characteristic of experiments with a short RSI (see Figure 3.11,

left panel); in contrast, the elderly group displayed a dependence on the second-to-last event (see

Figure 3.2) which we now know is related to C4. Melis et al. (2002) suggest that the underlying

variable responsible for the differences observed between young and elderly groups is speed of

processing, of which age is only a close correlate.

Speed of processing as a factor in sequential effects is compatible with the view of C4 as

residual activation of C2 and C3 from the previous time step discussed above: a processing delay

could in principle lead to a greater overlap between the activation at time step t−1 and that at time

t. This interference between adjacent events would only be felt with a short RSI, when pressure

on processing capacity is maximal. Regrettably, information on the age of participants was not

collected for this study, something which would have allowed for a possible correlation between

C4 score and age to be investigated. Nevertheless, the vast majority of the subjects in this study

were first year psychology students with a modal age of 18 years. It is therefore highly unlikely

that processing speed limitations due to age played a role in the experiments reported here.

Finally, age might not be the only factor influencing processing speed. A second experiment

which produced a pattern similar to C4 was conducted in subjects with a mean age of 27.4 years

(Jentzsch & Sommer, 2002). It is unlikely that processing speed would have been limiting at such

a relatively young age. However, the experiment in question was an unusually long version of a

2AFC both in terms of total number of trials (3960) and number of trials per block (330), more

than twice the length of most 2AFCs (Soetens et al., 1985; Cho et al., 2002; A. D. Jones et al.,

2002) as well as of our own experiments. Fatigue could therefore also play a role, possibly via a

saturation effect and resulting decrease in processing speed. More work is necessary in order to

establish the role of processing speed and/or fatigue in sequential effects. Just as the trajectory of

the mean scores on C2, C3 and C4 as the RSI is varied was investigated here, it is important to do

the same when varying age and the length of the experiment.
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3.4.3 Conclusion

This work uncovers a structure which may in the future provide a unified framework for under-

standing sequential effects. A latent structure was identified consisting of two main components

and a minor one. A mapping was proposed between the two main components of sequential effects

and the separate processing of stimuli and of responses. Further, the possibility was discussed that

the minor component is a consequence of processing constraints when the response-stimulus in-

terval is very short. Irrespective of the interpretation of the latent components, this work provides

a unified descriptive model of a wide range of types of sequential effects, allowing for a clearer

contextualization of past and future experimental results. Finally, the results presented here may

carry more general implications for the mechanisms underlying human pattern detection, both at a

psychological as well as neurophysiological level.



4
An oscillator-based modelling framework for

sequential effects

In this section an entirely different approach to modelling sequential effects is proposed. To begin

with the need for a different modelling framework is motivated by analysing some difficulties

with classical models, followed by a list of aspects of sequential effects a complete model of

sequential effects must explain, several of which cannot be captured by any previous model. Next

the formal details of the framework, which is based on the physics of oscillatory harmonic motion,

134
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are introduced. Finally, the way in which the framework could be of use in tackling different

aspects of sequential effects will be discussed. In general a complete model of sequential effects

will not be revealed here, but the overall framework will be argued to have a great deal of potential

in modelling sequential effects. Some early successes of the framework include being able to

replicate key aspects of the latent structure of sequential effects discussed in Chapter 3, a feat

which is largely due to the unprecedented capacity of the model to meaningfully parameterise

individual differences.

4.1 The difficulties with modelling sequential effects

At the heart of sequential effects modelling lies one crucial assumption: that a particular event

increases the expectation of seeing another event of the same type. An ‘event’ can be defined

as a particular stimulus or, as is often the case, a repetition or alternation of stimuli. Usually this

‘priming’ is assumed to decay exponentially with time. From the point of view of the current event,

this means that the influence past events have on predictions about the future decays exponentially

into the past. This is sometimes referred to in memory research as the exponential law of forgetting

(Wixted & Ebbesen, 1991). One of the consequences of this exponential decay is that only a limited

set of recent events will influence behaviour. In the specific case of sequential effects in a 2AFC

only the past five stimuli 1 seem to have a significant impact on reaction time (Remington, 1969).

4.1.1 A tale of two filters

The simplest way to implement an exponentially decaying memory is to use an exponentially

weighted moving average, otherwise known as exponential filter (Abraham, 2005). In discrete

1 As mentioned in Chapter 2, the exponential decay of human memory should be taken with a grain of salt, since
it only applies when the sequence of events is random.
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time an exponential filter can be written recursively as

p(t+ 1) = (1− α)xt + αp(t) (4.1)

where xt is the event at time t coded as 0 or 1; p(t) is the probability that the event xt is a 1; and α is

a parameter varying between 0 and 1 which determines how quickly the past is forgotten. Equation

(4.1) can also be written non-recursively by explicitly assigning weights to past events according

to an exponential function and taking their weighted mean (see Chapter 2). The exponential filter

is inbuilt more or less explicitly in all sequential effects models proposed in the literature so far

(Falmagne, 1965; Laming, 1969; Cho et al., 2002; Yu & Cohen, 2008; M. Wilder et al., 2009;

Gokaydin et al., 2011; M. Jones et al., 2013), and so it is useful to consider it in some detail.

Equation 4.1 gives us our first model of sequential effects. When fitting model predictions to

reaction time (RT) data, it is customary to assume that the higher the probability attributed to the

next event the shorter the reaction time should be, or put simply that RT ∝ 1 − p(t). Figure 4.1

(left panel) shows predictions made by an the exponential filter as a function of the last five stimuli

plotted in the manner customary in the sequential effects literature (Vervaeck & Boer, 1980), where

sequences are shown in terms of repetitions and alternations of stimuli. One might be forgiven for

thinking that such a simple model stands no chance of approximating human behaviour, and yet

it does a very good job of describing the results of some experiments where reaction times were

averaged across multiple subjects (A. D. Jones et al., 2002; M. H. Wilder et al., 2013), as well as

some individual subjects included in groups which do not display the same pattern on average (see

Figure 4.2).

An exponential filter can be thought of as being sensitive to repetitions of stimuli only, since

its predictions are a function of how many stimuli of the same type are present in the preceding

sequence, as well as how recently they occurred. Writing the sequence in terms of repetitions



4.1 THE DIFFICULTIES WITH MODELLING SEQUENTIAL EFFECTS 137

0

0.2

0.4

0.6

0.8

1

R

R

R

R

A

R

R

R

R

A

R

R

A

A

R

R

R

R

A

R

A

R

A

R

R

A

A

R

A

A

A

R

R

R

R

A

A

R

R

A

R

A

R

A

A

A

R

A

R

R

A

A

A

R

A

A

R

A

A

A

A

A

A

A

1−
p(

x)

0

0.2

0.4

0.6

0.8

1

R

R

R

R

A

R

R

R

R

A

R

R

A

A

R

R

R

R

A

R

A

R

A

R

R

A

A

R

A

A

A

R

R

R

R

A

A

R

R

A

R

A

R

A

A

A

R

A

R

R

A

A

A

R

A

A

R

A

A

A

A

A

A

A
1−

p(
x)

FIGURE 4.1: Two types of exponential filter. Left panel - simple exponential filter applied to a sequence
encoding the stimuli themselves. Right panel - exponential filter applied to a sequence encoding repetitions
and alternations of stimuli, i.e. an A/R filter. Note that in both cases the sequence effectively consists
of 0’ and 1’s, except that these have different meanings depending on the filter. For instance, in the simple
exponential filter the sequences 01001/10110 represent XYXXY - where X/Y stand for two different stimuli
- whereas in the A/R filter case the same sequence would be written as 0010 if an 1 was chosen to represent
a repetition and 0 an alternation. α = 0.5 in both cases.

and alternations highlights this fact: note how predictions depend on the number of repetitions

before the last event and how recently they occurred (see Figure 4.1, left panel). Conversely, an

exponential filter is insensitive to alternations, a fact best illustrated by contrasting predictions for

the sequences XYXYX (AAAA) and XYXYY (AAAR): although the sequence has been perfectly

alternating so far, the exponential filter attributes a greater probability to a repetition occurring

next.

Despite evidence that humans sometimes behave like an exponential filter, we are also clearly

sensitive to alternating patterns (Laming, 1968; D. Hale, 1969) and this is reflected in the most

common type of sequential effects, several examples of which are shown in Figure 4.3. This

type of result - termed cost-benefit in the psychology literature - displays relatively fast reaction

times to sequences such as RRRR and AAAA, and slow to sequences such as AAAR and RRRA,

thereby revealing a sensitivity to both repeating and alternating patterns. Notwithstanding this
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FIGURE 4.2: Humans sometimes behave like a simple exponential filter, both collectively and individu-
ally, and across multiple types of tasks. Solid blue lines show empirical data and dashed red lines show the
best fit of a simple exponential filter with a linear transformation to adjust for scale. Best fitting exponential
decay rate λ values were, from left to right: −0.65,−0.69 and−0.56. Left panel - data from a reaching task
designed by M. H. Wilder et al. (2013). Middle panel - data from a modified 2AFC task by JA. D. Jones et
al. (2002) where subjects had to respond to one of many stimuli with one finger and to any other stimulus
with another finger. Right panel - single individual performing Experiment 1 in Chapter 3.

dual sensitivity, humans often display a degree of preference for one or the other type of pattern

as measured by faster reaction times overall to either repetitions or alternations. If reaction times

are faster overall to repetitions we speak of a repetition bias or simply a preference for repetitions,

and similarly for the case of alternations.2 Figure 4.3 (left panel) show an example of a pattern

of results with an alternation bias, which nevertheless can still be considered to fall within the

cost-benefit type of result.

In order to capture the sensitivity to alternations displayed by humans another type of exponen-

tial filter is often incorporated into models of sequential effects, one which acts on the sequence

of repetitions and alternations rather than the individual stimuli.3 The predictions of this filter -

which we will refer to as A/R filter - display a perfectly balanced preference for repetitions and

alternations (Figure 4.1, right panel), and in this respect they are reminiscent of the cost-benefit

patterns shown in Figure 4.3. However, by virtue of the fact that the sequence itself now consists

2 A preference for either repetitions or alternations can easily be visualised as differences between the two halves
of traditional sequential plots, as the left half contains all sequences ending with R and the right half ending with
A.
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FIGURE 4.3: Typical patterns of sequential effects obtained with a long RSI (i.e. above 500 ms). Left
panel - results from a 2AFC with a 1000 ms RSI included in Soetens et al. (1985); Middle panel - results
from the first experiment reported by Jentzsch and Sommer (2002) which used a 700 ms RSI; Right panel
- results from a 2AFC with an 800 ms RSI reported by Cho et al (2002). Note how all three experiments
display a typical cost-benefit pattern with some variation in preference for - i.e. faster RT to - repetitions or
alternations.

of repetitions and alternations, the A/R filter is insensitive to the relative frequencies of the stimuli

themselves.

The exponential filter applied to the sequence of stimuli is sensitive to the frequencies of the

stimuli but insensitive to alternations; conversely, an A/R filter is sensitive to both repetitions

and alternations but blind to the frequencies of the stimuli. Since humans have been found to be

sensitive to the base frequencies while at the same time detecting both repeating and alternating

patterns (Laming, 1968; M. Wilder et al., 2009), the natural solution is to combine both types

of exponential filter (shown in Figure 4.1). This solution has been adopted many times in the

theoretical literature since Laming (1969) first suggested it, with practically all models proposed

so far depending more or less explicitly on one or both types of filter (see Chapter 1). In fact,

simply summing the two filters - shown in Figure 4.1 - provides an excellent approximation to

reaction time data from some experiments such as that conducted by Cho et al. (2002) (shown in

3 In a sequence coded in terms of repetitions and alternations the sequence elements themselves have a different
meaning. For instance, at the level of stimuli the sequence ARAR is an average of the sequences 01100 and
10011; in a sequence coded in terms of repetitions and alternations ARAR is simply represented by 0101 if it
was decided that 0 should stand for an alternation and 1 for a repetition.
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Figure 4.3, right panel).

The combination of two filters has been very successful in replicating several aspects of se-

quential effects. However, there is no combination of the two filters that produces one recurrent

observation in empirical data: an alternation bias. A repetition bias can can easily be replicated

since it is a natural feature of the simple exponential filter at the the sequence level, but a preference

for alternations has been notoriously difficult to capture. Over the years, a few solutions have been

proposed to this problem, all of which have problems of its own. Yu and Cohen (2008) proposed

a model which is effectively equivalent to an A/R with an added prior bias which can introduce a

preference for repetitions or alternations. However, much like the A/R filter, the model by Yu and

Cohen (2008) is unable to capture the individual stimulus frequencies.

M. Jones et al. (2013) proposed a model that again combines both types of exponential filter

and which is able at the same time to reproduce an alternation bias. The key to the model is a ‘cue

competition’ mechanism, effectively an interaction between the two types of exponential filter.

However, and despite its success in capturing an alternation bias while still remaining sensitive to

the frequency of the stimuli, the model suffers from a problem common to most sequential effects

models proposed so far (Laming, 1969; Cho et al., 2002; M. Wilder et al., 2009; Gokaydin et al.,

2011; M. Jones et al., 2013): they rely on hard-coding the detection of alternations. In other words,

either alternations are made part of the raw data or otherwise different sub-models must be used

in order to detect repetitions and alternations separately, with the two predictions subsequently

combined. Ideally however one would have the detection of alternations arise in a natural way,

rather than being explicitly coded.

To the modelling difficulties discussed so far one could add a host of empirical phenomena

which are in need of explanation, many of which are hard to capture with any of the models

proposed so far. For instance, the dependence of sequential effects on the RSI seems to call for

a continuous time model when in fact almost all models of sequential effects are discrete time in



4.1 THE DIFFICULTIES WITH MODELLING SEQUENTIAL EFFECTS 141

nature (but see Cho et al., 2002; Gao et al., 2009). Additional aspects which influence sequential

effects such as response-stimulus compatibility require a model capable of differentiating between

stimuli and responses, which none does so far. The main objective here is to suggest a modelling

framework which, while still incomplete, will not be limited in the sense that it carries the potential

to explain all aspects of sequential effects.

There are two core ideas behind the new framework proposed here: firstly, that exponential

filtering plays a central role in sequential effects; secondly, that sequential effects are the product

of two separate components. We have reviewed exponential filtering above, and will now turn to

the idea of two separate processes involved in sequential effects. This diversion will be brief as it

has been discussed extensively in Chapter 3 and a more detailed discussion of this idea is presented

in Chapter 5.

4.1.2 Two separate processing stages

A long-standing question in the literature has been whether sequential effects are caused by the

sequence of stimuli or that of the corresponding responses (Bertelson, 1963; Soetens, 1998). A

closely related but more general question is whether there are any separate mechanisms contribut-

ing towards sequential effects. Overall, the picture is starting to emerge that there are indeed

two discrete contributions towards sequential effects, and further that these are associated with

the processing of stimuli and responses respectively. Three lines of evidence support this: firstly,

electrophysiological studies where pre-motor (i.e. stimulus) and motor (i.e. response) processing

times were measured (Jentzsch & Sommer, 2002); secondly, the latent variable analysis reported

in Chapter 3; thirdly, the results of experiments which attempt to selectively remove the effects

of stimuli and responses separately (Maloney et al., 2005; M. H. Wilder et al., 2013). The re-

sults produced by all three approaches shows a remarkable degree of agreement (see Figure 4.4)
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FIGURE 4.4: Evidence for two processing stages involved in sequential effects. Three sources of evidence
are shown: pre-motor and motor processing times measured with EEG (S-LRP and LRP-R); the two main
latent variables of sequential effects (C2 and C3); and the results of two experiments which isolate the
contribution of stimuli and responses towards sequential effects. Left panel shows S-LRP, C2 and RT data
from Maloney et al. (2005) reflecting the contribution of stimuli only; note that RT data in this case consists
of only eight data points since the authors presented as a function of the last four stimuli. Right panel shows
LRP-R, C3 and RT data from M. H. Wilder et al. (2013) reflecting the contribution of responses only.

and together point to the existence of two components with approximately symmetrical contri-

butions towards sequential effects: the pre-motor or stimulus-associated stage seems to have an

alternations bias, whereas the motor or response-associated stage has a repetition bias. The view

of sequential effects as the product of two discrete and independent components is discussed in

more detail in Chapters 3 and 5.

In light of our previous discussion on exponential filtering, it is tempting to speculate that

the motor or response processing stage corresponds to an exponential filter of the sequence of

stimuli. In fact, such a filter shows a remarkable degree of similarity with the results shown in the

right panel of Figure 4.4. It is not so clear what the mechanism behind the pre-motor or stimulus

processing stage might be. Some authors have recently proposed an association between an A/R

filter and the stimulus associated component of sequential effects (M. Jones et al., 2013). However,

the A/R filter (Figure 4.1, right panel) is unable to produce the strong alternation bias displayed by

the pre-motor or stimulus processing stage (Figure 4.4, left panel). As discussed above, a separate
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mechanism was therefore proposed by M. Jones et al. (2013) to account for as alternation bias, the

merits of which are discussed elsewhere in this work (Chapters 1 and 5).

Given the prevalence of the two exponential filter approach in the theoretical literature, it is

perhaps unsurprising that a mapping has been sought between the two filters and the two processing

stages, particularly since one of the filters - the one at the sequence level - shows an almost perfect

correspondence with one of the processing stages - the motor or response-associated stage. Part

of the reason why this association was proposed may have been the absence of a mechanism

which produces an alternation bias similar to that displayed by stimulus processing stage. One of

the main objectives here is to propose such a mechanism, but before this we will review several

empirical aspects of sequential effects which a complete model must be able to capture. While

the answers to all these questions will not be provided here, it is important to ensure that the

overarching modelling framework is not limited in the sense of being able to represent all relevant

experimental parameters.

4.1.3 Ingredients for a complete model

There is a great deal of variation in sequential effects both when experimental conditions vary as

well as for different individuals performing the same experiment (see Chapter 3). For instance,

when the RSI is long a pattern referred to as cost-benefit - shaped like an inverted ‘v’ - is usually

obtained; conversely, when the RSI is short, a different pattern of results termed benefit-only is of-

ten observed. In some cases an entirely different pattern of sequential effects is observed (Melis et

al., 2002; Jentzsch & Sommer, 2002), discussed in Chapter 3 as the possible product of processing

delays. The first task for a complete model of sequential effects is therefore to explain this wealth

of different results, which seems to call for such a model to be able to parameterise both the RSI

as well as individual differences. Finally, by making assumptions with respect to the distribution

of individual parameters, it should be possible to replicate a latent structure similar to that which
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is observed in empirical data.

In addition to the RSI there are a host of other experimental factors which influence sequen-

tial effects, such as whether stimuli are spatially overlapping or not (Bertelson, 1963), different

response schemes (Hannes, 1968; Gokaydin et al., 2011) and stimulus-response compatibility

(Soetens et al., 1985). These tend to result in changes which fall along the continuum of re-

sults described by varying the RSI. A clear example of this is S-R spatial mapping with, when

made incompatible, results in a shift of the entire spectrum between benefit-only and cost-benefit

patterns of results towards higher values of RSI (Soetens et al., 1985). While seemingly not pro-

ducing qualitatively different results, the reason why these variables influence sequential effects is

in need of explanation. We will refer to the effects of changing the stimuli, the responses or the

compatibility between them as ‘stimulus and response effects’ for the sake of brevity.

It is useful at this point to summarise the different empirical aspects of sequential effects that

are in need of explanation, before turning to a discussion of the minimum requirements for a model

to be able to explain these different phenomena.

• The cost-benefit and benefit-only patterns of sequential effects.

• The dependence of sequential effects - and of their latent structure - on the RSI.

• Individual differences and associated latent structure.

• Stimuli and response effects.

• The possible role of processing delays in sequential effects.

Incorporating the RSI as a parameter calls for a continuous-time modeling framework, when

in fact most models proposed so far are of a discrete-time nature (e.g. Laming, 1969; Yu & Cohen,

2008; M. Jones et al., 2013). Two continuous-time models have been proposed so far (Cho et
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al., 2002; Gao et al., 2009), both building on the leaky accumulator modelling framework (Usher,

2001). However, as discussed above, these models depend on hard-coding the detection of re-

peating and alternating patterns via ‘biasing’ mechanisms, instead of letting this emerge naturally.

Moreover, the model by (Gao et al., 2009) proposes an additional three biasing mechanisms in

order to account for different patterns of sequential effects, making this a complex and difficult to

interpret model. Finally, as discussed in Chapter 3, the different patterns of sequential effects are

far more parsimoniously explained through different contributions by the two processing stages

shown in Figure 4.4.

Another requirement of a complete model is for it to be able to provide a meaningful param-

eterisation of individual differences. Variation in such parameters should be able to capture not

only the individual patterns of sequential effects, but also the covariance structure characteristic of

empirical data. Moreover, it is also necessary to explain how the dependence on the RSI is related

to individual differences, as the two phenomena seem to be closely related (see Chapter 3). Previ-

ous models sometimes incorporate parameters regulating some form of preference for alternations

and repetitions (e.g. Yu & Cohen, 2008). In one case a mixture parameter for the two types of

exponential filter shown in Figure 4.1 is included (M. Wilder et al., 2009). However, it is unclear

whether any of these models would be able to parsimoniously explain individual differences as

well as why these are related to the dependence of sequential effects on the RSI.

Stimuli and response effects suggest the need for some form of representation of space in the

model. This does not necessarily imply continuous two- or even three-dimensional space. For

instance, in order to capture the effects of stimulus-response compatibility it may be enough to

have four different points of entry into the model, two for the stimuli and another two for the

corresponding responses. In order to capture effects such as the difference between separate and

overlapping stimuli a more detailed representation of space may become necessary. No model

so far provides a representation of space, although two models based on the leaky accumulator

3 Please refer to Chapter 1 for a discussion of these models.
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framework do conceptualise a separation between the different stimuli. Nevertheless, even in this

case it is unclear how a a differentiation between stimuli and responses could be represented.

Finally, if processing delays are confirmed to play a part in sequential effects this may add

further requirements to a complete model. Depending on what is meant by ‘processing delays’ it

may become necessary to take into consideration more complex aspects of the decision making

process. Some speculations regarding this topic are given below and in Chapter 5.

Previous models of sequential effects target almost exclusively the cost-benefit pattern of se-

quential effects, and so should strictly speaking be considered models of sequential effects ob-

served when the RSI is long (but see Gao et al., 2009). In contrast, the aim here is to outline a

modelling framework with the potential to explain all aspects of sequential effects, and to begin

to explain some of these. In addition to continuous time, space will also be incorporated, first

in a discrete way but with the possibility of extension to continuous space (see Chapter 5). The

system upon which the framework is built allows for a conceptualisation of individual differences

with recourse to parameters also related to the the dependence on the RSI. Finally, in light of the

previous discussion on the difficulties faced by previous models, producing an alternation bias will

be as natural as a repetition bias, using exactly the same mechanism. In fact, the two fundamental

types of behaviour of the system considered below show symmetrical preferences for repetitions

and alternations, much like the putative processing stages involved in sequential effects and shown

in Figure 4.4.
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4.2 A new framework for sequential effects

4.2.1 Representing the stimuli in continuous time

In order to build a continuous time model4 of sequential effects, we must first of all represent the

stimuli in continuous time. Whereas before stimuli corresponded to a particular value - 0 or 1 - in

a discrete sequence, they will now be represented by a function of time F (t).5 The presence of a

stimulus at a particular time t will be marked by a constant value of F (t) - set at 1 throughout - and

its absence by a value of 0. The time course of the presentation of a single stimulus will look like a

square pulse as illustrated in Figure 4.5. At the time of stimulus onset - t1 - the function F (t) takes

a constant value and when the stimulus disappears - t2 - it returns to a value of 0. This scheme

allows for the representation of the duration of the stimulus presentation, as well as the interval

between successive stimuli. In a typical 2AFC the stimuli remain on screen until the moment

a response is made, in which case the duration of stimulus presentation is equal to the reaction

time and like it is a random variable. Here the simplifying assumption is made that the stimulus

presentation time is constant. In addition, stimuli and responses will not be distinguished on a first

approach, so each square pulse can be taken to represent a stimulus-response pair.

A square pulse can be constructed formally as the difference between two shifted Heaviside

step functionsH(t) as

f(t) = H(t− t1)−H(t− t2) (4.2)

where t1 is the beginning of the pulse and t2 the end.

4 Throughout, the modelling framework proposed here will often be referred to as ‘model’ for short, even though
a complete model of sequential effects is not intended here.

5 The use of an upper-case ‘F’ here is intended to avoid any ambiguity with ‘f’, used throughout to denote fre-
quency, and can be taken to mean ‘force’ as it will eventually be applied to an oscillator as a forcing function.
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FIGURE 4.5: A square pulse function representing a single stimulus. t1 is the time of stimulus onset and
t2 the moment the stimulus disappears which, in a typical 2AFC, corresponds to the moment a response is
made.

The next step is to represent the difference between the two alternative stimuli in the model. To

begin with this will be done by attributing opposite signs to pulses representing different stimuli,

a seemingly arbitrary distinction but one which will later emerge naturally from a more realistic

model. Mathematically, a negative sign pulse can be constructed just as easily as one with a

positive sign by switching the sign of the two terms in (4.2). Figure 4.6 shows examples of how

F (t) looks like for the regular sequences RRRR and AAAA.

This way of constructing sequences of stimuli has one important practical consequence: it

allows for a distinction between repetitions and alternations based on their frequency. Figure 4.6

illustrates this fact by showing two sinusoidal functions of frequencies 0.5 Hz and 1 Hz overlaid

on the sequences AAAA and RRRR respectively. Throughout, we will refer to the repetition

frequency as fREP and to the alternation frequency as fALT , while keeping in mind that fREP =

2fALT by definition.

4.2.2 The physics of oscillatory motion

Once stimuli - or stimulus/response pairs - are defined in continuous time, the more general nature

of the model must be decided upon. The choice of core modelling unit will lie with the damped
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FIGURE 4.6: Functions of time representing RRRR (left) and AAAA (right) in terms of square pulses.
Solid blue lines - functions representing the sequence RRRR (left panel) and AAAA (right panel). Individual
pulses represent stimuli - either X or Y - the sign of the pulse determining which stimulus is being shown.
Dashed red lines - superimposed sinusoidal functions of frequencies 1 Hz for RRRR and 0.5 Hz for AAAA.
The sinusoids are meant to facilitate visualisation of the fact that the repetition frequency fREP is twice the
alternation frequency fALT by definition.

linear harmonic oscillator. Part of the reason for this choice is that a damped oscillator acts as

an exponential filter of its natural - or resonating - frequency6 (Horowitz, 1989), and exponential

filtering in general has been shown to be of central importance in sequential effects.

To begin with the motion of a linear damped oscillator will be studied in some detail, with par-

ticular emphasis of the properties of relevance towards sequential effects, such as its behaviour as

an exponential filer. Following this exposition an interpretation of the different model components

in psychological terms is given.

A function describing the motion of a damped harmonic oscillator - y(t) - must satisfy the

following second order linear differential equation7

ÿ + γẏ + ω2
0y = F (t) (4.3)

6 The equation for the damped oscillator is essentially the same as that which describes an RLC circuit, well known
from electronics to act as a band-pass filter.

7 For a detailed discussion of this type of system please refer to any introductory physics of oscillations (Main,
1993; French, 2003) or linear differential equations (Boyce & DiPrima, 2005) textbook, depending on whether a
more applied or more mathematical approach is preferred.
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where y represents the position of the oscillator; ω0 is the natural frequency of the oscillator in

radians; and γ is the damping coefficient determining how much energy is lost per unit time due

to friction. We start by considering what happens if there is no forcing, in which case F (t) = 0.

If γ is small enough - relative to ω0 - so that the system is under-damped, y(t) will describe an

oscillatory trajectory around an equilibrium position according to

y(t) = e−γtAcosωt+ δ (4.4)

where A is a constant related to the maximum amplitude of the motion; ω is the frequency of the

oscillation;8 and δ is the phase. e−γt represents the exponential decrease in amplitude of motion

with time: the higher γ is the steeper the exponential decay. Note that the constants A and δ are

not free but determined by the initial conditions, i.e. the position and velocity at t = 0.

Next we consider what happens when the oscillator is forced. In the context of our model F (t)

will consist of a train of five pulses as defined above but we will start by analysing the simpler case

of a sinusoidal force such as

F (t) = F0cos(ωf t+ φ) (4.5)

where F0 is the maximum amplitude of the force; ωf its frequency; and φ its phase. The motion of

a forced oscillator will never die out, but rather settle to a long-term steady-state motion described

by

y(t) = Bcos(ωt+ δ) (4.6)
8 Note that in general ω is not equal to ω0. The only case in which the two are equal is if there is no damping,

i.e. γ = 0. However, for γ << ω0, as in most cases of practical relevance, the difference between ω and ω0 is
negligible.
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where B is the amplitude of motion; δ is a constant phase difference between the force and the

motion of the oscillator.9 Note that in this case ω = ωf , i.e. the oscillator will settle to a motion

with the same frequency as the driver. Unlike in the case of free motion, the two constants B and

δ are no longer determined by the initial conditions but rather by the parameters of the forcing

function F (t) together with ω0, and in particular the difference between ωf and ω0, the natural

frequency of the oscillator. Of particular relevance for our purposes is the amplitude of motion B

as a function of ωf , which is given by

B(ωf ) =
F0√

(ω2
0 + ω2

f )
2 + γ2ω2

f

(4.7)

Intuitively, it would seem that the maximum amplitude of motion corresponds to the case

where ωf is equal to ω0, in which case the driving frequency matches the natural frequency of

the oscillator. However, due to damping, B(ωf ) actually peaks below ω0, implying that in order to

maximize the amplitude of motion one must drive the oscillator with a frequency slightly below the

natural frequency of the oscillator. This difference is nevertheless small for most cases of practical

relevance.

Resonance and filtering

At steady state, the phase difference δ implies that the driving force is sometimes going with and

at other times against the motion of the oscillator. So the driving force is sometimes adding and

other times removing energy from the system. The average power - energy per unit time - supplied

to the oscillator over many cycles is given by

9 In order to keep this discussion simple the transient behaviour of the oscillator will be ignored. Nevertheless,
the solutions in all calculations throughout all include this transient behaviour as all consist of the most general
solution of the differential equations.
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FIGURE 4.7: Average power absorbed by a damped oscillator as a function of the sinusoidal driving
frequency. Two separate curves for different values of γ: the tall an narrow curve was produced with
γ = 0.6; the short and wide curve was produced with γ = 3. Remaining parameters were equal for both
curves: ω0 = 2π (1Hz) and F0 = 1. Note that the width of the curves has consequences for the range of
frequencies which are amplified through resonance, and therefore for the band of frequencies filtered by an
oscillator.

〈P (ω)〉 =
F 2
0

2γ

γ2ω2√
(ω2

0 + ω2)2 + γ2ω2
(4.8)

which results in a curve displaying a peak at ω0 (see Figure 4.7), implying that the maximum energy

input into the oscillator happens when the driving frequency equals ω0 - the natural frequency of

the oscillator. Conversely, the energy absorbed by an oscillator being driven with a frequency far

from ω0 is close to 0. This is the phenomenon know as resonance: driving forces with frequency

close to ω0 lead to increasing amplitude of motion with each cycle, whereas those far form ω0 do

not. The damping coefficient γ plays a crucial role by determining the width of the resonance

curve: the lower γ is the narrower and taller the resonance peak (see Figure 4.7).

The usefulness of considering a simple sinusoidal input lies in the fact that any function can

be approximated - via Fourier series - by a weighted sum of sinusoids with different frequencies.

In addition, the principle of superposition of linear systems states that if y1(t) is the solution to

(4.3) for F1(t); and y2(t) is the solution for F2(t); then the solution for F1(t) + F2(t) is given by
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y(t) = y1(t) + y2(t). In other words, the response to a sum is equal to the sum of the responses to

the individual terms, and we can consider separately the effects on the oscillator of the individual

frequencies present in the driving force separately (see below for a more detailed discussion of this

point).

When the driving force F (t) is a function composed of many different frequency components,

an oscillator will amplify - through resonance - those frequencies which are close to the natural

frequency ω0, while at the same time attenuating those frequencies far from ω0. How close a

frequency must be to ω0 in order to be amplified - or filtered - depends on the width of the resonance

peak which, as we have seen, depends on γ. A small γ will determine a narrow range of frequencies

- or band - filtered by the oscillator; conversely, a high value of γ will determine a wide frequency

band.

So far we have seen why an oscillator works as a filter. We must now understand why it acts as

an exponential filter. It was shown above that, in the case of free motion, the maximum amplitude

decreases exponentially due to damping. This happens because the damping force Fd = −γv,

where v is the velocity, always opposes the motion and therefore leads to a dissipation of any

energy stored in the oscillator. Similarly, and excluding small transient fluctuations, the average

energy per cycle in a forced oscillator will dissipate according to (Main, 1993)

〈E〉 =
1

2
ω2
0A

2e−γt (4.9)

where A is a constant. As we will see, the consequence of this is that a damped forced oscillator

will ‘forget’ its input in an exponential fashion, thereby providing a very good approximation to

the discrete exponential filter.

So it has been shown how stimuli will be represented by continuous functions and explained
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why the physics of a damped oscillator dictates that it will behave like an exponential filter. Next

the more general relationship between the oscillator parameters and the psychological constructs

it is meant to represent is discussed, with particular emphasis on what the dependent measure will

be which correlates with reaction time. Two parameters of the model are particularly relevant:

the velocity of the oscillator, given by ẏ(t), representing the expectation state; and the damping

coefficient γ which determines the exponential decay of memory, and plays a role analogous to α

in the discrete time filer in (4.1).

Given the discontinuous nature of the pulses applied to the oscillator the differential equa-

tions will be solved via the Laplace transform method (Boyce & DiPrima, 2005). The solutions

presented throughout are all analytic given the linear nature of the systems considered here. Ap-

pendices D E contain the technical details of how the equations were solved.

4.2.3 The relationship between physics and psychology

Because of the unprecedented use of oscillators to model sequential effects it becomes particularly

important to establish how the different components of the model map onto the usual concepts

considered in the psychology literature. Three aspects in particular will be focussed on: expec-

tation state, memory decay and reaction time. But before we go on it is useful to briefly review

how traditional models handle these same concepts. Discrete-time probabilistic models take the

probability of the next event to correspond to the expectation about what the next stimulus will be.

The higher the probability the stronger the expectation and the shorter the reaction time should be,

so that RT ∝ 1 − p(t). Memory of past events is assumed to decay exponentially, how quickly

depending on parameters such to α in Equation (4.1). In models based on the leaky accumulator

framework, reaction times are calculated as the mean time taken to reach a fixed threshold; expec-

tations are introduced via biasing terms - alternation and repetition ‘detectors’ - and an exponential

decay is implemented by a constant rate leaking of decision units involved (e.g. Cho et al., 2002).
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Here the velocity of the oscillator will be taken to represent expectations in the following way:

an oscillator with positive velocity will be considered to be ‘expecting’ a stimulus with a positive

sign, and one with negative velocity to be expecting a stimulus with negative sign. Reaction

time should therefore be a function of the magnitude of the velocity at the moment a stimulus

is displayed as well as whether the stimulus is that which was expected. One possibility is to think

about this problem in terms of the the energy input into the system by a particular pulse. Consider

the work performed by a force F (t)

W =

∫
F (t)v(t)dt (4.10)

It follows from (4.10) that W depends on the magnitudes of v(t) and F (t) and whether they

have have the same sign. If W is positive energy is added to the system and if it is negative energy

is removed from the system. So a stimulus which is expected will tend to increase the amplitude

of motion and one which is not expected will tend to decrease it. If F (t) happens to be a constant

function such as a pulse, W is greatly simplified as

W = F0

∫
v(t)dt (4.11)

where F0 is a constant equal to the amplitude of the pulse. If we further accept the duration of

the pulse to be short, the instantaneous energy input is equal to F0v0 where v0 is the velocity at

the exact moment the pulse is initiated. Finally, since the effects of stimulus intensity will not be

considered, the exact value of F0 is irrelevant (it is set at 1 throughout) and we can simply take

the quantity ve = sgn(F0)v0, which has units of velocity, as a measure of how much the system

was expecting a particular pulse. As discussed above, the stronger the expectation the shorter the

reaction time should be so we will take RT ∝ −ve.
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In the case of a sequence of several stimuli, and in particular of five stimuli, the expectation

state for the last stimulus - the velocity of the oscillator just before the last pulse - is a function of

the four preceding stimuli and whether they added or removed energy from the system, as well as

the phase of the oscillator. This information is all encoded in the velocity at the time the last pulse

arrives and so ve will be calculated at the exact moment the last pulse is initiated. Throughout,

ve will be referred to loosely as ‘velocity’ but it should be kept in mind that the sign the velocity

assumes depends on the sign of the last pulse. This situation is analogous to discrete-time models,

in which the choice of p(t) or 1 − p(t) depends on the nature of the next stimulus and must be

changed dynamically.

Due to energy dissipation, any pulse applied to the oscillator will eventually be ‘forgotten’ by

the system, and this is meant to represent the decay of memory about past events. In the particular

case of sequential effects in a 2AFC, it has been shown that stimuli beyond the last five do not have

any significant influence on reaction time (Remington, 1969).

Now that all the ingredients have been collected, in the next section the simplest model possible

- a single damped oscillator - will be analysed.

4.2.4 A single oscillator model

Behaviour at resonance - REP and ALT

Results of the single oscillator model will be calculated by forcing the oscillator with each of the

usual sixteen sequences of stimuli in isolation. As always, sequences come in pairs, so for instance

XYYXY represents the same pattern as YXXYX, and both can be written ARAA. In practice only

results for those sequences starting with the same stimulus - say X - will be calculated since we are

assured results for the sister sequences will be the same. We start by setting the natural frequency
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FIGURE 4.8: Results of an oscillator set to resonate with repetitions (REP). The curve shows velocity
measurements taken just before the last pulse and take into account whether the last stimulus was expected
or not (see main text). The natural frequency of the oscillator is set to match the repetition frequency so
ω0 = fREP = 1 Hz; damping was set at γ = 1.5 for this example. Results are shown in terms of the negative
of the velocity in order to facilitate comparison with empirical reaction time results since RT ∝ −v.

of the oscillator ω0 equal to fREP and both equal to 1 Hz, with γ = 1.5, producing the results

shown in Figure 4.8.

When ω0 is set to match fREP - the repetition frequency - the system is set to resonate with

repetitions producing a pattern of results nearly identical to those of the exponential filter defined

in Equation 4.1 (see Figure 4.1, left panel). However, these similarities belie what is a considerably

more complex system in the case of an oscillator. The approximation to the simple exponential

filter is only valid when ω0 ' fREP , i.e. when the oscillator is resonating with repetitions. When

ω0 is shifted away from fREP the system will filter frequency components other than fREP , which

are unrelated to repetitions. One particular frequency that may by of significance is fALT . Figure

4.9 shows what happens if ω0 is now set to fALT .

In much the same way as a damped oscillator tuned to fREP can be thought of as detecting

repetitions, an oscillator tuned to fALT works as a detector of alternations. Note how the pattern

of results in Figure 4.9 is an almost perfect symmetrical copy of that shown in Figure 4.8. The
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FIGURE 4.9: Results of an oscillator set to resonate with alternations (ALT). The curve shows velocity
measurements taken just before the last pulse and take into account whether the last stimulus was expected
or not (see main text). The natural frequency of the oscillator is set to match the alternation frequency so
ω0 = fREP = 0.5 Hz; damping was set at γ = 1.5 for this example. Note how results are almost perfectly
symmetrical with those of an oscillator tuned to fREP shown in Figure 4.8, except for a slightly greater
amplitude of ALT compared to REP (see main text).

oscillator tuned to fALT is in fact operating as an exponential filter of alternations. From now,

the pattern of results of an oscillator tuned to repetitions will be referred to as REP for short, and

the pattern obtained when it is tuned to alternations as ALT, while keeping in mind that these

resonance patterns are not fixed but depend on γ (see below). Figure 4.10 shows an illustration of

the parameters used to produce REP and ALT respectively.

When looked at in terms of motion of the oscillator, resonance with repetitions and with al-

ternations correspond to somewhat different phenomena. When the system is tuned to repetitions,

the oscillator is forced with one pulse per cycle; when it is tuned to repetitions it sees two pulses

each cycle (see Figure 4.11). This gives the oscillator tuned to fALT a slightly greater amplitude

of motion which translates into a small difference in the scale of REP and ALT.

In order to discuss how model results depend on damping we will consider the effect of varying

γ on REP, the effect on ALT being analogous in every respect. Recall that γ regulates the rate



4.2 A NEW FRAMEWORK FOR SEQUENTIAL EFFECTS 159

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Frequency (Hz)

P
o

w
er

fREPfALT

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Frequency (Hz)

P
o

w
er

fREPfALT

FIGURE 4.10: Illustration of the parameters which produce REP (left panel) and ALT (right panel). Blue
lines - mean power absorbed by the oscillator as a function of sinusoidal driving frequency with ω0 = 1 Hz
(left panel) and ω0 = 0.5 Hz (right panel); γ = 1.5, the same value used to produce Figures 4.8 and 4.9.
Red and black vertical lines mark the positions of fALT and fREP respectively. Note that the peak of the
power curves, determined by ω0, is situated either at fREP to produce REP (left panel) or fALT to produce
ALT (right panel). Recall that fREP = 2fALT by definition.

of exponential decay, and so higher values of γ determine a shorter ‘memory’ span and vice-

versa. The result is that, as damping is increased, model results will depend progressively less on

more distant events, until they reduce to a two-tiered dependence on whether the last event was a

repetition or an alternation. Figure 4.12 shows an illustration of this principle for three values of γ,

where a progressive loss of sensitivity to older events can be observed. Note that this progression is

perfectly analogous to what happens in the case a discrete-time exponential filter as the parameters

regulating the exponential decay are varied (not shown).

Figures 4.8 and 4.9 show the results of setting ω0 equal to fREP and fALT respectively, the two

dominant frequency components in the square-pulse functions representing sequences of stimuli.

Outside these values the oscillator will filter out other frequency components. In order to under-

stand what determines the behaviour under these circumstances, and what frequency components

other than fREP and fALT might be present, we must turn to a frequency domain view of the model.

As we will see, there is a complex relationship between the frequency content of the sixteen differ-

ent functions representing the sequences of stimuli and the behaviour of the oscillator. Switching

to a frequency domain view of the input functions will also allow for a better understanding of how

γ affects the model.
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FIGURE 4.11: Behaviour of an oscillator when resonating with repetitions and with alternations. Blue
lines - position of the oscillator. Red dashed lines - force applied to the oscillator (not to scale). Top two
panels - oscillator tuned to fREP ; Bottom two panels - oscillator tuned to fALT . When an oscillator tuned
to fREP is forced with RRRR (top left panel) each new pulse builds upon the last to increase the velocity
of the oscillator, the same being true of an oscillator tuned to fALT when it is forced with AAAA (bottom
right panel). Conversely, when the oscillators are forced with a frequency to which they are not tuned -
top right and bottom left panels - each pulse does little to increase the velocity. Notice how resonance with
alternations induces a greater amplitude of motion when compared with with repetitions, the reason being
that in the former case the oscillator is forced twice during each cycle.

Representing sequences in the frequency domain

In order to understand how a function looks like in the frequency domain we start by calculating

its Fourier transform

x(f) =

∫ ∞
−∞

e2πiftx(t)dt (4.12)

where x(t)10 can be taken as any of the five-pulse functions discussed above. The spectral energy
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FIGURE 4.12: Effect of varying the damping coefficient on model results. From left to right, γ equals
0.6, 1.5 and 3 respectively. Note how the pattern of results depends progressively less on older events until,
for γ = 3, only the last two events have any significant influence. The reason for the changes observed
is the steeper exponential decay of memory determined by higher values of γ. Ultimately, by increasing γ
enough, results will reduce to a two-tiered dependence on the last event and whether it was a repetition or an
alternation. Only the effect of varying γ on REP is shown but the effect on ALT is analogous. The behaviour
of a discrete time exponential filter as the α parameter is varied is qualitatively the same (see main text).

density can then be calculated according to

S(f) = |x(f)|2 (4.13)

For the discrete case the integrals in (4.12) and (4.13) are replaced by sums. Also, note that

the energy as defined in (4.13) is not equivalent to the mechanical energy discussed above in the

context of an oscillatory motion, but rather a measure of the content of a function in terms of

individual frequency components which make it up.

Let us start by considering how the functions representing RRRR and AAAA look like in the

frequency domain (see Figure 4.13).11 As expected RRRR has a strong peak around the repetition

frequency fREP and AAAA around the alternation frequency fALT . An interesting observation can

be made about these spectra: AAAA presents harmonic peaks every odd-integer multiple of the

10 Note the slight change in notation here in order to avoid the letter f which now stands for frequency.
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FIGURE 4.13: Spectral energy density - i.e. spectra - of a perfectly repeating (left panel) and perfectly
alternating (right panel) sequences. Note how RRRR shows harmonic peaks for all integer multiples of
fREP whereas AAAA shows only harmonic peaks at odd-integer multiples of fALT . Also, notwithstanding
a decrease in power as the frequency increases, the overall pattern visible in the interval [0 1] Hz is repeated
for higher frequencies.

base frequency fALT , a general property of square waves (Main, 1993); in contrast, and by virtue

of being ‘lifted’ onto the positive domain, RRRR shows harmonic peaks every integer multiple

of fREP , as well as a peak at frequency 0. The spectra of RRRR and AAAA, as well as any of

the other sixteen possible sequences, repeats itself - with some attenuation - every integer multiple

of the base frequency of pulses, which is equal to fREP . If fREP is set to 1 Hz, as will be the

case throughout, this means that we can restrict ourselves to the interval [0 1] Hz when discussing

sequences in the frequency domain.

The functions considered here are all composed of five pulses, with any differences due solely

to the sign of the pulses. An important consequence of this is that the total spectral energy content

as defined by

S =

∫ ∞
−∞
|x(f)|2df (4.14)

is constant for any sequence of stimuli of equal length, with only the energy distribution chang-

ing. This has consequences in that an important trade-off is observed across the sixteen sequences:

11 The set of all frequency spectra for all sixteen sequences is shown in Appendix F.
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spectral energy is either fully concentrated in fREP , in fALT , or it is distributed across other fre-

quencies lying in the intervals between fREP and fALT . An illustration of this principle is shown in

Figure 4.14 where the spectra of four different sequences is shown: RRRR, AAAA, ARAR/RARA

(the spectrum of the last two sequences is equal). Note how the sequence RRRR has - other than

a trivial peak at f = 0 - only one dominant peak at fREP and similarly that AAAA has only

one main peak at fALT . On the contrary, the sequences ARAR/RARA have their energy fully

concentrated on intermediate frequency components. The fact that only the sequences RRRR and

AAAA display a single dominant peak reflects the fact that these are the only two perfectly regular

sequences.

In order to make the statement about the trade-off in spectral energy content above clearer, we

will denote the spectral energy in and around fREP and fALT asEREP andEALT respectively. Fur-

ther, let us denote the spectral energy content of the intermediate frequencies between fREP and

fALT as EINT . EREP , EALT and EINT define three regions which partition the frequency spec-

trum; the boundaries between these regions will not be specified, but are taken to lie approximately

where the spectral peaks at fREP and fALT end and secondary frequency peaks begin. Since the

total spectral energy is constant EREP + EALT + EINT = k, with three important corollaries of

this relation: firstly EINT ∝ −(EREP + EALT ); secondly EALT + EINT ∝ −EREP ; and finally

that EREP + EINT ∝ −EALT . The relevance of these relations is made clear next.

It is one thing for a trade-off to be observed in the frequency content of the sequences, and

another whether this trade-off will manifest itself in terms of model results. Some sequences have

the same spectrum, and yet have very different results when applied to the oscillator. The reason

for this is damping, which makes velocity measurements - taken at the end of the train of pulses

- more dependent on recent events.12 For instance, consider the case where ω0 = fREP : the

sequence AARR will result in a larger velocity measurement than the sequence RRAA, despite

12 By making use of the principle of superposition of linear systems it is possible to calculate the contribution of
each frequency component towards the velocity of the oscillator, but this was omitted here for the sake of keeping
this discussion as simple as possible.
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FIGURE 4.14: Power spectra RRRR, AAAA and ARAR(RARA) in the interval [0 1] Hz. Note that the
sequences ARAR and RARA have the same frequency spectrum. The spectral energy of the sequences
RRRR and AAAA is concentrated almost exclusively around fREP and fALT respectively, whereas for
ARAR and RARA it is distributed among intermediate components.

both having the same spectrum, because the repetitions in AARR occurred more recently. Yet

despite this caveat, the trade-off in spectral energy manifests itself at the level of oscillator velocity

measured at the end of the pulse train.13 For instance, EALT + EINT ∝ −EREP seems to imply

that, if an oscillator had a wide enough frequency band - i.e. high enough γ - so as to encompass

EALT and EINT , then the pattern of results should be similar to the negative of those observed

when only EREP is filtered. In other words, filtering all frequencies other than fREP should result

in a pattern approximating -REP, and this is in fact the case as shown below, in particular for the

case of a heavily damped system.

In order to complete the discussion of a single oscillator system two separate cases will be stud-

ied separately: one in which the single oscillator is heavily damped (though not over-damped) and

another where it is lightly damped. As we will see, the discussion of the way in which oscillator

velocity depends on the frequency content of the sequences will be of crucial importance in under-

standing model results, as well as later in anchoring the discussion of artificial latent structures.

13 The reason for this is that the trade-off discussed for five-long sequences of pulses would also be verified for
sequences of any length, or in fact for any weighting of the sequences, so long as it was the same for all.
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FIGURE 4.15: Patterns similar to -REP and -ALT produced by a heavily damped oscillator. Solid blue
lines - REP (left panel) and ALT (right panel) calculated with γ = 3 and results shown in terms of the
negative of velocity as usual. Dashed red lines - model results in terms of velocity - not its negative - for
ω0 = 0.63 in Hz (left panel) and ω0 = 0.73 (right panel), both with γ = 3. Note that in both panels the
two patterns are really inverted copies of each other, but are shown with the same orientation in order to
facilitate comparison.

A heavily damped system

While perhaps of lesser psychological relevance when compared to a lightly damped system - for

reasons that will soon be made clear - the study of a heavily damped system is useful for several

reasons. Firstly, it will complete our understanding of the range of possible types of behaviour of

a single oscillator; secondly it will illustrate clearly the trade-off in spectral energy discussed in

the previous section; thirdly, it will eventually be useful in understanding how the behaviour of an

oscillator is related to its latent structure.

As discussed above, a high value of γ determines a relatively wide frequency band filtered

by the oscillator. This will make it possible to observe directly the trade-off relations in spectral

energy discussed above, but this time in terms of oscillator velocity. Specifically, it is possible to

position the frequency band - by varying ω0 - in such a way as to obtain patterns of results similar

to -REP as well as -ALT (see Figure 4.15). An illustration of the model parameters which make
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FIGURE 4.16: Illustration of the model parameters which produce patterns resembling -REP (left panel)
and -ALT (right panel). Solid blue lines - resonance curves with γ = 3. The values of ω0 which produce
-REP and -ALT respectively are 0.63 Hz (left panel) and 0.73 Hz (right panel) respectively. Note the wide
resonance peaks which determine fairly wide frequency bands filtered by the oscillator. This allow the
oscillator to filter out both the frequencies around either fREP or fALT - depending on the case - as well as
the intermediate frequencies (see main text).

these ‘inversions’ possible is shown in Figure 4.16.

The full range of qualitative types of behaviour displayed by a single heavily damped oscillator

is shown in Figure 4.17. All these patterns have one thing in common: because of the heavy

damping, and resulting steep exponential decay, no appreciable dependence on events beyond

the last two is observed. In amongst this catalogue of different types of behaviour is a pattern

resembling -(REP+ALT), something what was predicted from the discussion of the trade-off in

spectral energy content (see above). Also shown in Figure 4.17 are results similar to -REP and

-ALT but with a clearer dependence on the two last events, as well as patterns similar to a two-

tiered dependence on the last event. Overlaid on all the different types of result is a best fitting

linear combination of REP and ALT, i.e. the the patterns obtained at resonance with fREP or fALT

respectively. The fairly good qualitative fits highlight one essential fact about a heavily damped

oscillator: it behaves like a linear combination of the form c1ALT + c2REP where c1 and c2

are coefficients that can be positive or negative. This is true despite the fact that the patterns

resembling -REP and -ALT are not inverted copies of REP and ALT in any real sense, but rather a

consequence of the trade-off in spectral energy. Next we turn to the more psychologically relevant

case of a lightly damped oscillator.
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FIGURE 4.17: Selected patterns of results for a single heavily damped oscillator. Solid blue lines - results
in terms of velocity of a single oscillator as ω0 is varied from 0.5 to 1 Hz with γ = 3. From left to right
and top to bottom ω0 is: 0.67, 0.75, 0.82, 0.87 and 0.93 Hz. These values were chosen as representative
of different qualitative patterns and are otherwise not significant. Panels (a) and (e) show patterns with
an apparent dependence on the last event only, with either a repetition or alternation bias; panels (b) and
(d) show patterns similar to -REP and -ALT but with a clearer dependence on the last two events; finally,
panel (d) shows a concave pattern similar to -(REP+ALT). Dashed red lines - best fitting linear combination
of ALT and REP of the form c + (aALT + bREP ), illustrating how a heavily damped oscillator is well
approximated by a linear combination of REP and ALT (see main text).

A lightly damped system

Our best estimate of the human ‘damping coefficient’ comes from experiments which resulted in

a pattern of results similar to what is expected of a simple exponential filter. Fitting the results of

a single oscillator to the patterns shown in Figure 4.2 yields the following estimates for the human

γ: 0.66, 0.82 and 0.68. By contrast, a value γ = 3 was used in the analysis of the heavily damped

system, so it seems that a lightly damped oscillator might be a better model for human behaviour.
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FIGURE 4.18: Demonstration that obtaining results similar to -REP and -ALT is no longer possible with
a lightly damped oscillator. Solid blue lines - REP (left panel) and ALT (right panel) obtained with γ = 0.6.
Dashed red lines - best fitting oscillator results fit to REP and ALT by linearly transforming results according
to a+ bx where b was constrained to be negative.

Based on the estimates above, γ = 0.6 will be the choice for the analysis of a lightly damped

oscillator.

When the damping coefficient γ is low the oscillator filters a narrow frequency band. Under

these conditions, it is unlikely that patterns such as -REP and -ALT will occur, since these require

a wide filter band. Take the relationEALT +EINT ∝ −EREP discussed above: a narrow frequency

band is unlikely to encompass both EALT and EINT , i.e. both fALT and all intermediate frequency

components. Moreover, such a narrow band is unlikely even to cover the set of all the intermediate

frequencies, in which case we might have to consider individual frequencies included in EINT in

isolation. In general the lightly damped oscillator is expected to show a wider range of different

types of qualitative behaviour as ω0 is varied, when compared to the heavily damped oscillator.

Figure 4.18 illustrates the fact that with a lightly damped oscillator it is no longer possible to

find a value of ω0 which results in a behaviour similar to -REP and -ALT. Moreover, Figure 4.19

show results for the lightly damped oscillator for the same values of ω0 used when illustrating the
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FIGURE 4.19: Selected patterns of results for a single lightly damped oscillator. The different panels
show results for the same values of ω0 used when illustrating the behaviour of a heavily damped oscillator
- 0.67, 0.75, 0.82, 0.87 and 0.93 Hz - but this time with γ = 0.6. Note the qualitative differences relative
to the results shown in Figure 4.17 and the fact that in the lightly damped case results are no longer well
described by a linear combination of the resonance patterns REP and ALT.

more heavily damped system and show in Figure 4.17, illustrating not only the more diverse nature

of results obtained when γ is low but also that under these circumstances the model is no longer

well approximated by a simple combination of REP and ALT.

The single oscillator model is highly unrealistic in that an arbitrary distinction is made between

the stimuli based on their sign, which further limits the number of possible alternatives to two.

Before turning to a discussion of the possible uses of the model in capturing different aspects of

sequential effects, it is important to first present a more realistic version of the model, one which

will include two rather than just one oscillator. This is also important in that it will begin to lay

the groundwork for an entire family of models which among other things can include any number
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of oscillators as well as alternative stimuli. Foreshadowing some of the conclusions of this work,

the behaviour of a system of two oscillators will be found to be effectively equivalent to that of

the single oscillator model discussed so far. So despite the importance of the next section the

discussion that will follow after it can be read with the single oscillator model in mind.

4.2.5 Two coupled oscillators

The way to relax the distinction between the stimuli based on their sign is to begin to conceptualize

space in the model. From now on, different stimuli will always have a positive sign, and will be

distinguished based on the oscillator to which they are applied. While different oscillators can

be considered to represent spatially separate locations, no specific mapping to any real locations

such as neurological loci is implied, nor are the oscillations meant to represent any particular

type or scale of neural activity. For now the model, while harbouring a great deal of potential to

make concrete predictions, should be considered to be abstract in nature. Discretizing the system

provides not only a natural way to remove the artificiality of the sign assumption, but is useful in

that is allows a description of the the system in terms of its normal modes, defined as those states

of a system in which all parts move with the same frequency, whether in phase or not (French,

2003).

We start by considering two coupled oscillators, described by the following pair of second

order differential equations

ÿ1 + γẏ1 + ω2
0y1 + k(y1 − y2) = F1(t)

ÿ2 + γẏ2 + ω2
0y2 + k(y2 − y1) = F2(t)

(4.15)

where the subscripts refer to different oscillators and k represents the strength of the coupling

between them. In the system as set up in (4.15) the coupling is proportional to the difference
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FIGURE 4.20: Example forcing functions for two coupled oscillators in standard coordinates. Top two
panels show the sequences RRRR and bottom two AAAA. Left panels represent the forces applied to one
oscillator - F1(t) - and right panels the other oscillator - F2(t). Notice how, in contrast with the case of a
single oscillator, the distinction between stimuli is now made by applying the respective pulse to a particular
oscillator.

between the amplitude of the two oscillators at any given moment. This way of handling the

coupling has its roots in the case of two masses connected by a spring, and is unlikely to be

physically realistic for our purposes. However, it is equivalent to a coupling proportional to the

amplitude of the other oscillator, and is convenient for reasons made clear below. The functions

F1(t) and F2(t) represent the sequences of stimuli in a manner different from that which was

shown for the case of a single oscillator. Figure 4.20 shows how F1(t) and F2(t) look like for the

sequences RRRR and AAAA. Note how all pulses have a positive sign: in the case of RRRR all

pulses are applied to the same oscillator; for AAAA the oscillator which is forced alternates.

The system in (4.15) is coupled since y1 depends on y2 and vice-versa. A more useful de-

scription of the system can be achieved by switching to canonical or normal mode coordinates. A
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system with two oscillators has two normal modes: the first is revealed by adding the two equations

in (4.15), and the second by subtracting them. We then define new coordinates {q1, q2} such that

q1 = y1+y2√
2

and q2 = y1−y2√
2

. Equations (4.15) are thus transformed into

q̈1 + γq̇1 + ω2
0q1 = F1(t) + F2(t)

q̈2 + γq̇2 + (ω2
0 + 2k)q2 = F1(t)− F2(t)

(4.16)

where a normalising constant 1√
2

is omitted. Note that the two equations in 4.16 are now uncou-

pled. In other words, the system now consists of a set of two completely independent oscillators,

each describing the motion of a normal mode of the system. Here the usefulness of a coupling

proportional to the difference in amplitude is revealed because one of the normal modes will al-

ways have a natural frequency equal to ω0. The first normal mode is sometimes referred to as the

pendulum mode, and physically it corresponds to the motion of both oscillators in phase with the

same frequency ω0; the second normal mode is referred to as the breathing mode and corresponds

to the motion of both oscillators in anti-phase with frequency
√
ω2
0 + 2k.

Note that with the change in coordinates the functions on the right side of (4.16) change as well.

Some interesting properties of the way the stimuli are represented now come into effect: firstly,

because each pulse is applied to one oscillator only, F1(t) +F2(t) is always the same function, and

consists of a train of five equal amplitude pulses with the same sign; secondly F1(t)−F2(t) results

in a force applied to q2 in which the stimuli are distinguished by their sign, much as in the case of

a single oscillator discussed before. Figure 4.21 shows an illustration of how F1(t) + F2(t) and

F1(t)− F2(t) look like for the case of the sequences RRRR and AAAA.

Given that F1(t)+F2(t) is always the same function, the behaviour of q1 is always the same no

matter which sequence we are considering. This means that q1 contributes a constant term to the

behaviour of the system in terms of the original coordinates {y1, y2} and can be ignored. Under



4.2 A NEW FRAMEWORK FOR SEQUENTIAL EFFECTS 173

0.5 1.5 2.5 3.5 4.5

−1

−0.5

0

0.5

1

time (s)

F
First normal mode

X X X X X

0.5 1.5 2.5 3.5 4.5

−1

−0.5

0

0.5

1

time (s)

F

Second normal mode

X X X X X

0.5 1.5 2.5 3.5 4.5

−1

−0.5

0

0.5

1

time (s)

F

X X X X X

0.5 1.5 2.5 3.5 4.5

−1

−0.5

0

0.5

1

time (s)

F

X

Y

X

Y

X

FIGURE 4.21: Example forcing functions for two oscillators in canonical (i.e. normal mode) coordinates.
Top two panels show the sequences RRRR and bottom two AAAA. Left panels represent the forces applied
to the first normal mode - q1 - and the right panels to the second normal mode - q2. These forces are consist
of transformations of the original forces - F1(t) and F2(t) - applied to the original (physical) oscillators
and shown in Figure 4.20. The force applied to q1 is proportional to F1(t) + F2(t) and that applied to q2
proportional to F1(t) − F2(t). Note how the force applied to the first normal mode is always the same
irrespective of the sequence of stimuli chosen. On the other hand, the second normal mode experiences a
string of pulses in which different stimuli are differentiated by sign.

the specific set-up described here, q2 is driving the dynamics of the system and this is effectively

a single oscillator with frequency
√
ω2
0 + 2k. In order to recover the same resonance patterns

obtained with a single oscillator - REP and ALT - one must simply adjust
√
ω2
0 + 2k so that it

matches fREP or fALT , the results of which are shown in Figure 4.22. In short, we can take the

behaviour of a single oscillator where pulses have different signs as being equivalent - up to a

constant - to the behaviour of a system with two degrees of freedom where pulses are applied to

different oscillators and do so without loss of generality.
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FIGURE 4.22: Resonance behaviour of a system of two coupled oscillators when its second normal
mode is set to resonate with either fREP (left panel) or fALT (right panel). As explained in the main text,
the first normal mode contributes a constant value towards the velocity so the behaviour of the system is
fully determined by the second normal mode. It is this second normal mode which was made to resonate
with either repetitions or alternations by varying k and ω0 so that

√
ω2
0 + k matches either fREP or fALT ;

γ = 1.5.

A system with two oscillators has two resonance peaks, a fact illustrated in Figure 4.23. How-

ever, the way in which the stimuli are represented means that one of the normal modes will make

a constant contribution to results no matter what the sequence is. More generally, a system with

n oscillators has, by definition, n normal modes with an equal number of corresponding natural

frequencies.14 One possible use of extending the model to include more oscillators would be to

distinguish stimuli from the associated responses, which would require four oscillators - two for

the stimuli and two for the responses. As the number of oscillators grows so does the number of

possible ways in which they are coupled, i.e. the topology of the system. One can also introduce

oscillators which are not directly forced but that are coupled to other oscillators which are, for a

myriad possible configurations. Ultimately, by taking the infinite limit of the number of oscillators

the model can be made continuous in space, in which case it will be described by a partial differ-

ential equation. Chapter 5 contains a more detailed discussion of how the model can be extended
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FIGURE 4.23: Amplitude response of a system of two coupled oscillators as a function of the frequency
of a sinusoidal force applied to one of the oscillators. Parameters for the example were: ω0 = 1 Hz;
γ = 1.5; k = −25. Note that neither of the two resonating frequency peaks is situated at ω0 because a
coupling proportional to the amplitude of the opposite oscillator was used in this case.

as well as the problems we expect to encounter.

4.3 Assessing the modelling framework

In this section several aspects of sequential effects will be discussed, as well as how the oscillator

modelling framework can be used in order to tackle these phenomena. This picture is necessarily

incomplete at this stage, and so will be most of the sections which will follow. In a few cases this

may be due to limitations of the model itself, such as in the case of RSI dependence and the time-

insensitivity of stimulus processing in sequential effects; in other cases, such as reaction time fits,

this lack of completeness is largely due to missing empirical evidence. In general, it is argued here

that the general framework shows a great deal of potential, particularly since the work presented

here should be taken to be a first approximation to what is almost certainly a more complex model.

Other limitations of the general approach, as well as possible extensions, are discussed in Chapter

5. Notwithstanding all these issues, the model is successful in capturing some crucial aspects of

14 Because we only discuss a system with two oscillators, a mathematical treatment of the case of an arbitrary
number of oscillators is not given here.
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sequential effects such as the centrality of two elements with opposite first order biases as well

as a covariance structure similar to that which is observed in reaction time data. But perhaps the

greatest strength of the general approach is that that all relevant empirical aspects of sequential

effects can be formalised in the the context of this framework, raising the prospect of a complete

model of sequential effects based on the principles outlined below.

4.3.1 Covariance structures

In this section we discuss covariance structures obtained by performing a principal component

analysis (PCA) on artificial datasets generated by a single oscillator based on simple assumptions

about the nature of individual differences. While all efforts will be made to remind the reader of

important facts, the following discussion hinges very strongly on Chapter 3 and on understanding

the latent structure of sequential effects. Also of particular relevance is the discussion of a heavily

and lightly damped oscillators above, and the differences between them. Where repeating facts

would be too lengthy or summarising them too confusing, the reader will be referred to the previous

chapter or to the sections above.

The objective of the ensuing discussion is not only to demonstrate that the model is success-

ful in replicating key aspects of the latent structure of sequential effects, but also to discuss the

relationship between a physical model and associated latent structure and to draw conclusions by

analogy with the latent structure obtained from reaction time data. It is hoped that by doing so

the meaning and the limits to the interpretation of the latent structure of sequential effects will be

made clearer.
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FIGURE 4.24: A comparison of the two main latent components of sequential effects with the two reso-
nance patterns. Solid blue lines - the two main latent components of sequential effects: C3 (left panel) and
C2 (right panel). Dashed red lines - REP (left panel) and ALT (right panel) calculated with γ = 1. The
components C2 and C3 shown were rotated using ALT and REP as targets; this rotation also included C1
and C4, for which the same targets as used in Chapter 3 were used, i.e. a constant vector and the results of
the second experiment included in Jentzsch and Sommer (2002) respectively. The results of this rotation are
virtually the same as when S-LRP and LRP-R were used as targets.

REP and ALT as C2 and C3

Two main latent components responsible for sequential effects - C2 and C3 - were identified in

Chapter 3. A psychologically meaningful interpretation for the latent variables encountered was

sought by attempting to relate C2 and C3 to evidence available about two processing stages in-

volved in sequential effects, one associated with the processing of stimuli and the other with the

processing of responses. One key anchor point for the proposed relationship is the similarity be-

tween the patterns of C2 and C3 with the relative contributions of pre-motor processing - S-LRP

- and motor processing - LRP-R - respectively towards sequential effects, as measured by EEG

(Jentzsch & Sommer, 2002). Here the possibility of a relationship between C2/C3 and REP/ALT

is discussed, which would further imply that the two types of resonance might also be related to

S-LRP/LRP-R.
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Figure 4.24 shows the results of performing a targeted rotation of the latent structure of sequen-

tial effects, but this time using REP and ALT as targets, instead of S-LRP and LRP-R as in Chapter

3.15 Perhaps unsurprisingly, given the overall similarity between ALT/REP and S-LRP/LRP-R re-

spectively, results differ little from those obtained in Chapter 3 (see Figure 4.24). A relationship is

therefore proposed here between the two main latent components of sequential effects and the two

types of resonance REP and ALT. If both this relation as well as the mapping of latent components

and the separate processing of stimuli and responses proposed in Chapter 3 holds, this would fur-

ther imply that the the two types of resonance might be associated with different neurological loci.

As discussed below a relationship between latent components and types of resonance, if it exists,

is more complex and nuanced than a simple direct correspondence.

The relationship between the latent structure of sequential effects and the underlying physical

truth is hard to evaluate without access to additional empirical evidence about the two processing

stages of sequential effects. It is particularly important to elucidate if the relative contribution

of both stages - visible in S-LRP and LRP-R - changes with the RSI as well as across different

individuals. In the mean time, some progress can be made by studying a physical system able to

produce a latent structure similar to that of sequential effects in reaction times.

Individual differences in the context of an oscillator

In order to perform PCA on artificial data generated by an oscillator we must first decide on the

way individual differences will be represented in the model. We start with a minimalistic set of

assumptions: each individual has a different natural frequency and the corresponding values of ω0

are distributed uniformly in the interval [0.25 1.25] Hz. In truth the interval [0.5 1] Hz would be

enough since it captures all qualitatively different types of behaviour of a single oscillator, but a

slightly wider interval will make it clear that the choice of interval is of no importance. Each case

15 The targets used for C1 and C4 were the same as before. See Chapter 3 for details.
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in the resulting artificial dataset will consist of a 16-long vector of velocities obtained by running

a single oscillator model in the usual way for a particular value of ω0.

Data from a heavily damped and a lightly damped oscillator, i.e. with γ = 3 and γ = 0.6

respectively, will be analysed in turn; these are the same values used in the discussion of both

systems above. For each value of γ two hundred random values of ω0 will be drawn. Latent

structures will be obtained by performing PCA on the two resulting datasets. In some cases the

latent structure will be left unrotated and in other cases a targeted procrustes rotations (see Chapter

3) will be performed with a variety of targets made clear as the discussion progresses. Finally, the

latent variables resulting from PCA conducted on oscillator data will be designated as O1, O2, and

so on, in order to avoid any possible confusion with the components obtained from reaction time

data - C1, C2, C3 and C4.

The heavily damped case

Studying the latent structure of a heavily damped oscillator will serve as a form of control for

the more psychologically relevant lightly damped oscillator. This control is necessary because

both systems display very similar covariance structures when two components are retained, de-

spite marked differences in the behaviour of the two systems (see above), and it is important to

understand why this is the case.

We begin by analysing the latent structure obtained with PCA before any rotation. Only two

relevant components explaining non-negligible amounts of variance were obtained - O1 and O2

- which explain 94.9% and 4.7% of the variance respectively for a total of 99.6%. These two

components are shown in Figure 4.25 together with the two main components of sequential effects

- C2 and C3 - also before any rotation. Much like in the case of empirical data, it would seem

that the first component before rotation reflects first order effects - i.e. the effect of the last event
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FIGURE 4.25: Latent structure of a heavily damped system before rotation. Solid blue lines - O1 (left
panel) and O2 (right panel), the two first latent components identified with PCA run on an artificial dataset
generated by drawing two hundred random values of ω0 and calculating model results with γ = 3. Dashed
red lines - the two main latent components of sequential effects identified in empirical reaction time data
- C3 (left panel) and C2 (right panel) - before any rotation. O1 and O2 explain 94.9% and 4.7% of the
variance present in the artificial data respectively, for a total of 99.6%. Note how O1 and O2 in this case can
be understood as the effect of the last and second-to-last events respectively on model results.

and whether it is a repetition or an alternation - and the second component represents the effect of

the second-to-last event. The significant difference in variance explained by O1 and O2 reflects

the steep exponential decay determined by the large value of γ chosen in this case. That O1 and

O2 together explain virtually all the variance in the data reflects the fact that the third-to-last event

does not contribute in any significant manner towards the velocity of the oscillator under heavy

damping conditions.

The point was made before in Chapter 3 that, while the unrotated C2 and C3 can be mapped

onto two simple concepts such as first and second order effects, this is not necessarily the most

relevant basis for the system. A similar point can be made about O1 and O2, the difference being

that we now know the most relevant basis to consist of REP and ALT, not first and second order

effects. Since we have access to this information we can use it to perform a targeted rotation on O1

and O2 using REP and ALT as targets, the results of which are shown in Figure 4.26. The almost
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FIGURE 4.26: Latent structure of a heavily damped system after rotation. Solid blue lines - first two
latent components - O1 (left panel) and O2 (right panel) - identified with PCA run on an artificial dataset
generated by a single heavily damped oscillator with γ = 3. Dashed red lines - REP (left panel) and ALT
(right panel) obtained with γ = 3. That the two latent components can be rotated to look almost exactly like
the two types of resonance reflects the fact that a heavily damped system is well approximated by a linear
combination of REP and ALT (see main text).

perfect fit between the latent components and the two types of resonance was expected since we

knew the system behaved approximately like a linear combination of REP and ALT (see above).

However, finding the most relevant rotation of O1 and O2 depended on knowing beforehand what

the real basis of the system is, an obvious impossibility in the case of empirical data.

The lightly damped case

The first two components - O1 and O2 - identified in data from a lightly damped oscillator are

effectively the same as those in the heavily damped case, and correspond to first and second order

effects respectively. However, as expected from the longer memory span determined by a lower

γ, two extra components - O3 and O4 - can be be found which explain non-negligible amounts of

variance, and which can be understood as the effects of the third-to-last and fourth-to-last events16

(see Figure 4.27). As expected, the share of the variance explained by the first two components
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FIGURE 4.27: Latent structure of a lightly damped system before rotation. Panels show first four latent
components identified with PCA on a dataset obtained by drawing two hundred random values of ω0 and
calculating model predictions in the usual way (see main text). The four components shown - O1, O2, O3
and O4 - are ordered from left to right in terms of decreasing variance explained, which is 52.1%, 24.1%,
15.4% and 8.2% respectively for a total of 99.8% of variance. Note how the unrotated components can be
understood as the effects of the last, second-to-last, third-to-last and fourth-to-last events respectively for
O1, O2, O3 and O4.

O1 and O2 is now reduced to 76.3%, with O3 and O4 explaining 15.4% and 8.2% of variance

respectively for a total of 99.8% for all four components. Note that while in the case of a heavily

damped oscillator the space of results was two dimensional, it is four-dimensional in the case of a

lightly damped oscillator.

As with the case of a heavily damped oscillator we have no reason to believe that the best basis

for the system in this case is the one shown in Figure 4.27. One the other hand, while we have

a strong expectation that REP and ALT will be part of the real basis, it is not so clear what the

remaining two elements will be. Presumably the two extra components reflect contributions by

minor frequencies in the input, in which case they could perhaps be estimated by shifting ω0 in

such a way that the band filtered by the oscillator now lies in the intermediate area between fREP

and fALT . A visual inspection of the spectra of the different sequences of stimuli reveals several

minor frequency peaks observed in between fREP and fALT , mostly centred around 0.6 Hz and 0.8

Hz, or sometimes 0.75 Hz (see Appendix F). Fortunately, the width of the filtered band in this case

is such that it is possible to partition the interval between fREP and fALT in approximately equal

16 One way to visualise this is to note that the ‘jumps’ in the magnitude of the coefficients occur between sequences
which differ in the third-to-last event in the case of O3, and fourth-to-last event in the case of O4.
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FIGURE 4.28: Illustration of the model parameters used in order to generate the targets for the rotation
of the latent structure of a lightly damped oscillator. Solid blue lines - resonance curves for four oscillators
with γ = 0.6 and the following values of ω0: 0.5, 0.66, 0.83 and 1 Hz. Red and black vertical lines show
the position of fALT and fREP respectively. Note how this choice of parameters results in a partition of the
interval between fALT and fREP in terms of the frequency bands filtered by each value of ω0.

stretches (see Figure 4.28 for an illustration of this point). So as targets for the rotation we will

use the results obtained by setting ω0 to 0.5 (fALT ), 0.66, 0.83 and 1 Hz (fREP ), the intermediate

values chosen in order to equally partition the interval between fREP and fALT . The rotated latent

structure, together with the respective targets, is shown in Figure 4.29. The excellent fit reflects

the fact the four frequency bands used cover all the qualitative types of behaviour of the lightly

damped system. By further decreasing γ it may be possible to generate a more complex latent

structure with more than four components.

In general, it should come as no surprise that almost perfectly fitting bases were found for both

the heavily and the lightly damped systems. In both cases the system is fully deterministic with

no artificial noise introduced, under which conditions any component identified with PCA must be

meaningful. Real data however is noisy and not every latent component is expected to have a valid

interpretation. Next some of the implications of our study of latent structures of artificial datasets

for the empirical latent structure of sequential effects are discussed.
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FIGURE 4.29: Latent structure of a lightly damped system after rotation. Solid blue lines - first four latent
components of an artificial dataset generated from a lightly damped oscillator. Red dashed lines - targets
used for rotation of the latent structure shown for comparison. The targets were the results of running the
oscillator model with γ = 0.6 for the following values of ω0 (from left to right): 0.5, 0.66, 0.83 and 1 Hz
(see main text and Figure 4.28 for an explanation of this choice of values.)

Implications for the latent structure of sequential effects

We have seen in the previous section how the latent structure of oscillator generated data is related

to damping, which determines the width of the band of frequencies filtered, as well as to the

frequency content of the input. The natural question to pose is: since we expect humans to be

closer to a lightly damped system, are minor frequency components also present in reaction time

data? Recall that three components related to sequential effects were identified in Chapter 3 - C2,

C3 and C4 - which explained, before rotation, 12%, 4.2% and 1.25% of variance. The reason

for these relatively small values was that the first component - C1 - while unrelated to sequential

effects, accounted for 78% of variance.

It is possible to estimate the variance explained by the four latent components of the lightly

damped oscillator if a component analogous to C1 was present which explained a similar amount

of variance as in the empirical case. A crude linear extrapolation results in estimates of variance

explained by the four components - O1 through O4 - of 11.4%, 5.3%, 3.4% and 1.8% respectively,

reflecting the fact that these are now forced to account for only 22% of the total variance. These

values imply that meaningful components would explain minute amounts of variance, and would

likely be rejected by any traditional method used to choose the number of components to retain
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such as scree plot inspection. In fact, in the analysis conducted in Chapter 3, theoretical arguments

had to be invoked in order to justify the choice of retaining C4, and even C3 would be at risk of

being rejected by scree plot analysis.

So if minor latent components corresponding to intermediate frequencies were present in em-

pirical data, not only would they be expected to explain tiny amounts of variance, but could quite

possibly be drowned in noise. One possibility would be to repeat the analysis performed in Chapter

3 by retaining an extra two components - for a total of six - and using the two extra targets used to

rotate the later structure of the lightly damped oscillator (see Figure 4.29, two rightmost panels).

However, this procedure is formally unsound as it could lead to over-fitting and is therefore not

shown here.17 In the future, with a greater reaction time dataset, it may be possible to validate the

presence of relevant minor components in empirical data.

Closely related to whether there are extra components in reaction time data is the question

of what would happen if meaningful components were left out. Consider the case of the lightly

damped oscillator: what would happen if we chose to retain only two components when we ac-

tually know the underlying truth to be four? Let us assume for the sake of argument we did not

know the origin of the oscillator data, and that our hypothesis was that there might be two mean-

ingful components related to S-LRP and LRP-R, much as was the case in the analysis performed

in Chapter 3. The result of choosing to retain two components - O1 and O2 - and using S-LRP and

LRP-R as targets for the rotation of the two components is shown in Figure 4.30, together with the

two latent components of sequential effects - C2 and C3 - rotated against the same targets.

One possible interpretation of the effects of discarding the two minor latent components O3

and O4 is that the two main components O1 and O2 - corresponding to ALT and REP - were

reduced to their first and second order influences. This makes sense if we think that the two first

17 This analysis was nevertheless conducted with a good qualitative fit to all targets. Some indication that this result
might be sound is given by the fact that using random vectors as targets for a fifth and sixth components - or even
just one of them - does not produce any appreciable fit. Nevertheless, this analysis should be considered to be
highly preliminary.
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FIGURE 4.30: Effect of underestimating the number of latent components in the latent structure of a
lightly damped oscillator. Solid blue lines - O1 (left panel) and O2 (right panel). Dashed red lines - the two
main latent components of sequential effects - C3 (left panel) and C2 (right panel). Both O1/O2 and C2/C3
were rotated to match the same targets, i.e. S-LRP and LRP-R respectively. Note how similar O1 and O2
are to C2 and C3 when the number of components present in the oscillator data is underestimated.

components before rotation correspond to first and second order effects (see above): any attempt to

rotate only the first two components - O1 and O2 - must stay within the same subspace. So rotating

O1 and O2 to match REP and ALT while leaving out O3 and O4 results in the reduction of the two

resonance patterns to their first and second order contributions.18Visually, the absence of third and

fourth order contributions by REP and ALT results in four flat ‘plateaus’ depending on the four

possible combinations of the last two events - RR, AR, RA and AA. A reduced dependence on

three- and four-back events is also displayed by C2 and C3, shown in Figure 4.30 for comparison,

which could possibly reflect the leaving out of extra meaningful components.

In the last few sections PCA was performed on artificial datasets generated by both a heavily

damped and a lightly damped oscillator, and showed that in both cases it is possible to relate the

latent structure obtained to the frequency content of the input. By extrapolating to the case of the

empirical reaction time dataset analysed in Chapter 3 it was speculated that there may be other

18 Mathematically this is the projection of REP and ALT when taken as vectors onto the subspace of first and second
order effects.
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meaningful latent variables contributing towards sequential effects, although it is preliminary at

this stage to draw any clear conclusions. In general, it was shown that an oscillator system can

display latent structures very similar to that which is observed in the empirical dataset, particularly

if only two components are retained (see Figure 4.30). Next the possibility of fitting reaction time

data directly is discussed.

4.3.2 Reaction time fits

No attempt will be made here to analyse in detail the fit of a single oscillator model to RT data,

the main reason for this being the highly unrealistic assumption of a system with one degree of

freedom. The fit of a system with several oscillators could be evaluated, but there are several com-

plicating factors associated doing this. In this section the reasons why it is likely that the system

underlying sequential effects has multiple degrees of freedom will be discussed, followed by a

discussion of the difficulties associated with introducing additional oscillators. It should be kept in

mind that a model can be found that fits reaction time data, but that this fit would be uninformative

and possibly even misleading in the absence of a clear interpretation of the parameters involved.

Moreover, while there are some fundamental properties of the class of systems considered here

which will be argued to be useful in modelling sequential effects, there are still some fundamental

gaps which must be filled before a full model is proposed; chief amongst these are the insensitivity

of the pre-motor stage to the RSI and the difficulties encountered when attempting to reproduce

the dependence of sequential effects on the RSI.

Some indirect evidence for a system with more than two degrees of freedom underlying sequen-

tial effects comes from the fact that humans often display a reaction time pattern best explained

by a sum of two components with opposite first order effects, such as the cost-benefit - or inverted

‘v’ - pattern of results commonly observed when a long RSI is used. This type of result seems to

imply that a component with a repetition bias and one with an alternation bias co-exist, and this
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is not possible with a single oscillator because such a system is either resonating with repetitions

or alternations, never both at the same time. So a system with at least two degrees of freedom

is necessary, one to detect repetitions and one for alternations. Loosely speaking, this discussion

finds a striking parallel in the argument reiterated over the years by several authors that detecting

repetitions and alternations at the same time requires two separate mechanisms (D. Hale, 1969;

Maloney et al., 2005). The suggestion here - preliminary at this stage - is that the apparent sep-

aration between mechanisms takes root in the independence of the normal modes of dynamical

systems.

Expanding the system to include any number of oscillators is straightforward, as demonstrated

above for the case of two coupled oscillators. However, in order to design a system capable of

resonating with both repetitions and alternations, at least three oscillators would be necessary.

The reason for this is that irrespective of the number of coupled oscillators there will always be a

normal mode - corresponding to the motion of all oscillators in phase - which does not make any

contribution towards sequential effects, much like the pendulum mode of a two oscillator system

(see above). If we consider three oscillators, and assume two to receive the input in the form of

stimuli-response pairs, then the third oscillator must be left free, in which case a decision must be

made about how it is coupled to the remaining oscillators, i.e whether it is coupled to both or just

one. Another option would be to consider four oscillators, all of which receive input representing

stimuli and responses separately, but then even more complicated decisions must be made about the

topology of the network of coupled oscillators. In addition, note that so far the discussion about

oscillators has been kept largely abstract and in terms of possible patterns of behaviour of one

or two oscillators; expanding the system to include more oscillators would imply that additional

aspects of the model must be made clear, such which oscillator’s velocity correlates to reaction

time.

Notwithstanding all the considerations above, a system with enough degrees of freedom to

allow for resonance with repetitions and alternations at the same time is expected to display a
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FIGURE 4.31: Fits of a single oscillator with the last pulse removed. Solid blue lines: C4, the minor
latent component of sequential effects identified in Chapter 3 (left panel); RT data the second experiment
conducted by Jentzsch and Sommer (2002) (right panel). Dashed red lines: best fitting results of a single
damped oscillator with the last pulse (i.e. stimulus) removed. γ = 0.6 and fREP = 1 in both cases. Best
fitting values of ω0 (in Hertz) were 1.14 and 0.4 for the data shown in the left and right panels.

reasonably good fit to reaction time, inasmuch as such a system is capable of producing pattern

of results similar to REP, ALT or a combination of both, and even extending to the benefit-only

pattern of sequential effects observed when a short RSI is used. Such an attempt at building a more

complex system should nevertheless be done in a principled manner and with further empirical

evidence.

We proceed with an analysis of how an oscillatory system may be of use in explaining the

minor latent component of sequential effects - C4 - identified in Chapter 3, and associated empirical

results displaying the same pattern.

4.3.3 Unusual patterns of sequential effects and C4

We have seen that a single damped oscillator can produce latent components similar to the two

main components - C2 and C3 - of sequential effects in human RT data. However, there is one last
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component of sequential effects - C4 - in need of explanation, together with the empirical results

which display a similar pattern (Jentzsch & Sommer, 2002; Melis et al., 2002). As discussed in

Chapter 3, the pattern of C4 points to a dependence on the second-to-last event, irrespective of

the last one. Also in Chapter 3 it was suggested that C4 was due to a combination of C2 and C3

stemming directly from the second-to-last event as if the last event had never happened. Since

C4 occurs primarily when RSI is short, it was further suggested that its occurrence was due to

processing delays only made evident when processing capacity was under greater pressure. In

the ensuing discussion the possibility of a mapping between C2/C3 and ALT/REP respectively is

implied.

In Chapter 3 the influence of C2 and C3 as if the last event never happened was estimated,

which resulted in two new patterns C2* and C3*, a combination of which with C3∗ ∝ −C2∗ was

shown to provide a good fit to C4. Estimating what REP and ALT would look like if the last event

never happened is easy with an oscillator: all that is required is that we apply only the first four

pulses of each sequence, leaving out the last one. Velocity measurements will again be taken at

the beginning of the last pulse, which is now the fourth. By analogy to the case of C2 and C3, the

equivalents of ALT and REP if the last event is left out will be referred to as ALT* and REP*. For

now the question of what kind of mechanism can result in the absence of a significant influence of

the last event will be ignored (see below for a discussion of this point).

Recall that the results of a heavily damped oscillator are well described by a combination of

ALT and REP (see Figure 4.17). By analogy, leaving out the last pulse turns the system into a

combination of ALT* and REP*. Under these circumstances, simply leaving out the last pulse and

varying ω0 might result in a combination of ALT* and REP* which resembles C4. It is perhaps not

so intuitive that the same should be true of a lightly damped system since in this case results are no

longer well approximated by a combination of ALT and REP (see Figure 4.19). Nevertheless, it

turns out that it is possible to obtain a pattern resembling C4 with a single lightly damped oscillator,

as shown in Figure 4.31. The fact that a pattern similar to C4 can be obtained with just a single
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oscillator is an interesting observation, but the real C4 is more likely to be generated by a system

with more than one degree of freedom.

Next we turn to a discussion of what is perhaps the most complex aspect of sequential effects:

their dependence on the RSI. As it turns out, this is also the most difficult aspect to capture within

the oscillatory framework proposed here.

4.3.4 Dependence on RSI

The dependence of sequential effects - and associated latent structure - on the RSI is a complex

issue. Recall that in a 2AFC stimuli usually remain on-screen until a response is made, and so

RSI + RT = ISI - where ISI stands for ‘inter-stimulus interval’. On the other hand, the overall

RT remains relatively constant as the RSI is varied, with only a slight increase when a very short

RSI is used (Soetens et al., 1985). Therefore, reducing RSI implies not only shortening the ISI -

thereby decreasing the average frequency of the stimuli - but also changing the proportion of time

dedicated to the stimulus presentation. Assuming an average 300 ms reaction time, a 50 ms RSI

would imply that the stimulus is on-screen 86% of the time; conversely, for an 800 ms RSI this

would be 28% of the time. If anything, this effect is made worse by the fact that the average RT of

subjects tends to increase to a small extent for low RSI values.

Both the changes in frequency as well as the relative proportion of the ISI taken up by the

RT result in changes to the spectral content of the sequences of pulses and consequently for the

behaviour of the oscillator. In broad terms, increasing the frequency of the stimuli widens the base

frequency interval which repeats itself harmonically at higher frequencies (see Figure 4.6), whereas

reducing the frequency narrows this interval. The overall effect of increasing the proportion of the

ISI dedicated to the RSI - i.e. the relative width of the pulses - is to decrease the power of the

harmonic repeats; conversely, narrowing the relative width of the pulses increases the power of
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FIGURE 4.32: Spurious inversion of REP observed when the RSI is short. Left panel - the usual REP
obtained by using a ratio RSI : RT of 4:1; Right panel - inverted copy of REP obtained by using a ratio
RSI : RT of 1:4. All other parameters are equal in both cases: γ = 0.6, fREP = 1 and ω0 = 1 (in Hertz).
Note how varying the relative proportion of the ISI taken up by the stimulus results in a pattern resembling
a copy of REP with a negative sign.

the harmonics; in the limit case where pulses consist of Dirac delta functions the base frequency

interval repeats itself with no loss in power. The effects of these changes on the behaviour of the

oscillator are complex and will not be discussed here in detail.

A more serious issue with modelling the dependence on the RSI stems from the assumption that

RT is proportional to the velocity of the oscillator at the beginning of the last pulse. As discussed

above, shortening the RSI increases the relative width of the pulses and this in turn affects the

point at which velocity measurements are taken, defined to be the beginning of the last pulse. The

qualitative effect of this shift in the point where measurements are taken depends on ω0 and it is

not the same in all cases. However, when ω0 = fREP or ω0 = fALT - the conditions under which

REP and ALT emerge - the shift in measurement point results in a perfect inversion of REP and

ALT, as illustrated in Figure 4.32 for the case of REP.

The inversion of REP/ALT due to the relative width of the pulses is likely to be an artefact

since it is not observed empirically as the RSI is lowered, and this exposes some limitations of the
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underlying assumptions built into the model. Pragmatically, it makes an analysis of the dependence

of oscillator results on the RSI unrealistic for the range of parameters used in empirical research,

particularly for the often used 50 ms RSI. Note that the spurious inversion of REP and ALT begins

to occur when the ratio RSI/RT is above 1, whereas if we consider an average reaction time of

300 ms and a 50 ms RSI this implies a ratio of RSI/RT equal to 7.

One possible solution to the spurious inversion problem is to represent stimuli as Dirac delta

functions situated at the beginning of each pulse. This would imply that the forcing of the oscillator

is now proportional to positive shifts in the intensity of the stimuli relative to the background,

rather than to the stimuli intensity itself. Preliminary results show that using Dirac delta functions

as stimuli differs little from results obtained using square pulses, while at the same time abolishing

the problem of spurious inversion of REP and ALT for short RSI. In any case, rigorously studying

the dependence of oscillator results on the RSI depends on further assumptions being introduced

in the model. Finally, an analysis of the dependence of the latent structure of oscillator data on the

RSI would further depend on the choice of distribution for ω0 as well as the number of degrees

of freedom - i.e. number of coupled oscillators - and configuration of the system, and should be

informed at a later stage with better empirical evidence.

4.4 General discussion

4.4.1 Covariance structures and underlying physical model

The possibility was discussed in Chapter 3 that sequential effects reflect two independent contribu-

tions associated with the processing of stimuli on the one hand, and of responses on the other hand.

This hypothesis is partly based on the observation that the two main latent components identified in

RT data - C2 and C3 - can be rotated to display patterns similar to the best evidence available about
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the relative contributions of stimulus and response processing: S-LRP and LRP-R. Also in Chap-

ter 3 the possibility was discussed that different patterns of sequential effects are the product of a

simple combination of a linear combination of patterns looking like C2 and C3, or correspondingly

S-LRP and LRP-R. On the other hand, it was discussed above that even a single lightly damped

oscillator can produce two latent components very similar to C2 and C3 (see Figure 4.30) if mi-

nor components are erroneously left out. Together these facts outline two competing possibilities:

(1) sequential effects are the product of a simple linear combination of two elements resembling

C2/C3 or S-LRP/LRP-R; or (2) the PCA analysis conducted in Chapter 3 left out relevant minor

components. Arguments for both hypotheses will be discussed in turn.

In favour of only two fundamental components of sequential effects is the fact that, before

rotation, minor latent components reflecting the effect of three-back and four-back events were not

identified in RT data. By contrast, such components are clearly visible in the results of a lightly

damped oscillator (see Figure 4.27, two rightmost panels). This points to a two-dimensional space

for sequential effects - setting aside C4 for now since this is thought to be a by-product of the two

main components - in which case sequential effects might be the product of just two components.

Also in favour of only two components is the fact that a combination of C2 and C3 (together with

C4) provides a good qualitative fit to individual RT data (see Appendix C). The view of sequential

effects as a simple linear combination of two elements raises some additional problems if we think

of the two main components of sequential effects as reflecting the two types of resonance REP and

ALT: the fixed nature of relative contributions by the two elements would imply that the system

is resonating irrespective of the frequency of the input, a point which will be discussed in greater

detail in Chapter 5.

The second hypothesis states that the dimensionality of the space of sequential effects was in

fact underestimated. In this case, the reduced dependence of C2 and C3 on events beyond the last

two may be considered in and of itself as providing evidence for the fact that meaningful compo-

nents were left out (see above for an explanation of why this is the case). Extra components, if
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they are present, are expected to explain small amounts of variance in the data, in which case con-

firming or refuting the second hypothesis will only be possible with a greater dataset of individual

differences or alternatively with a solid theory of sequential effects.

4.4.2 The mechanism behind C4

It was shown above that even a single oscillator can produce a behaviour similar to C4. However,

this was done by assuming the influence of the last stimulus to be absent. The fact that reaction

times are apparently independent of the last event seems almost paradoxical, since this last event

is the ones subjects are presumed to be responding to. It is hard to see how this could be possible

without postulating some sort of decoupling between the mechanism triggering a decision and

the mechanism behind generating expectations. In this scenario, the information responsible for

expectations, and therefore reaction time, would be integrated at some point with the decision

making process. Assuming the decision process is faster than the expectation generating process,

any delay in the latter would induce a RT pattern depending on the second-to-last stimulus.

One possibility is that subjects are not in fact responding to the last stimulus, bur rather sub-

jectively generating it, in which case the paradox may be resolved. When the RSI is very short

- i.e. 50 ms - stimuli appear almost instantly after a button is pressed and this can induce in par-

ticipants the illusion that the button press caused the next stimulus to appear. Anecdotally, and

despite no questionnaire having been applied to measure this effect, several participants perform-

ing the experiments analysed in Chapter 3 spontaneously reported confusion as to whether they

were responding to stimuli or generating them. These reports only happened with a 50 ms RSI,

and never when longer RSI values were used. If the subjects were merely pressing the response

button rhythmically in order to ‘generate’ the next stimulus, their responses would not require ac-

cess to information about the last stimulus, while at the same time possibly reflecting subconscious

expectations generated by the sequence of events. Also consistent with this view is the fact that
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error rates for subjects which display a pattern of results similar to C4 tend to be very high, in some

cases approximating 50%.

Another possibility is that C4 in fact never occurs in isolation. The results of Jentzsch and

Sommer (2002) seem to suggest it can but, on closer inspection, reveal a small difference in RT

to repetition and alternations (see Figure 4.31, left panel). Another set of results closely approx-

imating C4, that of Melis et al. (2002) (see Chapters 1 and 3), reveals a pattern that is best fit by

a combination of C4 with a non-negligible contribution by C2 (not shown). It is conceivable that,

while expectations are mostly driven by the second-to-last event, decisions are still being made

based on the current stimulus, possibly due to greater pressure to respond quickly when the RSI is

short, an effect vaguely analogous to the lowering of the decision making threshold in sequential

sampling models (Ratcliff & Smith, 2004): subjects with more severe processing delays would

attempt to compensate by responding with as little information as possible so as to keep reaction

times reasonably low. Subjects with fast processing speed would not need to lower the threshold

as much.

The apparent independence of reaction times from the last event could reflect a delay in the

integration of different signals stemming from separate neurological areas. One possible way to

model this effect in the context of the present framework would be to introduce time delays in

the coupling between different oscillators, reflecting the finite speed of signal propagation in the

brain. However, modelling such neuronal conduction delays would imply a number of additional

assumptions to be built into the model, something which is discussed in more detail in Chapter 5

in the context of future modelling directions.
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FIGURE 4.33: Results of a 2AFC with a random RSI. This experiment was a 2AFC with two horizontally
displaced dots as stimuli but in which the response-stimulus interval for each trail was made random, i.e.
drawn from drawn from a uniform distribution in the interval [50 1000] ms. Ten subjects took part in the
experiment and the results shown are the mean across all subjects. See Appendix B for details.

4.4.3 Temporal and spatial filtering?

It should be made clear that what was proposed so far is in essence a model of temporal filtering,

in that results are fully dependent on the arrival at constant intervals of a positive or negative

pulse. Put simply, the model depends on there being temporal structure in the input and, once

this structure is removed, model predictions will not exhibit any any discernible pattern. This is a

problem shared by any other continuous model of sequential effects, though only two have been

proposed so far (Cho et al., 2002; Gao et al., 2009). As for the remaining models, their discrete-

time nature makes it unclear how, if at all, time intervals could be represented. In order to test if

sequential effects in human RT also break down if temporal structure is absent, an experiment was

conducted in which the RSI on each trial was itself a random variable, the results of which are

shown in Figure 4.33 (the experiment is detailed in Appendix B).

The results of the random RSI experiment demonstrate that sequential effects survive the re-

moval of temporal structure from a 2AFC. Since there is no way to predict the moment the next
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FIGURE 4.34: Results of two experiments conducted with a long - 1000 ms - RSI, both with spatially
separate dots stimuli. Solid blue lines - Reaction time results averaged across those subjects performing
Experiment 3 with a 1000 ms RSI (left panel) and Experiment 4 also with a 1000 ms RSI (right panel); ex-
periments are detailed in Chapter 3. In the experiment shown on the left panel the stimuli were horizontally
displaced dots, and in the experiment on the right vertically displaced dots. Dashed red lines - best fitting
linear transformations of S-LRP (both panels). This data is meant to illustrate the convergence of results
from experiments with spatially separate stimuli to a pattern resembling S-LRP, the pre-motor processing
element of sequential effects which possibly also reflects some form of spatial filtering.

stimulus will occur, one possibility is that the pattern of results shown in Figure 4.33 reflects the

spatial structure of the task, since it is possible to predict the location of the next stimulus indepen-

dently of the moment in time it will appear. This makes sense if one thinks of sequential effects

as the product of a pattern detection attempt: humans should be able to detect spatial as well as

temporal patterns. In addition, the results of the random RSI experiment show a great deal of sim-

ilarity with S-LRP, the putative pre-motor or stimulus-associated component of sequential effects

(Jentzsch & Sommer, 2002). Therefore, a more complete hypothesis is then that the pre-motor

component of sequential effects is in charge of detecting a spatial pattern, whereas the motor com-

ponent is responsible for detecting temporal regularities. One corollary of this hypothesis is that

the entire framework suggested here might really be a model of the temporal filtering occurring at

the motor level.

Additional support for the spatio-temporal filtering hypothesis can be found in experiments
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FIGURE 4.35: Results of a long RSI - 1000 ms - experiment with spatially overlapping stimuli. The
stimuli used in the experiment consisted of a lower- and upper-case ‘o’. Note how in this case results do not
converge to the same pattern observed for other 2AFC experiments with spatially separate stimuli shown in
Figure 4.34.

conducted with a long RSI. The effects of temporal filtering, given their dependence on exponen-

tial decay, should disappear in the limit of a very long RSI, since the effects of a pulse would have

dissipated before the next one arrives. Once temporal filtering subsides, what would remain would

be the product of the spatial filtering component, which presumably would would take longer to

decay. In agreement with this view, experiments with two spatially separated dots dots as stimuli

converge to a pattern similar to S-LRP - the putative spatial filtering pattern - for long RSI values

(see Figure 4.34). Conversely, an experiment in which the stimuli overlap spatially does not con-

verge to the same pattern even with a 1000 ms RSI (see Figure 4.35), implying that spatial filtering

may not be possible unless stimuli are separated in space. The hypothesis that S-LRP reflects

some form of spatial filtering is nevertheless preliminary, and further empirical work is necessary

in order to confirm or disprove it.
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Relationship between REP/ALT and S-LRP/LRP-R

The possibility of a relationship between C2/C3 and S-LRP/LRP-R was introduced in Chapter 3.

Likewise, the possibility of a relationship between ALT/REP and C2/C3 has been discussed here.

Here what little evidence there is for a relationship between ALT/REP and S-LRP/LRP-R directly,

i.e. irrespective of the relationship between either pair and the latent structure of sequential effects,

is discussed.

A correspondence between REP and LRP-R seems at first sight fairly secure. First of all, LRP-

R shows a pattern strongly resembling that of an exponential filter, which REP is equivalent to.

Furthermore, LRP-R apparently disappears when the temporal structure of the input is removed,

as expected if it represented some form of temporal filtering. This can be inferred from the fact

that only S-LRP is present when the RSI is randomised (see Figure 4.33). Additional evidence

for the absence of LRP-R when the RSI is made random stems from an inspection of individual

differences in this experiment, which show greatly reduced variability when compared to a normal

2AFC: all but one of 10 subjects performing the random RSI experiment show a pattern with

an alternation bias. Recall that individual differences in sequential effects are thought to be the

product of varying contributions of stimulus and response processing, i.e. of S-LRP and LRP-R

respectively. A reduced level of individual variation is therefore expected if one of the processing

stages is nullified.

A possible relationship between S-LRP and ALT is more dubious; in order to discuss it it is

useful to consider three possibilities:

1. ALT and S-LRP are the same.

2. ALT does not occur and temporal filtering occurs only through REP

3. ALT and S-LRP co-exist
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The first hypothesis relies on S-LRP disappearing when temporal structure is disrupted, since

ALT is also a form of temporal filtering, just like REP. We must therefore exclude this hypothesis

if we assume the results of the random RSI experiment to be equivalent to S-LRP, a likely scenario

given the great deal of similarity between the two (see Figure 4.33).

In the second hypothesis, temporal filtering would presumably be represented only by REP,

with no exponential filtering of alternations - or ALT - occurring. This possibility depends on a

correspondence between LRP-R and REP one the one hand, and S-LRP and some form of spatial

filtering on the other hand. The first premise that LRP-R and REP are equivalent has been discussed

above as likely. Investigating the possible correspondence between S-LRP and some form of

spatial filtering is a more complex matter. One immediate possibility would be to remove spatial

structure from the task and see if results reduce to the temporal filtering component LRP-R. Using

abstract symbols appearing in the same location - such as ‘A’ and ‘B’ - might not be enough since

any pair of characters will have non-overlapping parts. Perhaps a better way to completely remove

spatial structure is to use stimuli based on colour. An experiment with different coloured dots was

conducted by Jentzsch and Sommer (2002), the results of which show a strong repetition bias but

are otherwise sufficiently different from LRP-R to render the experiment inconclusive with respect

to the hypothesis that only a temporal filtering component remains.

The final possibility is that ALT and S-LRP are different elements contributing towards se-

quential effects. ALT and S-LRP display similar patterns so it might be hard to tease apart their

influence with a latent variable approach. Preliminary results from a PCA performed on an ar-

tificially generated dataset in which ALT and S-LRP were mixed reveals that, provided enough

noise is added, the two components might become indistinguishable (not shown). Experimental

evidence for the fact that motor processing sometimes displays a pattern similar to ALT, instead of

REP as is the case with LRP-R, would go a long way towards validating this possibility.

The view of sequential effects as reflecting some form of spatio-temporal filtering is one of the
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main propositions of this thesis and is discussed in more detail in Chapter 5.



5
Discussion

In order to conclude this dissertation, it is important to first review what was discussed in its dif-

ferent sections. Chapter 1 included an in-depth review of the field of sequential effects, which was

followed by three research chapters. Chapter 2 discussed the computational nature of sequential

effects in terms of different transition probabilities that could be used. It was found that humans

switch from using first order transition probabilities in a task with two alternatives to using just

the relative frequency of stimuli in a task with three elements. In Chapter 3 a more bottom-up

strategy towards understanding the structure of sequential effects was taken by performing a latent

203
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variable analysis of individual differences. Three latent variables related to sequential effects were

identified - two main and one minor - and a relation between the two main components and two

separate processing stages involved in sequential effects was proposed, with the minor component

argued to be a consequence of processing constraints. Still in Chapter 3, individual differences,

as well as the dependence of sequential effects on the RSI, were explained in terms of the latent

structure of sequential effects. In Chapter 4 an entirely novel framework for modelling sequential

effects was proposed, motivated by several limitations of most models suggested so far as well as

the need to explain all facets of sequential effects. The framework suggested, based on the physics

of oscillatory systems, was found to be successful in reproducing key aspects of sequential effects

such as two central components with symmetrical biases for repetitions and alternations, as well as

being able to produce two latent components similar to those encountered in empirical data with

minimal assumptions about the nature of individual differences.

There are several objectives to this section. Firstly, given the wide-reaching implications of

the content of this dissertation for the field of research into sequential effects, it is important to

discuss how results fit within the context of previous research into the subject. This goal will be

achieved by contrasting two different perspectives on sequential effects, a dichotomy which, while

never before made explicit, is useful in that it adds some perspective to an often fragmented field of

research where considerable redundancies between models exist. The discussion of the two views

will also be useful in achieving another important objective of this section: to integrate the different

sections of this thesis into one coherent whole. Towards the end a new overarching perspective

on sequential effects will be discussed by proposing that these effects can be understood as some

form of spatio-temporal filtering. With this new perspective in mind, some possible future research

directions are suggested, with particular focus on the modelling front. Finally an attempt will be

made at putting the results of this dissertation, and more generally sequential effects, into a wider

context by discussing a broad philosophical view of the way the human mind works.
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5.1 Two different views of sequential effects

At this point in the history of research into sequential effects it is useful to draw a distinction

between two different perspectives on sequential effects. The first view, which will be referred

to as the classical or statistical view, sees sequential effects as a consequence of the tracking of

different types of statistics about the sequence. The second view, which will be referred to as

the two component view, sees sequential effects as consisting of two discrete and independent

components related to the detection of two types of pattern: repetitions and alternations. The first

view has been dominant since the work of Laming (1969) and underlies most models of sequential

effects suggested so far. The second view has only been clearly articulated once by Maloney et

al. (2005), although several other authors seem to imply a similar idea (e.g. D. Hale, 1969). The

point here is not to make a decision about which view is correct; in fact, the two perspectives

might be considered to be complementary if we consider them to lie at different levels of Marr’s

hierarchy (Marr & Vision, 1982). Still the the second perspective will be argued to be of better

use in understanding the full range of sequential effects, as well as having more solid empirical

grounding.

5.1.1 The classical or statistical view

All attempts to model sequential effects so far have revolved around two types of information:

the relative frequency of the stimuli and the relative proportion of repetitions and alternations in

the sequence. These two sources of information are usually represented in models by two types

of exponential filter: one applied to the raw sequence of stimuli and the other to the sequence of

repetitions and alternations. For simplicity sake, the first filter will be referred to as a ‘simple’

exponential filter and the second as an A/R filter. The usefulness of a combination of the two types

of filter was first noted by Laming (1969) and subsequently variations of the theme were presented
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FIGURE 5.1: Predictions generated by both types of exponential filter. Left panel - simple exponential
filter applied to the sequence of stimuli; Right panel - exponential filter applied to a sequence of repetitions
and alternations of stimuli, i.e an A/R filter. Both plots were produced with p(xt) =

∑n−1
i=0 α

iSt−i and
α = 0.5; the number n of stimuli used in calculating p(xt) was 5 in the case of the simple exponential
filter and 4 in the case of the A/R filter, reflecting the fact that a sequence of five stimuli corresponds to a
four-long sequence of repetitions and alternations. In both cases p(xt) was normalised by

∑n−1
i=0 α

i in order
to make probability values vary between 0 and 1.

by including either one type of filter or both (K. C. Squires et al., 1976; Jentzsch & Sommer, 2002;

Cho et al., 2002; Yu & Cohen, 2008; M. Wilder et al., 2009; Gokaydin et al., 2011; M. Jones et al.,

2013). The predictions generated by both types of filter are shown in Figure 5.1 in terms of 1− p

so as to facilitate comparison with reaction time results.1

The success of the combination of two filters is largely anchored on the good quality of fit

to results from experiments conducted with a long response-stimulus interval (RSI). Figure 5.2

shows the remarkably good fit of a simple - i.e. non-weighted - sum of the two filters to the

data of Cho et al. (2002) This pattern of results - obtained with an 800 ms RSI - is nevertheless

somewhat uncharacteristic of long RSI experiments in that it displays a repetition bias, whereas

more commonly results from such experiments show an alternation bias (e.g. Soetens et al., 1985).

The reason for this repetition bias probably lies with the choice of overlapping figures as stimuli

1 Recall that reaction times are generally assumed to be proportional to 1−p, where p is the probability of the next
event.
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FIGURE 5.2: Illustration of the good fit of a sum of exponential filters to some datasets. Solid blue line -
Reaction time data adapted from Cho et al. (2002). Dashed red line - sum of two types of exponential filter,
one applied to the sequence of stimuli and the other to the sequence in terms of repetitions and alternations,
both shown in Figure 5.1. The experiment was a regular 2AFC with an upper and lower case ‘o’ as stimuli
and an 800 ms RSI. Best fitting α, the parameter regulating the decay of the filters, was 0.66. The sum of
both filters was linearly transformed in order to fit empirical data.

by Cho et al. (2002), which is known to extend the repetition bias observed when the RSI is short

to higher values thereof.2 Nevertheless, the results shown in Figure 5.2 are clearly not spurious: a

replication of the experiment by Cho et al. (2002) analysed in Chapter 3 produced a very similar

pattern.

Despite its success in fitting some empirical results, the combination of two different types of

filter has several shortcomings. First of all it sidesteps the issue of how the mind turns a sequence

of stimuli into a sequence of repetitions and alternations, which is left in need of an explanation.

Another perhaps more serious issue lies with the fact that there is no combination of the two filters

shown in Figure 5.1 that explains the pattern of results commonly observed with a short RSI,3

rendering the theory applicable only to sequential effects observed when the RSI is long. But even

if we restrict ourselves to the case of long RSI experiments, the combination of filters is unable

to reproduce one recurring feature of data: an alternation bias, or faster reaction times overall to

2 Chapter 1 contains more details concerning the effects of using overlapping figures as stimuli.
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alternations. Results of experiments conducted with a long RSI more often than not display such

an alternation bias, and the same feature is also often observed in individual participant data, even

when the average of the group in which such individuals are included does not display the said

bias. So in short the combination of two exponential filters is successful in a relatively restricted

set of experimental conditions.

The incompatibility between short RSI results and the two-filter approach has received little

attention in the literature. This may be partly due to the traditionally held view that short RSI

results are the product of an entirely different mechanism (Soetens et al., 1985), which has led

some authors to dismiss them altogether as not being part of the computational theory of sequential

effects (M. Wilder et al., 2009; M. Jones et al., 2013).4 However, the evidence presented in Chapter

3 suggests otherwise, in that differences between short and long RSI results were found to be of

a largely quantitative, rather than qualitative, nature. In fact, the entire range of different types

of sequential effects was found to be well described by only three latent variables, of which two

explain most variance irrespective of RSI. If confirmed, these results suggest a common structure

underpinning all types of sequential effects, raising questions about the need to postulate separate

mechanisms.

In the next section an alternative view of sequential effects will be discussed, based on empiri-

cal evidence for the existence of two separate processing stages: one associated with stimulus and

the other with response processing. As this ‘two-component’ is presented it will concomitantly be

discussed why it may hold an advantage over the combination of two exponential filters discussed

above.

3 See the literature review section for a description of this pattern of results, sometimes referred to as ‘benefit-only’
by contrast with the ‘cost-benefit’ - i.e. inverted ‘v’ - pattern of sequential effects typical of long RSI results.

4 There is one exception to this trend in the work of Gao et al. (2009) which attempts to unify short and long RSI
results, albeit through the use of an arguably overly complex model.
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FIGURE 5.3: Fit of both types of exponential filter to evidence about the two processing stages of se-
quential effects. Solid blue lines - LRP-R (left panel) and S-LRP (right panel). Dashed red lines - simple
exponential filter fit to LRP-R with α = 0.47 (left panel); A/R exponential filter shown together with S-
LRP (right panel); in this case the filter was not fit to the data. Recall that S-LRP and LRP-R reflect the
relative contribution of pre-motor and motor processing respectively towards sequential effects (Jentzsch &
Sommer, 2002). Data adapted with permission from the author.

5.1.2 The emerging two component view

There are three main sources of evidence supporting the existence of two separate processing

stages involved in sequential effects: EEG studies (Jentzsch & Sommer, 2002), behavioural ex-

periments (Maloney et al., 2005; M. H. Wilder et al., 2013) and finally the latent variable analysis

performed in Chapter 3. Collectively, the evidence points to a stage which is pre-motoric in origin

and associated with the processing of stimuli, and a second stage associated with motor control

and the processing of responses.5 Furthermore, all three lines of enquiry point to similar patterns

of contribution by each stage towards sequential effects, best illustrated by the measurements of

pre-motor - S-LRP - and motor - LRP-R - processing time performed by Jentzsch and Sommer

(2002) and shown in Figure 5.3. Note how S-LRP and LRP-R display approximately symmetrical

biases with respect to whether repetitions or alternations are preferred.

5 This evidence is also discussed in Chapters 1, 3 and 4.
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Some authors have proposed a relationship between the two processing stages of sequential

effects and the two types of exponential filter discussed above (M. Jones et al., 2013). In order to

discuss this possibility the two exponential filters are shown together with the putative respective

counterparts in Figure 5.3. Based merely on quality of fit, it would seem that a correspondence

between LRP-R and a simple exponential filter is at first sight a sensible proposal, whereas the

same cannot be said of S-LRP and an A/R filter. The suggestion that S-LRP corresponds to an A/R

filter is motivated at least in part by two factors: firstly, in the context of the classical theory, once

an exponential filter is accounted for there is only one other alternative mechanism available, and

that is the A/R filter; secondly, it is hard to reproduce the alternation bias displayed by S-LRP with

any form of discrete-time exponential filtering, upon which almost all models of sequential effects

are based.

In order for a correspondence between S-LRP and an A/R filter to hold it becomes necessary

to account for the differences observed between the two (Figure 5.3, right panel), in particular

with respect to the alternation bias displayed by S-LRP. M. Jones et al. (2013) suggest that a

‘cue competition’ mechanism between the two types of exponential filter is responsible for the

alternation bias of S-LRP. There are a number of issues with this theory, not least in that it relies on

interpreting different types of statistics as ‘cues’, but perhaps its most fundamental problem is that

the mechanism proposed is only necessary in order to explain S-LRP, not LRP-R. In other words,

while LRP-R is fit by the simple exponential filter in isolation, the other component - S-LRP - is

fit with a combination of both types of filter interacting with each other via the cue competition

mechanism.

Instead of forcing an equivalence between S-LRP and an A/R filter a possible alternative is to

accept S-LRP and LRP-R at face value as reflecting two separate and independent contributions

towards sequential effects. If we take this view, the relative contribution of stimulus processing

towards sequential effects, as measured by S-LRP, displays an alternation bias independently of

response processing, i.e. of LRP-R. Some support for the independence of both stages comes
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FIGURE 5.4: Evidence from behavioural experiments for stimulus and response processing. Solid blue
lines - reaction time data from an experiment meant to remove the influence of stimuli, adapted from
M. H. Wilder et al. (2013) (left panel); subjective point of equality data from an experiment meant to remove
the influence of responses, adapted from Maloney et al. (2005). Dashed red lines - LRP-R (right panel) and
S-LRP (right panel). Note that the right panel shows results as a function of the last four stimuli because this
is the way empirical data was presented in the original article. The way S-LRP would look like as a function
of the last four stimuli was estimated by averaging the corresponding five-back sequences two-by-two.

from experiments which aimed at selectively removing the influence of stimuli on the one hand,

and of responses on the other hand, from sequential effects (Maloney et al., 2005; M. H. Wilder

et al., 2013). When the influence of stimuli is removed, a reaction time pattern similar to LRP-

R is obtained (see Figure 5.4, left panel); when the influence of responses is removed instead,

a pattern resembling S-LRP is recovered (Figure 5.4, right panel). The results obtained when

response processing is disrupted are particularly hard to fit with the theory that an interaction

between stimulus and response processing is responsible for the alternation bias displayed by S-

LRP.

Additional evidence for the existence of two independent processing stages can be found in

the results of the latent variable analysis conducted in Chapter 3. Two main latent variables were

identified which display opposite and equally strong first order biases (see Figure 5.5) much like

S-LRP and LRP-R. Some care should be taken when interpreting the latent structure of sequential
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FIGURE 5.5: A comparison of the two main latent components of sequential effects with S-LRP and
LRP-R. Solid blue lines - coefficient patterns of the two main components of sequential effects - C2 (left
panel) and C3 (right panel) after rotation using S-LRP and LRP-R as targets. Dashed red lines - S-LRP (left
panel) and LRP-R (right panel) shown for comparison.

effects since, as discussed in Chapter 4, the relationship between covariance structure and under-

lying physical truth can be subtle and nuanced. Nevertheless, when considered together with other

sources of evidence, the latent structure of sequential effects adds some weight to the idea that

there are two main independent components of sequential effects.

To the empirical evidence discussed so far one could add an argument based on the explanatory

potential of the two competing views, i.e. classical and two-component. When considering only

the typical pattern of results obtained with a long RSI - the cost-benefit or inverted ‘v’ pattern

- it would seem that there is little difference between both views: a combination of S-LPR and

LRP-R is at least equally as good at capturing a cost-benefit pattern as is a combination of the

two exponential filters (see Figures 5.2 and 5.6). However, when taking into consideration the full

spectrum of different patterns of sequential effects, a combination of elements resembling S-LRP

and LRP-R is capable of describing a far wider range results than a combination of two exponential

filters, including sequential effects observed with a short RSI - i.e. the so-called benefit-only

pattern - as well as a host of individual differences (see Chapter 3). On the other hand, even if
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FIGURE 5.6: Fit of a combination of S-LRP and LRP-R to a typical cost-benefit pattern of sequential
effects. Solid blue lines - average across all subjects performing any version of a 2AFC with an 800 ms
RSI included in Chapter 2. Dashed red line - linear combination of S-LRP and LRP-R of the form b +
w1SLRP + w2LRPR.

we incorporate the cue competition mechanism, a combination of two filters will not be able to

capture results typically observed with a short RSI (M. Jones et al., 2013).

If we accept the two-component view of sequential effects, then we are left with the task of

finding a mechanism which could produce a pattern such as S-LRP with its alternation bias. In

Chapter 4 such a mechanism was proposed, based on the physics of oscillatory motion. It turns

out that the two most fundamental types of behaviour of a single oscillator display a great deal of

similarity to the two patterns - S-LRP and LRP-R - thought to represent the relative contributions

of stimulus and response processing towards sequential effects.

5.1.3 Resonance and the exponential filtering of alternations

A new framework for modelling sequential effects was proposed in Chapter 4 based on the physics

of oscillatory harmonic motion. The model makes use of the fact that, when represented as square
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FIGURE 5.7: A comparison of the two types of oscillator resonance ALT and REP with S-LRP and LRP-
R respectively. Solid blue lines - LRP-R (left panel) and S-LRP (right panel). Dashed red lines - REP (left
panel) and ALT (right panel) linearly transformed to fit the EEG components. Both REP and ALT were
generated for this illustration with γ = 1.5.

impulses, repeating and alternating patterns can be distinguished on the basis of their frequency,

referred to respectively as fREP and fALT . By setting the natural frequency of the oscillator ω0

to match either fREP and fALT , the system can be made to resonate with - or detect - repetitions

or alternations respectively. When the oscillator is tuned to repetitions it effectively behaves like

the simple exponential filter at the sequence level described above, producing a pattern or results -

referred to as REP - which, much like its discrete-time counterpart, shows a great deal of similarity

with LRP-R (Figure 5.7, left panel). In addition, by tuning the oscillator to resonate with alterna-

tions - i.e. by setting ω0 equal to fALT - it is possible to obtain a pattern of results - referred to

as ALT - resembling S-LRP with its alternation bias (see Figure 5.7, right panel). Crucially, both

REP and ALT are produced by exactly the same mechanism and are equally fundamental types of

oscillator behaviour. Moreover a pattern of results with an alternation bias was produced without

introducing any additional assumptions.

One possible interpretation of the two types of resonance - REP and ALT - shown in Figure

5.7 is that these act as detectors of repetitions and alternations respectively. Note that REP is
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FIGURE 5.8: Fit of a combination of REP and ALT to the typical cost-benefit pattern of sequential
effects. Solid blue line - average reaction time across all subjects performing any variation of a 2AFC with
an 800 ms RSI (see Chapter 3). Dashed red line - best fitting combination of REP and ALT of the form
b+w1REP +w2ALT . Note the difficulty in reproducing the smooth inverted ‘v’ shape of the cost-benefit
pattern with a combination of REP and ALT. γ = 1.5 for both REP and ALT.

only sensitive to repetitions of stimuli, and ALT to alternations thereof. Some authors have in

fact argued in the past that two separate mechanisms must exist in order to detect repeating and

alternating patterns at the same time. D. Hale (1969) observed that a decrease in reaction times

occurred with increasing length of both repeating and alternating runs of stimuli, which could not

be explained by a single passively facilitating trace. More recently, Maloney et al. (2005) made

a similar argument from a different perspective, and concluded that sequential effects were the

product of an attempt at completing two types of pattern: repetitions and alternations. Note that

in a system with multiple coupled oscillators it is possible for more than one frequency to be

filtered, and therefore for resonance with repetitions and alternations at the same time to occur.

The possibility is therefore raised here that the proposed separation of mechanisms in charge of

detecting repetitions and alternations takes root in the independence of the normal modes of some

form of dynamical system (see below).

The view of the two fundamental components of sequential effects as mapping onto two types
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of resonance of an oscillatory system is not without problems of its own. First there is the issue

of the differences in detail between the patterns of ALT and S-LRP on the one hand, and REP and

LRP-R on the other hand which (see Figure 5.7). These differences are probably meaningful, as

can be seen by contrasting Figures 5.6 and 5.8: while a combination of LRP-R and S-LRP provides

an excellent fit to the typical cost-benefit pattern of sequential effects, a combination of REP and

ALT shows a notable degree of distortion relative to the smooth inverted ‘v’ shape typical of a

cost-benefit patterns obtained when the RSI is long. That REP and ALT provide a less than perfect

fit is perhaps unsurprising given that these are linear filters, whereas oscillatory activity in the brain

is more likely to be nonlinear in nature (see below for a more detailed discussion of this point).

A second problem with the resonance view is that, in its current form, the model depends on

the temporal regularity of the input, making it in effect a model of temporal filtering. If one were

to present the stimuli to the model at random time intervals, the results would be equally random.

However, empirically randomising the interval between the presentation of the stimuli does not

abolish sequential effects. In fact, it seems to make results converge to the component of sequential

effects with an alternation bias, i.e. S-LRP (see Figure 5.9). If one accepts that the results of the

random RSI experiment reflect the same underlying construct as S-LRP, it follows that the pre-

motor or stimulus-associated component of sequential effects is temporally insensitive. The same

is not true of the motor component of sequential effects - LRP-R - which does disappear when a

random RSI is used. Possible solutions to this problem are discussed below in the context of the

view of sequential effects as spatio-temporal filtering. As a side note, issues with the temporal

regularity of the input are common to all continuous time models, although only two other have

been suggested previously (Cho et al., 2002; Gao et al., 2009). As for the remaining models, their

discrete time nature makes it difficult to study any questions related to the time interval between

stimuli (e.g. Laming, 1969; M. Jones et al., 2013).

A third issue with the oscillator model is that REP and ALT only occur when the natural

frequency of the oscillator ω0 is equal to either fREP or fALT . If ω0 does not match either of these
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FIGURE 5.9: Results of a 2AFC with a random RSI. The experiment was a 2AFC with two horizontally
displaced dots as stimuli, but in this case the RSI was not constant but rather different for each trial and
drawn randomly from a uniform distribution in the interval [50 1000] ms. Ten subjects took part in the
experiment and the results shown are the mean across all subjects. Appendix B contains all the details of
the experiment.

two frequency values it will filter other minor intermediate frequencies and no longer conform

to either REP or ALT (see Chapter 4). However, sequential effects are apparently the product of

two fixed patterns looking like S-LRP and LRP-R, one manifestation of this being the fact that

the typical cost-benefit pattern can be observed for a wide range of RSI values, a parameter which

determines the average frequency of the stimuli. If resonance were to explain all these results the

implication would be that the underlying system is resonating irrespective of input frequency. One

possible solution to this conundrum might be to consider that in a system with many degrees of

freedom fREP and fALT will always fall within the frequency band of one of the normal modes of

the system. Alternatively, as discussed below, some form of synchronization might be occurring

between neural oscillators and the frequency of the input.

Before discussing possible ways to improve the oscillator model, as well as outlining a more

general view of sequential effects, we must first turn to a discussion of how the statistical nature

of sequential effects in different tasks, investigated in Chapter 2, fits within the context of the two
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component view of sequential effects.

5.2 The statistics humans use in different tasks

It was discussed in Chapter 2 that when humans change from a task with two possible stimuli -

2AFC - to one with three - 3AFC - they stop using first order transition probabilities and begin

to use only information about the relative frequency of the stimuli, or 0-th order statistics. It

is unclear how these results relate to the two-component view that has since been discussed in

Chapters 3, 4 and above. A more general but closely related question concerns the relationship

between the computational or statistical level of sequential effects and the underlying process-

level mechanisms. While a final answer to either of these questions will not be given here, there

are some hints of how the different statistics studied in Chapter 2 might relate to the two processing

stages of sequential effects. In order to discuss this relationship the cases of first and 0-th statistics

will be dealt with separately.

It seems reasonable to assume that, in order to track first order statistics - e.g. P (A|B) -

information about the relative abundance of repetitions and alternations in the sequence must be

available. In fact, the first order model discussed in Chapter 2 produces a cost-benefit pattern of

results very similar to a sum of two types of exponential filter discussed above (see Figure 5.2),

one of which represents the A/R ratio. At the process level, this implies that both components

of sequential effects must be active, if we rely on an interpretation of these as being sensitive to

repetitions and alternations respectively and exclusively.6 So the use of first order statistics in

a 2AFC reported in Chapter 2 is likely to rely on contributions from both pre-motor and motor

processing stages.

6 Note that this is implied by the patterns of S-LRP and LRP-R, but it is not known yet if the relative contributions
of both processing stages will always display a separate sensitivities to repetitions and alternations.
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The relationship between the tracking of 0-th order statistics - e.g. P (A) and P (B) - and

the underlying processes is more direct. The tracking of - exponentially discounted - stimulus

frequencies is effectively equivalent to a simple exponential filter, which in turn shows a great deal

of similarity to the relative contribution of the motor processing stage in isolation (see Figure 5.3,

left panel). However, recall that it was found in Chapter 2 that humans use 0-th order statistics in

a 3AFC, and no empirical evidence for how LRP-R looks like in this case exists. Nevertheless,

it seems reasonable to assume that motor processing represents the exponential filtering of the

sequence, irrespective of the number of alternative stimuli. If we accept this premise, then only the

motor processing stage of sequential effects is active when humans are performing a 3AFC.

A teleological argument can be invoked in order to justify the changes observed when switch-

ing from a 2AFC to a 3AFC, based on the fact that alternations become vanishingly rare in a

sequence of three equiprobable stimuli.7 The only regular pattern observed with a non-negligible

frequency in a random sequence with three alternatives is repetitions of the same element, and

then only fleetingly. If we think of the two process-level components of sequential effects as de-

tecting repetitions and alternations separately, it follows that the alternation detector should not

manifest itself in a 3AFC, since there are no alternations to be found. Conversely, repetitions and

alternations are equally abundant in 2AFC, and both detectors would be triggered. More work is

necessary in order to confirm or disprove that the changes observed when increasing the number

of sequence elements from two to three are indeed the result of the pre-motor stage becoming in-

active. However, if this is found to be true, it could be interpreted as providing evidence for a view

of sequential effects as as the trace of an attempt at completing two different types of patterns -

repeating and alternating.

The interpretation of sequential effects as a combination of two detectors, one of repetitions

and one of alternations, while potentially true at some level, is nevertheless simplistic for several

7 Some authors (e.g. Audley, 1973) consider an ‘alternation’ to be a sequence of two different stimuli, no matter
what they are, and in this sense the sequence XYZYXZ is alternating. However, this is clearly a different situation
to the alternation of two stimuli, which forms a clear pattern.
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reasons made clear below. In the next section an attempt is made at delineating a more nuanced

view of sequential effects as some form of spatio-temporal filtering. In general, from this point

on the content of this discussion should be taken to be of a largely speculative nature, although

possible empirical support will be shown whenever possible.

5.3 Sequential effects as spatio-temporal filtering

In order to predict the future, any intelligent organism must answer three fundamental questions:

‘what?’, ‘where?’ and ‘when?’. Moreover, as pointed out several times throughout this disserta-

tion, predictions are only possible if there are patterns in the input. Combining these two premises

leaves us with three possibilities: either there is a pattern in time, in space, or in the nature of

the objects recognized. These three types of pattern can exist relatively independently of each

other or combine to form complex spatio-temporal patterns. Furthermore, the human perceptual

system imposes complex constraints on what is perceived depending on the objects identified and

their trajectories in time and space. For instance, in the familiar language of the 2AFC experi-

ments discussed extensively in this work, two dots on the screen can be interpreted as the same

object or as different ones depending on the distance in time and space between them (Maloney et

al., 2005). Similarly, an object can be perceived as transforming into another if sufficiently close

intermediate steps are included, as anyone who has watched a film can attest to. So while the ques-

tions of ‘what?’, ‘where?’ and ‘when?’ can be considered separately, in practice they are deeply

intertwined.

Throughout the history of research into the subject it seems to be often implicitly assumed

that sequential effects are the product of a pattern detection attempt. However, it was never made

explicit what type of pattern it is that humans are attempting to discover: temporal, spatial or in

other properties of the stimuli. Sequential effects are observed in experiments with a wide range
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of different stimuli such as two separate dots (e.g. Soetens et al., 1985; Jentzsch & Sommer,

2002), spatially overlapping figures (e.g. Laming, 1968; Cho et al., 2002), stimuli defined by other

properties such as colour (e.g. Jentzsch & Sommer, 2002), an even in modalities other than vision

(e.g. K. C. Squires et al., 1976). Differences between such experiments are often framed in the

context of response-stimulus compatibility: experiments where stimuli overlap are often taken to

present a reduced degree of mapping between the spatial configuration of the stimuli and of the

responses. Little or no attention has been given to the fact that distinguishing stimuli based on

shape, colour or form is fundamentally different from a distinction based on spatial location. This

may reflect an implicit assumption from the authors of such studies that the question humans are

trying to answer is ‘what?’, irrespective of ‘where?’ and ‘when?’.

The mathematical structure of most sequential effects models in the literature may have con-

tributed to the lack of specification regarding the type of pattern humans are attempting to detect

when displaying sequential effects. Almost all models proposed so far are of a discrete time na-

ture and therefore not easily - if at all - amenable to conceptualising continuous time. Moreover,

no model so far has incorporated space in any way, the model proposed in Chapter 4 being the

first to do so in the simplest manner possible. However, there is substantial evidence that both

space and time are important in sequential effects. First of all, issues of compatibility between the

spatial configuration of stimuli and responses point to a role of space in sequential effects. With

respect to time, sequential effects have been shown to depend on the temporal interval between

the stimuli, highlighting the need to include this as a parameter in any complete model. Finally,

an experiment where the time interval between stimuli was randomised (see Figure 5.9) not only

further highlights that time must be taken into consideration, but also indirectly points to the need

to conceptualize space: if temporal structure is removed from the input then whatever is left - spa-

tial structure in this case - must be responsible for the sequential effects observed. So while there

is no doubting the historical importance of the Markov approach, it is likely to be insufficient - or

at least cumbersome - if one is to gain a more complete understanding of sequential effects and
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human pattern detection in general.

The possibility that sequential effects are due to some form of spatio-temporal filtering was

first introduced in Chapter 4. The hypothesis, in a nutshell, is that the two components of sequen-

tial effects, in addition to being responsible for detecting two different patterns - repetitions and

alternations - also represent an attempt at detecting patterns in two separate domains: space and

time. The pre-motor component - S-LRP - would be associated with the detection of spatial pat-

terns whereas the motor component - LRP-R - would instead be responsible for detecting temporal

patterns. A combination of these two elements would lead to an optimal spatio-temporal prediction

about the next event, represented by the typical cost-benefit - or inverted ‘v’ - pattern of sequential

effects. An interesting side observation is that this pattern of sequential effects, if it does represent

an optimal average prediction as has been suggested before (Yu & Cohen, 2008), is only seldom

observed at the individual level, despite being consistently observed when multiple subjects are

averaged. It seems therefore that there might be a ‘wisdom of crowds’ aspect to sequential effects,

in that the average of a group of non-optimal predictors represents an optimal prediction. That this

is the case would make sense from an evolutionary standpoint, since it guarantees that at least a

few individuals will be precisely correct.

The interpretation of the two components of sequential effects as detecting repetitions and

alternations separately is compatible with the spatio-temporal filtering hypothesis: repetitions and

alternations are different in that the latter have separable temporal and spatial dimensions, whereas

in the case of repetitions time and space are inextricably linked. Put simply, repetitions occur in the

same location and so have no relevant spatial structure. If, by a crude analogy with the temporal

filtering model proposed in Chapter 4, one were to propose a putative spatial filtering mechanism,

this could never be tuned to repetitions, since these do not have a characteristic spatial frequency.

It is not so clear why the temporal filtering element of sequential effects should always display

the same pattern with a repetition bias, since it was shown in Chapter 4 that it is equally easy to

temporally filter alternations as it is repetitions. Also in Chapter 4 the possibility was discussed
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that the motor component of sequential effects might sometimes be tuned to detect alternations, in

which case it would results in a pattern - ALT - so similar to the spatial filtering element - S-LRP

- as to be indistinguishable from it.

It is tempting to think that, in the same way as the temporal structure of the stimuli was removed

by making the time interval between stimuli random, resulting in the isolation of a putative spatial

filtering component (see Figure 5.9), the inverse could be done: removing spatial structure and re-

covering the temporal filtering element. One possible way to design a task without spatial structure

would be through the use of stimuli equal in every respect except for colour. However, we are not

assured that this would abolish a temporally insensitive component to sequential effects: in much

the same way as it is possible to derive a prediction about the next spatial location independently

of time, the same is in principle possible regarding the colour of the next stimulus. So far S-LRP

has been discussed as reflecting spatial filtering partly because it was identified in an experiment

with spatially separate stimuli (Jentzsch & Sommer, 2002). In addition, the experiment where the

RSI was made random, which resulted in a pattern similar to S-LRP (see Figure 5.9), also made

use of two separate dots as stimuli. When stimuli are spatially separate the ‘what?’ and ‘where?’

questions are equivalent, but this is not the case in general. So while there is no evidence available

at the moment that would support such a view, it may be the case that a temporally independent

component of sequential effects will occur even when stimuli are overlapping, a form of ‘object

filtering’ so to speak.
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5.4 Future directions

5.4.1 Empirical

The renewed perspective on sequential effects presented in this work raises several questions call-

ing for further empirical work, the most important being perhaps the fixed nature of the two com-

ponents of sequential effects. It was hypothesized in Chapter 3 that variation in sequential effects

might be the product of different combinations of two components similar to S-LRP and LRP-R,

in which case the patterns of these two elements would remain fixed, with only the magnitude of

their contribution changing. So far there is strong evidence for the relevance of two components

looking like S-LRP and LRP-R (see above and Chapters 3 and 4) in a specific set of experimental

circumstances - i.e. long RSI - and on average for groups of subjects. On the other hand there is

as yet no evidence for the way in which the relative contribution of stimulus and response process-

ing - as measured by S-LRP and LRP-R or another method - would change both when the RSI is

short as well as across different individuals performing the same experiment. Measuring the two

processing stages in an experiment with a short RSI by using the LRP method was found to be

difficult due to baseline problems (Jentzsch & Sommer, 2002), so another method may have to be

used. With respect to individual differences however there seems to be no impediment to the use of

the LRP method so long as the RSI is long enough, and the two-stage theory would greatly benefit

from such as study.

The flipside to the question of whether the two components of sequential effects are fixed is

whether these do in fact vary and in what way. As discussed above, there is some reason to believe

that if S-LRP represents some form of spatial filtering it might always display a pattern with an

alternation bias, since repetitions have no characteristic spatial frequency. However, the question

remains of whether or not a temporal filtering element with an alternation bias can occur, and

whether this is confounded in reaction time data with S-LRP. An analysis of individual differences



5.4 FUTURE DIRECTIONS 225

in S-LRP and LRP-R would again be useful in this respect: if temporal filtering of alternations

does in fact occur, then this might be observable in LRP-R, which would sometimes display a

pattern with an alternation bias.

Further empirical research is also necessary in order to investigate the view of sequential effects

as spatio-temporal filtering. It is in principle possible to design experiments where the spatial and

temporal structure of sequential effects is selectively varied and to draw conclusions from the

effects of these manipulations in both reaction time as well as well as event-related potentials.

For instance, the possibility was discussed above that using stimuli distinguished by colour would

prevent any form of spatial filtering, thereby reducing sequential effects to their temporal filtering -

motor - component. If this premise holds true, further randomizing the interval between successive

stimuli in a manner similar to the experiment shown in Figure 5.9 could abolish sequential effects

altogether. Notwithstanding the possibility that sequential effects will persist due to an attempt

at detecting a pattern in the colour of the stimuli, proof of concept of the effects of using stimuli

distinguished by colour, as well as other experimental manipulations, should be obtained. Finally,

some attention should be given to individual differences in any future experiment given the greater

awareness of their importance brought about by this dissertation.

5.4.2 Theoretical

A novel approach to modelling sequential effects was suggested here which, despite showing some

promise, is nevertheless still incomplete in several important respects. In order to suggest ways in

which the model can be improved, as well as discuss some further caveats of the general approach,

it is important first to clarify what a spatially extended version of the model proposed in Chapter

4 would look like. While the discrete oscillatory units considered in Chapter 4 were meant to

represent different spatial locations, this is of little practical consequence if distance between os-

cillators is not represented, either by introducing coupling delays or representing space explicitly,
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i.e. adding one or more spatial dimensions. In general, it should be kept in mind that the model

proposed in Chapter 4 was always intended as a simplification of a spatially extended model. Dur-

ing the discussion of how the model can be augmented to include space one crucial aspect will

remain unchanged: every version of the model will be linear. Following this a brief discussion

about non-linear systems will ensue in which it is briefly speculated how the properties of such

systems may be of use in explaining the more complex aspects of sequential effects.

Time delays

Perhaps the simplest possible extension of the oscillator model is to introduce time delays in the

coupling between the different oscillatory units. Unlike the case of two masses connected by a

physical object such as a spring, two oscillatory units in the brain are not expected to influence

each other instantaneously, but rather some delay is likely to occur due to the finite speed of

neuronal signal propagation. Mathematically speaking a pair of delay-coupled oscillatory units

can be described by the following pair of delay-differential equations

ÿ1 + γẏ1 + ω2
0y1 + k(y2(t− τ)) = F1(t)

ÿ2 + γẏ2 + ω2
0y2 + k(y1(t− τ)) = F2(t)

(5.1)

analogous in every respect to the system presented in Chapter 4 except for the fact that now the

different oscillators influence each other after a constant delay given by τ . Note that although

space is not parameterised explicitly, the delays in coupling reflect the time that it takes for signals

to travel in space, which is therefore represented implicitly.

In Chapter 3 two main latent components of sequential effects were identified - C2 and C3 -

and a third minor one - C4 - thought to be related to processing delays. This interpretation of C4

relies on the fact that a similar pattern is observed in reaction time data from a group of elderly
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participants performing a 2AFC, but not in young subjects performing the exact same experiment

(Melis et al., 2002). One possibility is that the differences observed between both groups are

due to age related loss of myelination, in which case the vague ‘processing delays’ discussed in

Chapter 3 might be made more concrete as conduction delays. One possible way to model this

phenomenon would be to use a system with coupling delays such as the one in (5.1). However,

careful consideration of what such a model for C4 would look like exposes some of the limitations

of the oscillator-based models in general. Firstly, it is unclear how many oscillatory units are

involved in sequential effects, how these map onto different regions of the brain and finally what

the topology of the network is. It would seem from information about the two processing stages

of sequential effects that there are two main signals contributing towards sequential effects: one

with origin in the visual cortex and one in the motor cortex. However, it is unclear how these

sources of information integrate, and whether there is any modulation from more central areas like

the pre-frontal cortex. An understanding of some or all of these aspects might be necessary when

investigating the possible role of conduction delays in sequential effects and in particular in the

emergence of C4. Notwithstanding this, a demonstration that an oscillatory system with coupling

delays is capable of generating a pattern such as C4 would be useful in providing a proof of concept

that the effect can be replicated within the oscillator-based framework.

Spatially extended models

A more obvious way in which the oscillator model can be extended is to introduce one or more

spatial dimensions. This can be done easily by using the well-known wave equation, which is a

partial differential equation given by

∂2u

∂t2
− c2∇2u+ γ

∂u

∂t
= F (x, t) (5.2)
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FIGURE 5.10: Example normal modes of a string and of a surface shaped like a circle. Left panel -
First four normal modes of an idealized massless string tethered at both ends. Right panel - Sample normal
modes of a circularly shaped surface, chosen as illustrative of the diversity of different possible patterns.
Less regular shaped surfaces exhibit more intricate and complex eigenfunctions.

where x is a vector of any number of spatial coordinates, c is the speed of wave propagation, γ is the

damping coefficient, ∇2 is the Laplacian operator8 and F (x, t) represents the forcing term. Note

that the model in Chapter 4 can be considered a particular case of the wave equation where each

discrete oscillator is taken to represent a particular location in space and the velocity of propagation

is infinite. Conversely, in what is a classical pedagogical example, the one-dimensional wave

equation can be derived by taking the infinite limit of a chain of discrete oscillators (French, 2003).

Much like discrete systems have normal modes, represented by vectors with a finite number of

entries, the wave equation has normal mode functions, examples of which are shown in Figure

5.10 for one and two dimensions. In a discrete system the number of normal modes is equal to

the number of oscillators by definition, but this number is theoretically infinite in the case of a

continuous system. In practice however, most physical systems are composed of discrete units and

this limits the number of normal modes. This may not be an important consideration in the case

of a liquid surface with atoms as unit elements, but it might be a relevant in the case of a system

composed of neurons.

In order to make the connection with a discrete system clearer, it is useful to perform a thought

8 Which is equal to ∂2u
∂x2 + ∂2u

∂y2 + ∂2u
∂z2 for the case of three dimensions.
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experiment on how one could reproduce a resonance behaviour similar to that discussed in Chapter

4 but in the case of a spatially continuous system.9 The example used will be a unidimensional

‘string’ tethered at both ends so that these are fixed points. Now consider the second normal mode

function of the string, analogous to the ‘breathing’ mode of two discrete oscillators: in this mode

the left and right halves of the string are moving with the same frequency and in anti-phase (see

Figure 5.10; left panel, second mode from top), and the middle point is stationary. Now take the

middle points of each half - 1/4 and 3/4 of the distance of the rope - to correspond to the two

discrete oscillators of the discrete system. Next, apply pulses representing the stimuli to the two

halves of the string and measure velocity at any point in the string except the ends or the middle,

making sure the point chosen for measurements is always the same. Finally, make sure to set the

propagation velocity c high enough so as to minimise transient behaviour in favour of standing

wave behaviour.10 A perfectly analogous scenario could be described for two dimensions, except

that the pulses would have to be applied to the centre of any two different troughs and/or peaks -

shown in blue and red in Figure 5.10 - of the normal mode surfaces.

In addition to clarifying the relationship between discrete and continuous systems the above

example serves as an introduction to several of the difficulties we expect to face in dealing with

spatially extended systems. Firstly, boundary conditions had to be set, i.e. the behaviour - free

or fixed or more complicated - at the border of the system had to be specified. Secondly, the

pulses representing the stimuli were applied to particular locations in space in order for the system

to exhibit a resonating behaviour; if the pulses had been applied at nodes rather than peaks, no

resonance would occur. This can be taken as an illustration of a more general principle of spatially

extended systems: temporal filtering implies spatial filtering (Nunez, 1995). Put simply, the system

resonated because the input had a particular spatial as well as temporal frequency, the spatial

element being determined by the relative position of the points at which the pulses were applied.

9 This is meant to be an informal visual example, but if doubts should persist about its feasibility the effect has
been observed by solving the wave equation numerically in one dimension.

10 For a discussion of travelling and standing waves please refer to a physics textbook such as Main (1993).
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The possibility was discussed above that sequential effects are due to some form of spatio-temporal

filtering, when in fact we see that any physically realistic model of oscillatory activity forces a

consideration of the spatial as well as temporal structure of the input.

Further complications resulting from introducing space in the model could be added to those

already mentioned. For instance, it was merely stated that the pulses should be applied to specific

points on the string, but one must specify the input to other parts of the string as well, since the

stimuli are now represented by functions of space as well as time - f(x, t) - which must be defined

for the entire spatial domain. In addition, the speed of wave propagation had to be set high enough

so that delays in wave propagation would be negligible. Under conditions where this speed would

limiting, such as high temporal frequency of the input, complex travelling wave phenomena such

as interference might occur and potentially have an impact on sequential effects. Finally most

real media which support wave-like behaviour have different speeds of propagation for different

frequencies, in which case a relation between temporal and spatial frequency - termed a dispersion

relation - must be specified. In an example of potential relevance, a dispersion relation has been

estimated for the human cortex when considered as a continuous medium for propagating brain

waves (Nunez, 1995).

Non-linearity, synchronization and pattern formation

Whether in a discrete or spatially extended form, all versions of the model proposed so far suffer

from the same limitation: their linearity. Real physical systems however are more often than not

non-linear (Strogatz, 2000) and, despite being far less mathematically tractable, display a far richer

range of behaviours, such as complex spatio-temporal pattern formation (Golubitsky & Stewart,

2002) and synchronization (Pikovsky, Rosenblum, & Kurths, 2001). Synchronization of oscilla-

tory activity in different areas of the brain has in fact been observed empirically and suggested as

a possible solution to the so-called ‘binding problem’, i.e. the fusion of different perceptual and
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cognitive aspects into a single entity (Singer & Gray, 1995). Most models of neuronal activity are

in fact non-linear in nature (Izhikevich, 2010) and so it is likely that, moving forward, a more real-

istic model of sequential effects will be non-linear. In this it is speculated briefly as to the possible

usefulness of some properties of non-linear systems in explaining different aspects of sequential

effects.

Throughout this work, it has been purposefully left unclear what type or scale of neuronal

oscillation the abstract model in Chapter 4 is meant to be representing. Nevertheless, we are

almost assured of one of the properties of these oscillations: their non-linearity. The reason for

this is that oscillatory activity in the brain seems to be self-sustained, i.e. it persists in the absence

of any external input (Regan, 1989). Mathematically speaking, this behaviour is termed a limit

cycle, and it can only be reproduced with non-linear models. This does not all at once invalidate

the model presented in Chapter 4, since non-linearity does not preclude a behaviour similar to

that of a linear system under some regimes, particularly if the forcing is relatively weak. Indeed,

a preliminary analysis of a forced Van der Pol oscillator11 hints that such a system is capable of

displaying a behaviour similar to the resonance patterns of a linear system described in Chapter 4

(not shown).

Linear resonance and non-linear synchronization are similar phenomena in that an interaction

between two systems leads to both oscillating with the same frequency (Pikovsky et al., 2001).

However, the two phenomena are different in that oscillatory activity involved in synchronization

is self-sustained, i.e. it persists in the absence of external forcing. On the contrary, the oscillations

of a linear system will eventually die out due to energy dissipation, except in the trivial case of no

damping. Furthermore, some models of synchronization allow for two interacting systems to oscil-

late together with a frequency different from the natural frequency of either system in isolation. By

contrast, resonance only happens when the frequency of the driving system is equal of very close

11 The Van der Pol oscillator is the simplest formulation of a type of non-linearity know to underpin many models
of neuronal oscillations such as for instance the Fitzhugh-Naguno model (Izhikevich, 2010).
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to the natural frequency of the system being forced. Properties such as these might make syn-

chronization helpful in addressing one of the difficulties with the linear system mentioned above:

that a phenomenon similar to resonance is apparently observed irrespective of input frequency.

Irrespective of such considerations, and given the non-linear and self-sustained nature of neuronal

oscillations, the author would like to venture a guess that the true underlying mechanism of se-

quential effects is some form of non-linear synchronization, of which linear resonance is only an

approximation.

The complex spatio-temporal pattern formation capabilities displayed by some non-linear dy-

namical systems may also come in use when attempting to model another aspect of sequential

effects: the proposed spatial filtering element. The behaviour of the pre-motor component of se-

quential effects - S-LRP - suggests a not so straightforward filtering mechanism, one that is capa-

ble of generating a prediction based on spatial location independently of time. That some form of

complex behaviour should emerge is perhaps unsurprising if we consider the putative locus of the

pre-motor element of sequential effects, the visual cortex, known to generate complex geometric

patterns spontaneously in conditions of sensory deprivation (Sacks, 1999), a phenomenon which

has been successfully captured with a non-linear pattern formation system (Bressloff, Cowan, Gol-

ubitsky, Thomas, & Wiener, 2002). Such a system is expected to exhibit considerably more com-

plex types of behaviour than resonance, and among these may potentially lie the explanation to for

the proposed time-independent spatial filtering element of sequential effects.

5.5 Wider implications and conclusion

Guiding this work was an overarching philosophical vision which deserves an attempt at being

made explicit. The core idea of this vision is that the mind does not set out as a clean slate to learn

all the possible regularities which might exist in the universe, but rather that it contains an implicit
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‘catalogue’ of such regularities which it attempts to match with sensory data, with the best fitting

pattern being used in order to learn and to guide behaviour. Moreover, while such a catalogue is

necessarily influenced by experience, it is not assumed to be built from all the patterns seen before,

but rather to be determined largely by the very physics of the brain, and in particular by the patterns

that it is able to form spontaneously. The inspiration for this view on how the mind works comes

from multiple sources, but centred around one main theme: if there is no sensory input, the brain

tends to form patterns of its own (Bressloff et al., 2002); if the information available happens to

be random humans often find a pattern despite all evidence to the contrary (Nickerson, 2002). In

general, it would seem that the mind fills the gaps in knowledge with the patterns that it either

forms spontaneously, or with those closest to what little information is available. These patterns

impart structure on what is perceived and learned, which becomes a mixture of reality with what

is found a priori in the mind.

Sequential effects are in this context taken to be the simplest manifestation of the above stated

principles: repetitions and alternations both have corresponding forms of dynamical behaviour in

the brain, which are latent in the behaviour of even a single oscillator. In this sense a repeating

or alternating pattern is not so much learned as detected, by resonance or a more complex pattern

matching mechanism. In other words, the question implicitly being asked in sequential effects is

not ‘what pattern is present in the sequence?’ but rather two separate questions are being posed

at the same time: ‘is the pattern repeating?’ and ‘is the pattern alternating?’. The last two ques-

tions are far simpler than the first, which heralds one possible advantage of pattern matching over

some universal learning mechanism: economy of resources. Searching for just any type of pattern

implies that such a pattern can be of any length, which would require storing large amounts of

information. However, the exponential decay observed in sequential effects and more generally in

human memory points to a very short storage capacity, on the order of four or five stimuli. How

are we to reconcile this rapid decay with the obvious fact that humans learn on all time scales?

This answer to this question may be all too simple: the pattern was already latent in the mind, it
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was merely activated.

There are several corollaries to the pattern matching view. For instance, learning would be seen

as a process of selecting those patterns which are most useful in any given situation, while at the

same time trimming those which are not useful, a process more akin to tuning a musical instrument

than a processing computer. That some form of trimming is indeed taking place is suggested by

the much larger number of neuronal connections present in the infant brain when compared to that

of an adult. Another corollary is that the classical problem of inductive inference might not be a

problem at all: we do not abstract away from a particular to a general domain, we simply match the

same pre-existing abstract structure to similar problems, a view which finds echo in the writings

of some philosophers (Popper, 1959). Thinking in terms of pattern matching may also provide a

natural answer to the problem of essentialism: ever since Plato and his cavern scholars have noted

a human tendency to find an essence to the structure of similar problems which seems to transcend

physical reality. The reason for this apparently perfect ‘world of ideas’ might be that when the

same pattern is found in two different domains, it is matched to exactly the same pre-existing

dynamical state in the brain. Furthermore, by virtue of the very nature of spontaneously generated

patterns these tend to be regular and symmetrical, and this may explain the apparent perfection

of ideas as opposed to the crudity of reality. Coming back again to sequential effects, one can

make an oscillator resonate with a slightly irregular input, but once this is gone the oscillator will

eventually display a perfectly regular oscillatory motion. The input may have consisted of noisy

square impulses, but the remaining essence is a perfect sinusoid.

Finally, the pattern matching view suggests a course for research into the mind itself: if at-

tempting to understand how humans learn in a particular situation, proceed by finding the system

which can reproduce spontaneously the pattern which is being learned. It was in fact a similar

reasoning which gave rise to the idea of using oscillators to model sequential effects, so this very

thesis can be taken as an example of this principle at work.
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FIGURE A.1: Unrotated latent structure. Coefficient patterns of the four first components extracted
with PCA, before rotation. From left to right, components are ordered by amount of variance ex-
plained: 78%, 12%, 4.9% and 1.25%; variance explained by the remaining components goes 0.9%, 0.54%,
0.39%,...,0.089%. The first component is clearly interpretable the effect of overall individual mean RT;
the second and third components - C2 and C3 - can be interpreted as the effects of the last and second-to-
last events respectively; the fourth component exhibits an approximate dependence on the second-to-last
independently of the last event, visible as an overall similarity between the left and right halves of the plot.
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FIGURE A.2: Individual scores for all 158 participants on the three latent components related to se-
quential effects.(a)-(b) panels with scores on one particular component plotted against those on another
component. Within each panel, individual RSI subgroups are plotted separately. Details of how the scores
were calculated are detailed in the text. Note that the scores were those obtained from the global PCA analy-
sis including all participants. Note that, for a 500 and 800 ms RSI, most subjects have a score on C4 close to
zero, reflecting the absence of this component for long RSI values (panels (b) and (c)). In addition, note the
correlation between C2 and C4 score for low RSI (middle panel, 50 and 250 ms subgroups) discussed in the
main text. Finally, observe the single subject which exhibits a significantly negative score on both C2 and
C3 (top panel, 50 ms subgroup); note that the good qualitative nature of the fit to this subject (see Appendix
C) is indicative that these negative scores may not be spurious. In other words, it might be possible - yet
rare - to have a negative score on both C2 and C3.
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Recalculation of component scores

Under normal circumstances the PCA model’s prediction for the j-th individual is obtained through

xj = µ +
∑N

i=1 s
j
iCi, where µ is the grand mean array, N is the number of components retained,

Ci is the coefficient pattern for each component and sij is the the score of subject j on component

i. If we replace the grand mean with a simple constant, our model becomes xj = bj +
∑N

i=1 s
j
iCi,

with b equal to individual overall mean RT. If we further discount the mean RT by subtracting

it from each individual, we can set the baseline RT at zero for all subjects, in which case our

model further reduces to xj =
∑N

i=1 c
j
iVi, where the notation has been changed to highlight the

fact that the scores are now linear coefficients and the coefficient patterns simply vectors equal to

the coefficient patterns identified with PCA. Individual scores will be estimated by fitting a linear

combination of coefficient patterns to each individual’s data with the overall mean subtracted. As

expected, the linear coefficients thus obtained are almost perfectly correlated to the scores obtained

with PCA (r = 0.92, r = 0.97 and r = 0.89 respectively for C2, C3 and C4, p << 1e − 3 in all

cases). It is to these linear coefficients that we refer throughout as individual ‘scores’.
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FIGURE A.3: Coefficient patterns obtained by performing a PCA on different subgroups of participants
performing different experiments. Plots show, from left to right, C2, C3 and C4. Experiments 8 and 9 were
not analysed as they do not include enough subjects allowing for PCA to be conducted. All experiments
considered (1 through 7) yielded a C2 and C3 significantly similar to those obtained in the global analysis
including all subjects. Only experiments 1, 2, 3 and 6 yielded a C4 significantly similar to the global
components. The reason for this is probably the small number of participants in each subgroup together
with the fact that C4 explains a relatively small amount of variance. Together, these results clearly indicate
that the latent structure obtained with the global analysis is not an artifact of grouping different experiments.

Invariance of latent structure with RSI and Experiment

The non-standard approach of analysing data from multiple experiments together might raise con-

cerns regarding whether the latent structure is constant across conditions. For instance, it would

be possible in principle for a component to be present exclusively in one experiment in which case

our results would be an artefact of mixing qualitatively different results. In order to dispel these

doubts extra care was taken to demonstrate that the latent structure of sequential effects is invariant

with respect to both RSI as well as experimental design. This is particularly relevant in the case

of different RSI values, given the prevalent view that short and long RSI sequential effects are

qualitatively different. In order to evaluate how the latent structure varies, the same analysis which

was conducted for all subjects together will be performed in different subgroups separated accord-

ing to RSI, irrespective of experiment, and according to experiment performed, collapsing across

RSI. Different latent structures were obtained, one for each subgroup, and four components were

retained each case. It was then necessary to evaluate whether these components were the same as
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the ones in the global pool of subjects, and this was done with recourse to Tucker index of simi-

larity (Gorsuch, 1983) according to the following procedure: the index was calculated between all

putative components of the same type (say C1), one at a time, and the global corresponding com-

ponent (C1 in this case), and similarly for the remaining three components. The significance of the

calculated coefficient values was assessed by holding one vector fixed and randomly permuting the

other, allowing a p value to be estimated (Abdi, 2007).
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Participants

Ten subjects took part in this experiment. Participants were undergraduate students at the Uni-

versity of Adelaide and were given course credit for their participation; all gave their informed

consent to taking part in the experiment; all had normal or corrected-to-normal eyesight.

Stimuli

Stimuli consisted of two horizontally displaced dots, approximately 5 cm apart and 1 cm in diam-

eter.

Procedure

Subjects sat approximately 60cm away from the computer screen, inside a darkened room. The

stimuli were white (approximately 3 cm tall) and the background was gray. Stimuli were displayed

using Psychophysics Toolbox 3 and Matlab r2008a on a 15” Macintosh MacBook Pro running

MacOSX 10.6. Responses were made using a Cedrus RT-530 response time box, which has one

central round button surrounded by four rectangular buttons. The RT box was placed to the right

of the computer if the subject was right-handed, and to the left if left-handed.

Responses were carried out using the two index fingers, one placed on the left button and one on

the right button of the response box. Subjects were instructed to respond as quickly and accurately

as possible to the stimulus by pressing the button on the same side as the stimulus shown. After

a random response-stimulus interval, different for every trial, the next stimulus appeared. Each

value of RSI was drawn randomly from a uniform distribution in the interval [50 1000] ms. The

only feedback was a beep whenever a button was pressed.
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The experiment consisted of 13 blocks of 120 trials each, with a small break in between each

block and a longer break (approximately 10 min) after the seventh block. Each subject was given

one block of training before beginning. The data from the training blocks was not used in the

analysis. Sequences were generated randomly for each subject, with each element sampled from

a uniform distribution over the elements. The relative frequencies of both the stimuli were equal

within each block and so for the whole experiment.



C
Appendix C: All individual data

This appendix shows all 158 individual participants in the seven experiments described in Chapter

3, organised by experiment and response-stimulus interval (RSI). Each individual panel in each of

the plots shown in the next pages corresponds to data from a single individual performing a partic-

ular experiment with a particular RSI. Solid blue lines show mean reaction times. Red dashed lines

show a linear combination of the coefficient patterns of the first four latent components identified

with PCA (see Chapter 3). Inset plots show the scores on the three components responsible for

sequential effects - C2, C3 and C4.
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FIGURE C.1: Individual data for Experiment 1 with a 50 ms RSI.
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FIGURE C.2: Individual data for Experiment 1 with a 250 ms RSI.
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FIGURE C.3: Individual data for Experiment 1 with a 500 ms RSI.
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FIGURE C.4: Individual data for Experiment 1 with a 800 ms RSI.
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FIGURE C.5: Individual data for Experiment 2 with a 250 ms RSI.
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FIGURE C.6: Individual data for Experiment 2 with a 500 ms RSI.
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FIGURE C.7: Individual data for Experiment 2 with a 800 ms RSI.
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FIGURE C.8: Individual data for Experiment 3 with a 50 ms RSI.
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FIGURE C.9: Individual data for Experiment 3 with a 250 ms RSI.
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FIGURE C.10: Individual data for Experiment 3 with a 500 ms RSI.
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FIGURE C.11: Individual data for Experiment 3 with a 800 ms RSI.
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FIGURE C.12: Individual data for Experiment 4 with a 50 ms RSI.
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FIGURE C.13: Individual data for Experiment 4 with a 250 ms RSI.
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FIGURE C.14: Individual data for Experiment 4 with a 500 ms RSI.
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FIGURE C.15: Individual data for Experiment 4 with a 800 ms RSI.
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FIGURE C.16: Individual data for Experiment 5 with a 50 ms RSI.
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FIGURE C.17: Individual data for Experiment 5 with a 250 ms RSI.
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FIGURE C.18: Individual data for Experiment 5 with a 500 ms RSI.
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FIGURE C.19: Individual data for Experiment 5 with a 800 ms RSI.
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FIGURE C.20: Individual data for Experiment 6 with a 50 ms RSI.
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FIGURE C.21: Individual data for Experiment 6 with a 250 ms RSI.



279

210

220

230

240

250

260

270

280

290

R

R

R

R

A

R

R

R

R

A

R

R

A

A

R

R

R

R

A

R

A

R

A

R

R

A

A

R

A

A

A

R

R

R

R

A

A

R

R

A

R

A

R

A

A

A

R

A

R

R

A

A

A

R

A

A

R

A

A

A

A

A

A

A

M
ea

n
 R

T
 (

m
s)

2 3 4
−0.1

0

0.1

220

230

240

250

260

270

280

290

R

R

R

R

A

R

R

R

R

A

R

R

A

A

R

R

R

R

A

R

A

R

A

R

R

A

A

R

A

A

A

R

R

R

R

A

A

R

R

A

R

A

R

A

A

A

R

A

R

R

A

A

A

R

A

A

R

A

A

A

A

A

A

A

M
ea

n
 R

T
 (

m
s)

2 3 4
−0.1

0

0.1

220

230

240

250

260

270

280

R

R

R

R

A

R

R

R

R

A

R

R

A

A

R

R

R

R

A

R

A

R

A

R

R

A

A

R

A

A

A

R

R

R

R

A

A

R

R

A

R

A

R

A

A

A

R

A

R

R

A

A

A

R

A

A

R

A

A

A

A

A

A

A

M
ea

n
 R

T
 (

m
s)

2 3 4
−0.1

0

0.1

240

250

260

270

280

290

300

R

R

R

R

A

R

R

R

R

A

R

R

A

A

R

R

R

R

A

R

A

R

A

R

R

A

A

R

A

A

A

R

R

R

R

A

A

R

R

A

R

A

R

A

A

A

R

A

R

R

A

A

A

R

A

A

R

A

A

A

A

A

A

A

M
ea

n
 R

T
 (

m
s)

2 3 4
−0.1

0

0.1

220

240

260

280

300

320

R

R

R

R

A

R

R

R

R

A

R

R

A

A

R

R

R

R

A

R

A

R

A

R

R

A

A

R

A

A

A

R

R

R

R

A

A

R

R

A

R

A

R

A

A

A

R

A

R

R

A

A

A

R

A

A

R

A

A

A

A

A

A

A

M
ea

n
 R

T
 (

m
s)

2 3 4
−0.2

0

0.2

FIGURE C.22: Individual data for Experiment 6 with a 500 ms RSI.
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FIGURE C.23: Individual data for Experiment 6 with a 800 ms RSI.
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FIGURE C.24: Individual data for Experiment 7 with a 50 ms RSI.



282 APPENDIX C: ALL INDIVIDUAL DATA

260

280

300

320

340

360

R

R

R

R

A

R

R

R

R

A

R

R

A

A

R

R

R

R

A

R

A

R

A

R

R

A

A

R

A

A

A

R

R

R

R

A

A

R

R

A

R

A

R

A

A

A

R

A

R

R

A

A

A

R

A

A

R

A

A

A

A

A

A

A

M
ea

n
 R

T
 (

m
s)

2 3 4
0

0.05

220

240

260

280

300

320

340

R

R

R

R

A

R

R

R

R

A

R

R

A

A

R

R

R

R

A

R

A

R

A

R

R

A

A

R

A

A

A

R

R

R

R

A

A

R

R

A

R

A

R

A

A

A

R

A

R

R

A

A

A

R

A

A

R

A

A

A

A

A

A

A

M
ea

n
 R

T
 (

m
s)

2 3 4
0

0.1

0.2

180

200

220

240

260

R

R

R

R

A

R

R

R

R

A

R

R

A

A

R

R

R

R

A

R

A

R

A

R

R

A

A

R

A

A

A

R

R

R

R

A

A

R

R

A

R

A

R

A

A

A

R

A

R

R

A

A

A

R

A

A

R

A

A

A

A

A

A

A

M
ea

n
 R

T
 (

m
s)

2 3 4
−0.1

0

0.1

200

250

300

350

R

R

R

R

A

R

R

R

R

A

R

R

A

A

R

R

R

R

A

R

A

R

A

R

R

A

A

R

A

A

A

R

R

R

R

A

A

R

R

A

R

A

R

A

A

A

R

A

R

R

A

A

A

R

A

A

R

A

A

A

A

A

A

A

M
ea

n
 R

T
 (

m
s)

2 3 4
−0.5

0

0.5

210

220

230

240

250

260

270

280

R

R

R

R

A

R

R

R

R

A

R

R

A

A

R

R

R

R

A

R

A

R

A

R

R

A

A

R

A

A

A

R

R

R

R

A

A

R

R

A

R

A

R

A

A

A

R

A

R

R

A

A

A

R

A

A

R

A

A

A

A

A

A

A

M
ea

n
 R

T
 (

m
s)

2 3 4
−0.1

0

0.1

FIGURE C.25: Individual data for Experiment 7 with a 250 ms RSI.
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FIGURE C.26: Individual data for Experiment 7 with a 500 ms RSI.
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FIGURE C.27: Individual data for Experiment 7 with a 800 ms RSI.
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All differential equations were solved by using the Laplace transform method. The Laplace

transform is defined as

L(f(t)) =

∫ ∞
0

e−stf(t)dt (D.1)

where s is a complex number. The transform of a derivative function is

L(f ′(t)) = sF (s)− f(0) (D.2)

where F (s) is the Laplace transform of f(t) and f(0) the value of the original function at t = 0.

This result can be achieve by substituting f ′(t) for f(t) in (D.1) and integrating by parts. Iterating

(D.2) twice we arrive at the formula for the Laplace transform of the second derivative

L(f ′′(t)) = s2F (s)− sf(0)− f ′(0) (D.3)

Finally, the Laplace transform of a Heaviside step function is equal to

L(cH(t)) =
c

s
(D.4)

where c is a constant equal to the amplitude of the step.

We are now ready for a short description of the method for the case of a second order differen-

tial equation. Consider the case of the equation for a single harmonic oscillator, given by
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ÿ + γẏ + ω2
0y = F (t) (D.5)

Where F (t) = cH(t) is a Heaviside step function. Taking the Laplace transform of both sides

of (D.5), and making use of the linearity of of the operator L(.), gives

s2Y (s) + γsY (s) + ω2
0Y (s)− sy(0)− γy(0)− y′(0) =

c

s
(D.6)

which, solving for Y (s) yields

Y (s) =
c
s

+ sy(0) + γy(0) + y′(0)

s2 + γs+ ω2
0

(D.7)

which is the Laplace transform of y(t). The key to the method then lies in taking the inverse

transform of Y (s) to recover y(t), according to

y(t) = L−1(Y (s)) (D.8)

which usually involves taking partial fractions to reduce the polynomial on the right side of (D.7) to

a a sum of functions for which the transform is known. This is practical only if the initial conditions

y(0) and y′(0), i.e. the initial position and velocity, are both 0, but it becomes intractable if both are

given any other value. Since arbitrary initial conditions are necessary for our purposes, the inverse

transform was calculated using the analytical software package Mathematica; the calculations and

resulting expressions for y(t) and y′(t) are shown in Appendix E.
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Recall that in the model proposed in Chapter 4 F (t) is usually a set of five consecutive pulses

with different signs. Deriving a single expression for y(t) for such a complex input using the

Laplace transform method would quickly make calculations intractable due to nesting of the so-

lutions for each pulse. Therefore the solution for an arbitrary number of pulses will be calculated

iteratively, by alternating two types of period: one in which F (t) = cH(t), corresponding to

each pulse or equivalently the period during which a stimulus is shown; and another period where

F (t) = 0 corresponding to the inter-stimulus interval. The position and velocity at the end of each

period are used as initial conditions for the next one, and so on until five pulses have been applied.

Note that in order to calculate model results only the sign of the last pulse is necessary (see Chapter

4), so in order to save computational time the position and velocity at the end of the last pulse are

not calculated. This process is extremely efficient computationally since, for each sequence of five

pulses, only eight time points must be calculated for both the position - y(t) - and velocity - y′(t) -

of the oscillator.

In order to calculate results for more than one oscillator the system is fist diagonalised, i.e.

transformed into canonical or normal model coordinates, the solution is calculated as above for

each normal mode, and the original coordinates are then recovered by applying the inverse trans-

formation of that which first diagonalised the system.
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Appendix E: Mathematica code

The following page shows Mathematica code used to compute the analytic solution of a single

damped oscillator. The code calculates the inverse transform of Y (s), the Laplace transform of

y(t), i.e. the solution of the damped oscillator, assuming a Heaviside step forcing function. In

addition, the code calculates the first derivative of y(t), i.e. the velocity of the oscillator. Finally,

the expressions for both position and velocity as simplified.
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Heaviside step function

In[7]:= Ft = c HeavisideTheta@tD
Out[7]= c HeavisideTheta@tD

Laplace transform of Heaviside step function

In[8]:= Fs = LaplaceTransform@Ft, t, sD

Out[8]=

c

s

Inverse Laplace transform to obtain y(t)

In[9]:= ft = FullSimplify@InverseLaplaceTransform@
HFs + s x0 + v0 + gamma x0L � Hs^2 + gamma s + omega0^2 L , s, tDD

Out[9]=

1

2 omega0
2

gamma
2 - 4 omega02

ã
-
1

2
gamma+ gamma

2-4 omega02 t

-c -1 + ã
gamma

2-4 omega02 t
gamma + 1 + ã

gamma
2-4 omega02 t

- 2 ã

1

2
gamma+ gamma

2-4 omega02 t

gamma
2

- 4 omega0
2

- 2 omega0
2
v0 + omega0

2 K-gamma + gamma
2

- 4 omega0
2 O x0 +

ã
gamma

2-4 omega02 t K2 v0 + Kgamma + gamma
2

- 4 omega0
2 O x0O

Calculate derivative of y(t)

In[10]:= dft = FullSimplify@D@ft, tDD

Out[10]=

1

2 gamma
2 - 4 omega02

ã
-
1

2
gamma+ gamma

2-4 omega02 t

2 c -1 + ã
gamma

2-4 omega02 t
+ gamma v0 + gamma

2
- 4 omega0

2
v0 +

2 omega0
2
x0 + ã

gamma
2-4 omega02 t K-gamma v0 + gamma

2
- 4 omega0

2
v0 - 2 omega0

2
x0O
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Appendix F: Frequency spectra
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FIGURE F.1: Frequency spectra of all sixteen sequences. Note that all sequences which are left-right
symmetric have the same spectrum.
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