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Abstract 

 

 

 _______________________________________________  

 

 

Evolutionary Algorithms (EAs) have been shown to apply well to optimizing 

the design and operations of water distribution systems (WDS). Recent research in 

the field has focussed on improving existing EAs and developing new ones so as to 

obtain better solutions (closer to the global optimum) and/or find solutions more 

efficiently. 

The primary aim of this research, however, has been to broaden the scope of 

optimization to include a number of the many factors that planning engineers need to 

consider when designing or planning the operations of WDS. Those factors 

considered here are (1) water quality criteria, (2) real-world, complex systems, and 

(3) the incorporation of data uncertainty. 
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Incorporating each of these factors independently increases computational 

run-time of EA-based optimization of an algorithm that is already computationally 

intensive compared to other (inferior) algorithms that have been used in WDS 

optimization. Water quality models tend to run slower than hydraulic models due to 

the shorter timestep that is required to ensure sufficient accuracy, and the need for 

extended period simulations thereby increasing the simulation duration. Real-world 

models run slower due to their size. Data uncertainty is typically accounted for 

through the use of Monte Carlo simulations, that add several orders of magnitude to 

the computational requirements of optimization. 

Considering each of these factors together compounds the computational 

requirements to a point where it is impossible to optimize WDS using EAs in a 

reasonable amount of time. In this research metamodels have been used in place of 

simulation models within an EA to reduce this computational burden. A metamodel is 

a model of a model that runs much faster than the said model, but is still a high-

fidelity approximation of it. The particular type of metamodel used in this research is 

an Artificial Neural Network (ANN) due to its theoretical capabilities and 

demonstrated effectiveness in water resources applications. 

The use of metamodels to act as surrogates for complex simulation models is 

not a trivial task. Therefore, guidelines have been developed on how best to 

incorporate them into the WDS optimization process. 

The overall metamodel-empowered, EA-based optimization algorithm 

developed in this research was applied to several case studies. Two small case 

studies, both variations of the New York Tunnels problem were studied for proof-of-

concept purposes. They demonstrated that near globally-optimal solutions could still 
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be found using the metamodel-based approach, i.e. there was minimal compromise in 

the effectiveness of the EA-based approach. Two larger, real-world problems were 

also studied: Wallan (operations planning) and Pacific City (system augmentation). 

These last two case studies were key to demonstrating the power of using 

metamodels in that they enabled a computational speed-up of up to 1375 times 

(137,500%) compared to a non-metamodel approach. This speed-up includes 

factoring in the computational overheads of using metamodels, i.e. time to generate 

calibration data and calibrate the metamodels. 
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“For a thousand years in thy sight are but as yesterday...” 

Psalm 90:4a (KJV) 
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1.1 Introduction 

Research into water distribution system (WDS) optimization increased 

significantly in the mid 1990s with the first application of Genetic Algorithms (GAs) to 

the problem (Simpson et al. 1994). It spawned a wave of research in applying what 

have come to be known as Evolutionary Algorithms (EAs) to WDSs. Many variations 

and improvements to EAs were developed, and new algorithms produced, all of which 

were demonstrated to perform well on WDS optimization (Dandy et al. 1996, Savic 

and Walters 1997, Cunha and Sousa 1999, Eusuff and Lansey 2003, Maier et al. 2003, 

Geem 2006). 

EAs became more popular compared to previously used methods (e.g. linear 

programming, gradient search and enumeration) for the following reasons: they were 

simulation model based, they did not require complex gradients to be calculated, they 

did not require simplifications to the problem, they were less prone to becoming 

trapped in local optima, and they were easy to use (Simpson et al. 1996). 

In the face of intensive research in the field, Walski (2001) was critical that 

WDS optimization was the wrong paradigm with regard to WDS planning. Walski’s 

criticisms focused primarily on the fact that optimization omits many factors that 

design engineers/planners need to consider when designing a WDS in practice. That 

is, the problems most researchers considered were too simplistic. These factors 

include (1) the inclusion of water quality criteria to ensure the health of a utility’s 

customers; (2) the ability to apply a planning paradigm to WDSs of any size (many 

researchers focussed on small, academic case studies, whereas larger real-world case 

studies, where optimization has greater potential benefits, bring a range of difficulties 
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to the design process); and (3) the need for robust designs, given knowledge of key 

design criteria (e.g. future demand), is imperfect. 

To achieve broader acceptance of WDS optimization by industry, more of 

these aspects of realism must be considered by researchers. Consequently, this 

research has focussed on three ways of better incorporating these aspects of realism 

into the EA-based optimization of WDSs, as captured in the following aim. 

Aim #1 of this research is to incorporate three aspects of realism into the 

optimization of WDS, namely (1) water quality criteria; (2) real-world systems; 

and (3) data uncertainty.  It should be noted that other aspects of improving the 

realism with which the EA-based optimization of WDS is carried out, such as the 

inclusion of multiple competing objectives (e.g. Halhal et al. 1997, Kapelan et al. 2005) 

have not been considered in this research. 

The one negative aspect of EAs compared with other optimization algorithms 

is that they are more computationally intensive. Adding more aspects of realism to 

the problem formulation dramatically increases this run time even more. And while 

computers have become faster and distributed computing has helped, currently it is 

not possible to optimize a WDS with an EA that takes all aspects into account that a 

planning engineer would consider in a reasonable amount of computing time. 

This thesis takes a step towards enabling this goal to be achieved through the 

use of metamodels (Blanning, 1975, Razavi et al. 2012). A metamodel is a simplified 

model of a complex simulation model that solves much faster than the simulation 

model it approximates. The purpose of metamodelling is to reduce computational 
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time and hence it is very useful in applications of repetitive usage, such as EA-based 

optimization. Metamodel usage is non-trivial which leads to aim #2of this research. 

Aim #2 of this research is to develop a robust methodology for the use of 

metamodels in WDS optimization. 

1.2 Publications 

This thesis is comprised of four publications. Their contribution to the body of 

knowledge in the research field can be most clearly presented with reference to the 

two broad aims of the research presented in Section 1.1. 

The papers present significant advances in the incorporation of important 

aspects for WDS optimization. These are outlined in Section 1.2.1. Those advances are 

only facilitated through the use of metamodelling and significant advances in 

establishing a robust framework within which metamodels can be used for WDS 

optimization have also been made. These are summarised in Section 1.2.2. 

1.2.1 Contributions to WDS Optimization 

The contribution of the four papers to broadening the aspects considered in 

WDS optimization is presented in Table 1.1. 

Table 1.1 Contributions to WDS optimization by publication. 

Aspect of WDS 
Optimization 

Publication 

1 2 3 4 

Water Quality ✓ ✓ ✓ ✓ 

Real World Models   ✓ ✓ 

Data Uncertainty    ✓ 
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Publications 1 and 2 both include water quality criteria via modelling of 

disinfection parameters (chlorine dosing) and demonstrate the ability to optimize 

WDS with these criteria (they differ in their contribution to metamodelling 

knowledge; see Section 1.2.2.). 

Publication 3 builds on the previous publications in that it also includes water 

quality criteria. Its main contribution is that it also includes an analysis of the 

additional factors that need to be considered when optimizing real world problems. A 

key outcome is that real world scale WDS problems that include water quality criteria 

can now be optimized (by using metamodels) whereas previously, as far as the author 

is aware, they could not. 

Publication 4 also includes water quality criteria and the application to real 

world models, but builds on the previous publications by the addition of a way of 

accounting for key sources of data uncertainty (i.e. future demand, pipe roughness 

coefficients and chlorine decay rate). The paper presents the first demonstration of 

WDS optimization that includes water quality criteria, accounts for data uncertainty 

and applies it to real world models. 

 

1.2.2 Contributions to the Development of a Metamodelling 

Framework for WDS Optimization 

Several contributions have been made in establishing a framework within 

which metamodels may be used for WDS optimization. These contributions, found in 

the four publications, can best be presented when considering the steps involved in 

developing and using a metamodel for optimization. 
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End

 

Figure 1-1 Traditional, or non-metamodel-based optimization procedure 

Figure 1.1 shows the high level steps involved in EA-based optimization 

without the use of metamodels. In contrast, Figure 1-2 shows how the approach 

differs when metamodels are used. It is clear that when metamodels are not used, the 

optimization process is very straightforward; the optimization problem is formulated 

(decision variables, constraints and the objective function are defined), then the 

problem is optimized. 

In contrast, the procedure when metamodels are used incorporates several 

additional steps. These are presented here in summary form, with references to 

where further details are laid out in the publications: 

Step 1: Formulate Optimization Problem: This involves determining decision 

variables, constraints and data required to optimize a WDS. There are no differences 

in this step between the metamodel and non-metamodel scenarios. 
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Figure 1-2 Metamodel-based optimization procedure with references to 

relevant publications for further detail. 
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Step 2: Determine Metamodel Scope: A systematic process was developed for 

determining the most appropriate scope of a metamodel; that is, which intermediate 

calculation steps of calculating a fitness function should be replaced with a 

metamodel. The purpose of this process is to ensure a metamodel replaces the most 

computationally intensive calculation steps, and the calculation steps whose structure 

is more easily approximated by a metamodel. A generic process was developed that 

may be used in any metamodelling application and the process was applied to the 

risk-based optimization of WDS using EAs (Publication 4). 

Step 3: Prepare Simulation Model: Some key considerations need to be made 

when using metamodels for WDS optimization, especially when applying them to 

larger systems. One of the contributions of Publication 3 is a discussion of the 

considerations pertaining to preparing the simulation model so that it can be used in 

metamodel-based optimization. 

Step 4: Generate Calibration Data: The simulation model is used to generate 

data that are needed to calibrate the metamodel. A general approach that is applicable 

to WDS design is presented in Publication 1. Publication 3 includes adaptations to this 

approach for WDS operations, and Publication 4 includes further adaptations to 

account for data uncertainty. 

Step 5: Determine Metamodel Output Variables: The types of variables for 

which the metamodel needs to act as a surrogate are determined by the optimization 

problem (e.g. pressure and chlorine concentrations). However, modelling these 

variables at each node in the WDS system is computationally expensive and is not 

required. Publication 3 includes a numerical procedure to determine the minimum 
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number of nodes (output variables) for the metamodel, such that there is no change 

to the global optimum and fitness landscape compared to the traditional (non-

metamodel) approach. 

Step 6: Calibrate Metamodel: Each paper in this thesis uses Artificial Neural 

Networks (ANNs) as the type of metamodel. Publication 1 contains the justification 

for using ANNs, as well as a recommended general structure and calibration method 

for using them. Publication 3 contains a minor modification to the metamodel 

structure for operations optimization. 

Step 7: Metamodel-based Optimization with Evolutionary Algorithms: Each 

paper in this thesis used EAs coupled with ANN metamodels. Publications 1 and 2 use 

metamodels to check constraint violations. Publication 3 uses metamodels for the 

same purpose, as well as for evaluating chlorine dosing costs and energy consumption 

by pumps. Publication 4 demonstrates the full power of metamodels by using them in 

the risk-based optimization of WDS. In that case, the metamodels are used to calculate 

pressure and chlorine residuals that are used to calculate risk metrics (reliability and 

vulnerability) within a Monte Carlo Simulation; the risk metrics are then used as 

constraints in the EA. 

Step 8: Evaluate Solutions with Simulation Model: A metamodel acts as a high-

fidelity approximation to a simulation model, however, it is not a perfect 

approximation. Therefore, after running an EA, some solutions need to be checked 

with the original simulation model. Publication 1 presents an algorithm that includes 

several solution-checking steps. Publication 2 presents an evaluation of a range of 

different algorithms that were developed, or selected, specifically for WDS 
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optimization. Publication 4 presents a modification to the original algorithm that 

recognises that, in practical situations, there may be a limited computational budget. 

In light of this, the paper examines how best to use the limited fitness evaluations. 

1.2.3 Summary 

Each publication is presented in the following four chapters. The contributions to 

knowledge that each paper provides is given in detail in Sections 1.21-1.2.2. For 

simplicity, each chapter has been renamed to reflect the main contributions of each 

paper, as outlined in Table 1.2. 

Table 1.2. Publications, chapters and their main focus. 

Publication Chapter Main Focus 

1 2 Water Quality 

2 3 Local Search 

3 4 Complex Hydraulic Systems 

4 5 Data Uncertainty 
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Abstract 

Genetic Algorithms (GAs) have been shown to apply well to optimizing the 

design and operations of water distribution systems (WDS). The objective has usually 

been to minimize cost, subject to hydraulic constraints, such as satisfying minimum 

pressure. More recently, the focus of optimization has expanded to include water 

quality concerns. This added complexity significantly increases computational 

requirements of optimization. Considerable savings in computer time can be achieved 

by using a technique known as metamodeling. A metamodel is a surrogate, or 

substitute for a complex simulation model. In this research, a metamodeling approach 

is used to optimize a water distribution design problem that includes water quality. 

The type of metamodels used are Artificial Neural Networks (ANNs), as they are 

capable of approximating the non-linear functions that govern flow and chlorine 

decay in a WDS. The ANNs were calibrated so as to provide a good approximation to 

the simulation model. In addition, two techniques are presented to improve the 

ability of metamodels to find the same optimal solution as the simulation model. 

Large savings in computer time occurred from training the ANNs to approximate 

chlorine concentrations (approximately 700 times faster than the simulation model) 

while still finding the optimal solution. 
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2.1 Introduction 

Many decisions need to be made with regard to the design and operation of 

Water Distribution Systems (WDS). These decisions are generally aided by the use of 

a simulation model, such as EPANET. The simulation model enables decision makers 

to examine the effects of their decisions prior to implementation. Traditionally, 

several sets of decision variables or solutions may be evaluated using the simulation 

model, with the best set selected for implementation. Optimization algorithms have 

an advantage in that the process of simulating the solutions can be automated with 

many thousand solutions evaluated in such a way as to guide the search towards the 

optimum. 

2.2 Literature Review 

WDS Optimization has existed as a research field for over 30 years and can be 

broadly classified into two application areas, namely design and operations. The focus 

of this paper is on the optimal design of WDS. Design can include, for example, 

determining pipe diameters and locations of chlorine booster stations. 

Since Simpson et al. (1994), Genetic Algorithms (GAs) have been applied 

extensively to optimize WDS for hydraulic criteria. The main advantages of GAs are 

that they use a population of evolving solutions and identify several solutions from 

which the decision maker can select, rather than a single optimum. The main 

disadvantage lies in the high computational intensity. 

Improvements have been made in the GA (Dandy et al. 1996; Walters et al. 

1999) and there have been improvements in the usefulness of optimization as a tool 

for designing WDS through the addition of non-hydraulic constraints. In practice, 
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water authorities need to satisfy water quality criteria in addition to meeting 

hydraulic constraints while minimizing cost. Upper and lower bounds on disinfection 

are needed to avoid taste and odor complaints and to ensure there is no microbial 

contamination, respectively. Dandy and Hewitson (2000) incorporated water quality 

issues into optimizing the design of WDS with a GA. The key finding was that when 

water quality constraints were included, the optimum solution was more costly than 

that obtained when only hydraulics were considered. However, water quality-based 

optimization has a much higher computational burden, relative to hydraulics, due to 

the shorter computational time-step of the simulation model and the need to run an 

extended period simulation. Therefore, for water quality issues to be incorporated 

into optimization, methods to reduce this computational burden need to be 

developed. 

The technique proposed in this paper to reduce the computational intensity of 

water quality-based optimization is known as metamodeling. A metamodel, first 

proposed by Blanning (1975), is a model of a simulation model. The metamodel 

serves as a surrogate, or substitute, for the more complex and computationally 

expensive simulation model, which is EPANET in the case of WDS optimization. While 

it does take time to develop metamodels, this is generally offset by the considerable 

time savings arising when they are linked with an iterative algorithm that requires 

them to be run many times, such as a GA. There are several different types of 

metamodel that can be constructed, including regression models and artificial neural 

networks (ANNs). In this paper, the focus is on using ANNs as a metamodel for the 

complex WDS simulation models. The advantage that ANNs have over regression 

metamodels is that they can represent complex, non-linear functions without the 
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need to pre-determine the form of the model (eg. linear, polynomial) (Leshno et al. 

1993).  

Metamodels have been used in a wide variety of applications, including 

calibrating WDS (Lingireddy and Ormsbee 1998), modeling of chemical reactors 

(Kalagnanam and Diwekar 1997) and modeling of aircraft operation (Meckesheimer 

et al. 2002). Of particular interest is the work of Aly and Peralta (1999) and Johnson 

and Rogers (2000), who used ANN metamodels as approximations to complex 

groundwater models and subsequently used them in place of the simulation model in 

an optimization framework. After training the ANN, Aly and Peralta (1999) accepted 

it as an accurate approximation to the simulation model and used it for optimization. 

Johnson and Rogers (2000) improved on this by checking the optimal solution found 

by the ANN linked to an optimization algorithm with the simulation model. However, 

because it is unlikely that the ANN could provide a perfect approximation to the 

simulation model, it is insufficient to simply check one solution for feasibility. If it 

turned out that that solution was infeasible it would compromise the entire 

metamodeling process. Therefore, optimization runs that utilize metamodels should 

incorporate a broader method of checking feasibility of the solutions obtained with 

the original simulation model. Such a method is presented in this paper and applied to 

a benchmark problem from the literature. 

2.3 Objectives 

This paper presents a methodology for developing ANN metamodels for WDS 

for the purpose of reducing computational runtimes for the optimal design of WDS 

that include hydraulic and water quality constraints. In addition, two techniques are 
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presented to improve the performance of ANN metamodels in finding optimal 

solutions. These include evaluating select solutions with EPANET during optimization 

and adjusting constraints slightly to account for small errors in the metamodel. 

2.4 Optimization Approach 

In general terms, a water quality and hydraulics based optimization problem 

aims to minimize cost, such that constraints on pressures and chlorine concentrations 

at demand nodes are within certain bounds. The optimal design formulation used in 

this paper is given by Eq. (2.1) to Eq. (2.3). 

min 𝑧(𝜙) = ∑ 𝑈𝐶𝜙𝑖
𝐿𝑖

𝑛

𝑖=1

 (2.1) 

𝑃𝑗−𝑚𝑖𝑛 ≤ 𝑃𝑗 ≤ 𝑃𝑗−𝑚𝑎𝑥, 𝑗 = 1, … , 𝑚 (2.2) 

𝐶𝑗−𝑚𝑖𝑛 ≤ 𝐶𝑗 ≤ 𝐶𝑗−𝑚𝑎𝑥, 𝑗 = 1, … , 𝑚 (2.2) 

 

Where z() is the cost of design ; 𝑈𝐶𝜙𝑖
 is the cost per unit length of pipe i for design 

; Li is the length of pipe i; Pj, Pj -min and Pj-max are the pressure at node j and the 

minimum and maximum allowable pressures, respectively; Cj, Cj-min and Cj-max are the 

residual chlorine concentration at node j and the minimum and maximum allowable 

chlorine residuals, respectively; m is the number of nodes (or critical nodes) in the 

WDS; and n is the number of pipe segments. The constraints given by Eq. (2.2) and Eq. 

(2.3) are specifically relevant to the GA. However, there are also constraints regarding 

continuity, headloss and chlorine decay. While these do need to be satisfied, they are 

internal to the simulation model and thus are not presented here. To optimize this 

with a GA, constraints are converted into penalty costs, as shown in Eq. (2.4). 
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min 𝑧(𝜙) = ∑ 𝑈𝐶𝜙𝑖
𝐿𝑖

𝑛

𝑖=1

+ 𝑃𝐶1 + 𝑃𝐶2 (2.4) 

 

Where PC1 and PC2 are the penalty costs for pressure head and chlorine residual, 

respectively given by the following: 

𝑃𝐶1 = max
𝑗

[max{0, (𝑃𝑗−𝑚𝑖𝑛 − 𝑃𝑗), (𝑃𝑗 − 𝑃𝑗−𝑚𝑎𝑥)}] 𝑃𝑀1 (2.5) 

𝑃𝐶2 = max
𝑗

[max{0, (𝐶𝑗−𝑚𝑖𝑛 − 𝐶𝑗), (𝐶𝑗 − 𝐶𝑗−𝑚𝑎𝑥)}] 𝑃𝑀2 (2.6) 

 

Where PM1 is the penalty multiplier for pressure head ($/m) and PM2 is the penalty 

multiplier for chlorine residual ($/mg/L). 

2.5 Metamodel Development 

The processes that need to be followed in developing an ANN metamodel for 

use in place of a simulation model for optimization are shown in Figure 2-1. While the 

purpose of using a metamodel is to reduce computer runtime, the extra steps 

required in the development phase of the metamodel reduce the time savings 

obtained.  

In order to find optimal or near-optimal solutions when using a GA, a 

simulation model is needed to check whether the constraints are violated for a given 

set of decision variables (and if so, a penalty cost must be applied). Put simply, the 

purpose of the simulation model is to model the constrained variables as a function of 

decision variables. Therefore, a metamodel in place of a simulation model will need to 

do the same. For an ANN, the structure would entail decision variables at the input 

layer and constrained variables at the output layer. An example of an ANN that is used 

as a surrogate for a simulation model in a simple four-pipe, four-node, optimal design 
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problem is illustrated in Figure 2-2. In this example, the optimal solution would need 

to satisfy minimum pressure and minimum chlorine concentrations at the extreme 

demand node of the network, which would be dependent upon pipe diameters and 

the chlorine dosing rate. Hence the inputs and outputs of the ANN are as shown in 

Figure 2-2. 

(a) 
Set Up Problem

Generate Training 

Data with Simulation 

Model

Train ANN

Use ANN with Genetic 

Algorithm to Optimize 

Problem

Validate Accuracy of 

ANN Solution

 

 

(b) 
Set Up Problem

Use Simulation Model 

with Genetic Algorithm 

to Optimize Problem
 

Figure 2-1. Steps in optimizing a water distribution system, 

(a) ANN metamodel approach, (b) simulation model 

approach. 
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Figure 2-2. A simple WDS and its ANN metamodel. 

 

There are two possible methods for obtaining data to train the ANN. Given that 

an ANN metamodel is trained using synthetic data generated from a simulation 

model, there will not be any noise in the data (Johnson and Rogers 2000). Noisy data 

can result in over-training of the ANN, leading to poor generalisation ability when 

presented with new data unseen in the training process. One method is to generate 

data initially across the entire search-space and then train the ANN (Johnson and 

Rogers 2000), while another method is to train the ANN while running the GA, and 

use the solutions the GA obtains to periodically re-calibrate the ANN (Lingireddy and 

Ormsbee 1998). While further study is needed to determine the more appropriate 

method, the former approach was used in this study. This is because GAs continually 
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explore different regions of the search-space. Consequently, there is the danger in the 

latter approach that the metamodel is only accurate in a small region of the search-

space and will perform poorly in freshly explored regions, which may in fact contain 

the global optimum. 

In order to develop a representative ANN, training data need to be generated from a 

range of different values and for different types of variables, depending on the 

optimization situation being considered. In a design situation, values for each pipe 

diameter and dosing rate should be sampled. Therefore the technique for 

generating training data that was used in this research was uniform random 

sampling. It is important to ensure the sampled data cover the whole search space 

because, while ANNs can interpolate between solutions, they cannot extrapolate 

well. Therefore, in addition to the randomly sampled data, points corresponding 

to the extremes of the possible values of the output variables were also sampled. 

In a design example, maximum pressures correspond to maximum possible 

diameters, while minimum pressures correspond to the smallest pipe diameters. For 

water quality, maximum chlorine residuals correspond to a solution consisting of the 

maximum dosing rates and minimum pipe diameters (for small detention times), 

while minimum residuals correspond to minimum dosing rates and maximum pipe 

diameters. 

2.6 Optimization with Metamodels 

Where a trained metamodel is used in place of EPANET in a GA run, penalty 

costs are calculated with the following equations: 
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𝑃𝐶1 = max
𝑗

[max{0, (𝑃𝑗−𝑚𝑖𝑛 − 𝑃𝑗̃), (𝑃𝑗̃ − 𝑃𝑗−𝑚𝑎𝑥)}] 𝑃𝑀1 (2.7) 

𝑃𝐶2 = max
𝑗

[max{0, (𝐶𝑗−𝑚𝑖𝑛 − 𝐶𝑗̃), (𝐶𝑗̃ − 𝐶𝑗−𝑚𝑎𝑥)}] 𝑃𝑀2 (2.8) 

 

Where 𝑃𝑗̃ and 𝐶𝑗̃ replace Pj and Cj from Eq. (2.5) and Eq. (2.6) and are the nodal 

pressure head and chlorine residual approximations calculated by the ANN, 

respectively. In order to evaluate the effectiveness of this proposed approach, a 

comparison was made with the solutions found with an ANN linked to a GA 

(henceforth referred to as ANN-GA) and the optimal solutions found by EPANET 

linked to a GA (EPANET-GA). This comparison was made for this paper, however in 

practice, one would not be able to compare the two approaches. Metamodels should 

only be used where time constraints prohibit the possibility of optimizing a problem 

with a simulation model. 

2.6.1 Checking Solutions with the Simulation Model 

In order to ensure feasibility, it is important to evaluate solutions found by the 

ANN-GA with EPANET. This is required since it is unlikely that the ANN would be able 

to provide a perfect approximation to the EPANET model. However, simply checking 

the single solution to which the ANN-GA converges would not be adequate, because 

one could not be certain that this is indeed the optimum or even feasible, due to 

errors in the ANN. Therefore, it is proposed to use a three-stage approach for 

evaluating select solutions with EPANET. 

The first stage involves keeping track of several of the top solutions (rather 

than the single best) as the ANN-GA progresses and then evaluating these solutions 

with EPANET after the GA has converged. The logic behind this approach is that the 

solution to which the ANN-GA converges may actually be slightly infeasible when 
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modeled with EPANET. However, slightly more expensive solutions than the one to 

which the ANN-GA converges are more likely to be feasible. Hence the top solutions 

found using the ANN-GA will all be deemed feasible by the ANN but may consist of 

both feasible and infeasible solutions according to EPANET.  

Figure 2-3a illustrates the usefulness of keeping track of a number of the top 

solutions when attempting to find the optimal solution. The real optimal solution 

(according to EPANET) is point A, however point B is the optimal solution according 

to the ANN. Point C will be one of those top solutions that are tracked because it is a 

good, but sub-optimal solution according to the ANN. After the ANN-GA has 

converged, points C and B will be evaluated with EPANET, with real costs of A and D, 

respectively. Therefore the optimal solution will be found with the ANN-GA that 

checks the top few solutions with EPANET. 

The second stage is to conduct a local search after the ANN-GA has converged. 

This stage is proposed because the solution to which the ANN-GA converges may be 

sub-optimal. Hence a local search may find a slightly better solution, given that it will 

begin with a very good starting position. The local search used in this research 

consists of sequentially selecting each decision variable and reducing it by one value 

to a less expensive solution. If that solution is feasible according to EPANET, then a 

second reduction of that decision variable is performed. However, if the solution is 

infeasible, that variable in increased again and the process moves onto the next 

decision variable. This process continues until all decision variables have been 

reduced to the point where there is no further improvement. An example of the 

benefit a local search provides after the ANN-GA has converged is shown in Figure 

2-3b. The real optimum is at point E, while the ANN-GA will converge to point F. A 



Chapter 2:  Water Quality 

24 

local gradient search conducted with EPANET will commence from point G. Hence the 

actual optimum at point E should be found by a local search conducted after the ANN-

GA has converged.  

The third and final stage is to evaluate each new best solution found by the 

ANN-GA with EPANET. This is needed in conjunction with tracking the top few 

solutions because errors in the ANN (with respect to EPANET) may be large enough 

such that all of the top few solutions are actually infeasible when checked by EPANET. 

Without this stage of the proposed process, the only way to obtain feasible solutions 

would be with a local search. Hence by including an extra stage of evaluating each 

new best solution with EPANET, it will be more likely that the actual optimum will be 

found. Figure 2-3c illustrates two separate sections of a possible search space. The 

optimal solution is at point H, whereas the ANN-GA will converge to point J. However, 

considering the way in which a GA operates, in that it can escape local optima, point K 

may be found by the ANN-GA while searching for point J. Hence, when this solution is 

evaluated with EPANET, the optimal solution (H) will be found. The benefit of this 

third stage is further highlighted when it is used in conjunction with a local search. 

Point K itself does not need to be found, instead, point L (or any other point between 

the two) could be found by the ANN-GA before it converges on point J. Then, when the 

local search is conducted with EPANET from point M (point L for the ANN), it should 

find the optimal solution at point H. 
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(b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

(c) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2-3. Strategies of obtaining the optimal solution through the 

evaluation of select solutions with EPANET, (a) top few solutions, 

(b) local search, (c) new optimal solutions. 
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In summary, each new best solution is checked for feasibility with EPANET as 

the ANN-GA runs. After convergence has been achieved, the top few solutions found 

by the ANN-GA are checked for feasibility by EPANET. Finally a local search is 

conducted with EPANET around the best feasible solution found during the first two 

stages. Note that this three-stage approach uses Eq. (2.5) and Eq. (2.6) to calculate 

penalty costs, whereas the ANN-GA uses Eq. (2.7) and Eq. (2.8). 

2.6.2 Constraint Adjustment 

As mentioned previously, the metamodel is unlikely to be able to provide a 

perfect representation of the simulation model. A proposed method of combating this 

issue is to adjust the constraints used by the GA while linked to the ANN. For example, 

if the ANN under-estimates pressure at the optimal solution, it would be necessary to 

relax the constraints somewhat to avoid the ANN-GA converging to a sub-optimal 

solution. Similarly, if the ANN over-estimates pressure, the constraints should be 

tightened so that the ANN-GA does not converge to an infeasible solution. Therefore, 

the penalty cost functions become the following. 

𝑃𝐶1 = max
𝑗

[max{0, (𝑃̃𝑗−𝑚𝑖𝑛 − 𝑃̃𝑗), (𝑃̃𝑗 − 𝑃̃𝑗−𝑚𝑎𝑥)}] 𝑃𝑀1 (2.9) 

𝑃𝐶2 = max
𝑗

[max{0, (𝐶̃𝑗−𝑚𝑖𝑛 − 𝐶̃𝑗), (𝐶̃𝑗 − 𝐶̃𝑗−𝑚𝑎𝑥)}] 𝑃𝑀2 (2.10) 

 

Where 𝑃̃𝑗−𝑚𝑖𝑛, 𝑃̃𝑗−𝑚𝑎𝑥, 𝐶̃𝑗−𝑚𝑖𝑛and 𝐶̃𝑗−𝑚𝑎𝑥 are the adjusted acceptable minimum and 

maximum pressure and chlorine residuals, respectively.  

An example of pressure at a critical node as a function of the diameter of one 

pipe is shown in Figure 2-4. The minimum acceptable pressure constraint is at Pmin, 

meaning that solutions with diameters smaller than Dmin will incur penalty costs. The 

solution at Dmin is also the global optimum. Now consider an ANN approximation to an 
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EPANET model that over-estimates pressure in the region of the optimum. The ANN-

GA will converge to a cheaper solution, due to smaller pipe diameters, at Do, and will 

only incur penalty costs for solutions below Do. However, this solution, when checked 

with EPANET, is actually infeasible. Conversely, consider an ANN that under-

estimates pressure in the region around the optimum. In this case the ANN-GA will 

apply penalty costs to all solutions below Du. Hence the solution Dmin will erroneously 

have a penalty cost added to it and the ANN-GA will converge to a sub-optimal 

solution. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2-4. ANN approximations to an EPANET model. 

 

Hence over-estimating and under-estimating ANNs will converge to infeasible 

and sub-optimal solutions, respectively, when the same constraints are used (Pmin) for 
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slightly so that penalty costs begin to be added at the same solution for the ANN as for 
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needs the constraints to be relaxed slightly to Pmin
u so that the ANN-GA will converge 

to Dmin, while an ANN that over-estimates pressure should have slightly tighter 

constraints at Pmin
o. Eq. (2.11) explicitly shows how minimum pressure constraints 

are adjusted in order to achieve tighter or more relaxed constraints. 

𝑃̃𝑖−𝑚𝑖𝑛 = (1−∝ 𝑅𝑀𝑆𝐸𝑖)𝑃𝑖−𝑚𝑖𝑛 (2.11) 

 

Where 𝑃̃𝑖−𝑚𝑖𝑛 is the relaxed minimum pressure for node i, RMSEi is the root mean 

squared error from the validation set for node i, and  is a constant, valid in the 

interval  , . It should be noted that negative values of  will result in tighter 

constraints, while positive values of  will result in relaxed constraints. Without any 

knowledge of the size of the error of the ANN with respect to EPANET at the optimum 

solution, the RMS error is used since it provides an average error of the ANN across 

the entire search space. However, this is only an average error and the ANN may be 

more or less accurate than this at the optimum, hence the use of a constant term, . 

Also, the ANN could over-estimate pressure or chlorine residual in some regions of 

the search space and under-estimate it in others.  

A problem arises is that in practice one would not know whether the ANN over 

or under-estimates pressure near the optimal solution, as the optimum itself is 

unknown. Given that the time taken to optimise the problem with the ANN-GA is 

significantly less than that taken with the EPANET-GA, several optimisation runs can 

be made. Therefore it is proposed that a range of values for  should be used, rather 

than a single value. As mentioned above, both positive and negative  values should 

be used, because in practice one would not know if the ANN-GA is converging to a 

solution larger or smaller than the optimum. 
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2.7 Case Study 

The New York Tunnels problem was chosen as the case study on the basis that 

there has been considerable research conducted on it in the past and therefore the 

current best solution is probably close to, if not the, global optimum. Therefore, this 

enables the effectiveness of the proposed approach to be evaluated. The NYT problem 

is a WDS expansion problem, where the optimal set of diameters of pipe segments 

need to be determined such that pressure at all nodes is above a specified minimum 

for a given set of demands. Further details of the NYT problem can be found in Maier 

et al. (2003), which also contains the current best known solution of $38.64m when 

EPANET 2.0 is used as the hydraulic solver. In this study, the problem was adapted to 

include water quality. This was achieved by adding a decision variable that represents 

the chlorine dosing rate at the reservoir at the start of the WDS. Possible dosing levels 

ranged from 0.5mg/L to 2.5mg/L in increments of 0.1mg/L. A minimum chlorine 

concentration of 0.3 mg/L throughout the system was set as the water quality 

constraint and the chlorine decay rate was assumed to be 1.0 day-1. 

2.7.1 Analysis Conducted 

With 21 different pipe segments, each with 16 possible diameters, and 21 

possible chlorine dosing rates, there are 4.1 x 1026 possible solutions to the water 

quality-adapted New York Tunnels problem (NYT-WQ). Ten thousand randomly 

generated solutions were sampled from this space and used to train the ANN 

metamodels. From these solutions, four nodes were found to be critical in terms of 

minimum pressure surplus (16, 17, 19 and 20) and one node was critical in terms of 

minimum chlorine residual (17).  
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Two different metamodeling scenarios were used as surrogates for the NYT-

WQ EPANET model. Both scenarios included five separate ANNs, each with a single 

output. They differed in that scenario B used a different randomly generated data set 

for training than scenario A. Different scenarios were chosen to determine the 

relative capabilities of each in approximating EPANET and also in finding the optimal 

solution.  

In order to test the repeatability of results, three different ANNs were trained 

from the same training data for each scenario. This was done to determine whether 

initial weights in the ANNs affected the ability of the ANN-GA to find the optimal 

solution. 

The back-propagation algorithm was used to train the ANNs. The stopping 

criterion for this training method is generally when the error in an independent test 

set is at a minimum. However, as the data used to calibrate the ANNs were generated 

with a simulation model and hence were not noisy, it was found that the error in the 

test set steadily decreased for a large number of iterations. Therefore an alternative 

stopping criterion of a fixed number of iterations was used.  

Optimization was conducted using a Genetic Algorithm (GA) with integer 

coding, one-point crossover and a tournament size of two. The type of ANN used was 

the multi-layer Perceptron (MLP) with a single hidden layer, as this is sufficient for 

approximating any continuous function (Leshno et al. 1993). The values of all ANN 

and GA parameters were selected by trial-and-error to obtain the best performance 

without excessive computational time and are given in Tables 2.1 and 2.2, 

respectively. 
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Table 2.1. ANN Parameters 

Parameter Value 

ANN Type multi-layer perceptron 

Transfer Function sigmoid 

No. Hidden Layers 1 

No. Hidden Nodes 40 

Learning Rate 0.3 

Momentum Rate 0.5 

Training Iterations per ANN 5000 

 

To illustrate the relative benefits of checking certain solutions with EPANET, a 

comparison was conducted between combinations of the three stages mentioned 

previously. The comparison was made for both scenarios A and B. The different 

combinations of EPANET strategies used for each of the ANNs were as follows: 

 Checking each new best solution found; 

 Checking each new best solution and the top forty solutions; 

 Checking each new best solution, and conducting a local search; and 

 Checking each new best solution, the top forty solutions, and conducting a 

local search. 
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Table 2.2. GA Parameters 

Parameter Value 

GA Type integer 

Population Size 400 

Probability of Crossover 0.8 

No. Crossovers per Pair 1 

Probability of Bit-Wise Mutation 0.02 

No. Generations 2000 

Penalty Multipliera [$/m] or [$/mg/L] 109 
a: The penalty multipliers for pressure head and chlorine residual are measured in $/m and $/mg/L, respectively. 

 

In evaluating the constraint adjustment technique, a range of values for  (see 

Eq. (2.11)) were used. The parameter  relates to the RMSE which only gives the 

average error of the ANN with respect to EPANET, whereas the error at the optimal 

solution (which is of most interest) could be higher or lower than the RMSE. 

Therefore, values of  in this study ranged from –5 to 5 in increments of 0.1, with 10 

optimization runs conducted at each  value.  

2.7.2 Metamodel Performance 

The accuracy of each of the ANNs was evaluated for an independent validation 

set of 1000 data points, not used in training the ANNs. Infeasible data, as well as 

feasible data, were used to construct the metamodels. This is because when an ANN is 

linked to a GA it is equally important that the metamodel accurately approximates 

outputs in the feasible and infeasible regions to determine whether a constraint has 

been violated.  
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Figure 2-5. RMSE using two different training sets for the critical nodes of the 

NYT-WQ problem. 

A summary of the accuracy of the ANNs is shown in Fig. 2.5. The average root-

mean-squared error is given for all five outputs, with the error bars representing the 

minimum and maximum values across the three ANNs that were trained for each 

scenario. There is a fairly large difference between the errors for the pressure output 

nodes. Node 19 has a much larger error than node 17, for example. This is due to the 

fact that the training data for node 19 cover a broader range of values than the data 

for node 17, which is a feature specific to the NYT problem. With the exception of 

node 19, there is little difference between the RMS errors for ANNs trained with 

different data sets, when taking into account the range covered by the maximum and 

minimum bars. Therefore, it can be concluded that the randomness of initial weights 

in the ANNs has a greater influence on the final accuracy of the trained ANNs than the 

data set on which they are trained. 
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Overall, the performance of the ANN metamodels was very good. The 

accuracies of the ANNs are especially encouraging when one considers that the 

EPANET model itself is not a perfect representation of the actual WDS. The ANN 

metamodels gave a reasonable approximation to the EPANET model. Therefore the 

ANN metamodels can be used with confidence as surrogates for EPANET in an 

optimization problem. 

2.7.3 Optimization Results – EPANET 

While this research has used an adapted NYT problem (including water 

quality), actual costs of treatment have been neglected (as it is assumed capital costs 

of pipes to be far greater). The optimal solution of this problem, obtained with 

EPANET linked to a GA, was found to have the same cost ($38.64m) and pipe 

diameters as the ordinary NYT problem. A chlorine dosing rate of 1.7-2.5mg/L, as the 

additional decision variable, was found to satisfy the water quality constraint. The 

optimal solution was found three times from five GA runs. This result is contrary to 

the findings of Dandy and Hewitson (2000), who found that the optimal solution 

increased in cost when water quality constraints were included, for the NYT problem. 

However, this result would be specific to the formulation of the problem. Dandy and 

Hewitson (2000) proposed a social cost methodology based on the risk and cost of 

microbial infection due to insufficient disinfection. 

2.7.4 Optimization Results – Metamodels 

Table 2.3 compares the ability of each strategy in finding the optimal solution 

when using EPANET to check solutions from the ANN-GA. Simply checking each new 

best solution with EPANET as it is found by the ANN-GA is not sufficient, with only 

one of the ANNs of scenario A and none of the ANNs of scenario B finding the optimal 
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solution. Generally speaking, checking the top forty solutions, as well as each new 

best solution, provides little additional benefit by way of a better optimum. However, 

a local search appears to be a more useful strategy than checking the top forty 

solutions. As with the RMS error of the ANNs, it is clear that initial weights in the ANN 

have a big impact and affect the ability of the ANN-GA to find the optimal solution. 

Table 2.3. Solutions found [$million] for the NYT-WQ problem with different 

methods of checking solutions with EPANET, with the current best-known 

solution in italics and the number of times it was found out of 10 runs in 

brackets. 

Scenario 
ANN 

Number 
ANN-GA 

Solutions Checked with EPANET 

NBa NB, TFb NB, LSc NB, TF, LS 

A 

1 37.95* 38.64(1) 38.64(6) 38.64(3) 38.64(5) 

2 38.09* 39.82 40.09 38.80 39.06 

3 39.85 39.85 39.85 38.80 38.80 

B 

1 41.07 40.69 41.07 38.80 38.80 

2 37.85* 39.28 39.60 38.64(1) 38.80 

3 42.27 42.27 42.27 39.21 39.21 
a: NB: New Best. b: TF: Top Forty. c: LS: Local Search 
* Infeasible when checked with EPANET 

 

While the optimal solution of $38.64m was found at least once for each 

scenario, the repeatability of finding that solution is important. Each of the results 

presented in Table 2.3 are the minima from ten optimization runs. With all three 

stages of checking solutions with EPANET, the optimal solution was found for on five 

out of ten runs. This contrasts with scenario B, for which the optimal solution was 

only found once. Hence, while there was little difference between the RMSE for each 

scenario, there is much greater difference in their respective abilities to find the 
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optimal solution consistently. Also in Table 2.3, for comparison, are the solutions to 

which the ANN-GA converged. It can be seen that the ANN-GA sometimes converged 

to infeasible solutions, thus highlighting the need for a modified approach. 

2.7.5 Optimization Results – Adjusted Constraints 

The results presented here are for ANN #3 of scenario A, which is a 

metamodel that could not find the optimal solution without constraint adjustment, 

even with a local search, checking the top forty solutions and each new best solution 

with EPANET. The results for this ANN, which are shown in Fig. 6, indicate that 

constraints needed to be relaxed slightly for the optimum to be found, indicating the 

ANN was over-estimating pressure in the region around the optimum. This result 

highlights the success of the strategy of constraint adjustment in order to find the 

optimal solution. The results also highlight the importance of trying a range of  

values, both positive and negative. 

As can be seen in Figure 2-6, when constraints are relaxed, the range of costs 

increases dramatically. This is because when constraints are relaxed greatly, other 

infeasible solutions (as found by EPANET) are deemed feasible by the ANN. 

Therefore, in this case, the ANN-GA may quickly converge to an infeasible region and 

then continue searching in that local area. As a result, the only way the optimal 

solution can be found would be to conduct a local search around one of the first 

feasible solutions found by the ANN-GA. 



Chapter 2:  Water Quality 

37 

 

Figure 2-6. Constraint adjustment for the NYT-WQ problem: 

ANN #3 of scenario A. 

It is difficult, if not impossible, to determine by how much constraints should 

be relaxed (or tightened). At the extremes, if the constraints are relaxed too much, 

most of the search space would be deemed feasible by the ANN and the ANN-GA 

would converge to a solution that is infeasible when checked with EPANET. 

Conversely if constraints are tightened too much, the ANN would deem too little of the 

search space feasible and the ANN-GA would converge to a sub-optimal solution.  

Other constraint adjustment results are given in Table 2.4. By adjusting 

constraints, all of the ANNs were now able to find the optimal solution. The range of  

values for which the optimum is found is also given in Table 2.4, along with the 

solutions they found without constraint adjustment. An interesting feature is that 

ANNs that originally found good, but not-optimal solutions did not necessarily 
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perform better with constraints adjusted than ANNs that originally found poor 

solutions. For example, ANN #2 of scenario A found the optimum for a wide range of 

 values, whereas ANN #3 of both scenarios A and B only found the optimal solution 

for a narrow range of . Two of the ANN metamodels in Table 2.4 found the optimal 

solution for either a relaxation of, or a tightening of constraints. This is probably due 

to the fact that separate ANNs were used to model each node and therefore one may 

be over-estimating pressure, while another under-estimates it. 

Table 2.4. Optimal solutions found [$million] by constraint adjustment for the 

NYT-WQ problem. 

Scenario 
ANN 

Number 

Solution Found 

(With Adjusted 
Constraints) 

Main  Range For 
Finding Optimal 

Solution 

Solution 
Found with  

=0 

A 

1 38.64 [-1.5, 2.6] 38.64 

2 38.64 [-2.3, -1.1] & [0.6, 3.1] 39.06 

3 38.64 [1, 2.5] 38.80 

B 

1 38.64 [-0.3, -0.2] & [3.5, 4.8] 38.80 

2 38.64 [-4.7, -2.4] 38.80 

3 38.64 [2.8, 4.0] 39.21 

 

2.7.6 Comparison of Computational Time 

Table 2.5 gives a comparison of the time taken to optimize the NYT-WQ problem with 

EPANET-GA and the time needed to generate data, train the ANN and optimize the 

same problem with the ANN-GA. Also shown are the number of EPANET function calls 

during optimization. 
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Table 2.5. Computational times for metamodeling and optimization of the NYT-

WQ problem. 

Model 
Sampling 

Data 
[hours] 

Training 
ANN 

[hours] 

Optimization 
[hours] 

Total  
[hours] 

EPANET 
Function 

Calls 

EPANET N/A N/A 21 21 800,000 

ANN 0.37  16  0.03 16.40 115 
Note: the runtimes presented here are for a single optimization run with the metamodels using all three 
strategies to check solutions with EPANET. 

 

The greatest computational burden in developing the metamodel comes from 

training. The training time for the ANNs was 16 hours. Combining this with 

optimization time and time to generate training data results in an overall time saving 

of 21% compared with the optimization time for EPANET-GA. 

The time needed to optimize the problem once the metamodel is developed is 

only a fraction of the time needed to optimize with EPANET. Ignoring the 

computational time needed to develop the metamodel, the ANN-GA runs 700 times 

faster than the EPANET-GA.  

2.7.7 Discussion 

The NYT problem involves exceptionally large pipe diameters (up to 5 

meters), atypical of those in other optimization problems in the literature. Large pipes 

correspond to small headlosses, hence different pipe sizes in a certain segment would 

result in little variation in pressure at the downstream node. As the ANNs are capable 

of adequately modeling such small variations in pressure and still able to obtain the 

optimal solution to the NYT-WQ problem, this metamodeling approach should apply 

well to other WDS optimization problems.  
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More complicated WDS may have 20 or 30 critical nodes. If separate ANNs 

were trained for each of these nodes, the computational time may be excessive, to the 

point where there might be no net benefit in using a metamodelling strategy. 

Therefore, the effect of other ANN architectures should be investigated further. For 

example, WDS problems with many critical nodes could be to train a few ANNs each 

with a number of outputs. 

2.8 Other Applications for WDS 

The vast difference between optimization time for the ANN-GA compared to 

EPANET-GA highlights the added value of using a metamodel for optimizing WDS 

operations. This is generally carried out on an hourly, daily or weekly schedule, for 

example. Metamodeling, therefore, has additional benefit for an operations problem 

over design in that the ANN only needs to be trained once, and then can be used 

repeatedly for optimization. An operations-based ANN would have different inputs 

than one used for design. In this case, training data would possibly consist of different 

values for tank operating levels, pump and valve settings, and the location and setting 

of chlorine booster stations. For this approach to be feasible, training data would need 

to be generated across the whole range of possible solutions. This would require 

foresight by the engineer of all possible solutions and thus is not a trivial matter. 

However, this does provide new possibilities for research in this field. 

Another possible application, and one with greater potential in terms of time-

saving is in evaluating system reliability. In a similar way to that described in this 

paper, ANNs could be trained to reduce the run-time required in a Monte Carlo 

simulation (MCS). One approach would be to train an ANN to approximate pressures, 

with additional inputs of demand and other stochastic variables. This ANN could then 
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be used in place of EPANET in a MCS. Another approach would be to train an ANN to 

approximate reliability directly, thus eliminating altogether the need to conduct a 

MCS. This is a particularly useful application, considering the amount of research 

being conducted in reliability-based optimization in recent years. The number of MCS 

realisations in a single reliability calculation may be in the order of 10,000 and the 

results in this paper indicate the ANN-GA runs 700 times faster than EPANET-GA. 

Hence reliability-based optimisation with ANNs could potentially run 7 x 106 times 

faster than if EPANET was used. 

2.9 Conclusions 

The results presented in this paper illustrate the validity of a new approach to 

WDS optimization. ANN metamodels linked to a GA were able to find the same 

optimal solution ($38.64m) as EPANET linked to a GA, for the NYT-WQ problem. Also, 

the total computational time was lower for optimization with an ANN-linked to a GA 

(16 hours, including generating data, training the ANNs and optimization) than 

EPANET-linked to a GA (21 hours). A comparison of optimization runtimes shows 

that a trained ANN runs approximately 700 times faster than EPANET for the NYT-

WQ problem. 

There are many factors that affect the ability of the ANN-GA to find the optimal 

solution. Initial weights in the ANNs influenced the accuracy of the final trained ANNs, 

which in turn influenced the quality of the optimal solution found by the ANN-GA. 

Also affecting the optimal solution was the GA itself. Given that EPANET-GA could 

only find the optimal solution on three out of five runs, it is encouraging that one of 

the trained ANNs found the same optimum on five out of ten runs. The randomly 

generated data did not appear to have a significant impact on the results. While 
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scenarios A and B had similar results to each other in terms of RMSE and little 

difference in terms of the optimal solutions they found, there may still be benefit in 

trying different methods for generating the training data, other than doing so 

randomly. 

The metamodeling technique significantly reduces the high run-times, which 

are an unfortunate feature of WDS optimization using GAs. The technique is useful for 

significantly reducing optimization time on existing problems, but now also allows 

the focus of optimization to be expanded to include both reliability and water quality. 

It is unlikely that an ANN could be trained that is a perfect approximation to the 

specific EPANET model of the WDS. To combat this problem, two techniques have 

been presented here, including to evaluate select solutions with the original 

simulation model and to adjust constraints slightly so the optimal solution can be 

found. These two techniques alleviate the problem of imperfect metamodels and 

make optimization significantly faster than if the simulation model was used. 
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Abstract 

Metamodels can be used to aid in improving the efficiency of computationally 

expensive optimization algorithms in a variety of applications, including water 

distribution system (WDS) design and operation. Genetic Algorithm (GA)-based 

optimization of WDSs is very computationally expensive to optimize a system in a 

practical amount of time for real-sized problems. A metamodel, of which Artificial 

Neural Networks (ANNs) are an example, is a model of a complex simulation model. It 

can be used in place of the simulation model where repeated use is necessary, such as 

when carrying out GA optimization. To complement the ANN-GA, six local search 

algorithms have been developed or applied in this research, with the aim of 

improving the performance of metamodel-based optimization of WDSs. All algorithms 

performed well, however, using computational intensity as a criterion with which to 

evaluate results, the best local search algorithms were Sequential Downward 

Mutation (SDM) and Maximum Savings Downward Mutation (MSDM). 
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3.1 Introduction 

Water distribution systems (WDSs) are complex systems whose optimal 

configuration is best determined by Evolutionary Computation (EC) techniques, such 

as Genetic Algorithms (GAs) (Simpson et al. 1994). There are many examples in the 

literature that illustrate the applicability of GAs to WDSs (Simpson et al. 1994; 

Walters et al. 1999; Halhal et al. 1997; Dandy et al. 1996; Savic and Walters 1997; Wu 

and Simpson 2001). These examples showed improvement over earlier optimization 

techniques used in the field, including linear programming (Morgan and Goulter 

1985), enumeration (Gessler 1985; Walski et al. 1987) and gradient techniques 

(Walski et al. 1987; Duan et al. 1990; Lansey and Mays 1989; Ormsbee and Kessler 

1990; Sakaraya and Mays 2000; Xu and Goulter 1999). 

WDS optimization can be classified into one of two categories; design or 

operation. WDS design involves determining the optimal combination of new 

infrastructure (e.g. pipes, pumps, tanks) that is to be constructed, and hence capital 

costs are important. Conversely, WDS operation involves determining the optimal set 

of settings for existing infrastructure (e.g. chlorine dosing rates, tank operating 

levels), and hence on-going costs, such as  electrical, chemical and maintenance costs, 

are of prime concern. Therefore, in general a WDS configuration, , consists of a set of 

n decisions (Zecchin et al. 2005), as given by Eq. (3.1). 

 = {𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛1, … , 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑛} (3.1) 

 

For each decision, there are a number of options, as given by Eq. (3.2). 

decisioni {𝑜𝑝𝑡𝑖𝑜𝑛𝑖,1, … , 𝑜𝑝𝑡𝑖𝑜𝑛𝑖,𝑁𝑂𝑖
},  i = 1,…,n (3.2) 
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Where optioni,j is the j-th option for decision i, and NOi is the number of possible 

options for decision i. Hence, the total number of possible configurations for a WDS is 

given by Eq. (3.3). 

𝑁𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑠 = ∏ 𝑁𝑂𝑖

𝑛

𝑖=1

 (3.3) 

 

This value can be in the order of 1025 for moderately sized systems (Dandy et 

al. 1996) and up to 1074 for larger systems (Halhal et al. 1997). This has led to the use 

of Genetic Algorithms (GAs) as a technique that can obtain optimal or near-optimal 

solutions within a practical amount of time (Simpson et al. 1996; Dandy et al. 1996; 

Savic and Walters 1997). Further research in the field of WDS optimization focused 

on the incorporation of water quality constraints into the problem formulation to 

complement hydraulic constraints and thus result in more robust WDS configurations 

(Dandy and Hewitson 2000).  

A generalized formulation for the WDS optimization problem is given by Eqs. 

(3.4-3.6). The objective function is to minimize some cost function by selecting the 

best set of decision variables such that certain hydraulic constraints (e.g. maximum 

and minimum pressure heads, pipe velocities) and water quality constraints (e.g. 

maximum and minimum residual chlorine, or particle concentrations) are met.  

min 𝑧 = 𝑓(Ω) (3.4) 

 

Such that 

𝐻𝑖
𝑗

≤ 𝐻𝑖
𝑗(Ω) ≤ 𝐻𝑖

𝑗
 ,  𝑖 =  1, … , N,  𝑗 =  1, … , 𝑇 (3.5) 

𝐶𝑖
𝑗

≤ 𝐶𝑖
𝑗(Ω) ≤ 𝐶𝑖

𝑗
 ,  𝑖 =  1, … , N,  𝑗 =  1, … , 𝑇 (3.6) 
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Where 𝐻 and 𝐻 are the minimum and maximum hydraulic constraints; H() is 

the actual hydraulic performance value for configuration ; 𝐶 and 𝐶 are the minimum 

and maximum water quality constraints; C() is the actual water quality performance 

value for configuration ; N is the number of nodes or pipes in the WDS (depending 

on the specific type of constraint); T is the time horizon for the optimization 

(approximately 24-48 hours). The detail of the objective function in (4) depends on 

whether the problem is for the design case or for operations and is also specific to 

each WDS. The reader is referred to Zecchin et al. (2005) for further detail of the 

hydraulics of WDSs and Boccelli et al. (1998) for further detail of the kinetics of 

chlorine in WDSs. Constraint Eqs. (3.5) and (3.6) are typically accounted for through 

the use of penalty costs, hence the objective function that can be used in a GA is given 

by Eq. (3.7). 

min 𝑧 = 𝑓(Ω) + max
𝑖,𝑗

[max {0, (𝐻𝑖
𝑗

− 𝐻𝑖
𝑗(Ω)) , (𝐻𝑖

𝑗(Ω) − 𝐻𝑖
𝑗
)}] 𝑃𝑀1 

 + max
𝑖,𝑗

[max {0, (𝐶𝑖
𝑗

− 𝐶𝑖
𝑗(Ω)) , (𝐶𝑖

𝑗(Ω) − 𝐶𝑖
𝑗
)}] 𝑃𝑀2 

(3.7) 

 

Where PM1 and PM2 are the respective penalty multipliers for hydraulics and water 

quality. 

Unfortunately this formulation results in very long runtimes, as hydraulic 

computer simulation models with which a given configuration is evaluated, such as 

EPANET (developed by the US EPA), are much more computationally intensive when 

a water quality simulation is required. This issue of computational intensity has led to 

the use of metamodels for WDS optimization (Broad et al. 2005a). A metamodel is a 

model of a complex simulation model (Blanning 1975) that can be used in place of the 

simulation model where repeated use is necessary, such as in EC-based optimization. 
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Metamodels approximate the input/output transformation that is implied by the 

simulation model. In general, a metamodel maps the outputs as a function of the 

inputs, resulting in what is known as a response surface (Kleijnen and Sargent 2000). 

Many metamodel examples (Rogers and Dowla 1994; Aly and Peralta 1999; 

Johnson and Rogers 2000; Neelakantan and Pundarikanthan 2000) directly 

approximate the objective function, however, in the case of WDS optimization this is 

impractical and unnecessary as (i) the penalty costs result in an objective function 

that has discontinuities and is therefore difficult to approximate with a metamodel 

and (ii) the computational burden arises from calculating the constrained variables 

and not in calculating penalty and actual costs. Hence metamodels for WDSs generally 

approximate constrained variables (outputs) as a function of decision variables 

(inputs) (Broad et al. 2005). 

Artificial Neural Networks (ANNs) have been used previously as metamodels 

for various simulation models that have high computational cost (Broad et al. 2005; 

Rogers and Dowla 1994; Aly and Peralta 1999; Johnson and Rogers 2000; 

Neelakantan and Pundarikanthan 2000; Lingireddy and Ormsbee 1998) ANNs 

(specifically, Multi-Layer Perceptrons) were chosen as the metamodel-type in this 

research due to their proven performance and their ability to approximate any 

continuous function (Leshno et al. 1993). This property is particularly appealing 

given that the equations that govern both the hydraulics and water quality in WDSs 

are non-linear.  

While the theoretical capabilities of ANNs are valuable, in practice, it is 

difficult to construct ANN metamodels that are perfect representations of simulation 

models (Broad et al. 2005). However, in previous applications of ANNs for the 
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purpose of metamodelling, it was assumed that the metamodel was sufficiently 

accurate and the solution to which the ANN-linked GA converged was assumed to be 

the actual optimum (Rogers and Dowla 1994; Aly and Peralta 1999; Johnson and 

Rogers 2000; Neelakantan and Pundarikanthan 2000; Lingireddy and Ormsbee 

1998). However, this is unlikely to be the case, as even small errors in the metamodel 

can result in the acceptance of infeasible solutions or the rejection of feasible 

solutions as part of the optimization process. In order to overcome this shortcoming, 

(Broad et al. 2005) introduced a three-stage method of checking solutions, including 

(i) checking each new best solution with the simulation model, (ii) tracking the best 

40 solutions which are evaluated using the simulation model, and (iii) conducting a 

local search using the simulation model. This paper further explores the effectiveness 

of that third stage by considering a range of different local search algorithms. 

3.2 Metamodelling Procedure 

The processes that need to be followed in developing an ANN metamodel to be 

used in place of a simulation model for optimization are shown in Figure 3-1. The first 

step is to set up the problem that is to be optimized, including defining the objective 

function, decision variables and constraints. Next, training data need to be generated 

with the simulation model. Broad et al. (2005) found that as few as 10,000 solutions 

are needed to construct an adequately accurate metamodel for the purpose of WDS 

optimization. This is likely to be problem dependent, however the same amount of 

data was used in this research. Data are generated randomly in the search space 

across the whole range for each of the decision variables. The reason for this is that in 

practice, one would not know a priori where in the search space the optimum is 

located. 
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Set Up Problem

Generate Training Data with 

Simulation Model

Train ANN

Use ANN with GA to 

Optimize Problem

Improve Objective Function 

by Checking New Best and 

Top Forty Solutions

Improve Objective Function 

with Local Search

 

 

 Figure 3-1. Procedure for developing and using an ANN metamodel for 

the purpose of optimization. 

 

Given that an ANN metamodel is trained using synthetic data generated from a 

simulation model, there will not be any noise in the data (Johnson and Rogers 2000). 

This is not usually the case in many real world applications of ANNs. Hence, rather 

than minimizing the error in a test set as is generally the case when noise is present, a 

fixed number of iterations should be used. Otherwise the error continually decreases, 

without over-training, even with a large number of iterations. The number of 

iterations required for sufficient accuracy needs to be determined from a series of 

preliminary runs. 
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The next step is to optimize the problem with the GA, using the trained ANN in 

place of the simulation model. Each new best solution the ANN-GA finds must be 

checked with the simulation model for feasibility. This is a necessary step, as one 

cannot simply assume that the ANN will be a perfect representation of the simulation 

model (Broad et al. 2005), as discussed above. 

The final step is to perform a local search with a satisfactory algorithm to 

improve on the solution obtained by the ANN-GA. This paper focuses on that final step 

of the metamodelling optimization process. Broad et al. (2005) and Lingireddy and 

Ormsbee (1998) provide greater detail on how to construct metamodels for the 

purpose of WDS optimization. 

3.3 Local Searches 

As mentioned in the introduction, local search is a necessary final step in the 

ANN-GA process. As the local search is complementary to the ANN-GA search, 

algorithms were selected based on certain criteria, including (i) simplicity of 

implementation (derivatives were to be avoided as the evaluation of the objective 

function required an external solver (EPANET), hence gradient techniques were not 

considered); (ii) it was assumed the ANN-GA would find near-optimal solutions, 

hence the local search would concentrate on the surrounding neighborhood of the 

best solution found by the ANN-GA.  

In this paper, six local search algorithms were either developed or applied to 

metamodel-based optimization of WDSs, which are detailed in the subsequent 

sections.  
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3.3.1 Sequential Downward Mutation 

This algorithm was devised to obtain improvements in the solution after the 

ANN-GA had executed. It was named ‘Downward Mutation’ because it was originally 

applied to a pipe network optimization problem, where a lower cost results from a 

decrease in pipe size for all alleles in the string. The pseudo-code for Sequential 

Downward Mutation (SDM) is shown in Figure 3-2; where A is the name of the 

solution string; and f( ) is the objective function. ‘Sequential’ refers to the order in 

which the alleles are selected. The first allele in the string is selected as the starting 

point and the value of that allele is reduced incrementally until there is no further 

improvement, at which time the search moves onto the second allele. Hence, each 

allele, or decision variable, is searched sequentially for improvements in the objective 

function. ‘Downward’ refers to the direction along which the objective function is 

reduced locally. Therefore, this technique may not be easily applied to other types of 

optimization problems. For example, if alleles in the string represent tank operating 

levels, it is not clear whether reducing the level will result in an overall reduction in 

cost. In addition, the specification of smaller pipes results in lower capital cost, and 

the use of a lower chlorine dosing rate results in lower operating costs. 

 

set i = 1 

do 

set A’[i] = A[i] - 1 

if f(A’) < f(A) 

set A = A’ 

else 

set i = i + 1 

if i = dim (A) + 1 

stop 

loop 

Figure 3-2. Pseudo-code for sequential downward mutation 
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3.3.2 Random Downward Mutation 

A variation on SDM is Random Downward Mutation (RDM), wherein the order 

in which alleles are selected for downward mutation is randomized. Rather than 

mutating down each allele in a sequential order, an allele is selected at random and its 

value is reduced by one. If this results in a better value of the objective function, the 

string is updated. At the second, and subsequent iterations, alleles are again selected 

at random and the process continues until no further improvement can be obtained. 

The pseudo-code for Random Downward Mutation (RDM) is shown in Figure 3-3. 

 

do 

select i randomly  [1,dim (A)] 

set A’[i] = A[i] – 1 

if f(A’) < f(A) 

set A = A’ 

count = 0 

else 

count = count + 1 

if count = dim (A) + 1 

stop 

loop 

Figure 3-3. Pseudo-code for random downward mutation 

 

3.3.3 Maximum Savings Downward Mutation 

Another variation of the previous two downward mutation algorithms is to 

use a more intelligent method of selecting in which direction to search, which is 

termed the Maximum Savings Downward Mutation (MSDM) algorithm. The 

pseudocode for this algorithm is shown in Figure 3-4, where g( ) is the actual cost (i.e. 

the objective function minus penalty costs for constraint violation). The search works 

by iteratively selecting the allele in the string that will give the greatest saving, or 
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reduction in the objective function. For example, in a design situation, where each 

allele represents the diameter of a pipe segment in a WDS, reducing the pipe size of 

the longest pipe segment would generally result in the greatest savings. It was 

envisaged that by selecting to mutate the allele that would provide the greatest 

savings, the local search would converge faster than either selecting the allele 

sequentially (i.e. SDM) or randomly (i.e. RDM). 

 

do 

select i: max(g(A[i]-1) – g(A[i]))  

set A’[i] = A[i] - 1 

if f(A’) < f(A) 

set A = A’ 

count = 0 

else 

count = count + 1 

if count = dim (A) + 1 

stop 

loop 

Figure 3-4. Pseudo-code for maximum-savings downward mutation 

 

3.3.4 Triangular Mutation 

In an attempt to avoid becoming trapped in any local optima, which are 

common in WDS optimization problems (Gibbs et al. 2004), a local search named 

Triangular Mutation (TM) was devised. It is an adaptation of Adjacency Mutation 

(Dandy et al. 1996), which differs from ordinary mutation in that the allele can only 

mutate to values adjacent to the current value. Ordinary mutation, however, allows 

the value of the allele to mutate to any other value. TM extends the concept of 

adjacency mutation by allowing the value of the allele to mutate more than one unit, 

but with a decreasing probability. The probability density function is triangular in 
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shape on both sides of the selected allele, A[i], hence the name triangular mutation. 

Each of these types of mutation is illustrated in Figure 3-5. 

 

Figure 3-5. Comparison of different types of mutation. 

The pseudocode for TM is shown in Figure 3-6, where Pm* is the probability of 

mutating an allele in the string; Pr(x) is the probability of mutating to x; is the 

maximum number of units to which an allele can be mutated; R( ) is the biased 

roulette wheel function and randomly generates a value for A’[i] based on the 

probabilities calculated. 

The other main feature of triangular mutation is that it requires a higher 

probability of mutation than that which is used in the GA. This is needed because 

mutation is the only means by which this local search operates, rather than being an 

operator in a GA. A higher probability of mutation ensures that at least one allele in 

the string is mutated, which in turn, ensures there are no iterations with solutions 

exactly the same as in the previous iteration. 
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do 

for i = 1 to dim (A) 

set a = U[0,1] 

if (a <= Pm*) 

set Pr(A[i] + 1) = 1/( + 1) 

set Pr(A[i] - 1) = 1/( + 1) 

for j = 2 to  

set b = 
2j

1j








 

set Pr(A[i]+j)=b.Pr(A[i]+(j-1)) 

set Pr(A[i]-j)=b.Pr(A[i]-(j-1)) 

next j 

set A’[i] = R(A[i]) 

next i 

if f(A’) < f(A) 

set A = A’ 

count = count + 1 

if count = max_iterations 

stop 

loop 

Figure 3-6. Pseudo-code for triangular mutation 

 

3.3.5 Probabilistic Allele Swapping 

The Probabilistic Allele Swapping (PAS) local search is an adaptation of a local 

search that was specifically devised for the traveling salesman problem, which was 

called Compounded Swaps (Ahuja et al. 2002). The objective of the traveling salesman 

problem is to minimize the distance a salesman would need to travel, while visiting a 

certain group of cities and visiting each only once. The solution string represents the 

order in which the cities are visited. A Compound Swap involves randomly selecting 

two cities and swapping them in the string. 
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The compound swaps method can be used directly for WDS optimization. 

Rather than swapping the order in which cities are visited, the diameters of two pipes 

could be swapped. However, this would result in each new string being far different 

than in the previous iteration. It is assumed that the starting position in each of these 

local searches is not far from the global optimum, hence each iteration of a local 

search should only involve small differences between the old and new strings. 

 

do 

select i randomly  [1,dim (A)] 

select j randomly  [1,dim (A)] 

set A’[i] = A[i] – 1 

set x = U[0,1] 

if (x < ) 

set A’[j] = A[j] + 1 

if f(A’) < f(A) 

set A = A’ 

count = count + 1 

if count = max_iterations 

stop 

loop 

Figure 3-7. Pseudo-code for probabilistic allele swapping 

 

Therefore, the compounded swaps local search has been adapted, the 

pseudocode of which is shown in Figure 3-7. Two alleles are randomly selected. Then, 

rather than swapping the diameters of those pipes, one is increased slightly and one is 

decreased slightly. Now, if two pipe diameters are increased and decreased, 

respectively, only limited improvements in the objective function can be achieved. 

Therefore, another aspect of this local search is that the allele that is selected to 

increase, is only increased with a given probability, . Hence the name given to this 
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local search is Probabilistic Allele Swapping, as it is derived from the Compounded 

Swaps algorithm. 

This local search is particularly suited to WDS optimization. Each decision 

variable in the string represents a single pipe in the network. Therefore, if one pipe 

segment is incremented up to the next diameter, while one is reduced to a lower 

diameter, it is likely that the net result will only be a slight difference in flow paths 

through the system and pressures at the critical nodes will only be changed slightly. 

3.3.6 Simulated Annealing 

The local search methods detailed previously were either developed as 

completely new algorithms or adapted significantly from existing techniques. 

Simulated Annealing (SA), however, is an existing method, that has also been applied 

to WDS optimization (Cunha and Sousa 1999). In that case, SA was used as the sole 

optimization technique, whereas here it is proposed to be used after the ANN-GA has 

converged and therefore acts as a fine-tuning technique to slightly reduce the value of 

the objective function. 

As the name suggests, simulated annealing is analogous to the annealing 

process used in developing the crystalline structure in metals. Initially, the 

temperature of the material is high and the crystalline structures are less stable. As 

the temperature decreases, the crystals become more rigid and stable. In simulated 

annealing, initially, solutions to the problem that are worse than in the previous 

iteration are accepted with a relatively high probability. As the algorithm progresses, 

the ‘temperature’ decreases, and worse solutions are accepted with lower probability. 

During the physical annealing process, the temperature must be controlled so as to 

not allow warping or cracking in the material. So too with SA: the ‘temperature’ must 
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be controlled so as to avoid premature convergence of the algorithm to a sub-optimal 

solution. 

While TM and PAS have properties that enable the search to escape local 

optima, SA actually accepts worse solutions during the search, thus enabling the 

search to ‘climb over’ peaks in the search-space; whereas the manner in which TM 

and PAS escape local optima is by using larger steps in the search process. 

 

do 

select i randomly  [1,dim (A)] 

set x = U[0,1] 

if x < 0.5 

set A’[i] = A[i] - 1 

else  

set A’[i] = A[i] + 1 

set y = U[0,1] 

set z = 
   
















 

t

AfA'f
exp1,min  

if y < z 

set A[i] = A’[i] 

t = r.t 

if t < t_min 

stop 

loop 

Figure 3-8. Pseudo-code for simulated annealing. 

 

The pseudocode for SA is shown in Figure 3-8. At each iteration, a new 

solution is generated by increasing or decreasing one randomly selected allele by one 

unit. If this new solution is better than the previous, it is accepted. However, if the 

solution is inferior, it still may be selected, but with a probability, z. The temperature, 

t, decreases with each iteration, hence z also decreases, as the search progresses.  
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3.4 Case Study 

The New York Tunnels (NYT) problem (Schaake and Lai 1969) was chosen as 

the case study on the basis that there has been considerable research conducted on it 

in the past and therefore the current best solution is probably close to, if not the, 

global optimum. Therefore, this enables the effectiveness of the local search methods 

to be evaluated. The NYT problem is a WDS expansion problem, where the optimal set 

of diameters of pipe segments need to be determined such that pressure at all nodes 

is above a specified minimum for a given set of demands. Further details of the NYT 

problem can be found in Maier et al. (2003), which also contains the current best 

known solution of $38.64M when EPANET 2.0 is used as the hydraulic solver.  

Broad et al. (2005) created the NYT water quality (NYT-WQ) problem by 

adapting the NYT problem to include water quality constraints in the form of chlorine 

residual concentrations in the system. The NYT-WQ problem consists of 22 decision 

variables, including 21 pipe diameters and one chlorine dosing value. There are 16 

possible diameters for each pipe in the system and 21 possible chlorine dosing 

concentrations, resulting in a search space of 4.1 x 1026 possible solutions. 

It was found that approximately 10,000 data were needed to construct 

adequately accurate metamodels, which was determined from several preliminary 

runs. From the training data that were generated, it was found that 4 of the junctions 

in the system were critical, meaning that the minimum pressure in the system can 

occur at any one of four junctions. Similarly, there is one critical junction for the 

chlorine residual constraints. These critical junctions, along with a layout of the NYT 

system, are shown in Figure 3-9. 
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Figure 3-9. The New York Tunnels Water Distribution System, 

with critical nodes. 

 

3.4.1 Analysis Conducted 

To enable valid comparisons to previous work, the same ANN and GA 

parameters were used as in Broad et al. (2005). These values, shown in Tables 3.1 and 

3.2, were calibrated to achieve fast convergence and maximum performance (i.e. 

small error for the ANNs and near-optimal objective function for the GA). Note the 

penalty multipliers for pressure head and chlorine residual are measured in $/m and 

$/mg/L, respectively. 

As listed in Table 3.1. ANN Parameters, a multi-layer perceptron was used 

with 40 hidden nodes. As there are 22 decision variables, the number of input nodes 

Reservoir (Source) 

Junction 

Critical Pressure Junction 

Critical Water Quality Junction 

 

19 

 

20 

 

16 

 17 
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for the metamodel is also 22. There are a total of 5 critical junctions (4 for pressure 

and 1 for chlorine), hence there are 5 output nodes for the metamodel. The 

metamodel consisted of 5 separate ANNs, each with a single output, rather than a 

single ANN with 5 outputs. Preliminary results showed this was the more accurate 

approach, but for brevity these results are not presented here. The hydraulic WDS 

simulation model EPANET 2.0 was run 10,000 times with different randomly selected 

values for the 22 decision variables and five corresponding metamodel outputs, to 

obtain the training data. 

To examine the effect the initial weights in the ANNs have on the quality of 

solutions obtained, 30 different metamodels were trained, each with different 

randomly generated initial weights. Similarly, to reduce the effect of random 

initialization of the GA population, each optimization run was carried out 100 times. 

The optimization was carried out with a metamodel that was representative of the 30 

that were trained. As there was very little variance in the accuracy of the metamodels, 

this was considered to be a valid approach. 

 
Table 3.1. ANN Parameters 

Parameter Value 

ANN Type multi-layer perceptron 

Transfer Function sigmoid 

No. Hidden Layers 1 

No. Hidden Nodes 40 

Learning Rate 0.3 

Momentum Rate 0.5 

Training Iterations per ANN 5000 
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Table 3.2. GA Parameters 

Parameter Value 

GA Type integer 

Population Size 400 

Probability of Crossover 0.8 

No. Crossovers per Pair 1 

Probability of Bit-Wise Mutation 0.02 

No. Generations 2000 

Penalty Multiplier – Pressure Head 109 

Penalty Multiplier – Chlorine Residual 109 

 

The three downward mutation algorithms were run until no further 

improvement was possible in each of the alleles of the string. By their nature, there is 

a finite number of iterations for these algorithms. Conversely, each of the other local 

search algorithms were run for as many iterations as was required for convergence, 

where convergence was defined as no improvement in the objective function in the 

preceding 50 iterations. Also, for algorithms that involve parameters, the best values 

of the parameters were calibrated using a simple sensitivity analysis, the outcomes of 

which are shown in Table 3.3. As expected, the probability of mutation for TM is 

higher (0.1) than that which was used for the GA (0.02). The maximum mutation 

distance for TM was 3, but this is likely to be problem specific. A value of 0.5 was 

selected for the probability of increasing an allele, but this parameter was actually 

fairly insensitive. The best cooling rate for SA was found to be 0.8. Higher values 

resulted in premature convergence to sub-optimal solutions, while lower values 

resulted in the algorithm continually searching without converging.  
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Table 3.3. Calibrated local search parameters. 

Local Search Parameter 
Parameter 

Symbol 
Value 

TM 
Prob. Bit-wise 

Mutation 
Pm* 0.1 

TM 
Max. Mutation 

Distance 
 3 

PAS 
Prob. Increasing 

Allele 
 0.5 

SA Cooling Rate r 0.8 

 

3.4.2 Results 

The accuracy of the metamodels is important in determining the effectiveness 

of the ANN-GA. The RMS errors in the validation set from the 30 metamodels that 

were developed are presented in Table 3.4, where pressure heads (H) are measured 

in [m] and chlorine residuals (C) are measured in [mg/L]. These errors are quite low, 

especially in comparison to the range covered by the training data, which is also 

presented in Table 3.4. The errors were approximately 0.5% of the range for each 

ANN output. 

Table 3.4. RMS error in the validation set and training data range 

from 30 ANN Metamodels 

ANN Output 
RMS error 

Range 
Average St. Dev. 

H (node 16)  [m] 0.124 0.007 64.5 – 89.5 

H (node 17)  [m] 0.027 0.003 80.9 – 89.5 

H (node 19)  [m] 0.254 0.032 30.1 – 89.4 

H (node 20)  [m] 0.125 0.007 64.1 – 89.5 

C (node 17)  [mg/L] 0.0053 0.0001 0.004 – 0.745 
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After the ANN metamodels have been trained, the next stage is the 

optimization with the ANN-GA, followed by local search. The results from each of the 

local search algorithms are presented in Table 3.5, as well as the results when no local 

search was utilized. The minima, average and maxima of the 100 optimization runs 

are presented for each algorithm. It can be seen that each algorithm obtained the 

same optimum as Broad et al. (2005) at least once, whereas there is some variance in 

the averages. It can be seen that the maximum is much greater than the average. This 

was due to the fact that there was one GA run that converged to a particularly poor 

solution and so the local search was not capable of providing significant improvement 

in the objective function due to a poor starting position. 

To examine the significance of the local search results presented in Table 3.5, a 

t-test was performed, with the results given in Table 3.6. At the 95% significance 

level, it is clear that all the local search algorithms performed better than when no 

local search was used. The difference between the local searches, however, was less 

noticeable. There was only a significant difference in the results between two pairs. 

SDM was significantly better than RDM, which was surprising, given that they are 

very similar algorithms. Also, SDM was significantly better than TM. These results 

indicate that while a local search is required to improve results, it is not important 

which algorithm is used. 
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Table 3.5. Local Search results from 100 random initialisations 

in the GA population. 

Local Search Min Avg Max 

SDM 38.64 39.68 43.48 

RDM 38.64 39.98 45.88 

MSDM 38.64 39.89 43.67 

TM 38.64 40.02 45.24 

PAS 38.64 39.75 44.61 

SA 38.64 39.93 44.86 

None 41.60 42.41 48.13 
 

 

Table 3.6. P values from a t-test, illustrating the significance of the local search 

results. 

 SDM RDM MSDM TM PAS SA None 

SDM  0.025 0.065 0.012 0.329 0.052 2.8E-42 

RDM   0.284 0.406 0.069 0.379 1.3E-33 

MSDM    0.202 0.158 0.406 4.1E-38 

TM     0.292 0.292 2.1E-33 

PAS      0.124 3.9E-39 

SA       3.6E-34 

None        
 

 

The quality of the solutions obtained is important in evaluating the 

performance of the local search algorithms. However it is also important to consider 

the computational intensity, particularly given that the purpose of metamodelling is 

to reduce the runtimes to a reasonable level such that WDS optimization can be 

achieved in practice. Therefore, the runtimes for each of the local searches is shown in 

Figure 3-10, as well as the runtime for ANN-GA without any local search and the 

runtime for EPANET-GA. 
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Figure 3-10. Run-times for each local search, with comparison to EPANET-GA 

and ANN-GA. 

It can be seen that the ANN-GA takes approximately 45 seconds to run without 

any local search. The three downward mutation algorithms (SDM, RDM and MSDM) 

require negligible additional computational effort, adding only a few more seconds to 

the total time. The other three local searches (TM, PAS and SA) are all much more 

computationally intensive, with SA taking the most time to run at around 100 

seconds. However, even though this is more than twice the runtime of ANN-GA 

without local search, it is still extremely short compared with the 21 hours that would 

have been required had ANN metamodels not been employed and EPANET used 

instead. 

3.5 Conclusion 

Six local search algorithms have been presented and evaluated in this paper 

for the purpose of improving the performance of metamodel-based optimization of 
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water distribution systems. With the exception of Simulated Annealing, they were 

developed for this specific purpose in mind. 

The results show a significant improvement in the value of the objective 

function by using a local search as a complementary stage of metamodel-based 

optimization of WDSs. Closer examination of the local search results showed that it 

was not important which algorithm was used, as all the local searches considered 

here performed well. Hence, to determine which is the best type of local search, the 

respective runtimes were considered. The downward mutation algorithms were all 

quite fast, increasing the runtime of the ANN-GA only slightly. This runtime was much 

lower than the other three algorithms, hence considering both performance and 

computational requirements, either SDM or MSDM should be used. 

The results presented in this paper were specifically developed for WDS 

optimization. However, they could all easily be applied to other metamodel 

applications with very minor modifications. The conclusions made, based on the 

results, are for one case study only. Further research will be conducted through 

CRCWQT Project 2.5.0.3 to determine whether the performance of the local search is 

dependent upon the shape of the fitness function, and hence performance may also 

depend upon the problem that is being optimized. This will involve application of the 

aforementioned techniques to further case studies from the literature, as well as a 

real WDS (Wallan) situated in Melbourne, Australia. 
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Abstract 

Optimization of large and hydraulically complex water distribution systems 

(WDSs) is computationally expensive as simulation models are required to evaluate 

the performance of solutions to the problem at hand. Metamodels can act as a 

surrogate or substitute for these simulation models and provide significant speed-ups 

in the optimization process. The application of metamodels in the field of WDS 

optimization has been limited to date, and little guidance has been given in terms of 

constructing metamodels for hydraulically complex systems. While it is relatively 

straightforward to obtain satisfactory metamodel approximations to simulation 

models of simple WDSs, this is not necessarily the case for more complex networks.  

In order to reduce the complexity of the relationship that is to be approximated by the 

metamodels, a number of factors have to be considered, including the complexity of 

the hydraulic simulation model, the complexity of the decision space, and the 

locations at which outputs are required from the hydraulic simulation model. This 

research presents a systematic methodology for dealing with these factors and 

demonstrates the effectiveness of the approach by applying it to an actual WDS. 

A system in Wallan, Victoria, Australia, is selected for demonstration purposes. Four 

different metamodelling scenarios are presented here. The results show that, for this 

case study, some skeletonization of the model is required to achieve suitably accurate 

metamodels. The optimization results show a reduction in the average daily pumping 

costs from $457 to $363; a saving of 21%. The net present value (NPV) over 25 years 

is used as the objective function, which includes both pumping and chlorine costs. The 

current operating regime corresponds to an NPV of $1.56 million, while the optimized 

solution has an NPV of $1.34 million; a saving of 14%. In addition to these economic 
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benefits, the optimized solution achieves adequate disinfection throughout the 

system, whereas the current operating regime corresponds to deficits in chlorine 

residuals at several locations in the system. 
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4.1 Introduction 

Determining the optimal operating strategy of Water Distribution Systems 

(WDSs) requires consideration of several factors, including the minimization of 

energy and disinfection costs, while satisfying customer requirements, such as 

providing adequate pressure and water quality. Energy costs are typically reduced by 

pumping during off-peak electricity tariff times as much as possible without 

compromising hydraulic performance (Mackle et al. 1995, Van Zyl et al. 2004), while 

disinfection costs are reduced by minimizing water age in the system (Boccelli et al. 

1998). Consideration of water quality significantly increases computational intensity 

when modeling systems in a simulation package such as EPANET. Genetic Algorithms 

(GAs) have been shown to identify near globally optimal solutions to WDS 

optimization problems (Simpson et al., 1994), but their use becomes infeasible for 

realistic sized problems because of the long run times associated with the many 

hydraulic and water quality simulations. Consequently, there is a need to increase the 

computational efficiency of the WDS simulation model in order to address this 

problem.  One way to achieve this is via network simplification approaches, such as 

skeletonization (e.g. Haestad Methods, 2002), decomposition (e.g. Deuerlein, 2008) or 

Gaussian elimination (e.g. Ulanicki et al., 1996).  However, this is unlikely to achieve 

the several-orders-of-magnitude reduction in run-times needed.  An alternative 

approach to increasing the computational efficiency of the simulation model is to use 

metamodeling (Blanning, 1975). 

A metamodel is a surrogate, or substitute, for a computationally expensive 

simulation model, such as EPANET.  In the context of GA optimization of WDSs, the 

simulation model is used to assess the fitness of a solution that is generated by the GA.  
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Consequently, the purpose of the metamodel is not to approximate the entire 

simulation model, but to obtain a relationship between the decision variables (e.g. 

chlorine dosing rates) and the constrained variables (e.g. chlorine residuals) and any 

other variables that contribute to the fitness (e.g. energy consumption).  As this 

relationship is likely to be highly non-linear, Artificial Neural Networks (ANNs) have 

been used successfully for this purpose in various areas of water engineering (see 

Broad et al., 2005). 

In relation to WDS optimization, Broad et al. (2005) introduced an approach 

for coupling a GA with an ANN metamodel and applied it to a modified version of the 

New York Tunnels WDS optimization problem (Schaake and Lai, 1969).  Since then, 

there have been a number of similar studies, in which an ANN-GA metamodelling 

approach has been applied to the Anytown (Rao and Salomons, 2007), Haifa 

(Salomons et al., 2007) and Valencia (Martinez et al., 2007) WDSs.  

When using metamodels in conjunction with GAs, a number of potential 

problems can arise.  One of these is that even a small error in the metamodel can have 

a significant impact on the optimization results obtained.  This is because metamodels 

are often used to check whether constraints (e.g. pressures, residual chlorine levels) 

have been satisfied.  Consequently, even small errors in the metamodel can result in 

the inclusion of infeasible, or the exclusion of feasible, solutions, which can potentially 

lead the search to sub-optimal regions of the solution space. 

This was recognized by Broad et al. (2005), who introduced a methodology for 

dealing with this issue, which includes the tracking of the best solutions (according to 

the metamodel) during the search, followed by their evaluation with the simulation 

model and a local search to fine-tune the solution. Broad et al. (2005) also proposed a 
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technique for adjusting constraints so that the approximated fitness landscape of the 

metamodel more closely matches the true fitness landscape. The approach was tested 

on a simple case study and was found to perform favorably in terms of accuracy and 

computational efficiency when compared with an optimization approach that 

combines EPANET with a GA (i.e. the same optimal solution was found at much 

reduced computational expense).  

When dealing with realistic, rather than hypothetical, case studies, the 

problem of ANN accuracy is likely to be exacerbated due to the increased complexity 

of the relationship that has to be approximated by the metamodel.  This is supported 

by the experience of Martinez et al. (2007), who developed an ANN metamodel for the 

Valencia WDS.  Consequently, the aim of this paper is to extend the ANN-GA 

optimization methodology developed by Broad et al. (2005) to cater for more 

complex WDSs.  The proposed approach is tested on the Wallan WDS in Victoria, 

Australia, which is more complex than systems to which the ANN-GA approach has 

been applied to previously (e.g. Salomons et al., 2007, Martinez et al., 2007), both in 

terms of network size and the inclusion of water quality considerations. 

4.2 Proposed Methodology 

4.2.1 Introduction 

While it is relatively straightforward to obtain a satisfactory ANN 

approximation for simple WDSs, this is not necessarily the case for more complex 

systems.  Consequently, it is beneficial to reduce the complexity of the relationship 

that has to be approximated by the ANN.  In order to achieve this, a number of factors 

should be considered, including the complexity of the hydraulic simulation model, the 
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complexity of the decision space, and the locations at which outputs are required 

from the hydraulic simulation model. Each of these issues is discussed in more detail 

below. 

4.2.2 Complexity of Hydraulic Simulation Model 

The more complex the simulation model, the more complex the relationship 

that needs to be approximated by the ANN model.  In addition, increased model 

complexity increases the time taken to generate the requisite ANN calibration 

(training) data.  Consequently, careful consideration needs to be given to the degree 

of complexity that is required for the hydraulic simulation model.  Factors that need 

to be considered include (i) the complexity of the pipe network, which can be reduced 

using techniques such as such as skeletonization (e.g. Haestad Methods, 2002), 

decomposition (e.g. Deuerlein, 2008) or Gaussian elimination (e.g. Ulanicki et al., 

1996), (ii) the duration of the simulation, which needs to be greater than the water 

age, (iii) simulation resolution, which needs to be sufficiently fine to avoid a loss in 

accuracy and (iv) control duration, which needs to be large enough to minimize any 

numerical irregularities. 

4.2.3 Complexity of Decision Space 

As GAs generate solutions randomly, there is a danger that irrational solutions 

are obtained as part of the optimization runs (e.g. solutions can be generated in which 

the upper tank trigger levels are lower that the corresponding lower tank trigger 

levels).  This is undesirable, as it not only increases the size of the search space, but 

also makes it more difficult to develop an accurate metamodel due to the increased 

complexity of the decision space.  Consequently, as much a priori information as 

possible about the system being modeled should be utilized. 
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4.2.4 Locations at which Simulation Model Outputs are Required 

As part of hydraulic simulation models, outputs (e.g. pressures, chlorine 

residuals) are obtained at all time steps and at every node.  However, developing an 

ANN metamodel that would provide the same level of information would necessitate 

the inclusion of a node in the ANN output layer for each of the nodes in the EPANET 

model.  Clearly, this level of complexity in the ANN model is undesirable, as it makes it 

more difficult, and increases the time required, to calibrate (train) the model.  

Consequently, it is desirable to identify a set of critical nodes at which ANN outputs 

are required.  Initially, the set of candidate critical nodes, {OutCa}, is equal to the set of 

all nodes containing a specific constraint.  In order to reduce this candidate set, the 

following five-stage statistical process is proposed, whereby candidate nodes are 

ultimately categorized into the critical set, {OutCr}, or the redundant set, {OutR}.  It 

should be noted that there is likely to be a different number of critical nodes for 

hydraulics (NC-HYD) and water quality (NC-WQ) outputs. The categorization of nodes 

uses a set of randomly generated solutions, known as the metamodel development 

data. After the following checks are carried out these same data are used for 

calibrating the ANN metamodel. Broad et al. (2005) recommend using 10,000 

randomly generated solutions in order to achieve adequate coverage of the solution 

space. 

Data Range Check 

The metamodel development data should be checked to ensure that there is 

variation in the data for each of the candidate output nodes. If there is no variation, 

the development of a metamodel is unnecessary. The candidate output is then 

deemed redundant, as shown in Eq. 4.1. 
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𝑋 ∈ {𝑂𝑢𝑡𝑅} 𝑖𝑓 max
𝑖∈𝑁𝐷

(𝑉𝑋𝑖
) − min

𝑖∈𝑁𝐷
(𝑉𝑋𝑖

) < 𝜀𝑅𝐴𝑁𝐺𝐸 (4.1) 

 

Where 
iXV is the i-th value of candidate output X (e.g. simulated pressure head (m), or 

chlorine residual (mg/L)); ND is the sample size of the metamodel development data 

used; and RANGE is a user-defined threshold. 

Demand Check 

Candidate output nodes should be checked to determine whether they have a 

demand. If there is no demand at a given node, it is inconsequential whether a 

constraint is satisfied or not and that node can be culled from the set of candidate 

outputs and deemed redundant, as shown in Eq. 4.2. 

𝑋 ∈ {𝑂𝑢𝑡𝑅} 𝑖𝑓 𝐷𝑀(𝑋) = 0 (4.2) 

 

Where DM(X) is the average demand of output node X over the control duration. 

Dominance Check 

In the set of metamodel development data, if the magnitude of failure of 

candidate output Y is always greater than that of candidate output X, then output Y is 

said to dominate output X and output X may be deemed redundant. This is expressed 

mathematically in Eq. 4.3. 

𝑋 ∈ {𝑂𝑢𝑡𝑅} 𝑖𝑓 𝐹𝑌𝑖
≥ 𝐹𝑋𝑖

, ∀𝑖 ∈ 𝑁𝐷 (4.3) 

 

Where YF  and XF  are the magnitudes of failure for outputs X and Y, respectively, 

where the magnitude of failure is defined in Eq. 4.4. 

𝐹𝑋𝑖
= max(0, 𝑉𝑋−𝑚𝑖𝑛 − 𝑉𝑋𝑖

) (4.4) 

 

Where VX-min is the minimum allowable value corresponding to X. 
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This type of behavior is likely to occur more frequently for constraints on 

chlorine residuals and pressure heads with little variation in elevation. Upstream 

nodes in the WDS will generally have higher pressure heads and chlorine residuals 

and will therefore be more likely be dominated by downstream nodes. 

Correlation Check 

If the correlation coefficient of the metamodel development data between two 

candidate outputs is sufficiently high, one of the outputs can be deemed redundant. A 

high correlation is likely to occur where two nodes are spatially close, and the relative 

influence of each decision variable is similar for each of the candidate outputs. The 

correlation between two candidate outputs must be greater than a minimum 

correlation threshold, , for one output to be deemed redundant. The selection of an 

appropriate threshold value is important; if the threshold is set too high, too few 

candidate outputs will be made redundant and the number of critical outputs will be 

too high; conversely, if the threshold is set too low, outputs that should have 

associated metamodels trained for them will be made redundant. This will be 

problematic at the deployment stage, when the metamodel is acting as a surrogate for 

the simulation model. A solution presented to the metamodel may be deemed a good 

solution with no penalty costs, but that could be because one of the constraints has 

not been checked, because there was no output for it in the metamodel. 

Once it has been determined that two candidate outputs are correlated, the 

next step is to select which output is placed in the redundant set. Recall that this 

approach assumes that for a given solution, only the worst node is penalized. 

Therefore, the candidate output with the lowest average magnitude of failure should 

be placed in the redundant set. This step is expressed mathematically in Eq. 4.5. 
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𝑋 ∈ {𝑂𝑢𝑡𝑅} 𝑖𝑓 𝑐𝑜𝑟𝑟(𝐹𝑋, 𝐹𝑌) > 𝜃 𝑎𝑛𝑑 avg
𝑖∈𝑁𝐷

(𝐹𝑋𝑖
) < avg

𝑖∈𝑁𝐷
(𝐹𝑌𝑖

) (4.5) 

 
Frequency of Criticality Check 

The preceding four steps will have resulted in a reduction in the set of 

candidate outputs to a set where each of the remaining outputs has solutions which 

have failed at least once in the ND metamodel development data solutions. However, 

it may be the case that some nodes are critical so infrequently that there is no need to 

keep them in the critical node set. Eq. 4.6 shows that candidate output X should be 

moved to the redundant set if its frequency of failure is below some threshold, CRIT. 

𝑋 ∈ {𝑂𝑢𝑡𝑅} 𝑖𝑓 
∑ 𝐶𝐶𝐶

𝑁𝐷
< 𝜀𝐶𝑅𝐼𝑇 (4.6) 

 

Where CCX is the criticality indicator function, given by Eq. 4.7. 

𝐶𝐶𝑋 = {
1 𝑖𝑓 𝐹𝑋𝑖

= min
{𝑂𝑢𝑡𝐶𝑎}

[𝐹𝑖]

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4.7) 

 

This step should be used with caution, as even nodes that are only critical 

infrequently might still be important when performing an optimization. As such, the 

value of CRIT should be set fairly low. Regardless, if, during an optimization run, the 

GA converges to a part of the search-space that violates a node without a 

corresponding metamodel output, that node should be added back into the set of 

critical nodes.  

4.2.5 Summary of Proposed Methodology 

The proposed methodology for the optimization of WDSs using ANN 

metamodels that caters for WDSs with realistic levels of complexity is summarized 

below.  The procedure is an extension of that introduced by Broad et al. (2005) and 
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incorporates the approaches to dealing with complex WDSs discussed in previous 

sub-sections. 

1. Formulate the optimization problem (including constructing the objective 

function, and determining constraints and decision variables). 

2. Develop ANN metamodel: 

a. Develop simulation model.  Check for appropriateness of (i) model 

complexity, (ii) simulation duration and resolution, (iii) control 

duration and (iv) complexity of the decision space. 

b. Randomly generate metamodel development data using the simulation 

model, ensuring that only hydraulically plausible solutions are 

generated (e.g. no negative pressures); 

c. Determine critical nodes at which simulation model output is required; 

d. Calibrate (train) the ANN models(s) using the back-propagation 

algorithm after dividing the metamodel development data into 

training, testing and validation sub-sets; 

3. Solve the optimization problem: 

a. Optimize the problem using the trained ANN(s) in place of the 

simulation model. During the optimization; 

i. Evaluate every new best solution with the simulation model (as 

a metamodel is only an approximation, solutions obtained by 

the GA must be checked against the original simulation model 

to ensure feasibility); 

ii. Keep track of the set of best “x” solutions, according to the 

ANN(s) (the best solution according to the simulation model 
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may correspond to the second, third, tenth (etc) best solutions 

according to the metamodel); 

b. Conduct a local search using the simulation model, commencing from 

the best solution from Step 3.a. (again, because the simulation model is 

only an approximation, small improvements in the quality of the 

solution can be achieved by using a local search after running a GA). 

It should be noted that although a number of uncertainties are introduced into 

the ANN development process by following the above approach (e.g. simplification of 

hydraulic model, ANN data reduction), resulting in inaccuracies in the ANN 

metamodel, these have a minimal effect on the outcome of the optimization.  This is 

due to steps 3a. and 3b. above, which cater for the errors in the metamodel (e.g. by 

relaxing the constraints)  and ensure that optimal feasible solutions obtained using 

the ANN metamodel are checked against solutions obtained using the actual 

simulation model. 

 

4.3 Case Study: Wallan 

4.3.1 Introduction 

The purpose of this case study is to determine the optimal way in which the 

water supply system for the town of Wallan, which is located near Melbourne, 

Australia, should be operated in the short term, assuming average summer demands.  

In order to achieve this, the ANN-GA based optimization approach introduced in the 

previous section was applied to the system. 
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Figure 4-1. Layout of Wallan case study area. 

The layout of the WDS under consideration is shown in Fig. 4.1. The water 

source is in the south at the Somerton reservoir. Water is pumped to the Craigieburn 

tank from Somerton and also pressurizes the large Craigieburn zone when in 

operation. Water is then pumped up to Mt Ridley tank from the Craigieburn zone via 

Hanson Rd pump station. Kalkallo pump station draws water from Mt Ridley tank to 

supply the Wallan zone via a newly constructed 450mm main into the Pretty Sally 
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tank. An outlet main from Pretty Sally tank feeds a pump station that boosts to Hidden 

Valley high level tank. 

To test the various steps involved in the proposed approach, a series of 

scenarios were conducted using hydraulic simulation models with different levels of 

complexity (degree of skeletonization) and resolution (control duration) and using 

different levels of a priori system knowledge about the decision space to generate the 

ANN metamodel development data. This enabled a critical assessment of the 

importance of the different components in the overall methodology to be made. The 

four metamodeling scenarios considered are detailed in Table 4.1. 

Table 4.1. Different ANN metamodel scenarios considered. 

ANN 
Metamodel 

Degree of  
Skeletonization 

Control 
Duration 

Decision Variable 
Generation 

Scenario Original Skeletonized 24h 168h 
Without a 

priori 
knowledge 

With a 
priori 

knowledge 

1 X  X  X  

2 X  X   X 

3 X   X  X 

4  X  X  X 

 

4.3.2 Problem Formulation 

Problem formulation involves definition of the options that are available for 

operating the WDS (decision variables), the constraints that have to be satisfied and 

the objectives that are being optimized. 

Decision Variables 

The case study included two types of decision variable; tank trigger levels for 

switching pumps on and off, and chlorine dosing rates. There were 10 pumps and one 
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valve across 4 different pump stations. Hydraulic control was implemented through 

the use of a set of rules. Each control rule consisted of a pump or valve, controlling 

tank, tank level at which the pump or valve is switched on or off, and a time of day 

(peak or off-peak electricity tariff). The range of possible values for these decision 

variables is given in Table 4.2. For 11 pumps and valves, 2 electricity tariffs, and 2 

trigger levels, there were (11 2 2 =) 44 decision variables. 

Table 4.2. Allowable range for tank trigger levels. 

Station 
Infrastructure 

Type 

No. of 
Pumps 
/Valves 

Controlling 
Tank 

Tank Trigger Levels 

Min Max Res Options 

Hanson Rd Valve/Pump 3 Mt. Ridley 0 8 0.1 81 

Kalkallo Pump 2 Pretty Sally 0.1 3.9 0.1 39 

Pretty Sally 
Outlet 

Pump 2 
Hidden 
Valley 

0.5 9 0.1 86 

Somerton Pump 4 Craigieburn 0 12.6 0.1 127 

 

In addition to the hydraulic decision variables, there were 5 chlorine dosing 

locations. Four of these chlorinators were already in operation, while a fifth, at 

Kalkallo, was an option being considered as part of this optimization study. Possible 

chlorine dosing rates ranged from 0-3 mg/L, in increments of 0.1 mg/L. 

Therefore there were a total of 49 decision variables and the size of the 

search-space was (315 2 813 392 862 1274) =  8.9 1028.  

Constraints 

Hydraulic constraints were placed on critical nodes in the system that 

exceeded acceptable minimum pressure heads. These acceptable minimum pressure 

heads were set at the current (pre-optimization) values; that is, the constraint was to 

ensure the optimization did not result in lower pressures anywhere in the system 
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than are experienced currently. These values were calculated with the aid of the 

EPANET model. The minimum allowable residual chlorine concentration was set to 

0.1 mg/L throughout the system. Penalty multipliers for pressure heads and chlorine 

concentrations were set at $107/m and $107/mg/L, respectively, as suggested by 

Broad et al. (2005) to ensure that the GA does not converge to infeasible values. 

Objective Function 

The objective function consisted of two components for material cost (energy 

and chlorine) and two penalty costs (pressure and chlorine residual). Energy costs 

were associated with operating existing pumps. Chlorine costs consisted of two parts; 

capital and on-going. The capital cost was for installing a new chlorinator at Kalkallo 

(if the optimization deemed it necessary). The on-going costs included the cost of 

maintaining both existing and new chlorinators, as well as the cost of chlorine (as 

hypochlorite). 

The daily chlorine dosing cost for the i-th dosing location is given by: 

𝐶𝐶𝐷𝐴𝑌
𝑖 = 𝐶𝐶𝑈𝑁𝐼𝑇 ∑ 𝑄𝑡

𝑖𝐶0,𝑡
𝑖

𝑇𝐶𝑂𝑁𝑇𝑅𝑂𝐿

𝑡=0

+ 𝐶𝐶𝑀𝑁𝑇𝑁𝐶
𝑖  (4.8) 

 

Where CCUNIT is the unit cost of chlorine in $/kg; 𝑄𝑡
𝑖 is the flow through the i-th 

chlorinator at time t; 𝐶0,𝑡
𝑖 is the chlorine dosing rate for the i-th chlorinator at time t; 

TCONTROL is the control duration for which the system is optimized; and 𝐶𝐶𝑀𝑁𝑇𝑁𝐶
𝑖  is the 

daily maintenance cost of the i-th chlorinator. 

The capital cost of the new chlorinator is given by: 

𝐶𝐶𝐶𝐴𝑃𝐼𝑇𝐴𝐿 = {
250,000 𝑖𝑓 𝐶0

𝐾𝐴𝐿𝐾𝐴𝐿𝐿𝑂 > 0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4.9) 
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Where 𝐶0
𝐾𝐴𝐿𝐾𝐴𝐿𝐿𝑂 is the set point for the potential new chlorinator at Kalkallo. 

The total chlorine cost is therefore given by: 

𝐶𝐶𝑇𝑂𝑇𝐴𝐿 = 𝐶𝐶𝐶𝐴𝑃𝐼𝑇𝐴𝐿 + ∑ 𝑁𝑃𝑉(365 × 𝐶𝐶𝐷𝐴𝑌
𝑖 , 𝑟, 𝑇𝐷𝐸𝑆𝐼𝐺𝑁)

𝑁𝐶

𝑖=1

 (4.10) 

 

Where NPV(·) is the net present value function; r is the discount rate; TDESIGN is the 

design horizon, which was selected to be 25 years; NC is the number of chlorinators. 

The daily energy cost is given by: 

𝐸𝐶𝐷𝐴𝑌
𝑖 = 𝐸𝐶𝑃,𝑈𝑁𝐼𝑇 ∑ (𝐸𝑃,𝑡

𝑖 )

𝑇𝐶𝑂𝑁𝑇𝑅𝑂𝐿

𝑡=0

+ 𝐸𝐶𝑂𝑃,𝑈𝑁𝐼𝑇 ∑ (𝐸𝑂𝑃,𝑡
𝑖 )

𝑇𝐶𝑂𝑁𝑇𝑅𝑂𝐿

𝑡=0

 (4.11) 

 

Where 𝐸𝐶𝑃,𝑈𝑁𝐼𝑇 and 𝐸𝐶𝑂𝑃,𝑈𝑁𝐼𝑇 are the unit energy costs for the peak and off-peak 

times of the day, respectively; 𝐸𝑃,𝑡
𝑖 and 𝐸𝑂𝑃,𝑡

𝑖  are the amount of energy consumed for 

pump i in time t for the peak and off-peak times of the day. 

All pumps are already in place, therefore there are no capital costs for new 

pumps. Also, maintenance costs for pump stations have not been included, as they 

would not affect the optimal solution. Maintenance costs will simply add a fixed cost 

to whatever solution is selected. Therefore, the total energy cost is given by: 

𝐸𝐶𝑇𝑂𝑇𝐴𝐿 = ∑ 𝑁𝑃𝑉(365 × 𝐸𝐶𝐷𝐴𝑌
𝑖 , 𝑟, 𝑇𝐷𝐸𝑆𝐼𝐺𝑁)

𝑁𝑃

𝑖=1

 (4.12) 

 

Where NP is the total number of pumps in the system. 



Chapter 4:  Complex Hydraulic Systems 

89 

Hydraulic and water quality penalty costs are given as PCHYD and PCWQ, 

respectively, and correspond to the aforementioned constraints. Combining actual 

and penalty costs gives the following overall objective function: 

𝑇𝐶 = 𝐶𝐶𝑇𝑂𝑇𝐴𝐿 + 𝐸𝐶𝑇𝑂𝑇𝐴𝐿 + 𝑃𝐶𝐻𝑌𝐷 + 𝑃𝐶𝑊𝑄 (4.13) 

 

Values for the fixed variables in Equations 4.8-4.13, as supplied by the water 

authority operating the system (Yarra Valley Water (YVW)), are given in Table 4.3. 

Table 4.3. Objective function parameter values. 

Parameter Value Units 

UNITCC  1.79 $/kg 

i

MNTNCCC  100 $/day 

UNITPEC ,
 4.9 c/kWh 

UNITOPEC ,
 2.6 c/kWh 

r 10 % p.a. 

TDESIGN 25 Years 

TDURATION 24 Hours 
 

 

4.3.3 Development of ANN Metamodels 

As was the case with the New York Tunnels ANN-GA case study conducted by 

Broad et al (2005), there are two categories of ANNs; hydraulic and water quality. The 

hydraulic ANNs have the 44 tank trigger levels as inputs. The outputs include 

minimum pressure head over the control duration at the NC-HYD critical nodes, as well 

as energy consumed (peak and off-peak). The water quality ANNs have the trigger 

levels as inputs, as well as the 5 chlorine dosing rates. Outputs include the minimum 

chlorine residual at the NC-WQ critical nodes, and the total mass of chlorine dosed 
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throughout the system.  This final output is required to calculate the chlorine cost. 

Chlorine dosing is in units of mass per volume and will depend on the flow at different 

times of the day and for different solutions, the total chlorine dosed will not be 

constant. Therefore, the metamodel will be required to approximate this value, as one 

could not obtain the flows without conducting an EPANET simulation. A schematic of 

the ANN metamodels is given in Figure 4-2. 

 
 

 

 

 

 

 

Figure 4-2. Metamodel structure for Stage 1 of HGC Case Study.  

 

There are a number of different metamodeling approaches that may be used; a 

single ANN with several outputs, or many ANNs with one output each. It was decided 

that the latter option was more appropriate for this case study, as calibrating an ANN 

model for a single output generally improves predictive performance. While this is 

the more computationally demanding option, the additional time required will be 

small in comparison with the time required for generating the metamodel 

development data. 

Development of Simulation Model 

The EPANET model of the system provided by YVW was an “all-pipes” model, 

with 6-minute time-steps for both hydraulics and water quality. The demand patterns 
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were also in 6-minute time steps, with a duration of 5 days.  The network consisted of 

more than 2000 pipes and 1700 nodes. 

Degree of Simplification 

In order to assess the impact of the degree of skeletonization on the ability of 

the ANN metamodel to approximate the simulation model, models with two different 

levels of complexity were considered (Table 4.1). As mentioned above, the original 

model was an “all-pipes” model, where many of the demand nodes represented areas 

as small as several houses. The problem with using a model with this level of detail is 

that accuracy cannot be as great at such small a scale. For example, the diurnal 

demand profile that is used is based on a spatial average of all demand nodes across 

the system. However, at the street level, actual demand would be much more 

sporadic, rather than change gradually. This could potentially lead to numerical 

instabilities and, therefore, poor metamodel performance. 

Therefore, the model was skeletonized to remove some of these small scale 

effects. This was done using pipe diameters as the criteria to determine which pipes 

should be removed. Pipes with diameters of less than 100mm were removed, with the 

exception where this would result in the removal of entire sections of the system, in 

which case, some of the smaller pipes were retained. Hence, there was some degree of 

engineering judgment required. Nodes that were subsequently removed due to the 

skeletonization process had their respective demands aggregated to the nearest node.  

In addition, as many of the smaller pipes were removed, the minimum allowable 

chlorine residual was raised from 0.1 mg/L to 0.15 mg/L based on advice from YVW. 

Table 4.4 presents a comparison of the complexity of the original and 

skeletonized models. It can be seen that approximately 34% of the pipes were 
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removed, along with 26% of the junctions and 64% of the loops.  In order to validate 

the skeletonized model, an extended period simulation (EPS) was conducted with the 

skeletonized model and the results obtained were compared with those obtained 

from an EPS conducted with the original model. The metric used to ensure the 

accuracy of the skeletonized model was the average flow exiting the Somerton 

Reservoir. There was little difference in average flows (approximately 0.5%; 

195.5 L/s compared with 194.3 L/s), thus validating the skeletonization process.  

Reducing the number of these loops had the associated benefit of reducing run-time 

by 68 seconds, or 59%, on average for a single evaluation. 

Table 4.4. Comparative statistics between the original model and the 

skeletonized model. 

Component 
Model 

Original Skeletonized 

Junctions 1730 1271 

Reservoirs 1 1 

Tanks 4 4 

Pipes 2097 1376 

Valves 35 34 

Pumps 10 10 

Loops 407 144 

Run-time [s] 114 46 
 

 

Simulation Duration and Resolution 

The required simulation duration must be greater than the water age in the 

system to ensure the effect of chlorine dosing is sensed at the extremities of the 

network.  The simulation duration must also be longer than the control duration so 

that costs and constraints can be calculated correctly.  In addition, the simulation 
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duration should ideally be as short as possible to avoid excessive run-times. An 

analysis of the Wallan model indicated a maximum water age of 700 hours.  

Consequently, the simulation duration was set to this value.  In addition, hourly 

demand patterns with a duration of 24h were used and the hydraulic time step was 

set at 1 hour.  In contrast, a water quality time step of 6 minutes was used. 

Control Duration 

Analysis of the model showed that, despite 24 hour demand patterns being 

used for all demand nodes, when simulated in EPANET, the resultant repeating 

pattern for pressure head was sometimes longer than 24 hours. This is problematic, 

because it can result in noise being introduced into the metamodel development data, 

as the control duration is used to calculate values for constrained variables (pressure 

head and chlorine residual) and elements of the objective function, such as energy. 

Consequently, the impact of using two different control durations, 24h and 168h (7 

days), was investigated (see Table 4.1). For the extended control duration, energy 

costs were calculated using the average values over 7 days.  In addition, the pressure 

head and chlorine residual constraints were changed to use the minimum value of the 

final 7 days of the simulation, rather than the final 24 hours. 

Generation of ANN Model Development Data 

The EPANET models of different complexity and with different control 

durations were then used to generate the training, testing and validation data for the 

various ANN modeling scenarios considered (see Table 4.1).  For each scenario, 

10,000 data points were generated randomly for ANN model development purposes, 

as suggested by Broad et al (2005).   
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In order to assess the impact of the complexity of the decision space on ANN 

model performance, two types of ANN model development data were generated.  In 

the first type, values of the decision variables (ANN inputs) were generated without 

consideration of any a priori system knowledge.  In the second type, a priori 

knowledge about the operation of the system was used to constrain the generation of 

the ANN input data so that only physically plausible decision variable combinations 

were obtained (see Table 4.1).  

In order to generate the second data type, the way the tank trigger levels were 

generated was changed.  This involved three steps. The first step involved placing, or 

raising, minimum allowable operating levels. This overcomes the problem that 

solutions could be randomly generated in which tanks were allowed to empty before 

pumps would switch on etc.  

Secondly, the trigger level decision variables were re-formulated so that they 

were grouped by pump station and hydraulically more sensible. For example, the N 

trigger level decision variables at a pump station were originally generated 

completely randomly and independently. The re-formulated approach involved 

generating N possible trigger levels within the feasible limits and then sorting them to 

ensure all upper trigger levels were higher than lower trigger levels.  

The final adjustment to the tank trigger level formulation was specific to the 

Hanson Road pump station. When switched on, the pumps draw water from the 

Craigieburn tank and Somerton reservoir, and deliver water into the Mt Ridley tank, 

while also pressurizing a small section of the Craigieburn Zone. When the pumps are 

switched off, the Mt Ridley tank draws down, gravity feeding through the valve. 



Chapter 4:  Complex Hydraulic Systems 

95 

Hence, since the valve and pumps work in a complementary fashion, it was decided 

that decision variables associated with the valve should be removed. 

Due to hydraulic issues, it was discovered that for the Hanson Road pump 

station, the lower trigger levels needed to be the same for both pumps, but that they 

could have different upper trigger levels. The valve would close when the tank level 

reached the lower trigger level (and the pumps would turn on); and the valve would 

open when the water level reached the higher of the two upper trigger levels. This 

resulted in a reduction of six in the number of decision variables. 

Determination of Critical Nodes 

The five-step procedure for determining critical nodes introduced in this 

paper was applied to each of the four ANN model development datasets generated in 

accordance with the scenarios outlined in Table 4.1. This determined the number of 

ANN models that had to be developed for each scenario, as a separate ANN was 

developed for each metamodel output, as discussed previously.  The number of 

critical pressure and water quality nodes obtained is summarised in Table 4.5.  It can 

be seen that the proposed procedure resulted in a significant reduction in the number 

of critical nodes and that the number of critical nodes obtained for the various 

datasets were very similar, ranging from 10 to 13. 

Table 4.5. Critical nodes for different ANN metamodeling scenarios. 

ANN Model Number of Number of Critical Nodes Indentified 

Scenario Initial Nodes Pressure Water Quality Total 

1 1730 4 6 10 

2 1730 6 7 11 

3 1730 5 7 12 

4 1271 7 6 13 
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As discussed previously, the number of critical nodes identified is dependent 

upon several threshold values. The chosen threshold values were all quite 

conservative, however, for some applications, tests may need to be conducted to 

determine appropriate threshold values. If, during an ANN-GA run, the GA begins to 

exploit a particular node in the model because there is no ANN output (and hence no 

constraint being applied) the threshold values may need to be adjusted to increase 

the number of critical outputs. 

The data range check threshold value, RANGE, was set at a very small 

(conservative) value of 0.001, as the aim of this check is to detect “dead ends” in the 

model where values do not change with respect to the decision variables.  The 

correlation check threshold, , was set to a high (conservative) value of 0.99 based on 

the results of a limited sensitivity analysis.  However, the results of the sensitivity 

analysis showed that the number of critical nodes retained was relatively insensitive 

to this value.  The frequency of criticality threshold value, CRIT, was set to a very small 

(conservative) value of 0.001, which corresponds to 10 solutions in 10,000. 

Details of the impact of each of the five steps for identifying a set of critical 

nodes are given in Table 4.6 for one of the four scenarios (scenario 4).  It can be seen 

that the most significant reduction in the number of critical nodes for both hydraulics 

(pressure head) and water quality (chlorine residual) resulted from the correlation 

check. This is most likely due to the model containing many nodes in close proximity 

to each other, which are therefore highly correlated. 
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Table 4.6. Impact of different stages of proposed critical node determination 

procedure for scenario 4. 

Critical Input 
Determination Stage 

Remaining Critical Nodes 

Hydraulics Water Quality 

Original 1271 1271 

Data Range Check 1201 1262 

Demand Check 851 909 

Dominance Check 851 909 

Correlation Check 174 40 

Frequency of Criticality 7 6 
 

 

Calibration and Validation of ANN Models 

The generated metamodel development data were divided into training 

(80%), testing (10%) and validation (10%) subsets. In comparison to other 

applications (e.g. Bowden et al. 2002) a higher proportion of data was placed in the 

training set because the data were (a) expensive to generate, and (b) not noisy. The 

most appropriate proportions for the three sets might be different for different case 

studies, depending on the number of inputs to the metamodel and the amount of 

development data that may be generated in a reasonable timeframe. Hence, this is a 

potential area of future research. 

The training data were used to adjust the ANN model parameters (weights) 

using the backpropagation algorithm.  A series of training runs was performed with 

different values of learning rate, momentum rate and number of hidden nodes. The 

learning rate was varied between 0.1 and 0.5; the momentum rate between 0.2 and 

0.5; and the number of hidden nodes between 10 and 60. This gave a total of 32 

parameter combinations that were tested for each ANN model.  The test data were 
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used to decide when to stop training using cross-validation and which combination of 

learning rate, momentum rate and number of hidden nodes resulted in optimal model 

performance.  Finally, the validation data were used to check the performance of the 

selected model on an independent data set. 

4.3.4 Results and Discussion 

Metamodels were developed for the four scenarios shown in Table 4.1. The 

ANN modelling scenario that resulted in the best ANN model performance was linked 

with a GA model to solve the optimization problem for the Wallan WDS.  A total of 30 

optimization runs were conducted with different random number seeds in order to 

minimize any impacts due to the random starting position in search space. 

Optimization was conducted using a GA with integer coding, one-point crossover and 

a tournament size of two. Values of the GA parameters were selected by trial-and-

error to obtain the best performance without excessive computational time and are 

given in Table 4.7. Further details on how the GA parameters were determined are 

given in Broad et al. (2005). The local search algorithm that was used is known as 

Sequential Downward Mutation (SDM), which was developed specifically for the 

purpose of WDS optimization. SDM was selected from a set of potential algorithms 

upon testing each on a benchmark case study (see Broad et al. 2006).  The 

computational efficiency of the algorithm could be improved further by adopting a 

more sophisticated hybrid approach (e.g. Espinoza and Minsker 2006). However, this 

is unlikely to be a significant issue in this case, as the metamodeling approach speeds 

up the GA dramatically, thereby enabling the GA to be run to convergence before the 

local search is applied. 
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Table 4.7. GA Parameters used for the Wallan Case Study. 

Parameter Value 

GA Type integer 

Population Size 400 

Probability of Crossover 0.8 

No. Crossovers per Pair 1 

Probability of Bit-Wise Mutation 0.02 

No. Generations 2000 

 

ANN Metamodel Performance 

The performance of the ANN models for the various scenarios considered 

(Table 4.1) is given in Tables 4.8 and 4.9. As can be seen, root mean squared (RMS) 

error and the coefficient of determination (R2) were used as performance measures.  

It should be noted that the performance measures for the pressure head and chlorine 

residual predictions given are averaged over the critical pressure and water quality 

nodes, respectively (Table 4.5).  Also, the results presented are the average values 

across the 32 different parameter combinations. However, it should be noted that 

ANN performance was not sensitive to the parameters chosen. Of all the metamodel 

outputs, the output with the greatest variance was the chlorine residual at one of the 

nodes in the Craigieburn area; it had a coefficient of variation of 0.039 over the 32 

parameter combinations. 
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Table 4.8. Average RMS errors of the validation set for the various ANN model 

development scenarios considered. 

ANN Output Units 1 2 3 4 

Pressure Head (ave) [m] 3.728 0.391 0.433 0.110 

Chlorine Residual (ave) [mg/L] 1.053 0.244 0.213 0.017 

Energy 
Peak [kWh] 1278.1 516.1 425.4 81.0 

Off-Peak [kWh] 602.1 401.1 305.7 78.3 

Chlorine Dosed [kg] 3.240 2.170 1.800 0.590 
 

 

Table 4.9. Average R2 values of the validation set for the various ANN model 

development scenarios considered. 

ANN Output 1 2 3 4 

Pressure Head (ave) 0.602 0.780 0.744 0.978 

Chlorine Residual (ave) 0.556 0.679 0.654 0.996 

Energy 
Peak 0.504 0.635 0.742 0.983 

Off-Peak 0.641 0.711 0.812 0.982 

Chlorine Dosed 0.967 0.984 0.991 0.999 
 

 

It can be seen that the strategies suggested as part of the methodology 

introduced in this paper have a significant impact on ANN metamodel performance.  

The worst performance was obtained when the more complex EPANET model was 

used in conjunction with the shorter control duration and the random generation of 

tank trigger levels (scenario 1, Table 4.1).  The elimination of physically implausible 

combinations of tank trigger levels (scenario 2, Table 4.1) resulted in a significant 

improvement in the prediction of all ANN outputs.  This is because of the resulting 

simplification of the input-output relationship that has to be estimated by the ANN 

model. 
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An increase in the control duration from 24h to 168h to allow a repeating 

pattern of pressure head to be established (scenario 3, Table 4.1) had a moderate 

effect on some ANN model outputs, such as energy consumption and chlorine dosage, 

but had very little impact on the predictions of pressure head and chlorine residuals 

at the critical nodes.  Finally, the skeletonization of the model (scenario 4, Table 4.1) 

had a significant impact on the ability of the ANN models to predict all of the output 

variables, further highlighting the importance of simplifying the relationship to be 

estimated by the ANN as much as possible.  The performance of the ANN model 

developed as part of scenario 4 was excellent, with very low RMS errors and very high 

R2 values. RMS errors of 0.1m for pressure head are quite low relative to the range of 

values in the metamodel development data, which was greater than 4.6m for all 

critical nodes. Similarly, RMS errors of 0.02mg/L for chlorine residual are very low in 

when considering typical measurement tolerances are 0.05mg/L or higher (Phelps 

2008). This model was therefore combined with the GA in order to solve the Wallan 

WDS optimization problem. Based on the trial and error approach described earlier, 

the parameter values for the selected ANN were as follows: learning rate: 0.4; 

momentum rate: 0.5; and number of hidden nodes: 60. 

Optimization 

Thirty optimization runs were conducted with different random number 

seeds. The minimum, average and maximum values obtained were $1.34m, $1.60m 

and $1.71m, respectively. The variation in objective function values found is due to 

the local search that is employed at the completion of the ANN-GA run. By its nature, 

the local search can be prone to becoming trapped in local minima, and the quality of 

the solution found is dependent upon the starting position. The best solution of $1.34 
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million represents a saving of 14% compared with the current operating regime with 

an estimated NPV of $1.56 million. 

Details of the best optimal solution are presented in Table 4.10. The main cost 

component was the energy cost ($1.2 million), rather than the chlorine cost 

($130,000). Recall that the chlorine cost comprised the capital cost of a new 

chlorinator to be built at Kalkallo (if selected), plus the NPV of the mass of chlorine 

dosed. The optimal solution did contain a pressure penalty but the value was trivially 

small, at $50,000, which was due to a violation of 0.05 mm. The optimal solution did 

not contain any a penalty for water quality. 

Table 4.10. Summary of optimal solution obtained. 

Solution Component 
Current 

Operations 
Optimized 

Solution 
Units 

Total Material Cost 1.56 1.34 $million 

Chlorine Cost 0.04 0.13 $million 

Energy Cost 1.52 1.20 $million 

Pressure Deficit 0 0.00005 m 

Quality Deficit 0.1 0 mg/L 
 

 

The optimal solution had significantly lower energy costs, but had higher 

chlorine costs compared with the current operating regime. However, while the 

current operating regime had low chlorine costs, the amount dosed throughout the 

system was inadequate, as indicated by the quality deficit of 0.1 mg/L, which shows 

that some nodes did not have any chlorine residual. 
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Table 4.11. Single day energy costs (peak and off-peak tariffs) for the optimal 

solution with a comparison to current operations. 

Pump 
Current Operations Optimized Solution 

Peak  Off-Peak  Peak  Off-Peak  

Hanson Rd #1 $31.07 $22.80 $- $7.33 

Hanson Rd #2 $67.18 $15.99 $71.71 $33.38 

Kalkallo #1 $33.35 $11.61 $- $- 

Kalkallo #2 $45.29 $15.85 $37.30 $20.00 

Pretty Sally #1 $40.84 $20.05 $0.10 $12.59 

Pretty Sally #2 $21.36 $11.47 $26.23 $13.17 

Somerton #1 $17.22 $13.22 $20.40 $3.48 

Somerton #2 $16.80 $13.18 $22.96 $3.90 

Somerton #3 $16.66 $12.75 $37.73 $4.78 

Somerton #4 $17.22 $13.44 $37.75 $10.65 

Total $306.98 $150.37 $254.17 $109.27 
 

 

A breakdown of the pumping costs is given in Table 4.11, which shows the 

daily pumping cost for each pump at each pump station. The total daily pumping cost 

was $363, including $254 during peak tariff times and $109 for off-peak. It can be 

seen that only one of the pumps at Kalkallo was utilised. However, while one pump is 

sufficient for this case, the second pump will be utilized in the future as the area 

grows. Table 4.11 also provides a comparison with the costs for the current operating 

regime. The total daily energy cost is $457, including $307 during peak tariff times 

and $150 for off-peak. The results show that the optimized solution included more 

peak pumping at the Somerton pump station, but that this was offset by less pumping 

during peak periods downstream in the system (Hanson Rd, Kalkallo and Pretty 

Sally). 
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Chlorine dosing details are presented in Table 4.12. Overall, the GA selected to 

dose more chlorine compared with the current operating regime; which is as 

expected, given that there were deficits in the required chlorine residuals. It is 

important to highlight that the optimal solution included no dosing at Kalkallo. Recall 

that part of the objective function included the capital cost at Kalkallo ($250,000) but 

all other chlorinators were already installed, hence their capital cost did not need to 

be considered. Therefore, it is evident that the more optimal choice is to administer 

higher chlorine doses at the other locations and not to construct a new chlorinator at 

Kalkallo. The main chlorinator is located at Somerton, which has a set point of 

1.1 mg/L. The chlorinator at the Pretty Sally outlet feeds much of the Wallan area and 

therefore has a relatively high set point at 1.2 mg/L. Conversely, the chlorinators at 

the Pretty Sally Pump Station and the outlet of the Hidden Valley tank serve smaller 

areas and hence their optimum set points are lower; 0.2 and 0.5 mg/L, respectively. 

Table 4.12. Chlorine dose rates [mg/L] for optimal solution with a comparison 

to current operations. 

Chlorinator 
Current 

Operations 
Optimized Solution 

Somerton 0.4 1.1 

Kalkallo N/A 0 

Pretty Sally Outlet 0.4 1.2 

Pretty Sally Pump Station N/A 0.2 

Hidden Valley Outlet 0.4 0.5 
 

 

Computational Issues 

A summary of the computational requirements is presented in Table 4.13. It 

should be noted that the ANN development data were generated in parallel on a 
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2.4 GHz Intel Xeon CPU, whereas training and optimization runs were conducted on a 

serial computer.  A full comparison between the results obtained using an EPANET-

GA and the ANN-GA approach could not be conducted due to the large computational 

requirements of the former option. Consequently, the optimization time for the 

EPANET-ANN approach given in Table 4.14 is an estimate based on using a 

population size of 400 and 2000 generations; the same values used by Broad et al. 

(2005a).  

Table 4.13. Computational requirements optimization (hours). 

Component EPANET Metamodel 

Data Generation N/A 288 

Training N/A 32 

Optimization 25333* 1.4 
*Estimate, based on average simulation time for EPANET model. 

 

As can be seen from Table 4.13, use of the ANN-GA approach makes 

determining the optimal operating strategy of a WDS of realistic complexity (1271 

nodes, 1376 pipes) feasible, even when considering both pressures and water quality, 

with an overall run-time of 1.4 hours compared with an estimated run-time of 1056 

days if EPANET was used as the simulation model.  It should be noted that the vast 

majority of the computational overhead associated with the ANN-GA approach is for 

the development of the ANN metamodels, particularly in relation to the generation of 

the requisite model development data using EPANET.  Once the ANN model has been 

developed, each optimization run only takes 1.4h to complete, making the approach 

suitable for optimizing operational settings on a regular basis. 
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4.4 Conclusions 

This paper presents a methodology for applying metamodels with GAs for 

determining optimal operating strategies for hydraulically complex water 

distribution networks. The methodology involves careful review of the complexity of 

the hydraulic network and whether this can be simplified, the application of a priori 

knowledge to reduce the complexity of the decision space and a systematic reduction 

in the number of locations at which simulation model outputs are required. The 

application of these steps can greatly assist in the development of metamodels and 

increase the feasibility of applying optimization to complex WDS. 

This research demonstrated the application of the metamodel-based 

optimization methodology developed for the optimal operation of a real water 

distribution system; Wallan, Victoria, Australia. The development of an ANN 

metamodel for a specific WDS is not a trivial matter. The methodology involves 

several steps in determining the most appropriate problem formulation and model 

parameters to use. Four different metamodelling scenarios have been presented here. 

The results showed that, for this case study, some skeletonization of the model was 

required to achieve adequately accurate metamodels.  

The optimization results show a reduction in the daily pumping costs from 

$457 to $363 compared with the current operating regime; a saving of 21%. The net 

present value (NPV) over 25 years was used as the objective function, which included 

both pumping and chlorine costs. The current operating regime would have 

corresponded to an NPV of $1.56 million, while the optimized solution had an NPV of 

$1.34 million; a saving of 14%. In addition to these economic benefits, the optimized 

solution achieved adequate disinfection throughout the system, whereas the current 
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operating regime corresponded to deficits in chlorine residuals at several locations in 

the system. 

The results presented here show that the proposed metamodelling 

methodology can be successfully applied to a realistically-sized case study. This is an 

extension of the results presented in Broad et al. (2005), which involved a simpler 

methodology being applied to a hydraulically simple benchmark case study. 

Future research in the area of metamodel-based optimization of WDSs is 

required to extend the methodology from operational strategies to real-time 

operations. To achieve this, a method for accounting for initial conditions (e.g. tanks 

levels and chlorine concentrations) and varying demands needs to be developed. 
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“Command those who are rich in this present world not to 

be arrogant nor to put their hope in wealth, which is so 

uncertain, but to put their hope in God...” 

1 Timothy 6:17 (NIV) 
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Abstract 

Metamodels have proven be very useful when it comes to reducing the 

computational requirements of Evolutionary Algorithm-based optimization by acting 

as quick-solving surrogates for slow-solving fitness functions. The relationship 

between metamodel scope and objective function varies between applications, that is, 

in some cases the metamodel acts as a surrogate for the whole fitness function, 

whereas in other cases it replaces only a component of the fitness function. This paper 

presents a formalized qualitative process to evaluate a fitness function to determine 

the most suitable metamodel scope so as to increase the likelihood of calibrating a 

high-fidelity metamodel and hence obtain good optimization results in a reasonable 

amount of time. The process is applied to the risk-based optimization of water 

distribution systems; a very computationally-intensive problem for real-world 

systems. The process is validated with a simple case study (modified New York 

Tunnels) and the power of metamodelling is demonstrated on a real-world case study 

(Pacific City) with computational speed-ups of several orders of magnitude. 
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5.1 Background 

Evolutionary algorithms (EAs) have become common practice in the 

optimization of water resources management (WRM) models due to their ability to 

find near globally optimal solutions amongst a very large number of possible options, 

and the fact that they can be coupled with simulation models that are often used to 

calculate fitness functions. While these simulation models can be quite powerful, one 

negative aspect is that they can be computationally intensive, as combining them with 

EAs might require 100,000 simulations or more. 

In recent years, it has been recognized that, in order to fulfil their potential, 

EAs need to be applied to real case studies (Maier et al., 2014).  While there has been 

some progress in this regard, it also raises a number of challenges, including how to 

best deal with uncertainty and the resulting increase in computational intensity 

(Maier et al., 2014). 

5.1.1 Uncertainty 

Murphy et al. (2009) (as cited by Maier et al. 2014) provide the following three broad 

categories of uncertainty: (i) data-related (e.g. being unable to precisely quantify the 

magnitude of a parameter that is known to have some effect in a system), (ii) model-

related (e.g. not knowing which parameters from a set of likely candidates 

significantly affect a system’s output), and (iii) lack of knowledge (e.g. complete 

ignorance, where little is known about which parameters affect a system). In well-

defined WRM problems, such as those related to engineered systems, the types of 

data required and the model structure are often known with a high degree of 

certainty. The uncertainty arises in gathering the data for a specific instance of that 
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problem type. In that case, reasonable estimates of uncertainty can be made to 

account for the lack of complete/perfect knowledge. 

A common way to incorporate uncertainty into a WRM optimization problem is to use 

risk metrics. Definitions of risk differ slightly between types of problems, but there 

are some broad definitions that are relevant generically, such as reliability 

(concerning likelihood of non-failure) and vulnerability (the consequence or impact 

of failure, should failure occur) (Hashimoto et al. 1982). 

The most common way of calculating these metrics is via Monte Carlo 

Simulation (MCS). However, this increases optimization run-time by several orders of 

magnitude because each evaluation of an objective function requires n evaluations 

with the simulation model, where accuracy increases asymptotically as n tends to 

infinity. Long run-times are exacerbated in real case studies, to the point where they 

may become prohibitive. 

5.1.2 Metamodelling 

Maier et al. (2014) identify three broad methods to increase computational efficiency 

of EA-based optimization: metamodelling, parallel computing and heuristics. Each 

method has been shown to be effective, however, this paper focuses on the use of 

metamodels to improve computational efficiency of risk-based optimization of water 

resources problems. 

A metamodel is a high fidelity approximation to a simulation model that can be used 

as a surrogate for the said model where it is used repetitively, such as during an EA-

based optimization, or for sensitivity analyses (Blanning 1975). Because metamodels 

replace a simulation model with a mathematically simpler model, they provide 

significant computational speed-up when used in lieu of a simulation model. 
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Metamodels have proven to be useful tools for speeding up optimization in a range of 

water resources applications, including model calibration (Behzadian et al. 2009; 

Lingireddy and Ormsbee 1998; Mugunthan et al. 2005); distribution system design 

(Bi and Dandy 2013; Broad et al. 2005; Broad et al. 2006); distribution system 

operations (Broad et al. 2010; Martinez et al. 2007; Rao and Salomons 2007; 

Salomons et al. 2007); and groundwater remediation (Aly and Peralta 1999; Johnson 

and Rogers 2000; Yan and Minsker 2006; Yan and Minsker 2011). For a thorough 

review of water resources metamodelling applications, the reader is referred to 

Razavi et al. (2012a). 

Metamodel usage in water resources may also be classified by the framework in 

which they are used. Razavi et al. (2012a) present four framework definitions: basic 

sequential framework (BSF); adaptive-recursive framework (ARF); metamodel-

embedded evolution; and approximation uncertainty. Further research is required to 

determine which framework is best, and even whether a globally superior framework 

exists or if this is application-dependent. Such research is beyond the scope of this 

paper and the BSF has been adopted here due to its successful application in previous 

studies (Borgonovo et al. 2012; Broad et al. 2005; Broad et al. 2006; Broad et al. 2010; 

Khu et al. 2004; Lingireddy and Ormsbee 1998).  

One benefit of the BSF is that it aims to develop a metamodel that is reasonably 

accurate across the whole search space. This is important when coupled with an EA 

because, even after an EA has converged to a specific area of the search-space, it still 

has the potential to consider/evolve candidate solutions that are far from the 

converged area. In contrast, if the metamodel is only accurate in a sub-section of the 

search-space (as is the case when using an ARF), a new candidate solution that is far 
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from the converged space may be considered feasible when it is not or infeasible 

when it actually is. This could result in convergence to infeasible solutions or at least 

slow-down convergence, as the algorithm must wait until the next phase of 

metamodel re-calibration. 

Metamodel development using the BSF, as used in this paper and previous papers by 

the same authors, consists of the following steps (adapted from Razavi et al. (2012a)): 

1. Generate metamodel calibration data through design of experiment 

(DoE) and evaluation with original simulation model; 

2. Calibrate metamodel to fit across all the generated data. The data are 

split into separate sets to ensure over-fitting is avoided and 

generalisation is obtained; 

3. The metamodel is substituted for the simulation model and an EA is 

used to optimize the problem; and 

4. Recognising that even high-fidelity metamodels will not provide 

perfect representations of the simulation model and that the global 

optimum will differ when the metamodel is used to evaluate objective 

functions and/or constraints than when the simulation model is used 

(Jin 2005), some solutions are tracked as the EA runs and a local search 

is carried out post-optimization with the original simulation model. 

Maier et al. (2014) identified that improved guidelines are required for metamodel 

development. One step of developing and using a metamodel is to determine its scope. 

For example, one question that needs to be answered is whether the metamodel 

should act as a surrogate for the whole fitness function, or a component of it. Both 
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approaches have been used in the literature.  For example, in some studies, the whole 

fitness function (or at least one objective in multi-objective problems) is 

approximated (Bau and Mayer 2006; Jin et al. 2002; Khu and Werner 2003; 

Mugunthan et al. 2005; Ostfeld and Salomons 2005; Shoemaker et al. 2008), while in 

others, only a component of the fitness function is approximated, such as penalty 

functions used to account for constraint violation (Behzadian et al. 2009; Broad et al. 

2005; Broad et al. 2006; Broad et al. 2010; Carnevale et al. 2012, Johnson and Rogers 

2000; Kourakos and Mantoglou 2009; Yan and Minsker 2011; Zhang et al. 2009). If no 

thought is given to the scope of the metamodel or if this is done in an ad hoc manner, 

there is the risk that the metamodel cannot be calibrated to as high a fidelity as 

possible, and/or the benefits in terms of improved computational efficiency will not 

be fully realised. 

It is likely that the best metamodel scope is problem-dependent and that 

researchers therefore generally consider which metamodel scope is most appropriate 

for the problem at hand.  However, this is generally done in an ad hoc manner. 

Consequently, the focus of this paper is on (i) presenting a systematic approach to 

metamodel scope identification that can be used in any metamodel-based 

optimization application, thereby providing much needed guidance on the 

development of metamodels for increasing the computational efficiency of EA when 

applied to real-world water resources problems and ensuring that the developed 

metamodels are as accurate and computationally efficient as possible; (ii) illustrating 

the approach for the risk-based optimization of the design of water distribution 

systems, including a detailed analysis of the properties of the generic components of 

the fitness function and the identification of which of these components are best 

replaced by metamodels that is widely applicable to a variety of instances of this class 
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of problem; and (iii) the application of the proposed approach to two case studies, 

including a novel real-life system, for the risk-based optimal design of water 

distribution systems using EAs, considering both hydraulic and water quality 

performance, which has not been undertaken previously, thereby illustrating the 

benefits of the proposed approach.  It should be noted that the application presents a 

novel contribution in itself, as previous applications of metamodelling to WDS 

optimization have not considered water quality and uncertainty, nor the second case 

study system. 

 

5.2 Proposed Metamodelling Approach 

The metamodelling framework proposed in this paper builds on the work 

presented in Broad et al. (2005) and Broad et al. (2010) by introducing an additional 

step that identifies which parts of the fitness function are amenable to being 

approximated using a metamodel (step 2), and modifying the algorithm that 

determines which solutions should be checked by the simulation model by 

recognising the computational budget is limited (step 8). The framework consists of 

the steps shown in Figure 5.1. 
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1. Formulate optimization problem; determine decision variables, 

constraints and fitness function.

Start

End

2. Determine the scope of the metamodel; that is, the part of 

the objective function and/or constraints for which the 

metamodel will act as a substitute. See section 2.1 for more 

detail.

3. Prepare the simulation model for use in optimization, e.g. 

skeletonize if appropriate, set time-step parameters such as 

duration or control period (see Broad et al. (2010) for more detail).

4. Generate metamodel calibration data using the simulation 

model.

5. Numerically determine critical output variables, which will be a 

subset of the output variables determined by the qualitative 

process of step 2 (see Broad et al. (2010) for more detail).

6. Calibrate metamodel to maximise fidelity to the simulation 

model across the whole search space.

7. Optimize the problem with an EA, using the metamodel in lieu 

of the selected portion(s) of the fitness function.

8. Evaluate some solutions with the simulation model (see 

section 2.2 for modifications to the algorithm presented in 

Broad et al (2005)).

 

Figure 5-1. Basic Sequential Framework steps to develop and use a 

metamodel for EA-based optimization, with new/modified steps from this 

paper in bold. 
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Details of the novel steps of the above approach introduced in this paper (i.e. Steps 2 

and 8) are given in the subsequent sections. 

Note, this whole procedure is built on the assumption that the optimisation problem 

has already been assessed and that the computational demand of fitness evaluations 

is so high that the total estimated optimisation run-time is deemed unacceptable and 

hence metamodels may provide a benefit to reducing this overall optimisation run-

time. 

5.2.1 Metamodel Scope Definition (Step 2) 

A fitness function, z = f(x) can be broken down into a series of N intermediate 

calculation steps, fi, i = 1,...,N, which may correspond to different objectives and 

penalties associated with constraints, as shown in Eq. 5.1. 

y1 = f1(x1) 

y2 = f2(x2) 

... 

yN-1 = fN-1(xN-1) 

z = fN(xN) 

(5.1) 

Where xi is a vector of input variables to the calculation step, fi, and whose 

dimensionality may be equal to, greater than, or less than the number of decision 

variables. The vector, xi, is by definition the concatenation of a subset of the decision 

variables, dv, a subset of the set of external variables, ev, and a subset of the 

intermediate calculated variables, y, and is shown in Eq. 5.2. 
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𝒙𝒊 ≡ ⊆ {𝒅𝒗} ⋃ ⊆ {𝒆𝒗} ⋃ ⊆ {𝒚} , ∀𝑖 = 1, … , 𝑁 (5.2) 

Where {𝒚} is the set of all calculated variables, yi, i = 1,..., N. 

This is demonstrated graphically in Figure 5.2, which shows how a generic 

fitness function is calculated from an optimisation algorithm’s candidate solution (e.g. 

a Genetic Algorithm (GA) string).  

  

Figure 5-2. Generic fitness evaluation and two possible metamodel scopes. 

A metamodel can act as a substitute for one or more “connected” calculation 

steps, where two calculation steps, A and B, are considered connected if the output of 

one comprises part of the input of the other, i.e., yAxB. So, generically, the scope of a 

metamodel can be defined by Eq. 5.3: 
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𝑆 ≡ {𝑓𝑖} ∶  ∃𝑗 ≠ 𝑖 ∶  𝒚𝒋 ∈ 𝒙𝒊 (5.3) 

The input variables to the metamodel, xMM, are then defined as the subset of all 

input variables that are inputs to the calculation steps that comprise the metamodel 

that are not also outputs from one of the other metamodel calculation steps (see Eq. 

5.4). 

𝒙𝑴𝑴 ≡ ⊆ {𝒙𝒊}, ∀𝑖: 𝑓𝑖 ∈ 𝑆, 𝒚𝒊 ∈ 𝒙𝒋, ∀𝑗: 𝑓𝑗 ∉ 𝑆  (5.4) 

Similarly, the metamodel output variables, yMM, are the subset of all output 

variables that are outputs from the calculation steps that are not also inputs to the 

other metamodel calculation steps (see Eq. 5.5). 

𝒚𝑴𝑴 ≡ ⊆ {𝒚𝒊}, ∀𝑖: 𝑓𝑖 ∈ 𝑆, 𝒚𝒊 ∈ 𝒙𝒋, ∀𝑗: 𝑓𝑗 ∉ 𝑆 (5.5) 

The dashed lines in Figure 2 show two potential metamodels. The calculation 

points, fi, within the metamodel are the calculations for which the metamodel will act 

as a surrogate. Therefore, for Metamodel A: 

 the input variables, xMM-A, are comprised of the outputs of calculation step 1, 

y1, and external variables ev2; 

 the metamodel replaces calculation step f2; and 

 the output variables are y2. 

For Metamodel B: 

 the input variables, xMM-B, are comprised of the decision variables, dv, and all P 

external data sources, {ev}; 

 the metamodel replaces all N calculation steps f1,..,N; and 

 the output variable is the objective function, z. 
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For application to EA-based optimization, there are two principles that should 

drive a metamodel’s development: (1) the computational speed-up it provides and (2) 

its fidelity to the original simulation model. So, when determining the calculation 

steps that should be replaced by a metamodel, they should (1) include the slower 

calculation steps, so as to maximize the benefits of metamodelling and (2) maximize 

fidelity (or not be too difficult to approximate). Two factors that are known to make 

developing high fidelity metamodels difficult are high dimensionality (Jin 2005, 

Caballero and Grossmann 2008 and Razavi et al. 2012a) and the presence of 

discontinuities in the function being approximated (Meckesheimer et al. 2001, Turner 

et al. 2003, Sasena et al. 2003 and Bauman 2013). 

Based on these principles and experience of previous researchers, the 

following is a proposed qualitative process by which the best scope of a metamodel 

can be determined (see Figure 5.3 for a summary). 

A metamodel may replace one or more of the calculation steps, fi, of a fitness function. 

Each calculation step should be assessed against the following three criteria in order 

to determine whether it should be included in the scope of the metamodel: 

1. Computational Assessment: Consider the computation time for each 

calculation step. The metamodel should include all significant 

computationally expensive calculation steps. 

2. Dimensionality Assessment: Consider the dimensionality of the 

metamodel, i.e. the number of inputs and outputs. 

3. Smoothness Assessment: Consider whether there are any 

discontinuities present either in the function or its derivative, or 

whether the function is smooth. 
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Figure 5-3. Proposed process for determining best metamodel scope. 
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The assessment against the three criteria must be carried out qualitatively. 

Each criterion is to be given one of the following assessments: 

 Computational Assessment 

o High: computing time is much larger than that of other 

calculation steps; probably includes a simulation model, e.g. > 

75% of the time for a fitness evaluation 

o Medium: moderate amount of computing time; may consist of a 

simulation model, e.g. 25-75% of the time for a fitness 

evaluation 

o Low: small amount of computing time, e.g. 5-25% of the time 

for a fitness evaluation 

o Trivial: trivial amount of computing time, e.g. < 5% of the time 

for a fitness evaluation 

 Dimensionality Assessment 

o Trivial: e.g. a function of 1-3 variables 

o Low: e.g. a function of 4-10 variables 

o Medium: e.g. a function of 11-20 variables 

o High: e.g. a function of 21-49 variables 

o Very High: e.g. a function of 50+ variables 

 Smoothness Assessment 

o Smooth: the function and its derivative are both continuous 
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o Non-smooth: one discontinuity present in either the function or 

its derivative 

o Very non-smooth: two or more discontinuities present 

In line with the two principles mentioned above, an ideal metamodel scope 

would include calculation steps that score (1) high in computational assessment, (2) 

as low as possible in dimensionality assessment, and (3) as smooth as possible in 

smoothness assessment. Based on these ideals, for each criterion, a subset of the 

calculation steps for which the metamodel could be a surrogate is selected. These are 

S1, the set of calculation steps that are included in the metamodel scope when 

evaluating the steps against the computational intensity criterion; S2, the best 

metamodel scope in terms of dimensionality; and S3, the best metamodel scope in 

terms of smoothness. 

The best metamodel scope is then defined as the set of calculation steps 

common to all three potential metamodel scopes. This is expressed mathematically by 

Eq. 5.6. 

𝑆𝐵𝑒𝑠𝑡 = ⋂ 𝑆𝑖

3

𝑖=1

 (5.6) 

If 𝑆𝐵𝑒𝑠𝑡 = {0}, there is no global best definition for all three criteria.  In this 

case, consider metamodel scopes that are good in two criteria, i.e. those defined by 

Eqs 5.7-5.9. The performance of each metamodel should be assessed in terms of 

fidelity (step 6 from Figure 5.1), and if there is no clear best performing metamodel, 

they should be assessed in terms of speed-up during optimization (step 7 from 

Section 5.2). 
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𝑆1,2 = 𝑆1 ⋂ 𝑆2 (5.7) 

𝑆1,3 = 𝑆1 ⋂ 𝑆3 (5.8) 

𝑆2,3 = 𝑆2 ⋂ 𝑆3 (5.9) 

Similarly if 𝑆1,2 = 𝑆1,3 = 𝑆2,3 = {0}, consider the best metamodel according to 

each separate criterion and assess them according to fidelity and speed-up.  

This systematic approach is demonstrated by application to two mathematical 

functions in Appendix A. 

 

5.2.2 Post-Optimization Solution Checking (Step 8) 

In order to check the accuracy of the results obtained using the metamodel-

based optimisation, Broad et al. (2005) proposed an algorithm that checks certain 

solutions using the original fitness function that uses the simulation model. This is 

based on the assumption that the metamodels only provide an imperfect 

approximation, and so, the EA using a metamodel as a surrogate for the simulation 

model will converge to a solution near, but not equal to the global optimum, and 

hence some solutions need to be checked with the simulation model. The algorithm 

for achieiving this comprises the following steps: 

1. Cache each new best solution found by the metamodel-based EA  and evaluate 

it with the simulation model; 

2. Track the top 40 solutions found by the EA and evaluate them with the 

simulation model; then 
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3. Conduct a local search until complete convergence occurs, using the best 

solution found by steps 1 and 2 as a starting point. 

However, this approach becomes computationally intractable when the use of 

computationally intensive simulation models is required, as is the case for real case 

studies.  Consequently, in such situations, the approach of Broad et al. (2005) needs to 

be modified, as discussed below.  Assume TSIM hours of CPU time is available for post-

EA fitness evaluations with the simulation model, and knowing the average run-time 

of a simulation (tMODEL), and the number of MCS simulations required for each fitness 

evaluation (NMCS), the number of available fitness evaluations, NSIM, can be calculated 

by Eq. 5.10. The question then becomes what is the best way to spend these 

evaluations? The number of simulations may be expressed as shown in Eq. 5.11. 

𝑁𝑆𝐼𝑀 =
𝑇𝑆𝐼𝑀/𝑡𝑀𝑂𝐷𝐸𝐿

𝑁𝑀𝐶𝑆

 
(5.10) 

𝑁𝑆𝐼𝑀 = 𝑁𝑁𝐵 + 𝑁𝑇𝑂𝑃 + 𝑁𝐿𝑆 (5.11) 

Where NNB is the number of new best solutions evaluated with the simulation 

model; NTOP is the number of top solutions that are tracked and evaluated with the 

simulation model; and NLS is the number of local search iterations. 

Considering the proposed limit of evaluations at each step of the algorithm of 

Broad et al. (2005), there is a need to modify the algorithm as follows.  

Step1: Cache each new best solution found by the metamodel-based EA and 

evaluate every n-th solution with the simulation model, where n = NNB-TOTAL/NNB, and 

NNB-TOTAL is the total number of new best solutions the EA finds. The reasoning behind 

using this approach becomes clearer when one considers the expected metamodel 

performance as the EA proceeds. Initially, the metamodel will correctly identify a high 
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proportion of solutions as feasible or infeasible; then, near convergence, due to slight 

errors between the metamodel and simulation model, a higher proportion of 

solutions will be categorized incorrectly. However, the point during the EA run when 

this occurs is not known a priori. Therefore, the most robust way to ensure the 

likelihood that a very fit feasible solution is found from amongst the NNB-TOTAL 

solutions is to use an equi-spaced solution checking process in terms of order in 

which solutions are found. 

Step 2: Track the top 𝑁𝑇𝑂𝑃 solutions found by the EA and evaluate them after 

the EA has converged with the simulation model; then 

Step 3: Conduct a local search for NLS iterations using the best solution found 

by steps 1 and 2 as a starting point. Given the limited number of iterations, some 

consideration should be given to which local search algorithm to use (see Broad et al. 

(2006) for an evaluation of different local search methods designed specifically for 

post metamodel-based EA optimization). 

5.3 Application to Risk-Based Optimal Design 

of WDSs 

5.3.1 Background 

Research into the optimal design of WDSs increased rapidly with the first 

application of EAs to the problem (Simpson et al. 1994). Most subsequent research 

focused solely on considering hydraulic criteria. The inclusion of water quality (e.g. 

chlorine dosing and tracking residuals) increased run-times compared with 

hydraulics-only optimization, as extended period simulations and shorter modelling 

time-steps were needed. Consequently, there are very few examples of this in the 
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literature (Broad et al. 2005; Hewitson and Dandy 2000), even though it is an 

important aspect to consider when designing real WDSs. There have been attempts to 

speed up the simulation of chlorine in WDSs (Constans et al. 2003), however, these 

have been limited to first-order decay models and a more generic approach to 

increasing computational efficiency is required. Broad et al. (2005) demonstrated the 

benefit that metamodels provide with regard to addressing this problem.  

Computational issues associated with EA-based optimization are magnified 

significantly when considering uncertainty, as discussed in Section 5.1.1. Uncertainty 

specific to WDS and how it should be accounted for is detailed in the following 

sections. 

Uncertainty 

Data uncertainty has long been considered as another important factor to 

account for when designing a water distribution system (Lansey and Mays 1989; Su et 

al. 1987). Sources of uncertainty include future demands, pipe roughness (Bao and 

Mays 1989; Tolson et al. 2001; Tolson et al. 2004), chlorine decay rate (Tyagi 2003), 

and pipe bursts (Su et al. 1987). Each of these uncertainty sources can be categorized 

as “data uncertainty” (see Section 1.1), as reasonable estimates can be made to 

quantify the magnitude of uncertainty. The range of possible future demand values 

can be estimated based on a city’s projected population growth. Existing pipe 

roughness variation can be quantified by inspecting the roughness at a number of 

locations across the network. Future pipe roughness can be estimated based on 

expected water quality, pipe materials and the system’s design life. Chlorine decay 

rate variation can be estimated by considering the source water’s natural variability 

in quality. 
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Risk Metrics 

To account for this uncertainty, various definitions of risk metrics have been 

provided (Babayan et al. 2005; Cullinane et al. 1992; Duan et al. 1990; Farmani et al. 

2005; Gargano and Pianese 2000; Kapelan et al. 2005; Khomsi et al. 1996; Ormsbee 

and Kessler 1990; Shinstine et al. 2002; Su et al. 1987; Xu and Goulter 1999). Gargano 

and Pianese (2000) considered a combined hydraulic (demand uncertainty) and 

mechanical (pipe burst) reliability metric and concluded that the overall contribution 

to reliability added by mechanical reliability is insignificant compared to hydraulic 

reliability. Therefore, mechanical reliability has not been considered in this research. 

As mentioned earlier, reliability and vulnerability are two key risk metrics 

used in WRM optimization. Hashimoto et al. (1982) define these mathematically by 

the following equations (Eq. 5.12-5.13).  

𝑅 = 1 − 𝑝𝑓 = 1 − 𝑃𝑟{𝑓(𝒙) < 𝑦̅} = 1 − lim
𝑛→∞

(
1

𝑛
∑ 𝑤𝑘

𝑛

𝑘=1

) (5.12) 

𝑉 = 𝐸[𝑓(𝒙)|𝑓(𝒙) < 𝑦̅] = lim
𝑛→∞

1

𝑛
∑ 𝑒𝑘

𝑛

𝑘=1
𝑓(𝑥𝑘)<𝑦̅

 (5.13) 

Where R is reliability; pf is the probability of failure; f(x) is the joint probability 

distribution function of the vector of independent variables, x; 𝑦̅ is the failure 

threshold of the dependent variable, y; w is the failure indicator, as shown in Eq. 5.14; 

e is the expected value of the failure indicator, as shown in Eq. 5.15, and k is the MCS 

sample number. 

𝑤𝑘 = {
1 𝑖𝑓 𝑓(𝑥𝑘) < 𝑦̅
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5.14) 
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𝑒𝑘 = {
𝑦̅ − 𝑓(𝑥𝑘) 𝑖𝑓 𝑓(𝑥𝑘) < 𝑦̅

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5.15) 

 

For the optimal design of WDSs, both metrics may have hydraulic and water quality 

definitions. Hydraulic reliability is defined as the probability that pressure is above 

some prescribed minimum. Hydraulic vulnerability is defined as the expected 

pressure deficit when pressure is inadequate. Water quality reliability is defined as 

the probability that the residual chlorine concentration is above some minimum, 

which is often legislated for health reasons. Water quality vulnerability is defined as 

the expected minimum chlorine residual violation, should violation occur. 

These metrics must initially be calculated at each node and, in turn, 

aggregated across the network. Two common methods to do this are “worst case” and 

“demand-weighted”, and are defined in the generic case by Eqs. 5.16-5.19. Specific 

hydraulic and water quality equations can be identified trivially. 

𝑅𝑊𝐶 = min
𝑗∈𝑁𝑐

(𝑅𝑗) (5.16) 

𝑅𝐷𝑊 =
∑ 𝐷𝑀𝑗𝑅𝑗𝑗∈𝑛

∑ 𝐷𝑀𝑗𝑗∈𝑛

 (5.17) 

𝑉𝑊𝐶 = max
𝑗∈𝑁𝑐

(𝑉𝑗) (5.18) 

𝑉𝐷𝑊 =
∑ 𝐷𝑀𝑗𝑉𝑗𝑗∈𝑛

∑ 𝐷𝑀𝑗𝑗∈𝑛

 (5.19) 

Where j is the node index, n is the number of nodes, Nc is the number of 

critical nodes. 

The “worst case” method appears to be the most appropriate, as it ensures 

that all of a water utility’s customers receive adequate supply. One negative aspect of 
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the “demand-weighted” method is that poor performance in a small area of the 

system could be masked by good performance in the majority of the system, 

especially for larger systems (i.e. real-world case studies). 

Acceptable reliability (𝑅∗) and vulnerability (𝑉∗) values need to be identified 

for use in constraints that will guide the optimization. For example, these might be 

obtained from a water utility’s contract with its regulator or by Key Performance 

Indicators set by the utility itself. Alternatively, risk-metrics could be included in a 

multi-objective optimization (Halhal et al. 1997; Kapelan et al. 2005), although this is 

beyond the scope of this paper. Generic reliability and vulnerability violation 

equations are given by Eqs. 5.20 and 5.21, respectively. 

𝑅𝑉𝑖𝑜𝑙 = max[0, 𝑅∗ − 𝑅𝑊𝐶] (5.20) 

𝑉𝑉𝑖𝑜𝑙 = max[0, 𝑉𝑊𝐶 − 𝑉∗] (5.21) 

 

Risk metrics are often calculated using Monte Carlo Simulation (MCS). This 

research utilizes Hammersley Sampling (HS) due to its superior convergence and 

usefulness over other techniques (Kalagnanam and Diwekar 1997; Simpson et al. 

2001). See Appendix B for more information. 

Summary 

To date, the authors are unaware of any literature where data uncertainty for 

demand, pipe roughness and decay rate has been considered in the EA-based 

optimization of a real-world problem. This is because the excessive run-times render 

this computationally impossible in a reasonable amount of time. Therefore, that is the 

problem that has been selected for testing the proposed process. Through the use of 

metamodelling and the formalized scope definition process presented in this paper, 
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this is able to be achieved for the first time, as demonstrated in the following sections 

of this paper. 

Generically, the problem may be formulated by Eqs 5.22-5.27, where the 

objective function is Eq. 5.22, the decision variables are Eq 5.23, and the constraints 

are Eqs. 5.24-5.27. 

min 𝑧 = 𝑓(𝒙) = ∑ 𝑈𝐶𝑖𝐿𝑖

𝑁𝑃

𝑖=1

+ 𝑁𝑃𝑉 (∑ 𝐶0𝑗

𝑁𝐷

𝑗=1

𝑄𝑗𝑇) (5.22) 

Where UC is the pipe unit cost (material and labour) (generally represented as 

a lookup table), L is the pipe length, NP is the number of pipe decision variables, C0 is 

the chlorine dosing rate, Q is the average flow at the chlorine dosing point, T is the 

total time the chlorinator is dosing in a year, ND is the number of dosing points, and 

NPV is the net present value. The decision variables, x, are the pipe diameters and 

chlorine dosing rates, expressed mathematically in Eq. 5.23. 

𝒙 ≡  𝑫 ⋃ 𝑪𝟎 (5.23) 

𝑅𝐻𝑌𝐷
∗ ≤ 𝑅𝑊𝐶−𝐻𝑌𝐷 (5.24) 

𝑉𝑊𝐶−𝐻𝑌𝐷 ≤ 𝑉𝐻𝑌𝐷
∗  (5.25) 

𝑅𝑊𝑄
∗ ≤ 𝑅𝑊𝐶−𝑊𝑄 (5.26) 

𝑉𝑊𝐶−𝑊𝑄 ≤ 𝑉𝑊𝑄
∗  (5.27) 

Constraints in WDS optimization are commonly handled by penalty functions, 

hence the overall problem can be formulated as a single objective function, as given 

by Eq. 5.28. 
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min 𝑧 = 𝑓(𝒙) = ∑ 𝑈𝐶𝑖𝐿𝑖

𝑁𝑃

𝑖=1

+ 𝑁𝑃𝑉 (∑ 𝐶0𝑗

𝑁𝐷

𝑗=1

𝑄𝑗𝑇)

+ 𝑃𝑀𝑅−𝐻𝑌𝐷max[0, 𝑅𝐻𝑌𝐷
∗ − 𝑅𝑊𝐶−𝐻𝑌𝐷]

+ 𝑃𝑀𝑉−𝐻𝑌𝐷 max[0, 𝑉𝑊𝐶−𝐻𝑌𝐷 − 𝑉𝐻𝑌𝐷
∗ ]

+ 𝑃𝑀𝑅−𝑊𝑄max[0, 𝑅𝑊𝑄
∗ − 𝑅𝑊𝐶−𝑊𝑄]

+ 𝑃𝑀𝑉−𝑊𝑄max[0, 𝑉𝑊𝐶−𝑊𝑄 − 𝑉𝑊𝑄
∗ ] 

(5.28) 

Where PMR-HYD and PMR-WQ are the hydraulic and water quality reliability 

penalty multipliers, respectively; and PMV-HYD and PMV-WQ are the hydraulic and water 

quality vulnerability penalty multipliers, respectively. 

Clearly, there are many intermediate steps in computing this function. Hence 

the systematic metamodel scope definition process defined in Section 5.2.1 can be 

used to determine the best metamodel for optimization. This is done in Section 5.3.2. 

 

5.3.2 Metamodel Scope Definition 

Consider the metamodel scope definition selection process introduced in 

Section 2 applied to the single objective, risk-based optimal design of water 

distribution systems with hydraulic and water quality criteria considered, as outlined 

in Section 3.1. Figure 4 shows the calculation steps involved in calculating the fitness 

function, which is fairly complex when broken down into each calculation step. 

DMMULT, HWMULT and k are stochastically sampled variables representing a nodal 

demand multiplier, Hazen-Williams C coefficient multiplier and chlorine decay rate, 

respectively. 
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Figure 5-4. Fitness evaluation for risk-based optimization of WDS with 

metamodel scope options.  

Table 5.1 provides a summary analysis of each calculation step, while extra 

detail on each step is provided below: 

Step 1: Variable decoding will contain discontinuities for decisions that have discrete 

options (e.g. pipe decisions), but would be smooth for continuous decision variables 

(e.g. tank diameter). Hence the specific model needs to be considered. 
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Table 5.1. Assessment of fitness calculation steps for single-objective risk-based 

optimal design of water distribution systems. 

Calculation 
Computational 

Assessment 
Dimensionality 

Assessmenta 
Smoothness 
Assessment 

1 
Decode 

Variables 
Trivial Problem Dependent Smooth-Non-smooth 

2 
Sample from 

PDFs 
Low Low-High Smooth 

3 Simulate Model High Model Dependent Mostly smooth  

4 
Monte Carlo 
Simulation 

Medium See step 2 Very non-smooth 

5 
Worst Node 
Risk Values 

Trivial Model Dependent Non-smooth 

6 Risk Violations Trivial Low Non-smooth 

7 Risk Penalties Trivial Low Smooth 

8 Capital Cost Trivial Problem Dependent Problem Dependent 

9 Operating Cost Trivial Problem Dependent Smooth 

10 
Net Present 

Value 
Trivial Low Smooth 

11 Objective Value Trivial N/A Smooth 

a“Problem Dependent” is a comment on the optimization formulation, whereas “Model Dependent” is a comment on the 

physical size of the simulation model. For example, a large model may have a simple or complex formulation, depending on 

the number of decision variables 

 

Step 2: Sampling from random variables, such as future demands, pipe 

roughness and chlorine decay rate can vary significantly in dimensionality, depending 

upon the approach used. If the random variables are perfectly spatially correlated, 

then a single parameter can be used, e.g. future demand multiplier, which scales 

up/down all demand nodes in the network. However, if the spatial correlation is not 

very strong, then a variable for each location would be required. Hence, the number of 

variables is likely to increase significantly for larger models. For pipe roughness, the 

spatial correlation should be quite high for pipes in a similar category (e.g. concrete, 
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20-30 years old). Therefore, it is possible to consider a small number of categories of 

pipe, have a roughness multiplier for each category and hence keep the number of 

random variables small. Considering the equations governing HS (see Eqs. B.1-B.2 in 

Appendix B), which contain ceiling and floor functions, the smoothness will be very 

low. This should be expected, given HS is used in lieu of a pseudo-random number 

generator (random sampling, LHS). 

Step 3: Modelling water quality is very computationally intensive, as discussed 

in Section 5.3.1. In relation to smoothness, model simulation should be fairly smooth 

for most decision variables. For example, larger pipes result in less head-loss and 

hence higher downstream pressures; decreased demand results in lower velocity and 

higher water age, and hence lower residual chlorine concentrations at the extremities 

of the network. Discontinuities would be present if the model included system 

controls. 

Step 4: The Monte Carlo Simulation step to calculate reliability and 

vulnerability are non-smooth functions. Reliability is constrained ∈ [0,1], while 

vulnerability is constrained ≥ 0. Hence the derivative will be discontinuous in both 

cases. The computational intensity of MCS is primarily dependent on the number of 

samples required for convergence, and secondarily on the number of random 

variables used. As discussed in Appendix B, Hammersley sampling can keep the 

number of MCS samples to a minimum. Nodal risk metrics need to be calculated at all 

critical nodes. For the purpose of metamodelling, a critical demand node is one that, 

for at least one sample of the generated calibration data, is the worst-performing 

node. It is important that all critical demand nodes are identified to ensure the 

optimization algorithm converges to a feasible solution (according to the metamodel). 
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At the same time, it is desirable to minimize the number of critical demand nodes and 

thus reduce the dimensionality of the metamodel. Broad et al. (2010) presented a 

quantitative method to determine the critical demand nodes for WDS optimization. 

Step 5: The worst-case risk calculations will contain discontinuities in the 

derivative when considered as a function of the decision variables. There may be one 

part of the search-space where one node is the worst and another part where a 

different node is the worst. In-between, there may be a discontinuity where it jumps 

from one to the other. Dimensionality will depend on the number of critical nodes, 

and hence is model dependent.  

Step 6: Risk violation calculations are trivial in terms of computational 

intensity, but are not smooth due to them being bounded (≥ 0), as demonstrated in 

Eqs. 5.33 and 5.34. 

Step 7: Risk penalty calculations are trivial, as they each only consist of 

multiplication by a scalar. 

Step 8: Capital cost calculations are simple, however, there may be some 

discontinuities when considering how unit costs vary with pipe diameter. These are 

determined by the market and there may be discontinuities in the price structure, as 

the preferred (cheaper) material (and hence roughness coefficient) may change as 

diameter increases. Also, labour costs may increase sharply as the preferred 

installation method may change as diameters increase (e.g. due to greater safety 

precautions needed). 

Step 9: Operating cost calculations include simple scalar multiplication and the 

number of chlorinators will only be low (compared to other variables). Consequently, 

dimensionality is low. 
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Step 10: The NPV function is trivial and includes very few variables.  

Consequently, dimensionality is low. 

Step 11: The objective function is then simply the sum of the NPV and penalty 

costs. 

Based on the computational assessment outlined above, the metamodel 

should definitely include step 4 and possibly include step 5. Based on the 

dimensionality assessment, the metamodel should avoid steps 2 and 5 if random 

variables are not perfectly spatially distributed. Based on the smoothness assessment, 

the metamodel should avoid steps 5-7. Therefore, the best metamodel scope is for it 

to include calculation step 3 only (see Eq. 5.29, and “Metamodel A” in Figure 5.4). The 

input variables are the decision variables and the random variables are given by Eq. 

5.30, and the output variables are the pressures and chlorine residuals at the critical 

nodes (Eq. 5.31). Initially the values at each node need to be calculated.  Subsequently, 

the critical nodes can be determined using the method of Broad et al. (2010). 

𝑆𝐵𝑒𝑠𝑡 = {𝑓3} (5.45) 

𝒙𝑴𝑴 = {𝒅𝒗} ⋃ 𝐷𝑀𝑀𝑈𝐿𝑇 ⋃ 𝐻𝑊𝑀𝑈𝐿𝑇 ⋃ 𝑘 (5.46) 

𝒚𝑴𝑴 = {𝑃𝑖, ∀𝑖 ∈ 𝑁𝐶−𝐻𝑌𝐷} ⋃{𝐶𝑗 , ∀𝑗 ∈ 𝑁𝐶−𝑊𝑄} (5.47) 

Where DMMULT is the demand multiplier that is applied to each node, HWMULT is 

the pipe roughness coefficient multiplier that is applied to each pipe, k is the chlorine 

decay rate, P is the minimum nodal pressure over the EPS, C is the minimum nodal 

residual chlorine over the EPS, NC-HYD is the number of critical nodes for hydraulics, 

and NC-WQ is the number of critical nodes for water quality. 
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By way of comparison, and to demonstrate the benefit of undertaking a 

systematic approach to determining metamodel scope, two alternative scopes are 

presented here. One such scope is a metamodel that approximates the constrained 

variables, labelled “Metamodel B” in Figure 4. Another scope is a metamodel that 

approximates the entire fitness function, labelled “Metamodel C” in Figure 4. Both of 

these options for metamodel scope have been used by previous researchers in a range 

of applications (see Section 1.2), however, by using a systematic approach to 

determining metamodel scope, the problems with these alternative scopes are clearly 

identified. Metamodel B includes some non-smooth calculation steps but these are not 

high in computational intensity. Metamodel C maximizes potential time-saving by 

including all calculation steps, but any additional benefit this gives over Metamodel A 

would be significantly outweighed by the additional non-smooth functions it needs to 

approximate. 

5.3.3 Case Studies 

Following the determination of the best metamodel scope for the risk-based 

optimization of WDSs with EAs, the main metamodelling approach (steps 3-8 of 

section 5.2) is applied to two case studies to ensure performance is adequate in terms 

of fidelity to the simulation model, the ability to find optimal solutions, and 

computational speed-up. A simple case study (modified version of the New York 

Tunnels (NYT) problem) was used first, as this enables comparisons to be made 

between metamodel and non-metamodel approaches. The second case study, Pacific 

City, provides a real-world test of the proposed approach. 

Artificial Neural Networks (ANNs) were selected as the metamodel type due to 

their demonstrated ability to model water quality variables in distribution systems 
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(May et al. 2008; Bowden et al. 2006; Gibbs et al. 2006). Multi-Layer Perceptrons 

(MLPs) were used as the specific type of ANN as they have been successfully used for 

a range of water quality models (Wu et al. 2014) and have shown to outperform other 

ANN types to forecast chlorine residuals in WDS (Gibbs et al. 2006). 

Customised code was written to carry out all analyses presented in the 

following sections. It was written in C++ and compiled with Microsoft Visual Studio’s 

compiler as a 32-bit executable. All runs were carried out on an Intel Core i7 hyper-

threaded quad-core 870 @ 2.93 GHz CPU running 8GB RAM and Windows 7. Some 

steps of the metamodel development were split into separate batch processes to 

reduce wall-time (i.e. generating calibration data, training individual ANNs); however, 

only CPU times are presented here. 

In a commercial setting, it is desirable to conduct optimization runs overnight, 

where the results from one run are reviewed during business hours and the problem 

formulation and/or optimization parameters are modified for a subsequent run the 

following night (Murphy, 2014). Hence, a value of 15 hours of CPU time has been 

assumed for TSIM. 

Razavi et al (2012b) recommend that the analyst time be taken into 

consideration also. For the appropriate analyst (i.e. an engineer who was familiar 

with GAs, ANNs and using them in metamodelling applications) that time would be 

trivial. The time required to develop the code to carry out these analyses should not 

be considered. If customized code were written for every metamodelling application, 

metamodelling would likely never become a worthwhile venture. It is the opinion of 

the authors that all researchers in the field of metamodel-enabled optimization of 

WDSs are working towards establishing that the technology is viable and that a 
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generic methodology can be established. If, and when, the research matures to that 

point robust software will be developed and used by practitioners that will be used as 

commonly as hydraulic modelling packages. 

 

Optimization runs for nine scenarios were carried out. Scenario A, MM-EA 

Only, considered EA-based optimization with the metamodel only, as shown in 

Table 5.2. Scenarios B-H began with Scenario A, but then included various 

combinations of the solution checking parameters mentioned in Section 5.2.2 (see the 

following sections for the case study-specific values). Scenario I considered EA-based 

optimization with the simulation model only. Scenario I was only run for the NYT 

problem due to the long run-times for the real-world case study. Optimization runs 

for each scenario for each case study were repeated 30 times with different starting 

seeds to allow for the stochastic nature of EAs. It may be worthwhile for future 

research to consider different randomly seeded sets of calibration data and initial 

weights in the ANN metamodels due to their stochastic nature to see if there is a 

significant impact on the results.  

 

All optimization runs were carried out using a Genetic Algorithm (GA), due to 

its proven performance for WDS optimization (Simpson et al. 1994; Savic and Walters 

1997), recognizing that there is no single best algorithm for all WRM applications and 

that more research is required in characterizing fitness landscapes to assist in 

algorithm selection (Maier et al. 2014). 
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Table 5.2. Scenarios used in the two case studies. 

Scenario Model used in EA Solution Checking Case Studies 

A Metamodel None Both 

B Metamodel Equal across all 3 methods Both 

C Metamodel 
Mostly new best and local 

search 
Both 

D Metamodel Mostly new best Both 

E Metamodel 
Mostly new best and top 

few 
Both 

F Metamodel 
Mostly top few and local 

search 
Both 

G Metamodel Mostly top few Both 

H Metamodel Mostly local search Both 

I Simulation None 1 only 

 
 
New York Tunnels 

The New York Tunnels (NYT) problem (originally presented by Schaake and 

Lai (1969) and first optimized using GAs by Dandy et al. (1996)) is used as a case 

study here for proof of concept purposes. It is a small problem and therefore a 

comparison can be made between optimization with the use of metamodels and a 

“traditional” (non-metamodel) approach (Scenario I). See Appendix C.1 for details of 

NYT and the modifications made to it for this work. 

Metamodel development and performance 

During the development of the metamodel, the parameters used by Broad et 

al. (2005) were used as a starting point. Some fine-tuning of the parameters by trial-

and-error then yielded the final parameters used in the analysis, which are presented 

in Table 5.3.  
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Table 5.3. Metamodelling parameters used for NYT case study. 

Parameter Value 

Metamodel type Multi-layer perceptron (MLP) 

Learning algorithm Back-propagation 

Total calibration data 10,000 

Training data (% of total) 60% 

Testing data (% of total) 20% 

Validation data (% of total) 20% 

Scaling bounds [0.1, 0.9] 

Initial weights [-0.225, 0.225] 

Epoch size 1 

Learning rate 0.3 

Momentum rate 0.5 

Hidden layers 1 

Hidden nodes 40 

 

Calibration data were separated into training, testing and validation randomly, 

with the exception that solutions corresponding to the minima and maxima of each of 

the input and output variables were placed in the training set. This ensured that the 

training data covered the broadest possible range and that the metamodel was 

interpolating and not extrapolating. 

Following the procedure for determining critical nodes outlined in Broad et al. 

(2010), it was discovered that there were three critical hydraulic nodes and two 

critical water quality nodes. The overall structure of the metamodel is presented in 

Table 5.4. This is consistent with Broad et al. (2005), who found that single MLPs per 

output was the best metamodel configuration in terms of fidelity to the surrogate 

model. 
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Table 5.4. Input and output variables for the various MLPs within the 

metamodel for New York Tunnels. 

Multi-
Layer 

Perceptron 

Input Variables Output 
Variable 

Decision Variables Random Variables 

MLP-1 21 Pipe diameters 

1 Demand multiplier 

1 Roughness 
multiplier 

Pressure @ 
Node 16 

MLP-2 21 Pipe diameters 

1 Demand multiplier 

1 Roughness 
multiplier 

Pressure @ 
Node 19 

MLP-3 21 Pipe diameters 

1 Demand multiplier 

1 Roughness 
multiplier 

Pressure @ 
Node 20 

MLP-4 
21 Pipe diameters 

1 Chlorine dosing rate 

1 Demand multiplier 

1 Roughness 
multiplier 

1 Decay rate 

Residual 
chlorine @ 

Node 17 

MLP-5 
21 Pipe diameters 

1 Chlorine dosing rate 

1 Demand multiplier 

1 Roughness 
multiplier 

1 Decay rate 

Residual 
chlorine @ 

Node 20 

 

Table 5.5. Metamodel development results for NYT,  

showing the RMSE and R2 for the validation set. 

Criticality 
Type 

Critical 
Node 

RMSE  
(m or mg/L) 

R2 

Hydraulic 

16 0.12 0.9955 

19 0.20 0.9989 

20 0.12 0.9957 

Water 
Quality 

17 0.011 0.9995 

20 0.021 0.9989 
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The metamodel calibration results (root mean-squared error (RMSE) and 

coefficient of determination (R2)) are presented in Table 5.5. Multiple metrics are 

used here for evaluation, as recommended by Bennett et al. (2013), as well as a visual 

representation of the worst performing MLP (MLP-1) in Figure 5. The results are for 

the validation set, i.e. an independent data set not used for calibration. The results 

demonstrate a high fidelity between the metamodel and the simulation model, which 

gives confidence in the metamodel’s ability to be used for optimization. 

 

Figure 5-5. Comparison between simulation model and metamodel for critical 

hydraulic node, 16, for the New York Tunnels case study. 

Optimization Approach 

GA parameters were taken from Broad et al. (2005) (where the same case 

study was used) and modified by trial and error. The final parameter values are given 

in Table 5.6.  

R² = 0.9955
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Table 5.6. Genetic Algorithm parameters used for NYT. 

Parameter Value 

Coding Integer 

Population 200 

Generations 1000 

Crossover Points 1 

Crossover Rate 0.8 

Bit-wise Mutation Rate 0.02 

Elitism On 

Hydraulic Reliability Penalty Rate $109 

Hydraulic Vulnerability Penalty Rate $109/m 

Water Quality Reliability Penalty Rate $109 

Water Quality Vulnerability Penalty Rate $1010/mg/L 

Monte Carlo Samples per Evaluation 100 

 

As discussed in Section 5.3.3, a value of 15 hours is assumed for TSIM. Therefore, based 

on the average simulation time and NMCS of 100, 10,588 solutions can be checked. 

These solutions are distributed differently for the seven different scenarios, detailed 

in Table 5.7. 

Table 5.7. Number of fitness evaluations of each post-EA solution checking type 

for different scenarios for Pacific City. 

Scenario NNB NTOP NLS NSIM 

B 3,529 3,529 3,530 10,588 

C 5,293 1 5,294 10,588 

D 10,586 1 1 10,588 

E 5,293 5,294 1 10,588 

F 1 5,293 5,294 10,588 

G 1 10,586 1 10,588 

H 1 1 10,586 10,588 
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Optimization Results 

Optimization results for thirty runs with different random number seeds are 

presented in Table 5.8. Scenario A frequently converged to a good solution 

($24.0 million) that was seen to be feasible when checked by the simulation model. 

This was slightly higher (1.5%) than the best solution found without the metamodel 

(Scenario I, $23.6 million). The solution checking process provided minor benefits 

only. Considering the median values, there was no significant improvement between 

Scenario A and Scenarios B-H. However, the solution checking did enable the best 

overall solution to be found in one run out of thirty for the scenarios that included 

local search.  

The relatively minor benefit provided by the post-EA solution checking 

algorithm seems to have primarily been due to the good performance of MM-EA, 

which is due to the high-fidelity metamodels that were calibrated. 

 

Table 5.8. Optimization results for New York Tunnels. Statistics of NPV shown, 

as well as frequency that the best solution was found for 30 runs per scenario. 

Scenario Min Mean Median Max Std. Dev. 
Best 

Frequency 

A 2.40E+07 2.43E+07 2.40E+07 2.53E+07 5.17E+05 0/30 

B 2.36E+07 2.40E+07 2.40E+07 2.40E+07 6.59E+04 1/30 

C 2.36E+07 2.40E+07 2.40E+07 2.40E+07 6.59E+04 1/30 

D 2.40E+07 2.40E+07 2.40E+07 2.40E+07 0 0/30 

E 2.40E+07 2.40E+07 2.40E+07 2.40E+07 0 0/30 

F 2.36E+07 2.40E+07 2.40E+07 2.40E+07 6.59E+04 1/30 

G 2.40E+07 2.40E+07 2.40E+07 2.40E+07 0 0/30 

H 2.36E+07 2.40E+07 2.40E+07 2.40E+07 6.59E+04 1/30 

I 2.36E+07 2.40E+07 2.40E+07 2.40E+07 2.51E+05 2/30 
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Table 5.9 provides a summary of run-times for NYT. Considering only the EA, 

metamodelling provided a speed-up of 707 times (70,700%) over the non-

metamodelling approach. Factoring in the extra overheads required for metamodel 

calibration and post-EA checking of some solutions, the speed-up factor was still 50 

(5000%). While provision was made to allow for 15 hours of checking solutions with 

the simulation model, it was found that the solution checking algorithm converged 

early and that, on average, this step took only 2.7 hours. 

Table 5.9. CPU times (hours) of each metamodelling step and comparison to 

non-metamodelling approach for NYT. 

Metamodelling Step With Metamodel Without Metamodel 

Generate training data 0.2 N/A 

Determine critical nodes 0.1 N/A 

Train ANNs 2.3 N/A 

Run EA 0.4 283 

Check solutions with simulation model 2.7 N/A 

Total 5.7 283 

 

Alternative metamodel scopes (approximating constrained variables and the 

entire fitness function) to that determined by the systematic approach presented in 

this paper were shown to be inferior (see Section 3.2, last paragraph). However, it is 

worth considering the impact on run-times of these alternatives. In both cases 

(Metamodel B and Metamodel C), running the EA would have been up to 100 times 

faster (as the Monte Carlo loop would be avoided). However, the time needed to 

generate training data would be 100 times longer, assuming the same number of 

training data are used due to the need for each data point to include a Monte Carlo 

loop. Overall, the total run-time would increase to approximately 25.1 hours. This is 
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significantly worse than if the systematic approach to determining scope were used 

(440% increase). 

 

Pacific City 

The following case study, named Pacific City, has been provided by Optimatics 

(2014) and is based on a commercial project undertaken for a client. Many details of 

the case study have been modified (e.g. name, co-ordinates, node elevation, pipe 

lengths, etc.) for security purposes and to maintain the client’s anonymity (see 

Appendix C.2 for these details; the EPANET input file for this network is provided as 

supplementary material). However, in terms of model complexity, the problem still 

provides a real-world test case for risk-based optimization of WDSs using 

metamodels. 

Metamodel development and performance 

Three critical nodes were found for pressure while four were found for 

chlorine residual (see Figure C.1 in Appendix C.2 for their locations). For ease of 

reference, these are referred to as P1-P3 and C1-C4. The metamodel structure is given 

in Table 5.10. 

The best metamodel calibration parameters were selected by trial-and-error. 

It was found that the same parameters as those used for the NYT problem performed 

best. Calibration results are presented in Table 5.11, most of which show very high 

fidelity to the original simulation model. Critical chlorine at node 4 had a lower 

coefficient of determination than that at all other nodes. However, the RMSE was still 

low and the comparison between model and metamodel shown in Figure 5.6 indicates 

sufficiently high fidelity. Therefore, optimisation runs could be carried out with 

confidence. 
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Table 5.10. Input and output variables for the various MLPs within the 

metamodel for New York Tunnels. 

Multi-
Layer 

Perceptron 

Input Variables 
Output 

Variable Decision Variables Random Variables 

MLP-1 23 Pipe diameters 
1 Demand multiplier 

1 Roughness multiplier 

Pressure @ 
Node P1 

MLP-2 23 Pipe diameters 
1 Demand multiplier 

1 Roughness multiplier 

Pressure @ 
Node P2 

MLP-3 23 Pipe diameters 
1 Demand multiplier 

1 Roughness multiplier 

Pressure @ 
Node P3 

MLP-4 

23 Pipe diameters 

6 Chlorine dosing 
rates 

1 Demand multiplier 

1 Roughness multiplier 

1 Decay rate 

Residual 
chlorine @ 

Node C1 

MLP-5 

23 Pipe diameters 

6 Chlorine dosing 
rates 

1 Demand multiplier 

1 Roughness multiplier 

1 Decay rate 

Residual 
chlorine @ 

Node C2 

MLP-6 

23 Pipe diameters 

6 Chlorine dosing 
rates 

1 Demand multiplier 

1 Roughness multiplier 

1 Decay rate 

Residual 
chlorine @ 

Node C3 

MLP-7 

23 Pipe diameters 

6 Chlorine dosing 
rates 

1 Demand multiplier 

1 Roughness multiplier 

1 Decay rate 

Residual 
chlorine @ 

Node C4 

 

Table 5.11. Metamodel calibration results for Pacific City. 

Critical 
Node 

RMSE  
(m or mg/L) 

R2 

P1 0.006 0.9998 

P2 0.009 0.9998 

P3 0.033 0.9986 

C1 0.019 0.9985 

C2 0.008 0.9998 

C3 0.007 0.9998 

C4 0.077 0.9727 
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Figure 5-6. Comparison between simulation model and metamodel for critical 

chlorine node, C4, for the Pacific City case study. 

 

Optimization Approach 

The same optimization parameters were used for Pacific City as were used for 

NYT (see Table 5.6). In terms of solution checking, assuming TSIM = 15 hours and 

NMCS = 100, using the average simulation time there are only 28 fitness evaluations 

available. The distribution of these evaluations by each checking method for scenarios 

B-H are given in Table 5.12. 
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Table 5.12. Number of fitness evaluations of each post-EA solution checking 

type for different scenarios for Pacific City. 

Scenario NNB NTOP NLS NSIM 

B 9 9 10 28 

C 13 1 14 28 

D 26 1 1 28 

E 13 14 1 28 

F 1 13 14 28 

G 1 26 1 28 

H 1 1 26 28 

 

Optimization Results 

The best solutions from each of the thirty repeated runs for each scenario are 

presented in Table 5.13 (all solutions are feasible). Note the scenario A results are the 

solutions to which the metamodel-based EA converged. When all 30 of these solutions 

were checked with the simulation model, they were found to be infeasible. 

 

Table 5.13. Optimization results for Pacific City. Statistics of NPV shown, as well 

as frequency with which the best solution was found for 30 runs per scenario. 

Scenario Min Mean Median Max Std. Dev. 
Best 

Frequency 

A 9.30E+06 9.33E+06 9.33E+06 9.36E+06 1.98E+04 0 

B 8.86E+06 9.72E+06 9.95E+06 1.05E+07 6.48E+05 4/30 

C 8.86E+06 9.88E+06 9.84E+06 1.10E+07 7.78E+05 4/30 

D 9.49E+06 9.89E+06 9.78E+06 1.05E+07 3.58E+05 0 

E 9.66E+06 1.04E+07 1.00E+07 1.22E+07 9.08E+05 0 

F 1.25E+07 1.38E+07 1.38E+07 1.60E+07 1.37E+06 0 

G 1.39E+07 1.49E+07 1.40E+07 1.65E+07 1.30E+06 0 

H 1.24E+07 1.43E+07 1.40E+07 1.59E+07 1.34E+06 0 



Chapter 5:  Data Uncertainty 

153 

The first conclusion to draw from these results is that NNB is a very important 

parameter, as indicated by the relatively good performance of scenarios B-E 

compared with that of scenarios F-H. Without adequate tracking of the progress of the 

EA, a good feasible solution cannot be found to seed the local search. 

The two scenarios that found the overall best solution were B and C, each 

finding a solution with a cost of $8.86 million in four of the 30 runs. With scenario B 

having the best mean and better standard deviation compared to scenario C, scenario 

B is the recommended procedure to use, i.e. a fairly equal balance between the three 

solution checking strategies. This supports the reasoning given by Broad et al. (2005) 

for using each of these strategies. 

Comparing the mean of scenario B with the mean of the EA only scenario 

shows a difference of 4%. This small difference indicates that although the EA 

converged to an infeasible solution for Scenario A, it was still in the “ballpark” 

compared with the overall best solution found. 

Table 5.14 provides a summary of run-times for Pacific City. Due to the 

excessive run-time for the “without metamodel” scenario, only an estimate could be 

made based on average simulation time and EA and MCS parameters. Considering 

only the EA, metamodelling provided a speed-up of 171,000 times (1.7x107%) over 

the non-metamodelling approach. Factoring in the extra overheads required for 

metamodel calibration and post-EA checking of some solutions, the speed-up factor 

was still 1375 (137,500%). Thus, optimization is possible for this case study with 

metamodels, whereas using the traditional (non-metamodel) approach optimization 

is not possible in a reasonable amount of computer time. 
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Table 5.14. CPU times (hours) of each metamodelling step and comparison to 

non-metamodelling approach (estimated) for Pacific City. 

Metamodelling Step With Metamodel Without Metamodel 

Generate training data 43 N/A 

Determine critical nodes 0.5 N/A 

Train ANNs 3.2 N/A 

Run EA 0.5 85,556 

Check solutions with simulation model 15 N/A 

Total 62.2 85,556 

 

Repeating the analysis of run-times undertaken for New York Tunnels using 

the alternative metamodel scopes mentioned in Section 3.2, the overall run-time 

would increase to 4318 hours, which is completely impractical. As a percentage, this 

is an increase of 6943% (cf. 440% for New York Tunnels), indicating that the slower 

the model is (and the greater potential benefit that metamodelling could provide), the 

worse these alternative scopes are likely to be; again reinforcing the need to follow 

the systematic approach to determining metamodel scope. 

 

5.4 Summary and Conclusions 

This paper has made a number of significant contributions in relation to the 

use of meta-modelling for the speed-up of EAs, and hence the applicability of EAs to 

real-world problems, as suggested by Maier et al. (2014), as outlined below: 

1.  A formal, systematic approach for identifying which subset of the 

fitness function should be approximated by a metamodel so as to maximize the 

fidelity of the metamodel and achieve the greatest computational speed-up (termed 
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the metamodel scope) was introduced in this paper for the first time.  The approach 

involves assessing each calculation step associated with the calculation of a fitness 

function against three key criteria: (1) computation time; (2) dimensionality; and (3) 

smoothness. A procedure is then followed to determine which of these calculation 

steps should be included within the metamodel scope based on these three criteria, 

where the use of metamodels is considered favourable if a calculation step exhibits 

the following properties: (1) high computation time; (2) low dimensionality; and/or 

(3) high smoothness. 

2. A formal discussion of how this approach applies to the risk-based 

optimization of the design of water distribution systems was provided.  As part of this 

discussion, all components of the fitness function used in this class of problem were 

identified and classified in accordance with the three criteria of the proposed 

approach (i.e. computation time, dimensionality, smoothness).  Due to the generic 

nature of this discussion, the results of this assessment are transferrable to a large 

number of problems of this type. 

3. The proposed process was applied to two case studies for the risk-

based optimal design of water distribution systems using EAs, considering both 

hydraulic and water quality performance, which has not been done before. The 

second case study consists of a complex WDS based on a real network that has not 

been used previously in the literature.  As the EPANET input file for this case study 

has been provided as supplementary material, this case study provides a useful, real-

life benchmark that can be used by others, which is something that is needed in order 

to progress research in the field of the application of EAs to water resources problems 

(Maier et al., 2014). The benefits of the proposed approach compared with the 
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currently used ad-hoc meta-model building approach are illustrated by means of 

discussion.  In addition, the overall benefits of the proposed approach in relation to its 

intended purpose of producing high-fidelity metamodels and speeding up EA 

optimization are demonstrated via the results of the two case studies. To the authors’ 

knowledge, the second case study results are the first time this has been achieved for 

a real-world problem that accounts for data uncertainty in demand, pipe roughness 

and chlorine decay rate. In this case the optimization time was reduced from an 

impossibly long time (an estimated 85,000 hours of CPU time) to something 

reasonable (62 hours). 
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“And you should imitate me, 

just as I (St. Paul) imitate Christ.” 

1 Corinthians 11:1 (NLT) 
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The optimization of WDS is a computationally intensive task when the factors 

considered in the formulation include those that a planning engineer typically needs 

to consider, including water quality and data uncertainty; and even more so, when a 

large, complex model is the subject of the optimization. Through the use of 

metamodels that act as fast-solving approximations to simulation models, 

computational intensity can be reduced to a practical level. This thesis demonstrates 

the effectiveness of using metamodelling and introduces guidelines for the 

development and use of metamodels for WDS optimization. 

6.1 Research Contributions 

There were two main aims of this research: 

1. To incorporate three aspects of realism into the optimization of WDS, 

namely (1) water quality; (2) real-world systems; and (3) data uncertainty. 

2. To develop a robust methodology for the use of metamodelling in WDS 

optimization. 

Aim #1 was achieved progressively when considering the four publications in 

this thesis. Water quality criteria were included in each publication, real world 

systems were examined as case studies in the last two publications and data 

uncertainty was addressed in the last paper. 

Aim #2 was also achieved progressively. A methodology was developed and 

proposed in the first publication. One step of the methodology, local search, was 

developed further in the second paper. Further modifications were made in the last 

two publications as real world systems were examined and data uncertainty 

considered. The final methodology is given in Figure 6.1. 
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Figure 6-1 Methodology for the optimization of water distribution systems 

using metamodels 
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The key contributions to the development of a methodology for the use of 

metamodels to improve the computational efficiency of EA-based WDS optimization 

include the following: 

 The development of a systematic approach to determine the most appropriate 

metamodel scope. The approach includes the deconstruction of the 

optimization problem’s fitness function into a number of calculation steps. 

Each calculation step is assessed using several criteria to determine whether it 

should or should not be included among the calculation steps for which the 

metamodel acts as a surrogate. The methodology is generic to any 

metamodelling application and is designed to maximize fidelity to the original 

problem and to minimize the overall computational intensity. 

 A methodology for determining metamodel output variables. The number of 

potential metamodel output variables is vast due to the geographical layout of 

the WDS (i.e. every node corresponds to another potential output variable). 

The developed methodology significantly reduces the number of output 

variables, which in turn reduces the computational time required for 

calibration. The methodology was developed specifically for WDS applications, 

however, it could be made more generic with some modifications. 

 Demonstration that ANN metamodels are able to approximate a hydraulic 

simulation model. This research demonstrated that in four case study 

applications,  ANN metamodels were able to act as surrogates for hydraulic 

models that ranged in size and complexity. 
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 An algorithm for checking solutions with the original simulation model. The 

algorithm, which is generic to any metamodelling application, was developed 

with the assumed principle that a metamodel will act as a high fidelity 

approximation to a simulation but will not be a perfect representation. 

Therefore, a metamodel coupled with an EA should be able to obtain a solution 

close to the true optimum. The solution checking algorithm was designed to 

find a solution as close as possible to the true optimum, as evaluated with the 

original simulation model. 

 The methodology as a whole. Prior to this research the use of ANN 

metamodels to improve the computational efficiency of EA-based WDS 

optimization was very limited (Lingireddy and Ormsbee 1998). The 

methodology proposed in this thesis was developed with the aim to reduce 

computational intensity while still finding solutions that are as close to the 

global optimum as possible. The results from the four case studies 

demonstrate the effectiveness of the methodology as a whole. 

6.2 Recommendations for Future Work 

There are several possible research paths that can build upon the work 

presented in this thesis. These possibilities include: 

1. The results presented in this research are all positive in that they 

demonstrate the benefit of using metamodels to reduce the computational 

intensity of WDS optimization. Four different case studies were examined in 

total, so a key requirement for future research is to apply the overall 

methodology (Figure 6.1) to several other case studies to confirm its 
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validity as a general approach. These case studies should include an 

increased number of decision variables and types of decisions.  

2. It is imperative that all future research must examine complex hydraulic 

systems (e.g. Wallan, Pacific City, or larger in size). A key finding of this 

research is that the benefit of metamodels in terms of computational speed-

up is greater for more complex systems and when more realistic factors are 

considered (e.g. data uncertainty). If future research only examines small 

WDS, there is a danger that the benefits of using metamodels will be so 

small that researchers conclude it is not worth using metamodels at all. 

3. Other researchers who have used metamodels to speed-up EA-based 

optimization of WDS have periodically re-calibrated metamodels during the 

EA run (Behzadian et al. 2009, di Pierro et al. 2009, Bi and Dandy 2013). To 

date, as far as the writer is aware, there does not appear to be a 

comprehensive comparison study between that approach and the approach 

used in this research that tests complex simulation models and considers 

the run-time of all steps associated with developing and running 

metamodels. Such research would be beneficial to determine whether one 

approach was better than the other or whether the favourability of each 

approach was problem-dependent. 

4. Estimate the accuracy of the simulation model and use it as a guide to 

determine the target accuracy of the metamodel. For example, there is little 

benefit in ensuring a metamodel for chlorine residuals is accurate to within 

0.01 mg/L if the simulation model it is aiming to approximate is only 

accurate to within 0.1 mg/L. The advantage of this would be to reduce the 
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time required to calibrate the metamodel. Similarly, when using Monte 

Carlo simulation (MCS) to account for data uncertainty, there may be a way 

to determine the required accuracy of estimating risk-metrics and relating 

this to the number of MCS samples. 

5. Consider using different ranges for decision variables when generating 

calibration data. This is based on the observation that ANN metamodels in 

particular perform better as interpolators than extrapolators. For example, 

consider an optimization formulation with a chlorine dosing range of 

[1.0, 3.0]. In this case, it may be beneficial to generate training data in the 

region [0.9, 3.1]. Also, consider a pipe decision with discrete options 

corresponding to commercially-available pipe sizes. While the EA must 

select one of these discrete options, there is no reason why the calibration 

data need to be discrete; there may be some benefit in generating 

calibration data in the continuous space. The advantage of carrying out this 

research might result in more accurate metamodels. 

6. ANNs have often been used for modelling water resources in lieu of 

developing a process-based simulation model. This has been particularly 

effective in cases where the relationship between input and output 

variables is unknown, which is often the case with natural systems. In 

contrast, where ANNs are used as metamodels, the input/ouput 

relationship is known completely, as it is based on a simulation model. 

Therefore, there may be scope to somehow use this knowledge to modify 

how ANN metamodels are constructed. Future research may be able to 

leverage this known input/output relationship to (i) determine optimal 
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ANN architecture, or (ii) determine ANN weights (or initial weights). This 

could then result in reduced metamodel calibration time and/or improved 

metamodel fidelity to the simulation model. 

7. The research presented in this thesis is specific to developing metamodels 

for optimizing the design and operations of WDSs. Useful future research 

would be to modify the methodology to make it more generic so as to be 

applicable to other water resources applications. 

8. The results presented in the Case Studies throughout this thesis included 

carrying out repeated optimization runs with different random seeds. This 

is necessary to evaluate the robustness of the metamodels’ ability to find 

optimal solutions when linked with EAs. The EAs are the main source of 

randomness in the entire metamodelling methodology, however, there are 

other sources such as the random generation of calibration data and initial 

random weights in the ANN metamodels. It would be useful for future 

research to use different random seeds and repeat the data generation and 

training steps several times, just like what is done with the EAs. This will 

ensure the robustness of the methodology is fully tested. 
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In this section, the proposed process is illustrated by way of two mathematical 

functions. It should be noted that these two functions would not need to be replaced 

by metamodels in practice and are used purely for the sake of demonstration. 

Firstly, consider Bukin’s function N6 (Surjanovic and Bingham 2013), as given by Eq. 

A.1. 

min 𝑧 = 𝑓(𝒙) = 100√|𝑥2 − 0.01𝑥1
2| + 0.01|𝑥1 + 10| 

(A.1) 

That may be broken down into a series of calculation steps that can be assessed in 

terms of computational requirements, dimensionality and smoothness, as given in 

Table A.1. 

Table A.1. Assessment of calculation steps of Bukin’s function N6. 

Calculation 
Computational 

Assessment 
Dimensionality 

Assessment 
Smoothness Assessment 

1 𝑦1 = 𝑥1 + 10 Trivial Low Smooth 

2 𝑦2 = 0.01|𝑦1| Trivial Low Non-smooth 

3 𝑦3 = 0.01𝑥1
2 Trivial Low Smooth 

4 𝑦4 = 𝑥2 − 𝑦3 Trivial Low Smooth 

5 𝑦5 = |𝑦4| Trivial Low Non-smooth 

6 𝑦6 = 100√𝑦5 Trivial Low Smooth 

7 𝑧 = 𝑦2 + 𝑦6 Trivial Low Smooth 
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Because this is a simple mathematical function, the computational assessment is 

trivial for each step and the dimensionality is low, hence S1 and S2 should each include 

all calculation steps. These are given in Eqs A.2 and A.3, respectively. 

There are two non-smooth calculation steps, as they include absolute value functions, 

which are more difficult for metamodels to approximate than smoother functions, 

hence they should not be included in the metamodel scope. Therefore there are three 

potential metamodel scopes for S3 (recall that a metamodel scope must include 

connected calculation steps only). These are given by Eq. A.4. 

Determining the best overall metamodel scope is then a matter of applying Eq. 5.6, 

which results in Eq. A.5 for this example, i.e. there are three possible metamodel 

scopes. The metamodels’ input and output variables (for the three possible 

metamodel scopes) are then defined in Eqs. A.6 and A.7, respectively. The metamodel 

should act as a surrogate for either calculation step 1, or steps 3 and 4, or steps 6 and 

7. 

𝑆1 = {𝑓𝑖}, 𝑖 = 1, … ,7  (A.2) 

𝑆2 = {𝑓𝑖}, 𝑖 = 1, … ,7  (A.3) 

𝑆3 = {𝑓1} 𝑂𝑅 {𝑓3, 𝑓4} 𝑂𝑅 {𝑓6, 𝑓7} (A.4) 

𝑆𝐵𝑒𝑠𝑡 = ⋂ 𝑆𝑖

3

𝑖=1

= {𝑓1} 𝑂𝑅 {𝑓3, 𝑓4} 𝑂𝑅 {𝑓6, 𝑓7} (A.5) 

𝒙𝑴𝑴 = {𝑥1} 𝑂𝑅 {𝑥1, 𝑥2} 𝑂𝑅 {𝑦2, 𝑦5} (A.6) 

𝒚𝑴𝑴 = {𝑦1} 𝑂𝑅 {𝑦4} 𝑂𝑅 {𝑧} (A.7) 
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Secondly, consider the 20-dimensional version of Rastrigin’s function (Rastrigin 

1974), given by Eq. A.8, which may be broken into five calculation steps, which are 

assessed in Table A.2. 

min 𝑧 = 𝑓(𝒙) = ∑(𝑥𝑖
2 − 𝑐𝑜𝑠(2𝜋𝑥𝑖))

20

𝑖=1

 
(A.8) 

Table A.2. Assessment of calculation steps of Rastrigin’s function. 

Calculation 
Computational 

Assessment 
Dimensionality 

Assessmenta 
Smoothness 
Assessment 

1 𝑦𝑖 = 2𝜋𝑥𝑖, 𝑖 = 1, … ,20 Trivial Trivial for each yi Smooth 

2 𝑦𝑖+20 = 𝑥𝑖
2, 𝑖 = 1, … ,20 Trivial Trivial for each yi+d Smooth 

3 
𝑦𝑖+40 = 𝑐𝑜𝑠(𝑦𝑖),  

𝑖 = 1, … ,20 
Trivial Trivial for each yi+2d Smooth 

4 
𝑦𝑖+60 = 𝑦𝑖+𝑑𝑦𝑖+2𝑑, 

𝑖 = 1, … ,20 
Trivial Trivial for each yi+3d Smooth 

5 𝑧 = ∑ 𝑦𝑖+60

20

𝑖=1

 Low Medium Smooth 

 

The possible metamodel scopes according to each criterion are presented in Eqs. A.9- 

A.11. Upon examination, the intersection of the three scopes is the null set, {0}, hence 

the best metamodel must be determined by considering two criteria, as given by Eqs. 

A.12- A.13. Note S1,2 = {0}. 

𝑆1 = {𝑓5} (A.9) 

𝑆2 = {𝑓1, 𝑓2, 𝑓3, 𝑓4}  (A.10) 

𝑆3 = {𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5} (A.11) 
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𝑆1,3 = {𝑓5} (A.12) 

𝑆2,3 = {𝑓1, 𝑓2, 𝑓3, 𝑓4}  (A.13) 

Consequently, there are two best metamodel scopes according to this process, S1,3 and 

S2,3. Therefore both will need to be considered in the overall metamodelling process; 

at least up until calibration (step 6 of Figure 5-1). The input and output variables for 

the two metamodels are given in Eqs. A.14 and A.15. The metamodel should act as a 

surrogate for either calculation step 5, or steps 1-4. 

𝒙𝑴𝑴 = {𝑦𝑖+3𝑑} 𝑂𝑅 {𝑥𝑖}, 𝑖 = 1, … , 𝑑 (A.14) 

𝒚𝑴𝑴 = {𝑧} 𝑂𝑅 {𝑦𝑖+3𝑑}, 𝑖 = 1, … , 𝑑 (A.15) 
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Hammersley samples (Hammersley 1960), as modified by Halton (1960), are 

generated according to Eq. B.1. 

𝑠(𝑖, 𝑛) = ∑ [⌊𝑖𝑝−𝑗⌋ − ⌊
⌊𝑖𝑝−𝑗⌋

𝑝
⌋ 𝑝] (𝑝−𝑗−1)

𝑘−1

𝑗=0
 (B.1) 

Where s(i,n) is the i-th sample in the n-th dimension; p is the n-th prime 

number (starting at 2); k is given by equation B.2; and ⌊ ⌋ is the floor function (i.e. 

round down to the nearest integer). 

𝑘 = ⌈
𝑙𝑛(𝑁𝑀𝐶𝑆)

𝑙𝑛(𝑝)
⌉ (B.2) 

Where NMCS is the total number of samples that will be generated; and ⌈ ⌉ is the 

ceiling function (i.e. round up to the nearest integer). A key advantage of HS over 

Latin Hypercube Sampling (LHS) (McKay et al. 1979), which is a more commonly used 

sampling approach, is that NMCS can be increased for subsequent samples without 

affecting previous samples in cases where additional samples need to be generated. 

HS was designed to be a “low-discrepancy” sampling method (Hammersley 

1960), where discrepancy can be considered as a measure of the largest unsampled 

area across n dimensions. This is demonstrated in the following figures. Figure B.1 

shows examples of data generated from a uniform distribution (a) randomly, 

(b) using LHS with 4 stratifications, (c) using HS, comparing dimensions 1 and 2, and 

(d) using HS, comparing dimensions 5 and 10. Figure B.2 shows the same samples, 

but transformed into a standard normal distribution. It can be seen that there is a 

regular pattern to HS and that the points are close to evenly distributed (for the 

uniform case). This is a feature of HS, rather than the outcome of a fortunate random 

seed, as HS is deterministic, rather than stochastic. For further details of HS in 
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metamodelling applications and a comparison to other data generation methods, the 

reader is referred to Kalagnanam and Diwekar (1997) and Simpson et al. (2001). 

(a)  (b)  

(c)  (d)  

Figure B.1. Example of data sampling methods in 2 dimensions (96 points in 

U[0,1]). (a) RS, (b) LHS with 4 stratifications per dimension,  

(c) HS (dimension 1 and 2), (d) HS (dimension 5 and 10).  

One negative aspect of HS is that for high dimensions (> ~20), the number of 

samples that must be obtained to ensure even coverage of the sample space becomes 

quite large. That is not a problem for WDS optimization where there are few key 

sources of uncertainty (i.e. demand, pipe roughness and chlorine decay rate) and 

these can reasonably be considered to be highly spatially correlated; however, the 

reader should be wary when considering HS for other applications. 
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(a)  (b)  

(c)  (d)  

Figure B.2. Example of data sampling methods in 2 dimensions (96 points in 

N[0,1]). (a) RS, (b) LHS with 4 stratifications per dimension,  

(c) HS (dimension 1 and 2), (d) HS (dimension 5 and 10). 

 

 

 

 

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3



 

190 

 

 

Appendix C:  

Case Study Details 

 

 

 ________________________________________________  

 

 

  



Appendix C:  Case Study Details 

191 

C.1 New York Tunnels 

For details on NYT, the reader is referred to Maier et al. (2003). The reader is also 

referred to Broad et al. (2005) for details pertaining to the modification of NYT for the 

purposes of water quality modelling (including chlorine dosing decision variables, 

minimum chlorine residual constraints and the addition of a demand pattern for use 

in an EPS). 

Further modifications to NYT have been made for this paper. Disinfection costs have 

been included by quantifying the chlorine dosed and a net present value analysis is 

used. It was assumed the design flow in the original NYT model represents the peak 

hour demand, however, NPV chlorine costs should be based on the average day 

demand. Therefore peaking factors were assumed for this conversion, as shown in 

Table C.1. Table C.1 also shows the assumed NPV parameters. Chlorine costs from 

2007 (55c/kg, (GWI 2007)) were converted to 1969 prices (8.6c/kg) for reasonable 

comparison with pipe costs assuming a CPI rate of 5% p.a.  

Table C.1. Assumed data for calculating disinfection costs for NYT. 

Parameter Value 

Peak hour factor 1.3 

Peak day factor 3 

Chlorine cost 8.6 c/kg 

Discount rate 6% 

Design life 20 

 

A summary of the simulation model statistics is provided in Table C.2 and a summary 

of the definition of the search space is provided in Table C.3. 
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Table C.2. Simulation model summary for the New York Tunnels case study. 

Model Component Number  

Pipes 42 

Sources 1 

Junctions 19 

Chlorine Dosing 1 

 

Table C.3. Summary of optimization decisions and search space for the New 

York Tunnels case study. 

Property Number  

Pipe Decisions 21 

Chlorine Dosing 1 

Options per Pipe 16 

Options per Dose 21 

Search Space 1621x21 = 4.8x1027 

 

The NYT problem was also modified to include randomness in demand, pipe 

roughness and chlorine decay rate. Mean values were calculated using Eqs. C.1 and 

C.2, based on the assumption that original values would have been selected 

conservatively, and as such the values from the original problem were not assumed as 

the mean values.  

𝐷𝑀𝜇 = 𝐷𝑀̂ − 2𝐷𝑀𝜎  (C.1) 

𝐶𝜇 = 𝐶̂ + 2𝐶𝜎  (C.2) 

Where DM and DM are the mean and standard deviation nodal base demand 

values used in this case study, respectively; 𝐷𝑀̂ is the nodal base demand from the 

original problem; C and C are the mean and standard deviation Hazen-Williams 
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roughness coefficients used in this case study, respectively; and 𝐶̂ is the Hazen-

Williams roughness coefficient from the original problem.  

Each property was assumed to have a normal distribution with a coefficient of 

variation of 0.1. Therefore, the mean demand and Hazen-Williams roughness 

coefficients can be calculated using Eqs. C.3-C.4. 

𝐷𝑀𝜇 =
𝐷𝑀̂

1.2
 

(C.3) 

𝐶𝜇 =
𝐶̂

0.8
 

(C.4) 

The risk metrics shown in Table C.4 were used as constraints.  The EPANet 

input file for this problem can be downloaded as supplementary material (Broad 

2014a). 

Table C.4. Risk metric constraints used for NYT case study. 

Risk-Metric Constraint Value 

Hydraulic Reliability 95% 

Hydraulic Vulnerability 0.5 m 

Water Quality Reliability 95% 

Water Quality Vulnerability 0.1 mg/L 

C.2 Pacific City 

A schematic of Pacific City is presented in Figure C.1. All reservoirs and pipes are 

identifiable. Additionally, pipe decisions are shown as thick black lines, while chlorine 

dosing locations (primarily at reservoirs) are shown as crosses. All pipe decisions are 

duplication options, which had been previously identified. A summary of the model 

statistics is provided in Table C.5 and the EPANet input file for this problem can be 

downloaded as supplementary material (Broad 2014b). 
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Figure C.1. Schematic of the Pacific City case study. 

 

 

P1 

P2 

P3 

C1 

C2 

C3 

C4 



Appendix C:  Case Study Details 

195 

 

Table C.5. Simulation model summary of the Pacific City case study. 

Model Component Number  

Pipes 6944 

Sources (groundwater) 9 

Junctions 8715 

Valves (isolation) 2716 

Unique demand patterns 18 

Chlorine Dosing 6 

 

 

The optimization formulation is summarized in the following tables. Table C.6 

shows the pipe decision options and their unit cost rates. The unit cost for chlorine 

dosing is 20 c/kg and each dosing location has 21 options, ranging from 0.5 to 

2.5 mg/L, increasing in increments of 0.1 mg/L. It was observed that there was very 

little variation in flows at the sources for the different solutions, hence representative 

flows were used at each dosing location in order to calculate the chlorine mass dosed. 

A summary of the decisions is given in Table C.7. Minimum pressures were 25 m of 

head and minimum chlorine residuals were 0.5 mg/L. The same risk metric 

thresholds were used as for NYT (see Table C.4). 
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Table C.6. Pipe decision options for the Pacific City case study. 

Diameter Cost 

[mm] [$/m] 

150 401.8 

175 429.2 

200 444.2 

225 473.9 

250 490.8 

275 513.7 

300 538.3 

325 571.0 

350 588.1 

375 612.7 

400 649.6 

425 673.4 

450 696.5 

475 731.0 

500 760.5 

525 781.0 

550 820.2 

575 847.2 

 

Table C.7. Summary of optimization decisions and search space for the Pacific 

City case study. 

Property Number  

Pipe Decisions 23 

Chlorine Dosing 6 

Options per Pipe 18 

Options per Dose 21 

Search Space 1823x216 = 6.4x1036 
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