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Abstract

Electromagnetic metamaterials are engineered materials that exhibit controllable elec-
tromagnetic properties within a desired frequency range. They are usually made of
periodic metallic resonant inclusions with dimensions much smaller than the opera-
tional wavelength. Since their introduction, they have found many applications from
the microwave frequency range up to the terahertz and optical ranges. One key ad-
vantage of metamaterial lies in their sub-wavelength resonators making them suitable

for miniaturisation of RF circuits and components.

This thesis investigates applications of metamaterial-inspired resonators and struc-
tures to design improved devices and components operating at either the microwave
or terahertz frequency range. The first part of the dissertation is on the design of minia-
turised microwave filters for integrated portable RF systems. Dual-mode metamaterial
resonators are proposed as alternatives to conventional resonators for size reduction of
the RF filters. In the second part, the focus is on the design of compact metamaterial
sensors with improved functionalities. Complementary metamaterial resonators are
proposed for designing microfluidic sensors with improved sensitivity and linearity.
The designed microfluidic sensors have been tested and verified for dielectric charac-
terisation of chemical and biological solutions. A wide dynamic-range displacement
sensor has been designed based on a microstrip-line-coupled complementary electric-
LC (ELC) resonator. Furthermore, a rotation sensor is designed with coupled U-shaped
resonator with a dynamic range of 180°, where the sensor linearity is improved by
asymmetrically tapering the resonators shape. The third part focuses on the design
of microwave and terahertz frequency selective surfaces (FSS) based on metamaterial
miniaturised elements. Tunable and dual-band FSSs are proposed for reconfigurable
and multi-standard microwave communications. Eventually, miniaturised-elements
are used to design second-order FSSs at the terahertz frequency range. The simulation
and measurement results confirm a harmonic-free and stable frequency response of the

designed FSSs under oblique incidence angles.

Overall, the research outcomes in this thesis suggest the efficiency of metamaterial
resonators for the design of sensing and communications devices with improved per-

formance over a wide frequency range from the microwave up to terahertz.
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