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ABSTRACT

Southern India is comprised of granulite facies metamorphosed crustal blocks, separated
by crust penetrating shear zones that have experienced a diverse tectonothermal history
from the Archaean to Cambrian. The early Palaeoproterozoic metamorphosed Salem
Block in southern India preserves felsic and mafic gneisses ideal for investigating the
aerial extent of the preserved Archaean-Palaeoproterozoic southern Indian crust and the
metamorphic rock record in the Archaean-Palaeoproterozoic transition. U-Pb zircon, in
situ monazite geochronology and zircon REE analysis obtained using Laser-Ablation
Inductively-Coupled-Plasma Mass-Spectrometry (LA-ICP-MS), and P-T phase
equilibria and average P-T conventional thermobarometry calculated using
THERMOCALC from the Kanja Malai Hills, demonstrate that the Salem Block extends
south to at least the northern Palghat-Cauvery Shear System. Peak P-T estimates of
~800-850 °C and 14-16 kbar at ca. 2490 Ma were attained in the southern Salem Block
and suggest decompression followed peak metamorphism. The P-T-t constraints in the
southern Salem Block are anomalously high pressure compared to other Archaean-
Palaeoproterozoic metamorphic events and require thermal regimes that are typically

generated in convergent plate margin settings.

Keywords: Southern Granulite Terrane, Salem Block, metamorphism, LA-ICP-MS, U-

Pb geochronology, Palaeoproterozoic.



TABLE OF CONTENTS
1 INTRODUCTION ..ottt ettt sttt ste e sresneane e 5
2. GEOLOGICAL BACKGROUND ..ottt 7
2.1 Regional geological overview of Southern India.........c.cccccocovvveiiiiiiiciee 7
2.2 The Salem BIOCK..........oiiiiee e 9
2.3 The Kanja Malai HillS ............cccooiiiiiiic e 11
3. FIELD AREA AND LITHOLOGICAL RELATIONSHIPS..........cccocoiiiiiiinn 12
4, MINERAL PETROLOGY ...oooiiiiiiieie ettt st 14
4.1 Kyanite and garnet bearing felSiC gneissesS.........ccccvvvveiviievieve e 14
4.1.1 SAMPIE JAS @NU JAT ..ot 14
4.2 Garnet bearing MafiCc gNEISSES .......cccveiieiiiiiieii e 15
Garnet bearing mafic gneisses (Fig. 3.a) were taken from a prominent ridge in the
north of the Kanja Malai Hills mapped area. ...........ccocooeviiinininiiiec e 15
4.2.1 SAMPIE JAA......oiiiii it s 15
4.2.2 Sample EM16 and JALO.......c.ocoiiiiieee et 16
4.2.3 SamMPle EMLO.......ooiiiiie e e 17
4.3 FRISIC gNEISSES .. vviveeueiiieiiteeie et e it e ste st e et e s e ste et e st esbe e be s e e s beebeereesreenbeaneenres 17
4.3.1 Sample JAL3 AN JALA ......ooeeee et 17
5. MINERAL CHEMISTRY .ottt 19
5.1 Garnet bearing mafic gneiss SAMPIES..........cccoviiiiiiiienen e 19
O 1.1 GAIMET ...t 19
5.1 2 FElUSPar ..., 20
5.1.3 CHINOPYIOXENE ...ttt bbbt 20
5.1.4 AMPIIDOIE ... 21
515 TIMENITE 1.ttt 22
5.1.6 MAGNETITE......eiieiiieieie et 22
5.2 Kyanite-garnet bearing felsic gneiss samples..........cccooveninininininiciceen 23
5.2.1 GAINEL ...ttt ettt beenree s 23
5.2.2 FeldSpar ... 23
ST T = ] [0 1) (= ST SR 24
6. OUTLINE OF ANALYTICAL TECHNIQUES.........ccoooiiiieeeeee e 25
6.1 Quantified metamorphic analysis- P-T pseudosections and conventional
ThermMObDArOMETIY .......co i s 25
6.2 Zircon and monazite geochronology and zircon trace and REE chemistry26
A = U R S SO 27
7.1 P-T PSEUAOSECTIONS ...ttt bbbt 27
7.2 Conventional thermobarometry ... 28

7.3 Zircon and monazite LA-ICP-MS age data ..........cccocevereneneneniniceens 29



0 T N N TSRS 29
7. 3.2 JALS bbb 30
T3 BIALA ettt 31
T B JAT ettt 31
7.4 ZIrCON CREMISTIY ...veiiiiiii s 32
7.4.1 Zircon U-Th-Pb chemistry ..., 32
7.4.2 Zircon REE ChemMISTIY ........coviiiiieiecc e 34
8. DISCUSSION ..ottt bbbttt bbb b enes 36
8.1 Interpretation of zircon and MONAZITE AQES.........ccoververererereneneeeeeeeeeee 36
8.1.1 Zircon ages and CNEMISIIY ......uoiieiieieiiesiece et 36
8.1.2 MONAZITE BOES. ... veveereereeiteeiteeiesteeste et e s e e ste et e s teeste e e e s be e beeseesaeesteeneeareeeeans 41
8.1.3 Age of MEetamOrPhISM ......cc.oiiiiiiiieiee e 42
8.2 Conditions of MetamorphiSM .........cccccvoiiiiiie e, 43
8.3 A polymetamorphiC tErTane?..........ccooveie e 46
8.4 Refinement of the conditions of the early Palaeoproterozoic high grade
metamorphic event in the Salem BIOCK............ccccooviiiiii i, 47
8.5 Tectonic implications for the Southern Granulite Terrane............c.ccco....... 49
8.6 Comparisons of high P metamorphism in the early Palaeoproterozoic ..... 51
9. CONCLUSIONS ...ttt bbbttt bbbt sreens 53
ACKNOWLEDGEMENTS ....oooiiieieieiese et ene s 54
I REFERENCES ..ottt ens 55
10. FIGURE AND TABLE CAPTIONS......cci ittt 61
11. APPENDIX I- MONAZITE AND ZIRCON CHARACTERISTICS................ 67
11.1 MoNazite CharaCteriStICS.......couviieriieie e 67
SAMPIE JAT e 67
11.2 Zircon CharaCteriStiCS .......oouviieiierieie e ettt 67
SAMPIE JAT s 67
SAMPIE JALL ..ot 68
SAMPIE JALS . 69
12. APPENDIX I1- ANALYTICAL PROCEDURES..........cccooviiiiiies e 70
12.1 Quantified metamorphic analysis- P-T phase diagrams .............c.c. oveeunea. 70
12.2 Quantified metamorphic analysis- Thermobarometry ............cc.ccocevenee. 71
12.3 LA-ICP-MS U-Th-Pb zircon and U-Pb monazite Geochronology............ 73
12.4 Zircon REE CheMISTIY ...cooviiiieie et 75
L3 FIGURES. ... .ottt e b e e b e e re et saesreareene e 77

TATABLES. ... 94



1. INTRODUCTION

Understanding the physical and thermal conditions of tectonism in a temporal
framework provides a wealth of information about the thermal characteristics of
tectonic processes (e.g. Kelsey et al. 2007; Clark et al. 2009b; Cultts et al. 2010). Of
particular interest is the pre-early Palaeoproterozoic metamorphic record, which has
been documented to preserve markedly different metamorphic characteristics,
principally the rarity of eclogite facies assemblages and relative abundance low-medium
pressure, amphibolite-granite facies assemblages (e.g. Harley 1989; Bégin & Pattison
1994, Pattison et al. 2003) when compared to modern day tectonothermal regimes (e.g.
Corfu et al. 2003b; Liou et al. 2004). Exploring the P-T evolution of regions that have
experienced Archaean-earliest Palaeoproterozoic metamorphism can provide a
fundamental window into these thermal and tectonic processes of the earlier Earth (c.f.

Brown 2007a; Brown 2007b).

The southern margin of the Salem Block, comprising the southern Dharwar Craton and
Southern Granulite Terrane in southern India is an ideal area to investigate such P-T
conditions of Neoarchaean-earliest Palaeoproterozoic metamorphism. The Salem Block
underwent high grade metamorphism in the Neoarchaean-Palaeoproterozoic (Peucat et
al. 1993; Raith et al. 1999; Mojzsis et al. 2003; Clark et al. 2009a; Sato et al. in press),
and has also been linked to Neoproterozoic-Cambrian metamorphism (Bhaskar Rao et
al. 1996; MeilRner et al. 2002; Ghosh et al. 2004). The correlation between the timing
and conditions of metamorphism remains poorly understood due to the sparse P-T
constraints and lack of previous work that integrate geochronological and metamorphic

data sets. As a consequence, a full understanding of the southern spatial extent of the



Salem Block and tectonometamorphic processes is currently hampered. This study
presents an integrated geochronological, zircon REE, metamorphic and structural
dataset of the Kanja Malai Hills, situated along the northern boundary of the Palghat
Cauvery Shear System and southern margin of the Salem Block. The results presented
here will aid to: 1) quantitatively constrain the pressure-temperature and timing of
metamorphism of the Salem Block, 2) refine the spatial extent of the Palghat Cauvery
Shear System and the southern extent of the Dharwar Craton, and 3) provide a
foundation for examining the metamorphic conditions of an unusually high P, early

Palaeoproterozoic metamorphosed terrane.



2. GEOLOGICAL BACKGROUND

2.1 Regional geological overview of Southern India

Peninsular India (Fig. 1b) represents a series of largely granulite facies crustal blocks
that are bounded by crust penetrating shear zones and collectively termed the Southern
Granulite Terrane (SGT). This study adopts the definition of the SGT as being the
dominantly granulite facies domain south of the largely granite-greenstone, low grade
Dharwar Craton, southern India (e.g. Ghosh et al. 2004). The most northern unit of the
SGT, the Salem Block, consists of charnockitic, metaigneous and metasedimentary
gneisses that underwent metamorphism in the late Archaean to early Palaeoproterozoic
(Peucat et al. 1993; Raith et al. 1999; Mojzsis et al. 2003; Clark et al. 2009a; Sato et al.
in press). The Salem Block is bounded to the south by the Palghat Cauvery Shear
System (PCSS), also referred to as the Cauvery Shear Zone (Bhaskar Rao et al. 1996;
Chetty et al. 2003) and Palghat Cauvery Shear Zone (Ghosh et al. 2004). The PCSS was
first recognised by Drury and Holt (1980) via Landsat images, and has subsequently
been characterised as a ~100 km wide, E-W trending, crustal scale (Reddy et al. 2003),
dominantly dextral set of anastomosing shear zones, interpreted to represent a
constrictional transpressional flower structure (Chetty et al. 2003; Chetty & Bhaskar
Rao 2006a). Lithologies within the PCSS have been reported to consist of intercalated
aggregates of mafic gneisses, metasedimentary rocks, charnockites (Bhaskar Rao et al.
1996; Bhaskar Rao et al. 2003), and Al-Mg rich gneisses (Shimpo et al. 2006; Collins

et al. 2007a; Santosh et al. 2008; Clark et al. 2009b).



The timing and P-T conditions of metamorphism in the PCSS have been of recent
interest, with studies demonstrating that high to ultrahigh temperature, medium pressure
metamorphism occurred during the Cambrian in the south of the PCSS (Collins et al.
2007a; Santosh et al. 2008; Clark et al. 2009b). In addition, some studies have
presented Sm—Nd and Rb—Sr mineral ages of ca. 500-730 Ma from lithologies of the
PCSS (Bhaskar Rao et al. 1996) and within shear zones of the PCSS (MeiRner et al.
2002). The anomalous structural, lithological, metamorphic and isotopic nature of the
PCSS when compared to adjoining crustal blocks has lead to the general consensus that
the PCSS represents a large-scale crustal structure, although the exact nature and age of
the PCSS remains contentious. Most interpretations of recent work ascribe the PCSS to
one of the following two broad models: 1) the PCSS as a Neoproterozoic to early
Cambrian structure (suture zone) (Meil3ner et al. 2002; Collins et al. 2007a; Santosh et
al. 2009; Clark et al. 2009a) or 2) the PCSS as Archaean crust reworked during the
Palaeoproterozoic and Neoproterozoic (Harris et al. 1994; Bhaskar Rao et al. 1996;
Chetty et al. 2003; Ghosh et al. 2004; Chetty & Bhaskar Rao 2006b). Some workers
have noted lithological and isotopic similarities that extend south of the PCSS to a
lineament, subsequently referred to as the Karur-Kamban-Painavu-Trichur (KKPT)
Shear Zone (Ghosh et al. 2004) or similar Karur-Oddanchatram Shear Zone (KOSZ)
(Bhaskar Rao et al. 2003), which has been interpreted to represent the terrane boundary

between northern and southern crustal blocks.

South of the PCSS, the Madurai Block and Trivandrum Block are separated by the
Achankovil Shear Zone and contain dominantly metasedimentary gneisses, with a

component of charnockitic gneisses in the northern Madurai Block. The Madurai and



Trivandrum Blocks were metamorphosed to granulite facies in the late Neoproterozoic
to Cambrian (Bartlett et al. 1998; Braun et al. 1998; Ghosh et al. 2004; Santosh et al.

2006; Santosh et al. 2006c; Braun et al. 2007; Collins et al. 2007b).

2.2 The Salem Block

The focus of this study is the Salem Block, which is also known as the Northern
Block/Domain (e.g. Drury et al. 1984; Chetty et al. 2003), southern Dharwar Craton
(e.g. Raase et al. 1986) and Karnataka Craton (Bartlett et al. 1998). In this study, it is
referred to as the amphibolite-granulite facies crustal domain extending from the
greenschist-amphibolite boundary in the north, termed the Fermor Line (Fermor 1936),
to the PCSS in the south. The transitional nature of the boundary between the low-grade
Dharwar Craton and the dominantly high grade Salem Block, including structural and
lithological similarities of both blocks (Drury et al. 1984), and a gradational increase in
metamorphic grade north to south from the Dharwar Craton to the southern Salem
Block (Janardhan et al. 1982; Raase et al. 1986; Rameshwar Rao et al. 1991) is
supportive of the Salem Block representing the high grade metamorphosed continuation
of the Dharwar Craton. The Salem Block contains charnockites, variable abundances of
metaigneous rocks and metamorphosed metasedimentary rocks, including calcsilicates
and magnetite-bearing quartzites. The southern granulite facies region of the Salem
Block is dominated by charnockite hills, and relatively minor high grade
metasedimentary enclaves and mafic granulites exposed in the valleys (Drury et al.
1984; Rameshwar Rao et al. 1991; Ghosh et al. 2004). Structurally, the Salem Block
and the Dharwar Craton are characterised by dominantly NNW-SSE to N-S fabrics

(Bhaskar Rao et al. 2003; Chetty et al. 2003) that are deflected into ~E-W orientations
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in close proximity and within shear zones in the northern most PCSS (Ghosh et al.
2004). Workers have investigated the protolith ages of charnockitic and felsic gneisses
throughout the Salem Block using U-Pb zircon geochronology and have obtained
dominantly Mesoarchaean-Neoarchaean ages ranging from ca. 3000-2530 Ma (Peucat
et al. 1993; Raith et al. 1999; Mojzsis et al. 2003; Ghosh et al. 2004; Clark et al. 2009a;

Sato et al. in press).

The Salem Block underwent regional amphibolite-granulite facies metamorphism in the
Neoarchaean-early Palaeoproterozoic. Current age constraints for this metamorphic
event range from ca. 2530-2450 Ma (Peucat et al. 1993; Raith et al. 1999; Mojzsis et
al. 2003; Clark et al. 2009a; Sato et al. in press) using zircon and monazite
geochronology. In addition, some workers suggest that the southern Salem Block
experienced subsequent Neoproterozoic metamorphic/deformation events in close
proximity to, or within, the northern bounding PCSS shear zones, evidenced by Sm—Nd
garnet mineral geochronology yielding ages of ca. 600 Ma (MeifRner et al. 2002),
monazite U-P ages of ca. 610 Ma (Ghosh et al. 2004) and Rb—Sr biotite mineral
geochronology yielding ages of ca. 550-600 Ma, which were interpreted to represent
cooling ages (MeiRner et al. 2002). Previous workers have investigated the pressure
temperature conditions of the middle to southern Salem Block using various
thermometers and barometers and have reported an increase in grade from amphibolite
facies to granulite facies progressing southwards. The range of pressure-temperature
estimates for granulite facies rocks in the south of the Salem Block are ~700-900 °C
and ~5-10 kbar (Harris et al. 1982; Janardhan et al. 1982; Hansen et al. 1984; Raase et

al. 1986; Rameshwar Rao et al. 1991; Hansen & Newton 1995).
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2.3 The Kanja Malai Hills

The Kanja Malai Hills are located in the south of the Salem Block and on the northern
margin of the PCSS (Fig. 1.c), and have been interpreted to be located within the 3—4
km wide E-W Moyar-Attur Shear Zone (Ghosh et al. 2004). The Moyar-Attur Shear
Zone represents the interpreted northern boundary of the PCSS, and contrasts with the
prominent northeast-southwest orientated structures to the north and directly south of
the Salem area. The Kanja Malai Hills contains interlayered mafic granulites, BIF,
granitic gneisses and metapelites (Ghosh et al. 2004; Santosh et al. 2009; Santosh et al.
2010; Sato et al. in press). Sato et al. (in press) recently investigated the age of
magmatism and metamorphism using zircon U-Pb geochronology of a granitic gneiss,
obtaining ages of ~2650 Ma and ~2450 Ma respectively. P-T conditions during
metamorphism at Kanja Malai were estimated by Santosh et al. (2010), who interpreted
retrograde P-T conditions of ~750 °C and < 7.4 kbar using thermobarometry, and 1000
°C and 9-12 kbar during apparent decompression at peak temperature from fluid
inclusion density analyses. However, Santosh et al. (2010) attributed these P-T
conditions to an early Cambrian metamorphic event based on ~540 Ma U—-Pb ages
obtained by Collins et al. (2007a) and Santosh et al. (2006) further south in the PCSS,

rather than Palaeoproterozoic U—Pb ages obtained by Sato et al. (in press).

This project aims to refine the southern boundary of the Salem Block and constrain the
timing and conditions of metamorphism by using the first combined zircon, in situ
monazite geochronological, P-T phase diagram and conventional thermobarometric

dataset in the Salem Block.
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3. FIELD AREA AND LITHOLOGICAL RELATIONSHIPS

The Kanja Malai Hills are a 25 km? east-west trending ridge (11°37°50”-11°37°30” N,
78°02°50”—78°03°20” E). An area of approximately 1km? was mapped in detail in the
northern Kanja Malai Hills that preserves mafic and felsic migmatitic, magnetite-quartz
mylonitic and felsic proto mylonitic gneisses (Fig. 2.a). Structurally-constrained
samples were collected from this area. A steeply dipping to vertical east-west to
northeast-southwest trending gneissic foliation occurs throughout the area (Fig. 2.b),
accompanied by moderately east plunging mineral elongation lineations in higher strain
zones, and occasionally in lower strain mafic lithological layers (Fig. 2.c). Strain
partitioning into high-strain zones that vary from 5 cm wide discrete shear bands (Fig
3.d) to 20 m wide east-west trending shear and proto-mylonitic zones are evident. These
zones are characterised by grain size reduction, and enhanced preferred mineral
orientation. Kinematic indicators preserved in higher strain domains indicate north
block to the east tectonic transport. These kinematic indicators include S-C’ fabrics
preserved in the high strain quartz and magnetite mylonitic shear zone (Fig. 3.€).These
higher strain domains are bound by relatively lower strain stromatic migmatites (Fig

3.b).

S1 and S2 exists within all garnet-bearing mafic gneisses and felsic gneisses, with the
exception of one felsic gneiss unit that only exhibits S2 ~E-W trending foliation (Fig.
3.¢). Within lower strain polyphase deformational gneisses, closed-tight upright
migmatitic folds with steep west-plunging hinges are pervasively found with
wavelengths from 5 cm to 2 m (Fig. 3.b). In higher strained proto-mylonitic felsic

gneisses, folds are dominantly upright tight-isoclinal (Fig. 3.g), with east to north-east
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gently-moderately plunging hinges that are parallel to the mineral elongation lineation.
These folds have wavelengths between 50 cm-2 m and deform S1 and leucosomes.

Features of main lithologies are summarised in Table 1.

Due to the intensity of the deformation at Kanja Malai, there is limited preservation of
primary lithological relationships between mafic and felsic lithologies. However, a 1 m
wide boudinaged mafic gneiss intrudes a migmatitic gneiss (sample JA14), and one

contact was observed showing a mafic gneiss lens obliquely cross cutting felsic gneiss

foliation, indicating that mafic gneiss lithologies intruded felsic lithologies (Fig. 3h).
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4. MINERAL PETROLOGY

Samples were taken from an approximately 1km? area in the northern Kanja Malai
Hills. Samples can be distinguished into groups defined by similar petrological features
and relationships. These groups represent the main lithological units present in the
northern Kanja Malai Hills used for analysis in this study. Samples can be ascribed to
three groups: 1) amphibolite-granulite garnet bearing mafic assemblages, 2) kyanite-
garnet bearing felsic granulites, and 3) felsic granulites. Petrological descriptions of

eight samples are grouped into these three petrological groups described below.

4.1 Kyanite and garnet bearing felsic gneisses

4.1.1 SAMPLE JA3 AND JA7

Samples JA3 and JA7 were taken from kyanite, garnet, biotite plagioclase, K-feldspar,
quartz gneisses (Fig. 3.f) in the northern Kanja Malai Hills that preserve folded S1 and
planar E-W trending S2 foliation. Medium to coarse grained subhedral porphyroblastic
garnet (2-5 mm in diameter), fine to medium grained bladed kyanite (<2 mm in
diameter), fine to coarse grained subhedral to anhedral, platy to equant plagioclase, K-
feldspar and quartz grains (0.5-6 mm), fine to medium grained biotite (1-3 mm along
longest axis) and rare fine grained, euhedral rutile (<2 mm) define the peak
metamorphic assemblage, and are usually found in direct contact with each other (Fig.
4.a). A well-developed gneissosity is defined by biotite grains. Garnet grains are
typically fractured and contain equant very fine quartz inclusions, and are commonly
partially separated from plagioclase, K-feldspar and quartz by a very fined grained

corona of biotite. Kyanite grains always occur next to garnet grains and exist
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predominantly in strain shadows. However, garnet and kyanite grains may be separated
by a very fine corona of biotite. Locally, layers of fine grained equant plagioclase, K-
feldspar and quartz grain bands, alternating with layers of very fine to fine grained
biotite grains wrap around garnet and coarse grained plagioclase, K-feldspar and quartz

grains (Fig. 4.b). Myrmekitic quartz/plagioclase textures are observed in some grains.

4.2 Garnet bearing mafic gneisses

Garnet bearing mafic gneisses (Fig. 3.a) were taken from a prominent ridge in the north

of the Kanja Malai Hills mapped area.

4.2.1 SAMPLE JA9A

Medium to coarse grained, equant porphyroblastic garnet (up to 10 mm), medium
grained subhedral clinopyroxene grains (2-4 mm in diameter), medium grained,
anhedral equant to platy plagioclase and hornblende grains (2-3 mm long), fine grained
euhedral rutile (up to 2 mm) and anhedral ilmenite comprise the interpreted peak
assemblage (Fig. 4.c). Foliation is defined by hornblende and plagioclase. Garnet grains
are usually in contact with clinopyroxene, and are often also in contact with plagioclase
and hornblende grains. Garnet and clinopyroxene-rich domains of approximately 20
mm in diameter occur, with garnet and generally clinopyroxene-poor domains outside
these pods containing dominantly plagioclase and hornblende grains. Clinopyroxene
grains are sometimes present in plagioclase-hornblende rich domains surrounded by
plagioclase and hornblende grains. Rutile grains always occur next to ilmenite grains
and typically occur on clinopyroxene-plagioclase grain boundaries. limenite sometimes

exists without rutile, and interpreted post peak magnetite never exists with rutile, with
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both single ilmenite and magnetite grains occurring along grain boundaries and in

garnet and clinopyroxene inclusions in contact with fractures.

4.2.2 SAMPLE EM16 AND JA10

Coarse grained, porphyroblastic garnet (up to 20 mm), subhedral equant to platy
medium grained clinopyroxene (2-4 mm), anhedral medium grained plagioclase (3 — 5
mm), anhedral fine grained quartz (1 mm), fine to coarse grained anhedral ilmenite (1-5
mm) and medium grained anhedral hornblende (only for JA10) define the peak
assemblage (Fig. 4.d,e,f). Foliation is not apparent in these samples. Garnet grains are
always in direct contact with and are typically partially to completely surrounded by
clinopyroxene, in addition to containing anhedral clinopyroxene inclusions.
Clinopyroxene grains can exhibit needle laminae (commonly in clinopyroxene
inclusions in garnet) that are parallel to cleavage. limenite is fine grained in EM16 and
only occurs at grain boundaries or in garnet and clinopyroxene grains when in contact
with fractures, whereas ilmenite is fine to coarse grained in JA10 and is commonly in
contact with garnet. Quartz is typically restricted to inclusions in garnet and along grain
boundaries. No amphibole was observed in EM16. However, very fine amphibole
growth may exist at some clinopyroxene, garnet and plagioclase grain boundaries. Rare
fine grained (<2 mm) hornblende is observed in JA10 and is restricted to occurring next
to clinopyroxene and ilmenite grains. Rare fine grained anhedral apatite occurs in

contact with garnet and clinopyroxene grains.
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4.2.3 SAMPLE EM19

Porphyroblastic coarse grained garnet (up to 20 mm), subhedral medium grained,
equant to prismatic clinopyroxene (2-4 mm), anhedral medium to coarse grained platy
plagioclase (4—7 mm), medium grained subhedral to anhedral hornblende (up to 4 mm)
and occasional euhedral fine to medium grained rutile and anhedral fine to medium
grained quartz (1-3 mm) comprise the interpreted peak assemblage (Fig. 4. g). Foliation
is defined by hornblende and plagioclase grains. Garnet porphyroblasts occur next to
clinopyroxene, plagioclase and hornblende grains but are always separated by a thin
(0.5 mm width) corona of very fine grained actinolite-magnesiohornblende. Garnet
grains are only in direct contact with clinopyroxene when clinopyroxene exists as fine
to medium grained inclusions in garnet. Fractures in garnet grains are also filled by fine-
grained actinolite-magnesiohornblende. Hornblende and plagioclase grains more
commonly occur next to each other but are always separated by very fine grained
actinolite-magnesiohornblende. Fine grained magnetite grains (< 2 mm in diameter)
occur dominantly along garnet-clinopyroxene grain boundaries and in contact with

fractures in garnet.

4.3 Felsic gneisses

4.3.1 SAMPLE JA13 AND JA14

Medium grained garnet (up to 3 mm in diameter), fine to medium grained anhedral
quartz, plagioclase and K-feldspar and fine grained anhedral ilmenite are interpreted to
comprise the peak assemblage (Fig. 4.h). Garnet grains contain occasional quartz
inclusions and occur next to quartz, plagioclase and K-feldspar grains. Garnet grains are

commonly isolated from plagioclase and K-feldspar grains by a corona of fine-grained
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biotite. Biotite is only present around and in contact with garnet grains. Very fine to
fine, randomly oriented acicular muscovite grains have overgrown plagioclase and K-
feldspar grains, however original grain boundary orientations and twinning of
plagioclase and K-feldspar can still be at least partially observed in most of these
interpreted relic grains. limenite occurs along quartz boundaries and within

plagioclase/muscovite aggregate grains.
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5. MINERAL CHEMISTRY

Mineral chemistry was obtained on a Cameca SX51 electron microprobe (EPMA) at
Adelaide Microscopy, University of Adelaide. A beam current of 20 nA and an
accelerating voltage of 15 kV was used to obtain spot analyses and spot traverses of
minerals. Elemental maps were obtained using an accelerating voltage of 15 kV and 100
nA, using WDS spectrometers for Fe, Mg, Ca and Mn. A representative summary of
mineral chemistry of samples is presented in Table 2—3. Symbols used: Xg. = Fe?*/(Fe®*
+ Mg), Xmg = Mg/(Fe?* + Mg), Xam = Fe**/(Fe** +Mg+Ca+Mn), Xp, =
Mg/(Fe**+Mg+Ca+Mn), Xars = Ca/(Fe?*+Mg+Ca+Mn), Xspss = Mn/(Fe?*+Mg+Ca+Mn),
Xab = Na/(Na+Ca), Xa, = Ca/(Na+Ca), Xor = K/(K+Na), Fsp: Xk = K/(K+Ca+Na), Fsp

Xna = Na/(K+Ca+Na), Fsp Xca = Ca/(K+Ca+Na), X = Al/(Al+Fe**+2Ti).

5.1 Garnet bearing mafic gneiss samples

5.1.1 GARNET

Garnet grains from mafic gneiss samples show compositional zonation trends with some
degree cation proportion variation for different samples, quantified by traverses across
grains. Zoning profiles are characterised by increasing Xam values from the core to the
rim (c = cores, r = rims: EM16 ¢ = ~0.57, r =~0.59, EM19 ¢ = ~0.49, r = ~0.52, JA10 c
=~0.60, r =~0.70, JA9a ¢ = ~0.58, r = ~0.59). Xpy typically displays an inverse Xaim
zonation pattern and decreases from the core to the rim (EM16 ¢ =~0.22, r = ~0.18,
EM19 ¢ =~0.32,r=~0.29, JA10 ¢ = ~0.22, r =~0.18, JA9a c = ~0.31, r = ~0.26). Xars
increases from core to rim (EM16 ¢ = ~0.18, r = ~0.22, EM19 ¢ = ~0.17, r = ~0.19,

JA10c=~0.17,r=~0.21, JA9a ¢ = ~0.16, r = ~0.20). Xspss is low and ranges from



20

0.009-0.017 for mafic gneiss samples. A general trend of increasing Xspss core to rim is
observed in sample EM19 when garnet is in contact with actinolite-magnesiohornblende

(c=~0.009, r =~0.017). No trend in Xspss is evident in samples JA9a, JA10 and EM16.

5.1.2 FELDSPAR

Plagioclase in garnet bearing mafic gneiss samples are typically sodic, with Xa, ranging
from 0.38-0.53 for sample JA10, 0.37-0.43 for sample EM16, 0.39-0.50 for sample
JA9a and 0.36-0.47 for sample EM19. Xa, decreases from core to rim in plagioclase
grains that are in contact with garnet (c = ~0.48, r = ~0.41 for JA9a). X are for the

above samples are low and range from 0.003-0.017.

5.1.3 CLINOPYROXENE

Clinopyroxene in JA9a has X values ranging from 0.163-0.312, with recalculated Fe**
cation amounts ranging between 0-0.165 for an oxygen formula unit, Al,O3 wt. %
values between 2.12-4.72 and Na,O wt. % between 0.74-1.09. In JA10, clinopyroxene
inclusions are typically more magnesian (Xg = 0.250-0.314, recalculated Fe** cations =
0.067-0.127, Al,03 = 3.1-3.2 wt. %, Na,O = 0.86-1.11wt. %) than clinopyroxene
occurring among garnet domains interpreted to be included in the peak assemblage (Xre
= 0.251-0.466, recalculated Fe** cations= 0.077-0.152, Al,03= 2.67-4.06 wt. % and
Na,O =0.93-1.07 wt. %). Similarly for sample EM19, clinopyroxene inclusions within
garnet are slightly more magnesian (Xg. = 0.183-0.190, recalculated Fe** cations =
0.062-0.080, Al,03 = 3.400-4.210 wt. % and Na,O = 0.540-0.960 wt. %) than
clinopyroxene interpreted to be part of the peak assemblage (Xge = 0.194-0.281,

recalculated Fe®* cations = 0.039-0.102, Al,O3 = 3.79-4.26 wt. % and Na,O = 0.50—
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0.90 wt. %). In EM186, there is no distinct trend between clinopyroxene inclusions in
garnet and interpreted peak assemblage clinopyroxene (inclusion: Xg = 0.310-0.382,
recalculated Fe** cations = 0.057-0.088, Al,O3 = 2.95-3.68 wt. % and Na,O = 0.74—
0.97 wt. %, peak: Xge = 0.347-0.356, recalculated Fe** cations = 0.094-0.121, Al,O3=

3.03-3.59 wt. % and Na,O = 0.76-1.01 wt. %).

End member proportions of all clinopyroxene analyses were determined using software
program AX (Powell et al. 1998). Clinopyroxene in all garnet-mafic rocks are
dominantly diopside (JA9a: X;q = 0.020-0.068, Xp; = 0.695-0.897, Xpq = 0.036-0.246
and Xag = 0.001-0.045; JA10: X;g = 0.020-0.0457, Xpi = 0.578-0.786, Xng= 0.161—
0.363 and Xag = 0.018-0.039, EM16; X3 = 0.022-0.052, Xp; = 0.646-0.805, Xiq =
0.131-0.293 and Xag = 0.017-0.041, EM19; X;q = 0.025-0.049, Xp;i = 0.722-0.865, Xnq

=0.078-0.220 and Xag = 0.002-0.026).

5.1.4 AMPHIBOLE

Following the classification methodology and names of Leake et al. (1997), amphibole
in JA9a has (Ca + Na)g ranging from 1.788-1.919 and Nag ranging from 0-0.133 per
formula unit (pfu), and is member of the calcic group, defined by (Ca + Na)g > 1.50 and
Nag < 0.50 pfu. Similarly, amphibole in JA10 and EM19 are calcic with (Ca + Na)g
ranging from 1.936-1.948 and 1.760-1.880 and Nag ranging from 0.033-0.077 and 0—
0.010 pfu respectively. The capability to classify amphiboles into subdivisional groups
defined by Leake et al. (1997) is somewhat limited due to the inability of the EPMA to
distinguish cation oxidation state proportions (e.g., Fe**, Fe?*). In addition, the presence

of OH’, FI"or CI" in amphibole results in the extreme difficulty in estimating Fe**
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cations. Therefore, in order to minimise errors associated with uncertainty of Fe** and
Fe?*, amphibole has been classified into subdivisional groups based on unknown Fe®*
and Fe?* proportions. Amphibole in sample JA9a is classified along the
magnesiohornblende—tschermakite and edenite—pargasite/magnesiohastingsite
boundaries ((Na + K)a = 0.414-0.612, Xy = 0.668-0.751, Si = 6.370-6.774). In JA10,
amphibole is pargasite-magnesiohastingsite ((Na + K)a = 0.709-0.742, Xug = 0.393—
0.409, Si = 6.313-6.409). Medium—coarse grained amphibole in EM19 is
magnesiohornblende—edenite ((Na + K)a = 0.428-0.542, Xug = 0.675-0.720, Si =
6.540-6.809), whereas very fine to fine grain amphibole is classified as
magnesiohornblende-actinolite that typically rims garnet and clinopyroxene ((Na + K)a
=0.086-0.280, Xmg = 0.699-0.782, Si = 7.050-7.700). Ti ranges from 0.1837-2.101 pfu

for JA9a, 0.152-0.227 pfu for JA10 and 0.007-0.191 pfu for EM19.

5.1.5 ILMENITE
Mn content in ilmenite ranges from 0.09-0.11 wt. % for JA10, 0.11-0.16 wt. % for
JA9a and 0.02-0.15 wt. % for EM16. Recalculated Fe** cations = 0.041-0.066 for

JA9a, 0.135-0.199 for JA10 and 0.142-0.211 for EM16.

5.1.6 MAGNETITE
In sample EM19, Al content in magnetite ranges from 0.02-0.07 wt. %, which
corresponds to Xa; of 0.001-0.002. Sample JA9a contains no Al content above the

minimum detection limit of the EPMA.
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5.2 Kyanite-garnet bearing felsic gneiss samples

5.2.1 GARNET

Samples JA3 and JA7 display compositional zonation profiles that have an increase in
Xee from core to rim (c = core, r =rim, JA3 ¢ =~0.58 r = ~0.67, JA7 ¢ =~0.63, r =
~0.65), similarly an increase in Xam from core to rim (JA3 ¢ =~0.57,r = ~0.61, JA7 c
=~0.57, r = ~0.59) a decrease in Xp, from core to rim that is inverse to Xam (JA3 ¢ =
~0.37,r=~0.25, JA7 ¢ = ¢ = ~0.33, r = ~0.28), an increase in Xgs from core to rim (JA3
c=~0.07,r=~0.12, JA7 ¢ = ~0.09, r = ~0.13) and low Xspss Values that typically
increases slightly from core to rim when in contact with biotite (JA3 ¢ = ~0.004, r =
~0.007, JA7 ¢ = ~0.012, r = ~0.016). Figure 5 shows an elemental map for garnet in

JAS.

5.2.2 FELDSPAR

Samples JA3 and JA7 both contain K-rich alkali feldspar and plagioclase. In sample
JA3, plagioclase has similar proportions of Ca and Na in the core, with Xc, and Xna
values of ~0.49. Towards the rim Xc, decreases (~0.40), whereas X, increases (~0.58).
Xk is low and typically decreases slightly from core (~0.080) to rim (~0.012). K-rich
alkali feldspar has Xk ranging from ~0.91-0.92, and is Ca poor with Xc, of ~0.003—

0.04.

Sample JA7 has plagioclase with a zonation profile trend similar to sample JA3,
whereby Xy, increases from core (~0.55) to rim (~0.66), and Xc, decreases from core

(~0.44) to rim (~0.34). Plagioclase is Xk poor, and increases slightly from core (~0.011)
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to rim (~0.016). In K-rich alkali feldspar, Xk ranges from 0.91-0.92, with a low Xc, of

~0.001.

5.2.3 BIOTITE

In sample JA3, Xug has a range of 0.70-0.726 and a Ti content between 3.4 and 4.15 wt.
%. Biotite in sample JA7 is slightly less magnesian Xwg has a range of 0.627-0.632 and
0.34-3.52 wt. %. Al content in biotite ranges from 15.84-16.07 wt. % in JA3 and

16.52-17.01 wt. % in JAT.
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6. OUTLINE OF ANALYTICAL TECHNIQUES

6.1 Quantified metamorphic analysis- P-T pseudosections and conventional
thermobarometry

Phase equilibria and conventional thermobarometry (average P-T) have been employed
in this study to delineate the thermal and physical P-T conditions of metamorphism in
the Kanja Malai Hills. The integration of this data with zircon and in situ monazite
geochronology can allow temporal constraints to be placed on the high grade
metamorphism in the southern Salem Block. Forward model phase equilibria (phase
diagrams) were constructed on kyanite-garnet bearing gneiss samples JA3 and JA7.
Phase diagrams are not suitable to use for P-T analysis of high grade mafic rocks
showing evidence for partial melting, as a thermodynamic model for mafic melt
compositions does not exist (Powell & Holland 2008). As a result, conventional
thermobarometry has been used for obtaining P-T constraints on three garnet bearing

mafic gneiss samples (JA9a, JA10 and EM19).

Whole rock geochemical analysis was used to determine the bulk composition of
sample JA3 and JA7 because they were considered homogeneous at the scale of the
sample size. The Electron microprobe was used to obtain spot chemical analyses for
phase diagram compositional isopleths of sample JA3 and JA7, and minerals that are
considered to have once been in equilibrium with each other in samples JA9a, JA10 and
EM19 for thermobarometry calculations. Analytical procedures for phase diagram

calculation and conventional thermobarometry estimates are provided in Appendix II.
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6.2 Zircon and monazite geochronology and zircon trace and REE chemistry

U-(Th)-Pb geochronology was conducted using the Laser Ablation Inductively Coupled
Plasma Mass Spectrometer (LA-ICP-MS) at Adelaide Microscopy, University of
Adelaide. The primary aim of geochronology was to determine the age of
metamorphism at Kanja Malai. In situ monazite grains were used in order to allow age
data to be related to microstructural relationships within the rock (e.g. Kelsey et al.
2007; Cultts et al. in press). Monazite, when combined with zircon geochronology can
allow more robust age constraints on metamorphism and the nature of metamorphism to
be established. These geochronometers have inherently different growth behaviour
systematics in melt bearing systems (Kelsey et al. 2008), and so integrating and
comparing zircon and monazite geochronology can be useful when constraining the
timing of metamorphism and possibility of polymetamorphism. Zircon Th/U trace
element and REE data was obtained to investigate the link between zircon ages, timing
of metamorphism and growth of silicate metamorphic minerals (e.g. Rubatto 2002).
Zircon internal morphological descriptions are provided in Appendix I, and analytical
procedures for U-(Th)-Pb zircon and monazite geochronology, and zircon trace and

REE data are provided in Appendix Il.
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7. RESULTS

7.1 P-T pseudosections

P-T pseudosections were constructed for two garnet-kyanite felsic gneiss samples, JA3
and JA7 as such rock compositions are conducive to graphical P-T analysis. Figure 6.a
shows the P-T pseudosection calculated for JA3, contoured for garnet modal
proportions (gt = 0.05, 0.1) and biotite modal proportions (bi = 0.01, 0.03, 0.05, 0.07).
In Fig. 6.b, compositional isopleths are calculated for Xam = 0.45, 0.5, 0.55, 0.6, 0.65,
0.7, Xers = 0.1, 0.15, 0.2, 0.25, 0.3 and Xan = 0.35, 0.4, 0.45, 0.5. P-T pseudosection
constructed for JA7 is shown in Fig. 7.a showing contours calculated for garnet modal
proportions (gt = 0.01, 0.05, 0.1) and biotite modal proportions (0.01, 0.03, 0.05).
Figure 7.b shows compositional isopleths of Xgs = 0.1, 0.15, 0.2, 0.25, Xam = 0.6, 0.65,

0.7, 0.75 and Xan = 0.35, 0.4.

In JA3, garnet modal proportions broadly decrease down pressure and temperature,
from 0.1 to 0.03. Biotite modal proportions increase down pressure and temperature,
from 0.01 to 0.07. Xgs increases with increasing pressure and decreasing temperature
from 0.1 to 0.3. Xa, increases with decreasing pressure and temperature from 0.35 to
0.5, and Xam increases with decreasing temperature from 0.45 to 0.7. In sample JA7,
garnet modal proportions decrease with decreasing pressure and temperature from 0.1 to
0.01. Biotite modal proportions increase with decreasing pressure and temperature from
0.01 to 0.05. Compositional isopleths for Xgs increase with increasing pressure and
decreasing temperature, from 0.1 to 0.25. Xam increases with decreasing temperature

from 0.6 to 0.75. Xa, increases with decreasing pressure from 0.35 to 0.4.
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7.2 Conventional thermobarometry

Samples were modelled as fluid absent, assemblages with JA9a, EM19: aH,0 = 0.5,
and JA10: aH,0 = 0.25 reflecting the somewhat variable abundance of amphibole in
samples. For sample JA9a, P-T estimates for aH,O = 0, 0.25, 0.5 all pass the y* test at
95% confidence. For JA9a-2, aH,0 = 0.5 most closely corresponds with Fe-Mg reaction
thermometers, thus making it an appropriate selection for use in P-T estimate
calculations. More ambiguity is associated with estimating aH,O for JA10 because,
whereas JA10-1 is relatively sensitive to aH,O and only P-T estimates with aH,0 =
0.25 pass the %* test at 95% confidence (combined with good correspondence with Fe-
Mg thermometers), JA10-2 is less sensitive to aH,O variations, whereby aH,0 = 0,
0.25, 0.5 all pass the y” test at 95% confidence. Furthermore, aH,O = 0.5 most closely
corresponds to Fe-Mg thermometers, which is at odds with analysis set JA10-1. This
discrepancy can be reconciled by considering that different input compositions for
minerals have been used for the two different average P-T calculations. For sample
EM19, all P-T estimates except aH,0 = 0.25 for EM19-2 pass the ¥ test at 95%
confidence. A relatively small uncertainty for both EM19-1 and EM19-2 analysis sets
exists when aH,O = 0.5 (~890 £ 58°C, ~ 12.5 £ 1.3 kbar), and when combined with
good correspondence with Fe-Mg thermometers, aH,O = 0.5 appears to be an

appropriate estimate for use in average P-T calculations.

Average P-T estimates and aH,O are summarised in Table 4 and Fig. 8 and 9. As all
samples used for conventional thermobarometry were taken from a ~100m? area,
weighted averages of estimates are presented here. A weighted average of 839 + 42 °C

(1 o) and 11.5 + 1.6 kbar (1 o) was obtained using end member activities and optimal
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aH,0 values as outlined previously. Barometry on samples JA3 and JA7 were
calculated using garnet-kyanite-quartz-plagioclase and are superimposed on Fig. 6 and 7

and presented in Table 4.

7.3 Zircon and monazite LA-ICP-MS age data

Analytical LA-ICP-MS zircon and monazite data are provided in Table 5-9.
Representation of results are presented in Fig. 10-13. Representative zircon
Cathodoluminescence and monazite Backscatter-Electron images are presented in Fig.

14.

7.3.1JA3

Age data for JA3 are plotted on a conventional concordia plot and presented in weighted
average and probability density distribution plots in Fig. 10. Oscillatory zoned cores,
strongly luminescent domains and weakly luminescent cores and rims were targeted for
analysis. Outer rims were unable to be analysed due to the thickness of these rims being
<30 um. 89 analyses on 43 zircon grains were analysed over multiple sessions in order
to minimize any inaccuracy of results due to potential variability of the LA-ICP-MS and
possibility for the inaccuracy of results to exceed the uncertainty of analyses throughout
a single analytical session. 19 analyses were discarded due to appreciable noise of
isotopic ratio signal and limited integration time of an acceptable part of the signal
(analyses discarded are denoted with * in Table. 5-6). Of the 70 analyses for which ages
were obtained, ?°’Ph/ 2°°Pb ages range between 2418- 2637 Ma and concordances range
between 88-111%. Two populations are apparent from Fig. 10.a at ca. 2485 Ma and ca.

2600 Ma; corresponding well with different internal zonation morphologies observed in
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CL. Oscillatory zoned cores correspond to the older age population. These have a
weighted mean 2°’Pb/ 2°Pb age of 2607 + 24 Ma (20, 100 + 5% concordance, MSWD =
1.2, n =13, Fig. 10.b,c). Weakly luminescent cores and rims correspond to the younger
age population and give a weighted mean 2°’Pb/ 2°°Pb age of 2481 + 22 Ma (25, 100 +
5% concordance, MSWD = 1.8, n = 20, Fig. 10.d,e). No trend could be determined for
strongly luminescent featureless domains, however these domains have an age range

between 2421-2539 Ma.

7.3.2 JA13

Conventional concordia, probability density distribution and weighted average plots for
sample JA13 are presented in Fig. 11. 41 analyses were conducted on 36 grains
targeting weakly-moderately oscillatory and concentric zoned luminescent cores,
weakly luminescent featureless cores and weakly luminescent rims. Two analyses were
discarded due to short integration time of an acceptable part of the isotopic signal. **’Pb/
2%pp jsotopic ages for analyses range from 2356 + 36-2662 + 40 Ma (20) and
concordances range from 60-104%. Two populations exist for JA13, with a younger
peak at ca. 2490 Ma and an imprecise older peak at ca. 2635 Ma (Fig. 11a). Analyses
conducted on concentric zoned cores, weakly luminescent featureless cores and weakly
luminescent rims correspond to the younger age population and analyses with 100 +
10% concordance yield a ?’Pb/ ?®°Pb weighted average of 2488 + 14.8 Ma (26 MSWD
of 1.16, n = 27, Fig. 11.b,c). Only three analyses on oscillatory zoned cores were
possible because of the small size of the cores (Fig. 11.d). These cores give ages of

(2662 £ 39 Ma, 2631 + 36 Ma and 2593 *+ 36 Ma, 2 ). A Pb loss trend with >10%
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discordance exists for seven analyses. These analyses correspond with weakly

luminescent featureless cores and are often surrounded by chaotic internal features.

7.3.3JAl4

49 analyses on 40 zircon grains were conducted over multiple LA-ICP-MS sessions and
targeted weakly luminescent cores, strongly luminescent domains and weakly
luminescent rims. Age data is presented in conventional concordia, probability density
distribution weighted average plots in Fig. 12. Analyses yielded a ?°’Ph/ ?®°Pb age range
from 2425 + 34 Ma-2537 + 36 Ma (206) and a concordance range from 94-116%.
Different internal features observed under CL did not correspond with any distinctive
age patterns and one age population exists at ca. 2490 Ma. The °’Ph/ ?°Pb age
weighted average for 100 £ 10% concordant analyses is 2493 + 12 Ma (26 MSWD =
1.4, n = 46). Given that the internal morphology analysed in this sample is typical of
morphological features observed in metamorphic growth or recrystallisation of zircon
(Corfu et al., 2003), the quoted weighted average age is the best estimation for the age

of metamorphism for this sample.

7.3.4 JAT

Conventional concordia, weighted average and probability distribution plots for
monazite analyses of sample JA7 are provided in Fig 13. 16 analyses on 16 monazite
grains were conducted targeting both light and dark domains. Three analyses were
discarded due to variable nature of the isotopic signal and inability for a portion of the
signal with a sufficient integration time to be selected. Despite heterogeneous internal

morphologies and variations in textural relationships of monazite grains to other
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minerals, one age population is apparent. 13 analyses have *°’Pb/ *°Pb ages that range
from 2426 + 34-2509 + 45 Ma (20) and 97-102% concordancy. A weighted average
207pp/ 208py, gge of 2467 + 20 Ma (26) and MSWD of 1.11 was yielded from 13
analyses. The quoted weighted average is the best estimate for metamorphism for this
sample and is consistent with the interpreted metamorphic ages yielded by zircon

samples.

7.4 Zircon chemistry

7.4.1 ZIRCON U-TH-PB CHEMISTRY
Plots of U versus ?*2Th and 2’Pb/*°Pb versus *Th/?*®U are presented in Fig. 15 for
all analysed zircon samples (JA3, JA13, JA14). Data are divided into analyses of key

CL features exhibited by zircon grains in each sample.

Oscillatory zoned cores of sample JA3 (kyanite-garnet bearing gneiss) preserve ~350
ppm U and 90 ppm Th concentrations, and have 2**Th/?*®U ratios that range from 0.03—
1.49 and average of ~0.40. Analyses of strongly luminescent, featureless domains have
~140 ppm U, ~30 ppm Th, and 2**Th/?**U ratios that range from 0.06-0.55, with a
markedly lower average *Th/**®U ratio of ~0.21, compared to oscillatory cores.
Weakly luminescent domain analyses have ~260 ppm U and ~30 ppm Th
concentrations, and varying 2**Th/?*®U ratios from 0.02-0.48, that are on average (avg.
282Th/>®y = 0.13) substantially lower than oscillatory cores and strongly luminescent,
featureless domains. Although there is no definitive correspondence between CL
features and Th or U, a positive correlation exists between Th and U for all data for

sample JA3 (Fig. 15.a). A broad positive trend exists between *2Th/?*8U ratio and
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207pp2%ph age, whereby older cores generally have higher 22Th/?*8U ratios, and
younger weakly luminescent domains have lower 2**Th/?®U ratios. Strongly
luminescent featureless domains tend to occupy the transition between older Th
enriched oscillatory cores and younger, Th depleted weakly luminescent domains (Fig.

15.b).

Sample JA13 displays interpreted inherited oscillatory zoned cores, concentric zoned
cores, weakly luminescent cores and weakly luminescent rims. Three oscillatory zoned
inherited cores were analysed and have ~100 ppm U, ~50 ppm Th (Fig. 15.c) and
2%2Th/>*8U ratios of 0.46, 0.53 and 0.57, which are distinct from other analyses when
these core are plotted on 2?Th/?8U against 2°’Pb/*®Pb age (Fig. 15.d). Concentric
zoned cores preserve ~200 ppm U values and ~80 ppm Th values, and 2*Th/?*®U ratios
that range from 0.22-0.54 (avg. = 0.38). Weakly luminescent cores have ~350 ppm U
and ~50 ppm Th and have a range of ?**Th/**®U from 0.01-0.42 with a lower ratio
average of avg. = 0.22 in comparison to the ratio average of concentric zoned cores.
Similarly, rims have ~300 ppm U and ~30 ppm Th, with 22Th/?®U ratios lower than
concentric zoned and weakly luminescent cores (0.01-0.31, avg. = 0.12). Represented
in Fig 15.d, a transitional decrease in 2*Th/?*®U ratios is observed from concentric
zoned cores to weakly luminescent cores and rims, however all analyses fall into one
207pp2%ph age bracket with (ca. 2450-2530 Ma) with no distinct trend between
282Th/>*8U ratios and 2°’Pb/*®Pb age, with the exception of the interpreted inherited

cores.



34

Analyses of JA14 (Fig. 15.e,f) have been divided into cores, rims and strongly
luminescent, featureless domains. Cores preserve ~400 ppm U and ~70 ppm Th and
have a wide range of 2*Th/?*®U ratios between 0.08-0.65 (avg. = 0.37). Strongly
luminescent featureless domains have ~250 ppm U and ~70 ppm Th, with varying
2%2Th/>*8U ratios from 0.04-0.94, with a slightly larger ratio average when compared to
cores (avg. = 0.47). Rims of sample JA14 have ~350 ppm U and ~30 ppm Th and
distinctly lower 2**Th/*®U values than cores and strongly luminescent domains (0.03—

0.10, avg. = 0.07).

7.4.2 ZIRCON REE CHEMISTRY

Chondrite normalised zircon REE analyses are presented in Table 10. Sample JA14
(Fig. 16.a) has zircon grains with XREE = ~790-2300 ppm. The chondrite normalised
REE patterns for these zircon cores are characterised by steep LREE patterns (Smy/La,
= 84.80-271.96, avg. = 165.60), enrichment of HREE (Lu,/Sm, = 80.59-173.01, avg. =
142.23), a positive Ce anomaly (Ce/Ce* =31.42-97.56, avg. = 68.24) and negative Eu
anomaly (Eu/Eu* = 0.04-0.19, avg. = 0.08), whereby Ce/Ce* = Ce,/N(La, X Pry),
Eu/Eu* = Euy/N(Sm, X Gdy,) (Taylor & McClennan 1985) and , denotes the element has
been chondrite normalised. In comparison to cores, zircon rims of sample JA14 display
variably steep LREE patterns (Smy/La, = 13.92-633.85, avg. = 261.65), are less
enriched in HREE (Lu,/Sm, = 26.15-151.19, avg. = 71.54), have a variable positive Ce
anomaly (Ce/Ce* = 7.98-128.27, avg. = 66.12) and slightly less pronounced negative

Eu anomaly (Eu/Eu* = 0.045-0.40, avg. 0.14).
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Sample JA3 (Fig. 16.b) have zircon grains with XREE = 810.69-3042.83 ppm. Zircon
oscillatory zoned cores show chondrite normalised patterns that are characterised by
moderate LREE slopes (Smy/La, = 8.27-43.14, avg. = 17.06), HREE enrichment
(Lun/Sm, =45.77-188.77, avg. = 96.47), a moderately positive Ce anomaly (Ce/Ce* =
4.14-94, avg. = 6.32), and a negative Eu anomaly (Eu/Eu* = 0.17-0.25, avg. = 0.24).
Weakly luminescent domains (cores and rims) exhibiting internal morphologies typical
of solid state recrystallisation (e.g. ‘ghost zoning’, Hoskin & Black 2000) have LREE
slopes of Smy/La, = 4.10-67.71 (avg. = 20.66), variable but on average less HREE
enriched slopes compared to oscillatory zoned cores (Lu,/Sm, = 9.23-188.74, avg. =
73.18), with a variable small to large positive Ce anomaly (Ce/Ce* = 2.52-14.66, avg. =
5.55), and variable negative Eu anomaly (Eu/Eu* = 0.44-0.77, avg. = 0.35). Weakly
luminescent domains (cores and rims) that do not show solid state recrystallisation
features have variable LREE slopes (Sm,/La, =7.57-91.45, avg. =26.06), HREE of
Lu,/Sm, = 16.22-59.24 (avg. = 32.04), with a variable Ce positive anomaly (Ce/Ce* =
1.99-43.03, avg. = 10.41) and a less pronounced negative Eu anomaly compared to
oscillatory zoned cores and interpreted solid state recrystallisation domains (Eu/Eu* =

0.14-0.92, avg. = 0.54).
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8. DISCUSSION

This study has focused on examining the timing and conditions of metamorphism of the
Kanja Malai Hills, in the southern Salem Block and in the northern PCSS along the
Moyar-Attur Shear Zone. The timing and conditions of metamorphism of the Kanja
Malai Hills have significant implications for refining the northern extent of
Neoproterozoic-Cambrian metamorphism within the PCSS, southern extent of the
Archaean-Palaeoproterozoic metamorphosed Salem Block and constraining the physical
conditions experienced during metamorphism. The following discussion will address
the implications of the results of the timing and conditions of metamorphism for the
Salem Block, and compare these to the early Palaeoproterozoic metamorphic rock

record.

8.1 Interpretation of zircon and monazite ages

8.1.1 ZIRCON AGES AND CHEMISTRY

There is an increasing amount of work integrating zircon morphology, trace element,
REE and geochronological data to determine the link between zircon U-(Th)-Pb age and
metamorphic paragenesis (e.g. Rubatto 2002; Hermann & Rubatto 2003; Harley &
Kelly 2007; Rubatto & Hermann 2007; Clark et al. 2009b). The combination of these
tools are particularly useful when examining the timing and P-T conditions of granulite
facies metamorphism, as it can allow the U-(Th)-Pb age preserved in zircon to 1) be
ascribed to a metamorphic event, and 2) be correlated relative to metamorphic mineral

assemblage evolution.
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Analyses of zircon with internal morphologies characteristic of metamorphic growth in
JA3, JA13 and JA14 (weakly luminescent rim overgrowths, weakly luminescent
concentric zoned cores, Hoskin & Schaltegger, 2003) and metamorphic isotopic
modification, such as solid state recrystallisation in samples JA3 and JA14 (weakly
luminescent domains preserving ‘ghost zoning’, strongly luminescent featureless
domains, Hoskin & Black, 2000) yield ages that are statistically indistinguishable
between ca. 2480-2490 Ma. This age is considered to be the age of the high grade
metamorphic event at Kanja Malai. Sample JA13 is characterised by an E-W trending
foliation (S2) and is interpreted to be localised remelting of migmatitic gneiss JA14, as
there is no distinct structural or lithological boundary between the units. Sample JA13 is
structurally interpreted to be the youngest unit at Kanja Malai, and considered to be a
discrete leucosome of JA14. It is therefore possible that this age is also dating the
timing of remelting and generation of E-W (S2) fabric throughout the bulk of the Kanja

Malai Hills at ca. 2490 Ma if this foliation formed coevally with metamorphism.

Oscillatory zoned cores in JA3, characteristic of zircon crystallisation of an igneous
protolith (Vavra 1994; Corfu et al. 2003a; Hoskin & Schaltegger 2003) give a distinctly
older age of ca. 2610 Ma. This age is interpreted to represent either the age of felsic
magmatism at Kanja Malai or age of magmatism in the source region of detritus. This
age is slightly younger than the age of magmatism obtained from a granitic gneiss by
Sato et al. (in press) of ca. 2647 Ma at the Kanja Malai Hills, and possibly reflects
multiple pulses of felsic magmatism, although it cannot be discounted that the age of
magmatism/source magmatism in this study may not reflect the true age of magmatism,

given that cores show evidence for slight isotopic mobilisation (e.g. faded zoning).
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A number of authors have documented a decrease in Th/U ratios between primary
igneous and metamorphic zircon (Rubatto 2002; Hoskin & Schaltegger 2003).
Additionally, Th/U ratios have been reported to decrease during solid state
recrystallisation, typically as a result of expulsion of the more incompatible Th ion from
the crystal lattice during recrystallisation (Hoskin & Black 2000). The assignment of the
above morphologies to either igneous or metamorphic genesis is generally supported by
larger Th/U ratios for oscillatory zoned cores, and smaller Th/U ratios for weakly
luminescent domains. Oscillatory zoned cores in sample JA3 show a range in Th/U
ratios (avg. ~0.40) that are typically lower than the conventional cut off for igneous
zircon (>0.5, Hoskin & Schaltegger, 2003). However, the Th/U ratios of these cores are
generally substantially greater than Th/U ratios for weakly luminescent domains (avg.
~0.13). The observation that the core Th/U ratios are lower than conventional ratios
may be a result of partial solid state recrystallisation processes during metamorphism
resulting in some degree of isotopic disturbance, which is evidenced by faded zoning
and the presence of transgressive recrystallisation fronts at the boundaries of some cores
(Hoskin & Black 2000). Strongly luminescent featureless domains in sample JA3 do not
show any distinct Th/U or age trends and may be a result of differential retention of the
igneous protolith zircon isotopic composition during recrystallisation. There are no
distinct Th/U ratio populations for concentric zoned cores and rims in sample JA13, and
this may reflect that both that concentric zoned cores and rims are characteristic internal

morphologies formed during high grade metamorphism (see Corfu et al. 2003a).

REE analyses of metamorphic cores and rims of sample JA14 have strong HREE

enrichment slopes that suggest that zircon grew in the absence of garnet during
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metamorphism (Rubatto 2002). This interpretation is consistent with the relative lack of
garnet in the rock (< 1%). The strong negative Eu anomaly indicates that the
crystallisation of metamorphic cores probably occurred during the presence of an Eu
depleted melt, possibly as a result of crystallising feldspar scavenging Eu. The presence
of the negative Eu anomaly in rims may indicate the presence of an Eu depleted melt
given that the morphologies of the rims are typical for zircon formed during high grade
metamorphism in the presence of melt (Corfu et al. 2003a). However, the commonly
preserved negative Eu anomaly in crustal zircon may also be caused by the reduced Eu
2* state that is typically incompatible in the zircon crystal lattice (Hoskin & Schaltegger,
2003). Kelsey et al. (2008) showed that zircon growth above the solidus is likely to only
occur at or after peak metamorphism (peak temperature). Given the ages obtained for
cores and rims are identical within uncertainty and in consideration of the above points,
the age recorded by zircon in JA14 is interpreted to be recording high grade peak or post

peak metamorphism during anatexis.

In sample JA3, the consistent HREE enriched pattern exhibited by oscillatory zoned
cores and substantial negative Eu anomaly indicates that crystallisation of these cores
occurred in absence of garnet from an Eu depleted melt, probably from feldspar
crystallising (Rubatto 2002; Hoskin & Schaltegger 2003). Weakly luminescent domains
(both cores and rims) in JA3, separated into domains that show a presence or absence of
characteristic solid state recrystallisation textures (e.g. ghost zoning), have variable
LREE enrichment, positive Ce and negative Eu anomalies and HREE enrichment. The
slight reduction in HREE slope and chondrite normalised abundance for solid state

recrystallised domains, in comparison to oscillatory zoned cores of JA3 may indicate
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that zircon underwent solid state recrystallisation in the presence of garnet (Rubatto
2002). Given that slope of HREE is only slightly flatter than oscillatory cores in JA3, it
is interpreted that these solid state recrystallised zircon domains underwent HREE
diffusional competition with garnet but didn’t approach equilibrium because HREE
depletion is not close to that expected from zircon/garnet REE equilibrium experiments
(Rubatto 2002). This is also consistent with the preservation of features such as ‘ghost
zoning’, which indicate a lack of equilibration of the zircon domains with melt. The
slight reduction of the negative Eu anomaly in solid state recrystallised domains
similarly may be explained by the lack of chemical communication between these
domains and Eu depleted melt. The slightly more enriched average LREE compared to
oscillatory zoned cores is at odds with the notion that solid state recrystallisation
typically expels impurities from the crystal lattice, such as the larger and more
incompatible LREE (Hoskin & Black 2000). This relative slight LREE enrichment may
be influenced by one heavily enriched LREE analysis (Fig.16.b), and is likely to be an

overestimation of LREE.

The observation that the undifferentiated weakly luminescent domains with no solid
state recrystallisation features are heavily LREE enriched, relative to oscillatory cores is
peculiar in respect to both solid state recrystallisation (see above) and typical zircon
REE signatures for sample JA3. It is possible that the highly enriched LREE of these
domains may be due to the incorporation of micro-inclusions of a mineral with LREE
affinity (e.g. monazite) during crystallization or protolith crystallisation, depending on if
these domains indeed underwent solid state recrystallisation, or represent metamorphic

growth. The flat average HREE slope is influenced by Sm being relatively enriched and
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chondrite normalised concentrations of HREE are similar to those of oscillatory zoned
cores, indicating that these domains probably did not form in the presence of with

garnet, and therefore these zones may represent new growth in the presence of melt.

An imprecise discordia chord of seven weakly luminescent featureless cores,
surrounded by chaotic internal morphology in JA14 is likely to have resulted from
metamictisation due to an initial greater concentration of Th and U. It is possible that Pb
loss of these metamict cores were facilitated by Neoproterozoic-Cambrian
metamorphic/shearing event in the PCSS, particularly due to the location of the Kanja
Malai Hills in the Moyar-Attur Shear Zone, for which mineral resetting has been
proposed to occur in the Neoproterozoic (Meiliner et al. 2002). If the metamictisation of
these cores were due to a Neoproterozoic-Cambrian imprint, such an imprint probably
was relatively minor as any evidence for isotopic resetting after the ~2470-2490 Ma

high grade metamorphic event is limited to these seven cores.

8.1.2 MONAZITE AGES

Monazite grains were analysed in sample JA7 and preserve °’Pb/*®Pb age of ~2470
Ma. At granulite facies conditions, monazite grains typically record an age along the
metamorphic P-T path (Rubatto et al. 2001; Rubatto et al. 2006). Earlier authors have
interpreted that under high temperature conditions, U-Pb age of monazite typically
represents the timing of the rocks passing down through closure temperatures of ~700
°C (Parrish 1990; Dahl 1997; Vavra & Schaltegger 1999; Rubatto et al. 2001). More
recent work has suggested that monazite has closure temperatures- not dissimilar to

zircon (e.g. closure temperature of 950 °C for a 20 um diameter monazite at 10 °C/Ma,
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Cherniak & Watson 2000; Cherniak et al. 2004). The commonly observed younger U-
Pb age recorded by monazite, when compared to zircon has been proposed to be more
likely to be due to differences between the age and temperature at which monazite and
zircon began growing (Kelsey et al. 2008). Taking this into account, the monazite age
of ~2470 Ma is interpreted to be representative of monazite growth during
metamorphism, most likely on the retrograde path. There is no systematic U-Pb age
relationship between monazite located texturally within garnet and monazite located in
the quartz, plagioclase and K-feldspar matrix, and this is considered to be due to
monazite growing in garnet and the matrix over a time scale shorter than the resolution

of the LA-ICP-MS.

8.1.3 AGE OF METAMORPHISM

Monazite in sample JA7 yield the same age, within uncertainty, as zircon samples JA3,
JA13 and JA14 (JA7= 2467 £ 20 Ma, JA3 = 2481 + 24 Ma, JA14 = 2493 + 12 Ma,
JA13 =2488 + 14.8 Ma, all uncertainties are 2 o). The timing of high grade peak to
post-peak metamorphism and anatexis is therefore interpreted to have occurred between
~2470-2490 Ma. For the purposes for simplifying an approximate age of
metamorphism, the above zircon and monazite ages yield a ?°’Pb/*®Pb weighted
average of 2486 + 16 Ma (2 6, MSWD = 1.7). This weighted average will be used here
on, but is not meant to imply that zircon and monazite ages from these samples are
necessarily recording the same section of the metamorphic path. Although the growth
systematics between zircon and monazite can differ significantly during granulite facies
metamorphism, the geochronological techniques used here do not allow the timing of

peak and retrograde metamorphism to be distinguished.
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8.2 Conditions of metamorphism

The P-T phase diagrams of kyanite-garnet bearing gneisses JA3 and JA7, when
superimposed, constrain peak P-T conditions defined by the garnet, kyanite, biotite,
plagioclase, rutile, K-feldspar, quartz, liquid interpreted peak assemblage to 800-850 °C
and 14-16 kbar (Fig. 7.c). Conventional thermobarometric estimates of garnet bearing
mafic gneiss samples yield a weighted average temperature of 839 £ 42 °C, and pressure
of 11.5 + 1.6 kbar (1 o) (Fig. 9). Both conventional thermobarometry P-T estimate
methods yield similar temperatures of ~800—-850 °C. This consistency of conventional
thermobarometry temperature estimates with phase diagram peak stability fields

indicate that there was limited diffusion of minerals during cooling.

In contrast to peak temperatures, conventional thermobarometry estimates yield
pressures that are 1-6 kbar lower than pressures obtained from superimposed peak
stability fields of phase diagrams. It is beyond the scope of this study to discuss the
largely unquantifiable inherent uncertainties associated with each thermobarometric
method (e.g. see Bégin & Pattison 1994; Powell & Holland 2008), but considering that
phase diagram equilibria and average P-T conventional thermobarometry employed this
study are fundamentally dependent on different input compositional information (whole
rock composition versus individual mineral spot chemical analyses respectively), a
discrepancy in P resulting from differences in compositional information is worthwhile

investigating.
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Variation between pressure for average P-T conventional thermobarometry and P-T
phase equilibria estimates may be attributed to minerals compositionally recording
different parts of the P-T path. Several authors (e.g. Pattison & Bégin 1994; Pattison et
al. 2003; Hauzenberger et al. 2005) have shown that prograde and peak metamorphic
zoning characteristics of minerals can often undergo complete re-equilibration or
resetting along the retrograde path, thus effectively erasing the chemistry and chemical
zonation signatures of prograde and peak metamorphism. In addition, decoupling of
faster diffusing elements (e.g. Fe-Mg) relative to slower diffusing (e.g. Al, Si, Ca),
particularly during granulite facies metamorphism can lead to element zonation
recording different stages of the P-T path (e.g. Fitzsimons & Harley 1994; Pattison &

Bégin 1994, Pattison et al. 2003).

The compositional zoning profiles of garnet have increasing Xge zoning from core to
rim, a feature that is typically associated with retrograde metamorphism (e.g. Pattison &
Bégin 1994). Ca zoning of garnet and plagioclase in garnet bearing mafic gneiss and
kyanite-garnet gneiss samples do not record typical retrograde compositional profiles
like Fe and Mg and, although the zoning of Ca in garnet and plagioclase may reflect a
decoupling of Ca from garnet Fe and Mg (Spear 1993; Fitzsimons & Harley 1994;
Indares et al. 2008), or for garnet, a breakdown of surrounding minerals, these
possibilities are only speculative. It is unlikely however that the chemical compositional
zoning of Fe, Mg and Ca in garnet represent peak P-T conditions, and this is a probable

explanation for the lower P yielded by conventional thermobarometry.
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Inferring a P-T path for the granulite facies metamorphic event at Kanja Malai is
difficult because there is an absence of mineral microstructures that allow reactions to
be confidently surmised (Vernon 1996). Whereas phase diagram compositional
isopleths, corresponding to measured compositional data and conventional
thermobarometry are particularly susceptible to recording compositional features that
are not reflective of peak or retrograde P-T, relative trends in modal proportions,
corresponding to mineral volume percent trends are more likely to be representative of
peak-retrograde P-T conditions for minerals interpreted to comprise the peak
metamorphic assemblage (e.g. Stuwe & Powell 1995; Kelsey et al. 2003). Garnet and
biotite modal proportions were calculated for JA3 and JA7. Garnet modal proportions
for JA7 and JA3 respectively broadly correspond with estimates of garnet volume
percent in each sample and decrease down pressure and temperature (Fig. 6.a, 7.a).
Conversely, biotite modal proportions correspond to estimated biotite volume percent in
JA3 and JA7 and increase down pressure and temperature. A slight increase in
abundance of biotite as a result of secondary biotite growth around the rims of garnet
from the breakdown of garnet is consistent with the modal abundance trends, and may
indicate a decrease in P. The breakdown of garnet rims when in direct contact with
secondary biotite is also evidenced by a slight increase in Mn, thus garnet volume
percent is a minimum. This means that calculated pressures represent minimum peak

pressure.

Given that the grossular-kyanite-plagioclase-quartz (GASP) barometer of kyanite-garnet
gneiss samples JA3 and JA7, have a slope that crosses relative decreasing garnet modal

proportions in both JA3 and JA7, increasing Xgrs in JA7, and is relatively parallel to Xgs
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in JA3 from ~850 °C down temperature, it is possible that the rocks at Kanja Malai
experienced a P-T cooling path at a slope relatively parallel to the GASP barometer
slope. Such a path would allow Ca in garnet to increase, and a decrease in garnet modal
proportion down temperature after decompression. As mentioned above, compositional
isopleth trends for granulite facies rocks should be treated with caution, and so the

above P-T characteristics are thus presented only as a possibility.

It is possible to propose broad P-T path characteristics for the metamorphic event at
Kanja Malai, whereby peak metamorphism was attained at 800-850 °C and at least 14-
16 kbar, given by superimposed peak mineral assemblage fields and modal proportions
of minerals in phase diagrams for samples JA3 and JA7. Although there is no unique
interpretation applicable to each set of data, combined data phase diagram and
conventional thermobarometry are most likely to represent decompression of 1-6 kbar

following peak P-T at ~14-16 kbar, 800-850 °C.

8.3 A polymetamorphic terrane?

The reported Neoproterozoic-Cambrian garnet, biotite and monazite mineral ages within
the southern Salem Block and along shear zones along the northern PCSS has lead to
the suggestion that the Salem Block has experienced polymetamorphism to some extent
(Bhaskar Rao et al. 1996; Ghosh et al. 2004). Despite field evidence for two
deformation events, the suggestion of a polymetamorphosed terrane is not supported by
chemical or isotopic data found in this study. Compositional zoning in all garnet grains
preserve smooth profiles with no sharp zonation trends or obvious deflections that

might be expected in polymetamorphic terrains (e.g. Cutts et al. 2010). The possibility
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that there has been complete resetting of all Fe, Mg, and Ca in garnet grains during a
second metamorphic event is possible, however zircon and monazite data preserve only
one Palaeoproterozoic metamorphic event. In order for there to be more than one
metamorphic event and be consistent with the data above, it would require the
occurrence of two metamorphic events in the Palaeoproterozoic that were separated by a

time scale shorter than the resolution of the LA-ICP-MS (~30-40 Ma).

8.4 Refinement of the conditions of the early Palaeoproterozoic high grade
metamorphic event in the Salem Block

Constraints on the timing of metamorphism of the Kanja Malai Hills obtained in this
study at ~2490 Ma overlap within uncertainty with U-Pb zircon metamorphic ages
obtained at Kanja Malai by Sato et al. (in press) at ~2450 Ma, and are in agreement
with the age of high grade metamorphism reported by Clark et al. (2009a). There is
some disparity between U-Pb zircon ages from previous authors in the Salem Block
(~2450-2530 Ma, Peucat et al. 1993; Raith et al. 1999; Mojzsis et al. 2003) and it is
unclear whether this is a true geological expression or due to differences in analytical
methods. The broadly consistent Palaeoproterozoic age of metamorphism obtained in
this study confirms that the Kanja Malai Hills belong to the Salem Block (i.e. the

metamorphosed Dharwar Craton).

The P-T estimates of peak metamorphism of ~800-850 °C, and ~14-16 kbar at the Kanja
Malai Hills obtained in this study are substantially higher in pressure than pre-existing
P-T estimates in the Salem Block (~700-900, 5-10 kbar, Harris et al. 1982; Janardhan et

al. 1982; Hansen et al. 1984; Raase et al. 1986; Rameshwar Rao et al. 1991; Hansen &
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Newton 1995). The conventional thermobarometric methods employed by previous
studies are fundamentally dependent on compositional mineral chemistry and rely on
the assumption that preserved compositions in minerals are the same as they were at
peak P-T conditions (see the above discussion on conventional thermobarometry
results). It is quite probable that resetting and possible decoupling of mineral chemical
zoning has resulted in estimates from these previous studies being reflective of P-T

along the retrograde path during decompression rather than peak metamorphism.

Taking the above into account, the most robust method to obtain peak P-T estimates for
the high grade metamorphic event in the Salem Block is through the construction of
phase diagrams (i.e. phase diagrams generally have a first order dependence on bulk
composition rather than mineral composition, Powell & Holland 2008). This study is
the first to use quantitative phase equilibria to estimate the conditions of
Palaeoproterozoic metamorphism in the Salem Block, and from the points discussed
above, the estimates of 800-850, ~14-16 kbar obtained in this study are considered to be
the best estimate of the conditions of peak metamorphism. These peak conditions
significantly contribute to the understanding of the regional Palaeoproterozoic
metamorphic event in the Salem Block, and notably reveal that pressures experienced

by these granulite facies rocks are markedly higher than has been previously estimated.
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8.5 Tectonic implications for the Southern Granulite Terrane

The Southern Granulite Terrane records a diverse tectonothermal history spanning from
the Latest Archaean-Early Palaeoproterozoic to the Cambrian (Collins et al. 2007a;
Santosh et al. 2008; Clark et al. 2009b), which, despite extensive research is not fully
understood. The results of this study have direct implications for refining the areal
extent of tectonometamorphic events in the SGT and the associated crustal blocks and
structures. The age of high P-T metamorphism found in this study at ~2490 Ma
indicates that the early Palaeoproterozoic metamorphosed Salem Block extends at least

as far south as the Kanja Malai Hills.

The location of the Kanja Malai Hills within the Moyar-Attur Shear Zone (Ghosh et al.
2004) on the northern boundary of the PCSS is significant because it allows the
geochronological results obtained in this study to place a northern areal limit for the
high grade Neoproterozoic-Cambrian metamorphism reported in the PCSS (Bhaskar
Rao et al. 1996; Meil3ner et al. 2002; Collins et al. 2007a; Santosh et al. 2008; Clark et
al. 2009b). The absence of substantial evidence for a Neoproterozoic-Cambrian
overprint suggests that the northern limit of this metamorphic event lies further south.
This is at odds with studies that report Neoproterozoic metamorphism/deformation ages
at or in close proximity to the Kanja Malai Hills or within the Moyar-Attur Shear Zone
(Harris et al. 1996; MeiRner et al. 2002; Ghosh et al. 2004; Santosh et al. 2010) and it is
possible that this Neoproterozoic overprint is limited to higher strain partitioned areas
within the 3-4 km wide shear zone. Given that the structurally youngest unit at Kanja

Malai is an interpreted leucosome that records ~2490 Ma metamorphism and E-W
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trending S2 foliation, it is possible that the regional E-W trending fabric around the
Moyar-Attur Shear Zone (northern PCSS) may have at least originated from this high P-

T Palaeoproterozoic metamorphic event.

Two of the current outstanding ambiguities surrounding the tectonothermal history of
the SGT are the age and nature of PCSS. Two main recent interpretations of the PCSS
exist: 1) that the PCSS represents a Cambrian suture zone (Meif3ner et al. 2002; Collins
et al. 2007a; Santosh et al. 2009; Clark et al. 2009a), and 2) that the PCSS is Archaean
crust that has been reworked in the Palaeoproterozoic and Neoproterozoic (Harris et al.
1994; Bhaskar Rao et al. 1996; Chetty et al. 2003; Ghosh et al. 2004; Chetty & Bhaskar
Rao 2006b), with the terrane boundary not the PCSS but located further south into the
Madurai Block (Bhaskar Rao et al. 2003; Ghosh et al. 2004). The results of this study
do not conclusively support any one model, but do show that the following should be

taken into account when assessing such models.

1) The high P-T ca. 2490 Ma metamorphic event may have been associated with E-
W trending fabrics that are typically attributed to be a feature of the PCSS. If
these E-W fabrics formed synchronously with the ca. 2490 Ma high P-T
metamorphic event, it suggests that either these fabrics may predate the PCSS if
it is a suture zone associated with Cambrian amalgamation, or that at least the
Moyar-Attur Shear zone in the north of the PCSS was initially a
Palaeoproterozoic structure.

2) The results of this study provide no evidence that the Kanja Malai Hills

represent ocean plate stratigraphy associated with a Cambrian suture (e.g.
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Santosh et al. 2009) and any Cambrian suture zone would have existed south of

the Kanja Malai Hills, further within the PCSS.

8.6 Comparisons of high P metamorphism in the early Palaeoproterozoic

The metamorphic rock record through time provides us with a window to evaluate the
secular changes in geodynamic processes through Earth history (Brown 2007a; Brown
2007b). In the following, we are concerned with the early rock record from Archaean-
Palaeoproterozoic and briefly outline the contrasts between the characteristic
metamorphic conditions recorded during this time and the P-T estimates obtained in this
study. The Archaean rock record is characterised by ubiquitous granulite facies (e.g.
Harley 1989; Pattison et al. 2003), low-to moderate-P metamorphism with thermal
gradients of ~75 °C/kbar (Brown 2007a). There is no recorded evidence for high
pressure granulites or eclogite facies rocks until the late Mesoarchaean (Mints et al.
2010), and no evidence for blueschist or ultra high pressure metamorphism (excluding
xenoliths) until the Neoproterozoic (Maruyama et al. 1996). Even in the Neoarchaean-
Palaeoproterozoic, high-pressure metamorphic rocks are extremely rare. There is
general consensus among the geological community that an early Earth would have
been secularly hotter, with higher mean mantle temperature and higher heat production

(Brown 2007a).

Eclogite facies rocks and high pressure granulites (~750-1000 °C, ~1.5->2.5 Ga) are a
phenomenon related to subduction and collision typically in the Proterozoic-
Phanerozoic rock record (Brown 2007a). The thermal gradients needed to form and

preserve these rocks occur in terrane-accretion orogenic systems (e.g. Ota et al. 2004b)
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and collisional plate orogenic systems, such as subduction-to-collision systems

predominately in the Phanerozoic (e.g. Liou et al. 2004).

The P-T estimates of peak metamorphism obtained in this study are high pressure
granulites, near eclogite facies at ~800-850 °C, ~14-16 kbar. For the purposes of
comparing these estimates to other P-T estimates during the Palaeoproterozoic-
Archaean, these peak P-T estimates correspond to an average apparent thermal gradient
of ~17 °C/km (not meant to imply a linear increase of temperature with depth). The
peak P-T-t estimates obtained from this study are unusual, and plot at higher pressures
and lower thermal gradients than most 2400-3500 Ma high grade P-T metamorphic
estimates (Fig. 17.a,b). The few eclogite facies rocks preserved the Archaean-earliest
Palaeoproterozoic metamorphic record have been attributed to have formed via
subduction processes operating on some scale during the earlier Earth (Collins et al.
2004; Ota et al. 2004a; Volodichev et al. 2004; Mints et al. 2010). Whether the scarcity
of these eclogite facies rocks reflects the secularly different geodynamic processes
operating during the Archaean-early Palaeoproterozoic compared to modern day
process (Brown 2007b; Brown 2007a), or the lack of preservation of these assemblages
in the rock record remains unclear. Nevertheless, this study provides a foundation for
future work to investigate the areal extent and possible tectonothermal mechanisms for
obtaining and preserving these high pressures both regionally in the Salem Block, and

on a global scale during the Archaean-early Palaeoproterozoic.
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9. CONCLUSIONS

The main findings of this study are:

1.

The Kanja Malai Hills underwent high grade metamorphism and anatexis during
the earliest Palaeoproterozoic (ca. 2.49 Ga).

Palaeoproterozoic metamorphism at Kanja Malai indicates that the Salem Block
(Dharwar Craton) extends at least to the northern PCSS.

Peak P-T conditions of the southern Salem Block metamorphism were ~800—
850 °C and ~14-16 kbar, and may have been followed by decompression and
relatively fast cooling.

There is no evidence for a Neoproterozoic-Cambrian overprint at Kanja Malai,
and any suture zone would lie further south of Kanja Malai within the PCSS.
The peak P-T estimates recorded by the southern Salem Block are anomalously
high pressure when compared to the other Neoarchaean-Palaeoproterozoic
metamorphosed terranes in the rock record. The peak P-T estimates obtained in
this study require thermal regimes typical of those generated at convergent plate

boundaries.
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10. FIGURE AND TABLE CAPTIONS

Figure 1. a) Location of the Southern Granulite Terrane in India, b) geological map of
the Southern Granulite Terrane (SGT) showing dominant lithological distribution, the
Palghat Cauvery Shear System (PCSS), Karur-Kamban-Painavu-Trichur Shear Zone
(Ghosh et al. 2004), major shear zones, spatial extent of the Dharwar Craton, Salem
Block, Madurai Block and Trivandrum Block (modified after Geological Survey of
India 1995; Collins et al. 2010), c) regional map of the Palghat Cauvery Shear System,

Moyar-Attur Shear Zone and location of Kanja Malai Hills.

Figure 2. a) Lithological map of sample collection area in the northern Kanja Malai
Hills, b) poles to foliation (S2), and c) mineral elongation lineation measurements from

the Kanja Malai Hills sample collection area.

Figure 3. Field photographs of a) garnet bearing mafic gneiss unit, b) migmatitic
garnet-biotite bearing felsic gneiss (sample JA14), c) K-feldspar-biotite felsic gneiss
interpreted leucosome (JA13), d) discrete leucosomes cross cutting S1 along antiformal
fold hinges, €) S C’ fabrics indicating north block east (photo taken facing down), f)
garnet-kyanite bearing felsic gneiss unit (JA3), g) folded psammitic layer in
orthopyroxene-garnet gneiss, h) contact between garnet bearing mafic gneiss and

garnet-biotite migmatitic gneiss showing S1 folds obliquely cut by mafic gneiss unit.

Figure 4. a) Photomicrograph of sample JA3 showing garnet surrounded by biotite and
in contact with kyanite, and matrix of quartz, plagioclase and K-feldspar, b)

photomicrograph sample JA7 of coarse grained quartz, K-feldspar and plagioclase
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grains surrounded by biotite, ¢) photomicrograph of sample JA9a showing garnet rich
domain in contact with clinopyroxene, plagioclase and hornblende, d) photomicrograph
of sample JA10 showing garnet, clinopyroxene, plagioclase and ilmenite, €)
photomicrograph of EM16 showing clinopyroxene inclusions within garnet, f)
photomicrograph of sample EM16 showing garnet surrounded by clinopyroxene, g)
photomicrograph of EM19 showing garnet and clinopyroxene rimmed by actinolite-
magnesiohornblende in plagioclase matrix. Hornblende is also in the matrix but is out of
field of view, h) photomicrograph of sample JA14 showing feldspar, fined grained
muscovite, garnet and biotite. Abbreviations used: gt = garnet, bi = biotite, hb =
hornblende, cpx = clinopyroxene, q = quartz, pl = plagioclase, mu = muscovite, Ksp =

K-feldspar, ky = kyanite act = actinolite-magnesiohornblende, ilm = ilmenite.

Figure 5. a-d) Microprobe elemental maps for Fe, Mg, Ca and Mn of garnet for an area

of sample JA3.

Figure 6. Calculated P-T pseudosection for sample JA3 with interpreted peak
assemblage indicated by bold outline (biotite, garnet, kyanite, plagioclase, quartz, rutile,
melt, K-feldspar), with GASP barometer (garnet-kyanite-quartz-plagioclase) plotted as
red circles, a) calculated modal proportions of garnet in black (g) and biotite in blue
(bi), b) calculated compositional isopleths for Xam represented by green lines, Xgrs

represented by black lines and Xa, represented by red lines.

Figure 7. Calculated P-T pseudosection for sample JA7 with interpreted peak

assemblage indicated by bold outline (biotite, garnet, kyanite, plagioclase, quartz, rutile,
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melt, K-feldspar), with GASP barometer (garnet-kyanite-quartz-plagioclase) plotted as
red circles, a) calculated modal proportions of garnet in black (g) and biotite in blue
(bi), b) calculated compositional isopleths for Xam represented by green lines, Xcrs
represented by black lines and Xa, represented by red lines, ¢) superimposed JA3 and

JAT7 with common P-T space of peak field outlined in bold.

Figure 8. a-f) Graphical representations of average P-T conventional thermobarometry
for reaction sets JA9a-1, JA9a-2, JA10-1, JA10-2, EM19-1 and EM19-2, with aH,0= 0,
0.25 and 0.5 superimposed on garnet-clinopyroxene and garnet-amphibole

thermometers. Bold ellipse corresponds to appropriate aH,O for each reaction set.

Figure 9. a) Table summarising average P-T conventional thermobarometry estimates,
b) weighted average of conventional thermobarometry temperatures for JA9a-1, JA9a-2,
JA10-1, JA10-2, EM19-1, EM19-2 and b) weighted average of conventional

thermobarometry pressures JA9a-1, JA9a-2, JA10-1, JA10-2, EM19-1, EM19-2.

Figure 10. Sample JA3 LA-ICP-MS U-Pb zircon geochronology data, a) Concordia plot
of 100 £ 5 % concordant data, inset top: concordia plot of all data, inset bottom:
probability density plot for all data (top dashed line) and 100 £ 5 % concordant data
(bottom solid line) with population maxima, b) ?’Pb/*®Pb weighted average of 100 + 5
% concordant oscillatory zoned cores, uncertainty is quoted at 1 o, ¢) Concordia plot for
100 + 5 % concordant oscillatory zoned cores, d) 2°’Pb/?°Pb weighted average of 100 +
5 % concordant weakly luminescent domains, uncertainty is quoted at 1 o, €) Concordia

plot for weakly 100 * 5 % concordant weakly luminescent domains.
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Figure 11. Sample JA13 LA-ICP-MS U-Pb zircon geochronology data, a) Concordia
plot of all 100 £ 10 % concordant data, inset top: all data, inset bottom: probability
density plot for all data (top dashed line) and 100 + 10 % (bottom solid line) with
population maxima, b) *°’Pb/?°®Pb weighted average of 100 + 10 % concordant data
excluding interpreted inherited cores, uncertainty is quoted at 1 o, ¢) Concordia plot of
100 + 10 % concordant data excluding interpreted inherited cores, d) Concordia plot of

interpreted oscillatory zoned cores.

Figure 12. Sample JA14 LA-ICP-MS U-Pb zircon geochronology data, a) Concordia
plot of 100 + 10 % concordant data, inset concordia plot of all data, b) ?°’Pb/*®*Pb
weighted average of 100 + 10 % concordant data, uncertainty is quoted at 1 o, C)
Probability density plot of all data (dashed line) and 100 + 10 % concordant data (solid

line).

Figure 13. Sample JA7 LA-ICP-MS U-Pb monazite geochronology data, a) Concordia
plot of monazite data, b) *’Pb/?®®Pb age weighted average of monazite data, uncertainty
is quoted at 1 o, b) ?’Pb/*®Pb age probability density plot of monazites with population

maxima.

Figure 14. a) Representative monazite Backscatter-Electron image of sample JA7 with
location of LA-ICP-MS analysis and individual ?’Pb/*®®Pb age quoted to 2 o, b-f)
representative Cathodoluminescence zircon images of sample JA3, JA13 and JA14 with

location of LA-ICP-MS analysis and individual **’Pb/?®®Pb age quoted to 2 o.
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Figure 15. a, ¢, €) Th vs. U concentrations (ppm) for samples JA3, JA13 and JA14
respectively, b, d, f) Th/U ratios vs. 2°’Pb/*Pb age for samples JA3, JA13 and JA14

respectively.

Figure 16. a) Zircon chondrite normalised REE plots for sample JA14, shaded area are
core analyses, black individual line are rims, b) Zircon chondrite normalised REE plots
for sample JA3, shaded area are core analyses, blue individual plots are weakly

luminescent domains (cores and rims) showing solid state recrystallisation features, red

individual plot are weakly luminescent featureless domains (cores and rims).

Figure 17. a) Age (Ma) vs. P estimates of metamorphic events between 2400-3500 Ma
for temperature > 700 °C in black diamonds with peak P-T estimates from this study in
red circle, b) Age (Ma) vs. apparent geothermal gradient (°C/km) for metamorphic
events between 2400-3500 Ma for temperature > 700 °C in black diamonds with peak
P-T estimates from this study in red circle. Apparent geothermal gradient is calculated
from 3.3km/kbar for simplicity. Data represented by black diamonds are from plots and
graphs compiled by Brown (2007a), and P-T estimates of the Sleafordian Orogeny from

Dutch et al. (2010).

Table 1 . Summary of lithological features, units and structure in sample collection area

of Kanja Malai Hills.

Table 2-3. Representative EPMA analyses of samples JA3, JA7, JA9a, JA10, EM16,

EM19.
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Table 4. Top: Conventional thermobarometry estimates showing water activity, average
P, average T and average P-T for samples JA9a, JA10 and EM19. Middle: Fe-Mg
thermometry for samples JA9a, JA10 and EM19. Bottom: Grossular-Quartz-Kyanite-

Anorthite (GASP) barometer for samples JA3 and JA7.

Table 5-8. Zircon geochronology tables for samples JA3, JA13 and JA14. * denotes that

analysis was disgarded, * denotes that effective age is 2°'Pb/?*°Pb.

Table 9.Monazite geochronology table for samples JA7. * denotes that analysis was

disgarded, * denotes that effective age is 2°’Pb/**®Pb.

Table 10. Zircon chondrite normalised major, trace and REE table of samples JA3 and

JAl4.
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11. APPENDIX I- MONAZITE AND ZIRCON CHARACTERISTICS

11.1 Monazite characteristics

JAT

Monazite grains from this sample are typically subhedral to anhedral, approximately
20-60 um long and irregularly shaped, although sub-rounded grains are also present.
Monazite grains are texturally located within garnet, on the edges of garnet and within
the quartz, K-feldspar, plagioclase matrix. Most monazite grains exhibit irregular
internal zoning when viewed under BSE (Fig. 14a). However, some monazite grains
display a lighter core and a darker rim or no zoning. No correspondence between

monazite grain morphology and textural relationship could be established.

11.2 Zircon characteristics

SAMPLE JA3

Zircon grains from this sample are approximately 100 to 300 um long and commonly
have subhedral prismatic to stubby external morphologies with sub-rounded to rounded
crystal terminations and aspect ratios of ~4:1 to 3:1. Approximately 60% of zircon
grains show moderately to weakly luminescent cores with sporadically preserved
oscillatory zoning (Fig. 14.b). These cores are often observed to be partially overgrown
by thick (~20-40 um) weakly luminescent rims (Fig. 14.c). A thick, weakly
luminescent rim is visible in most zircon grains, in which the same oscillatory zonation
present in the core is sometimes faintly visible. Similar features have been described by
Hoskin & Black (2000) and termed ‘ghost rims’. Approximately 40% of zircon grains

have weakly luminescent cores, often displaying zoning that is relatively parallel to the
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outer crystal faces. Similarly to zircon grains with oscillatory zoned cores, these zircon

grains often have a strongly luminescent and featureless outer rim.

SAMPLE JAl14

Zircon grains from this sample range from 50 to 200 um long, with external
morhpologies that are dominantly subhedral to anhedral and rounded to ovoid in shape,
with aspect ratios from 1:1 to 3:1. Approximately 80% of zircon grains display a core,
half of these have a strongly luminescent core that is either featureless or displays
oscillatory zoning (~50-70 um in diameter). These cores often contain strongly
luminescent cracks. Cores that display faded oscillatory zoning are often truncated by a
strongly luminescent, featureless domain similar to the ‘recrystallisation fronts’
described by Hoskins and Black (2000). The other cores are weakly luminescent (~30-
100 pm in diameter ), and some of these cores exhibit faded concentric or oscillatory
patterns, truncated by a moderately luminescent to strongly luminescent featureless
domains. The boundaries between cores and moderately-strongly luminescent
featureless domains vary from sharp to gradual and are usually rounded to irregular.
Most zircon grains also show weakly luminescent rims and sometimes show faint
concentric zoning. The majority of rims are irregular in shape and are usually truncated
by the inner strongly luminescent featureless domains, however some zircon grains

show rims that truncate other internal features (Fig. 14.d).
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SAMPLE JA13

Zircon grains from this sample range from 75 to 200 um long and have external
morphologies that are dominantly subhedral and subrounded to ovoid in shape, although
some zircon grains have subhedral and prismatic to stubby morphologies with
subrounded pyramidal terminations. Zircon cores are commonly moderately to weakly
luminescent and typically display either oscillatory or concentric luminescence zoning,
or have a very weakly luminescent featureless inner core and concentric zoned outer
core. Some zircon grains show convoluted structures and sometimes display chaotic
internal morphologies. Approximately 20% of zircon cores have oscillatory zoning that

is characteristic of primary igneous textures (Hoskin & Black 2000; Corfu et al. 2003a).

Approximately 40% of cores show concentric/sector zoned cores, which, when coupled
with dominantly sub-rounded to ovoid external morphologies and weakly luminescent
cores is indicative of new metamorphic growth (Corfu et al. 2003a; Hoskin &
Schaltegger 2003). 40% of cores are weakly luminescent and featureless, and may
indicate the cores have undergone recrystallisation. This recrystallisation may be
concentrated in the core as result of metamictisation from higher Th and U contents than
surrounding rims, making the resulting metamict core region more susceptible to
subsequent thermal recrystallisation (Geisler et al. 2001). Some zircon grains also show
a moderately to strongly luminescent inner core with boundaries that are in different
orientations to the majority of internal morphological boundaries. This striking change
in luminescence and shape of the internal core suggests the inner core may be inherited

(e.g. Fig. 14.e). Most zircon grains have weakly luminescent rims of varying thickness
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that appear to truncate the core. Some rims are featureless (Fig. 14.f), while others

preserve faint concentric patterns.

12. APPENDIX I1- ANALYTICAL PROCEDURES

12.1 Quantified metamorphic analysis- P-T phase diagrams

An approximately 10 x 10 x 0.5 cm representative slice of each sample was crushed
using a jaw crusher and milled to a particle size of <75 um. Elements were analysed
using solution ICP-OES and ICP-MS at Amdel Laboratories, Adelaide. Samples were
prepared for major and some trace element analysis by fusion of 0.1 g of the milled
sample with lithium metaborate and dissolution in nitric acid. The remaining trace and
REE elements were prepared by digestion of 0.5 g of the milled sample in hydrofluoric
acid/multi acid solution for analysis of concentrations REE and trace elements (see

Payne et al. 2010).

P-T pseudosections were calculated using the phase equilibria modelling program
THERMOCALC v3.33 (June 2009 update of Powell & Holland 1988), using the
internally consistent dataset of Holland and Powell (Holland & Powell 1998; data set tc-
ds55, updated Nov. 2003). The geologically realistic system NCKFMASHTO (Na,O-
Ca0-K,0-FeO-MgO-Al,03-Si0O,-H,0-TiO,-Fe,03) was used for P-T pseudosection
calculations using a-x relationships of White et al. (2007) for biotite, garnet and silicate
melt, White et al. (2000) for ilmenite, Holland and Powell (2003) for K-feldspar

plagioclase and White et al. (2002) for magnetite and orthopyroxene. Microprobe
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analyses of individual minerals were used to determine observed compositional

abundance.

12.2 Quantified metamorphic analysis- Thermobarometry

ANALYTICAL PROCEDURES

Average pressure-temperature thermobarometry (Powell & Holland 1994) was
conducted on three garnet, clinopyroxene bearing mafic gneiss samples in the northern
Kanja Malai Hills. Electron microprobe was used to obtain spot chemical compositions
for minerals that are considered to have once been in equilibrium with each other, for
the purpose of conventional average pressure-temperature thermobarometry (Powell &
Holland 1994; Powell & Holland 2008). Software AX (Powell et al. 1998) was used to

calculate mineral end member activity and compositional relationships.

Pressure and temperatures estimates were obtained following the method of Powell and
Holland (1994), whereby average P, average T and average P-T were calculated using
multiple independent sets of reactions representing the equilibria volume.
THERMOCALC v. 321 software (update of Powell and Holland, 1988) was used to
calculate average P-T by determining an optimal P-T solution from the thermodynamics
of an independent set of end member reactions. As outlined in Powell and Holland
(1994), multiple reactions that involve one or more of the same end member allow the
behaviour of activities and uncertainties to be correlated in a predictable manner.
Uncertainty of the optimal solution is statistically quantified using a least squares
method that proportionally varies the positions of reactions with respect to their

uncertainties and correlations so that a common intersection is obtained. The statistical
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> test at 95% confidence level was employed to assess the scatter of the observed
minus the calculated data values and associated uncertainties. Failure of the > test may
be a due to one or more outlying end members or a general scatter of the data. On
occasions where the ¥ test failed, one or two statistical outlier end members were
omitted. The omission of the outliers resulted in a better constrained sigma fit and
passing of the y° test with 95% confidence, yet did not alter the P-T estimates by more

than 50 °C or 1 kbar.

Conventional thermobarometry was conducted using end member activity and
compositional relationships of two sets of mineral chemical analyses per sample. Six to
nine independent reactions were obtained for all three samples JA9a, JA10, EM19 for
use in thermobarometry calculations. The selection of water activity (aH,O) values
(necessary due to presence of hydrous mineral phases in the equilibration volume) was
investigated by conducting average P-T calculations with varying aH,O (aH,O =0,
0.25, 0.5), coupled with H,O independent single reaction thermometer calculations
incorporating Fe-Mg end members of clinopyroxene, amphibole and garnet using mode
3 THERMOCALC v 3.21 (update of Powell and Holland, 1988). The correspondence
between these two methods can assist with the estimation of aH,O in mineral equilibria
(Raimondo 2009) (refer to Fig. 8). Estimation of aH,O was obtained by: 1) assessing
the correspondence between Fe-Mg reaction thermometers and average P-T of using
varying aH,0, 2) refining aH,O based on associated aH,O values that allow P-T
estimates to pass x> test at 95% confidence level, and 3) refining aH,O values based on
those that are associated with better constrained P-T estimates with smaller

uncertainties.
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12.3 LA-ICP-MS U-Th-Pb zircon and U-Pb monazite Geochronology

U-(Th)-Pb geochronology was conducted using the Laser Ablation Inductively Coupled
Plasma Mass Spectrometer (LA-ICP-MS) at Adelaide Microscopy, University of
Adelaide. Samples for zircon geochronology were crushed using a jaw crusher, placed
in a tungsten carbide mill for 3—5 seconds and sieved using 75 um and 425 um mesh,
retaining a size fraction between 75425 pum. Zircon grains were subsequently separated
using traditional panning techniques, followed by removal of magnetic mineral grains
from the heavier mineral fraction using conventional and neodymium magnets.
Approximately 200 zircon grains per sample were randomly handpicked and mounted
in epoxy resin. Mounted zircon grains were ground down to approximately half their

width.

Thin sections and epoxy mounts were imaged using a Phillips XL20 SEM with attached
Gatan cathodoluminescence (CL) detector at Adelaide Microscopy to determine internal
chemical zonation of zircon and monazite grains and the textural relationship of
monazite grains to other minerals. A beam accelerating voltage of 12 kV was used,
combined with a spot size of 7 when zircon mounts were imaged using CL detector, and
spot size of 5 when monazite grains in thin section were imaged using a backscattered

electron (BSE) detector.

U-Th-Pb analysis of zircon and in situ U-Pb analysis of monazite was undertaken using
an Agilent 7500cs ICPMS with a New Wave 213 nm Nd-YAG laser in a helium
ablation atmosphere, following similar methods and operating procedures outlined by

Payne et al. (2008; 2010). A laser spot size of 30 um and repetition rate of 5 Hz was
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used for zircon analyses. A 40 second gas blank was initially measured followed by 60
seconds of zircon sample ablation. The laser was fired for 10 seconds with the shutter
closed seconds prior to ablation in order to allow for beam and crystal stabilisation. A
spot size of 12 pm, repetition rate of 5 Hz and laser intensity of 70% was used for
monazite analyses. A 50 second blank was measured proceeded by 50 seconds of
monazite sample ablation. Similarly to zircon analyses, the laser was fired for 10

seconds with the shutter closed prior to ablation.

Analyses measured isotopes 2**Pb, 2°Pb, °” Pb and **®U for 10, 15, 30 and 15 ms
respectively for monazite grains, and 2**Pb, 2°Pb, 2°’Ph, 2pb, **Th and #**U for 10,
15, 30, 10, 10, 15 ms respectively for zircon grains. For both zircon and monazite
analyses, common lead was not corrected due to an unresolvable interference of 2**Hg
and 2*“Pb peaks, however 2**Ph was monitored to assess the common lead of each

analysis. No anomalous 2**Pb above background counts were observed.

The real-time correction program Glitter vers. 4.0 (Van Achterbergh et al. 2001) was
used to correct zircon and monazite data. Mass bias and fractionation were corrected for
zircon analyses using the GEMOC standard GJ-1 (TIMS normalisation data:
207Pb/206Pb = 608.3 Ma, 206Pb/238U = 600.7 Ma and 207Pb/235U = 602.2 Ma;
Jackson et al. 2004). An uncertainty of 1% was assigned to the age of the GJ-1 zircon
standard for sample age error calculations to avoid inaccurate age reporting. An internal
standard, the Plesovice zircon standard (ID TIMS 206Pb/238U age = 337.13 + 0.37 Ma;
Slama et al. 2008) was used to assess accuracy before and during the analysis of

unknowns. Average Plesovice ages obtained during this study were *°’Pb/?°U = 339 +
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3.4 Ma (20, n = 36, MSWD = 1.4), ?’Pb/*®Pb = 344 + 19 Ma (MSWD = 0.4) and

206pp238y = 337 + 3.2 Ma (MSWD = 1.12).

Monazite standard 44069 was used to correct for mass bias and fractionation for
monazite analyses (TIMS normalisation data: 206Pb/238U = 426 + 3 Ma; Aleinikoff
2006). A 1% uncertainty was given to the age of the 44069 standard for sample age
error calculations. Accuracy was monitored by analysing the Madel monazite standard
prior to and during unknown analysis runs (TIMS Madel age: 207Pb/206Pb = 490.7 Ma,
206Pb/238U = 514.8 Ma and 207Pb/235U = 510.4 Ma; Payne et al. 2008). Average
Madel monazite ages obtained throughout this study were 2°’Pb/?°U = 511 + 9.6 Ma
(26, n = 8, MSWD = 0.29), *’Pb/?°°Pb = 495 + 38 Ma (MSWD = 0.31) and *®°Pb/>8U
=515.3£10.8 Ma (MSWD = 0.13). Conventional concordia, weighted averages, and
probability density distribution plots were generated using Isoplot vers. 4.11 (Ludwig
2003). All quoted effective ages are “°’Pb/ ?**Pb ages. Calculation of Th/U ratios was
achieved by applying an offline linear correction equation correcting to a known Th and

U concentrations of 8.84 ppm and Th 264 ppm Ufor the GJ zircon standard.

12.4 Zircon REE chemistry

REE and trace elements of zircon grain mounts for samples JA3, JA7 and JA14 were
analysed using the LA-ICP-MS at Adelaide Microscopy. Oscillatory zoned cores and
weakly luminescent domains with pre-collected U-Th-Pb data were analysed. Analyses
were conducted using 40 pum laser spot size at 75% intensity and 5 Hz repetition rate.
Total acquisition time was 110 seconds, divided into a 40 second gas blank, 10 second

firing of the laser with the shutter closed and 60 seconds of laser ablation. External
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standard Nist 610 was used correct for fractionation and mass bias (Pearce et al. 1997),
and standards Nist 612 and BHVO were used as internal standards to monitor the
accuracy of analyses. Data was corrected using GLITTER software (Van Achterbergh et
al. 2001). Analyses were calibrated internally using "*Hf oxide percent measurements
on zircon domains corresponding to spot locations of LA-ICP-MS REE and trace
element analyses using Cameca SX51 microprobe at Adelaide Microscopy with an

accelerating voltage of 15 kV and beam current of 20 nA.
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Figure 3
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Figure 4
Sample JA3

Sample JA7
b)
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Figure 6: P-T pseudosection of JA3
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Figure 7: P-T pseudosection of JA7, and (inset) overlayed JA3 and JA7.
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Figure 8: Garnet bearing mafic gneiss average P-T conventional thermobarometry
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Reaction 1: garnet-clinopyroxene thermometer- 3di + alm = 3hed + py

Reaction 2: garnet-amphibole thermometer- 5py + 3fact = 5alm + 3tr
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Figure 9: Conventional thermobarometry results

a) Summary of average P-T results

data-point error symbols are 1o

Sample and Average P Average T Average P-T +(10)
analysis set (at 850°C) + (1 0) (at 12.5 kbar) £ (1 0)
JA9a 1 124171 856 + 50 126+15 891+ 51
JA9a 2 10.9 +1.20 826 +44 88+13 815+ 40
JA101 12.6 +1.48 777 £ 55 121+15 798 + 62
JA10 2 11.5+1.53 763 55 109+1.3 764 + 56
EM19 1 12.3:41.13 876 + 50 126+1.3 891+ 58
EM19 2 12.2+1.14 877 +50 124+13 890 + 58
Average 11:9:£1.1% 832 + 40* 11.5+1.6* 839 + 42*
* denotes weighted average * 1 o uncertainty
b) Weighted average of conventional c) Weighted average of conventional
o
thermobarometry temperatures (°C) thermobarometry pressures (kbar)
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. ' MSWD = 1.3, probability = 0.27
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Figure 10: Sample JA3 U-Pb zircon geochronology

a) 100 £+ 5% concordant data, inset all data
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Figure 11: Sample JA13 zircon U-Pb geochronology
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Figure 12: Sample JA14 U-Pb zircon geochronology

a) 100 = 10% concordant data, inset all data

data point error ellipses are 68.3% conf
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Figure 13: Sample JA7 U-Pb monazite geochronology
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Figure 14: Zircon Cathodoluminescence and monazite backscatter electron images

a) Sample JA7 monazite b) Sample JA3 zircon
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a) JA3-Thvs. U
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Figure 15: Zircon Th vs. U plots and Th/U vs. age plots

b) JA3- Th/U vs. *’Pb/*“Pb age
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Sample/ REE Chondrite

Sample/ REE Chondrite

Figure 16: Zircon REE patterns

a) Zircon REE plots for sample JA14
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Figure 17

a) P (kbar) vs. age (Ma) for >2400 Ma, > 700 °C metamorphism
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b) Apparent geothermal gradients for >2400 Ma, > 700 °C metamorphism
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