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An optimal arrangement of mooring lines for the three-tether submerged
point-absorbing wave energy converter

N.Y. Sergiienkoa,∗, B.S. Cazzolatoa, B. Dinga, M. Arjomandia

aThe University of Adelaide, School of Mechanical Engineering, Adelaide, Australia

Abstract

Point-absorbing wave energy converters (WECs) with a single-tether mooring are capable of extracting power from
heave motion, but they do not utilise the full energy harvesting potential. One of the possible ways to increase the total
power absorption is to add another controllable degree of freedom. These can be achieved by using a so-called ‘tripod’
configuration when the body is tied to three tethers attached to the power take-off systems at the sea floor. This paper
investigates the optimal inclination of tethers considering two different approaches: a purely kinematic analysis, not
taking into account the shape of the buoy and a dynamic analysis of spherical and cylindrical WECs, using a linear
frequency-domain method. The results show that for a submerged sphere and for a submerged vertical cylinder with an
aspect ratio of one, tethers should be orthogonal to each other, forming edges of the cuboidal vertex. Such a configuration
of tethers provides for uniform performance of the WEC in all directions of motion. However, for the cylinders with an
aspect ratio other than one, an optimal angle between the tethers depends greatly on the ratio between the cylinder
height and diameter.
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1. Introduction

Ocean waves are a huge resource of renewable energy
with great potential to be captured and employed for elec-
tricity generation and water desalination. Many concepts
for extracting energy from surface waves have been re-
alised, leading to more than 200 different wave energy
converters (WECs) in various stages of development [1].
Despite the wide variety of WECs technologies on offer,
floating and fully submerged point absorbers comprise a
great proportion of existing full-scale prototypes of WECs,
which typically operate in deep water waves with high en-
ergy content [2]. In most cases, a point absorber, whose
dimensions are smaller than a wavelength, is designed as
an axisymmetric buoy with the main advantage being in-
sensitive to wave direction [3].

An axisymmetric body as a prospective WEC has been
thoroughly studied in [4, 5, 6], showing that its maximum
power absorption is independent of the scale of the device
and is a function of the wavelength of an incident wave
and oscillatory modes of the body. The majority of exist-
ing point-absorbing WECs operate only in the heave mode,
limiting energy extraction to approximately one third of
the available energy [7]. Such considerable attention to the
heaving buoys can be explained by the relative simplic-
ity of the design and the lower capital cost as compared
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with WECs with multiple degrees of freedom. However, a
point absorber that oscillates in two modes (heave/surge
or heave/pitch) with optimal control parameters can the-
oretically capture three times more power than a heaving
device, achieving the maximum power absorption for such
types of WECs [7].

Depending on the power take-off (PTO) operating prin-
ciple and type of mooring configuration, existing WECs
with multiple degrees of freedom can be divided into two
categories (similar to the classification in [8]):

(i) WECs that utilise slack mooring lines just to keep a
body on site (Figure 1a). Such mooring configura-
tions are not involved in power generation and have
been applied to the floating WECs, such as SEAREV
[9] or Pelamis [3]. The power take-off system of these
devices is located inside the buoy’s hull, that can im-
pose constraints on the size of the system.

(ii) Floating or fully submerged energy converters where
the mooring legs are always under tension (Figure 1b).
In this configuration, tethers can be attached through
spools to the electrical generators, as is implemented
in the 3D-WEC that is under development by Res-
olute Marine Energy, Inc. [10], or to a piston of a
hydraulic PTO system. A solo-duck WEC, devel-
oped by The University of Edinburgh [11], can also
be classified in this category.

Although the effect of slack mooring lines on the per-
formance of the floating WECs has been assessed in [12,
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Nomenclature

A amplitude of the incident wave

A,B hydrodynamic added mass and damping coeffi-
cient matrix

Fexc incident wave excitation force

Fpto force exerted on the WEC due to the power take-
off system

Frad hydrodynamic radiation force

G buoy centre of mass

H WEC (cylinder) height

I3 identity matrix of size 3× 3

J−1, J̄−1 inverse kinematic Jacobian of the WEC: con-
ventional and dimensionally homogeneous

Ni, Li attachment points of the i-th tether to the buoy
hull and sea floor respectively

N0,S0 skew-symmetric matrices that represent [n0]ᵀ×
and [s0]ᵀ× respectively

P WEC power absorbed

T dynamic tension in the tether

Zbuoy,Zpto hydrodynamics impedance of the buoy and
impedance of the PTO system

a WEC radius

ct,Ct, C̃t power take-off damping: coefficient, matrix
for one tether and a collective matrix for all teth-
ers

esi unit-vector directed along i-th tether

ft, τt, force and torque applied from the tether to the
buoy

ds submergence depth of the WEC (distance from
the sea water level to the WEC centre of mass)

g gravitational acceleration

h water depth

k wavenumber (ω2 = gk tanh kh)

kt,Kt, K̃t power take-off stiffness: coefficient, matrix
for one tether and a collective matrix for all teth-
ers

li dynamic length of the i-th mooring line

mb,M WEC mass and mass matrix

mw mass of water displaced by the WEC

ni position vector of the i-th tether attachment
point relative to the buoy centre of mass

q vector of three leg length variables

r vector of linear displacements of the WEC

si vector directed along i-th tether

x 6 DoF WEC position vector

α inclination angle of each tether to the vertical

δ(·) change in vector or scalar from nominal position

γ0 distribution of the tether tension force over its
length

κ condition number

ω radial wave frequency

ρ water density

θ angle between two tethers in the plane that they
form

ϑ vector of angular displacements of the WEC

13, 14], a mooring configuration with tethers under ten-
sion is of more practical interest for submerged buoys due
to the required positive buoyancy of the WEC.

PTO

(a)

PTO PTO

(b)

Figure 1: A schematic representation of mooring configurations:
(a) slack mooring lines, (b) tension leg moorings.

An axisymmetric body needs to oscillate in two modes

(radiating symmetric and antisymmetric waves) to absorb
the maximum available energy [7]. Even though a body is
symmetrical about a vertical axis, the addition of moor-
ing lines makes the whole system asymmetric and there-
fore sensitive to the direction of wave propagation. This
means that a WEC should oscillate along the vertical axis
(heave) radiating symmetric waves, and in a horizontal
plane (surge-sway or pitch-roll) radiating antisymmetric
waves along the axis aligned with the propagation of in-
cident waves. Having three motion modes that need to
be controlled, intuitively, the minimum number of tethers
in a mooring configuration is also three. Moreover, hy-
drodynamic forces that act on the axisymmetric body are
uncoupled for surge, sway and heave, but are coupled for
surge/pitch and sway/roll motions [7]. Therefore, ideally,
the mooring design should not impose additional coupling
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between modes.
A system with a three-cable mooring of a submerged

sphere was first proposed in [15]. The configuration, where
three cables are equally inclined to the vertical and situ-
ated symmetrically around a sphere, provides an indepen-
dence of surge, sway and heave motions, while all three
modes are dependent on the parameters of a power take-
off system and an inclination angle of cables [15]. Wave-
to-wave tuning of the PTO parameters is an objective of
a WEC control system, whereas the inclination angle of
the cables cannot be changed during the life-span of the
device and should be optimised during the design stage to
maximise energy harvesting. However, the system in [15]
was explored with only two inclination angles of the ca-
bles: 45 and 60 degrees, and the dependence of the power
absorption on the angle has not yet been explored. A sim-
ilar tripod WEC design has been used as a benchmark
device in [10, 16] to test a developed optimal causal con-
trol system. This WEC consists of a floating cylinder at-
tached to three tethers that are inclined to the vertical by
63.5 degrees, which seems to have been chosen arbitrar-
ily by the researchers. To the best knowledge of the au-
thors, these studies are the only ones that have considered
a WEC with multiple degrees of freedom using a three-leg
mooring. Consequently, the question of an optimal moor-
ing configuration that maximises absorbed power remains
open and is discussed in this paper.

In this research, the tripod system is investigated for
a fully submerged point-absorbing WEC, similar to the
CETO system developed by Carnegie Wave Energy Lim-
ited [17]. Section 2 studies the problem from the kinemat-
ics point of view without taking into account any hydrody-
namic properties of the WEC. Next, an optimal mooring
configuration is examined for two generic buoy shapes: a
sphere and a vertical cylinder, employing hydrodynamic
models that are derived by using a linear wave theory ap-
proximation. The dynamic analysis in Section 3 is per-
formed in the frequency domain, assuming a linear time-
invariant system, an ideal control system and small dis-
placements of the buoy, as compared with the length of
the mooring lines. Results in Section 3 demonstrate the
sensitivity of the optimal tether inclination angle to the
number of parameters, such as the submergence depth of
the WEC, sea site water depth, mass of the buoy, wave
direction, body aspect ratio and a set of control param-
eters. Finally, the effect of the tether configuration on
power generated by the WEC is investigated in Section 4.

2. Kinematic analysis

In this section, the kinematics of the system is studied
to provide an understanding of the optimal arrangement
of tethers from a kinetic energy transmission and control-
lability point of view.

A thorough analysis of any mechanism, including wave
energy converters, starts from kinematics [18]. For the
analysis of existing WEC devices, the kinematics only shows

the relationship in coordinates and velocities between mov-
ing and fixed parts of the system. However, in the concep-
tual design stage, a kinetostatic analysis answers several
important questions, such as: (i) how the small changes
in the buoy position (velocity) relate to changes in the
tether length (velocity) and vice versa [19]; (ii) how force
and torque loads on the body affect the tension forces in
the mooring lines and how these forces are distributed be-
tween all tethers; (iii) how many motion modes can be
controlled using a specific mooring configuration (control-
lability analysis) [20].

From the kinematic point of view, the current WEC
system shares similarities with parallel mechanisms, also
referred to as parallel robots (Figure 2), where the buoy
acts as an end-effector and tethers play the role of actuated
joints/legs (Figure 3). It is assumed that tethers are con-
nected to the ocean floor and to the buoy hull through the
spherical joints. Such a configuration, 3-SPS (spherical-
prismatic-spherical), has 6 degrees of freedom [21] and 3
actuators, meaning that this system is under-actuated.

(a) (b)

Figure 2: A schematic representation of parallel robots: (a) 3-SPS
parallel mechanism; (b) cable driven parallel robot with three cables.
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Figure 3: The arrangement of mooring lines around a submerged
WEC. Adapted from [10].

Optimal design methodologies of parallel robots rely
on the forward and inverse kinematic analysis of mecha-
nisms using Jacobian and inverse Jacobian matrices [21].
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The kinematic Jacobian provides mapping from actuated
joint velocities to the end-effector velocities in a Cartesian
coordinate frame. However, for parallel robots it is eas-
ier to derive an analytical form of the inverse kinematic
Jacobian [22], which is:

q̇ = J−1ẋ, (1)

where x = [r ϑ]ᵀ is an end-effector location vector with
three translational and three rotational motions, q = [l1
l2 l3]ᵀ is a vector of three leg length variables and an
inverse kinematic Jacobian J−1 can be obtained as

J−1 =

eᵀ
s1 (n1 × es1)ᵀ

eᵀ
s2 (n2 × es2)ᵀ

eᵀ
s3 (n3 × es3)ᵀ

 , (2)

where with reference to Figure 3, esi = LiNi/li, (i =
1, 2, 3) is a unit-vector along the mooring line i, that points
from the sea floor anchorage point Li to the attachment
point of the tether Ni; ni represents the position of the
tether attachment point Ni relative to the buoy centre of
mass G, which is also the centre of the system rotation.

The inverse kinematic Jacobian is assessed for the nom-
inal position of the buoy, assuming that the tethers are
equally distributed around the buoy and inclined to the
vertical at angle α, as shown in Figure 3. This arrange-
ment of mooring lines, when they are separated by 120
degrees in the horizontal plane, provides an independence
of surge, sway and heave motions that is beneficial for an
axysimmetric WEC, as has been shown in [15]. Moreover,
only the equilibrium position case should be considered, as,
in reality, a buoy will have motion amplitude constraints,
leading to considerably small translational and rotational
displacements, compared with the length of the mooring
lines. Equation (2) can be expanded as:

J−1 =exs1 eys1 ezs1 (ny1e
z
s1 − nz1e

y
s1) (nz1e

x
s1 − nx1ezs1) (nx1e

y
s1 − n

y
1e
x
s1)

exs2 eys2 ezs2 (ny2e
z
s2 − nz2e

y
s2) (nz2e

x
s2 − nx2ezs2) (nx2e

y
s2 − b

y
2e
x
s2)

exs3 eys3 ezs3 (ny3e
z
s3 − nz3e

y
s3) (nz3e

x
s3 − nx3ezs3) (nx3e

y
s3 − n

y
3e
x
s3)

 .
(3)

Assuming that the water depth is constant for all an-
chorage points Li, and the z-components of all vectors esi
are equal to ezs1 = ezs2 = ezs3 and all tether attachment
points Ni lie in a horizontal plane parallel to the sea floor,
so nz1 = nz2 = nz3. Furthermore, as the mass of the tethers
are negligibly small when compared with the mass of the
buoy, corresponding vectors ni and si will always lie in
the same vertical plane, so exs1 ∼ nx1 , e

x
s2 ∼ nx2 , e

x
s3 ∼ nx3

and eys1 ∼ ny1, e
y
s2 ∼ ny2, e

y
s3 ∼ ny3 (∼ is used as a lin-

ear dependence operator). Thus, it is obvious from Equa-
tion (3), that the second and fourth columns of the inverse
Jacobian are linearly dependent, likewise the first and fifth
ones. This means that there are only three buoy motions
that can be independently controlled through three teth-
ers: coupled surge/pitch, coupled sway/roll and heave. As

the sixth column of the inverse Jacobian always goes to
zero in this configuration, the yaw angle remains uncon-
trollable, however this is not critical for the axysimmetric
bodies because they cannot be excited by waves in yaw in
any case.

An inverse Jacobian matrix of parallel mechanisms is
conventionally used for the derivation of various dexter-
ity indexes, such as kinematic manipulability [19], or the
condition number [22]. In particular the condition num-
ber is widely used to determine an optimal design for the
robot, considering all the given requirements. For the
mechanisms with translational and rotational movement
capabilities, the Jacobian matrix that is used to calcu-
late the condition number should be consistent in physical
units. One way to derive dimensionally homogeneous in-
verse Jacobian is to normalise it by dividing its rotational
elements by the nominal length of the link [23], so from
Equation (2):

J̄−1 =

eᵀ
s1 (n1 × es1)ᵀ

/
l10

eᵀ
s2 (n2 × es2)ᵀ

/
l20

eᵀ
s3 (n3 × es3)ᵀ

/
l30

 . (4)

Assuming that all tethers point towards the centre of
the body (si and ni are collinear), it is obvious from Equa-
tion (4) that the inverse kinematic Jacobian depends only
on the inclination angle of tethers included in esi and ni,
while being independent of water depth and submergence
depth of the WEC. The optimal value of this angle can be
found using the condition number index, which is calcu-
lated as [22]:

κ(J̄) = κ(J̄−1) =
∥∥J̄−1

∥∥ · ∥∥J̄∥∥, (5)

where ‖ · ‖ defines the two-norm of a matrix, and J̄ can
be obtained from Equation (4) using pseudo-inverse. The
smallest possible value of the condition number is 1, which
relates to the best configuration of mooring lines, where
each power take-off system does the same amount of work.
Therefore, the objective is to find an inclination angle α
which minimises the condition number

min
α
κ(J̄−1). (6)

The condition number given by Equation (5) of the in-
verse Jacobian has been calculated for the system, varying
an inclination angle of three tethers α from 0 (extracting
power from the heave only) to 90 degrees (surge/pitch)
and the results are shown in Figure 4. In addition, to pro-
vide better understanding of the mutual arrangement of
the mooring lines, an auxiliary angle (θ) was introduced,
that is subtended between two tethers in the plane that
they form (θ relates to α as cos θ = 1 − 3

2 sin2 α). There-
fore, Figure 4 is supplemented by the upper horizontal
scale that demonstrates the related angle between tethers
θ. Note that all further figures related to the arrangement
of tethers will have two scales for α and θ simultaneously.
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Figure 4: The variation of the condition number with the inclination
angle of tethers in the 3-tether configuration. α (lower scale) shows
the angle between each tether and the vertical, while θ (upper scale)
shows the corresponding angle between the tethers in the plane that
they form.

The minimum value of κ(J̄−1) is reached at an optimal
inclination angle α of 54.7 degrees = arccos

(
1/
√

3
)

that
corresponds to the orthogonal tethers (θ = 90 degrees)
when they form the edges of the cuboidal vertex. Such a
configuration, when the condition number κ is equal to 1,
is called an isotropic pose [24] indicating that the 3-tether
WEC has uniform properties in all directions of motion.
As a result, an arrangement of three mooring lines, when
they are orthogonal, provides the best translation from
the positions and velocities of the buoy to the length and
change in length of tethers. Moreover, different locations
of tether attachment points to the hull were considered,
as well as different aspect ratios of the buoy dimensions
to the tether length. It was found that the most optimal
arrangement is achieved when all tethers point toward the
geometrical centre of the WEC.

3. Dynamic analysis

In this section an optimal arrangement of mooring lines
is studied for two generic shapes of WECs: a sphere and
a cylinder.

Firstly, the dynamic equations of the WEC are con-
sidered, regardless of its shape (the equations have been
partially adapted from [10]). With reference to Figure 3,
the position of the buoy centre of mass G, relative to the
reference coordinate frame Oxyz, is denoted by the vector
r. In the undisturbed (equilibrium) position, the centre of
mass G coincides with the origin O, so r = 0. A vector
si is directed along each tether i from the sea floor to the
attachment point on the buoy hull. The relative position
of the attachment point of the tether to the centre of mass
G is denoted by ni.

Next, the interaction of only one tether with a body is
analysed, so the subscript of the tether number i = 1, 2, 3
will be eliminated temporarily. As a buoy has positive

buoyancy, the tension in each tether is always positive
(T > 0). The applied force vector of the tether on the
buoy is

ft = −Tes, (7)

where es is a unit vector in the same direction as s.
The vector of angular displacements of the body ϑ =

(ϑx, ϑy, ϑz)
ᵀ is taken to be relative to the inertial coordi-

nate frame Oxyz, and these angles are zero in the undis-
turbed position. Considering the ‘small angle’ approxima-
tion, angular rotations are assumed to be independent and
a change in the vector n from n0 is

δn ≈ ϑ× n0 = N0ϑ, (8)

where

N0 =

 0 n0z −n0y
−n0z 0 n0x
n0y −n0x 0

 (9)

and a subscript ‘0’ stands for the equilibrium position.
The change in the vector s from the undisturbed posi-

tion s0 is

δs = r + N0ϑ (10)

and the linearised change in the tether length is

δ‖s‖ ≈ eᵀ
s0δs, (11)

where ‖.‖ is the Euclidean norm and es0 is a unit vector
in the direction of s0. The change in the force vector ft is

δft = δ

(
− T

‖s‖
s

)
≈ −es0δt−

T0
‖s0‖

(I3 − es0e
ᵀ
s0)(r + N0ϑ).

(12)
It is assumed that the change in the tether tension

is caused by the reaction of the power-take off system,
which can be modelled as a linear spring and damper with
variables kt and ct, such that

δT = ktδ‖s‖+ ct
d

dt
δ‖s‖ = eᵀ

s0

(
ktr + ctṙ + N0(ktϑ+ ctϑ̇)

)
.

(13)
Substituting Equation (13) into (12), the change in the

tether force can be expressed as:

δft = − T0
‖s0‖

(I3 − es0e
ᵀ
s0)(r + N0ϑ)

− es0e
ᵀ
s0

(
ktr + ctṙ + N0(ktϑ+ ctϑ̇)

)
. (14)

The change in the torque τt that acts on the rigid body
about its centre of mass due to the tether force is:

δτt = δ(n× ft) ≈ n0 × δft − ft0 × δn, (15)
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where ft0 is a tether force due to the positive buoyancy of
the body.

S0 is defined in a similar way to N0 and Equations (8)
and (14) are substituted in Equation (15), so the change
in the torque is calculated as:

δτt =
T0
‖s0‖

N0(I3 − es0e
ᵀ
s0)(r + N0ϑ)− T0

‖s0‖
S0N0ϑ

+ N0es0e
ᵀ
s0

(
ktr + ctṙ + N0(ktϑ+ ctϑ̇)

)
. (16)

So δft and δτt can be rewritten in a matrix form:[
δft
δτt

]
= −Kt

[
r
ϑ

]
−Ct

[
ṙ

ϑ̇

]
, (17)

when using the fact that N0 = −Nᵀ
0 ,

Ct = ctGtG
ᵀ
t (18)

and

Kt = (kt − γ0)GtG
ᵀ
t + γ0

[
I3
Nᵀ

0

] [
I3 N0

]
+

[
03×3 03×3

03×3 γ0S0N0

]
, (19)

where Gt = −
[

I3
Nᵀ

0

]
es0 and γ0 = T0/‖s0‖.

In the case when all tethers point toward the centre of
mass of the buoy, as shown in Figure 5, n0 and s0 become
collinear and it can be shown that N0es0e

ᵀ
s0 = es0e

ᵀ
s0N0 =

03×3. Therefore, Kt and Ct are:

Kt =

[
(kt − γ0)es0e

ᵀ
s0 + γ0I3 γ0N0

γ0N
ᵀ
0 γ0(Nᵀ

0N0 + S0N0)

]
,

(20)

Ct =

[
es0e

ᵀ
s0ct 03×3

03×3 03×3

]
. (21)

sea floor

s1

x

z

s2,3

n1n2,3

Figure 5: The mooring configuration when all three tethers point
toward the centre of mass of the buoy (plane view).

Expanding to the case with three tethers, the total
generalised force that acts on the body through the PTO
system is:

Fpto =

[
δft1 + δft2 + δft3
δτt1 + δτt2 + δτt3

]
= −K̃tx− C̃tẋ, (22)

where K̃t =
∑3
i=1 Kti and C̃t =

∑3
i=1 Cti, x = [r ϑ]ᵀ.

The dynamic equation of the submerged buoy motion
is [7]:

Mẍ = Fexc + Frad + Fpto, (23)

where M is a mass matrix of the buoy, Fexc is the excita-
tion force vector due to the incident wave, Frad is the hy-
drodynamic radiation force vector due to the added mass
and damping.

Additional forces acting on the WEC, such as mooring
line forces, viscous drag and static drift forces, are not con-
sidered in the present analysis. The viscous and inertial
mooring line forces are neglected in the model as they are
significantly smaller than the wave excitation force for rel-
atively small displacements at typical frequencies [13, 25].
In case when mooring lines are just used to keep body on
site and are not involved in power generation, a stiffness
of the mooring system can significantly affect the dynamic
behaviour of the buoy [26], especially motion in surge. For
this kind of problems, an additional tension from the cate-
nary cable or tether is expressed in terms of the supple-
mentary mooring stiffness matrix [27]. However, for the
current WEC, where all tethers are connected to individ-
ual PTO systems, the behaviour of the mooring system is
driven by the PTO stiffness and damping. This is similar
to the mechanism of two springs connected in series, where
stiffness of the mooring lines is several orders of magni-
tude higher than that of the PTO system. Thus, consider-
ing values used in [26] for the low rotation steel rope, the
tether stiffness is around 5.6 MN/m, while a range of the
required PTO stiffness should be ≈ 0.1 . . . 1 MN/m for a
similar WEC size, which supports the assumption made
earlier. In case of the static drift force, similar to the net
buoyancy force, it can be overcome by initial tension in
tethers T0. Thus, pretension in each tether will be dif-
ferent depending on the wave direction. As a linearised
model in Equation (23) allows to incorporate only waves
of small amplitudes, the corresponding drift force has a
negligible effect on the body dynamics. In contrast, when
considering larger waves in the time domain, inclusion of
the mean drift force may be necessary.

Fourier transforms of all forces and dynamic states of
the buoy are introduced as F(r) = r̂(jω); therefore, the
hydrodynamic radiation force in the frequency domain can
be expressed as:

F̂rad = − (jωA(ω) + B(ω)) ˆ̇x, (24)

where A(ω) is a hydrodynamic added mass matrix and
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B(ω) is a matrix of damping coefficients. The PTO force
in the frequency domain can be expressed as:

F̂pto = −

(
j
K̃t

ω
− C̃t

)
ˆ̇x, (25)

and the dynamic equation (23) can be rewritten as:

(Zpto(ω) + Zbuoy(ω)) ˆ̇x = F̂exc, (26)

where the hydrodynamic impedance of the submerged body
is Zbuoy(ω) = B(ω) + jω(M + A(ω)) and the impedance

of the PTO system is Zpto(ω) = C̃t − j K̃t

ω .

Let us denote the complex velocity amplitude as û = ˆ̇x.
The averaged power absorbed by the system is [28]:

P (û) =
1

4
(F̂∗

excû + û∗F̂exc)−
1

2
û∗Bû, (27)

where ∗ denotes the conjugate transpose.
The maximum power can be absorbed when the ve-

locity of the system is unconstrained and equal to û0 =
1
2B−1F̂exc [7]. However, in reality the velocity value is lim-
ited due to the capacity of the components. For example,
the stroke of the PTO hydraulic piston limits the maxi-
mum displacement of the buoy, which in turn determines
the maximum velocity of the WEC as û ≤ ûmax = ωx̂max.
In addition, the velocity of the system is not only a func-
tion of kt and ct control parameters, but also depends on
the tether inclination angle α. Therefore, the following
optimisation procedure is performed to find an optimal
arrangement of the mooring lines:

(i) calculate the hydrodynamic parameters of the WEC

(A(ω),B(ω),F̂exc(ω)) for a particular buoy configu-
ration (e.g. shape, submergence depth, ocean depth);

(ii) express the complex velocity û as a function of kt, ct
and α

û(kt, ct, α) =
(
Zpto + Zbuoy

)−1
F̂exc; (28)

(iii) maximise the average power of the system using Equa-
tion (27), so

max
α,kt,ct

P (û) subject to û ≤ ûmax. (29)

A rigid body has different resonant frequencies in each
uncoupled mode of oscillation. For example, the natural
frequency of the surging WEC approaches zero [29], while
the natural period for heave resonance is short compared
with the dominant wave periods [30]. Therefore, the phys-
ical meaning of this optimisation procedure is to find such
a configuration of mooring lines where the resonant fre-
quencies of heave and surge/pitch motion modes coincide,
leading to maximum power absorption.

Two distinct shapes will be considered for optimisation
purposes: a sphere and a vertical cylinder. There are sev-
eral reasons to explain the choice of two bodies. First of
all, a cylinder represents a simple classical example of the

axisymmetric body that can be excited by ocean waves in
heave, surge and pitch modes, meanwhile, a sphere has a
unique feature in not being able to radiate waves from any
angular motion. Furthermore, the hydrodynamic models
of these two bodies can be found analytically and are stud-
ied extensively in the literature.

Due to the fact that WECs may have different design
properties and operate under diverse sea site conditions,
the effect of various parameters on the optimal solution
is covered in Sections 3.1–3.6. All sensitivity studies are
performed for the spherical body except Section 3.5, where
vertical cylinders with different aspect ratios are taken into
consideration. It should be noted, that all trends presented
for the spherical body are applicable for the cylinder. All
results in the following sections have been found limiting
displacements of the WEC in heave and surge to 0.5a and
taking a regular wave amplitude as A = 0.2a. Parameters
used in the following analysis are listed in Table 1, where
the sensitivity study is based on the column ‘Range for
sensitivity analysis’ while other WEC parameters are set
according to the ‘Fixed value’ column. ‘Body shape’ shows
what WEC device is used in the corresponding section.

3.1. Sensitivity to the submergence depth

The hydrodynamic (radiation and diffraction) param-
eters of the spherical body in finite depth are obtained
using the analytical model presented in [31]. This model
utilises the multi-pole expansion method with the linear
wave theory approximation, where the fluid is assumed to
be inviscid, incompressible and irrotational [7]. Due to its
symmetrical shape, the sphere is excited by ocean waves
in heave and surge modes that are hydrodynamically un-
coupled.

The optimisation procedure according to Equation (29)
is obtained using the MATLAB Optimization Toolbox.
Figure 6 demonstrates the dependence of the optimal in-
clination angle on the non-dimensional wavenumber ka for
various submergence depths of the sphere ds = 1.25a, 1.5a,
1.75a, 2a and 3a. The ocean depth is taken as h = 10a.
The range of ka is chosen on the basis of existing WEC
prototypes (e.g. Carnegie CETO system). Thus, ka takes
values between 0.1 and 2, which covers the region of wave
periods from 5 to 18 sec with a radius of the device a =
10 m (1.61 > ka = aω2/g > 0.12). As the sphere should
be positively buoyant, the value of the mass is chosen as
mb/mw = 0.85, where mw is the mass of water displaced
by the buoy.

As shown in Figure 6, all curves lie around an optimal
inclination angle of 54.7 degrees within a range of ±1.5
degrees. These results are in a good agreement with the
kinematic analysis performed in Section 2. Moreover, the
deeper the body is submerged, the less sensitive is the
optimal angle to the wave frequency.

3.2. Sensitivity to the water depth

The range of water depth in the current analysis is
chosen to represent shallow, intermediate and deep wa-
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Table 1: WEC parameters used in optimisation and sensitivity studies.

Parameter Notation Body shape Fixed value Range for sensitivity analysis

Submergence depth ds/a sphere 1.75 1.25, 1.5, 1.75, 2, 3
Water depth h/a sphere 10 5, 6, 7, 8, 9, 10
Mass ratio mb/mw sphere 0.85 0.15, 0.3, 0.5, 0.7, 0.85
Wave direction sphere 0 deg -30, -20, -10, 0, +10, +20, +30 deg
Body height H/a cylinder 0.5, 1, 1.5, 2, 2.5, 3
Number of control parameters sphere 3 3, 4, 5
Wave height A/a 0.2
Motion constraint 0.5a
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Figure 6: The optimal inclination angle of mooring lines of the sphere
vs. non-dimensional wavenumber ka for different submergence depth
ds, water depth is h = 10a.

ter, such as h = 5a, 6a, 7a, 8a, 9a and 10a (Figure 7).
The lowest value of h = 5a is dictated by limitations of
a linearised frequency-domain model, while the maximum
value of h = 10a is chosen to represent deep water because
hydrodynamic coefficients of the sphere at h = 10a are
very close to the infinite water depth results [31].
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Figure 7: The optimal inclination angle of mooring lines of the sphere
vs. non-dimensional wavenumber ka for different water depth h,
submergence depth is ds = 1.75a.

As shown in Figure 7, the ocean depth has a negligible
affect on the values of the optimal inclination angle, even
though shallower water increases the excitation force in
surge and decreases the force in heave. The maximum
difference between angles for the shallow and deep water
is less than 0.2 degrees over the range of wave frequencies.

3.3. Sensitivity to the mass of the buoy

Mass plays an important role in the WEC design as
it determines the net buoyancy force and initial tension
in all tethers. Also when a buoy is connected to the sea
floor through flexible tethers (not rigid rods), they may
become slack if the required PTO force is larger than the
pretension force. Therefore, the device should be light
enough to guarantee taut tethers all the time.

The range of masses for the analysis is chosen from
similar prototypes [10, 15] and covers values from 0.15 to
0.85mw. Figure 8 shows that the heavier buoy is, the less
sensitive is the optimal angle to the wave frequency.
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Figure 8: The optimal inclination angle of mooring lines of the sphere
vs. non-dimensional wavenumber ka for different ratios of the buoy
mass to mass of displaced water mb/mw.

The occurrence of tether slackness is directly depen-
dent on the wave amplitude and frequency. Thus, the op-
timally controlled buoy with a mass of mb/mw = 0.85 at
regular waves of 1 m amplitude will experience slackness
of tethers at frequencies ka > 0.16, almost every cycle of
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motion. This reduces the total power absorption of the
WEC, as power take-off system is not able to extract en-
ergy when a tether is slack. In contrast, for mb/mw = 0.5
tethers become loose only at ka > 1.2, which is more suit-
able for power conversion purposes.

In addition, the buoy mass (through the net buoyancy
force and moment of inertia) determines the resonance fre-
quency of the WEC in pitch and roll. It can be seen from
Equation (20) that the frequency response of surge, sway
and heave modes can be changed using a spring control
parameter kt. In contrast, the natural frequencies of an-
gular modes are predominantly dependent on the initial
tension and length of tethers through γ0-parameter and
cannot be directly controlled. Thus, for the spherical buoy
with a mass ratio of mb/mw = 0.85, which is submerged
to ds = 1.75a at water depth of h = 10a, the natural
frequency of pitch mode occurs around ka = 0.3. This is
within the range of operational sea sites frequencies, which
is not desirable for the current WEC design. A reduction
in mass leads to an increase in the pitch natural frequency,
and can be used to move the pitch response outside the
frequency range of interest.

3.4. Sensitivity to the wave direction

The direction of wave propagation may vary greatly
depending on the sea site. Consequently an optimisation
has been performed for the range of wave angles from -
30 to 30 degrees with a 10-degree increment, which covers
all possible wave direction options due the cyclic axisym-
metry of the tripod configuration. In the investigation it
was found that wave direction does not affect the opti-
mal parameters of the PTO and a tether inclination angle
have the same dependence on the frequency for all incident
wave angles. The only difference in the WEC performance
is that the distribution of power absorption between three
tethers varies depending on the wave direction.

3.5. Sensitivity to aspect ratio of the body

A spherical body has an aspect ratio of 1 as its ver-
tical and horizontal dimensions are equal. In case of a
cylinder, the aspect ratio may be different varying from a
flat, disk-shaped body to the infinitely long cylinder. The
dimensions of a WEC determine the ratio between hori-
zontal and vertical excitation forces that act on the body.
This in turn affects the distribution of power absorption
between heave and surge motion modes, that will influence
the optimal inclination angle of the three-tether mooring
system.

An analytical model of all hydrodynamic parameters
of a submerged vertical cylinder in finite depth is obtained
from [32, 33]. Unlike the spherical case, the cylinder is
excited in surge, heave and pitch modes with a coupling
in surge/pitch. It means that the added mass matrix
A(ω) and the matrix of damping coefficients B(ω) have
off-diagonal elements.

Figure 9 demonstrates the comparison of the optimal
configuration of tethers for the equally submerged (ds =

2a) vertical cylinders with various aspect ratios (H =
0.5a, 1a, 1.5a, 2a, 2.5a and 3a). For the cylinder with an
aspect ratio of one (H = 2a), the curve lies around an
optimal inclination angle of 54.7 degrees (orthogonal teth-
ers), but with a greater variation around an optimal point
compared with the spherical case. For other cylinder ge-
ometries the tether arrangement is highly dependent on
the body aspect ratio.
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Figure 9: A comparison of an optimal inclination angle of moor-
ing lines for vertical cylinders with different aspect ratios (H =
0.5a, a, 1.5a, 2a, 2.5a, 3a). All bodies are submerged to the same
depth of ds = 2a, the ocean depth is h = 10a, mass of cylinders
is mb/mw = 0.85.

It is apparent from Figure 9, that flat cylinders (H <
2a) require the tether angle to be smaller than the optimal
54.7 degrees as they rely more on heave, thus the mooring
lines are closer to the vertical. This is opposed to the slen-
der cylinders (H > 2a), where the surge mode is dominant
and tethers should have a larger inclination angle.

3.6. Sensitivity to the number of control parameters

Results in Sections 3.1–3.5 are obtained assuming that
all three power take-off systems have identical values of
control stiffness and damping coefficients (kt1,2,3 = kt,
ct1,2,3 = ct). This makes the WEC insensitive to the di-
rection of wave propagation, where optimal control pa-
rameters can be detected for different sea states and then
applied regardless of the incoming wave angle.

To investigate the effect of the number of control pa-
rameters on the optimal tether configuration, a spherical
WEC is considered. Taking into account that the system is
symmetric about xz-coordinate plane, tethers 2 and 3 will
require identical PTO settings if wave propagates along
the x-axis. Thus, four different combinations of indepen-
dent control parameters are introduced:

‘3’ – all tethers have identical values of stiffness and damp-
ing coefficients (kt1,2,3 = kt, ct1,2,3 = ct), therefore
three unknowns, such as α, kt, ct are included in the
optimisation;
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‘4k’ – all tethers have individual values of spring stiffness
while damping coefficients will remain the same for
all PTOs. Therefore, the optimisation procedure will
include four unknowns, such as α, kt1, kt2,3, ct;

‘4c’ – all tethers have individual damping while stiffness
coefficients will remain the same for all PTOs result-
ing in four unknowns, such as α, kt, ct1, ct2,3;

‘5’ – all tethers have individual control parameters lead-
ing to five optimisation parameters α, kt1, kt2,3, ct1, ct2,3.

As a result, the objective function in Equation (29) is
modified according to the above four cases. Hereinafter,
each of the proposed combinations will be referred to as
‘3’, ‘4k’, ‘4c’ and ‘5’-system.

Figure 10 shows a variation in the optimisation results
between systems for the test case of a fully submerged
spherical body (submergence depth is ds = 1.75a, water
depth is h = 10a, wave amplitude is A = 0.2a, motion is
constrained to 0.5a in heave and surge, mass of the buoy
is mb/mw = 0.85).

From Figure 10b it can be seen, that ‘3’-system absorbs
slightly less than the maximum power, while ‘4k’, ‘4c’ and
‘5’ cases approach the theoretical maximum. Also, there is
no need to use independent parameters for all tethers (as
in case ‘5’) since ‘4k’ and ‘4c’-systems can provide the max-
imum power output (lines on the plot overlap). The data
for the inclination angle of the 5-parameter system (Fig-
ure 10a) is not smooth indicating that a system is poorly
conditioned (overdetermined) and there are many combi-
nations of PTO parameters which achieve maximum power
absorption. Since the spring and damper coefficients for
this system have the same ‘noisy’ behaviour, they are not
displayed on Figures 10c and 10d.

The main difference in results is associated with the
damping coefficient (ct) shown on Figure 10d. It is inter-
esting to note that in case of ‘4c’ optimisation, the values
of the damping coefficient for tethers 2 and 3 are several
times larger than that for the tether 1; whereas the spring
coefficients differ slightly for all optimisation procedures
(Figure 10c). Also, systems with ‘3’ and ‘4k’ parame-
ters are very close in terms of the optimal angle, while
a curve for the 5-parameter system oscillates around those
values. The WEC with the independent damping control
over each tether requires a larger angle between mooring
lines as compared to other systems.

However, despite these obvious discrepancies in results,
the normalised power absorption of the system with iden-
tical control parameters for each tether is only 2.7% less
than for the WEC with individual control over all PTOs.
Nonetheless, due to the uneven distribution of damping
or stiffness coefficients over all tethers, tether 1 for the 4-
and 5-parameter systems experiences 10.8% higher load as
compared to the 3-parameter counterpart. This is undesir-
able from an engineering perspective since it increases the
capital cost of the system considerably for only a marginal
increase in power production. Another issue associated

with independent control parameters is that the optimal
damping of the first tether is found to be 0 for the ‘4c’ case.
This means that the first PTO system will not absorb any
power at frequencies ka > 0.6.

Therefore, the use of individual control parameters for
all PTO systems does not have a huge impact on the op-
timal inclination angle of tethers, but may improve the
relative capture width (RCW) of the WEC. Such a rise
in power absorption is accompanied by a significant in-
crease in the load on tether 1, which may be critical for
the WEC design. A corresponding compromise between
power and tension force makes it necessary to conduct a
techno-economic analysis in order to assess systems with
different sets of control parameters, which goes beyond the
scope of this article.

Moreover, it should be pointed out that individual tun-
ing of all PTO systems introduces additional complexity
of the control system design. Since the improvement in the
WEC performance is very minor with respect to the dif-
ficulty of the problem; the same control parameters have
been considered in Sections 3.1–3.5.

4. Effect of the tether configuration on power ab-
sorption

Sections 2 and 3 demonstrated how the optimal an-
gle of tethers is sensitive to various parameters, such as
a submergence depth of the buoy or its mass. However,
the most important question is how this angle affects the
total power absorption of the WEC assuming optimal set-
tings of the PTO system, since it is not always possible
to achieve the optimal configuration of tethers in practice,
e.g. due to geological features of the sea site.

Depending on the parameters that define the system,
optimal values of the inclination angle may be almost in-
sensitive to the wave frequency or may vary greatly across
the entire frequency range. Therefore, WECs that repre-
sent these two cases will be chosen for the analysis: case 1
shows a sensitive system, where a WEC is located close to
the water level with a low mass ratio, and case 2 relates to
the insensitive system (a heavy buoy that is deeply sub-
merged).

Figure 11 demonstrates the influence of the inclina-
tion angle of tethers on the power output (relative capture
width) for these two cases. The solid lines correspond to
the optimal solution that maximises the relative capture
width, while shaded areas show the range of inclination
angles in which RCW falls within 99% of its maximum
value. Thus, for the first case, where the optimal angle is
quite sensitive to the wave frequency, the deviation from
the optimum in few degrees has a minor impact on the
power absorption. Interestingly, the trend is opposite for
the second case, where the optimal solution is almost in-
sensitive to the wave frequency, but the power output is
highly dependant on the inclination angle. To give more
insight to the second case, the corresponding RCW for var-
ious inclination angles of tethers α = 50 . . . 60 degrees is
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Figure 10: Comparison in results for four optimisation procedures (the black dashed line corresponds to the theoretical maximum): (a) incli-
nation angle of tethers; (b) relative capture width; (c) non-dimensional PTO stiffness; (d) non-dimensional PTO damping.

depicted on Figure 12. Thus, for long waves (ka < 0.5),
a change in the angle by 1-2 degrees causes the reduction
of power absorption by no more than 1%, while for short
waves (ka > 1) even small variations from the optimal so-
lution can involve a sudden drop in the WEC efficiency.
However, as the majority of devices target long waves, an
inaccuracy of several degrees in the mooring lines installa-
tion is acceptable for the three-tether WEC.

In summary, whilst for low frequencies a small error in
the tether angle has a negligible effect on the power output
of the system, at high frequencies this is no longer the case.
Therefore, in some cases it may be necessary to select the
arrangement of the tethers such that the system targets a
particular sea site.

5. Discussion

Despite the fact that the current study is based on fre-
quency domain analysis utilising linear wave theory and
idealised power take-off systems, it should be used as a

reference for further investigation of the optimal moor-
ing configurations, taking into account site-specific fea-
tures, such as typical spectra of the sea state and WEC
design limitations. Moreover, non-linear effects such as
viscous losses and non-linear dynamics of the hydraulic
power take-off system may influence the results presented
in this article. At the same time, the three-tether mooring
configuration where all tethers are perpendicular to each
other (forming the edges of a cuboidal vertex) and point
towards the centre of mass of the buoy should be used as a
starting point for further design optimisation and control
system development. Current analysis will be extended to
irregular wave conditions using a time-domain model in or-
der to validate the main findings of this paper. Also future
work involves validation of the concept using a scale-model
experiment.

6. Conclusions

An optimal arrangement of the 3-tether mooring con-
figuration has been investigated for two generic shapes of
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submerged point-absorbing WECs in frequency domain
using a linear wave theory approximation and a linear
power take-off system. Since such a configuration allows
the extraction of power from surge, heave and pitch mo-
tions, the relative contribution from each mode in the ab-
sorption of power is different and depends on the inclina-
tion angle of mooring lines. Assuming that all tethers are
equally distributed around a buoy (120 degrees between
tethers in a horizontal plane), the objective of this study
is to optimise the inclination angle of tethers in order to
reach maximum power absorption. The kinematic study of
the problem has shown that all tethers should be orthogo-
nal to each other, allowing all power take-off systems to do
the same amount of work. This arrangement turned out

to be optimal also for the submerged spherical WEC and
for the submerged vertical cylinder with an aspect ratio of
one. The analysis of the cylinders with other aspect ra-
tios revealed that more slender cylinders require a larger
inclination angle of tethers to the vertical. This can be
explained by the fact that the excitation force in surge in-
creases with the height of the cylinder and therefore more
energy can be extracted from the surge oscillation if the
same motion constraints are applied. Since the optimal
inclination angle of tethers to the vertical for the heaving
device is 0 degrees (vertical) and for the surging device is
90 degrees (horizontal), the increase in the height of the
cylinder implies a larger inclination angle. It should be
noted that with the change of the submergence depth, the
dependence of the optimal angle on the incoming wave fre-
quency decreases. In addition, it has been revealed that
WECs that have an individual control laws for each tether
may require slightly different inclination of mooring lines
for optimal power absorption. The minor gains in power
absorption come at a cost of increased dynamic loads on
the PTOs and added complexity.
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