
PUBLISHED VERSION

Indra Gunawan
DSM methods to improve planning and scheduling in asset management
Asset Management and Maintenance Journal, 2012; 25(1):50-55

© Engineering Information Transfer

http://hdl.handle.net/2440/98455

PERMISSIONS

http://www.theammj.com/

Email received 27 April 2016

We always allow authors to retain their rights with regard to articles published in the
AMMJ.

You are Ok in terms of archiving and the articles can be posted in your public
depository, etc.

Regards

Len Bradshaw

editor@theammj.com

27 April 2016

http://hdl.handle.net/2440/98455
http://www.theammj.com/
mailto:editor@theammj.com

In this paper, the Design Structure Matrix (DSM) method is presented to improve planning
and scheduling in asset management. The main advantage of the DSM over traditional project
scheduling tools such as Critical Path Method (CPM) or Gantt chart is in compactness and
ability to present an organized and efficient mapping among tasks that is clear and easy to read
regardless of size. Three DSM methods: Path Searching, Powers of the Adjacency Matrix, and
Reachability Matrix methods are discussed. As a case study, DSM methods are implemented to
reduce design iteration or rework in an engineering project. New project duration is optimised
compare to initial project duration.

Introduction
Design Structure Matrix (DSM) also known as Dependency Structure Matrix, Problem Solving Matrix and Design
Precedence Matrix is a project management tool used for representing and analysing dependencies (Eppinger et al.,
1994, 2003, Maheswari et al., 2005, M. E. Sosa, 2008, Mori et al., 1999, P. Sage et al., 2009, T. R. Browning, 2009, U. Lindemann et al. 2009,
Yassine et al., 1999, 2004). The DSM was developed by Warfield (in the 70’s) and Steward (1981). The approach then
developed by Massachusetts Institute of Technology (MIT) research in the design process in 1990.

There are three basic types of task
dependencies as shown in Figure 1:
Sequential (dependent), Parallel
(independent) and Coupled
(interdependent).
Traditional project management
tools such as CPM or Gantt chart
normally can manage the first two
types of task dependencies. But if
the relationship between tasks is
coupled, then the DSM approach
should be implemented to improve
the efficiency of project schedule development for large and complex projects.
In the next sections, the DSM approach is presented. Three DSM methods: Path Searching, Powers of the
Adjacency Matrix, and Reachability Matrix methods are introduced. An application of these methods in a petroleum
oil field development project is analysed. Finally, the summary of the DSM methods with respect to project scope is
discussed.

Design Structure Matrix (DSM)
The DSM is a compressed, matrix representation of a project. The
matrix contains a list of all tasks. It shows what information is required
to start a certain task and where that information from that task
feed into, which other tasks in the matrix use the output information
(Banerjee et al., 2007, Browning, 2001, Chen C. et al, 2004, Cho et
al., 2001, Danilovic, 2007, Eppinger et al., 2003). In a DSM model, a
project task is assigned to a row and a corresponding column. The
rows and columns are named and ordered identically. Each task is
defined by a row of the matrix. We represent a task’s dependencies
by placing marks (“x”, “o” or “1”) in the columns to indicate the other
tasks (columns) on which it depends. Reading across a row reveals
all the input tasks and reading down a column reveals the output tasks
as shown in Figure 2.
The diagonal tasks of the matrix do not have any interpretation in
describing the system, they are either left empty, blacked out, filled
in with the task labels or task duration. This is done to separate the
upper and lower triangles of the matrix and to show more clearly the
tracing dependencies. The marks below the diagonal indicate forward
flow of information. For example, task B needs information from task
A. The marks above the diagonal indicate a feedback from a later
(downstream) task to an earlier (upstream) one. For example, task A
needs information from task F.

INDRA GUNAWAN School of Applied Sciences and Engineering
Monash University (Gippsland Campus) Australia indra.gunawan@monash.edu

Vol 25 No 1

DSM Methods To Improve Planning
And Scheduling In Asset Management

Figure 1 Graphical Representation od the ThreeTypes of Task Dependencies

Figure 2 A DSM Representation of a Project

AMMJ DSM Planning and Scheduling 51

Vol 25 No 1

To fully carry out the DSM approach, we must determine suitable system decomposition by correctly determining
the dependency relationships gathered. Then, we must decompose the system into significant system elements
(subsystems or modules) by gathering engineering managers’ feedback from different areas of an organization and
collecting a list of different sub-systems that include the system entirely. Decomposition can be hierarchical or non-
hierarchical (also called network decomposition). In hierarchical decomposition, the system can be divided into sub-
systems or modules and those modules are divided into finer components. In non-hierarchical a system hierarchy
is not obvious. After the system elements/activities have been identified they are listed in order down the rows and
across the columns.

DSM Methods
The DSM can be used to improve the planning, execution and management of complex projects using different
algorithms, which are partitioning, clustering, tearing, banding, simulation and eigenvalue analysis.

Partitioning (Steward, 1981; Yassine, 2001) is the process of rearranging the order of activities in such a way so that
the dependency relationships are brought either close to the diagonal as possible (this form of the matrix is known as
block triangular) or below the diagonal, changing the DSM into a lower triangular form. Fewer elements in the system
will be involved in the iteration cycle. The outcome is a faster development process. There are many approaches
used in DSM partitioning, they are similar but different in how they identify cycles (circuits or loops) of information.

The algorithm for the formation of a partitioned DSM is explained below:
i) Consider an activity DSM.
ii) Observe for any marks along the upper diagonal (feedback/loop/circuits) of the matrix. If there are no marks along
 the upper diagonal it means that the matrix is partitioned. Stop the procedure or continue with the next step.
iii) Check for empty rows (activities that do not have input from the rest of the activities in the matrix) and move
 all the empty rows to the top of the matrix and the corresponding columns to the left of the matrix and leave out
 these activities from further consideration. Empty rows represent the start activities. The remaining activities in
 the matrix form the active matrix.
iv) From the active matrix, check for any empty columns (deliver no information to other activities in the matrix) and
 move all these empty columns to the right and the corresponding rows to the bottom of the active matrix and leave
 out these activities from further consideration. Empty columns represent the finish activities.
v) Repeat steps iii and iv until there are no empty rows and columns in the active matrix. Repeating the above
 process allows to identify the dependent activities.
Steps i-v are known as the Topological Sorting Algorithm.
vi) Determine circuits/loops by Path Searching, Powers of the Adjacency Matrix, and Reachability Matrix methods.
vii) Merge/condense all the activities in the loop to form a block.
viii) Repeat the final condensed matrix to find the block sequence.

In the Path Searching method, information flow is traced forwards or backwards until a task is come across twice.
To trace out the circuits/loops choose a mark in a row, then read up to the column value. Go to the same row value
of this column and read up to the column. Continue reading across the rows until that same mark, read from the first
column appears again. All the tasks between the first and second occurrence of the task form a loop of information
flow. When all loops in the DSM have been identified, and all tasks have been scheduled, the sequencing is complete
and the matrix is in block triangular form.
In the Powers of the Adjacency Matrix, the matrix is converted into a binary matrix by replacing the marks in the DSM
with “1” and all other empty cells as “0”. Raising the DSM to the n-th power shows which task can be traced back to
itself in n steps by observing a “1” entry for that task along the diagonal of the matrix. In the resultant square matrix,
cells with a value greater than one are replaced by a value of one.

The following steps show the Reachability Matrix algorithm:
1) Convert the diagonal elements (that are either filled in with the task labels, left empty or blacked out) and make
 them equal to “one” or “x”.
2) Create a table with four columns
3) In the first column, we list all the elements in the matrix
4) In the second column, we list the set of all the input elements for each row in the table. To recognize the input
 elements in the matrix, is indicated by an entry of “x” or “one” to the corresponding row in the DSM. We include
 the element itself as an input.
5) In the 3rd column, we list the set of all output elements for each row in the table. To recognize the output elements
 in the matrix, is indicated by an entry of “x” or “one” to the corresponding column in the DSM. We include the
 element itself as an output.
6) In the fourth column, we list the intersection of the input and output sets for each element in our table. We can
 now identify top level elements and remove them from the table. An element is in the top level hierarchy of the
 matrix if its input set is equal to the intersection set.

AMMJ DSM Planning and Scheduling 52

Vol 25 No 1

Case Study: Petroleum Oil Field Development Project
(Although not a Maintenance related example it will however illustrate the application of DSM)

The objective of the Petroleum Oil Field Development (POFD) project is to design a development plan for a new oil
field discovered after drilling a number of wells. The development plan consists of oil producers, water/gas injectors
and surface facility to handle the produced oil, water and gas. Figure 3 shows a cross section of an oil field before
development. In this project, three DSM methods will be implemented to improve planning, execution and managing
the project by reducing the number of feedbacks.

The project is divided into five areas:

Conduct Reservoir Rock Type (RRT) Study, Build
Static Model, Conduct Special Core Analysis
(SCAL) Study, Build Dynamic Model, and Conduct
Pressure Volume Temperature (PVT) Study. This
project is an activity based performed by one
team involving: Team leader/manager, Reservoir
Engineers, Petroleum Engineers, Geologists, and
Petrophysists. Project duration is estimated about
100 days and this project involves 24 tasks as
follows:

1.1 Review & Prepare Data
1.2 Collect Samples
1.3 Define Reservoir Rock Types (RRT)
1.4 Prepare Data for Static Model
2.1 Input Data
2.2 Build Reservoir Framework
2.3 Build 3D Property Model (s)
2.4 Manipulate & Rank Models
2.5 Build 3D Flow Simulation Grid (s)
3.1 Study Existing Data Sources
3.2 Conduct Coring
3.3 Conduct Rock Characterization

Constructing The DSM
We interviewed a reservoir engineer specialist to determine the inputs and outputs for the list of tasks and the task
durations (days) involved in the project. We input the marks and the task durations (along the diagonal) into the matrix
as shown in Figure 4.

Partitioning The DSM
The aim of partitioning the DSM is to maximize the availability of information required, and minimize the amount
of iterative loops within the process. The process is ordered to minimize the number of dependencies above the
diagonal. Partitioning the matrix sequences the tasks that do not contribute to iterative loops and indicates the tasks
that are within iterative loops, but does not sequence the tasks within the loops. This is because the tasks that
contribute to a loop are all inter-related, and any of them can be the first task carried out in the completion of the
loop. It is desirable that the tasks within a loop are ordered to reduce the number of estimates and iteration within
the process. The first step of the process is the topological sorting before we identify loops/circuits using three DSM
methods: Path Searching, Powers of the Adjacency Matrix, and Reachability Matrix methods.

Tasks 1.2, 3.1, 3.2, 5.1 and 5.2 do not depend on any information from any other tasks, as shown with empty rows.
We can schedule this set of tasks first and leave out from further consideration. Next we will schedule the tasks
that depend only on tasks 1.2, 3.1, 3.2, 5.1 and 5.2. Tasks 3.4 and 3.5 depend only on task 3.2; we will schedule
these tasks after task 5.2. Tasks 5.3 and 5.4 depend only on task 5.2. We will schedule these tasks after tasks 3.4
and 3.5. Task 5.5 depends on only tasks 5.1, 5.3 and 5.4. We will schedule task 5.5 after task 5.4. Task 4.4 does
not deliver information to any other tasks in the matrix, as shown by an empty column. We will move task 4.4 to the
right and corresponding row to the bottom of the matrix as shown in Figure 5 and leave out this task from further
consideration.

1. Path Searching Method
We trace forward starting with the remaining tasks that contain marks above the diagonal. We read across row 1.1,
identify a mark and read up to column 3.6. We read across row 3.6, identify a mark and read up to column 3.3 (we
ignore the other marks across the row of 3.6 because we have already scheduled those tasks using topological
sorting). We read across row 3.3, identify a mark and read up to column 1.3. We read across row 1.3, identify a mark
and read up to column 1.1. From this information tasks 1.1, 1.3, 3.3 and 3.6 are involved in a circuit because as we
read across the rows, the first row we read (i.e. task 1.1) appeared again as we read across row 1.3, identified a mark
and read up to column 1.1.

Figure 3. A cross section of an oil field before development

3.4 Conduct Geo-mechanical Studies
3.5 Conduct Special Core Analysis
 (dynamic displacement experiments)
3.6 Do Routine & Special Core Interpretation
4.1 Input Data
4.2 Initialize Reservoir Dynamic Model
4.3 Do History Matching
4.4 Do Development Predictions
5.1 Study Existing Data Sources
5.2 Collect Samples
5.3 Conduct Specialized PVT Study
5.5 Develop PVT Applications

AMMJ DSM Planning and Scheduling 53

Vol 25 No 1

Figure 4 DSM representation of the Petroleum Oil Field Development Project

Figure 5 Topological Sorting

We will rearrange the tasks so that the tasks involved in the circuit (i.e. tasks 1.1, 1.3, 3.3 and 3.6) are scheduled after
each other in the matrix. We will schedule these tasks after scheduling the first tasks in topological sorting and leave
out these tasks from further consideration. These tasks will form a block in the matrix as shown in Figure 6.

We trace forward task 2.5 (because it contains a mark above the diagonal) we read across row 2.5, identify that mark
above the diagonal and read up to column 4.3. We read across row 4.3, identify a mark and read up to column 4.2.

We read across row 4.2, identify a mark and read up to column 4.1. We read across row 4.1, identify a mark and read
up to column 2.5. From this information tasks 2.5, 4.1, 4.2 and 4.3 are involved in a circuit because as we read across
the rows, the first row we read (i.e. task 2.5) appeared again as we read across row 4.1, identified a mark and read up

to column 2.5. These tasks will
form another block in the matrix
as shown in Figure 6.

2. Powers of the Adjacency
 Matrix Method
We convert the active matrix as
shown in Figure 5 into a binary
matrix by replacing the “X” marks
by “1” and all other empty cells
with “0”. Raising the DSM to the
4th power reveals that tasks 1.1,
1.3, 2.5, 3.3, 3.6, 4.1, 4.2 and 4.3
are involved in a 4 step circuit.
This is indicated by a “1” entry
for the tasks along the diagonal
of the matrix as shown in Figure
7. In the resultant square matrix,
cells with a value greater than
one are replaced by a value of
one.
Raising the matrix to the 5th
power reveals that the DSM is
not involved in any other circuits
indicated by the “0” along the
diagonal of the matrix. By using
trial and error to determine which
tasks are involved in which circuit,
we will condense (schedule after
each other) all the tasks in each
circuit to form two blocks. The
first involves tasks 1.1, 1.3, 3.3
and 3.6 and the second block
involves tasks 2.5, 4.1, 4.2 and
4.3. We will convert the binary
matrix back to the active matrix
as shown in Figure 6.

3. Reachability Matrix Method
We will construct a table as
shown in Table 1 listing the input
elements, output elements, the
intersection of the input and
output sets for each element
and the level of hierarchy. We
can observe from the column of
the input elements that elements
1.2, 3.1, 3.2, 5.1 and 5.2 are in
the top level hierarchy because
the input values of these elements are equal to the intersection values. We will remove these elements from the table
and continue until we reach the corresponding input & output values as shown in Table 2. We will rearrange the original
DSM, and schedule the elements starting with the top level hierarchy through to the 11th level hierarchy elements as
shown in Figure 6. The circuits we identified will form two blocks in the DSM. The first involves tasks 1.1, 1.3, 3.3, 3.6
and the second block involves tasks 2.5, 4.1, 4.2 and 4.3.

Conclusions
DSM is a new approach to asset management, used to represent, analyse dependencies among tasks and show
the order in which tasks are preformed. This approach provides a way of managing feedbacks. The outcome from
partitioning the DSM is a faster development process that can be done by optimizing the availability of information.
From the case study, we can see that the number of feedbacks in the petroleum oil field development project have been
reduced, hence reducing the project cost significantly.
In general, the DSM methods can be applied to identify loops/circuits for project planning and scheduling improvement.
When the number of tasks involved in the project is small, the Path Searching method can be done effectively. If the project

AMMJ DSM Planning and Scheduling 54

Vol 25 No 1

Figure 6 The Final Partitioned Matrix

Figure 7 The Binary Matrix Raised to the 4th Power

is more complex, then the Powers of the
Adjacency Matrix and the Reachability
Matrix methods should be implemented.
It can be observed from the case study
that the Reachability Matrix method is
also efficient for small projects.

References
[1] Banerjee, A., Carrillo, E. and Paul, A.
(2007). Projects with sequential iteration:
Models and complexity. IIE Transactions, Vol.
39, No. 5, pp. 453-463.

[2] Browning.T.R. (2001). Applying the Design
Structure Matrix to System Decomposition
and Integration problems: A Review and New
Directions. IEEE Transactions on Engineering
Management, pp 292-300.

[3] Chen.C, Khoo.L and Jiao.A. (2004).
Information deduction approach through quality
function deployment for the quantification
of the dependency between design tasks.
International Journal of Production Research,
Vol 42,pp 4623- 4637.

[4] Cho and Eppinger. (2001). Product
development process modeling using
advanced simulation. Design engineering
technical conferences, Pittsburgh, pp 1-9.

[5] Danilovic, M. and Browning, T. R. (2007).
Managing complex product development
projects with design structure matrices and
domain mapping matrices. International
Journal of Project Management, April 2007,
Vol. 25 No. 3, pp. 300-314.

[6[Eppinger, Whitney, Smith and Gebala.
(1994). A Model-Based Method for Organizing
Tasks in Product Development. MIT Sloan
School of Management, pp 1-20

[7] Eppinger and Ulrich. (2003). Product Design and Development. New York McGraw-Hill.

[8] Maheswari.J, Varghese.K. (2005). A Structured Approach to Form Dependency Structure Matrix for Construction Projects.
International Symposium on Automation and Robotics in Construction, Indian Institute of Technology Madras, pp 1–6.

[9] M. E. Sosa. (2008). A Structured Approach to Predicting and Managing Technical Interactions in Software Development. Research
in Engineering Design, Vol. 19, No. 1, pp. 47-70.

[10] Mori.T, Kondo.K, Ishii.K and Ohtomi.K. (1999). Task Planning For Product Development by Strategic Scheduling of Design
Reviews. ASME Design Engineering Technical Conferences, Las Vegas, pp 1-12. [11] P. Sage and W. B. Rouse. (2009). Handbook
of Systems Engineering and Management. Wiley, New York, 2 edition.

[12] Steward, D. (1981). The Design Structure Matrix: A Method for Managing the Design of Complex Systems. IEEE Transactions
on Engineering Management, Vol. 28, No. 3, pp. 71-74.

[13] T. R. Browning. (2009). The Many Views of a Process: Towards a Process Architecture Framework for Product Development
Processes. Systems Engineering, Vol. 12, No. 1, pp. 69-90.

[14] U. Lindemann, M. Maurer and T. Braun. (2009). Structural Complexity Management - An Approach for the Field of Product
Design. Springer, Berlin.

[15] Yassine.A, Falkenburg.D and Chelst.K. (1999). Engineering design management and information structure approach. International
Journal of Production Research, Vol 37 pp 2957 – 2975.

[16] Yassine, Whitney and Zambito. (2001). Assessment of Rework Probabilities for Simulating Product Development using the
Design Structure Matrix (DSM). ASME International Design Engineering Technical Conferences, Pennsylvania, pp 1-9.

[17] Yassine. A. (2004). An Introduction to Modeling and Analyzing Complex Product Development Processes Using the Design
Structure Matrix (DSM) method. Product development research laboratory, University of Illinois, pp 1-17.

Indra Gunawan is a Senior Lecturer and Coordinator of “Postgraduate Programs in Maintenance & Reliability Engineering”
in the School of Applied Sciences and Engineering at Monash University. He obtained his Ph.D. degree in Industrial Engineering
from Northeastern University, USA. His main areas of research are reliability engineering, production and operations management,
application of operations research, applied statistics, probability modeling, and project management.

AMMJ DSM Planning and Scheduling 55

Vol 25 No 1

Table 1 Element’s inputs, outputs, intersections and level of hierarchy

Table 2 Removing the 10th level hierachy elements

	Button2:

